1 //===- InstCombineCompares.cpp --------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the visitICmp and visitFCmp functions.
11 //===----------------------------------------------------------------------===//
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/ConstantFolding.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/TargetLibraryInfo.h"
20 #include "llvm/IR/ConstantRange.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/KnownBits.h"
29 using namespace PatternMatch
;
31 #define DEBUG_TYPE "instcombine"
33 // How many times is a select replaced by one of its operands?
34 STATISTIC(NumSel
, "Number of select opts");
37 /// Compute Result = In1+In2, returning true if the result overflowed for this
39 static bool addWithOverflow(APInt
&Result
, const APInt
&In1
,
40 const APInt
&In2
, bool IsSigned
= false) {
43 Result
= In1
.sadd_ov(In2
, Overflow
);
45 Result
= In1
.uadd_ov(In2
, Overflow
);
50 /// Compute Result = In1-In2, returning true if the result overflowed for this
52 static bool subWithOverflow(APInt
&Result
, const APInt
&In1
,
53 const APInt
&In2
, bool IsSigned
= false) {
56 Result
= In1
.ssub_ov(In2
, Overflow
);
58 Result
= In1
.usub_ov(In2
, Overflow
);
63 /// Given an icmp instruction, return true if any use of this comparison is a
64 /// branch on sign bit comparison.
65 static bool hasBranchUse(ICmpInst
&I
) {
66 for (auto *U
: I
.users())
67 if (isa
<BranchInst
>(U
))
72 /// Given an exploded icmp instruction, return true if the comparison only
73 /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if the
74 /// result of the comparison is true when the input value is signed.
75 static bool isSignBitCheck(ICmpInst::Predicate Pred
, const APInt
&RHS
,
78 case ICmpInst::ICMP_SLT
: // True if LHS s< 0
80 return RHS
.isNullValue();
81 case ICmpInst::ICMP_SLE
: // True if LHS s<= RHS and RHS == -1
83 return RHS
.isAllOnesValue();
84 case ICmpInst::ICMP_SGT
: // True if LHS s> -1
86 return RHS
.isAllOnesValue();
87 case ICmpInst::ICMP_UGT
:
88 // True if LHS u> RHS and RHS == high-bit-mask - 1
90 return RHS
.isMaxSignedValue();
91 case ICmpInst::ICMP_UGE
:
92 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
94 return RHS
.isSignMask();
100 /// Returns true if the exploded icmp can be expressed as a signed comparison
101 /// to zero and updates the predicate accordingly.
102 /// The signedness of the comparison is preserved.
103 /// TODO: Refactor with decomposeBitTestICmp()?
104 static bool isSignTest(ICmpInst::Predicate
&Pred
, const APInt
&C
) {
105 if (!ICmpInst::isSigned(Pred
))
109 return ICmpInst::isRelational(Pred
);
111 if (C
.isOneValue()) {
112 if (Pred
== ICmpInst::ICMP_SLT
) {
113 Pred
= ICmpInst::ICMP_SLE
;
116 } else if (C
.isAllOnesValue()) {
117 if (Pred
== ICmpInst::ICMP_SGT
) {
118 Pred
= ICmpInst::ICMP_SGE
;
126 /// Given a signed integer type and a set of known zero and one bits, compute
127 /// the maximum and minimum values that could have the specified known zero and
128 /// known one bits, returning them in Min/Max.
129 /// TODO: Move to method on KnownBits struct?
130 static void computeSignedMinMaxValuesFromKnownBits(const KnownBits
&Known
,
131 APInt
&Min
, APInt
&Max
) {
132 assert(Known
.getBitWidth() == Min
.getBitWidth() &&
133 Known
.getBitWidth() == Max
.getBitWidth() &&
134 "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
135 APInt UnknownBits
= ~(Known
.Zero
|Known
.One
);
137 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
138 // bit if it is unknown.
140 Max
= Known
.One
|UnknownBits
;
142 if (UnknownBits
.isNegative()) { // Sign bit is unknown
148 /// Given an unsigned integer type and a set of known zero and one bits, compute
149 /// the maximum and minimum values that could have the specified known zero and
150 /// known one bits, returning them in Min/Max.
151 /// TODO: Move to method on KnownBits struct?
152 static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits
&Known
,
153 APInt
&Min
, APInt
&Max
) {
154 assert(Known
.getBitWidth() == Min
.getBitWidth() &&
155 Known
.getBitWidth() == Max
.getBitWidth() &&
156 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
157 APInt UnknownBits
= ~(Known
.Zero
|Known
.One
);
159 // The minimum value is when the unknown bits are all zeros.
161 // The maximum value is when the unknown bits are all ones.
162 Max
= Known
.One
|UnknownBits
;
165 /// This is called when we see this pattern:
166 /// cmp pred (load (gep GV, ...)), cmpcst
167 /// where GV is a global variable with a constant initializer. Try to simplify
168 /// this into some simple computation that does not need the load. For example
169 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
171 /// If AndCst is non-null, then the loaded value is masked with that constant
172 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
173 Instruction
*InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst
*GEP
,
176 ConstantInt
*AndCst
) {
177 Constant
*Init
= GV
->getInitializer();
178 if (!isa
<ConstantArray
>(Init
) && !isa
<ConstantDataArray
>(Init
))
181 uint64_t ArrayElementCount
= Init
->getType()->getArrayNumElements();
182 // Don't blow up on huge arrays.
183 if (ArrayElementCount
> MaxArraySizeForCombine
)
186 // There are many forms of this optimization we can handle, for now, just do
187 // the simple index into a single-dimensional array.
189 // Require: GEP GV, 0, i {{, constant indices}}
190 if (GEP
->getNumOperands() < 3 ||
191 !isa
<ConstantInt
>(GEP
->getOperand(1)) ||
192 !cast
<ConstantInt
>(GEP
->getOperand(1))->isZero() ||
193 isa
<Constant
>(GEP
->getOperand(2)))
196 // Check that indices after the variable are constants and in-range for the
197 // type they index. Collect the indices. This is typically for arrays of
199 SmallVector
<unsigned, 4> LaterIndices
;
201 Type
*EltTy
= Init
->getType()->getArrayElementType();
202 for (unsigned i
= 3, e
= GEP
->getNumOperands(); i
!= e
; ++i
) {
203 ConstantInt
*Idx
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
));
204 if (!Idx
) return nullptr; // Variable index.
206 uint64_t IdxVal
= Idx
->getZExtValue();
207 if ((unsigned)IdxVal
!= IdxVal
) return nullptr; // Too large array index.
209 if (StructType
*STy
= dyn_cast
<StructType
>(EltTy
))
210 EltTy
= STy
->getElementType(IdxVal
);
211 else if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(EltTy
)) {
212 if (IdxVal
>= ATy
->getNumElements()) return nullptr;
213 EltTy
= ATy
->getElementType();
215 return nullptr; // Unknown type.
218 LaterIndices
.push_back(IdxVal
);
221 enum { Overdefined
= -3, Undefined
= -2 };
223 // Variables for our state machines.
225 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
226 // "i == 47 | i == 87", where 47 is the first index the condition is true for,
227 // and 87 is the second (and last) index. FirstTrueElement is -2 when
228 // undefined, otherwise set to the first true element. SecondTrueElement is
229 // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
230 int FirstTrueElement
= Undefined
, SecondTrueElement
= Undefined
;
232 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
233 // form "i != 47 & i != 87". Same state transitions as for true elements.
234 int FirstFalseElement
= Undefined
, SecondFalseElement
= Undefined
;
236 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
237 /// define a state machine that triggers for ranges of values that the index
238 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'.
239 /// This is -2 when undefined, -3 when overdefined, and otherwise the last
240 /// index in the range (inclusive). We use -2 for undefined here because we
241 /// use relative comparisons and don't want 0-1 to match -1.
242 int TrueRangeEnd
= Undefined
, FalseRangeEnd
= Undefined
;
244 // MagicBitvector - This is a magic bitvector where we set a bit if the
245 // comparison is true for element 'i'. If there are 64 elements or less in
246 // the array, this will fully represent all the comparison results.
247 uint64_t MagicBitvector
= 0;
249 // Scan the array and see if one of our patterns matches.
250 Constant
*CompareRHS
= cast
<Constant
>(ICI
.getOperand(1));
251 for (unsigned i
= 0, e
= ArrayElementCount
; i
!= e
; ++i
) {
252 Constant
*Elt
= Init
->getAggregateElement(i
);
253 if (!Elt
) return nullptr;
255 // If this is indexing an array of structures, get the structure element.
256 if (!LaterIndices
.empty())
257 Elt
= ConstantExpr::getExtractValue(Elt
, LaterIndices
);
259 // If the element is masked, handle it.
260 if (AndCst
) Elt
= ConstantExpr::getAnd(Elt
, AndCst
);
262 // Find out if the comparison would be true or false for the i'th element.
263 Constant
*C
= ConstantFoldCompareInstOperands(ICI
.getPredicate(), Elt
,
264 CompareRHS
, DL
, &TLI
);
265 // If the result is undef for this element, ignore it.
266 if (isa
<UndefValue
>(C
)) {
267 // Extend range state machines to cover this element in case there is an
268 // undef in the middle of the range.
269 if (TrueRangeEnd
== (int)i
-1)
271 if (FalseRangeEnd
== (int)i
-1)
276 // If we can't compute the result for any of the elements, we have to give
277 // up evaluating the entire conditional.
278 if (!isa
<ConstantInt
>(C
)) return nullptr;
280 // Otherwise, we know if the comparison is true or false for this element,
281 // update our state machines.
282 bool IsTrueForElt
= !cast
<ConstantInt
>(C
)->isZero();
284 // State machine for single/double/range index comparison.
286 // Update the TrueElement state machine.
287 if (FirstTrueElement
== Undefined
)
288 FirstTrueElement
= TrueRangeEnd
= i
; // First true element.
290 // Update double-compare state machine.
291 if (SecondTrueElement
== Undefined
)
292 SecondTrueElement
= i
;
294 SecondTrueElement
= Overdefined
;
296 // Update range state machine.
297 if (TrueRangeEnd
== (int)i
-1)
300 TrueRangeEnd
= Overdefined
;
303 // Update the FalseElement state machine.
304 if (FirstFalseElement
== Undefined
)
305 FirstFalseElement
= FalseRangeEnd
= i
; // First false element.
307 // Update double-compare state machine.
308 if (SecondFalseElement
== Undefined
)
309 SecondFalseElement
= i
;
311 SecondFalseElement
= Overdefined
;
313 // Update range state machine.
314 if (FalseRangeEnd
== (int)i
-1)
317 FalseRangeEnd
= Overdefined
;
321 // If this element is in range, update our magic bitvector.
322 if (i
< 64 && IsTrueForElt
)
323 MagicBitvector
|= 1ULL << i
;
325 // If all of our states become overdefined, bail out early. Since the
326 // predicate is expensive, only check it every 8 elements. This is only
327 // really useful for really huge arrays.
328 if ((i
& 8) == 0 && i
>= 64 && SecondTrueElement
== Overdefined
&&
329 SecondFalseElement
== Overdefined
&& TrueRangeEnd
== Overdefined
&&
330 FalseRangeEnd
== Overdefined
)
334 // Now that we've scanned the entire array, emit our new comparison(s). We
335 // order the state machines in complexity of the generated code.
336 Value
*Idx
= GEP
->getOperand(2);
338 // If the index is larger than the pointer size of the target, truncate the
339 // index down like the GEP would do implicitly. We don't have to do this for
340 // an inbounds GEP because the index can't be out of range.
341 if (!GEP
->isInBounds()) {
342 Type
*IntPtrTy
= DL
.getIntPtrType(GEP
->getType());
343 unsigned PtrSize
= IntPtrTy
->getIntegerBitWidth();
344 if (Idx
->getType()->getPrimitiveSizeInBits() > PtrSize
)
345 Idx
= Builder
.CreateTrunc(Idx
, IntPtrTy
);
348 // If the comparison is only true for one or two elements, emit direct
350 if (SecondTrueElement
!= Overdefined
) {
351 // None true -> false.
352 if (FirstTrueElement
== Undefined
)
353 return replaceInstUsesWith(ICI
, Builder
.getFalse());
355 Value
*FirstTrueIdx
= ConstantInt::get(Idx
->getType(), FirstTrueElement
);
357 // True for one element -> 'i == 47'.
358 if (SecondTrueElement
== Undefined
)
359 return new ICmpInst(ICmpInst::ICMP_EQ
, Idx
, FirstTrueIdx
);
361 // True for two elements -> 'i == 47 | i == 72'.
362 Value
*C1
= Builder
.CreateICmpEQ(Idx
, FirstTrueIdx
);
363 Value
*SecondTrueIdx
= ConstantInt::get(Idx
->getType(), SecondTrueElement
);
364 Value
*C2
= Builder
.CreateICmpEQ(Idx
, SecondTrueIdx
);
365 return BinaryOperator::CreateOr(C1
, C2
);
368 // If the comparison is only false for one or two elements, emit direct
370 if (SecondFalseElement
!= Overdefined
) {
371 // None false -> true.
372 if (FirstFalseElement
== Undefined
)
373 return replaceInstUsesWith(ICI
, Builder
.getTrue());
375 Value
*FirstFalseIdx
= ConstantInt::get(Idx
->getType(), FirstFalseElement
);
377 // False for one element -> 'i != 47'.
378 if (SecondFalseElement
== Undefined
)
379 return new ICmpInst(ICmpInst::ICMP_NE
, Idx
, FirstFalseIdx
);
381 // False for two elements -> 'i != 47 & i != 72'.
382 Value
*C1
= Builder
.CreateICmpNE(Idx
, FirstFalseIdx
);
383 Value
*SecondFalseIdx
= ConstantInt::get(Idx
->getType(),SecondFalseElement
);
384 Value
*C2
= Builder
.CreateICmpNE(Idx
, SecondFalseIdx
);
385 return BinaryOperator::CreateAnd(C1
, C2
);
388 // If the comparison can be replaced with a range comparison for the elements
389 // where it is true, emit the range check.
390 if (TrueRangeEnd
!= Overdefined
) {
391 assert(TrueRangeEnd
!= FirstTrueElement
&& "Should emit single compare");
393 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
394 if (FirstTrueElement
) {
395 Value
*Offs
= ConstantInt::get(Idx
->getType(), -FirstTrueElement
);
396 Idx
= Builder
.CreateAdd(Idx
, Offs
);
399 Value
*End
= ConstantInt::get(Idx
->getType(),
400 TrueRangeEnd
-FirstTrueElement
+1);
401 return new ICmpInst(ICmpInst::ICMP_ULT
, Idx
, End
);
404 // False range check.
405 if (FalseRangeEnd
!= Overdefined
) {
406 assert(FalseRangeEnd
!= FirstFalseElement
&& "Should emit single compare");
407 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
408 if (FirstFalseElement
) {
409 Value
*Offs
= ConstantInt::get(Idx
->getType(), -FirstFalseElement
);
410 Idx
= Builder
.CreateAdd(Idx
, Offs
);
413 Value
*End
= ConstantInt::get(Idx
->getType(),
414 FalseRangeEnd
-FirstFalseElement
);
415 return new ICmpInst(ICmpInst::ICMP_UGT
, Idx
, End
);
418 // If a magic bitvector captures the entire comparison state
419 // of this load, replace it with computation that does:
420 // ((magic_cst >> i) & 1) != 0
424 // Look for an appropriate type:
425 // - The type of Idx if the magic fits
426 // - The smallest fitting legal type
427 if (ArrayElementCount
<= Idx
->getType()->getIntegerBitWidth())
430 Ty
= DL
.getSmallestLegalIntType(Init
->getContext(), ArrayElementCount
);
433 Value
*V
= Builder
.CreateIntCast(Idx
, Ty
, false);
434 V
= Builder
.CreateLShr(ConstantInt::get(Ty
, MagicBitvector
), V
);
435 V
= Builder
.CreateAnd(ConstantInt::get(Ty
, 1), V
);
436 return new ICmpInst(ICmpInst::ICMP_NE
, V
, ConstantInt::get(Ty
, 0));
443 /// Return a value that can be used to compare the *offset* implied by a GEP to
444 /// zero. For example, if we have &A[i], we want to return 'i' for
445 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
446 /// are involved. The above expression would also be legal to codegen as
447 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
448 /// This latter form is less amenable to optimization though, and we are allowed
449 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
451 /// If we can't emit an optimized form for this expression, this returns null.
453 static Value
*evaluateGEPOffsetExpression(User
*GEP
, InstCombiner
&IC
,
454 const DataLayout
&DL
) {
455 gep_type_iterator GTI
= gep_type_begin(GEP
);
457 // Check to see if this gep only has a single variable index. If so, and if
458 // any constant indices are a multiple of its scale, then we can compute this
459 // in terms of the scale of the variable index. For example, if the GEP
460 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
461 // because the expression will cross zero at the same point.
462 unsigned i
, e
= GEP
->getNumOperands();
464 for (i
= 1; i
!= e
; ++i
, ++GTI
) {
465 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
))) {
466 // Compute the aggregate offset of constant indices.
467 if (CI
->isZero()) continue;
469 // Handle a struct index, which adds its field offset to the pointer.
470 if (StructType
*STy
= GTI
.getStructTypeOrNull()) {
471 Offset
+= DL
.getStructLayout(STy
)->getElementOffset(CI
->getZExtValue());
473 uint64_t Size
= DL
.getTypeAllocSize(GTI
.getIndexedType());
474 Offset
+= Size
*CI
->getSExtValue();
477 // Found our variable index.
482 // If there are no variable indices, we must have a constant offset, just
483 // evaluate it the general way.
484 if (i
== e
) return nullptr;
486 Value
*VariableIdx
= GEP
->getOperand(i
);
487 // Determine the scale factor of the variable element. For example, this is
488 // 4 if the variable index is into an array of i32.
489 uint64_t VariableScale
= DL
.getTypeAllocSize(GTI
.getIndexedType());
491 // Verify that there are no other variable indices. If so, emit the hard way.
492 for (++i
, ++GTI
; i
!= e
; ++i
, ++GTI
) {
493 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
));
494 if (!CI
) return nullptr;
496 // Compute the aggregate offset of constant indices.
497 if (CI
->isZero()) continue;
499 // Handle a struct index, which adds its field offset to the pointer.
500 if (StructType
*STy
= GTI
.getStructTypeOrNull()) {
501 Offset
+= DL
.getStructLayout(STy
)->getElementOffset(CI
->getZExtValue());
503 uint64_t Size
= DL
.getTypeAllocSize(GTI
.getIndexedType());
504 Offset
+= Size
*CI
->getSExtValue();
508 // Okay, we know we have a single variable index, which must be a
509 // pointer/array/vector index. If there is no offset, life is simple, return
511 Type
*IntPtrTy
= DL
.getIntPtrType(GEP
->getOperand(0)->getType());
512 unsigned IntPtrWidth
= IntPtrTy
->getIntegerBitWidth();
514 // Cast to intptrty in case a truncation occurs. If an extension is needed,
515 // we don't need to bother extending: the extension won't affect where the
516 // computation crosses zero.
517 if (VariableIdx
->getType()->getPrimitiveSizeInBits() > IntPtrWidth
) {
518 VariableIdx
= IC
.Builder
.CreateTrunc(VariableIdx
, IntPtrTy
);
523 // Otherwise, there is an index. The computation we will do will be modulo
525 Offset
= SignExtend64(Offset
, IntPtrWidth
);
526 VariableScale
= SignExtend64(VariableScale
, IntPtrWidth
);
528 // To do this transformation, any constant index must be a multiple of the
529 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
530 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
531 // multiple of the variable scale.
532 int64_t NewOffs
= Offset
/ (int64_t)VariableScale
;
533 if (Offset
!= NewOffs
*(int64_t)VariableScale
)
536 // Okay, we can do this evaluation. Start by converting the index to intptr.
537 if (VariableIdx
->getType() != IntPtrTy
)
538 VariableIdx
= IC
.Builder
.CreateIntCast(VariableIdx
, IntPtrTy
,
540 Constant
*OffsetVal
= ConstantInt::get(IntPtrTy
, NewOffs
);
541 return IC
.Builder
.CreateAdd(VariableIdx
, OffsetVal
, "offset");
544 /// Returns true if we can rewrite Start as a GEP with pointer Base
545 /// and some integer offset. The nodes that need to be re-written
546 /// for this transformation will be added to Explored.
547 static bool canRewriteGEPAsOffset(Value
*Start
, Value
*Base
,
548 const DataLayout
&DL
,
549 SetVector
<Value
*> &Explored
) {
550 SmallVector
<Value
*, 16> WorkList(1, Start
);
551 Explored
.insert(Base
);
553 // The following traversal gives us an order which can be used
554 // when doing the final transformation. Since in the final
555 // transformation we create the PHI replacement instructions first,
556 // we don't have to get them in any particular order.
558 // However, for other instructions we will have to traverse the
559 // operands of an instruction first, which means that we have to
560 // do a post-order traversal.
561 while (!WorkList
.empty()) {
562 SetVector
<PHINode
*> PHIs
;
564 while (!WorkList
.empty()) {
565 if (Explored
.size() >= 100)
568 Value
*V
= WorkList
.back();
570 if (Explored
.count(V
) != 0) {
575 if (!isa
<IntToPtrInst
>(V
) && !isa
<PtrToIntInst
>(V
) &&
576 !isa
<GetElementPtrInst
>(V
) && !isa
<PHINode
>(V
))
577 // We've found some value that we can't explore which is different from
578 // the base. Therefore we can't do this transformation.
581 if (isa
<IntToPtrInst
>(V
) || isa
<PtrToIntInst
>(V
)) {
582 auto *CI
= dyn_cast
<CastInst
>(V
);
583 if (!CI
->isNoopCast(DL
))
586 if (Explored
.count(CI
->getOperand(0)) == 0)
587 WorkList
.push_back(CI
->getOperand(0));
590 if (auto *GEP
= dyn_cast
<GEPOperator
>(V
)) {
591 // We're limiting the GEP to having one index. This will preserve
592 // the original pointer type. We could handle more cases in the
594 if (GEP
->getNumIndices() != 1 || !GEP
->isInBounds() ||
595 GEP
->getType() != Start
->getType())
598 if (Explored
.count(GEP
->getOperand(0)) == 0)
599 WorkList
.push_back(GEP
->getOperand(0));
602 if (WorkList
.back() == V
) {
604 // We've finished visiting this node, mark it as such.
608 if (auto *PN
= dyn_cast
<PHINode
>(V
)) {
609 // We cannot transform PHIs on unsplittable basic blocks.
610 if (isa
<CatchSwitchInst
>(PN
->getParent()->getTerminator()))
617 // Explore the PHI nodes further.
618 for (auto *PN
: PHIs
)
619 for (Value
*Op
: PN
->incoming_values())
620 if (Explored
.count(Op
) == 0)
621 WorkList
.push_back(Op
);
624 // Make sure that we can do this. Since we can't insert GEPs in a basic
625 // block before a PHI node, we can't easily do this transformation if
626 // we have PHI node users of transformed instructions.
627 for (Value
*Val
: Explored
) {
628 for (Value
*Use
: Val
->uses()) {
630 auto *PHI
= dyn_cast
<PHINode
>(Use
);
631 auto *Inst
= dyn_cast
<Instruction
>(Val
);
633 if (Inst
== Base
|| Inst
== PHI
|| !Inst
|| !PHI
||
634 Explored
.count(PHI
) == 0)
637 if (PHI
->getParent() == Inst
->getParent())
644 // Sets the appropriate insert point on Builder where we can add
645 // a replacement Instruction for V (if that is possible).
646 static void setInsertionPoint(IRBuilder
<> &Builder
, Value
*V
,
647 bool Before
= true) {
648 if (auto *PHI
= dyn_cast
<PHINode
>(V
)) {
649 Builder
.SetInsertPoint(&*PHI
->getParent()->getFirstInsertionPt());
652 if (auto *I
= dyn_cast
<Instruction
>(V
)) {
654 I
= &*std::next(I
->getIterator());
655 Builder
.SetInsertPoint(I
);
658 if (auto *A
= dyn_cast
<Argument
>(V
)) {
659 // Set the insertion point in the entry block.
660 BasicBlock
&Entry
= A
->getParent()->getEntryBlock();
661 Builder
.SetInsertPoint(&*Entry
.getFirstInsertionPt());
664 // Otherwise, this is a constant and we don't need to set a new
666 assert(isa
<Constant
>(V
) && "Setting insertion point for unknown value!");
669 /// Returns a re-written value of Start as an indexed GEP using Base as a
671 static Value
*rewriteGEPAsOffset(Value
*Start
, Value
*Base
,
672 const DataLayout
&DL
,
673 SetVector
<Value
*> &Explored
) {
674 // Perform all the substitutions. This is a bit tricky because we can
675 // have cycles in our use-def chains.
676 // 1. Create the PHI nodes without any incoming values.
677 // 2. Create all the other values.
678 // 3. Add the edges for the PHI nodes.
679 // 4. Emit GEPs to get the original pointers.
680 // 5. Remove the original instructions.
681 Type
*IndexType
= IntegerType::get(
682 Base
->getContext(), DL
.getIndexTypeSizeInBits(Start
->getType()));
684 DenseMap
<Value
*, Value
*> NewInsts
;
685 NewInsts
[Base
] = ConstantInt::getNullValue(IndexType
);
687 // Create the new PHI nodes, without adding any incoming values.
688 for (Value
*Val
: Explored
) {
691 // Create empty phi nodes. This avoids cyclic dependencies when creating
692 // the remaining instructions.
693 if (auto *PHI
= dyn_cast
<PHINode
>(Val
))
694 NewInsts
[PHI
] = PHINode::Create(IndexType
, PHI
->getNumIncomingValues(),
695 PHI
->getName() + ".idx", PHI
);
697 IRBuilder
<> Builder(Base
->getContext());
699 // Create all the other instructions.
700 for (Value
*Val
: Explored
) {
702 if (NewInsts
.find(Val
) != NewInsts
.end())
705 if (auto *CI
= dyn_cast
<CastInst
>(Val
)) {
706 // Don't get rid of the intermediate variable here; the store can grow
707 // the map which will invalidate the reference to the input value.
708 Value
*V
= NewInsts
[CI
->getOperand(0)];
712 if (auto *GEP
= dyn_cast
<GEPOperator
>(Val
)) {
713 Value
*Index
= NewInsts
[GEP
->getOperand(1)] ? NewInsts
[GEP
->getOperand(1)]
714 : GEP
->getOperand(1);
715 setInsertionPoint(Builder
, GEP
);
716 // Indices might need to be sign extended. GEPs will magically do
717 // this, but we need to do it ourselves here.
718 if (Index
->getType()->getScalarSizeInBits() !=
719 NewInsts
[GEP
->getOperand(0)]->getType()->getScalarSizeInBits()) {
720 Index
= Builder
.CreateSExtOrTrunc(
721 Index
, NewInsts
[GEP
->getOperand(0)]->getType(),
722 GEP
->getOperand(0)->getName() + ".sext");
725 auto *Op
= NewInsts
[GEP
->getOperand(0)];
726 if (isa
<ConstantInt
>(Op
) && cast
<ConstantInt
>(Op
)->isZero())
727 NewInsts
[GEP
] = Index
;
729 NewInsts
[GEP
] = Builder
.CreateNSWAdd(
730 Op
, Index
, GEP
->getOperand(0)->getName() + ".add");
733 if (isa
<PHINode
>(Val
))
736 llvm_unreachable("Unexpected instruction type");
739 // Add the incoming values to the PHI nodes.
740 for (Value
*Val
: Explored
) {
743 // All the instructions have been created, we can now add edges to the
745 if (auto *PHI
= dyn_cast
<PHINode
>(Val
)) {
746 PHINode
*NewPhi
= static_cast<PHINode
*>(NewInsts
[PHI
]);
747 for (unsigned I
= 0, E
= PHI
->getNumIncomingValues(); I
< E
; ++I
) {
748 Value
*NewIncoming
= PHI
->getIncomingValue(I
);
750 if (NewInsts
.find(NewIncoming
) != NewInsts
.end())
751 NewIncoming
= NewInsts
[NewIncoming
];
753 NewPhi
->addIncoming(NewIncoming
, PHI
->getIncomingBlock(I
));
758 for (Value
*Val
: Explored
) {
762 // Depending on the type, for external users we have to emit
763 // a GEP or a GEP + ptrtoint.
764 setInsertionPoint(Builder
, Val
, false);
766 // If required, create an inttoptr instruction for Base.
767 Value
*NewBase
= Base
;
768 if (!Base
->getType()->isPointerTy())
769 NewBase
= Builder
.CreateBitOrPointerCast(Base
, Start
->getType(),
770 Start
->getName() + "to.ptr");
772 Value
*GEP
= Builder
.CreateInBoundsGEP(
773 Start
->getType()->getPointerElementType(), NewBase
,
774 makeArrayRef(NewInsts
[Val
]), Val
->getName() + ".ptr");
776 if (!Val
->getType()->isPointerTy()) {
777 Value
*Cast
= Builder
.CreatePointerCast(GEP
, Val
->getType(),
778 Val
->getName() + ".conv");
781 Val
->replaceAllUsesWith(GEP
);
784 return NewInsts
[Start
];
787 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
788 /// the input Value as a constant indexed GEP. Returns a pair containing
789 /// the GEPs Pointer and Index.
790 static std::pair
<Value
*, Value
*>
791 getAsConstantIndexedAddress(Value
*V
, const DataLayout
&DL
) {
792 Type
*IndexType
= IntegerType::get(V
->getContext(),
793 DL
.getIndexTypeSizeInBits(V
->getType()));
795 Constant
*Index
= ConstantInt::getNullValue(IndexType
);
797 if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(V
)) {
798 // We accept only inbouds GEPs here to exclude the possibility of
800 if (!GEP
->isInBounds())
802 if (GEP
->hasAllConstantIndices() && GEP
->getNumIndices() == 1 &&
803 GEP
->getType() == V
->getType()) {
804 V
= GEP
->getOperand(0);
805 Constant
*GEPIndex
= static_cast<Constant
*>(GEP
->getOperand(1));
806 Index
= ConstantExpr::getAdd(
807 Index
, ConstantExpr::getSExtOrBitCast(GEPIndex
, IndexType
));
812 if (auto *CI
= dyn_cast
<IntToPtrInst
>(V
)) {
813 if (!CI
->isNoopCast(DL
))
815 V
= CI
->getOperand(0);
818 if (auto *CI
= dyn_cast
<PtrToIntInst
>(V
)) {
819 if (!CI
->isNoopCast(DL
))
821 V
= CI
->getOperand(0);
829 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
830 /// We can look through PHIs, GEPs and casts in order to determine a common base
831 /// between GEPLHS and RHS.
832 static Instruction
*transformToIndexedCompare(GEPOperator
*GEPLHS
, Value
*RHS
,
833 ICmpInst::Predicate Cond
,
834 const DataLayout
&DL
) {
835 if (!GEPLHS
->hasAllConstantIndices())
838 // Make sure the pointers have the same type.
839 if (GEPLHS
->getType() != RHS
->getType())
842 Value
*PtrBase
, *Index
;
843 std::tie(PtrBase
, Index
) = getAsConstantIndexedAddress(GEPLHS
, DL
);
845 // The set of nodes that will take part in this transformation.
846 SetVector
<Value
*> Nodes
;
848 if (!canRewriteGEPAsOffset(RHS
, PtrBase
, DL
, Nodes
))
851 // We know we can re-write this as
852 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
853 // Since we've only looked through inbouds GEPs we know that we
854 // can't have overflow on either side. We can therefore re-write
856 // OFFSET1 cmp OFFSET2
857 Value
*NewRHS
= rewriteGEPAsOffset(RHS
, PtrBase
, DL
, Nodes
);
859 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
860 // GEP having PtrBase as the pointer base, and has returned in NewRHS the
861 // offset. Since Index is the offset of LHS to the base pointer, we will now
862 // compare the offsets instead of comparing the pointers.
863 return new ICmpInst(ICmpInst::getSignedPredicate(Cond
), Index
, NewRHS
);
866 /// Fold comparisons between a GEP instruction and something else. At this point
867 /// we know that the GEP is on the LHS of the comparison.
868 Instruction
*InstCombiner::foldGEPICmp(GEPOperator
*GEPLHS
, Value
*RHS
,
869 ICmpInst::Predicate Cond
,
871 // Don't transform signed compares of GEPs into index compares. Even if the
872 // GEP is inbounds, the final add of the base pointer can have signed overflow
873 // and would change the result of the icmp.
874 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
875 // the maximum signed value for the pointer type.
876 if (ICmpInst::isSigned(Cond
))
879 // Look through bitcasts and addrspacecasts. We do not however want to remove
881 if (!isa
<GetElementPtrInst
>(RHS
))
882 RHS
= RHS
->stripPointerCasts();
884 Value
*PtrBase
= GEPLHS
->getOperand(0);
885 if (PtrBase
== RHS
&& GEPLHS
->isInBounds()) {
886 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
887 // This transformation (ignoring the base and scales) is valid because we
888 // know pointers can't overflow since the gep is inbounds. See if we can
889 // output an optimized form.
890 Value
*Offset
= evaluateGEPOffsetExpression(GEPLHS
, *this, DL
);
892 // If not, synthesize the offset the hard way.
894 Offset
= EmitGEPOffset(GEPLHS
);
895 return new ICmpInst(ICmpInst::getSignedPredicate(Cond
), Offset
,
896 Constant::getNullValue(Offset
->getType()));
897 } else if (GEPLHS
->isInBounds() && ICmpInst::isEquality(Cond
) &&
898 isa
<Constant
>(RHS
) && cast
<Constant
>(RHS
)->isNullValue() &&
899 !NullPointerIsDefined(I
.getFunction(),
900 RHS
->getType()->getPointerAddressSpace())) {
901 // For most address spaces, an allocation can't be placed at null, but null
902 // itself is treated as a 0 size allocation in the in bounds rules. Thus,
903 // the only valid inbounds address derived from null, is null itself.
904 // Thus, we have four cases to consider:
905 // 1) Base == nullptr, Offset == 0 -> inbounds, null
906 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
907 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
908 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
910 // (Note if we're indexing a type of size 0, that simply collapses into one
911 // of the buckets above.)
913 // In general, we're allowed to make values less poison (i.e. remove
914 // sources of full UB), so in this case, we just select between the two
915 // non-poison cases (1 and 4 above).
917 // For vectors, we apply the same reasoning on a per-lane basis.
918 auto *Base
= GEPLHS
->getPointerOperand();
919 if (GEPLHS
->getType()->isVectorTy() && Base
->getType()->isPointerTy()) {
920 int NumElts
= GEPLHS
->getType()->getVectorNumElements();
921 Base
= Builder
.CreateVectorSplat(NumElts
, Base
);
923 return new ICmpInst(Cond
, Base
,
924 ConstantExpr::getBitCast(cast
<Constant
>(RHS
),
926 } else if (GEPOperator
*GEPRHS
= dyn_cast
<GEPOperator
>(RHS
)) {
927 // If the base pointers are different, but the indices are the same, just
928 // compare the base pointer.
929 if (PtrBase
!= GEPRHS
->getOperand(0)) {
930 bool IndicesTheSame
= GEPLHS
->getNumOperands()==GEPRHS
->getNumOperands();
931 IndicesTheSame
&= GEPLHS
->getOperand(0)->getType() ==
932 GEPRHS
->getOperand(0)->getType();
934 for (unsigned i
= 1, e
= GEPLHS
->getNumOperands(); i
!= e
; ++i
)
935 if (GEPLHS
->getOperand(i
) != GEPRHS
->getOperand(i
)) {
936 IndicesTheSame
= false;
940 // If all indices are the same, just compare the base pointers.
941 Type
*BaseType
= GEPLHS
->getOperand(0)->getType();
942 if (IndicesTheSame
&& CmpInst::makeCmpResultType(BaseType
) == I
.getType())
943 return new ICmpInst(Cond
, GEPLHS
->getOperand(0), GEPRHS
->getOperand(0));
945 // If we're comparing GEPs with two base pointers that only differ in type
946 // and both GEPs have only constant indices or just one use, then fold
947 // the compare with the adjusted indices.
948 if (GEPLHS
->isInBounds() && GEPRHS
->isInBounds() &&
949 (GEPLHS
->hasAllConstantIndices() || GEPLHS
->hasOneUse()) &&
950 (GEPRHS
->hasAllConstantIndices() || GEPRHS
->hasOneUse()) &&
951 PtrBase
->stripPointerCasts() ==
952 GEPRHS
->getOperand(0)->stripPointerCasts()) {
953 Value
*LOffset
= EmitGEPOffset(GEPLHS
);
954 Value
*ROffset
= EmitGEPOffset(GEPRHS
);
956 // If we looked through an addrspacecast between different sized address
957 // spaces, the LHS and RHS pointers are different sized
958 // integers. Truncate to the smaller one.
959 Type
*LHSIndexTy
= LOffset
->getType();
960 Type
*RHSIndexTy
= ROffset
->getType();
961 if (LHSIndexTy
!= RHSIndexTy
) {
962 if (LHSIndexTy
->getPrimitiveSizeInBits() <
963 RHSIndexTy
->getPrimitiveSizeInBits()) {
964 ROffset
= Builder
.CreateTrunc(ROffset
, LHSIndexTy
);
966 LOffset
= Builder
.CreateTrunc(LOffset
, RHSIndexTy
);
969 Value
*Cmp
= Builder
.CreateICmp(ICmpInst::getSignedPredicate(Cond
),
971 return replaceInstUsesWith(I
, Cmp
);
974 // Otherwise, the base pointers are different and the indices are
975 // different. Try convert this to an indexed compare by looking through
977 return transformToIndexedCompare(GEPLHS
, RHS
, Cond
, DL
);
980 // If one of the GEPs has all zero indices, recurse.
981 if (GEPLHS
->hasAllZeroIndices())
982 return foldGEPICmp(GEPRHS
, GEPLHS
->getOperand(0),
983 ICmpInst::getSwappedPredicate(Cond
), I
);
985 // If the other GEP has all zero indices, recurse.
986 if (GEPRHS
->hasAllZeroIndices())
987 return foldGEPICmp(GEPLHS
, GEPRHS
->getOperand(0), Cond
, I
);
989 bool GEPsInBounds
= GEPLHS
->isInBounds() && GEPRHS
->isInBounds();
990 if (GEPLHS
->getNumOperands() == GEPRHS
->getNumOperands()) {
991 // If the GEPs only differ by one index, compare it.
992 unsigned NumDifferences
= 0; // Keep track of # differences.
993 unsigned DiffOperand
= 0; // The operand that differs.
994 for (unsigned i
= 1, e
= GEPRHS
->getNumOperands(); i
!= e
; ++i
)
995 if (GEPLHS
->getOperand(i
) != GEPRHS
->getOperand(i
)) {
996 if (GEPLHS
->getOperand(i
)->getType()->getPrimitiveSizeInBits() !=
997 GEPRHS
->getOperand(i
)->getType()->getPrimitiveSizeInBits()) {
998 // Irreconcilable differences.
1002 if (NumDifferences
++) break;
1007 if (NumDifferences
== 0) // SAME GEP?
1008 return replaceInstUsesWith(I
, // No comparison is needed here.
1009 ConstantInt::get(I
.getType(), ICmpInst::isTrueWhenEqual(Cond
)));
1011 else if (NumDifferences
== 1 && GEPsInBounds
) {
1012 Value
*LHSV
= GEPLHS
->getOperand(DiffOperand
);
1013 Value
*RHSV
= GEPRHS
->getOperand(DiffOperand
);
1014 // Make sure we do a signed comparison here.
1015 return new ICmpInst(ICmpInst::getSignedPredicate(Cond
), LHSV
, RHSV
);
1019 // Only lower this if the icmp is the only user of the GEP or if we expect
1020 // the result to fold to a constant!
1021 if (GEPsInBounds
&& (isa
<ConstantExpr
>(GEPLHS
) || GEPLHS
->hasOneUse()) &&
1022 (isa
<ConstantExpr
>(GEPRHS
) || GEPRHS
->hasOneUse())) {
1023 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
1024 Value
*L
= EmitGEPOffset(GEPLHS
);
1025 Value
*R
= EmitGEPOffset(GEPRHS
);
1026 return new ICmpInst(ICmpInst::getSignedPredicate(Cond
), L
, R
);
1030 // Try convert this to an indexed compare by looking through PHIs/casts as a
1032 return transformToIndexedCompare(GEPLHS
, RHS
, Cond
, DL
);
1035 Instruction
*InstCombiner::foldAllocaCmp(ICmpInst
&ICI
,
1036 const AllocaInst
*Alloca
,
1037 const Value
*Other
) {
1038 assert(ICI
.isEquality() && "Cannot fold non-equality comparison.");
1040 // It would be tempting to fold away comparisons between allocas and any
1041 // pointer not based on that alloca (e.g. an argument). However, even
1042 // though such pointers cannot alias, they can still compare equal.
1044 // But LLVM doesn't specify where allocas get their memory, so if the alloca
1045 // doesn't escape we can argue that it's impossible to guess its value, and we
1046 // can therefore act as if any such guesses are wrong.
1048 // The code below checks that the alloca doesn't escape, and that it's only
1049 // used in a comparison once (the current instruction). The
1050 // single-comparison-use condition ensures that we're trivially folding all
1051 // comparisons against the alloca consistently, and avoids the risk of
1052 // erroneously folding a comparison of the pointer with itself.
1054 unsigned MaxIter
= 32; // Break cycles and bound to constant-time.
1056 SmallVector
<const Use
*, 32> Worklist
;
1057 for (const Use
&U
: Alloca
->uses()) {
1058 if (Worklist
.size() >= MaxIter
)
1060 Worklist
.push_back(&U
);
1063 unsigned NumCmps
= 0;
1064 while (!Worklist
.empty()) {
1065 assert(Worklist
.size() <= MaxIter
);
1066 const Use
*U
= Worklist
.pop_back_val();
1067 const Value
*V
= U
->getUser();
1070 if (isa
<BitCastInst
>(V
) || isa
<GetElementPtrInst
>(V
) || isa
<PHINode
>(V
) ||
1071 isa
<SelectInst
>(V
)) {
1073 } else if (isa
<LoadInst
>(V
)) {
1074 // Loading from the pointer doesn't escape it.
1076 } else if (const auto *SI
= dyn_cast
<StoreInst
>(V
)) {
1077 // Storing *to* the pointer is fine, but storing the pointer escapes it.
1078 if (SI
->getValueOperand() == U
->get())
1081 } else if (isa
<ICmpInst
>(V
)) {
1083 return nullptr; // Found more than one cmp.
1085 } else if (const auto *Intrin
= dyn_cast
<IntrinsicInst
>(V
)) {
1086 switch (Intrin
->getIntrinsicID()) {
1087 // These intrinsics don't escape or compare the pointer. Memset is safe
1088 // because we don't allow ptrtoint. Memcpy and memmove are safe because
1089 // we don't allow stores, so src cannot point to V.
1090 case Intrinsic::lifetime_start
: case Intrinsic::lifetime_end
:
1091 case Intrinsic::memcpy
: case Intrinsic::memmove
: case Intrinsic::memset
:
1099 for (const Use
&U
: V
->uses()) {
1100 if (Worklist
.size() >= MaxIter
)
1102 Worklist
.push_back(&U
);
1106 Type
*CmpTy
= CmpInst::makeCmpResultType(Other
->getType());
1107 return replaceInstUsesWith(
1109 ConstantInt::get(CmpTy
, !CmpInst::isTrueWhenEqual(ICI
.getPredicate())));
1112 /// Fold "icmp pred (X+C), X".
1113 Instruction
*InstCombiner::foldICmpAddOpConst(Value
*X
, const APInt
&C
,
1114 ICmpInst::Predicate Pred
) {
1115 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1116 // so the values can never be equal. Similarly for all other "or equals"
1118 assert(!!C
&& "C should not be zero!");
1120 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255
1121 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
1122 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
1123 if (Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_ULE
) {
1124 Constant
*R
= ConstantInt::get(X
->getType(),
1125 APInt::getMaxValue(C
.getBitWidth()) - C
);
1126 return new ICmpInst(ICmpInst::ICMP_UGT
, X
, R
);
1129 // (X+1) >u X --> X <u (0-1) --> X != 255
1130 // (X+2) >u X --> X <u (0-2) --> X <u 254
1131 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
1132 if (Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_UGE
)
1133 return new ICmpInst(ICmpInst::ICMP_ULT
, X
,
1134 ConstantInt::get(X
->getType(), -C
));
1136 APInt SMax
= APInt::getSignedMaxValue(C
.getBitWidth());
1138 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
1139 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
1140 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
1141 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
1142 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
1143 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
1144 if (Pred
== ICmpInst::ICMP_SLT
|| Pred
== ICmpInst::ICMP_SLE
)
1145 return new ICmpInst(ICmpInst::ICMP_SGT
, X
,
1146 ConstantInt::get(X
->getType(), SMax
- C
));
1148 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
1149 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
1150 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1151 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1152 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
1153 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
1155 assert(Pred
== ICmpInst::ICMP_SGT
|| Pred
== ICmpInst::ICMP_SGE
);
1156 return new ICmpInst(ICmpInst::ICMP_SLT
, X
,
1157 ConstantInt::get(X
->getType(), SMax
- (C
- 1)));
1160 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1161 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1162 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1163 Instruction
*InstCombiner::foldICmpShrConstConst(ICmpInst
&I
, Value
*A
,
1166 assert(I
.isEquality() && "Cannot fold icmp gt/lt");
1168 auto getICmp
= [&I
](CmpInst::Predicate Pred
, Value
*LHS
, Value
*RHS
) {
1169 if (I
.getPredicate() == I
.ICMP_NE
)
1170 Pred
= CmpInst::getInversePredicate(Pred
);
1171 return new ICmpInst(Pred
, LHS
, RHS
);
1174 // Don't bother doing any work for cases which InstSimplify handles.
1175 if (AP2
.isNullValue())
1178 bool IsAShr
= isa
<AShrOperator
>(I
.getOperand(0));
1180 if (AP2
.isAllOnesValue())
1182 if (AP2
.isNegative() != AP1
.isNegative())
1189 // 'A' must be large enough to shift out the highest set bit.
1190 return getICmp(I
.ICMP_UGT
, A
,
1191 ConstantInt::get(A
->getType(), AP2
.logBase2()));
1194 return getICmp(I
.ICMP_EQ
, A
, ConstantInt::getNullValue(A
->getType()));
1197 if (IsAShr
&& AP1
.isNegative())
1198 Shift
= AP1
.countLeadingOnes() - AP2
.countLeadingOnes();
1200 Shift
= AP1
.countLeadingZeros() - AP2
.countLeadingZeros();
1203 if (IsAShr
&& AP1
== AP2
.ashr(Shift
)) {
1204 // There are multiple solutions if we are comparing against -1 and the LHS
1205 // of the ashr is not a power of two.
1206 if (AP1
.isAllOnesValue() && !AP2
.isPowerOf2())
1207 return getICmp(I
.ICMP_UGE
, A
, ConstantInt::get(A
->getType(), Shift
));
1208 return getICmp(I
.ICMP_EQ
, A
, ConstantInt::get(A
->getType(), Shift
));
1209 } else if (AP1
== AP2
.lshr(Shift
)) {
1210 return getICmp(I
.ICMP_EQ
, A
, ConstantInt::get(A
->getType(), Shift
));
1214 // Shifting const2 will never be equal to const1.
1215 // FIXME: This should always be handled by InstSimplify?
1216 auto *TorF
= ConstantInt::get(I
.getType(), I
.getPredicate() == I
.ICMP_NE
);
1217 return replaceInstUsesWith(I
, TorF
);
1220 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1221 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1222 Instruction
*InstCombiner::foldICmpShlConstConst(ICmpInst
&I
, Value
*A
,
1225 assert(I
.isEquality() && "Cannot fold icmp gt/lt");
1227 auto getICmp
= [&I
](CmpInst::Predicate Pred
, Value
*LHS
, Value
*RHS
) {
1228 if (I
.getPredicate() == I
.ICMP_NE
)
1229 Pred
= CmpInst::getInversePredicate(Pred
);
1230 return new ICmpInst(Pred
, LHS
, RHS
);
1233 // Don't bother doing any work for cases which InstSimplify handles.
1234 if (AP2
.isNullValue())
1237 unsigned AP2TrailingZeros
= AP2
.countTrailingZeros();
1239 if (!AP1
&& AP2TrailingZeros
!= 0)
1242 ConstantInt::get(A
->getType(), AP2
.getBitWidth() - AP2TrailingZeros
));
1245 return getICmp(I
.ICMP_EQ
, A
, ConstantInt::getNullValue(A
->getType()));
1247 // Get the distance between the lowest bits that are set.
1248 int Shift
= AP1
.countTrailingZeros() - AP2TrailingZeros
;
1250 if (Shift
> 0 && AP2
.shl(Shift
) == AP1
)
1251 return getICmp(I
.ICMP_EQ
, A
, ConstantInt::get(A
->getType(), Shift
));
1253 // Shifting const2 will never be equal to const1.
1254 // FIXME: This should always be handled by InstSimplify?
1255 auto *TorF
= ConstantInt::get(I
.getType(), I
.getPredicate() == I
.ICMP_NE
);
1256 return replaceInstUsesWith(I
, TorF
);
1259 /// The caller has matched a pattern of the form:
1260 /// I = icmp ugt (add (add A, B), CI2), CI1
1261 /// If this is of the form:
1263 /// if (sum+128 >u 255)
1264 /// Then replace it with llvm.sadd.with.overflow.i8.
1266 static Instruction
*processUGT_ADDCST_ADD(ICmpInst
&I
, Value
*A
, Value
*B
,
1267 ConstantInt
*CI2
, ConstantInt
*CI1
,
1269 // The transformation we're trying to do here is to transform this into an
1270 // llvm.sadd.with.overflow. To do this, we have to replace the original add
1271 // with a narrower add, and discard the add-with-constant that is part of the
1272 // range check (if we can't eliminate it, this isn't profitable).
1274 // In order to eliminate the add-with-constant, the compare can be its only
1276 Instruction
*AddWithCst
= cast
<Instruction
>(I
.getOperand(0));
1277 if (!AddWithCst
->hasOneUse())
1280 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1281 if (!CI2
->getValue().isPowerOf2())
1283 unsigned NewWidth
= CI2
->getValue().countTrailingZeros();
1284 if (NewWidth
!= 7 && NewWidth
!= 15 && NewWidth
!= 31)
1287 // The width of the new add formed is 1 more than the bias.
1290 // Check to see that CI1 is an all-ones value with NewWidth bits.
1291 if (CI1
->getBitWidth() == NewWidth
||
1292 CI1
->getValue() != APInt::getLowBitsSet(CI1
->getBitWidth(), NewWidth
))
1295 // This is only really a signed overflow check if the inputs have been
1296 // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1297 // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1298 unsigned NeededSignBits
= CI1
->getBitWidth() - NewWidth
+ 1;
1299 if (IC
.ComputeNumSignBits(A
, 0, &I
) < NeededSignBits
||
1300 IC
.ComputeNumSignBits(B
, 0, &I
) < NeededSignBits
)
1303 // In order to replace the original add with a narrower
1304 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1305 // and truncates that discard the high bits of the add. Verify that this is
1307 Instruction
*OrigAdd
= cast
<Instruction
>(AddWithCst
->getOperand(0));
1308 for (User
*U
: OrigAdd
->users()) {
1309 if (U
== AddWithCst
)
1312 // Only accept truncates for now. We would really like a nice recursive
1313 // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1314 // chain to see which bits of a value are actually demanded. If the
1315 // original add had another add which was then immediately truncated, we
1316 // could still do the transformation.
1317 TruncInst
*TI
= dyn_cast
<TruncInst
>(U
);
1318 if (!TI
|| TI
->getType()->getPrimitiveSizeInBits() > NewWidth
)
1322 // If the pattern matches, truncate the inputs to the narrower type and
1323 // use the sadd_with_overflow intrinsic to efficiently compute both the
1324 // result and the overflow bit.
1325 Type
*NewType
= IntegerType::get(OrigAdd
->getContext(), NewWidth
);
1326 Function
*F
= Intrinsic::getDeclaration(
1327 I
.getModule(), Intrinsic::sadd_with_overflow
, NewType
);
1329 InstCombiner::BuilderTy
&Builder
= IC
.Builder
;
1331 // Put the new code above the original add, in case there are any uses of the
1332 // add between the add and the compare.
1333 Builder
.SetInsertPoint(OrigAdd
);
1335 Value
*TruncA
= Builder
.CreateTrunc(A
, NewType
, A
->getName() + ".trunc");
1336 Value
*TruncB
= Builder
.CreateTrunc(B
, NewType
, B
->getName() + ".trunc");
1337 CallInst
*Call
= Builder
.CreateCall(F
, {TruncA
, TruncB
}, "sadd");
1338 Value
*Add
= Builder
.CreateExtractValue(Call
, 0, "sadd.result");
1339 Value
*ZExt
= Builder
.CreateZExt(Add
, OrigAdd
->getType());
1341 // The inner add was the result of the narrow add, zero extended to the
1342 // wider type. Replace it with the result computed by the intrinsic.
1343 IC
.replaceInstUsesWith(*OrigAdd
, ZExt
);
1345 // The original icmp gets replaced with the overflow value.
1346 return ExtractValueInst::Create(Call
, 1, "sadd.overflow");
1350 /// icmp eq/ne (urem/srem %x, %y), 0
1351 /// iff %y is a power-of-two, we can replace this with a bit test:
1352 /// icmp eq/ne (and %x, (add %y, -1)), 0
1353 Instruction
*InstCombiner::foldIRemByPowerOfTwoToBitTest(ICmpInst
&I
) {
1354 // This fold is only valid for equality predicates.
1355 if (!I
.isEquality())
1357 ICmpInst::Predicate Pred
;
1358 Value
*X
, *Y
, *Zero
;
1359 if (!match(&I
, m_ICmp(Pred
, m_OneUse(m_IRem(m_Value(X
), m_Value(Y
))),
1360 m_CombineAnd(m_Zero(), m_Value(Zero
)))))
1362 if (!isKnownToBeAPowerOfTwo(Y
, /*OrZero*/ true, 0, &I
))
1364 // This may increase instruction count, we don't enforce that Y is a constant.
1365 Value
*Mask
= Builder
.CreateAdd(Y
, Constant::getAllOnesValue(Y
->getType()));
1366 Value
*Masked
= Builder
.CreateAnd(X
, Mask
);
1367 return ICmpInst::Create(Instruction::ICmp
, Pred
, Masked
, Zero
);
1370 // Handle icmp pred X, 0
1371 Instruction
*InstCombiner::foldICmpWithZero(ICmpInst
&Cmp
) {
1372 CmpInst::Predicate Pred
= Cmp
.getPredicate();
1373 if (!match(Cmp
.getOperand(1), m_Zero()))
1376 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1377 if (Pred
== ICmpInst::ICMP_SGT
) {
1379 SelectPatternResult SPR
= matchSelectPattern(Cmp
.getOperand(0), A
, B
);
1380 if (SPR
.Flavor
== SPF_SMIN
) {
1381 if (isKnownPositive(A
, DL
, 0, &AC
, &Cmp
, &DT
))
1382 return new ICmpInst(Pred
, B
, Cmp
.getOperand(1));
1383 if (isKnownPositive(B
, DL
, 0, &AC
, &Cmp
, &DT
))
1384 return new ICmpInst(Pred
, A
, Cmp
.getOperand(1));
1388 if (Instruction
*New
= foldIRemByPowerOfTwoToBitTest(Cmp
))
1392 // icmp eq/ne (urem %x, %y), 0
1393 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1396 if (match(Cmp
.getOperand(0), m_URem(m_Value(X
), m_Value(Y
))) &&
1397 ICmpInst::isEquality(Pred
)) {
1398 KnownBits XKnown
= computeKnownBits(X
, 0, &Cmp
);
1399 KnownBits YKnown
= computeKnownBits(Y
, 0, &Cmp
);
1400 if (XKnown
.countMaxPopulation() == 1 && YKnown
.countMinPopulation() >= 2)
1401 return new ICmpInst(Pred
, X
, Cmp
.getOperand(1));
1407 /// Fold icmp Pred X, C.
1408 /// TODO: This code structure does not make sense. The saturating add fold
1409 /// should be moved to some other helper and extended as noted below (it is also
1410 /// possible that code has been made unnecessary - do we canonicalize IR to
1411 /// overflow/saturating intrinsics or not?).
1412 Instruction
*InstCombiner::foldICmpWithConstant(ICmpInst
&Cmp
) {
1413 // Match the following pattern, which is a common idiom when writing
1414 // overflow-safe integer arithmetic functions. The source performs an addition
1415 // in wider type and explicitly checks for overflow using comparisons against
1416 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1418 // TODO: This could probably be generalized to handle other overflow-safe
1419 // operations if we worked out the formulas to compute the appropriate magic
1423 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
1424 CmpInst::Predicate Pred
= Cmp
.getPredicate();
1425 Value
*Op0
= Cmp
.getOperand(0), *Op1
= Cmp
.getOperand(1);
1427 ConstantInt
*CI
, *CI2
; // I = icmp ugt (add (add A, B), CI2), CI
1428 if (Pred
== ICmpInst::ICMP_UGT
&& match(Op1
, m_ConstantInt(CI
)) &&
1429 match(Op0
, m_Add(m_Add(m_Value(A
), m_Value(B
)), m_ConstantInt(CI2
))))
1430 if (Instruction
*Res
= processUGT_ADDCST_ADD(Cmp
, A
, B
, CI2
, CI
, *this))
1436 /// Canonicalize icmp instructions based on dominating conditions.
1437 Instruction
*InstCombiner::foldICmpWithDominatingICmp(ICmpInst
&Cmp
) {
1438 // This is a cheap/incomplete check for dominance - just match a single
1439 // predecessor with a conditional branch.
1440 BasicBlock
*CmpBB
= Cmp
.getParent();
1441 BasicBlock
*DomBB
= CmpBB
->getSinglePredecessor();
1446 BasicBlock
*TrueBB
, *FalseBB
;
1447 if (!match(DomBB
->getTerminator(), m_Br(m_Value(DomCond
), TrueBB
, FalseBB
)))
1450 assert((TrueBB
== CmpBB
|| FalseBB
== CmpBB
) &&
1451 "Predecessor block does not point to successor?");
1453 // The branch should get simplified. Don't bother simplifying this condition.
1454 if (TrueBB
== FalseBB
)
1457 // Try to simplify this compare to T/F based on the dominating condition.
1458 Optional
<bool> Imp
= isImpliedCondition(DomCond
, &Cmp
, DL
, TrueBB
== CmpBB
);
1460 return replaceInstUsesWith(Cmp
, ConstantInt::get(Cmp
.getType(), *Imp
));
1462 CmpInst::Predicate Pred
= Cmp
.getPredicate();
1463 Value
*X
= Cmp
.getOperand(0), *Y
= Cmp
.getOperand(1);
1464 ICmpInst::Predicate DomPred
;
1465 const APInt
*C
, *DomC
;
1466 if (match(DomCond
, m_ICmp(DomPred
, m_Specific(X
), m_APInt(DomC
))) &&
1467 match(Y
, m_APInt(C
))) {
1468 // We have 2 compares of a variable with constants. Calculate the constant
1469 // ranges of those compares to see if we can transform the 2nd compare:
1471 // DomCond = icmp DomPred X, DomC
1472 // br DomCond, CmpBB, FalseBB
1474 // Cmp = icmp Pred X, C
1475 ConstantRange CR
= ConstantRange::makeAllowedICmpRegion(Pred
, *C
);
1476 ConstantRange DominatingCR
=
1477 (CmpBB
== TrueBB
) ? ConstantRange::makeExactICmpRegion(DomPred
, *DomC
)
1478 : ConstantRange::makeExactICmpRegion(
1479 CmpInst::getInversePredicate(DomPred
), *DomC
);
1480 ConstantRange Intersection
= DominatingCR
.intersectWith(CR
);
1481 ConstantRange Difference
= DominatingCR
.difference(CR
);
1482 if (Intersection
.isEmptySet())
1483 return replaceInstUsesWith(Cmp
, Builder
.getFalse());
1484 if (Difference
.isEmptySet())
1485 return replaceInstUsesWith(Cmp
, Builder
.getTrue());
1487 // Canonicalizing a sign bit comparison that gets used in a branch,
1488 // pessimizes codegen by generating branch on zero instruction instead
1489 // of a test and branch. So we avoid canonicalizing in such situations
1490 // because test and branch instruction has better branch displacement
1491 // than compare and branch instruction.
1493 bool IsSignBit
= isSignBitCheck(Pred
, *C
, UnusedBit
);
1494 if (Cmp
.isEquality() || (IsSignBit
&& hasBranchUse(Cmp
)))
1497 if (const APInt
*EqC
= Intersection
.getSingleElement())
1498 return new ICmpInst(ICmpInst::ICMP_EQ
, X
, Builder
.getInt(*EqC
));
1499 if (const APInt
*NeC
= Difference
.getSingleElement())
1500 return new ICmpInst(ICmpInst::ICMP_NE
, X
, Builder
.getInt(*NeC
));
1506 /// Fold icmp (trunc X, Y), C.
1507 Instruction
*InstCombiner::foldICmpTruncConstant(ICmpInst
&Cmp
,
1510 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
1511 Value
*X
= Trunc
->getOperand(0);
1512 if (C
.isOneValue() && C
.getBitWidth() > 1) {
1513 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1515 if (Pred
== ICmpInst::ICMP_SLT
&& match(X
, m_Signum(m_Value(V
))))
1516 return new ICmpInst(ICmpInst::ICMP_SLT
, V
,
1517 ConstantInt::get(V
->getType(), 1));
1520 if (Cmp
.isEquality() && Trunc
->hasOneUse()) {
1521 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1522 // of the high bits truncated out of x are known.
1523 unsigned DstBits
= Trunc
->getType()->getScalarSizeInBits(),
1524 SrcBits
= X
->getType()->getScalarSizeInBits();
1525 KnownBits Known
= computeKnownBits(X
, 0, &Cmp
);
1527 // If all the high bits are known, we can do this xform.
1528 if ((Known
.Zero
| Known
.One
).countLeadingOnes() >= SrcBits
- DstBits
) {
1529 // Pull in the high bits from known-ones set.
1530 APInt NewRHS
= C
.zext(SrcBits
);
1531 NewRHS
|= Known
.One
& APInt::getHighBitsSet(SrcBits
, SrcBits
- DstBits
);
1532 return new ICmpInst(Pred
, X
, ConstantInt::get(X
->getType(), NewRHS
));
1539 /// Fold icmp (xor X, Y), C.
1540 Instruction
*InstCombiner::foldICmpXorConstant(ICmpInst
&Cmp
,
1541 BinaryOperator
*Xor
,
1543 Value
*X
= Xor
->getOperand(0);
1544 Value
*Y
= Xor
->getOperand(1);
1546 if (!match(Y
, m_APInt(XorC
)))
1549 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1551 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
1552 bool TrueIfSigned
= false;
1553 if (isSignBitCheck(Cmp
.getPredicate(), C
, TrueIfSigned
)) {
1555 // If the sign bit of the XorCst is not set, there is no change to
1556 // the operation, just stop using the Xor.
1557 if (!XorC
->isNegative()) {
1558 Cmp
.setOperand(0, X
);
1563 // Emit the opposite comparison.
1565 return new ICmpInst(ICmpInst::ICMP_SGT
, X
,
1566 ConstantInt::getAllOnesValue(X
->getType()));
1568 return new ICmpInst(ICmpInst::ICMP_SLT
, X
,
1569 ConstantInt::getNullValue(X
->getType()));
1572 if (Xor
->hasOneUse()) {
1573 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1574 if (!Cmp
.isEquality() && XorC
->isSignMask()) {
1575 Pred
= Cmp
.isSigned() ? Cmp
.getUnsignedPredicate()
1576 : Cmp
.getSignedPredicate();
1577 return new ICmpInst(Pred
, X
, ConstantInt::get(X
->getType(), C
^ *XorC
));
1580 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1581 if (!Cmp
.isEquality() && XorC
->isMaxSignedValue()) {
1582 Pred
= Cmp
.isSigned() ? Cmp
.getUnsignedPredicate()
1583 : Cmp
.getSignedPredicate();
1584 Pred
= Cmp
.getSwappedPredicate(Pred
);
1585 return new ICmpInst(Pred
, X
, ConstantInt::get(X
->getType(), C
^ *XorC
));
1589 // Mask constant magic can eliminate an 'xor' with unsigned compares.
1590 if (Pred
== ICmpInst::ICMP_UGT
) {
1591 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1592 if (*XorC
== ~C
&& (C
+ 1).isPowerOf2())
1593 return new ICmpInst(ICmpInst::ICMP_ULT
, X
, Y
);
1594 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1595 if (*XorC
== C
&& (C
+ 1).isPowerOf2())
1596 return new ICmpInst(ICmpInst::ICMP_UGT
, X
, Y
);
1598 if (Pred
== ICmpInst::ICMP_ULT
) {
1599 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1600 if (*XorC
== -C
&& C
.isPowerOf2())
1601 return new ICmpInst(ICmpInst::ICMP_UGT
, X
,
1602 ConstantInt::get(X
->getType(), ~C
));
1603 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1604 if (*XorC
== C
&& (-C
).isPowerOf2())
1605 return new ICmpInst(ICmpInst::ICMP_UGT
, X
,
1606 ConstantInt::get(X
->getType(), ~C
));
1611 /// Fold icmp (and (sh X, Y), C2), C1.
1612 Instruction
*InstCombiner::foldICmpAndShift(ICmpInst
&Cmp
, BinaryOperator
*And
,
1613 const APInt
&C1
, const APInt
&C2
) {
1614 BinaryOperator
*Shift
= dyn_cast
<BinaryOperator
>(And
->getOperand(0));
1615 if (!Shift
|| !Shift
->isShift())
1618 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1619 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1620 // code produced by the clang front-end, for bitfield access.
1621 // This seemingly simple opportunity to fold away a shift turns out to be
1622 // rather complicated. See PR17827 for details.
1623 unsigned ShiftOpcode
= Shift
->getOpcode();
1624 bool IsShl
= ShiftOpcode
== Instruction::Shl
;
1626 if (match(Shift
->getOperand(1), m_APInt(C3
))) {
1627 bool CanFold
= false;
1628 if (ShiftOpcode
== Instruction::Shl
) {
1629 // For a left shift, we can fold if the comparison is not signed. We can
1630 // also fold a signed comparison if the mask value and comparison value
1631 // are not negative. These constraints may not be obvious, but we can
1632 // prove that they are correct using an SMT solver.
1633 if (!Cmp
.isSigned() || (!C2
.isNegative() && !C1
.isNegative()))
1636 bool IsAshr
= ShiftOpcode
== Instruction::AShr
;
1637 // For a logical right shift, we can fold if the comparison is not signed.
1638 // We can also fold a signed comparison if the shifted mask value and the
1639 // shifted comparison value are not negative. These constraints may not be
1640 // obvious, but we can prove that they are correct using an SMT solver.
1641 // For an arithmetic shift right we can do the same, if we ensure
1642 // the And doesn't use any bits being shifted in. Normally these would
1643 // be turned into lshr by SimplifyDemandedBits, but not if there is an
1645 if (!IsAshr
|| (C2
.shl(*C3
).lshr(*C3
) == C2
)) {
1646 if (!Cmp
.isSigned() ||
1647 (!C2
.shl(*C3
).isNegative() && !C1
.shl(*C3
).isNegative()))
1653 APInt NewCst
= IsShl
? C1
.lshr(*C3
) : C1
.shl(*C3
);
1654 APInt SameAsC1
= IsShl
? NewCst
.shl(*C3
) : NewCst
.lshr(*C3
);
1655 // Check to see if we are shifting out any of the bits being compared.
1656 if (SameAsC1
!= C1
) {
1657 // If we shifted bits out, the fold is not going to work out. As a
1658 // special case, check to see if this means that the result is always
1659 // true or false now.
1660 if (Cmp
.getPredicate() == ICmpInst::ICMP_EQ
)
1661 return replaceInstUsesWith(Cmp
, ConstantInt::getFalse(Cmp
.getType()));
1662 if (Cmp
.getPredicate() == ICmpInst::ICMP_NE
)
1663 return replaceInstUsesWith(Cmp
, ConstantInt::getTrue(Cmp
.getType()));
1665 Cmp
.setOperand(1, ConstantInt::get(And
->getType(), NewCst
));
1666 APInt NewAndCst
= IsShl
? C2
.lshr(*C3
) : C2
.shl(*C3
);
1667 And
->setOperand(1, ConstantInt::get(And
->getType(), NewAndCst
));
1668 And
->setOperand(0, Shift
->getOperand(0));
1669 Worklist
.Add(Shift
); // Shift is dead.
1675 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is
1676 // preferable because it allows the C2 << Y expression to be hoisted out of a
1677 // loop if Y is invariant and X is not.
1678 if (Shift
->hasOneUse() && C1
.isNullValue() && Cmp
.isEquality() &&
1679 !Shift
->isArithmeticShift() && !isa
<Constant
>(Shift
->getOperand(0))) {
1682 IsShl
? Builder
.CreateLShr(And
->getOperand(1), Shift
->getOperand(1))
1683 : Builder
.CreateShl(And
->getOperand(1), Shift
->getOperand(1));
1685 // Compute X & (C2 << Y).
1686 Value
*NewAnd
= Builder
.CreateAnd(Shift
->getOperand(0), NewShift
);
1687 Cmp
.setOperand(0, NewAnd
);
1694 /// Fold icmp (and X, C2), C1.
1695 Instruction
*InstCombiner::foldICmpAndConstConst(ICmpInst
&Cmp
,
1696 BinaryOperator
*And
,
1698 bool isICMP_NE
= Cmp
.getPredicate() == ICmpInst::ICMP_NE
;
1700 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1701 // TODO: We canonicalize to the longer form for scalars because we have
1702 // better analysis/folds for icmp, and codegen may be better with icmp.
1703 if (isICMP_NE
&& Cmp
.getType()->isVectorTy() && C1
.isNullValue() &&
1704 match(And
->getOperand(1), m_One()))
1705 return new TruncInst(And
->getOperand(0), Cmp
.getType());
1709 if (!match(And
, m_And(m_Value(X
), m_APInt(C2
))))
1712 // Don't perform the following transforms if the AND has multiple uses
1713 if (!And
->hasOneUse())
1716 if (Cmp
.isEquality() && C1
.isNullValue()) {
1717 // Restrict this fold to single-use 'and' (PR10267).
1718 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1719 if (C2
->isSignMask()) {
1720 Constant
*Zero
= Constant::getNullValue(X
->getType());
1721 auto NewPred
= isICMP_NE
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_SGE
;
1722 return new ICmpInst(NewPred
, X
, Zero
);
1725 // Restrict this fold only for single-use 'and' (PR10267).
1726 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two.
1727 if ((~(*C2
) + 1).isPowerOf2()) {
1729 ConstantExpr::getNeg(cast
<Constant
>(And
->getOperand(1)));
1730 auto NewPred
= isICMP_NE
? ICmpInst::ICMP_UGE
: ICmpInst::ICMP_ULT
;
1731 return new ICmpInst(NewPred
, X
, NegBOC
);
1735 // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1736 // the input width without changing the value produced, eliminate the cast:
1738 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1740 // We can do this transformation if the constants do not have their sign bits
1741 // set or if it is an equality comparison. Extending a relational comparison
1742 // when we're checking the sign bit would not work.
1744 if (match(And
->getOperand(0), m_OneUse(m_Trunc(m_Value(W
)))) &&
1745 (Cmp
.isEquality() || (!C1
.isNegative() && !C2
->isNegative()))) {
1746 // TODO: Is this a good transform for vectors? Wider types may reduce
1747 // throughput. Should this transform be limited (even for scalars) by using
1748 // shouldChangeType()?
1749 if (!Cmp
.getType()->isVectorTy()) {
1750 Type
*WideType
= W
->getType();
1751 unsigned WideScalarBits
= WideType
->getScalarSizeInBits();
1752 Constant
*ZextC1
= ConstantInt::get(WideType
, C1
.zext(WideScalarBits
));
1753 Constant
*ZextC2
= ConstantInt::get(WideType
, C2
->zext(WideScalarBits
));
1754 Value
*NewAnd
= Builder
.CreateAnd(W
, ZextC2
, And
->getName());
1755 return new ICmpInst(Cmp
.getPredicate(), NewAnd
, ZextC1
);
1759 if (Instruction
*I
= foldICmpAndShift(Cmp
, And
, C1
, *C2
))
1762 // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1763 // (icmp pred (and A, (or (shl 1, B), 1), 0))
1765 // iff pred isn't signed
1766 if (!Cmp
.isSigned() && C1
.isNullValue() && And
->getOperand(0)->hasOneUse() &&
1767 match(And
->getOperand(1), m_One())) {
1768 Constant
*One
= cast
<Constant
>(And
->getOperand(1));
1769 Value
*Or
= And
->getOperand(0);
1770 Value
*A
, *B
, *LShr
;
1771 if (match(Or
, m_Or(m_Value(LShr
), m_Value(A
))) &&
1772 match(LShr
, m_LShr(m_Specific(A
), m_Value(B
)))) {
1773 unsigned UsesRemoved
= 0;
1774 if (And
->hasOneUse())
1776 if (Or
->hasOneUse())
1778 if (LShr
->hasOneUse())
1781 // Compute A & ((1 << B) | 1)
1782 Value
*NewOr
= nullptr;
1783 if (auto *C
= dyn_cast
<Constant
>(B
)) {
1784 if (UsesRemoved
>= 1)
1785 NewOr
= ConstantExpr::getOr(ConstantExpr::getNUWShl(One
, C
), One
);
1787 if (UsesRemoved
>= 3)
1788 NewOr
= Builder
.CreateOr(Builder
.CreateShl(One
, B
, LShr
->getName(),
1790 One
, Or
->getName());
1793 Value
*NewAnd
= Builder
.CreateAnd(A
, NewOr
, And
->getName());
1794 Cmp
.setOperand(0, NewAnd
);
1803 /// Fold icmp (and X, Y), C.
1804 Instruction
*InstCombiner::foldICmpAndConstant(ICmpInst
&Cmp
,
1805 BinaryOperator
*And
,
1807 if (Instruction
*I
= foldICmpAndConstConst(Cmp
, And
, C
))
1810 // TODO: These all require that Y is constant too, so refactor with the above.
1812 // Try to optimize things like "A[i] & 42 == 0" to index computations.
1813 Value
*X
= And
->getOperand(0);
1814 Value
*Y
= And
->getOperand(1);
1815 if (auto *LI
= dyn_cast
<LoadInst
>(X
))
1816 if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(LI
->getOperand(0)))
1817 if (auto *GV
= dyn_cast
<GlobalVariable
>(GEP
->getOperand(0)))
1818 if (GV
->isConstant() && GV
->hasDefinitiveInitializer() &&
1819 !LI
->isVolatile() && isa
<ConstantInt
>(Y
)) {
1820 ConstantInt
*C2
= cast
<ConstantInt
>(Y
);
1821 if (Instruction
*Res
= foldCmpLoadFromIndexedGlobal(GEP
, GV
, Cmp
, C2
))
1825 if (!Cmp
.isEquality())
1828 // X & -C == -C -> X > u ~C
1829 // X & -C != -C -> X <= u ~C
1830 // iff C is a power of 2
1831 if (Cmp
.getOperand(1) == Y
&& (-C
).isPowerOf2()) {
1832 auto NewPred
= Cmp
.getPredicate() == CmpInst::ICMP_EQ
? CmpInst::ICMP_UGT
1833 : CmpInst::ICMP_ULE
;
1834 return new ICmpInst(NewPred
, X
, SubOne(cast
<Constant
>(Cmp
.getOperand(1))));
1837 // (X & C2) == 0 -> (trunc X) >= 0
1838 // (X & C2) != 0 -> (trunc X) < 0
1839 // iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
1841 if (And
->hasOneUse() && C
.isNullValue() && match(Y
, m_APInt(C2
))) {
1842 int32_t ExactLogBase2
= C2
->exactLogBase2();
1843 if (ExactLogBase2
!= -1 && DL
.isLegalInteger(ExactLogBase2
+ 1)) {
1844 Type
*NTy
= IntegerType::get(Cmp
.getContext(), ExactLogBase2
+ 1);
1845 if (And
->getType()->isVectorTy())
1846 NTy
= VectorType::get(NTy
, And
->getType()->getVectorNumElements());
1847 Value
*Trunc
= Builder
.CreateTrunc(X
, NTy
);
1848 auto NewPred
= Cmp
.getPredicate() == CmpInst::ICMP_EQ
? CmpInst::ICMP_SGE
1849 : CmpInst::ICMP_SLT
;
1850 return new ICmpInst(NewPred
, Trunc
, Constant::getNullValue(NTy
));
1857 /// Fold icmp (or X, Y), C.
1858 Instruction
*InstCombiner::foldICmpOrConstant(ICmpInst
&Cmp
, BinaryOperator
*Or
,
1860 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
1861 if (C
.isOneValue()) {
1862 // icmp slt signum(V) 1 --> icmp slt V, 1
1864 if (Pred
== ICmpInst::ICMP_SLT
&& match(Or
, m_Signum(m_Value(V
))))
1865 return new ICmpInst(ICmpInst::ICMP_SLT
, V
,
1866 ConstantInt::get(V
->getType(), 1));
1869 Value
*OrOp0
= Or
->getOperand(0), *OrOp1
= Or
->getOperand(1);
1870 if (Cmp
.isEquality() && Cmp
.getOperand(1) == OrOp1
) {
1871 // X | C == C --> X <=u C
1872 // X | C != C --> X >u C
1873 // iff C+1 is a power of 2 (C is a bitmask of the low bits)
1874 if ((C
+ 1).isPowerOf2()) {
1875 Pred
= (Pred
== CmpInst::ICMP_EQ
) ? CmpInst::ICMP_ULE
: CmpInst::ICMP_UGT
;
1876 return new ICmpInst(Pred
, OrOp0
, OrOp1
);
1878 // More general: are all bits outside of a mask constant set or not set?
1879 // X | C == C --> (X & ~C) == 0
1880 // X | C != C --> (X & ~C) != 0
1881 if (Or
->hasOneUse()) {
1882 Value
*A
= Builder
.CreateAnd(OrOp0
, ~C
);
1883 return new ICmpInst(Pred
, A
, ConstantInt::getNullValue(OrOp0
->getType()));
1887 if (!Cmp
.isEquality() || !C
.isNullValue() || !Or
->hasOneUse())
1891 if (match(Or
, m_Or(m_PtrToInt(m_Value(P
)), m_PtrToInt(m_Value(Q
))))) {
1892 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1893 // -> and (icmp eq P, null), (icmp eq Q, null).
1895 Builder
.CreateICmp(Pred
, P
, ConstantInt::getNullValue(P
->getType()));
1897 Builder
.CreateICmp(Pred
, Q
, ConstantInt::getNullValue(Q
->getType()));
1898 auto BOpc
= Pred
== CmpInst::ICMP_EQ
? Instruction::And
: Instruction::Or
;
1899 return BinaryOperator::Create(BOpc
, CmpP
, CmpQ
);
1902 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1903 // a shorter form that has more potential to be folded even further.
1904 Value
*X1
, *X2
, *X3
, *X4
;
1905 if (match(OrOp0
, m_OneUse(m_Xor(m_Value(X1
), m_Value(X2
)))) &&
1906 match(OrOp1
, m_OneUse(m_Xor(m_Value(X3
), m_Value(X4
))))) {
1907 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1908 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1909 Value
*Cmp12
= Builder
.CreateICmp(Pred
, X1
, X2
);
1910 Value
*Cmp34
= Builder
.CreateICmp(Pred
, X3
, X4
);
1911 auto BOpc
= Pred
== CmpInst::ICMP_EQ
? Instruction::And
: Instruction::Or
;
1912 return BinaryOperator::Create(BOpc
, Cmp12
, Cmp34
);
1918 /// Fold icmp (mul X, Y), C.
1919 Instruction
*InstCombiner::foldICmpMulConstant(ICmpInst
&Cmp
,
1920 BinaryOperator
*Mul
,
1923 if (!match(Mul
->getOperand(1), m_APInt(MulC
)))
1926 // If this is a test of the sign bit and the multiply is sign-preserving with
1927 // a constant operand, use the multiply LHS operand instead.
1928 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
1929 if (isSignTest(Pred
, C
) && Mul
->hasNoSignedWrap()) {
1930 if (MulC
->isNegative())
1931 Pred
= ICmpInst::getSwappedPredicate(Pred
);
1932 return new ICmpInst(Pred
, Mul
->getOperand(0),
1933 Constant::getNullValue(Mul
->getType()));
1939 /// Fold icmp (shl 1, Y), C.
1940 static Instruction
*foldICmpShlOne(ICmpInst
&Cmp
, Instruction
*Shl
,
1943 if (!match(Shl
, m_Shl(m_One(), m_Value(Y
))))
1946 Type
*ShiftType
= Shl
->getType();
1947 unsigned TypeBits
= C
.getBitWidth();
1948 bool CIsPowerOf2
= C
.isPowerOf2();
1949 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
1950 if (Cmp
.isUnsigned()) {
1951 // (1 << Y) pred C -> Y pred Log2(C)
1953 // (1 << Y) < 30 -> Y <= 4
1954 // (1 << Y) <= 30 -> Y <= 4
1955 // (1 << Y) >= 30 -> Y > 4
1956 // (1 << Y) > 30 -> Y > 4
1957 if (Pred
== ICmpInst::ICMP_ULT
)
1958 Pred
= ICmpInst::ICMP_ULE
;
1959 else if (Pred
== ICmpInst::ICMP_UGE
)
1960 Pred
= ICmpInst::ICMP_UGT
;
1963 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
1964 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31
1965 unsigned CLog2
= C
.logBase2();
1966 if (CLog2
== TypeBits
- 1) {
1967 if (Pred
== ICmpInst::ICMP_UGE
)
1968 Pred
= ICmpInst::ICMP_EQ
;
1969 else if (Pred
== ICmpInst::ICMP_ULT
)
1970 Pred
= ICmpInst::ICMP_NE
;
1972 return new ICmpInst(Pred
, Y
, ConstantInt::get(ShiftType
, CLog2
));
1973 } else if (Cmp
.isSigned()) {
1974 Constant
*BitWidthMinusOne
= ConstantInt::get(ShiftType
, TypeBits
- 1);
1975 if (C
.isAllOnesValue()) {
1976 // (1 << Y) <= -1 -> Y == 31
1977 if (Pred
== ICmpInst::ICMP_SLE
)
1978 return new ICmpInst(ICmpInst::ICMP_EQ
, Y
, BitWidthMinusOne
);
1980 // (1 << Y) > -1 -> Y != 31
1981 if (Pred
== ICmpInst::ICMP_SGT
)
1982 return new ICmpInst(ICmpInst::ICMP_NE
, Y
, BitWidthMinusOne
);
1984 // (1 << Y) < 0 -> Y == 31
1985 // (1 << Y) <= 0 -> Y == 31
1986 if (Pred
== ICmpInst::ICMP_SLT
|| Pred
== ICmpInst::ICMP_SLE
)
1987 return new ICmpInst(ICmpInst::ICMP_EQ
, Y
, BitWidthMinusOne
);
1989 // (1 << Y) >= 0 -> Y != 31
1990 // (1 << Y) > 0 -> Y != 31
1991 if (Pred
== ICmpInst::ICMP_SGT
|| Pred
== ICmpInst::ICMP_SGE
)
1992 return new ICmpInst(ICmpInst::ICMP_NE
, Y
, BitWidthMinusOne
);
1994 } else if (Cmp
.isEquality() && CIsPowerOf2
) {
1995 return new ICmpInst(Pred
, Y
, ConstantInt::get(ShiftType
, C
.logBase2()));
2001 /// Fold icmp (shl X, Y), C.
2002 Instruction
*InstCombiner::foldICmpShlConstant(ICmpInst
&Cmp
,
2003 BinaryOperator
*Shl
,
2005 const APInt
*ShiftVal
;
2006 if (Cmp
.isEquality() && match(Shl
->getOperand(0), m_APInt(ShiftVal
)))
2007 return foldICmpShlConstConst(Cmp
, Shl
->getOperand(1), C
, *ShiftVal
);
2009 const APInt
*ShiftAmt
;
2010 if (!match(Shl
->getOperand(1), m_APInt(ShiftAmt
)))
2011 return foldICmpShlOne(Cmp
, Shl
, C
);
2013 // Check that the shift amount is in range. If not, don't perform undefined
2014 // shifts. When the shift is visited, it will be simplified.
2015 unsigned TypeBits
= C
.getBitWidth();
2016 if (ShiftAmt
->uge(TypeBits
))
2019 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
2020 Value
*X
= Shl
->getOperand(0);
2021 Type
*ShType
= Shl
->getType();
2023 // NSW guarantees that we are only shifting out sign bits from the high bits,
2024 // so we can ASHR the compare constant without needing a mask and eliminate
2026 if (Shl
->hasNoSignedWrap()) {
2027 if (Pred
== ICmpInst::ICMP_SGT
) {
2028 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2029 APInt ShiftedC
= C
.ashr(*ShiftAmt
);
2030 return new ICmpInst(Pred
, X
, ConstantInt::get(ShType
, ShiftedC
));
2032 if ((Pred
== ICmpInst::ICMP_EQ
|| Pred
== ICmpInst::ICMP_NE
) &&
2033 C
.ashr(*ShiftAmt
).shl(*ShiftAmt
) == C
) {
2034 APInt ShiftedC
= C
.ashr(*ShiftAmt
);
2035 return new ICmpInst(Pred
, X
, ConstantInt::get(ShType
, ShiftedC
));
2037 if (Pred
== ICmpInst::ICMP_SLT
) {
2038 // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2039 // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2040 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2041 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2042 assert(!C
.isMinSignedValue() && "Unexpected icmp slt");
2043 APInt ShiftedC
= (C
- 1).ashr(*ShiftAmt
) + 1;
2044 return new ICmpInst(Pred
, X
, ConstantInt::get(ShType
, ShiftedC
));
2046 // If this is a signed comparison to 0 and the shift is sign preserving,
2047 // use the shift LHS operand instead; isSignTest may change 'Pred', so only
2048 // do that if we're sure to not continue on in this function.
2049 if (isSignTest(Pred
, C
))
2050 return new ICmpInst(Pred
, X
, Constant::getNullValue(ShType
));
2053 // NUW guarantees that we are only shifting out zero bits from the high bits,
2054 // so we can LSHR the compare constant without needing a mask and eliminate
2056 if (Shl
->hasNoUnsignedWrap()) {
2057 if (Pred
== ICmpInst::ICMP_UGT
) {
2058 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2059 APInt ShiftedC
= C
.lshr(*ShiftAmt
);
2060 return new ICmpInst(Pred
, X
, ConstantInt::get(ShType
, ShiftedC
));
2062 if ((Pred
== ICmpInst::ICMP_EQ
|| Pred
== ICmpInst::ICMP_NE
) &&
2063 C
.lshr(*ShiftAmt
).shl(*ShiftAmt
) == C
) {
2064 APInt ShiftedC
= C
.lshr(*ShiftAmt
);
2065 return new ICmpInst(Pred
, X
, ConstantInt::get(ShType
, ShiftedC
));
2067 if (Pred
== ICmpInst::ICMP_ULT
) {
2068 // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2069 // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2070 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2071 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2072 assert(C
.ugt(0) && "ult 0 should have been eliminated");
2073 APInt ShiftedC
= (C
- 1).lshr(*ShiftAmt
) + 1;
2074 return new ICmpInst(Pred
, X
, ConstantInt::get(ShType
, ShiftedC
));
2078 if (Cmp
.isEquality() && Shl
->hasOneUse()) {
2079 // Strength-reduce the shift into an 'and'.
2080 Constant
*Mask
= ConstantInt::get(
2082 APInt::getLowBitsSet(TypeBits
, TypeBits
- ShiftAmt
->getZExtValue()));
2083 Value
*And
= Builder
.CreateAnd(X
, Mask
, Shl
->getName() + ".mask");
2084 Constant
*LShrC
= ConstantInt::get(ShType
, C
.lshr(*ShiftAmt
));
2085 return new ICmpInst(Pred
, And
, LShrC
);
2088 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2089 bool TrueIfSigned
= false;
2090 if (Shl
->hasOneUse() && isSignBitCheck(Pred
, C
, TrueIfSigned
)) {
2091 // (X << 31) <s 0 --> (X & 1) != 0
2092 Constant
*Mask
= ConstantInt::get(
2094 APInt::getOneBitSet(TypeBits
, TypeBits
- ShiftAmt
->getZExtValue() - 1));
2095 Value
*And
= Builder
.CreateAnd(X
, Mask
, Shl
->getName() + ".mask");
2096 return new ICmpInst(TrueIfSigned
? ICmpInst::ICMP_NE
: ICmpInst::ICMP_EQ
,
2097 And
, Constant::getNullValue(ShType
));
2100 // Simplify 'shl' inequality test into 'and' equality test.
2101 if (Cmp
.isUnsigned() && Shl
->hasOneUse()) {
2102 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2103 if ((C
+ 1).isPowerOf2() &&
2104 (Pred
== ICmpInst::ICMP_ULE
|| Pred
== ICmpInst::ICMP_UGT
)) {
2105 Value
*And
= Builder
.CreateAnd(X
, (~C
).lshr(ShiftAmt
->getZExtValue()));
2106 return new ICmpInst(Pred
== ICmpInst::ICMP_ULE
? ICmpInst::ICMP_EQ
2107 : ICmpInst::ICMP_NE
,
2108 And
, Constant::getNullValue(ShType
));
2110 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2111 if (C
.isPowerOf2() &&
2112 (Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_UGE
)) {
2114 Builder
.CreateAnd(X
, (~(C
- 1)).lshr(ShiftAmt
->getZExtValue()));
2115 return new ICmpInst(Pred
== ICmpInst::ICMP_ULT
? ICmpInst::ICMP_EQ
2116 : ICmpInst::ICMP_NE
,
2117 And
, Constant::getNullValue(ShType
));
2121 // Transform (icmp pred iM (shl iM %v, N), C)
2122 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2123 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2124 // This enables us to get rid of the shift in favor of a trunc that may be
2125 // free on the target. It has the additional benefit of comparing to a
2126 // smaller constant that may be more target-friendly.
2127 unsigned Amt
= ShiftAmt
->getLimitedValue(TypeBits
- 1);
2128 if (Shl
->hasOneUse() && Amt
!= 0 && C
.countTrailingZeros() >= Amt
&&
2129 DL
.isLegalInteger(TypeBits
- Amt
)) {
2130 Type
*TruncTy
= IntegerType::get(Cmp
.getContext(), TypeBits
- Amt
);
2131 if (ShType
->isVectorTy())
2132 TruncTy
= VectorType::get(TruncTy
, ShType
->getVectorNumElements());
2134 ConstantInt::get(TruncTy
, C
.ashr(*ShiftAmt
).trunc(TypeBits
- Amt
));
2135 return new ICmpInst(Pred
, Builder
.CreateTrunc(X
, TruncTy
), NewC
);
2141 /// Fold icmp ({al}shr X, Y), C.
2142 Instruction
*InstCombiner::foldICmpShrConstant(ICmpInst
&Cmp
,
2143 BinaryOperator
*Shr
,
2145 // An exact shr only shifts out zero bits, so:
2146 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2147 Value
*X
= Shr
->getOperand(0);
2148 CmpInst::Predicate Pred
= Cmp
.getPredicate();
2149 if (Cmp
.isEquality() && Shr
->isExact() && Shr
->hasOneUse() &&
2151 return new ICmpInst(Pred
, X
, Cmp
.getOperand(1));
2153 const APInt
*ShiftVal
;
2154 if (Cmp
.isEquality() && match(Shr
->getOperand(0), m_APInt(ShiftVal
)))
2155 return foldICmpShrConstConst(Cmp
, Shr
->getOperand(1), C
, *ShiftVal
);
2157 const APInt
*ShiftAmt
;
2158 if (!match(Shr
->getOperand(1), m_APInt(ShiftAmt
)))
2161 // Check that the shift amount is in range. If not, don't perform undefined
2162 // shifts. When the shift is visited it will be simplified.
2163 unsigned TypeBits
= C
.getBitWidth();
2164 unsigned ShAmtVal
= ShiftAmt
->getLimitedValue(TypeBits
);
2165 if (ShAmtVal
>= TypeBits
|| ShAmtVal
== 0)
2168 bool IsAShr
= Shr
->getOpcode() == Instruction::AShr
;
2169 bool IsExact
= Shr
->isExact();
2170 Type
*ShrTy
= Shr
->getType();
2171 // TODO: If we could guarantee that InstSimplify would handle all of the
2172 // constant-value-based preconditions in the folds below, then we could assert
2173 // those conditions rather than checking them. This is difficult because of
2174 // undef/poison (PR34838).
2176 if (Pred
== CmpInst::ICMP_SLT
|| (Pred
== CmpInst::ICMP_SGT
&& IsExact
)) {
2177 // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC)
2178 // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC)
2179 APInt ShiftedC
= C
.shl(ShAmtVal
);
2180 if (ShiftedC
.ashr(ShAmtVal
) == C
)
2181 return new ICmpInst(Pred
, X
, ConstantInt::get(ShrTy
, ShiftedC
));
2183 if (Pred
== CmpInst::ICMP_SGT
) {
2184 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2185 APInt ShiftedC
= (C
+ 1).shl(ShAmtVal
) - 1;
2186 if (!C
.isMaxSignedValue() && !(C
+ 1).shl(ShAmtVal
).isMinSignedValue() &&
2187 (ShiftedC
+ 1).ashr(ShAmtVal
) == (C
+ 1))
2188 return new ICmpInst(Pred
, X
, ConstantInt::get(ShrTy
, ShiftedC
));
2191 if (Pred
== CmpInst::ICMP_ULT
|| (Pred
== CmpInst::ICMP_UGT
&& IsExact
)) {
2192 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2193 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2194 APInt ShiftedC
= C
.shl(ShAmtVal
);
2195 if (ShiftedC
.lshr(ShAmtVal
) == C
)
2196 return new ICmpInst(Pred
, X
, ConstantInt::get(ShrTy
, ShiftedC
));
2198 if (Pred
== CmpInst::ICMP_UGT
) {
2199 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2200 APInt ShiftedC
= (C
+ 1).shl(ShAmtVal
) - 1;
2201 if ((ShiftedC
+ 1).lshr(ShAmtVal
) == (C
+ 1))
2202 return new ICmpInst(Pred
, X
, ConstantInt::get(ShrTy
, ShiftedC
));
2206 if (!Cmp
.isEquality())
2209 // Handle equality comparisons of shift-by-constant.
2211 // If the comparison constant changes with the shift, the comparison cannot
2212 // succeed (bits of the comparison constant cannot match the shifted value).
2213 // This should be known by InstSimplify and already be folded to true/false.
2214 assert(((IsAShr
&& C
.shl(ShAmtVal
).ashr(ShAmtVal
) == C
) ||
2215 (!IsAShr
&& C
.shl(ShAmtVal
).lshr(ShAmtVal
) == C
)) &&
2216 "Expected icmp+shr simplify did not occur.");
2218 // If the bits shifted out are known zero, compare the unshifted value:
2219 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
2221 return new ICmpInst(Pred
, X
, ConstantInt::get(ShrTy
, C
<< ShAmtVal
));
2223 if (Shr
->hasOneUse()) {
2224 // Canonicalize the shift into an 'and':
2225 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2226 APInt
Val(APInt::getHighBitsSet(TypeBits
, TypeBits
- ShAmtVal
));
2227 Constant
*Mask
= ConstantInt::get(ShrTy
, Val
);
2228 Value
*And
= Builder
.CreateAnd(X
, Mask
, Shr
->getName() + ".mask");
2229 return new ICmpInst(Pred
, And
, ConstantInt::get(ShrTy
, C
<< ShAmtVal
));
2235 /// Fold icmp (udiv X, Y), C.
2236 Instruction
*InstCombiner::foldICmpUDivConstant(ICmpInst
&Cmp
,
2237 BinaryOperator
*UDiv
,
2240 if (!match(UDiv
->getOperand(0), m_APInt(C2
)))
2243 assert(*C2
!= 0 && "udiv 0, X should have been simplified already.");
2245 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2246 Value
*Y
= UDiv
->getOperand(1);
2247 if (Cmp
.getPredicate() == ICmpInst::ICMP_UGT
) {
2248 assert(!C
.isMaxValue() &&
2249 "icmp ugt X, UINT_MAX should have been simplified already.");
2250 return new ICmpInst(ICmpInst::ICMP_ULE
, Y
,
2251 ConstantInt::get(Y
->getType(), C2
->udiv(C
+ 1)));
2254 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2255 if (Cmp
.getPredicate() == ICmpInst::ICMP_ULT
) {
2256 assert(C
!= 0 && "icmp ult X, 0 should have been simplified already.");
2257 return new ICmpInst(ICmpInst::ICMP_UGT
, Y
,
2258 ConstantInt::get(Y
->getType(), C2
->udiv(C
)));
2264 /// Fold icmp ({su}div X, Y), C.
2265 Instruction
*InstCombiner::foldICmpDivConstant(ICmpInst
&Cmp
,
2266 BinaryOperator
*Div
,
2268 // Fold: icmp pred ([us]div X, C2), C -> range test
2269 // Fold this div into the comparison, producing a range check.
2270 // Determine, based on the divide type, what the range is being
2271 // checked. If there is an overflow on the low or high side, remember
2272 // it, otherwise compute the range [low, hi) bounding the new value.
2273 // See: InsertRangeTest above for the kinds of replacements possible.
2275 if (!match(Div
->getOperand(1), m_APInt(C2
)))
2278 // FIXME: If the operand types don't match the type of the divide
2279 // then don't attempt this transform. The code below doesn't have the
2280 // logic to deal with a signed divide and an unsigned compare (and
2281 // vice versa). This is because (x /s C2) <s C produces different
2282 // results than (x /s C2) <u C or (x /u C2) <s C or even
2283 // (x /u C2) <u C. Simply casting the operands and result won't
2284 // work. :( The if statement below tests that condition and bails
2286 bool DivIsSigned
= Div
->getOpcode() == Instruction::SDiv
;
2287 if (!Cmp
.isEquality() && DivIsSigned
!= Cmp
.isSigned())
2290 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2291 // INT_MIN will also fail if the divisor is 1. Although folds of all these
2292 // division-by-constant cases should be present, we can not assert that they
2293 // have happened before we reach this icmp instruction.
2294 if (C2
->isNullValue() || C2
->isOneValue() ||
2295 (DivIsSigned
&& C2
->isAllOnesValue()))
2298 // Compute Prod = C * C2. We are essentially solving an equation of
2299 // form X / C2 = C. We solve for X by multiplying C2 and C.
2300 // By solving for X, we can turn this into a range check instead of computing
2302 APInt Prod
= C
* *C2
;
2304 // Determine if the product overflows by seeing if the product is not equal to
2305 // the divide. Make sure we do the same kind of divide as in the LHS
2306 // instruction that we're folding.
2307 bool ProdOV
= (DivIsSigned
? Prod
.sdiv(*C2
) : Prod
.udiv(*C2
)) != C
;
2309 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
2311 // If the division is known to be exact, then there is no remainder from the
2312 // divide, so the covered range size is unit, otherwise it is the divisor.
2313 APInt RangeSize
= Div
->isExact() ? APInt(C2
->getBitWidth(), 1) : *C2
;
2315 // Figure out the interval that is being checked. For example, a comparison
2316 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2317 // Compute this interval based on the constants involved and the signedness of
2318 // the compare/divide. This computes a half-open interval, keeping track of
2319 // whether either value in the interval overflows. After analysis each
2320 // overflow variable is set to 0 if it's corresponding bound variable is valid
2321 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2322 int LoOverflow
= 0, HiOverflow
= 0;
2323 APInt LoBound
, HiBound
;
2325 if (!DivIsSigned
) { // udiv
2326 // e.g. X/5 op 3 --> [15, 20)
2328 HiOverflow
= LoOverflow
= ProdOV
;
2330 // If this is not an exact divide, then many values in the range collapse
2331 // to the same result value.
2332 HiOverflow
= addWithOverflow(HiBound
, LoBound
, RangeSize
, false);
2334 } else if (C2
->isStrictlyPositive()) { // Divisor is > 0.
2335 if (C
.isNullValue()) { // (X / pos) op 0
2336 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
2337 LoBound
= -(RangeSize
- 1);
2338 HiBound
= RangeSize
;
2339 } else if (C
.isStrictlyPositive()) { // (X / pos) op pos
2340 LoBound
= Prod
; // e.g. X/5 op 3 --> [15, 20)
2341 HiOverflow
= LoOverflow
= ProdOV
;
2343 HiOverflow
= addWithOverflow(HiBound
, Prod
, RangeSize
, true);
2344 } else { // (X / pos) op neg
2345 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
2347 LoOverflow
= HiOverflow
= ProdOV
? -1 : 0;
2349 APInt DivNeg
= -RangeSize
;
2350 LoOverflow
= addWithOverflow(LoBound
, HiBound
, DivNeg
, true) ? -1 : 0;
2353 } else if (C2
->isNegative()) { // Divisor is < 0.
2356 if (C
.isNullValue()) { // (X / neg) op 0
2357 // e.g. X/-5 op 0 --> [-4, 5)
2358 LoBound
= RangeSize
+ 1;
2359 HiBound
= -RangeSize
;
2360 if (HiBound
== *C2
) { // -INTMIN = INTMIN
2361 HiOverflow
= 1; // [INTMIN+1, overflow)
2362 HiBound
= APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN
2364 } else if (C
.isStrictlyPositive()) { // (X / neg) op pos
2365 // e.g. X/-5 op 3 --> [-19, -14)
2367 HiOverflow
= LoOverflow
= ProdOV
? -1 : 0;
2369 LoOverflow
= addWithOverflow(LoBound
, HiBound
, RangeSize
, true) ? -1:0;
2370 } else { // (X / neg) op neg
2371 LoBound
= Prod
; // e.g. X/-5 op -3 --> [15, 20)
2372 LoOverflow
= HiOverflow
= ProdOV
;
2374 HiOverflow
= subWithOverflow(HiBound
, Prod
, RangeSize
, true);
2377 // Dividing by a negative swaps the condition. LT <-> GT
2378 Pred
= ICmpInst::getSwappedPredicate(Pred
);
2381 Value
*X
= Div
->getOperand(0);
2383 default: llvm_unreachable("Unhandled icmp opcode!");
2384 case ICmpInst::ICMP_EQ
:
2385 if (LoOverflow
&& HiOverflow
)
2386 return replaceInstUsesWith(Cmp
, Builder
.getFalse());
2388 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SGE
:
2389 ICmpInst::ICMP_UGE
, X
,
2390 ConstantInt::get(Div
->getType(), LoBound
));
2392 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SLT
:
2393 ICmpInst::ICMP_ULT
, X
,
2394 ConstantInt::get(Div
->getType(), HiBound
));
2395 return replaceInstUsesWith(
2396 Cmp
, insertRangeTest(X
, LoBound
, HiBound
, DivIsSigned
, true));
2397 case ICmpInst::ICMP_NE
:
2398 if (LoOverflow
&& HiOverflow
)
2399 return replaceInstUsesWith(Cmp
, Builder
.getTrue());
2401 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SLT
:
2402 ICmpInst::ICMP_ULT
, X
,
2403 ConstantInt::get(Div
->getType(), LoBound
));
2405 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SGE
:
2406 ICmpInst::ICMP_UGE
, X
,
2407 ConstantInt::get(Div
->getType(), HiBound
));
2408 return replaceInstUsesWith(Cmp
,
2409 insertRangeTest(X
, LoBound
, HiBound
,
2410 DivIsSigned
, false));
2411 case ICmpInst::ICMP_ULT
:
2412 case ICmpInst::ICMP_SLT
:
2413 if (LoOverflow
== +1) // Low bound is greater than input range.
2414 return replaceInstUsesWith(Cmp
, Builder
.getTrue());
2415 if (LoOverflow
== -1) // Low bound is less than input range.
2416 return replaceInstUsesWith(Cmp
, Builder
.getFalse());
2417 return new ICmpInst(Pred
, X
, ConstantInt::get(Div
->getType(), LoBound
));
2418 case ICmpInst::ICMP_UGT
:
2419 case ICmpInst::ICMP_SGT
:
2420 if (HiOverflow
== +1) // High bound greater than input range.
2421 return replaceInstUsesWith(Cmp
, Builder
.getFalse());
2422 if (HiOverflow
== -1) // High bound less than input range.
2423 return replaceInstUsesWith(Cmp
, Builder
.getTrue());
2424 if (Pred
== ICmpInst::ICMP_UGT
)
2425 return new ICmpInst(ICmpInst::ICMP_UGE
, X
,
2426 ConstantInt::get(Div
->getType(), HiBound
));
2427 return new ICmpInst(ICmpInst::ICMP_SGE
, X
,
2428 ConstantInt::get(Div
->getType(), HiBound
));
2434 /// Fold icmp (sub X, Y), C.
2435 Instruction
*InstCombiner::foldICmpSubConstant(ICmpInst
&Cmp
,
2436 BinaryOperator
*Sub
,
2438 Value
*X
= Sub
->getOperand(0), *Y
= Sub
->getOperand(1);
2439 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
2443 // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0
2444 if (match(X
, m_APInt(C2
)) && *C2
== C
&& Cmp
.isEquality())
2445 return new ICmpInst(Cmp
.getPredicate(), Y
,
2446 ConstantInt::get(Y
->getType(), 0));
2448 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2449 if (match(X
, m_APInt(C2
)) &&
2450 ((Cmp
.isUnsigned() && Sub
->hasNoUnsignedWrap()) ||
2451 (Cmp
.isSigned() && Sub
->hasNoSignedWrap())) &&
2452 !subWithOverflow(SubResult
, *C2
, C
, Cmp
.isSigned()))
2453 return new ICmpInst(Cmp
.getSwappedPredicate(), Y
,
2454 ConstantInt::get(Y
->getType(), SubResult
));
2456 // The following transforms are only worth it if the only user of the subtract
2458 if (!Sub
->hasOneUse())
2461 if (Sub
->hasNoSignedWrap()) {
2462 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2463 if (Pred
== ICmpInst::ICMP_SGT
&& C
.isAllOnesValue())
2464 return new ICmpInst(ICmpInst::ICMP_SGE
, X
, Y
);
2466 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2467 if (Pred
== ICmpInst::ICMP_SGT
&& C
.isNullValue())
2468 return new ICmpInst(ICmpInst::ICMP_SGT
, X
, Y
);
2470 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2471 if (Pred
== ICmpInst::ICMP_SLT
&& C
.isNullValue())
2472 return new ICmpInst(ICmpInst::ICMP_SLT
, X
, Y
);
2474 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2475 if (Pred
== ICmpInst::ICMP_SLT
&& C
.isOneValue())
2476 return new ICmpInst(ICmpInst::ICMP_SLE
, X
, Y
);
2479 if (!match(X
, m_APInt(C2
)))
2482 // C2 - Y <u C -> (Y | (C - 1)) == C2
2483 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2484 if (Pred
== ICmpInst::ICMP_ULT
&& C
.isPowerOf2() &&
2485 (*C2
& (C
- 1)) == (C
- 1))
2486 return new ICmpInst(ICmpInst::ICMP_EQ
, Builder
.CreateOr(Y
, C
- 1), X
);
2488 // C2 - Y >u C -> (Y | C) != C2
2489 // iff C2 & C == C and C + 1 is a power of 2
2490 if (Pred
== ICmpInst::ICMP_UGT
&& (C
+ 1).isPowerOf2() && (*C2
& C
) == C
)
2491 return new ICmpInst(ICmpInst::ICMP_NE
, Builder
.CreateOr(Y
, C
), X
);
2496 /// Fold icmp (add X, Y), C.
2497 Instruction
*InstCombiner::foldICmpAddConstant(ICmpInst
&Cmp
,
2498 BinaryOperator
*Add
,
2500 Value
*Y
= Add
->getOperand(1);
2502 if (Cmp
.isEquality() || !match(Y
, m_APInt(C2
)))
2505 // Fold icmp pred (add X, C2), C.
2506 Value
*X
= Add
->getOperand(0);
2507 Type
*Ty
= Add
->getType();
2508 CmpInst::Predicate Pred
= Cmp
.getPredicate();
2510 if (!Add
->hasOneUse())
2513 // If the add does not wrap, we can always adjust the compare by subtracting
2514 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2515 // are canonicalized to SGT/SLT/UGT/ULT.
2516 if ((Add
->hasNoSignedWrap() &&
2517 (Pred
== ICmpInst::ICMP_SGT
|| Pred
== ICmpInst::ICMP_SLT
)) ||
2518 (Add
->hasNoUnsignedWrap() &&
2519 (Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_ULT
))) {
2522 Cmp
.isSigned() ? C
.ssub_ov(*C2
, Overflow
) : C
.usub_ov(*C2
, Overflow
);
2523 // If there is overflow, the result must be true or false.
2524 // TODO: Can we assert there is no overflow because InstSimplify always
2525 // handles those cases?
2527 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2528 return new ICmpInst(Pred
, X
, ConstantInt::get(Ty
, NewC
));
2531 auto CR
= ConstantRange::makeExactICmpRegion(Pred
, C
).subtract(*C2
);
2532 const APInt
&Upper
= CR
.getUpper();
2533 const APInt
&Lower
= CR
.getLower();
2534 if (Cmp
.isSigned()) {
2535 if (Lower
.isSignMask())
2536 return new ICmpInst(ICmpInst::ICMP_SLT
, X
, ConstantInt::get(Ty
, Upper
));
2537 if (Upper
.isSignMask())
2538 return new ICmpInst(ICmpInst::ICMP_SGE
, X
, ConstantInt::get(Ty
, Lower
));
2540 if (Lower
.isMinValue())
2541 return new ICmpInst(ICmpInst::ICMP_ULT
, X
, ConstantInt::get(Ty
, Upper
));
2542 if (Upper
.isMinValue())
2543 return new ICmpInst(ICmpInst::ICMP_UGE
, X
, ConstantInt::get(Ty
, Lower
));
2546 // X+C <u C2 -> (X & -C2) == C
2547 // iff C & (C2-1) == 0
2548 // C2 is a power of 2
2549 if (Pred
== ICmpInst::ICMP_ULT
&& C
.isPowerOf2() && (*C2
& (C
- 1)) == 0)
2550 return new ICmpInst(ICmpInst::ICMP_EQ
, Builder
.CreateAnd(X
, -C
),
2551 ConstantExpr::getNeg(cast
<Constant
>(Y
)));
2553 // X+C >u C2 -> (X & ~C2) != C
2555 // C2+1 is a power of 2
2556 if (Pred
== ICmpInst::ICMP_UGT
&& (C
+ 1).isPowerOf2() && (*C2
& C
) == 0)
2557 return new ICmpInst(ICmpInst::ICMP_NE
, Builder
.CreateAnd(X
, ~C
),
2558 ConstantExpr::getNeg(cast
<Constant
>(Y
)));
2563 bool InstCombiner::matchThreeWayIntCompare(SelectInst
*SI
, Value
*&LHS
,
2564 Value
*&RHS
, ConstantInt
*&Less
,
2565 ConstantInt
*&Equal
,
2566 ConstantInt
*&Greater
) {
2567 // TODO: Generalize this to work with other comparison idioms or ensure
2568 // they get canonicalized into this form.
2570 // select i1 (a == b),
2572 // i32 (select i1 (a < b), i32 Less, i32 Greater)
2573 // where Equal, Less and Greater are placeholders for any three constants.
2574 ICmpInst::Predicate PredA
;
2575 if (!match(SI
->getCondition(), m_ICmp(PredA
, m_Value(LHS
), m_Value(RHS
))) ||
2576 !ICmpInst::isEquality(PredA
))
2578 Value
*EqualVal
= SI
->getTrueValue();
2579 Value
*UnequalVal
= SI
->getFalseValue();
2580 // We still can get non-canonical predicate here, so canonicalize.
2581 if (PredA
== ICmpInst::ICMP_NE
)
2582 std::swap(EqualVal
, UnequalVal
);
2583 if (!match(EqualVal
, m_ConstantInt(Equal
)))
2585 ICmpInst::Predicate PredB
;
2587 if (!match(UnequalVal
, m_Select(m_ICmp(PredB
, m_Value(LHS2
), m_Value(RHS2
)),
2588 m_ConstantInt(Less
), m_ConstantInt(Greater
))))
2590 // We can get predicate mismatch here, so canonicalize if possible:
2591 // First, ensure that 'LHS' match.
2593 // x sgt y <--> y slt x
2594 std::swap(LHS2
, RHS2
);
2595 PredB
= ICmpInst::getSwappedPredicate(PredB
);
2599 // We also need to canonicalize 'RHS'.
2600 if (PredB
== ICmpInst::ICMP_SGT
&& isa
<Constant
>(RHS2
)) {
2601 // x sgt C-1 <--> x sge C <--> not(x slt C)
2602 auto FlippedStrictness
=
2603 getFlippedStrictnessPredicateAndConstant(PredB
, cast
<Constant
>(RHS2
));
2604 if (!FlippedStrictness
)
2606 assert(FlippedStrictness
->first
== ICmpInst::ICMP_SGE
&& "Sanity check");
2607 RHS2
= FlippedStrictness
->second
;
2608 // And kind-of perform the result swap.
2609 std::swap(Less
, Greater
);
2610 PredB
= ICmpInst::ICMP_SLT
;
2612 return PredB
== ICmpInst::ICMP_SLT
&& RHS
== RHS2
;
2615 Instruction
*InstCombiner::foldICmpSelectConstant(ICmpInst
&Cmp
,
2619 assert(C
&& "Cmp RHS should be a constant int!");
2620 // If we're testing a constant value against the result of a three way
2621 // comparison, the result can be expressed directly in terms of the
2622 // original values being compared. Note: We could possibly be more
2623 // aggressive here and remove the hasOneUse test. The original select is
2624 // really likely to simplify or sink when we remove a test of the result.
2625 Value
*OrigLHS
, *OrigRHS
;
2626 ConstantInt
*C1LessThan
, *C2Equal
, *C3GreaterThan
;
2627 if (Cmp
.hasOneUse() &&
2628 matchThreeWayIntCompare(Select
, OrigLHS
, OrigRHS
, C1LessThan
, C2Equal
,
2630 assert(C1LessThan
&& C2Equal
&& C3GreaterThan
);
2632 bool TrueWhenLessThan
=
2633 ConstantExpr::getCompare(Cmp
.getPredicate(), C1LessThan
, C
)
2635 bool TrueWhenEqual
=
2636 ConstantExpr::getCompare(Cmp
.getPredicate(), C2Equal
, C
)
2638 bool TrueWhenGreaterThan
=
2639 ConstantExpr::getCompare(Cmp
.getPredicate(), C3GreaterThan
, C
)
2642 // This generates the new instruction that will replace the original Cmp
2643 // Instruction. Instead of enumerating the various combinations when
2644 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2645 // false, we rely on chaining of ORs and future passes of InstCombine to
2646 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2648 // When none of the three constants satisfy the predicate for the RHS (C),
2649 // the entire original Cmp can be simplified to a false.
2650 Value
*Cond
= Builder
.getFalse();
2651 if (TrueWhenLessThan
)
2652 Cond
= Builder
.CreateOr(Cond
, Builder
.CreateICmp(ICmpInst::ICMP_SLT
,
2655 Cond
= Builder
.CreateOr(Cond
, Builder
.CreateICmp(ICmpInst::ICMP_EQ
,
2657 if (TrueWhenGreaterThan
)
2658 Cond
= Builder
.CreateOr(Cond
, Builder
.CreateICmp(ICmpInst::ICMP_SGT
,
2661 return replaceInstUsesWith(Cmp
, Cond
);
2666 static Instruction
*foldICmpBitCast(ICmpInst
&Cmp
,
2667 InstCombiner::BuilderTy
&Builder
) {
2668 auto *Bitcast
= dyn_cast
<BitCastInst
>(Cmp
.getOperand(0));
2672 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
2673 Value
*Op1
= Cmp
.getOperand(1);
2674 Value
*BCSrcOp
= Bitcast
->getOperand(0);
2676 // Make sure the bitcast doesn't change the number of vector elements.
2677 if (Bitcast
->getSrcTy()->getScalarSizeInBits() ==
2678 Bitcast
->getDestTy()->getScalarSizeInBits()) {
2679 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2681 if (match(BCSrcOp
, m_SIToFP(m_Value(X
)))) {
2682 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0
2683 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0
2684 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2685 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2686 if ((Pred
== ICmpInst::ICMP_EQ
|| Pred
== ICmpInst::ICMP_SLT
||
2687 Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_SGT
) &&
2688 match(Op1
, m_Zero()))
2689 return new ICmpInst(Pred
, X
, ConstantInt::getNullValue(X
->getType()));
2691 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2692 if (Pred
== ICmpInst::ICMP_SLT
&& match(Op1
, m_One()))
2693 return new ICmpInst(Pred
, X
, ConstantInt::get(X
->getType(), 1));
2695 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2696 if (Pred
== ICmpInst::ICMP_SGT
&& match(Op1
, m_AllOnes()))
2697 return new ICmpInst(Pred
, X
,
2698 ConstantInt::getAllOnesValue(X
->getType()));
2701 // Zero-equality checks are preserved through unsigned floating-point casts:
2702 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2703 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2704 if (match(BCSrcOp
, m_UIToFP(m_Value(X
))))
2705 if (Cmp
.isEquality() && match(Op1
, m_Zero()))
2706 return new ICmpInst(Pred
, X
, ConstantInt::getNullValue(X
->getType()));
2709 // Test to see if the operands of the icmp are casted versions of other
2710 // values. If the ptr->ptr cast can be stripped off both arguments, do so.
2711 if (Bitcast
->getType()->isPointerTy() &&
2712 (isa
<Constant
>(Op1
) || isa
<BitCastInst
>(Op1
))) {
2713 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2714 // so eliminate it as well.
2715 if (auto *BC2
= dyn_cast
<BitCastInst
>(Op1
))
2716 Op1
= BC2
->getOperand(0);
2718 Op1
= Builder
.CreateBitCast(Op1
, BCSrcOp
->getType());
2719 return new ICmpInst(Pred
, BCSrcOp
, Op1
);
2722 // Folding: icmp <pred> iN X, C
2723 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
2724 // and C is a splat of a K-bit pattern
2725 // and SC is a constant vector = <C', C', C', ..., C'>
2727 // %E = extractelement <M x iK> %vec, i32 C'
2728 // icmp <pred> iK %E, trunc(C)
2730 if (!match(Cmp
.getOperand(1), m_APInt(C
)) ||
2731 !Bitcast
->getType()->isIntegerTy() ||
2732 !Bitcast
->getSrcTy()->isIntOrIntVectorTy())
2738 m_ShuffleVector(m_Value(Vec
), m_Undef(), m_Constant(Mask
)))) {
2739 // Check whether every element of Mask is the same constant
2740 if (auto *Elem
= dyn_cast_or_null
<ConstantInt
>(Mask
->getSplatValue())) {
2741 auto *VecTy
= cast
<VectorType
>(BCSrcOp
->getType());
2742 auto *EltTy
= cast
<IntegerType
>(VecTy
->getElementType());
2743 if (C
->isSplat(EltTy
->getBitWidth())) {
2744 // Fold the icmp based on the value of C
2745 // If C is M copies of an iK sized bit pattern,
2747 // => %E = extractelement <N x iK> %vec, i32 Elem
2748 // icmp <pred> iK %SplatVal, <pattern>
2749 Value
*Extract
= Builder
.CreateExtractElement(Vec
, Elem
);
2750 Value
*NewC
= ConstantInt::get(EltTy
, C
->trunc(EltTy
->getBitWidth()));
2751 return new ICmpInst(Pred
, Extract
, NewC
);
2758 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
2759 /// where X is some kind of instruction.
2760 Instruction
*InstCombiner::foldICmpInstWithConstant(ICmpInst
&Cmp
) {
2762 if (!match(Cmp
.getOperand(1), m_APInt(C
)))
2765 if (auto *BO
= dyn_cast
<BinaryOperator
>(Cmp
.getOperand(0))) {
2766 switch (BO
->getOpcode()) {
2767 case Instruction::Xor
:
2768 if (Instruction
*I
= foldICmpXorConstant(Cmp
, BO
, *C
))
2771 case Instruction::And
:
2772 if (Instruction
*I
= foldICmpAndConstant(Cmp
, BO
, *C
))
2775 case Instruction::Or
:
2776 if (Instruction
*I
= foldICmpOrConstant(Cmp
, BO
, *C
))
2779 case Instruction::Mul
:
2780 if (Instruction
*I
= foldICmpMulConstant(Cmp
, BO
, *C
))
2783 case Instruction::Shl
:
2784 if (Instruction
*I
= foldICmpShlConstant(Cmp
, BO
, *C
))
2787 case Instruction::LShr
:
2788 case Instruction::AShr
:
2789 if (Instruction
*I
= foldICmpShrConstant(Cmp
, BO
, *C
))
2792 case Instruction::UDiv
:
2793 if (Instruction
*I
= foldICmpUDivConstant(Cmp
, BO
, *C
))
2796 case Instruction::SDiv
:
2797 if (Instruction
*I
= foldICmpDivConstant(Cmp
, BO
, *C
))
2800 case Instruction::Sub
:
2801 if (Instruction
*I
= foldICmpSubConstant(Cmp
, BO
, *C
))
2804 case Instruction::Add
:
2805 if (Instruction
*I
= foldICmpAddConstant(Cmp
, BO
, *C
))
2811 // TODO: These folds could be refactored to be part of the above calls.
2812 if (Instruction
*I
= foldICmpBinOpEqualityWithConstant(Cmp
, BO
, *C
))
2816 // Match against CmpInst LHS being instructions other than binary operators.
2818 if (auto *SI
= dyn_cast
<SelectInst
>(Cmp
.getOperand(0))) {
2819 // For now, we only support constant integers while folding the
2820 // ICMP(SELECT)) pattern. We can extend this to support vector of integers
2821 // similar to the cases handled by binary ops above.
2822 if (ConstantInt
*ConstRHS
= dyn_cast
<ConstantInt
>(Cmp
.getOperand(1)))
2823 if (Instruction
*I
= foldICmpSelectConstant(Cmp
, SI
, ConstRHS
))
2827 if (auto *TI
= dyn_cast
<TruncInst
>(Cmp
.getOperand(0))) {
2828 if (Instruction
*I
= foldICmpTruncConstant(Cmp
, TI
, *C
))
2832 if (auto *II
= dyn_cast
<IntrinsicInst
>(Cmp
.getOperand(0)))
2833 if (Instruction
*I
= foldICmpIntrinsicWithConstant(Cmp
, II
, *C
))
2839 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
2840 /// icmp eq/ne BO, C.
2841 Instruction
*InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst
&Cmp
,
2844 // TODO: Some of these folds could work with arbitrary constants, but this
2845 // function is limited to scalar and vector splat constants.
2846 if (!Cmp
.isEquality())
2849 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
2850 bool isICMP_NE
= Pred
== ICmpInst::ICMP_NE
;
2851 Constant
*RHS
= cast
<Constant
>(Cmp
.getOperand(1));
2852 Value
*BOp0
= BO
->getOperand(0), *BOp1
= BO
->getOperand(1);
2854 switch (BO
->getOpcode()) {
2855 case Instruction::SRem
:
2856 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
2857 if (C
.isNullValue() && BO
->hasOneUse()) {
2859 if (match(BOp1
, m_APInt(BOC
)) && BOC
->sgt(1) && BOC
->isPowerOf2()) {
2860 Value
*NewRem
= Builder
.CreateURem(BOp0
, BOp1
, BO
->getName());
2861 return new ICmpInst(Pred
, NewRem
,
2862 Constant::getNullValue(BO
->getType()));
2866 case Instruction::Add
: {
2867 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
2869 if (match(BOp1
, m_APInt(BOC
))) {
2870 if (BO
->hasOneUse()) {
2871 Constant
*SubC
= ConstantExpr::getSub(RHS
, cast
<Constant
>(BOp1
));
2872 return new ICmpInst(Pred
, BOp0
, SubC
);
2874 } else if (C
.isNullValue()) {
2875 // Replace ((add A, B) != 0) with (A != -B) if A or B is
2876 // efficiently invertible, or if the add has just this one use.
2877 if (Value
*NegVal
= dyn_castNegVal(BOp1
))
2878 return new ICmpInst(Pred
, BOp0
, NegVal
);
2879 if (Value
*NegVal
= dyn_castNegVal(BOp0
))
2880 return new ICmpInst(Pred
, NegVal
, BOp1
);
2881 if (BO
->hasOneUse()) {
2882 Value
*Neg
= Builder
.CreateNeg(BOp1
);
2884 return new ICmpInst(Pred
, BOp0
, Neg
);
2889 case Instruction::Xor
:
2890 if (BO
->hasOneUse()) {
2891 if (Constant
*BOC
= dyn_cast
<Constant
>(BOp1
)) {
2892 // For the xor case, we can xor two constants together, eliminating
2893 // the explicit xor.
2894 return new ICmpInst(Pred
, BOp0
, ConstantExpr::getXor(RHS
, BOC
));
2895 } else if (C
.isNullValue()) {
2896 // Replace ((xor A, B) != 0) with (A != B)
2897 return new ICmpInst(Pred
, BOp0
, BOp1
);
2901 case Instruction::Sub
:
2902 if (BO
->hasOneUse()) {
2904 if (match(BOp0
, m_APInt(BOC
))) {
2905 // Replace ((sub BOC, B) != C) with (B != BOC-C).
2906 Constant
*SubC
= ConstantExpr::getSub(cast
<Constant
>(BOp0
), RHS
);
2907 return new ICmpInst(Pred
, BOp1
, SubC
);
2908 } else if (C
.isNullValue()) {
2909 // Replace ((sub A, B) != 0) with (A != B).
2910 return new ICmpInst(Pred
, BOp0
, BOp1
);
2914 case Instruction::Or
: {
2916 if (match(BOp1
, m_APInt(BOC
)) && BO
->hasOneUse() && RHS
->isAllOnesValue()) {
2917 // Comparing if all bits outside of a constant mask are set?
2918 // Replace (X | C) == -1 with (X & ~C) == ~C.
2919 // This removes the -1 constant.
2920 Constant
*NotBOC
= ConstantExpr::getNot(cast
<Constant
>(BOp1
));
2921 Value
*And
= Builder
.CreateAnd(BOp0
, NotBOC
);
2922 return new ICmpInst(Pred
, And
, NotBOC
);
2926 case Instruction::And
: {
2928 if (match(BOp1
, m_APInt(BOC
))) {
2929 // If we have ((X & C) == C), turn it into ((X & C) != 0).
2930 if (C
== *BOC
&& C
.isPowerOf2())
2931 return new ICmpInst(isICMP_NE
? ICmpInst::ICMP_EQ
: ICmpInst::ICMP_NE
,
2932 BO
, Constant::getNullValue(RHS
->getType()));
2936 case Instruction::Mul
:
2937 if (C
.isNullValue() && BO
->hasNoSignedWrap()) {
2939 if (match(BOp1
, m_APInt(BOC
)) && !BOC
->isNullValue()) {
2940 // The trivial case (mul X, 0) is handled by InstSimplify.
2941 // General case : (mul X, C) != 0 iff X != 0
2942 // (mul X, C) == 0 iff X == 0
2943 return new ICmpInst(Pred
, BOp0
, Constant::getNullValue(RHS
->getType()));
2947 case Instruction::UDiv
:
2948 if (C
.isNullValue()) {
2949 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
2950 auto NewPred
= isICMP_NE
? ICmpInst::ICMP_ULE
: ICmpInst::ICMP_UGT
;
2951 return new ICmpInst(NewPred
, BOp1
, BOp0
);
2960 /// Fold an equality icmp with LLVM intrinsic and constant operand.
2961 Instruction
*InstCombiner::foldICmpEqIntrinsicWithConstant(ICmpInst
&Cmp
,
2964 Type
*Ty
= II
->getType();
2965 unsigned BitWidth
= C
.getBitWidth();
2966 switch (II
->getIntrinsicID()) {
2967 case Intrinsic::bswap
:
2969 Cmp
.setOperand(0, II
->getArgOperand(0));
2970 Cmp
.setOperand(1, ConstantInt::get(Ty
, C
.byteSwap()));
2973 case Intrinsic::ctlz
:
2974 case Intrinsic::cttz
: {
2975 // ctz(A) == bitwidth(A) -> A == 0 and likewise for !=
2976 if (C
== BitWidth
) {
2978 Cmp
.setOperand(0, II
->getArgOperand(0));
2979 Cmp
.setOperand(1, ConstantInt::getNullValue(Ty
));
2983 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
2984 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
2985 // Limit to one use to ensure we don't increase instruction count.
2986 unsigned Num
= C
.getLimitedValue(BitWidth
);
2987 if (Num
!= BitWidth
&& II
->hasOneUse()) {
2988 bool IsTrailing
= II
->getIntrinsicID() == Intrinsic::cttz
;
2989 APInt Mask1
= IsTrailing
? APInt::getLowBitsSet(BitWidth
, Num
+ 1)
2990 : APInt::getHighBitsSet(BitWidth
, Num
+ 1);
2991 APInt Mask2
= IsTrailing
2992 ? APInt::getOneBitSet(BitWidth
, Num
)
2993 : APInt::getOneBitSet(BitWidth
, BitWidth
- Num
- 1);
2994 Cmp
.setOperand(0, Builder
.CreateAnd(II
->getArgOperand(0), Mask1
));
2995 Cmp
.setOperand(1, ConstantInt::get(Ty
, Mask2
));
3002 case Intrinsic::ctpop
: {
3003 // popcount(A) == 0 -> A == 0 and likewise for !=
3004 // popcount(A) == bitwidth(A) -> A == -1 and likewise for !=
3005 bool IsZero
= C
.isNullValue();
3006 if (IsZero
|| C
== BitWidth
) {
3008 Cmp
.setOperand(0, II
->getArgOperand(0));
3010 IsZero
? Constant::getNullValue(Ty
) : Constant::getAllOnesValue(Ty
);
3011 Cmp
.setOperand(1, NewOp
);
3023 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
3024 Instruction
*InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst
&Cmp
,
3027 if (Cmp
.isEquality())
3028 return foldICmpEqIntrinsicWithConstant(Cmp
, II
, C
);
3030 Type
*Ty
= II
->getType();
3031 unsigned BitWidth
= C
.getBitWidth();
3032 switch (II
->getIntrinsicID()) {
3033 case Intrinsic::ctlz
: {
3034 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3035 if (Cmp
.getPredicate() == ICmpInst::ICMP_UGT
&& C
.ult(BitWidth
)) {
3036 unsigned Num
= C
.getLimitedValue();
3037 APInt Limit
= APInt::getOneBitSet(BitWidth
, BitWidth
- Num
- 1);
3038 return CmpInst::Create(Instruction::ICmp
, ICmpInst::ICMP_ULT
,
3039 II
->getArgOperand(0), ConstantInt::get(Ty
, Limit
));
3042 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3043 if (Cmp
.getPredicate() == ICmpInst::ICMP_ULT
&&
3044 C
.uge(1) && C
.ule(BitWidth
)) {
3045 unsigned Num
= C
.getLimitedValue();
3046 APInt Limit
= APInt::getLowBitsSet(BitWidth
, BitWidth
- Num
);
3047 return CmpInst::Create(Instruction::ICmp
, ICmpInst::ICMP_UGT
,
3048 II
->getArgOperand(0), ConstantInt::get(Ty
, Limit
));
3052 case Intrinsic::cttz
: {
3053 // Limit to one use to ensure we don't increase instruction count.
3054 if (!II
->hasOneUse())
3057 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3058 if (Cmp
.getPredicate() == ICmpInst::ICMP_UGT
&& C
.ult(BitWidth
)) {
3059 APInt Mask
= APInt::getLowBitsSet(BitWidth
, C
.getLimitedValue() + 1);
3060 return CmpInst::Create(Instruction::ICmp
, ICmpInst::ICMP_EQ
,
3061 Builder
.CreateAnd(II
->getArgOperand(0), Mask
),
3062 ConstantInt::getNullValue(Ty
));
3065 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3066 if (Cmp
.getPredicate() == ICmpInst::ICMP_ULT
&&
3067 C
.uge(1) && C
.ule(BitWidth
)) {
3068 APInt Mask
= APInt::getLowBitsSet(BitWidth
, C
.getLimitedValue());
3069 return CmpInst::Create(Instruction::ICmp
, ICmpInst::ICMP_NE
,
3070 Builder
.CreateAnd(II
->getArgOperand(0), Mask
),
3071 ConstantInt::getNullValue(Ty
));
3082 /// Handle icmp with constant (but not simple integer constant) RHS.
3083 Instruction
*InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst
&I
) {
3084 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
3085 Constant
*RHSC
= dyn_cast
<Constant
>(Op1
);
3086 Instruction
*LHSI
= dyn_cast
<Instruction
>(Op0
);
3090 switch (LHSI
->getOpcode()) {
3091 case Instruction::GetElementPtr
:
3092 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3093 if (RHSC
->isNullValue() &&
3094 cast
<GetElementPtrInst
>(LHSI
)->hasAllZeroIndices())
3095 return new ICmpInst(
3096 I
.getPredicate(), LHSI
->getOperand(0),
3097 Constant::getNullValue(LHSI
->getOperand(0)->getType()));
3099 case Instruction::PHI
:
3100 // Only fold icmp into the PHI if the phi and icmp are in the same
3101 // block. If in the same block, we're encouraging jump threading. If
3102 // not, we are just pessimizing the code by making an i1 phi.
3103 if (LHSI
->getParent() == I
.getParent())
3104 if (Instruction
*NV
= foldOpIntoPhi(I
, cast
<PHINode
>(LHSI
)))
3107 case Instruction::Select
: {
3108 // If either operand of the select is a constant, we can fold the
3109 // comparison into the select arms, which will cause one to be
3110 // constant folded and the select turned into a bitwise or.
3111 Value
*Op1
= nullptr, *Op2
= nullptr;
3112 ConstantInt
*CI
= nullptr;
3113 if (Constant
*C
= dyn_cast
<Constant
>(LHSI
->getOperand(1))) {
3114 Op1
= ConstantExpr::getICmp(I
.getPredicate(), C
, RHSC
);
3115 CI
= dyn_cast
<ConstantInt
>(Op1
);
3117 if (Constant
*C
= dyn_cast
<Constant
>(LHSI
->getOperand(2))) {
3118 Op2
= ConstantExpr::getICmp(I
.getPredicate(), C
, RHSC
);
3119 CI
= dyn_cast
<ConstantInt
>(Op2
);
3122 // We only want to perform this transformation if it will not lead to
3123 // additional code. This is true if either both sides of the select
3124 // fold to a constant (in which case the icmp is replaced with a select
3125 // which will usually simplify) or this is the only user of the
3126 // select (in which case we are trading a select+icmp for a simpler
3127 // select+icmp) or all uses of the select can be replaced based on
3128 // dominance information ("Global cases").
3129 bool Transform
= false;
3132 else if (Op1
|| Op2
) {
3134 if (LHSI
->hasOneUse())
3137 else if (CI
&& !CI
->isZero())
3138 // When Op1 is constant try replacing select with second operand.
3139 // Otherwise Op2 is constant and try replacing select with first
3142 replacedSelectWithOperand(cast
<SelectInst
>(LHSI
), &I
, Op1
? 2 : 1);
3146 Op1
= Builder
.CreateICmp(I
.getPredicate(), LHSI
->getOperand(1), RHSC
,
3149 Op2
= Builder
.CreateICmp(I
.getPredicate(), LHSI
->getOperand(2), RHSC
,
3151 return SelectInst::Create(LHSI
->getOperand(0), Op1
, Op2
);
3155 case Instruction::IntToPtr
:
3156 // icmp pred inttoptr(X), null -> icmp pred X, 0
3157 if (RHSC
->isNullValue() &&
3158 DL
.getIntPtrType(RHSC
->getType()) == LHSI
->getOperand(0)->getType())
3159 return new ICmpInst(
3160 I
.getPredicate(), LHSI
->getOperand(0),
3161 Constant::getNullValue(LHSI
->getOperand(0)->getType()));
3164 case Instruction::Load
:
3165 // Try to optimize things like "A[i] > 4" to index computations.
3166 if (GetElementPtrInst
*GEP
=
3167 dyn_cast
<GetElementPtrInst
>(LHSI
->getOperand(0))) {
3168 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(GEP
->getOperand(0)))
3169 if (GV
->isConstant() && GV
->hasDefinitiveInitializer() &&
3170 !cast
<LoadInst
>(LHSI
)->isVolatile())
3171 if (Instruction
*Res
= foldCmpLoadFromIndexedGlobal(GEP
, GV
, I
))
3180 /// Some comparisons can be simplified.
3181 /// In this case, we are looking for comparisons that look like
3182 /// a check for a lossy truncation.
3184 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask
3185 /// Where Mask is some pattern that produces all-ones in low bits:
3187 /// ((-1 << y) >> y) <- non-canonical, has extra uses
3189 /// ((1 << y) + (-1)) <- non-canonical, has extra uses
3190 /// The Mask can be a constant, too.
3191 /// For some predicates, the operands are commutative.
3192 /// For others, x can only be on a specific side.
3193 static Value
*foldICmpWithLowBitMaskedVal(ICmpInst
&I
,
3194 InstCombiner::BuilderTy
&Builder
) {
3195 ICmpInst::Predicate SrcPred
;
3197 auto m_VariableMask
= m_CombineOr(
3198 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3199 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3200 m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3201 m_LShr(m_Shl(m_AllOnes(), m_Value(Y
)), m_Deferred(Y
))));
3202 auto m_Mask
= m_CombineOr(m_VariableMask
, m_LowBitMask());
3203 if (!match(&I
, m_c_ICmp(SrcPred
,
3204 m_c_And(m_CombineAnd(m_Mask
, m_Value(M
)), m_Value(X
)),
3208 ICmpInst::Predicate DstPred
;
3210 case ICmpInst::Predicate::ICMP_EQ
:
3211 // x & (-1 >> y) == x -> x u<= (-1 >> y)
3212 DstPred
= ICmpInst::Predicate::ICMP_ULE
;
3214 case ICmpInst::Predicate::ICMP_NE
:
3215 // x & (-1 >> y) != x -> x u> (-1 >> y)
3216 DstPred
= ICmpInst::Predicate::ICMP_UGT
;
3218 case ICmpInst::Predicate::ICMP_UGT
:
3219 // x u> x & (-1 >> y) -> x u> (-1 >> y)
3220 assert(X
== I
.getOperand(0) && "instsimplify took care of commut. variant");
3221 DstPred
= ICmpInst::Predicate::ICMP_UGT
;
3223 case ICmpInst::Predicate::ICMP_UGE
:
3224 // x & (-1 >> y) u>= x -> x u<= (-1 >> y)
3225 assert(X
== I
.getOperand(1) && "instsimplify took care of commut. variant");
3226 DstPred
= ICmpInst::Predicate::ICMP_ULE
;
3228 case ICmpInst::Predicate::ICMP_ULT
:
3229 // x & (-1 >> y) u< x -> x u> (-1 >> y)
3230 assert(X
== I
.getOperand(1) && "instsimplify took care of commut. variant");
3231 DstPred
= ICmpInst::Predicate::ICMP_UGT
;
3233 case ICmpInst::Predicate::ICMP_ULE
:
3234 // x u<= x & (-1 >> y) -> x u<= (-1 >> y)
3235 assert(X
== I
.getOperand(0) && "instsimplify took care of commut. variant");
3236 DstPred
= ICmpInst::Predicate::ICMP_ULE
;
3238 case ICmpInst::Predicate::ICMP_SGT
:
3239 // x s> x & (-1 >> y) -> x s> (-1 >> y)
3240 if (X
!= I
.getOperand(0)) // X must be on LHS of comparison!
3241 return nullptr; // Ignore the other case.
3242 if (!match(M
, m_Constant())) // Can not do this fold with non-constant.
3244 if (!match(M
, m_NonNegative())) // Must not have any -1 vector elements.
3246 DstPred
= ICmpInst::Predicate::ICMP_SGT
;
3248 case ICmpInst::Predicate::ICMP_SGE
:
3249 // x & (-1 >> y) s>= x -> x s<= (-1 >> y)
3250 if (X
!= I
.getOperand(1)) // X must be on RHS of comparison!
3251 return nullptr; // Ignore the other case.
3252 if (!match(M
, m_Constant())) // Can not do this fold with non-constant.
3254 if (!match(M
, m_NonNegative())) // Must not have any -1 vector elements.
3256 DstPred
= ICmpInst::Predicate::ICMP_SLE
;
3258 case ICmpInst::Predicate::ICMP_SLT
:
3259 // x & (-1 >> y) s< x -> x s> (-1 >> y)
3260 if (X
!= I
.getOperand(1)) // X must be on RHS of comparison!
3261 return nullptr; // Ignore the other case.
3262 if (!match(M
, m_Constant())) // Can not do this fold with non-constant.
3264 if (!match(M
, m_NonNegative())) // Must not have any -1 vector elements.
3266 DstPred
= ICmpInst::Predicate::ICMP_SGT
;
3268 case ICmpInst::Predicate::ICMP_SLE
:
3269 // x s<= x & (-1 >> y) -> x s<= (-1 >> y)
3270 if (X
!= I
.getOperand(0)) // X must be on LHS of comparison!
3271 return nullptr; // Ignore the other case.
3272 if (!match(M
, m_Constant())) // Can not do this fold with non-constant.
3274 if (!match(M
, m_NonNegative())) // Must not have any -1 vector elements.
3276 DstPred
= ICmpInst::Predicate::ICMP_SLE
;
3279 llvm_unreachable("All possible folds are handled.");
3282 return Builder
.CreateICmp(DstPred
, X
, M
);
3285 /// Some comparisons can be simplified.
3286 /// In this case, we are looking for comparisons that look like
3287 /// a check for a lossy signed truncation.
3288 /// Folds: (MaskedBits is a constant.)
3289 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3291 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3292 /// Where KeptBits = bitwidth(%x) - MaskedBits
3294 foldICmpWithTruncSignExtendedVal(ICmpInst
&I
,
3295 InstCombiner::BuilderTy
&Builder
) {
3296 ICmpInst::Predicate SrcPred
;
3298 const APInt
*C0
, *C1
; // FIXME: non-splats, potentially with undef.
3299 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3300 if (!match(&I
, m_c_ICmp(SrcPred
,
3301 m_OneUse(m_AShr(m_Shl(m_Value(X
), m_APInt(C0
)),
3306 // Potential handling of non-splats: for each element:
3307 // * if both are undef, replace with constant 0.
3308 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3309 // * if both are not undef, and are different, bailout.
3310 // * else, only one is undef, then pick the non-undef one.
3312 // The shift amount must be equal.
3315 const APInt
&MaskedBits
= *C0
;
3316 assert(MaskedBits
!= 0 && "shift by zero should be folded away already.");
3318 ICmpInst::Predicate DstPred
;
3320 case ICmpInst::Predicate::ICMP_EQ
:
3321 // ((%x << MaskedBits) a>> MaskedBits) == %x
3323 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3324 DstPred
= ICmpInst::Predicate::ICMP_ULT
;
3326 case ICmpInst::Predicate::ICMP_NE
:
3327 // ((%x << MaskedBits) a>> MaskedBits) != %x
3329 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3330 DstPred
= ICmpInst::Predicate::ICMP_UGE
;
3332 // FIXME: are more folds possible?
3337 auto *XType
= X
->getType();
3338 const unsigned XBitWidth
= XType
->getScalarSizeInBits();
3339 const APInt BitWidth
= APInt(XBitWidth
, XBitWidth
);
3340 assert(BitWidth
.ugt(MaskedBits
) && "shifts should leave some bits untouched");
3342 // KeptBits = bitwidth(%x) - MaskedBits
3343 const APInt KeptBits
= BitWidth
- MaskedBits
;
3344 assert(KeptBits
.ugt(0) && KeptBits
.ult(BitWidth
) && "unreachable");
3345 // ICmpCst = (1 << KeptBits)
3346 const APInt ICmpCst
= APInt(XBitWidth
, 1).shl(KeptBits
);
3347 assert(ICmpCst
.isPowerOf2());
3348 // AddCst = (1 << (KeptBits-1))
3349 const APInt AddCst
= ICmpCst
.lshr(1);
3350 assert(AddCst
.ult(ICmpCst
) && AddCst
.isPowerOf2());
3352 // T0 = add %x, AddCst
3353 Value
*T0
= Builder
.CreateAdd(X
, ConstantInt::get(XType
, AddCst
));
3354 // T1 = T0 DstPred ICmpCst
3355 Value
*T1
= Builder
.CreateICmp(DstPred
, T0
, ConstantInt::get(XType
, ICmpCst
));
3361 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3362 // we should move shifts to the same hand of 'and', i.e. rewrite as
3363 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x)
3364 // We are only interested in opposite logical shifts here.
3365 // One of the shifts can be truncated. For now, it can only be 'shl'.
3366 // If we can, we want to end up creating 'lshr' shift.
3368 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst
&I
, const SimplifyQuery SQ
,
3369 InstCombiner::BuilderTy
&Builder
) {
3370 if (!I
.isEquality() || !match(I
.getOperand(1), m_Zero()) ||
3371 !I
.getOperand(0)->hasOneUse())
3374 auto m_AnyLogicalShift
= m_LogicalShift(m_Value(), m_Value());
3376 // Look for an 'and' of two logical shifts, one of which may be truncated.
3377 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
3378 Instruction
*XShift
, *MaybeTruncation
, *YShift
;
3381 m_c_And(m_CombineAnd(m_AnyLogicalShift
, m_Instruction(XShift
)),
3382 m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
3383 m_AnyLogicalShift
, m_Instruction(YShift
))),
3384 m_Instruction(MaybeTruncation
)))))
3387 // We potentially looked past 'trunc', but only when matching YShift,
3388 // therefore YShift must have the widest type.
3389 Instruction
*WidestShift
= YShift
;
3390 // Therefore XShift must have the shallowest type.
3391 // Or they both have identical types if there was no truncation.
3392 Instruction
*NarrowestShift
= XShift
;
3394 Type
*WidestTy
= WidestShift
->getType();
3395 assert(NarrowestShift
->getType() == I
.getOperand(0)->getType() &&
3396 "We did not look past any shifts while matching XShift though.");
3397 bool HadTrunc
= WidestTy
!= I
.getOperand(0)->getType();
3400 // We did indeed have a truncation. For now, let's only proceed if the 'shl'
3401 // was truncated, since that does not require any extra legality checks.
3402 // FIXME: trunc-of-lshr.
3403 if (!match(YShift
, m_Shl(m_Value(), m_Value())))
3407 // If YShift is a 'lshr', swap the shifts around.
3408 if (match(YShift
, m_LShr(m_Value(), m_Value())))
3409 std::swap(XShift
, YShift
);
3411 // The shifts must be in opposite directions.
3412 auto XShiftOpcode
= XShift
->getOpcode();
3413 if (XShiftOpcode
== YShift
->getOpcode())
3414 return nullptr; // Do not care about same-direction shifts here.
3416 Value
*X
, *XShAmt
, *Y
, *YShAmt
;
3417 match(XShift
, m_BinOp(m_Value(X
), m_ZExtOrSelf(m_Value(XShAmt
))));
3418 match(YShift
, m_BinOp(m_Value(Y
), m_ZExtOrSelf(m_Value(YShAmt
))));
3420 // If one of the values being shifted is a constant, then we will end with
3421 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
3422 // however, we will need to ensure that we won't increase instruction count.
3423 if (!isa
<Constant
>(X
) && !isa
<Constant
>(Y
)) {
3424 // At least one of the hands of the 'and' should be one-use shift.
3425 if (!match(I
.getOperand(0),
3426 m_c_And(m_OneUse(m_AnyLogicalShift
), m_Value())))
3429 // Due to the 'trunc', we will need to widen X. For that either the old
3430 // 'trunc' or the shift amt in the non-truncated shift should be one-use.
3431 if (!MaybeTruncation
->hasOneUse() &&
3432 !NarrowestShift
->getOperand(1)->hasOneUse())
3437 // We have two shift amounts from two different shifts. The types of those
3438 // shift amounts may not match. If that's the case let's bailout now.
3439 if (XShAmt
->getType() != YShAmt
->getType())
3442 // Can we fold (XShAmt+YShAmt) ?
3443 auto *NewShAmt
= dyn_cast_or_null
<Constant
>(
3444 SimplifyAddInst(XShAmt
, YShAmt
, /*isNSW=*/false,
3445 /*isNUW=*/false, SQ
.getWithInstruction(&I
)));
3448 // Is the new shift amount smaller than the bit width?
3449 // FIXME: could also rely on ConstantRange.
3450 if (!match(NewShAmt
, m_SpecificInt_ICMP(
3451 ICmpInst::Predicate::ICMP_ULT
,
3452 APInt(NewShAmt
->getType()->getScalarSizeInBits(),
3453 WidestTy
->getScalarSizeInBits()))))
3455 // All good, we can do this fold.
3456 NewShAmt
= ConstantExpr::getZExtOrBitCast(NewShAmt
, WidestTy
);
3457 X
= Builder
.CreateZExt(X
, WidestTy
);
3458 // The shift is the same that was for X.
3459 Value
*T0
= XShiftOpcode
== Instruction::BinaryOps::LShr
3460 ? Builder
.CreateLShr(X
, NewShAmt
)
3461 : Builder
.CreateShl(X
, NewShAmt
);
3462 Value
*T1
= Builder
.CreateAnd(T0
, Y
);
3463 return Builder
.CreateICmp(I
.getPredicate(), T1
,
3464 Constant::getNullValue(WidestTy
));
3467 /// Try to fold icmp (binop), X or icmp X, (binop).
3468 /// TODO: A large part of this logic is duplicated in InstSimplify's
3469 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
3471 Instruction
*InstCombiner::foldICmpBinOp(ICmpInst
&I
) {
3472 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
3474 // Special logic for binary operators.
3475 BinaryOperator
*BO0
= dyn_cast
<BinaryOperator
>(Op0
);
3476 BinaryOperator
*BO1
= dyn_cast
<BinaryOperator
>(Op1
);
3480 const CmpInst::Predicate Pred
= I
.getPredicate();
3483 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
3484 // (Op1 + X) <u Op1 --> ~Op1 <u X
3485 // Op0 >u (Op0 + X) --> X >u ~Op0
3486 if (match(Op0
, m_OneUse(m_c_Add(m_Specific(Op1
), m_Value(X
)))) &&
3487 Pred
== ICmpInst::ICMP_ULT
)
3488 return new ICmpInst(Pred
, Builder
.CreateNot(Op1
), X
);
3489 if (match(Op1
, m_OneUse(m_c_Add(m_Specific(Op0
), m_Value(X
)))) &&
3490 Pred
== ICmpInst::ICMP_UGT
)
3491 return new ICmpInst(Pred
, X
, Builder
.CreateNot(Op0
));
3493 bool NoOp0WrapProblem
= false, NoOp1WrapProblem
= false;
3494 if (BO0
&& isa
<OverflowingBinaryOperator
>(BO0
))
3496 ICmpInst::isEquality(Pred
) ||
3497 (CmpInst::isUnsigned(Pred
) && BO0
->hasNoUnsignedWrap()) ||
3498 (CmpInst::isSigned(Pred
) && BO0
->hasNoSignedWrap());
3499 if (BO1
&& isa
<OverflowingBinaryOperator
>(BO1
))
3501 ICmpInst::isEquality(Pred
) ||
3502 (CmpInst::isUnsigned(Pred
) && BO1
->hasNoUnsignedWrap()) ||
3503 (CmpInst::isSigned(Pred
) && BO1
->hasNoSignedWrap());
3505 // Analyze the case when either Op0 or Op1 is an add instruction.
3506 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3507 Value
*A
= nullptr, *B
= nullptr, *C
= nullptr, *D
= nullptr;
3508 if (BO0
&& BO0
->getOpcode() == Instruction::Add
) {
3509 A
= BO0
->getOperand(0);
3510 B
= BO0
->getOperand(1);
3512 if (BO1
&& BO1
->getOpcode() == Instruction::Add
) {
3513 C
= BO1
->getOperand(0);
3514 D
= BO1
->getOperand(1);
3517 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
3518 if ((A
== Op1
|| B
== Op1
) && NoOp0WrapProblem
)
3519 return new ICmpInst(Pred
, A
== Op1
? B
: A
,
3520 Constant::getNullValue(Op1
->getType()));
3522 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
3523 if ((C
== Op0
|| D
== Op0
) && NoOp1WrapProblem
)
3524 return new ICmpInst(Pred
, Constant::getNullValue(Op0
->getType()),
3527 // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
3528 if (A
&& C
&& (A
== C
|| A
== D
|| B
== C
|| B
== D
) && NoOp0WrapProblem
&&
3530 // Try not to increase register pressure.
3531 BO0
->hasOneUse() && BO1
->hasOneUse()) {
3532 // Determine Y and Z in the form icmp (X+Y), (X+Z).
3535 // C + B == C + D -> B == D
3538 } else if (A
== D
) {
3539 // D + B == C + D -> B == C
3542 } else if (B
== C
) {
3543 // A + C == C + D -> A == D
3548 // A + D == C + D -> A == C
3552 return new ICmpInst(Pred
, Y
, Z
);
3555 // icmp slt (X + -1), Y -> icmp sle X, Y
3556 if (A
&& NoOp0WrapProblem
&& Pred
== CmpInst::ICMP_SLT
&&
3557 match(B
, m_AllOnes()))
3558 return new ICmpInst(CmpInst::ICMP_SLE
, A
, Op1
);
3560 // icmp sge (X + -1), Y -> icmp sgt X, Y
3561 if (A
&& NoOp0WrapProblem
&& Pred
== CmpInst::ICMP_SGE
&&
3562 match(B
, m_AllOnes()))
3563 return new ICmpInst(CmpInst::ICMP_SGT
, A
, Op1
);
3565 // icmp sle (X + 1), Y -> icmp slt X, Y
3566 if (A
&& NoOp0WrapProblem
&& Pred
== CmpInst::ICMP_SLE
&& match(B
, m_One()))
3567 return new ICmpInst(CmpInst::ICMP_SLT
, A
, Op1
);
3569 // icmp sgt (X + 1), Y -> icmp sge X, Y
3570 if (A
&& NoOp0WrapProblem
&& Pred
== CmpInst::ICMP_SGT
&& match(B
, m_One()))
3571 return new ICmpInst(CmpInst::ICMP_SGE
, A
, Op1
);
3573 // icmp sgt X, (Y + -1) -> icmp sge X, Y
3574 if (C
&& NoOp1WrapProblem
&& Pred
== CmpInst::ICMP_SGT
&&
3575 match(D
, m_AllOnes()))
3576 return new ICmpInst(CmpInst::ICMP_SGE
, Op0
, C
);
3578 // icmp sle X, (Y + -1) -> icmp slt X, Y
3579 if (C
&& NoOp1WrapProblem
&& Pred
== CmpInst::ICMP_SLE
&&
3580 match(D
, m_AllOnes()))
3581 return new ICmpInst(CmpInst::ICMP_SLT
, Op0
, C
);
3583 // icmp sge X, (Y + 1) -> icmp sgt X, Y
3584 if (C
&& NoOp1WrapProblem
&& Pred
== CmpInst::ICMP_SGE
&& match(D
, m_One()))
3585 return new ICmpInst(CmpInst::ICMP_SGT
, Op0
, C
);
3587 // icmp slt X, (Y + 1) -> icmp sle X, Y
3588 if (C
&& NoOp1WrapProblem
&& Pred
== CmpInst::ICMP_SLT
&& match(D
, m_One()))
3589 return new ICmpInst(CmpInst::ICMP_SLE
, Op0
, C
);
3591 // TODO: The subtraction-related identities shown below also hold, but
3592 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
3593 // wouldn't happen even if they were implemented.
3595 // icmp ult (X - 1), Y -> icmp ule X, Y
3596 // icmp uge (X - 1), Y -> icmp ugt X, Y
3597 // icmp ugt X, (Y - 1) -> icmp uge X, Y
3598 // icmp ule X, (Y - 1) -> icmp ult X, Y
3600 // icmp ule (X + 1), Y -> icmp ult X, Y
3601 if (A
&& NoOp0WrapProblem
&& Pred
== CmpInst::ICMP_ULE
&& match(B
, m_One()))
3602 return new ICmpInst(CmpInst::ICMP_ULT
, A
, Op1
);
3604 // icmp ugt (X + 1), Y -> icmp uge X, Y
3605 if (A
&& NoOp0WrapProblem
&& Pred
== CmpInst::ICMP_UGT
&& match(B
, m_One()))
3606 return new ICmpInst(CmpInst::ICMP_UGE
, A
, Op1
);
3608 // icmp uge X, (Y + 1) -> icmp ugt X, Y
3609 if (C
&& NoOp1WrapProblem
&& Pred
== CmpInst::ICMP_UGE
&& match(D
, m_One()))
3610 return new ICmpInst(CmpInst::ICMP_UGT
, Op0
, C
);
3612 // icmp ult X, (Y + 1) -> icmp ule X, Y
3613 if (C
&& NoOp1WrapProblem
&& Pred
== CmpInst::ICMP_ULT
&& match(D
, m_One()))
3614 return new ICmpInst(CmpInst::ICMP_ULE
, Op0
, C
);
3616 // if C1 has greater magnitude than C2:
3617 // icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
3618 // s.t. C3 = C1 - C2
3620 // if C2 has greater magnitude than C1:
3621 // icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
3622 // s.t. C3 = C2 - C1
3623 if (A
&& C
&& NoOp0WrapProblem
&& NoOp1WrapProblem
&&
3624 (BO0
->hasOneUse() || BO1
->hasOneUse()) && !I
.isUnsigned())
3625 if (ConstantInt
*C1
= dyn_cast
<ConstantInt
>(B
))
3626 if (ConstantInt
*C2
= dyn_cast
<ConstantInt
>(D
)) {
3627 const APInt
&AP1
= C1
->getValue();
3628 const APInt
&AP2
= C2
->getValue();
3629 if (AP1
.isNegative() == AP2
.isNegative()) {
3630 APInt AP1Abs
= C1
->getValue().abs();
3631 APInt AP2Abs
= C2
->getValue().abs();
3632 if (AP1Abs
.uge(AP2Abs
)) {
3633 ConstantInt
*C3
= Builder
.getInt(AP1
- AP2
);
3634 Value
*NewAdd
= Builder
.CreateNSWAdd(A
, C3
);
3635 return new ICmpInst(Pred
, NewAdd
, C
);
3637 ConstantInt
*C3
= Builder
.getInt(AP2
- AP1
);
3638 Value
*NewAdd
= Builder
.CreateNSWAdd(C
, C3
);
3639 return new ICmpInst(Pred
, A
, NewAdd
);
3644 // Analyze the case when either Op0 or Op1 is a sub instruction.
3645 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
3650 if (BO0
&& BO0
->getOpcode() == Instruction::Sub
) {
3651 A
= BO0
->getOperand(0);
3652 B
= BO0
->getOperand(1);
3654 if (BO1
&& BO1
->getOpcode() == Instruction::Sub
) {
3655 C
= BO1
->getOperand(0);
3656 D
= BO1
->getOperand(1);
3659 // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
3660 if (A
== Op1
&& NoOp0WrapProblem
)
3661 return new ICmpInst(Pred
, Constant::getNullValue(Op1
->getType()), B
);
3662 // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
3663 if (C
== Op0
&& NoOp1WrapProblem
)
3664 return new ICmpInst(Pred
, D
, Constant::getNullValue(Op0
->getType()));
3666 // (A - B) >u A --> A <u B
3667 if (A
== Op1
&& Pred
== ICmpInst::ICMP_UGT
)
3668 return new ICmpInst(ICmpInst::ICMP_ULT
, A
, B
);
3669 // C <u (C - D) --> C <u D
3670 if (C
== Op0
&& Pred
== ICmpInst::ICMP_ULT
)
3671 return new ICmpInst(ICmpInst::ICMP_ULT
, C
, D
);
3673 // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
3674 if (B
&& D
&& B
== D
&& NoOp0WrapProblem
&& NoOp1WrapProblem
&&
3675 // Try not to increase register pressure.
3676 BO0
->hasOneUse() && BO1
->hasOneUse())
3677 return new ICmpInst(Pred
, A
, C
);
3678 // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
3679 if (A
&& C
&& A
== C
&& NoOp0WrapProblem
&& NoOp1WrapProblem
&&
3680 // Try not to increase register pressure.
3681 BO0
->hasOneUse() && BO1
->hasOneUse())
3682 return new ICmpInst(Pred
, D
, B
);
3684 // icmp (0-X) < cst --> x > -cst
3685 if (NoOp0WrapProblem
&& ICmpInst::isSigned(Pred
)) {
3687 if (match(BO0
, m_Neg(m_Value(X
))))
3688 if (Constant
*RHSC
= dyn_cast
<Constant
>(Op1
))
3689 if (RHSC
->isNotMinSignedValue())
3690 return new ICmpInst(I
.getSwappedPredicate(), X
,
3691 ConstantExpr::getNeg(RHSC
));
3694 BinaryOperator
*SRem
= nullptr;
3695 // icmp (srem X, Y), Y
3696 if (BO0
&& BO0
->getOpcode() == Instruction::SRem
&& Op1
== BO0
->getOperand(1))
3698 // icmp Y, (srem X, Y)
3699 else if (BO1
&& BO1
->getOpcode() == Instruction::SRem
&&
3700 Op0
== BO1
->getOperand(1))
3703 // We don't check hasOneUse to avoid increasing register pressure because
3704 // the value we use is the same value this instruction was already using.
3705 switch (SRem
== BO0
? ICmpInst::getSwappedPredicate(Pred
) : Pred
) {
3708 case ICmpInst::ICMP_EQ
:
3709 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
3710 case ICmpInst::ICMP_NE
:
3711 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
3712 case ICmpInst::ICMP_SGT
:
3713 case ICmpInst::ICMP_SGE
:
3714 return new ICmpInst(ICmpInst::ICMP_SGT
, SRem
->getOperand(1),
3715 Constant::getAllOnesValue(SRem
->getType()));
3716 case ICmpInst::ICMP_SLT
:
3717 case ICmpInst::ICMP_SLE
:
3718 return new ICmpInst(ICmpInst::ICMP_SLT
, SRem
->getOperand(1),
3719 Constant::getNullValue(SRem
->getType()));
3723 if (BO0
&& BO1
&& BO0
->getOpcode() == BO1
->getOpcode() && BO0
->hasOneUse() &&
3724 BO1
->hasOneUse() && BO0
->getOperand(1) == BO1
->getOperand(1)) {
3725 switch (BO0
->getOpcode()) {
3728 case Instruction::Add
:
3729 case Instruction::Sub
:
3730 case Instruction::Xor
: {
3731 if (I
.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
3732 return new ICmpInst(Pred
, BO0
->getOperand(0), BO1
->getOperand(0));
3735 if (match(BO0
->getOperand(1), m_APInt(C
))) {
3736 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
3737 if (C
->isSignMask()) {
3738 ICmpInst::Predicate NewPred
=
3739 I
.isSigned() ? I
.getUnsignedPredicate() : I
.getSignedPredicate();
3740 return new ICmpInst(NewPred
, BO0
->getOperand(0), BO1
->getOperand(0));
3743 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
3744 if (BO0
->getOpcode() == Instruction::Xor
&& C
->isMaxSignedValue()) {
3745 ICmpInst::Predicate NewPred
=
3746 I
.isSigned() ? I
.getUnsignedPredicate() : I
.getSignedPredicate();
3747 NewPred
= I
.getSwappedPredicate(NewPred
);
3748 return new ICmpInst(NewPred
, BO0
->getOperand(0), BO1
->getOperand(0));
3753 case Instruction::Mul
: {
3754 if (!I
.isEquality())
3758 if (match(BO0
->getOperand(1), m_APInt(C
)) && !C
->isNullValue() &&
3760 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
3761 // Mask = -1 >> count-trailing-zeros(C).
3762 if (unsigned TZs
= C
->countTrailingZeros()) {
3763 Constant
*Mask
= ConstantInt::get(
3765 APInt::getLowBitsSet(C
->getBitWidth(), C
->getBitWidth() - TZs
));
3766 Value
*And1
= Builder
.CreateAnd(BO0
->getOperand(0), Mask
);
3767 Value
*And2
= Builder
.CreateAnd(BO1
->getOperand(0), Mask
);
3768 return new ICmpInst(Pred
, And1
, And2
);
3770 // If there are no trailing zeros in the multiplier, just eliminate
3771 // the multiplies (no masking is needed):
3772 // icmp eq/ne (X * C), (Y * C) --> icmp eq/ne X, Y
3773 return new ICmpInst(Pred
, BO0
->getOperand(0), BO1
->getOperand(0));
3777 case Instruction::UDiv
:
3778 case Instruction::LShr
:
3779 if (I
.isSigned() || !BO0
->isExact() || !BO1
->isExact())
3781 return new ICmpInst(Pred
, BO0
->getOperand(0), BO1
->getOperand(0));
3783 case Instruction::SDiv
:
3784 if (!I
.isEquality() || !BO0
->isExact() || !BO1
->isExact())
3786 return new ICmpInst(Pred
, BO0
->getOperand(0), BO1
->getOperand(0));
3788 case Instruction::AShr
:
3789 if (!BO0
->isExact() || !BO1
->isExact())
3791 return new ICmpInst(Pred
, BO0
->getOperand(0), BO1
->getOperand(0));
3793 case Instruction::Shl
: {
3794 bool NUW
= BO0
->hasNoUnsignedWrap() && BO1
->hasNoUnsignedWrap();
3795 bool NSW
= BO0
->hasNoSignedWrap() && BO1
->hasNoSignedWrap();
3798 if (!NSW
&& I
.isSigned())
3800 return new ICmpInst(Pred
, BO0
->getOperand(0), BO1
->getOperand(0));
3806 // Transform A & (L - 1) `ult` L --> L != 0
3807 auto LSubOne
= m_Add(m_Specific(Op1
), m_AllOnes());
3808 auto BitwiseAnd
= m_c_And(m_Value(), LSubOne
);
3810 if (match(BO0
, BitwiseAnd
) && Pred
== ICmpInst::ICMP_ULT
) {
3811 auto *Zero
= Constant::getNullValue(BO0
->getType());
3812 return new ICmpInst(ICmpInst::ICMP_NE
, Op1
, Zero
);
3816 if (Value
*V
= foldICmpWithLowBitMaskedVal(I
, Builder
))
3817 return replaceInstUsesWith(I
, V
);
3819 if (Value
*V
= foldICmpWithTruncSignExtendedVal(I
, Builder
))
3820 return replaceInstUsesWith(I
, V
);
3822 if (Value
*V
= foldShiftIntoShiftInAnotherHandOfAndInICmp(I
, SQ
, Builder
))
3823 return replaceInstUsesWith(I
, V
);
3828 /// Fold icmp Pred min|max(X, Y), X.
3829 static Instruction
*foldICmpWithMinMax(ICmpInst
&Cmp
) {
3830 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
3831 Value
*Op0
= Cmp
.getOperand(0);
3832 Value
*X
= Cmp
.getOperand(1);
3834 // Canonicalize minimum or maximum operand to LHS of the icmp.
3835 if (match(X
, m_c_SMin(m_Specific(Op0
), m_Value())) ||
3836 match(X
, m_c_SMax(m_Specific(Op0
), m_Value())) ||
3837 match(X
, m_c_UMin(m_Specific(Op0
), m_Value())) ||
3838 match(X
, m_c_UMax(m_Specific(Op0
), m_Value()))) {
3840 Pred
= Cmp
.getSwappedPredicate();
3844 if (match(Op0
, m_c_SMin(m_Specific(X
), m_Value(Y
)))) {
3845 // smin(X, Y) == X --> X s<= Y
3846 // smin(X, Y) s>= X --> X s<= Y
3847 if (Pred
== CmpInst::ICMP_EQ
|| Pred
== CmpInst::ICMP_SGE
)
3848 return new ICmpInst(ICmpInst::ICMP_SLE
, X
, Y
);
3850 // smin(X, Y) != X --> X s> Y
3851 // smin(X, Y) s< X --> X s> Y
3852 if (Pred
== CmpInst::ICMP_NE
|| Pred
== CmpInst::ICMP_SLT
)
3853 return new ICmpInst(ICmpInst::ICMP_SGT
, X
, Y
);
3855 // These cases should be handled in InstSimplify:
3856 // smin(X, Y) s<= X --> true
3857 // smin(X, Y) s> X --> false
3861 if (match(Op0
, m_c_SMax(m_Specific(X
), m_Value(Y
)))) {
3862 // smax(X, Y) == X --> X s>= Y
3863 // smax(X, Y) s<= X --> X s>= Y
3864 if (Pred
== CmpInst::ICMP_EQ
|| Pred
== CmpInst::ICMP_SLE
)
3865 return new ICmpInst(ICmpInst::ICMP_SGE
, X
, Y
);
3867 // smax(X, Y) != X --> X s< Y
3868 // smax(X, Y) s> X --> X s< Y
3869 if (Pred
== CmpInst::ICMP_NE
|| Pred
== CmpInst::ICMP_SGT
)
3870 return new ICmpInst(ICmpInst::ICMP_SLT
, X
, Y
);
3872 // These cases should be handled in InstSimplify:
3873 // smax(X, Y) s>= X --> true
3874 // smax(X, Y) s< X --> false
3878 if (match(Op0
, m_c_UMin(m_Specific(X
), m_Value(Y
)))) {
3879 // umin(X, Y) == X --> X u<= Y
3880 // umin(X, Y) u>= X --> X u<= Y
3881 if (Pred
== CmpInst::ICMP_EQ
|| Pred
== CmpInst::ICMP_UGE
)
3882 return new ICmpInst(ICmpInst::ICMP_ULE
, X
, Y
);
3884 // umin(X, Y) != X --> X u> Y
3885 // umin(X, Y) u< X --> X u> Y
3886 if (Pred
== CmpInst::ICMP_NE
|| Pred
== CmpInst::ICMP_ULT
)
3887 return new ICmpInst(ICmpInst::ICMP_UGT
, X
, Y
);
3889 // These cases should be handled in InstSimplify:
3890 // umin(X, Y) u<= X --> true
3891 // umin(X, Y) u> X --> false
3895 if (match(Op0
, m_c_UMax(m_Specific(X
), m_Value(Y
)))) {
3896 // umax(X, Y) == X --> X u>= Y
3897 // umax(X, Y) u<= X --> X u>= Y
3898 if (Pred
== CmpInst::ICMP_EQ
|| Pred
== CmpInst::ICMP_ULE
)
3899 return new ICmpInst(ICmpInst::ICMP_UGE
, X
, Y
);
3901 // umax(X, Y) != X --> X u< Y
3902 // umax(X, Y) u> X --> X u< Y
3903 if (Pred
== CmpInst::ICMP_NE
|| Pred
== CmpInst::ICMP_UGT
)
3904 return new ICmpInst(ICmpInst::ICMP_ULT
, X
, Y
);
3906 // These cases should be handled in InstSimplify:
3907 // umax(X, Y) u>= X --> true
3908 // umax(X, Y) u< X --> false
3915 Instruction
*InstCombiner::foldICmpEquality(ICmpInst
&I
) {
3916 if (!I
.isEquality())
3919 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
3920 const CmpInst::Predicate Pred
= I
.getPredicate();
3921 Value
*A
, *B
, *C
, *D
;
3922 if (match(Op0
, m_Xor(m_Value(A
), m_Value(B
)))) {
3923 if (A
== Op1
|| B
== Op1
) { // (A^B) == A -> B == 0
3924 Value
*OtherVal
= A
== Op1
? B
: A
;
3925 return new ICmpInst(Pred
, OtherVal
, Constant::getNullValue(A
->getType()));
3928 if (match(Op1
, m_Xor(m_Value(C
), m_Value(D
)))) {
3929 // A^c1 == C^c2 --> A == C^(c1^c2)
3930 ConstantInt
*C1
, *C2
;
3931 if (match(B
, m_ConstantInt(C1
)) && match(D
, m_ConstantInt(C2
)) &&
3933 Constant
*NC
= Builder
.getInt(C1
->getValue() ^ C2
->getValue());
3934 Value
*Xor
= Builder
.CreateXor(C
, NC
);
3935 return new ICmpInst(Pred
, A
, Xor
);
3938 // A^B == A^D -> B == D
3940 return new ICmpInst(Pred
, B
, D
);
3942 return new ICmpInst(Pred
, B
, C
);
3944 return new ICmpInst(Pred
, A
, D
);
3946 return new ICmpInst(Pred
, A
, C
);
3950 if (match(Op1
, m_Xor(m_Value(A
), m_Value(B
))) && (A
== Op0
|| B
== Op0
)) {
3951 // A == (A^B) -> B == 0
3952 Value
*OtherVal
= A
== Op0
? B
: A
;
3953 return new ICmpInst(Pred
, OtherVal
, Constant::getNullValue(A
->getType()));
3956 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
3957 if (match(Op0
, m_OneUse(m_And(m_Value(A
), m_Value(B
)))) &&
3958 match(Op1
, m_OneUse(m_And(m_Value(C
), m_Value(D
))))) {
3959 Value
*X
= nullptr, *Y
= nullptr, *Z
= nullptr;
3965 } else if (A
== D
) {
3969 } else if (B
== C
) {
3973 } else if (B
== D
) {
3979 if (X
) { // Build (X^Y) & Z
3980 Op1
= Builder
.CreateXor(X
, Y
);
3981 Op1
= Builder
.CreateAnd(Op1
, Z
);
3982 I
.setOperand(0, Op1
);
3983 I
.setOperand(1, Constant::getNullValue(Op1
->getType()));
3988 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
3989 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B)
3991 if ((Op0
->hasOneUse() && match(Op0
, m_ZExt(m_Value(A
))) &&
3992 match(Op1
, m_And(m_Value(B
), m_ConstantInt(Cst1
)))) ||
3993 (Op1
->hasOneUse() && match(Op0
, m_And(m_Value(B
), m_ConstantInt(Cst1
))) &&
3994 match(Op1
, m_ZExt(m_Value(A
))))) {
3995 APInt Pow2
= Cst1
->getValue() + 1;
3996 if (Pow2
.isPowerOf2() && isa
<IntegerType
>(A
->getType()) &&
3997 Pow2
.logBase2() == cast
<IntegerType
>(A
->getType())->getBitWidth())
3998 return new ICmpInst(Pred
, A
, Builder
.CreateTrunc(B
, A
->getType()));
4001 // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
4002 // For lshr and ashr pairs.
4003 if ((match(Op0
, m_OneUse(m_LShr(m_Value(A
), m_ConstantInt(Cst1
)))) &&
4004 match(Op1
, m_OneUse(m_LShr(m_Value(B
), m_Specific(Cst1
))))) ||
4005 (match(Op0
, m_OneUse(m_AShr(m_Value(A
), m_ConstantInt(Cst1
)))) &&
4006 match(Op1
, m_OneUse(m_AShr(m_Value(B
), m_Specific(Cst1
)))))) {
4007 unsigned TypeBits
= Cst1
->getBitWidth();
4008 unsigned ShAmt
= (unsigned)Cst1
->getLimitedValue(TypeBits
);
4009 if (ShAmt
< TypeBits
&& ShAmt
!= 0) {
4010 ICmpInst::Predicate NewPred
=
4011 Pred
== ICmpInst::ICMP_NE
? ICmpInst::ICMP_UGE
: ICmpInst::ICMP_ULT
;
4012 Value
*Xor
= Builder
.CreateXor(A
, B
, I
.getName() + ".unshifted");
4013 APInt CmpVal
= APInt::getOneBitSet(TypeBits
, ShAmt
);
4014 return new ICmpInst(NewPred
, Xor
, Builder
.getInt(CmpVal
));
4018 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
4019 if (match(Op0
, m_OneUse(m_Shl(m_Value(A
), m_ConstantInt(Cst1
)))) &&
4020 match(Op1
, m_OneUse(m_Shl(m_Value(B
), m_Specific(Cst1
))))) {
4021 unsigned TypeBits
= Cst1
->getBitWidth();
4022 unsigned ShAmt
= (unsigned)Cst1
->getLimitedValue(TypeBits
);
4023 if (ShAmt
< TypeBits
&& ShAmt
!= 0) {
4024 Value
*Xor
= Builder
.CreateXor(A
, B
, I
.getName() + ".unshifted");
4025 APInt AndVal
= APInt::getLowBitsSet(TypeBits
, TypeBits
- ShAmt
);
4026 Value
*And
= Builder
.CreateAnd(Xor
, Builder
.getInt(AndVal
),
4027 I
.getName() + ".mask");
4028 return new ICmpInst(Pred
, And
, Constant::getNullValue(Cst1
->getType()));
4032 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
4033 // "icmp (and X, mask), cst"
4035 if (Op0
->hasOneUse() &&
4036 match(Op0
, m_Trunc(m_OneUse(m_LShr(m_Value(A
), m_ConstantInt(ShAmt
))))) &&
4037 match(Op1
, m_ConstantInt(Cst1
)) &&
4038 // Only do this when A has multiple uses. This is most important to do
4039 // when it exposes other optimizations.
4041 unsigned ASize
= cast
<IntegerType
>(A
->getType())->getPrimitiveSizeInBits();
4043 if (ShAmt
< ASize
) {
4045 APInt::getLowBitsSet(ASize
, Op0
->getType()->getPrimitiveSizeInBits());
4048 APInt CmpV
= Cst1
->getValue().zext(ASize
);
4051 Value
*Mask
= Builder
.CreateAnd(A
, Builder
.getInt(MaskV
));
4052 return new ICmpInst(Pred
, Mask
, Builder
.getInt(CmpV
));
4056 // If both operands are byte-swapped or bit-reversed, just compare the
4058 // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant()
4059 // and handle more intrinsics.
4060 if ((match(Op0
, m_BSwap(m_Value(A
))) && match(Op1
, m_BSwap(m_Value(B
)))) ||
4061 (match(Op0
, m_BitReverse(m_Value(A
))) &&
4062 match(Op1
, m_BitReverse(m_Value(B
)))))
4063 return new ICmpInst(Pred
, A
, B
);
4065 // Canonicalize checking for a power-of-2-or-zero value:
4066 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
4067 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
4068 if (!match(Op0
, m_OneUse(m_c_And(m_Add(m_Value(A
), m_AllOnes()),
4070 !match(Op1
, m_ZeroInt()))
4073 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
4074 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
4075 if (match(Op0
, m_OneUse(m_c_And(m_Neg(m_Specific(Op1
)), m_Specific(Op1
)))))
4078 m_OneUse(m_c_And(m_Neg(m_Specific(Op0
)), m_Specific(Op0
)))))
4082 Type
*Ty
= A
->getType();
4083 CallInst
*CtPop
= Builder
.CreateUnaryIntrinsic(Intrinsic::ctpop
, A
);
4084 return Pred
== ICmpInst::ICMP_EQ
4085 ? new ICmpInst(ICmpInst::ICMP_ULT
, CtPop
, ConstantInt::get(Ty
, 2))
4086 : new ICmpInst(ICmpInst::ICMP_UGT
, CtPop
, ConstantInt::get(Ty
, 1));
4092 static Instruction
*foldICmpWithZextOrSext(ICmpInst
&ICmp
,
4093 InstCombiner::BuilderTy
&Builder
) {
4094 assert(isa
<CastInst
>(ICmp
.getOperand(0)) && "Expected cast for operand 0");
4095 auto *CastOp0
= cast
<CastInst
>(ICmp
.getOperand(0));
4097 if (!match(CastOp0
, m_ZExtOrSExt(m_Value(X
))))
4100 bool IsSignedExt
= CastOp0
->getOpcode() == Instruction::SExt
;
4101 bool IsSignedCmp
= ICmp
.isSigned();
4102 if (auto *CastOp1
= dyn_cast
<CastInst
>(ICmp
.getOperand(1))) {
4103 // If the signedness of the two casts doesn't agree (i.e. one is a sext
4104 // and the other is a zext), then we can't handle this.
4105 // TODO: This is too strict. We can handle some predicates (equality?).
4106 if (CastOp0
->getOpcode() != CastOp1
->getOpcode())
4109 // Not an extension from the same type?
4110 Value
*Y
= CastOp1
->getOperand(0);
4111 Type
*XTy
= X
->getType(), *YTy
= Y
->getType();
4113 // One of the casts must have one use because we are creating a new cast.
4114 if (!CastOp0
->hasOneUse() && !CastOp1
->hasOneUse())
4116 // Extend the narrower operand to the type of the wider operand.
4117 if (XTy
->getScalarSizeInBits() < YTy
->getScalarSizeInBits())
4118 X
= Builder
.CreateCast(CastOp0
->getOpcode(), X
, YTy
);
4119 else if (YTy
->getScalarSizeInBits() < XTy
->getScalarSizeInBits())
4120 Y
= Builder
.CreateCast(CastOp0
->getOpcode(), Y
, XTy
);
4125 // (zext X) == (zext Y) --> X == Y
4126 // (sext X) == (sext Y) --> X == Y
4127 if (ICmp
.isEquality())
4128 return new ICmpInst(ICmp
.getPredicate(), X
, Y
);
4130 // A signed comparison of sign extended values simplifies into a
4131 // signed comparison.
4132 if (IsSignedCmp
&& IsSignedExt
)
4133 return new ICmpInst(ICmp
.getPredicate(), X
, Y
);
4135 // The other three cases all fold into an unsigned comparison.
4136 return new ICmpInst(ICmp
.getUnsignedPredicate(), X
, Y
);
4139 // Below here, we are only folding a compare with constant.
4140 auto *C
= dyn_cast
<Constant
>(ICmp
.getOperand(1));
4144 // Compute the constant that would happen if we truncated to SrcTy then
4145 // re-extended to DestTy.
4146 Type
*SrcTy
= CastOp0
->getSrcTy();
4147 Type
*DestTy
= CastOp0
->getDestTy();
4148 Constant
*Res1
= ConstantExpr::getTrunc(C
, SrcTy
);
4149 Constant
*Res2
= ConstantExpr::getCast(CastOp0
->getOpcode(), Res1
, DestTy
);
4151 // If the re-extended constant didn't change...
4153 if (ICmp
.isEquality())
4154 return new ICmpInst(ICmp
.getPredicate(), X
, Res1
);
4156 // A signed comparison of sign extended values simplifies into a
4157 // signed comparison.
4158 if (IsSignedExt
&& IsSignedCmp
)
4159 return new ICmpInst(ICmp
.getPredicate(), X
, Res1
);
4161 // The other three cases all fold into an unsigned comparison.
4162 return new ICmpInst(ICmp
.getUnsignedPredicate(), X
, Res1
);
4165 // The re-extended constant changed, partly changed (in the case of a vector),
4166 // or could not be determined to be equal (in the case of a constant
4167 // expression), so the constant cannot be represented in the shorter type.
4168 // All the cases that fold to true or false will have already been handled
4169 // by SimplifyICmpInst, so only deal with the tricky case.
4170 if (IsSignedCmp
|| !IsSignedExt
|| !isa
<ConstantInt
>(C
))
4173 // Is source op positive?
4174 // icmp ult (sext X), C --> icmp sgt X, -1
4175 if (ICmp
.getPredicate() == ICmpInst::ICMP_ULT
)
4176 return new ICmpInst(CmpInst::ICMP_SGT
, X
, Constant::getAllOnesValue(SrcTy
));
4178 // Is source op negative?
4179 // icmp ugt (sext X), C --> icmp slt X, 0
4180 assert(ICmp
.getPredicate() == ICmpInst::ICMP_UGT
&& "ICmp should be folded!");
4181 return new ICmpInst(CmpInst::ICMP_SLT
, X
, Constant::getNullValue(SrcTy
));
4184 /// Handle icmp (cast x), (cast or constant).
4185 Instruction
*InstCombiner::foldICmpWithCastOp(ICmpInst
&ICmp
) {
4186 auto *CastOp0
= dyn_cast
<CastInst
>(ICmp
.getOperand(0));
4189 if (!isa
<Constant
>(ICmp
.getOperand(1)) && !isa
<CastInst
>(ICmp
.getOperand(1)))
4192 Value
*Op0Src
= CastOp0
->getOperand(0);
4193 Type
*SrcTy
= CastOp0
->getSrcTy();
4194 Type
*DestTy
= CastOp0
->getDestTy();
4196 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
4197 // integer type is the same size as the pointer type.
4198 auto CompatibleSizes
= [&](Type
*SrcTy
, Type
*DestTy
) {
4199 if (isa
<VectorType
>(SrcTy
)) {
4200 SrcTy
= cast
<VectorType
>(SrcTy
)->getElementType();
4201 DestTy
= cast
<VectorType
>(DestTy
)->getElementType();
4203 return DL
.getPointerTypeSizeInBits(SrcTy
) == DestTy
->getIntegerBitWidth();
4205 if (CastOp0
->getOpcode() == Instruction::PtrToInt
&&
4206 CompatibleSizes(SrcTy
, DestTy
)) {
4207 Value
*NewOp1
= nullptr;
4208 if (auto *PtrToIntOp1
= dyn_cast
<PtrToIntOperator
>(ICmp
.getOperand(1))) {
4209 Value
*PtrSrc
= PtrToIntOp1
->getOperand(0);
4210 if (PtrSrc
->getType()->getPointerAddressSpace() ==
4211 Op0Src
->getType()->getPointerAddressSpace()) {
4212 NewOp1
= PtrToIntOp1
->getOperand(0);
4213 // If the pointer types don't match, insert a bitcast.
4214 if (Op0Src
->getType() != NewOp1
->getType())
4215 NewOp1
= Builder
.CreateBitCast(NewOp1
, Op0Src
->getType());
4217 } else if (auto *RHSC
= dyn_cast
<Constant
>(ICmp
.getOperand(1))) {
4218 NewOp1
= ConstantExpr::getIntToPtr(RHSC
, SrcTy
);
4222 return new ICmpInst(ICmp
.getPredicate(), Op0Src
, NewOp1
);
4225 return foldICmpWithZextOrSext(ICmp
, Builder
);
4228 static bool isNeutralValue(Instruction::BinaryOps BinaryOp
, Value
*RHS
) {
4231 llvm_unreachable("Unsupported binary op");
4232 case Instruction::Add
:
4233 case Instruction::Sub
:
4234 return match(RHS
, m_Zero());
4235 case Instruction::Mul
:
4236 return match(RHS
, m_One());
4240 OverflowResult
InstCombiner::computeOverflow(
4241 Instruction::BinaryOps BinaryOp
, bool IsSigned
,
4242 Value
*LHS
, Value
*RHS
, Instruction
*CxtI
) const {
4245 llvm_unreachable("Unsupported binary op");
4246 case Instruction::Add
:
4248 return computeOverflowForSignedAdd(LHS
, RHS
, CxtI
);
4250 return computeOverflowForUnsignedAdd(LHS
, RHS
, CxtI
);
4251 case Instruction::Sub
:
4253 return computeOverflowForSignedSub(LHS
, RHS
, CxtI
);
4255 return computeOverflowForUnsignedSub(LHS
, RHS
, CxtI
);
4256 case Instruction::Mul
:
4258 return computeOverflowForSignedMul(LHS
, RHS
, CxtI
);
4260 return computeOverflowForUnsignedMul(LHS
, RHS
, CxtI
);
4264 bool InstCombiner::OptimizeOverflowCheck(
4265 Instruction::BinaryOps BinaryOp
, bool IsSigned
, Value
*LHS
, Value
*RHS
,
4266 Instruction
&OrigI
, Value
*&Result
, Constant
*&Overflow
) {
4267 if (OrigI
.isCommutative() && isa
<Constant
>(LHS
) && !isa
<Constant
>(RHS
))
4268 std::swap(LHS
, RHS
);
4270 // If the overflow check was an add followed by a compare, the insertion point
4271 // may be pointing to the compare. We want to insert the new instructions
4272 // before the add in case there are uses of the add between the add and the
4274 Builder
.SetInsertPoint(&OrigI
);
4276 if (isNeutralValue(BinaryOp
, RHS
)) {
4278 Overflow
= Builder
.getFalse();
4282 switch (computeOverflow(BinaryOp
, IsSigned
, LHS
, RHS
, &OrigI
)) {
4283 case OverflowResult::MayOverflow
:
4285 case OverflowResult::AlwaysOverflowsLow
:
4286 case OverflowResult::AlwaysOverflowsHigh
:
4287 Result
= Builder
.CreateBinOp(BinaryOp
, LHS
, RHS
);
4288 Result
->takeName(&OrigI
);
4289 Overflow
= Builder
.getTrue();
4291 case OverflowResult::NeverOverflows
:
4292 Result
= Builder
.CreateBinOp(BinaryOp
, LHS
, RHS
);
4293 Result
->takeName(&OrigI
);
4294 Overflow
= Builder
.getFalse();
4295 if (auto *Inst
= dyn_cast
<Instruction
>(Result
)) {
4297 Inst
->setHasNoSignedWrap();
4299 Inst
->setHasNoUnsignedWrap();
4304 llvm_unreachable("Unexpected overflow result");
4307 /// Recognize and process idiom involving test for multiplication
4310 /// The caller has matched a pattern of the form:
4311 /// I = cmp u (mul(zext A, zext B), V
4312 /// The function checks if this is a test for overflow and if so replaces
4313 /// multiplication with call to 'mul.with.overflow' intrinsic.
4315 /// \param I Compare instruction.
4316 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of
4317 /// the compare instruction. Must be of integer type.
4318 /// \param OtherVal The other argument of compare instruction.
4319 /// \returns Instruction which must replace the compare instruction, NULL if no
4320 /// replacement required.
4321 static Instruction
*processUMulZExtIdiom(ICmpInst
&I
, Value
*MulVal
,
4322 Value
*OtherVal
, InstCombiner
&IC
) {
4323 // Don't bother doing this transformation for pointers, don't do it for
4325 if (!isa
<IntegerType
>(MulVal
->getType()))
4328 assert(I
.getOperand(0) == MulVal
|| I
.getOperand(1) == MulVal
);
4329 assert(I
.getOperand(0) == OtherVal
|| I
.getOperand(1) == OtherVal
);
4330 auto *MulInstr
= dyn_cast
<Instruction
>(MulVal
);
4333 assert(MulInstr
->getOpcode() == Instruction::Mul
);
4335 auto *LHS
= cast
<ZExtOperator
>(MulInstr
->getOperand(0)),
4336 *RHS
= cast
<ZExtOperator
>(MulInstr
->getOperand(1));
4337 assert(LHS
->getOpcode() == Instruction::ZExt
);
4338 assert(RHS
->getOpcode() == Instruction::ZExt
);
4339 Value
*A
= LHS
->getOperand(0), *B
= RHS
->getOperand(0);
4341 // Calculate type and width of the result produced by mul.with.overflow.
4342 Type
*TyA
= A
->getType(), *TyB
= B
->getType();
4343 unsigned WidthA
= TyA
->getPrimitiveSizeInBits(),
4344 WidthB
= TyB
->getPrimitiveSizeInBits();
4347 if (WidthB
> WidthA
) {
4355 // In order to replace the original mul with a narrower mul.with.overflow,
4356 // all uses must ignore upper bits of the product. The number of used low
4357 // bits must be not greater than the width of mul.with.overflow.
4358 if (MulVal
->hasNUsesOrMore(2))
4359 for (User
*U
: MulVal
->users()) {
4362 if (TruncInst
*TI
= dyn_cast
<TruncInst
>(U
)) {
4363 // Check if truncation ignores bits above MulWidth.
4364 unsigned TruncWidth
= TI
->getType()->getPrimitiveSizeInBits();
4365 if (TruncWidth
> MulWidth
)
4367 } else if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(U
)) {
4368 // Check if AND ignores bits above MulWidth.
4369 if (BO
->getOpcode() != Instruction::And
)
4371 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(BO
->getOperand(1))) {
4372 const APInt
&CVal
= CI
->getValue();
4373 if (CVal
.getBitWidth() - CVal
.countLeadingZeros() > MulWidth
)
4376 // In this case we could have the operand of the binary operation
4377 // being defined in another block, and performing the replacement
4378 // could break the dominance relation.
4382 // Other uses prohibit this transformation.
4387 // Recognize patterns
4388 switch (I
.getPredicate()) {
4389 case ICmpInst::ICMP_EQ
:
4390 case ICmpInst::ICMP_NE
:
4391 // Recognize pattern:
4392 // mulval = mul(zext A, zext B)
4393 // cmp eq/neq mulval, zext trunc mulval
4394 if (ZExtInst
*Zext
= dyn_cast
<ZExtInst
>(OtherVal
))
4395 if (Zext
->hasOneUse()) {
4396 Value
*ZextArg
= Zext
->getOperand(0);
4397 if (TruncInst
*Trunc
= dyn_cast
<TruncInst
>(ZextArg
))
4398 if (Trunc
->getType()->getPrimitiveSizeInBits() == MulWidth
)
4402 // Recognize pattern:
4403 // mulval = mul(zext A, zext B)
4404 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
4407 if (match(OtherVal
, m_And(m_Value(ValToMask
), m_ConstantInt(CI
)))) {
4408 if (ValToMask
!= MulVal
)
4410 const APInt
&CVal
= CI
->getValue() + 1;
4411 if (CVal
.isPowerOf2()) {
4412 unsigned MaskWidth
= CVal
.logBase2();
4413 if (MaskWidth
== MulWidth
)
4414 break; // Recognized
4419 case ICmpInst::ICMP_UGT
:
4420 // Recognize pattern:
4421 // mulval = mul(zext A, zext B)
4422 // cmp ugt mulval, max
4423 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(OtherVal
)) {
4424 APInt MaxVal
= APInt::getMaxValue(MulWidth
);
4425 MaxVal
= MaxVal
.zext(CI
->getBitWidth());
4426 if (MaxVal
.eq(CI
->getValue()))
4427 break; // Recognized
4431 case ICmpInst::ICMP_UGE
:
4432 // Recognize pattern:
4433 // mulval = mul(zext A, zext B)
4434 // cmp uge mulval, max+1
4435 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(OtherVal
)) {
4436 APInt MaxVal
= APInt::getOneBitSet(CI
->getBitWidth(), MulWidth
);
4437 if (MaxVal
.eq(CI
->getValue()))
4438 break; // Recognized
4442 case ICmpInst::ICMP_ULE
:
4443 // Recognize pattern:
4444 // mulval = mul(zext A, zext B)
4445 // cmp ule mulval, max
4446 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(OtherVal
)) {
4447 APInt MaxVal
= APInt::getMaxValue(MulWidth
);
4448 MaxVal
= MaxVal
.zext(CI
->getBitWidth());
4449 if (MaxVal
.eq(CI
->getValue()))
4450 break; // Recognized
4454 case ICmpInst::ICMP_ULT
:
4455 // Recognize pattern:
4456 // mulval = mul(zext A, zext B)
4457 // cmp ule mulval, max + 1
4458 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(OtherVal
)) {
4459 APInt MaxVal
= APInt::getOneBitSet(CI
->getBitWidth(), MulWidth
);
4460 if (MaxVal
.eq(CI
->getValue()))
4461 break; // Recognized
4469 InstCombiner::BuilderTy
&Builder
= IC
.Builder
;
4470 Builder
.SetInsertPoint(MulInstr
);
4472 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
4473 Value
*MulA
= A
, *MulB
= B
;
4474 if (WidthA
< MulWidth
)
4475 MulA
= Builder
.CreateZExt(A
, MulType
);
4476 if (WidthB
< MulWidth
)
4477 MulB
= Builder
.CreateZExt(B
, MulType
);
4478 Function
*F
= Intrinsic::getDeclaration(
4479 I
.getModule(), Intrinsic::umul_with_overflow
, MulType
);
4480 CallInst
*Call
= Builder
.CreateCall(F
, {MulA
, MulB
}, "umul");
4481 IC
.Worklist
.Add(MulInstr
);
4483 // If there are uses of mul result other than the comparison, we know that
4484 // they are truncation or binary AND. Change them to use result of
4485 // mul.with.overflow and adjust properly mask/size.
4486 if (MulVal
->hasNUsesOrMore(2)) {
4487 Value
*Mul
= Builder
.CreateExtractValue(Call
, 0, "umul.value");
4488 for (auto UI
= MulVal
->user_begin(), UE
= MulVal
->user_end(); UI
!= UE
;) {
4490 if (U
== &I
|| U
== OtherVal
)
4492 if (TruncInst
*TI
= dyn_cast
<TruncInst
>(U
)) {
4493 if (TI
->getType()->getPrimitiveSizeInBits() == MulWidth
)
4494 IC
.replaceInstUsesWith(*TI
, Mul
);
4496 TI
->setOperand(0, Mul
);
4497 } else if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(U
)) {
4498 assert(BO
->getOpcode() == Instruction::And
);
4499 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
4500 ConstantInt
*CI
= cast
<ConstantInt
>(BO
->getOperand(1));
4501 APInt ShortMask
= CI
->getValue().trunc(MulWidth
);
4502 Value
*ShortAnd
= Builder
.CreateAnd(Mul
, ShortMask
);
4504 cast
<Instruction
>(Builder
.CreateZExt(ShortAnd
, BO
->getType()));
4505 IC
.Worklist
.Add(Zext
);
4506 IC
.replaceInstUsesWith(*BO
, Zext
);
4508 llvm_unreachable("Unexpected Binary operation");
4510 IC
.Worklist
.Add(cast
<Instruction
>(U
));
4513 if (isa
<Instruction
>(OtherVal
))
4514 IC
.Worklist
.Add(cast
<Instruction
>(OtherVal
));
4516 // The original icmp gets replaced with the overflow value, maybe inverted
4517 // depending on predicate.
4518 bool Inverse
= false;
4519 switch (I
.getPredicate()) {
4520 case ICmpInst::ICMP_NE
:
4522 case ICmpInst::ICMP_EQ
:
4525 case ICmpInst::ICMP_UGT
:
4526 case ICmpInst::ICMP_UGE
:
4527 if (I
.getOperand(0) == MulVal
)
4531 case ICmpInst::ICMP_ULT
:
4532 case ICmpInst::ICMP_ULE
:
4533 if (I
.getOperand(1) == MulVal
)
4538 llvm_unreachable("Unexpected predicate");
4541 Value
*Res
= Builder
.CreateExtractValue(Call
, 1);
4542 return BinaryOperator::CreateNot(Res
);
4545 return ExtractValueInst::Create(Call
, 1);
4548 /// When performing a comparison against a constant, it is possible that not all
4549 /// the bits in the LHS are demanded. This helper method computes the mask that
4551 static APInt
getDemandedBitsLHSMask(ICmpInst
&I
, unsigned BitWidth
) {
4553 if (!match(I
.getOperand(1), m_APInt(RHS
)))
4554 return APInt::getAllOnesValue(BitWidth
);
4556 // If this is a normal comparison, it demands all bits. If it is a sign bit
4557 // comparison, it only demands the sign bit.
4559 if (isSignBitCheck(I
.getPredicate(), *RHS
, UnusedBit
))
4560 return APInt::getSignMask(BitWidth
);
4562 switch (I
.getPredicate()) {
4563 // For a UGT comparison, we don't care about any bits that
4564 // correspond to the trailing ones of the comparand. The value of these
4565 // bits doesn't impact the outcome of the comparison, because any value
4566 // greater than the RHS must differ in a bit higher than these due to carry.
4567 case ICmpInst::ICMP_UGT
:
4568 return APInt::getBitsSetFrom(BitWidth
, RHS
->countTrailingOnes());
4570 // Similarly, for a ULT comparison, we don't care about the trailing zeros.
4571 // Any value less than the RHS must differ in a higher bit because of carries.
4572 case ICmpInst::ICMP_ULT
:
4573 return APInt::getBitsSetFrom(BitWidth
, RHS
->countTrailingZeros());
4576 return APInt::getAllOnesValue(BitWidth
);
4580 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
4581 /// should be swapped.
4582 /// The decision is based on how many times these two operands are reused
4583 /// as subtract operands and their positions in those instructions.
4584 /// The rationale is that several architectures use the same instruction for
4585 /// both subtract and cmp. Thus, it is better if the order of those operands
4587 /// \return true if Op0 and Op1 should be swapped.
4588 static bool swapMayExposeCSEOpportunities(const Value
*Op0
, const Value
*Op1
) {
4589 // Filter out pointer values as those cannot appear directly in subtract.
4590 // FIXME: we may want to go through inttoptrs or bitcasts.
4591 if (Op0
->getType()->isPointerTy())
4593 // If a subtract already has the same operands as a compare, swapping would be
4594 // bad. If a subtract has the same operands as a compare but in reverse order,
4595 // then swapping is good.
4597 for (const User
*U
: Op0
->users()) {
4598 if (match(U
, m_Sub(m_Specific(Op1
), m_Specific(Op0
))))
4600 else if (match(U
, m_Sub(m_Specific(Op0
), m_Specific(Op1
))))
4603 return GoodToSwap
> 0;
4606 /// Check that one use is in the same block as the definition and all
4607 /// other uses are in blocks dominated by a given block.
4609 /// \param DI Definition
4611 /// \param DB Block that must dominate all uses of \p DI outside
4612 /// the parent block
4613 /// \return true when \p UI is the only use of \p DI in the parent block
4614 /// and all other uses of \p DI are in blocks dominated by \p DB.
4616 bool InstCombiner::dominatesAllUses(const Instruction
*DI
,
4617 const Instruction
*UI
,
4618 const BasicBlock
*DB
) const {
4619 assert(DI
&& UI
&& "Instruction not defined\n");
4620 // Ignore incomplete definitions.
4621 if (!DI
->getParent())
4623 // DI and UI must be in the same block.
4624 if (DI
->getParent() != UI
->getParent())
4626 // Protect from self-referencing blocks.
4627 if (DI
->getParent() == DB
)
4629 for (const User
*U
: DI
->users()) {
4630 auto *Usr
= cast
<Instruction
>(U
);
4631 if (Usr
!= UI
&& !DT
.dominates(DB
, Usr
->getParent()))
4637 /// Return true when the instruction sequence within a block is select-cmp-br.
4638 static bool isChainSelectCmpBranch(const SelectInst
*SI
) {
4639 const BasicBlock
*BB
= SI
->getParent();
4642 auto *BI
= dyn_cast_or_null
<BranchInst
>(BB
->getTerminator());
4643 if (!BI
|| BI
->getNumSuccessors() != 2)
4645 auto *IC
= dyn_cast
<ICmpInst
>(BI
->getCondition());
4646 if (!IC
|| (IC
->getOperand(0) != SI
&& IC
->getOperand(1) != SI
))
4651 /// True when a select result is replaced by one of its operands
4652 /// in select-icmp sequence. This will eventually result in the elimination
4655 /// \param SI Select instruction
4656 /// \param Icmp Compare instruction
4657 /// \param SIOpd Operand that replaces the select
4660 /// - The replacement is global and requires dominator information
4661 /// - The caller is responsible for the actual replacement
4666 /// %4 = select i1 %3, %C* %0, %C* null
4667 /// %5 = icmp eq %C* %4, null
4668 /// br i1 %5, label %9, label %7
4670 /// ; <label>:7 ; preds = %entry
4671 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0
4674 /// can be transformed to
4676 /// %5 = icmp eq %C* %0, null
4677 /// %6 = select i1 %3, i1 %5, i1 true
4678 /// br i1 %6, label %9, label %7
4680 /// ; <label>:7 ; preds = %entry
4681 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0!
4683 /// Similar when the first operand of the select is a constant or/and
4684 /// the compare is for not equal rather than equal.
4686 /// NOTE: The function is only called when the select and compare constants
4687 /// are equal, the optimization can work only for EQ predicates. This is not a
4688 /// major restriction since a NE compare should be 'normalized' to an equal
4689 /// compare, which usually happens in the combiner and test case
4690 /// select-cmp-br.ll checks for it.
4691 bool InstCombiner::replacedSelectWithOperand(SelectInst
*SI
,
4692 const ICmpInst
*Icmp
,
4693 const unsigned SIOpd
) {
4694 assert((SIOpd
== 1 || SIOpd
== 2) && "Invalid select operand!");
4695 if (isChainSelectCmpBranch(SI
) && Icmp
->getPredicate() == ICmpInst::ICMP_EQ
) {
4696 BasicBlock
*Succ
= SI
->getParent()->getTerminator()->getSuccessor(1);
4697 // The check for the single predecessor is not the best that can be
4698 // done. But it protects efficiently against cases like when SI's
4699 // home block has two successors, Succ and Succ1, and Succ1 predecessor
4700 // of Succ. Then SI can't be replaced by SIOpd because the use that gets
4701 // replaced can be reached on either path. So the uniqueness check
4702 // guarantees that the path all uses of SI (outside SI's parent) are on
4703 // is disjoint from all other paths out of SI. But that information
4704 // is more expensive to compute, and the trade-off here is in favor
4705 // of compile-time. It should also be noticed that we check for a single
4706 // predecessor and not only uniqueness. This to handle the situation when
4707 // Succ and Succ1 points to the same basic block.
4708 if (Succ
->getSinglePredecessor() && dominatesAllUses(SI
, Icmp
, Succ
)) {
4710 SI
->replaceUsesOutsideBlock(SI
->getOperand(SIOpd
), SI
->getParent());
4717 /// Try to fold the comparison based on range information we can get by checking
4718 /// whether bits are known to be zero or one in the inputs.
4719 Instruction
*InstCombiner::foldICmpUsingKnownBits(ICmpInst
&I
) {
4720 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
4721 Type
*Ty
= Op0
->getType();
4722 ICmpInst::Predicate Pred
= I
.getPredicate();
4724 // Get scalar or pointer size.
4725 unsigned BitWidth
= Ty
->isIntOrIntVectorTy()
4726 ? Ty
->getScalarSizeInBits()
4727 : DL
.getIndexTypeSizeInBits(Ty
->getScalarType());
4732 KnownBits
Op0Known(BitWidth
);
4733 KnownBits
Op1Known(BitWidth
);
4735 if (SimplifyDemandedBits(&I
, 0,
4736 getDemandedBitsLHSMask(I
, BitWidth
),
4740 if (SimplifyDemandedBits(&I
, 1, APInt::getAllOnesValue(BitWidth
),
4744 // Given the known and unknown bits, compute a range that the LHS could be
4745 // in. Compute the Min, Max and RHS values based on the known bits. For the
4746 // EQ and NE we use unsigned values.
4747 APInt
Op0Min(BitWidth
, 0), Op0Max(BitWidth
, 0);
4748 APInt
Op1Min(BitWidth
, 0), Op1Max(BitWidth
, 0);
4750 computeSignedMinMaxValuesFromKnownBits(Op0Known
, Op0Min
, Op0Max
);
4751 computeSignedMinMaxValuesFromKnownBits(Op1Known
, Op1Min
, Op1Max
);
4753 computeUnsignedMinMaxValuesFromKnownBits(Op0Known
, Op0Min
, Op0Max
);
4754 computeUnsignedMinMaxValuesFromKnownBits(Op1Known
, Op1Min
, Op1Max
);
4757 // If Min and Max are known to be the same, then SimplifyDemandedBits figured
4758 // out that the LHS or RHS is a constant. Constant fold this now, so that
4759 // code below can assume that Min != Max.
4760 if (!isa
<Constant
>(Op0
) && Op0Min
== Op0Max
)
4761 return new ICmpInst(Pred
, ConstantExpr::getIntegerValue(Ty
, Op0Min
), Op1
);
4762 if (!isa
<Constant
>(Op1
) && Op1Min
== Op1Max
)
4763 return new ICmpInst(Pred
, Op0
, ConstantExpr::getIntegerValue(Ty
, Op1Min
));
4765 // Based on the range information we know about the LHS, see if we can
4766 // simplify this comparison. For example, (x&4) < 8 is always true.
4769 llvm_unreachable("Unknown icmp opcode!");
4770 case ICmpInst::ICMP_EQ
:
4771 case ICmpInst::ICMP_NE
: {
4772 if (Op0Max
.ult(Op1Min
) || Op0Min
.ugt(Op1Max
)) {
4773 return Pred
== CmpInst::ICMP_EQ
4774 ? replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()))
4775 : replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
4778 // If all bits are known zero except for one, then we know at most one bit
4779 // is set. If the comparison is against zero, then this is a check to see if
4780 // *that* bit is set.
4781 APInt Op0KnownZeroInverted
= ~Op0Known
.Zero
;
4782 if (Op1Known
.isZero()) {
4783 // If the LHS is an AND with the same constant, look through it.
4784 Value
*LHS
= nullptr;
4786 if (!match(Op0
, m_And(m_Value(LHS
), m_APInt(LHSC
))) ||
4787 *LHSC
!= Op0KnownZeroInverted
)
4791 if (match(LHS
, m_Shl(m_One(), m_Value(X
)))) {
4792 APInt ValToCheck
= Op0KnownZeroInverted
;
4793 Type
*XTy
= X
->getType();
4794 if (ValToCheck
.isPowerOf2()) {
4795 // ((1 << X) & 8) == 0 -> X != 3
4796 // ((1 << X) & 8) != 0 -> X == 3
4797 auto *CmpC
= ConstantInt::get(XTy
, ValToCheck
.countTrailingZeros());
4798 auto NewPred
= ICmpInst::getInversePredicate(Pred
);
4799 return new ICmpInst(NewPred
, X
, CmpC
);
4800 } else if ((++ValToCheck
).isPowerOf2()) {
4801 // ((1 << X) & 7) == 0 -> X >= 3
4802 // ((1 << X) & 7) != 0 -> X < 3
4803 auto *CmpC
= ConstantInt::get(XTy
, ValToCheck
.countTrailingZeros());
4805 Pred
== CmpInst::ICMP_EQ
? CmpInst::ICMP_UGE
: CmpInst::ICMP_ULT
;
4806 return new ICmpInst(NewPred
, X
, CmpC
);
4810 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
4812 if (Op0KnownZeroInverted
.isOneValue() &&
4813 match(LHS
, m_LShr(m_Power2(CI
), m_Value(X
)))) {
4814 // ((8 >>u X) & 1) == 0 -> X != 3
4815 // ((8 >>u X) & 1) != 0 -> X == 3
4816 unsigned CmpVal
= CI
->countTrailingZeros();
4817 auto NewPred
= ICmpInst::getInversePredicate(Pred
);
4818 return new ICmpInst(NewPred
, X
, ConstantInt::get(X
->getType(), CmpVal
));
4823 case ICmpInst::ICMP_ULT
: {
4824 if (Op0Max
.ult(Op1Min
)) // A <u B -> true if max(A) < min(B)
4825 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
4826 if (Op0Min
.uge(Op1Max
)) // A <u B -> false if min(A) >= max(B)
4827 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
4828 if (Op1Min
== Op0Max
) // A <u B -> A != B if max(A) == min(B)
4829 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
4832 if (match(Op1
, m_APInt(CmpC
))) {
4833 // A <u C -> A == C-1 if min(A)+1 == C
4834 if (*CmpC
== Op0Min
+ 1)
4835 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
,
4836 ConstantInt::get(Op1
->getType(), *CmpC
- 1));
4837 // X <u C --> X == 0, if the number of zero bits in the bottom of X
4838 // exceeds the log2 of C.
4839 if (Op0Known
.countMinTrailingZeros() >= CmpC
->ceilLogBase2())
4840 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
,
4841 Constant::getNullValue(Op1
->getType()));
4845 case ICmpInst::ICMP_UGT
: {
4846 if (Op0Min
.ugt(Op1Max
)) // A >u B -> true if min(A) > max(B)
4847 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
4848 if (Op0Max
.ule(Op1Min
)) // A >u B -> false if max(A) <= max(B)
4849 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
4850 if (Op1Max
== Op0Min
) // A >u B -> A != B if min(A) == max(B)
4851 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
4854 if (match(Op1
, m_APInt(CmpC
))) {
4855 // A >u C -> A == C+1 if max(a)-1 == C
4856 if (*CmpC
== Op0Max
- 1)
4857 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
,
4858 ConstantInt::get(Op1
->getType(), *CmpC
+ 1));
4859 // X >u C --> X != 0, if the number of zero bits in the bottom of X
4860 // exceeds the log2 of C.
4861 if (Op0Known
.countMinTrailingZeros() >= CmpC
->getActiveBits())
4862 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
,
4863 Constant::getNullValue(Op1
->getType()));
4867 case ICmpInst::ICMP_SLT
: {
4868 if (Op0Max
.slt(Op1Min
)) // A <s B -> true if max(A) < min(C)
4869 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
4870 if (Op0Min
.sge(Op1Max
)) // A <s B -> false if min(A) >= max(C)
4871 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
4872 if (Op1Min
== Op0Max
) // A <s B -> A != B if max(A) == min(B)
4873 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
4875 if (match(Op1
, m_APInt(CmpC
))) {
4876 if (*CmpC
== Op0Min
+ 1) // A <s C -> A == C-1 if min(A)+1 == C
4877 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
,
4878 ConstantInt::get(Op1
->getType(), *CmpC
- 1));
4882 case ICmpInst::ICMP_SGT
: {
4883 if (Op0Min
.sgt(Op1Max
)) // A >s B -> true if min(A) > max(B)
4884 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
4885 if (Op0Max
.sle(Op1Min
)) // A >s B -> false if max(A) <= min(B)
4886 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
4887 if (Op1Max
== Op0Min
) // A >s B -> A != B if min(A) == max(B)
4888 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
4890 if (match(Op1
, m_APInt(CmpC
))) {
4891 if (*CmpC
== Op0Max
- 1) // A >s C -> A == C+1 if max(A)-1 == C
4892 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
,
4893 ConstantInt::get(Op1
->getType(), *CmpC
+ 1));
4897 case ICmpInst::ICMP_SGE
:
4898 assert(!isa
<ConstantInt
>(Op1
) && "ICMP_SGE with ConstantInt not folded!");
4899 if (Op0Min
.sge(Op1Max
)) // A >=s B -> true if min(A) >= max(B)
4900 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
4901 if (Op0Max
.slt(Op1Min
)) // A >=s B -> false if max(A) < min(B)
4902 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
4903 if (Op1Min
== Op0Max
) // A >=s B -> A == B if max(A) == min(B)
4904 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, Op1
);
4906 case ICmpInst::ICMP_SLE
:
4907 assert(!isa
<ConstantInt
>(Op1
) && "ICMP_SLE with ConstantInt not folded!");
4908 if (Op0Max
.sle(Op1Min
)) // A <=s B -> true if max(A) <= min(B)
4909 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
4910 if (Op0Min
.sgt(Op1Max
)) // A <=s B -> false if min(A) > max(B)
4911 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
4912 if (Op1Max
== Op0Min
) // A <=s B -> A == B if min(A) == max(B)
4913 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, Op1
);
4915 case ICmpInst::ICMP_UGE
:
4916 assert(!isa
<ConstantInt
>(Op1
) && "ICMP_UGE with ConstantInt not folded!");
4917 if (Op0Min
.uge(Op1Max
)) // A >=u B -> true if min(A) >= max(B)
4918 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
4919 if (Op0Max
.ult(Op1Min
)) // A >=u B -> false if max(A) < min(B)
4920 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
4921 if (Op1Min
== Op0Max
) // A >=u B -> A == B if max(A) == min(B)
4922 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, Op1
);
4924 case ICmpInst::ICMP_ULE
:
4925 assert(!isa
<ConstantInt
>(Op1
) && "ICMP_ULE with ConstantInt not folded!");
4926 if (Op0Max
.ule(Op1Min
)) // A <=u B -> true if max(A) <= min(B)
4927 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
4928 if (Op0Min
.ugt(Op1Max
)) // A <=u B -> false if min(A) > max(B)
4929 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
4930 if (Op1Max
== Op0Min
) // A <=u B -> A == B if min(A) == max(B)
4931 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, Op1
);
4935 // Turn a signed comparison into an unsigned one if both operands are known to
4936 // have the same sign.
4938 ((Op0Known
.Zero
.isNegative() && Op1Known
.Zero
.isNegative()) ||
4939 (Op0Known
.One
.isNegative() && Op1Known
.One
.isNegative())))
4940 return new ICmpInst(I
.getUnsignedPredicate(), Op0
, Op1
);
4945 llvm::Optional
<std::pair
<CmpInst::Predicate
, Constant
*>>
4946 llvm::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred
,
4948 assert(ICmpInst::isRelational(Pred
) && ICmpInst::isIntPredicate(Pred
) &&
4949 "Only for relational integer predicates.");
4951 Type
*Type
= C
->getType();
4952 bool IsSigned
= ICmpInst::isSigned(Pred
);
4954 CmpInst::Predicate UnsignedPred
= ICmpInst::getUnsignedPredicate(Pred
);
4955 bool WillIncrement
=
4956 UnsignedPred
== ICmpInst::ICMP_ULE
|| UnsignedPred
== ICmpInst::ICMP_UGT
;
4958 // Check if the constant operand can be safely incremented/decremented
4959 // without overflowing/underflowing.
4960 auto ConstantIsOk
= [WillIncrement
, IsSigned
](ConstantInt
*C
) {
4961 return WillIncrement
? !C
->isMaxValue(IsSigned
) : !C
->isMinValue(IsSigned
);
4964 // For scalars, SimplifyICmpInst should have already handled
4965 // the edge cases for us, so we just assert on them.
4966 // For vectors, we must handle the edge cases.
4967 if (auto *CI
= dyn_cast
<ConstantInt
>(C
)) {
4968 // A <= MAX -> TRUE ; A >= MIN -> TRUE
4969 assert(ConstantIsOk(CI
));
4970 } else if (Type
->isVectorTy()) {
4971 // TODO? If the edge cases for vectors were guaranteed to be handled as they
4972 // are for scalar, we could remove the min/max checks. However, to do that,
4973 // we would have to use insertelement/shufflevector to replace edge values.
4974 unsigned NumElts
= Type
->getVectorNumElements();
4975 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
4976 Constant
*Elt
= C
->getAggregateElement(i
);
4980 if (isa
<UndefValue
>(Elt
))
4983 // Bail out if we can't determine if this constant is min/max or if we
4984 // know that this constant is min/max.
4985 auto *CI
= dyn_cast
<ConstantInt
>(Elt
);
4986 if (!CI
|| !ConstantIsOk(CI
))
4994 CmpInst::Predicate NewPred
= CmpInst::getFlippedStrictnessPredicate(Pred
);
4996 // Increment or decrement the constant.
4997 Constant
*OneOrNegOne
= ConstantInt::get(Type
, WillIncrement
? 1 : -1, true);
4998 Constant
*NewC
= ConstantExpr::getAdd(C
, OneOrNegOne
);
5000 return std::make_pair(NewPred
, NewC
);
5003 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
5004 /// it into the appropriate icmp lt or icmp gt instruction. This transform
5005 /// allows them to be folded in visitICmpInst.
5006 static ICmpInst
*canonicalizeCmpWithConstant(ICmpInst
&I
) {
5007 ICmpInst::Predicate Pred
= I
.getPredicate();
5008 if (ICmpInst::isEquality(Pred
) || !ICmpInst::isIntPredicate(Pred
) ||
5009 isCanonicalPredicate(Pred
))
5012 Value
*Op0
= I
.getOperand(0);
5013 Value
*Op1
= I
.getOperand(1);
5014 auto *Op1C
= dyn_cast
<Constant
>(Op1
);
5018 auto FlippedStrictness
= getFlippedStrictnessPredicateAndConstant(Pred
, Op1C
);
5019 if (!FlippedStrictness
)
5022 return new ICmpInst(FlippedStrictness
->first
, Op0
, FlippedStrictness
->second
);
5025 /// Integer compare with boolean values can always be turned into bitwise ops.
5026 static Instruction
*canonicalizeICmpBool(ICmpInst
&I
,
5027 InstCombiner::BuilderTy
&Builder
) {
5028 Value
*A
= I
.getOperand(0), *B
= I
.getOperand(1);
5029 assert(A
->getType()->isIntOrIntVectorTy(1) && "Bools only");
5031 // A boolean compared to true/false can be simplified to Op0/true/false in
5032 // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
5033 // Cases not handled by InstSimplify are always 'not' of Op0.
5034 if (match(B
, m_Zero())) {
5035 switch (I
.getPredicate()) {
5036 case CmpInst::ICMP_EQ
: // A == 0 -> !A
5037 case CmpInst::ICMP_ULE
: // A <=u 0 -> !A
5038 case CmpInst::ICMP_SGE
: // A >=s 0 -> !A
5039 return BinaryOperator::CreateNot(A
);
5041 llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5043 } else if (match(B
, m_One())) {
5044 switch (I
.getPredicate()) {
5045 case CmpInst::ICMP_NE
: // A != 1 -> !A
5046 case CmpInst::ICMP_ULT
: // A <u 1 -> !A
5047 case CmpInst::ICMP_SGT
: // A >s -1 -> !A
5048 return BinaryOperator::CreateNot(A
);
5050 llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5054 switch (I
.getPredicate()) {
5056 llvm_unreachable("Invalid icmp instruction!");
5057 case ICmpInst::ICMP_EQ
:
5058 // icmp eq i1 A, B -> ~(A ^ B)
5059 return BinaryOperator::CreateNot(Builder
.CreateXor(A
, B
));
5061 case ICmpInst::ICMP_NE
:
5062 // icmp ne i1 A, B -> A ^ B
5063 return BinaryOperator::CreateXor(A
, B
);
5065 case ICmpInst::ICMP_UGT
:
5066 // icmp ugt -> icmp ult
5069 case ICmpInst::ICMP_ULT
:
5070 // icmp ult i1 A, B -> ~A & B
5071 return BinaryOperator::CreateAnd(Builder
.CreateNot(A
), B
);
5073 case ICmpInst::ICMP_SGT
:
5074 // icmp sgt -> icmp slt
5077 case ICmpInst::ICMP_SLT
:
5078 // icmp slt i1 A, B -> A & ~B
5079 return BinaryOperator::CreateAnd(Builder
.CreateNot(B
), A
);
5081 case ICmpInst::ICMP_UGE
:
5082 // icmp uge -> icmp ule
5085 case ICmpInst::ICMP_ULE
:
5086 // icmp ule i1 A, B -> ~A | B
5087 return BinaryOperator::CreateOr(Builder
.CreateNot(A
), B
);
5089 case ICmpInst::ICMP_SGE
:
5090 // icmp sge -> icmp sle
5093 case ICmpInst::ICMP_SLE
:
5094 // icmp sle i1 A, B -> A | ~B
5095 return BinaryOperator::CreateOr(Builder
.CreateNot(B
), A
);
5099 // Transform pattern like:
5100 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X
5101 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X
5105 static Instruction
*foldICmpWithHighBitMask(ICmpInst
&Cmp
,
5106 InstCombiner::BuilderTy
&Builder
) {
5107 ICmpInst::Predicate Pred
, NewPred
;
5110 m_c_ICmp(Pred
, m_OneUse(m_Shl(m_One(), m_Value(Y
))), m_Value(X
)))) {
5111 // We want X to be the icmp's second operand, so swap predicate if it isn't.
5112 if (Cmp
.getOperand(0) == X
)
5113 Pred
= Cmp
.getSwappedPredicate();
5116 case ICmpInst::ICMP_ULE
:
5117 NewPred
= ICmpInst::ICMP_NE
;
5119 case ICmpInst::ICMP_UGT
:
5120 NewPred
= ICmpInst::ICMP_EQ
;
5125 } else if (match(&Cmp
, m_c_ICmp(Pred
,
5126 m_OneUse(m_CombineOr(
5127 m_Not(m_Shl(m_AllOnes(), m_Value(Y
))),
5128 m_Add(m_Shl(m_One(), m_Value(Y
)),
5131 // The variant with 'add' is not canonical, (the variant with 'not' is)
5132 // we only get it because it has extra uses, and can't be canonicalized,
5134 // We want X to be the icmp's second operand, so swap predicate if it isn't.
5135 if (Cmp
.getOperand(0) == X
)
5136 Pred
= Cmp
.getSwappedPredicate();
5139 case ICmpInst::ICMP_ULT
:
5140 NewPred
= ICmpInst::ICMP_NE
;
5142 case ICmpInst::ICMP_UGE
:
5143 NewPred
= ICmpInst::ICMP_EQ
;
5151 Value
*NewX
= Builder
.CreateLShr(X
, Y
, X
->getName() + ".highbits");
5152 Constant
*Zero
= Constant::getNullValue(NewX
->getType());
5153 return CmpInst::Create(Instruction::ICmp
, NewPred
, NewX
, Zero
);
5156 static Instruction
*foldVectorCmp(CmpInst
&Cmp
,
5157 InstCombiner::BuilderTy
&Builder
) {
5158 // If both arguments of the cmp are shuffles that use the same mask and
5159 // shuffle within a single vector, move the shuffle after the cmp.
5160 Value
*LHS
= Cmp
.getOperand(0), *RHS
= Cmp
.getOperand(1);
5163 if (match(LHS
, m_ShuffleVector(m_Value(V1
), m_Undef(), m_Constant(M
))) &&
5164 match(RHS
, m_ShuffleVector(m_Value(V2
), m_Undef(), m_Specific(M
))) &&
5165 V1
->getType() == V2
->getType() &&
5166 (LHS
->hasOneUse() || RHS
->hasOneUse())) {
5167 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
5168 CmpInst::Predicate P
= Cmp
.getPredicate();
5169 Value
*NewCmp
= isa
<ICmpInst
>(Cmp
) ? Builder
.CreateICmp(P
, V1
, V2
)
5170 : Builder
.CreateFCmp(P
, V1
, V2
);
5171 return new ShuffleVectorInst(NewCmp
, UndefValue::get(NewCmp
->getType()), M
);
5176 Instruction
*InstCombiner::visitICmpInst(ICmpInst
&I
) {
5177 bool Changed
= false;
5178 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
5179 unsigned Op0Cplxity
= getComplexity(Op0
);
5180 unsigned Op1Cplxity
= getComplexity(Op1
);
5182 /// Orders the operands of the compare so that they are listed from most
5183 /// complex to least complex. This puts constants before unary operators,
5184 /// before binary operators.
5185 if (Op0Cplxity
< Op1Cplxity
||
5186 (Op0Cplxity
== Op1Cplxity
&& swapMayExposeCSEOpportunities(Op0
, Op1
))) {
5188 std::swap(Op0
, Op1
);
5192 if (Value
*V
= SimplifyICmpInst(I
.getPredicate(), Op0
, Op1
,
5193 SQ
.getWithInstruction(&I
)))
5194 return replaceInstUsesWith(I
, V
);
5196 // Comparing -val or val with non-zero is the same as just comparing val
5197 // ie, abs(val) != 0 -> val != 0
5198 if (I
.getPredicate() == ICmpInst::ICMP_NE
&& match(Op1
, m_Zero())) {
5199 Value
*Cond
, *SelectTrue
, *SelectFalse
;
5200 if (match(Op0
, m_Select(m_Value(Cond
), m_Value(SelectTrue
),
5201 m_Value(SelectFalse
)))) {
5202 if (Value
*V
= dyn_castNegVal(SelectTrue
)) {
5203 if (V
== SelectFalse
)
5204 return CmpInst::Create(Instruction::ICmp
, I
.getPredicate(), V
, Op1
);
5206 else if (Value
*V
= dyn_castNegVal(SelectFalse
)) {
5207 if (V
== SelectTrue
)
5208 return CmpInst::Create(Instruction::ICmp
, I
.getPredicate(), V
, Op1
);
5213 if (Op0
->getType()->isIntOrIntVectorTy(1))
5214 if (Instruction
*Res
= canonicalizeICmpBool(I
, Builder
))
5217 if (ICmpInst
*NewICmp
= canonicalizeCmpWithConstant(I
))
5220 if (Instruction
*Res
= foldICmpWithConstant(I
))
5223 if (Instruction
*Res
= foldICmpWithDominatingICmp(I
))
5226 if (Instruction
*Res
= foldICmpUsingKnownBits(I
))
5229 // Test if the ICmpInst instruction is used exclusively by a select as
5230 // part of a minimum or maximum operation. If so, refrain from doing
5231 // any other folding. This helps out other analyses which understand
5232 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5233 // and CodeGen. And in this case, at least one of the comparison
5234 // operands has at least one user besides the compare (the select),
5235 // which would often largely negate the benefit of folding anyway.
5237 // Do the same for the other patterns recognized by matchSelectPattern.
5239 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(I
.user_back())) {
5241 SelectPatternResult SPR
= matchSelectPattern(SI
, A
, B
);
5242 if (SPR
.Flavor
!= SPF_UNKNOWN
)
5246 // Do this after checking for min/max to prevent infinite looping.
5247 if (Instruction
*Res
= foldICmpWithZero(I
))
5250 // FIXME: We only do this after checking for min/max to prevent infinite
5251 // looping caused by a reverse canonicalization of these patterns for min/max.
5252 // FIXME: The organization of folds is a mess. These would naturally go into
5253 // canonicalizeCmpWithConstant(), but we can't move all of the above folds
5254 // down here after the min/max restriction.
5255 ICmpInst::Predicate Pred
= I
.getPredicate();
5257 if (match(Op1
, m_APInt(C
))) {
5258 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set
5259 if (Pred
== ICmpInst::ICMP_UGT
&& C
->isMaxSignedValue()) {
5260 Constant
*Zero
= Constant::getNullValue(Op0
->getType());
5261 return new ICmpInst(ICmpInst::ICMP_SLT
, Op0
, Zero
);
5264 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear
5265 if (Pred
== ICmpInst::ICMP_ULT
&& C
->isMinSignedValue()) {
5266 Constant
*AllOnes
= Constant::getAllOnesValue(Op0
->getType());
5267 return new ICmpInst(ICmpInst::ICMP_SGT
, Op0
, AllOnes
);
5271 if (Instruction
*Res
= foldICmpInstWithConstant(I
))
5274 if (Instruction
*Res
= foldICmpInstWithConstantNotInt(I
))
5277 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5278 if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(Op0
))
5279 if (Instruction
*NI
= foldGEPICmp(GEP
, Op1
, I
.getPredicate(), I
))
5281 if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(Op1
))
5282 if (Instruction
*NI
= foldGEPICmp(GEP
, Op0
,
5283 ICmpInst::getSwappedPredicate(I
.getPredicate()), I
))
5286 // Try to optimize equality comparisons against alloca-based pointers.
5287 if (Op0
->getType()->isPointerTy() && I
.isEquality()) {
5288 assert(Op1
->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
5289 if (auto *Alloca
= dyn_cast
<AllocaInst
>(GetUnderlyingObject(Op0
, DL
)))
5290 if (Instruction
*New
= foldAllocaCmp(I
, Alloca
, Op1
))
5292 if (auto *Alloca
= dyn_cast
<AllocaInst
>(GetUnderlyingObject(Op1
, DL
)))
5293 if (Instruction
*New
= foldAllocaCmp(I
, Alloca
, Op0
))
5297 if (Instruction
*Res
= foldICmpBitCast(I
, Builder
))
5300 if (Instruction
*R
= foldICmpWithCastOp(I
))
5303 if (Instruction
*Res
= foldICmpBinOp(I
))
5306 if (Instruction
*Res
= foldICmpWithMinMax(I
))
5311 // Transform (A & ~B) == 0 --> (A & B) != 0
5312 // and (A & ~B) != 0 --> (A & B) == 0
5313 // if A is a power of 2.
5314 if (match(Op0
, m_And(m_Value(A
), m_Not(m_Value(B
)))) &&
5315 match(Op1
, m_Zero()) &&
5316 isKnownToBeAPowerOfTwo(A
, false, 0, &I
) && I
.isEquality())
5317 return new ICmpInst(I
.getInversePredicate(), Builder
.CreateAnd(A
, B
),
5320 // ~X < ~Y --> Y < X
5321 // ~X < C --> X > ~C
5322 if (match(Op0
, m_Not(m_Value(A
)))) {
5323 if (match(Op1
, m_Not(m_Value(B
))))
5324 return new ICmpInst(I
.getPredicate(), B
, A
);
5327 if (match(Op1
, m_APInt(C
)))
5328 return new ICmpInst(I
.getSwappedPredicate(), A
,
5329 ConstantInt::get(Op1
->getType(), ~(*C
)));
5332 Instruction
*AddI
= nullptr;
5333 if (match(&I
, m_UAddWithOverflow(m_Value(A
), m_Value(B
),
5334 m_Instruction(AddI
))) &&
5335 isa
<IntegerType
>(A
->getType())) {
5338 if (OptimizeOverflowCheck(Instruction::Add
, /*Signed*/false, A
, B
,
5339 *AddI
, Result
, Overflow
)) {
5340 replaceInstUsesWith(*AddI
, Result
);
5341 return replaceInstUsesWith(I
, Overflow
);
5345 // (zext a) * (zext b) --> llvm.umul.with.overflow.
5346 if (match(Op0
, m_Mul(m_ZExt(m_Value(A
)), m_ZExt(m_Value(B
))))) {
5347 if (Instruction
*R
= processUMulZExtIdiom(I
, Op0
, Op1
, *this))
5350 if (match(Op1
, m_Mul(m_ZExt(m_Value(A
)), m_ZExt(m_Value(B
))))) {
5351 if (Instruction
*R
= processUMulZExtIdiom(I
, Op1
, Op0
, *this))
5356 if (Instruction
*Res
= foldICmpEquality(I
))
5359 // The 'cmpxchg' instruction returns an aggregate containing the old value and
5360 // an i1 which indicates whether or not we successfully did the swap.
5362 // Replace comparisons between the old value and the expected value with the
5363 // indicator that 'cmpxchg' returns.
5365 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to
5366 // spuriously fail. In those cases, the old value may equal the expected
5367 // value but it is possible for the swap to not occur.
5368 if (I
.getPredicate() == ICmpInst::ICMP_EQ
)
5369 if (auto *EVI
= dyn_cast
<ExtractValueInst
>(Op0
))
5370 if (auto *ACXI
= dyn_cast
<AtomicCmpXchgInst
>(EVI
->getAggregateOperand()))
5371 if (EVI
->getIndices()[0] == 0 && ACXI
->getCompareOperand() == Op1
&&
5373 return ExtractValueInst::Create(ACXI
, 1);
5379 if (match(Op0
, m_Add(m_Value(X
), m_APInt(C
))) && Op1
== X
)
5380 return foldICmpAddOpConst(X
, *C
, I
.getPredicate());
5383 if (match(Op1
, m_Add(m_Value(X
), m_APInt(C
))) && Op0
== X
)
5384 return foldICmpAddOpConst(X
, *C
, I
.getSwappedPredicate());
5387 if (Instruction
*Res
= foldICmpWithHighBitMask(I
, Builder
))
5390 if (I
.getType()->isVectorTy())
5391 if (Instruction
*Res
= foldVectorCmp(I
, Builder
))
5394 return Changed
? &I
: nullptr;
5397 /// Fold fcmp ([us]itofp x, cst) if possible.
5398 Instruction
*InstCombiner::foldFCmpIntToFPConst(FCmpInst
&I
, Instruction
*LHSI
,
5400 if (!isa
<ConstantFP
>(RHSC
)) return nullptr;
5401 const APFloat
&RHS
= cast
<ConstantFP
>(RHSC
)->getValueAPF();
5403 // Get the width of the mantissa. We don't want to hack on conversions that
5404 // might lose information from the integer, e.g. "i64 -> float"
5405 int MantissaWidth
= LHSI
->getType()->getFPMantissaWidth();
5406 if (MantissaWidth
== -1) return nullptr; // Unknown.
5408 IntegerType
*IntTy
= cast
<IntegerType
>(LHSI
->getOperand(0)->getType());
5410 bool LHSUnsigned
= isa
<UIToFPInst
>(LHSI
);
5412 if (I
.isEquality()) {
5413 FCmpInst::Predicate P
= I
.getPredicate();
5414 bool IsExact
= false;
5415 APSInt
RHSCvt(IntTy
->getBitWidth(), LHSUnsigned
);
5416 RHS
.convertToInteger(RHSCvt
, APFloat::rmNearestTiesToEven
, &IsExact
);
5418 // If the floating point constant isn't an integer value, we know if we will
5419 // ever compare equal / not equal to it.
5421 // TODO: Can never be -0.0 and other non-representable values
5422 APFloat
RHSRoundInt(RHS
);
5423 RHSRoundInt
.roundToIntegral(APFloat::rmNearestTiesToEven
);
5424 if (RHS
.compare(RHSRoundInt
) != APFloat::cmpEqual
) {
5425 if (P
== FCmpInst::FCMP_OEQ
|| P
== FCmpInst::FCMP_UEQ
)
5426 return replaceInstUsesWith(I
, Builder
.getFalse());
5428 assert(P
== FCmpInst::FCMP_ONE
|| P
== FCmpInst::FCMP_UNE
);
5429 return replaceInstUsesWith(I
, Builder
.getTrue());
5433 // TODO: If the constant is exactly representable, is it always OK to do
5434 // equality compares as integer?
5437 // Check to see that the input is converted from an integer type that is small
5438 // enough that preserves all bits. TODO: check here for "known" sign bits.
5439 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5440 unsigned InputSize
= IntTy
->getScalarSizeInBits();
5442 // Following test does NOT adjust InputSize downwards for signed inputs,
5443 // because the most negative value still requires all the mantissa bits
5444 // to distinguish it from one less than that value.
5445 if ((int)InputSize
> MantissaWidth
) {
5446 // Conversion would lose accuracy. Check if loss can impact comparison.
5447 int Exp
= ilogb(RHS
);
5448 if (Exp
== APFloat::IEK_Inf
) {
5449 int MaxExponent
= ilogb(APFloat::getLargest(RHS
.getSemantics()));
5450 if (MaxExponent
< (int)InputSize
- !LHSUnsigned
)
5451 // Conversion could create infinity.
5454 // Note that if RHS is zero or NaN, then Exp is negative
5455 // and first condition is trivially false.
5456 if (MantissaWidth
<= Exp
&& Exp
<= (int)InputSize
- !LHSUnsigned
)
5457 // Conversion could affect comparison.
5462 // Otherwise, we can potentially simplify the comparison. We know that it
5463 // will always come through as an integer value and we know the constant is
5464 // not a NAN (it would have been previously simplified).
5465 assert(!RHS
.isNaN() && "NaN comparison not already folded!");
5467 ICmpInst::Predicate Pred
;
5468 switch (I
.getPredicate()) {
5469 default: llvm_unreachable("Unexpected predicate!");
5470 case FCmpInst::FCMP_UEQ
:
5471 case FCmpInst::FCMP_OEQ
:
5472 Pred
= ICmpInst::ICMP_EQ
;
5474 case FCmpInst::FCMP_UGT
:
5475 case FCmpInst::FCMP_OGT
:
5476 Pred
= LHSUnsigned
? ICmpInst::ICMP_UGT
: ICmpInst::ICMP_SGT
;
5478 case FCmpInst::FCMP_UGE
:
5479 case FCmpInst::FCMP_OGE
:
5480 Pred
= LHSUnsigned
? ICmpInst::ICMP_UGE
: ICmpInst::ICMP_SGE
;
5482 case FCmpInst::FCMP_ULT
:
5483 case FCmpInst::FCMP_OLT
:
5484 Pred
= LHSUnsigned
? ICmpInst::ICMP_ULT
: ICmpInst::ICMP_SLT
;
5486 case FCmpInst::FCMP_ULE
:
5487 case FCmpInst::FCMP_OLE
:
5488 Pred
= LHSUnsigned
? ICmpInst::ICMP_ULE
: ICmpInst::ICMP_SLE
;
5490 case FCmpInst::FCMP_UNE
:
5491 case FCmpInst::FCMP_ONE
:
5492 Pred
= ICmpInst::ICMP_NE
;
5494 case FCmpInst::FCMP_ORD
:
5495 return replaceInstUsesWith(I
, Builder
.getTrue());
5496 case FCmpInst::FCMP_UNO
:
5497 return replaceInstUsesWith(I
, Builder
.getFalse());
5500 // Now we know that the APFloat is a normal number, zero or inf.
5502 // See if the FP constant is too large for the integer. For example,
5503 // comparing an i8 to 300.0.
5504 unsigned IntWidth
= IntTy
->getScalarSizeInBits();
5507 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
5508 // and large values.
5509 APFloat
SMax(RHS
.getSemantics());
5510 SMax
.convertFromAPInt(APInt::getSignedMaxValue(IntWidth
), true,
5511 APFloat::rmNearestTiesToEven
);
5512 if (SMax
.compare(RHS
) == APFloat::cmpLessThan
) { // smax < 13123.0
5513 if (Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_SLT
||
5514 Pred
== ICmpInst::ICMP_SLE
)
5515 return replaceInstUsesWith(I
, Builder
.getTrue());
5516 return replaceInstUsesWith(I
, Builder
.getFalse());
5519 // If the RHS value is > UnsignedMax, fold the comparison. This handles
5520 // +INF and large values.
5521 APFloat
UMax(RHS
.getSemantics());
5522 UMax
.convertFromAPInt(APInt::getMaxValue(IntWidth
), false,
5523 APFloat::rmNearestTiesToEven
);
5524 if (UMax
.compare(RHS
) == APFloat::cmpLessThan
) { // umax < 13123.0
5525 if (Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_ULT
||
5526 Pred
== ICmpInst::ICMP_ULE
)
5527 return replaceInstUsesWith(I
, Builder
.getTrue());
5528 return replaceInstUsesWith(I
, Builder
.getFalse());
5533 // See if the RHS value is < SignedMin.
5534 APFloat
SMin(RHS
.getSemantics());
5535 SMin
.convertFromAPInt(APInt::getSignedMinValue(IntWidth
), true,
5536 APFloat::rmNearestTiesToEven
);
5537 if (SMin
.compare(RHS
) == APFloat::cmpGreaterThan
) { // smin > 12312.0
5538 if (Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_SGT
||
5539 Pred
== ICmpInst::ICMP_SGE
)
5540 return replaceInstUsesWith(I
, Builder
.getTrue());
5541 return replaceInstUsesWith(I
, Builder
.getFalse());
5544 // See if the RHS value is < UnsignedMin.
5545 APFloat
SMin(RHS
.getSemantics());
5546 SMin
.convertFromAPInt(APInt::getMinValue(IntWidth
), true,
5547 APFloat::rmNearestTiesToEven
);
5548 if (SMin
.compare(RHS
) == APFloat::cmpGreaterThan
) { // umin > 12312.0
5549 if (Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_UGT
||
5550 Pred
== ICmpInst::ICMP_UGE
)
5551 return replaceInstUsesWith(I
, Builder
.getTrue());
5552 return replaceInstUsesWith(I
, Builder
.getFalse());
5556 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5557 // [0, UMAX], but it may still be fractional. See if it is fractional by
5558 // casting the FP value to the integer value and back, checking for equality.
5559 // Don't do this for zero, because -0.0 is not fractional.
5560 Constant
*RHSInt
= LHSUnsigned
5561 ? ConstantExpr::getFPToUI(RHSC
, IntTy
)
5562 : ConstantExpr::getFPToSI(RHSC
, IntTy
);
5563 if (!RHS
.isZero()) {
5564 bool Equal
= LHSUnsigned
5565 ? ConstantExpr::getUIToFP(RHSInt
, RHSC
->getType()) == RHSC
5566 : ConstantExpr::getSIToFP(RHSInt
, RHSC
->getType()) == RHSC
;
5568 // If we had a comparison against a fractional value, we have to adjust
5569 // the compare predicate and sometimes the value. RHSC is rounded towards
5570 // zero at this point.
5572 default: llvm_unreachable("Unexpected integer comparison!");
5573 case ICmpInst::ICMP_NE
: // (float)int != 4.4 --> true
5574 return replaceInstUsesWith(I
, Builder
.getTrue());
5575 case ICmpInst::ICMP_EQ
: // (float)int == 4.4 --> false
5576 return replaceInstUsesWith(I
, Builder
.getFalse());
5577 case ICmpInst::ICMP_ULE
:
5578 // (float)int <= 4.4 --> int <= 4
5579 // (float)int <= -4.4 --> false
5580 if (RHS
.isNegative())
5581 return replaceInstUsesWith(I
, Builder
.getFalse());
5583 case ICmpInst::ICMP_SLE
:
5584 // (float)int <= 4.4 --> int <= 4
5585 // (float)int <= -4.4 --> int < -4
5586 if (RHS
.isNegative())
5587 Pred
= ICmpInst::ICMP_SLT
;
5589 case ICmpInst::ICMP_ULT
:
5590 // (float)int < -4.4 --> false
5591 // (float)int < 4.4 --> int <= 4
5592 if (RHS
.isNegative())
5593 return replaceInstUsesWith(I
, Builder
.getFalse());
5594 Pred
= ICmpInst::ICMP_ULE
;
5596 case ICmpInst::ICMP_SLT
:
5597 // (float)int < -4.4 --> int < -4
5598 // (float)int < 4.4 --> int <= 4
5599 if (!RHS
.isNegative())
5600 Pred
= ICmpInst::ICMP_SLE
;
5602 case ICmpInst::ICMP_UGT
:
5603 // (float)int > 4.4 --> int > 4
5604 // (float)int > -4.4 --> true
5605 if (RHS
.isNegative())
5606 return replaceInstUsesWith(I
, Builder
.getTrue());
5608 case ICmpInst::ICMP_SGT
:
5609 // (float)int > 4.4 --> int > 4
5610 // (float)int > -4.4 --> int >= -4
5611 if (RHS
.isNegative())
5612 Pred
= ICmpInst::ICMP_SGE
;
5614 case ICmpInst::ICMP_UGE
:
5615 // (float)int >= -4.4 --> true
5616 // (float)int >= 4.4 --> int > 4
5617 if (RHS
.isNegative())
5618 return replaceInstUsesWith(I
, Builder
.getTrue());
5619 Pred
= ICmpInst::ICMP_UGT
;
5621 case ICmpInst::ICMP_SGE
:
5622 // (float)int >= -4.4 --> int >= -4
5623 // (float)int >= 4.4 --> int > 4
5624 if (!RHS
.isNegative())
5625 Pred
= ICmpInst::ICMP_SGT
;
5631 // Lower this FP comparison into an appropriate integer version of the
5633 return new ICmpInst(Pred
, LHSI
->getOperand(0), RHSInt
);
5636 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
5637 static Instruction
*foldFCmpReciprocalAndZero(FCmpInst
&I
, Instruction
*LHSI
,
5639 // When C is not 0.0 and infinities are not allowed:
5640 // (C / X) < 0.0 is a sign-bit test of X
5641 // (C / X) < 0.0 --> X < 0.0 (if C is positive)
5642 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
5645 // Multiply (C / X) < 0.0 by X * X / C.
5646 // - X is non zero, if it is the flag 'ninf' is violated.
5647 // - C defines the sign of X * X * C. Thus it also defines whether to swap
5648 // the predicate. C is also non zero by definition.
5650 // Thus X * X / C is non zero and the transformation is valid. [qed]
5652 FCmpInst::Predicate Pred
= I
.getPredicate();
5654 // Check that predicates are valid.
5655 if ((Pred
!= FCmpInst::FCMP_OGT
) && (Pred
!= FCmpInst::FCMP_OLT
) &&
5656 (Pred
!= FCmpInst::FCMP_OGE
) && (Pred
!= FCmpInst::FCMP_OLE
))
5659 // Check that RHS operand is zero.
5660 if (!match(RHSC
, m_AnyZeroFP()))
5663 // Check fastmath flags ('ninf').
5664 if (!LHSI
->hasNoInfs() || !I
.hasNoInfs())
5667 // Check the properties of the dividend. It must not be zero to avoid a
5668 // division by zero (see Proof).
5670 if (!match(LHSI
->getOperand(0), m_APFloat(C
)))
5676 // Get swapped predicate if necessary.
5677 if (C
->isNegative())
5678 Pred
= I
.getSwappedPredicate();
5680 return new FCmpInst(Pred
, LHSI
->getOperand(1), RHSC
, "", &I
);
5683 /// Optimize fabs(X) compared with zero.
5684 static Instruction
*foldFabsWithFcmpZero(FCmpInst
&I
) {
5686 if (!match(I
.getOperand(0), m_Intrinsic
<Intrinsic::fabs
>(m_Value(X
))) ||
5687 !match(I
.getOperand(1), m_PosZeroFP()))
5690 auto replacePredAndOp0
= [](FCmpInst
*I
, FCmpInst::Predicate P
, Value
*X
) {
5692 I
->setOperand(0, X
);
5696 switch (I
.getPredicate()) {
5697 case FCmpInst::FCMP_UGE
:
5698 case FCmpInst::FCMP_OLT
:
5699 // fabs(X) >= 0.0 --> true
5700 // fabs(X) < 0.0 --> false
5701 llvm_unreachable("fcmp should have simplified");
5703 case FCmpInst::FCMP_OGT
:
5704 // fabs(X) > 0.0 --> X != 0.0
5705 return replacePredAndOp0(&I
, FCmpInst::FCMP_ONE
, X
);
5707 case FCmpInst::FCMP_UGT
:
5708 // fabs(X) u> 0.0 --> X u!= 0.0
5709 return replacePredAndOp0(&I
, FCmpInst::FCMP_UNE
, X
);
5711 case FCmpInst::FCMP_OLE
:
5712 // fabs(X) <= 0.0 --> X == 0.0
5713 return replacePredAndOp0(&I
, FCmpInst::FCMP_OEQ
, X
);
5715 case FCmpInst::FCMP_ULE
:
5716 // fabs(X) u<= 0.0 --> X u== 0.0
5717 return replacePredAndOp0(&I
, FCmpInst::FCMP_UEQ
, X
);
5719 case FCmpInst::FCMP_OGE
:
5720 // fabs(X) >= 0.0 --> !isnan(X)
5721 assert(!I
.hasNoNaNs() && "fcmp should have simplified");
5722 return replacePredAndOp0(&I
, FCmpInst::FCMP_ORD
, X
);
5724 case FCmpInst::FCMP_ULT
:
5725 // fabs(X) u< 0.0 --> isnan(X)
5726 assert(!I
.hasNoNaNs() && "fcmp should have simplified");
5727 return replacePredAndOp0(&I
, FCmpInst::FCMP_UNO
, X
);
5729 case FCmpInst::FCMP_OEQ
:
5730 case FCmpInst::FCMP_UEQ
:
5731 case FCmpInst::FCMP_ONE
:
5732 case FCmpInst::FCMP_UNE
:
5733 case FCmpInst::FCMP_ORD
:
5734 case FCmpInst::FCMP_UNO
:
5735 // Look through the fabs() because it doesn't change anything but the sign.
5736 // fabs(X) == 0.0 --> X == 0.0,
5737 // fabs(X) != 0.0 --> X != 0.0
5738 // isnan(fabs(X)) --> isnan(X)
5739 // !isnan(fabs(X) --> !isnan(X)
5740 return replacePredAndOp0(&I
, I
.getPredicate(), X
);
5747 Instruction
*InstCombiner::visitFCmpInst(FCmpInst
&I
) {
5748 bool Changed
= false;
5750 /// Orders the operands of the compare so that they are listed from most
5751 /// complex to least complex. This puts constants before unary operators,
5752 /// before binary operators.
5753 if (getComplexity(I
.getOperand(0)) < getComplexity(I
.getOperand(1))) {
5758 const CmpInst::Predicate Pred
= I
.getPredicate();
5759 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
5760 if (Value
*V
= SimplifyFCmpInst(Pred
, Op0
, Op1
, I
.getFastMathFlags(),
5761 SQ
.getWithInstruction(&I
)))
5762 return replaceInstUsesWith(I
, V
);
5764 // Simplify 'fcmp pred X, X'
5765 Type
*OpType
= Op0
->getType();
5766 assert(OpType
== Op1
->getType() && "fcmp with different-typed operands?");
5770 case FCmpInst::FCMP_UNO
: // True if unordered: isnan(X) | isnan(Y)
5771 case FCmpInst::FCMP_ULT
: // True if unordered or less than
5772 case FCmpInst::FCMP_UGT
: // True if unordered or greater than
5773 case FCmpInst::FCMP_UNE
: // True if unordered or not equal
5774 // Canonicalize these to be 'fcmp uno %X, 0.0'.
5775 I
.setPredicate(FCmpInst::FCMP_UNO
);
5776 I
.setOperand(1, Constant::getNullValue(OpType
));
5779 case FCmpInst::FCMP_ORD
: // True if ordered (no nans)
5780 case FCmpInst::FCMP_OEQ
: // True if ordered and equal
5781 case FCmpInst::FCMP_OGE
: // True if ordered and greater than or equal
5782 case FCmpInst::FCMP_OLE
: // True if ordered and less than or equal
5783 // Canonicalize these to be 'fcmp ord %X, 0.0'.
5784 I
.setPredicate(FCmpInst::FCMP_ORD
);
5785 I
.setOperand(1, Constant::getNullValue(OpType
));
5790 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
5791 // then canonicalize the operand to 0.0.
5792 if (Pred
== CmpInst::FCMP_ORD
|| Pred
== CmpInst::FCMP_UNO
) {
5793 if (!match(Op0
, m_PosZeroFP()) && isKnownNeverNaN(Op0
, &TLI
)) {
5794 I
.setOperand(0, ConstantFP::getNullValue(OpType
));
5797 if (!match(Op1
, m_PosZeroFP()) && isKnownNeverNaN(Op1
, &TLI
)) {
5798 I
.setOperand(1, ConstantFP::getNullValue(OpType
));
5803 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
5805 if (match(Op0
, m_FNeg(m_Value(X
))) && match(Op1
, m_FNeg(m_Value(Y
))))
5806 return new FCmpInst(I
.getSwappedPredicate(), X
, Y
, "", &I
);
5808 // Test if the FCmpInst instruction is used exclusively by a select as
5809 // part of a minimum or maximum operation. If so, refrain from doing
5810 // any other folding. This helps out other analyses which understand
5811 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5812 // and CodeGen. And in this case, at least one of the comparison
5813 // operands has at least one user besides the compare (the select),
5814 // which would often largely negate the benefit of folding anyway.
5816 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(I
.user_back())) {
5818 SelectPatternResult SPR
= matchSelectPattern(SI
, A
, B
);
5819 if (SPR
.Flavor
!= SPF_UNKNOWN
)
5823 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
5824 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
5825 if (match(Op1
, m_AnyZeroFP()) && !match(Op1
, m_PosZeroFP())) {
5826 I
.setOperand(1, ConstantFP::getNullValue(OpType
));
5830 // Handle fcmp with instruction LHS and constant RHS.
5833 if (match(Op0
, m_Instruction(LHSI
)) && match(Op1
, m_Constant(RHSC
))) {
5834 switch (LHSI
->getOpcode()) {
5835 case Instruction::PHI
:
5836 // Only fold fcmp into the PHI if the phi and fcmp are in the same
5837 // block. If in the same block, we're encouraging jump threading. If
5838 // not, we are just pessimizing the code by making an i1 phi.
5839 if (LHSI
->getParent() == I
.getParent())
5840 if (Instruction
*NV
= foldOpIntoPhi(I
, cast
<PHINode
>(LHSI
)))
5843 case Instruction::SIToFP
:
5844 case Instruction::UIToFP
:
5845 if (Instruction
*NV
= foldFCmpIntToFPConst(I
, LHSI
, RHSC
))
5848 case Instruction::FDiv
:
5849 if (Instruction
*NV
= foldFCmpReciprocalAndZero(I
, LHSI
, RHSC
))
5852 case Instruction::Load
:
5853 if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(LHSI
->getOperand(0)))
5854 if (auto *GV
= dyn_cast
<GlobalVariable
>(GEP
->getOperand(0)))
5855 if (GV
->isConstant() && GV
->hasDefinitiveInitializer() &&
5856 !cast
<LoadInst
>(LHSI
)->isVolatile())
5857 if (Instruction
*Res
= foldCmpLoadFromIndexedGlobal(GEP
, GV
, I
))
5863 if (Instruction
*R
= foldFabsWithFcmpZero(I
))
5866 if (match(Op0
, m_FNeg(m_Value(X
)))) {
5867 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
5869 if (match(Op1
, m_Constant(C
))) {
5870 Constant
*NegC
= ConstantExpr::getFNeg(C
);
5871 return new FCmpInst(I
.getSwappedPredicate(), X
, NegC
, "", &I
);
5875 if (match(Op0
, m_FPExt(m_Value(X
)))) {
5876 // fcmp (fpext X), (fpext Y) -> fcmp X, Y
5877 if (match(Op1
, m_FPExt(m_Value(Y
))) && X
->getType() == Y
->getType())
5878 return new FCmpInst(Pred
, X
, Y
, "", &I
);
5880 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
5882 if (match(Op1
, m_APFloat(C
))) {
5883 const fltSemantics
&FPSem
=
5884 X
->getType()->getScalarType()->getFltSemantics();
5886 APFloat TruncC
= *C
;
5887 TruncC
.convert(FPSem
, APFloat::rmNearestTiesToEven
, &Lossy
);
5889 // Avoid lossy conversions and denormals.
5890 // Zero is a special case that's OK to convert.
5891 APFloat Fabs
= TruncC
;
5894 ((Fabs
.compare(APFloat::getSmallestNormalized(FPSem
)) !=
5895 APFloat::cmpLessThan
) || Fabs
.isZero())) {
5896 Constant
*NewC
= ConstantFP::get(X
->getType(), TruncC
);
5897 return new FCmpInst(Pred
, X
, NewC
, "", &I
);
5902 if (I
.getType()->isVectorTy())
5903 if (Instruction
*Res
= foldVectorCmp(I
, Builder
))
5906 return Changed
? &I
: nullptr;