[llvm-objdump] - Remove one overload of reportError. NFCI.
[llvm-complete.git] / lib / Transforms / InstCombine / InstCombineVectorOps.cpp
blobdc9abdd7f47a4f8dee781398aeec723ea46b6120
1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements instcombine for ExtractElement, InsertElement and
10 // ShuffleVector.
12 //===----------------------------------------------------------------------===//
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/VectorUtils.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/IR/User.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
37 #include <cassert>
38 #include <cstdint>
39 #include <iterator>
40 #include <utility>
42 using namespace llvm;
43 using namespace PatternMatch;
45 #define DEBUG_TYPE "instcombine"
47 /// Return true if the value is cheaper to scalarize than it is to leave as a
48 /// vector operation. IsConstantExtractIndex indicates whether we are extracting
49 /// one known element from a vector constant.
50 ///
51 /// FIXME: It's possible to create more instructions than previously existed.
52 static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) {
53 // If we can pick a scalar constant value out of a vector, that is free.
54 if (auto *C = dyn_cast<Constant>(V))
55 return IsConstantExtractIndex || C->getSplatValue();
57 // An insertelement to the same constant index as our extract will simplify
58 // to the scalar inserted element. An insertelement to a different constant
59 // index is irrelevant to our extract.
60 if (match(V, m_InsertElement(m_Value(), m_Value(), m_ConstantInt())))
61 return IsConstantExtractIndex;
63 if (match(V, m_OneUse(m_Load(m_Value()))))
64 return true;
66 Value *V0, *V1;
67 if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
68 if (cheapToScalarize(V0, IsConstantExtractIndex) ||
69 cheapToScalarize(V1, IsConstantExtractIndex))
70 return true;
72 CmpInst::Predicate UnusedPred;
73 if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
74 if (cheapToScalarize(V0, IsConstantExtractIndex) ||
75 cheapToScalarize(V1, IsConstantExtractIndex))
76 return true;
78 return false;
81 // If we have a PHI node with a vector type that is only used to feed
82 // itself and be an operand of extractelement at a constant location,
83 // try to replace the PHI of the vector type with a PHI of a scalar type.
84 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
85 SmallVector<Instruction *, 2> Extracts;
86 // The users we want the PHI to have are:
87 // 1) The EI ExtractElement (we already know this)
88 // 2) Possibly more ExtractElements with the same index.
89 // 3) Another operand, which will feed back into the PHI.
90 Instruction *PHIUser = nullptr;
91 for (auto U : PN->users()) {
92 if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
93 if (EI.getIndexOperand() == EU->getIndexOperand())
94 Extracts.push_back(EU);
95 else
96 return nullptr;
97 } else if (!PHIUser) {
98 PHIUser = cast<Instruction>(U);
99 } else {
100 return nullptr;
104 if (!PHIUser)
105 return nullptr;
107 // Verify that this PHI user has one use, which is the PHI itself,
108 // and that it is a binary operation which is cheap to scalarize.
109 // otherwise return nullptr.
110 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
111 !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true))
112 return nullptr;
114 // Create a scalar PHI node that will replace the vector PHI node
115 // just before the current PHI node.
116 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
117 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
118 // Scalarize each PHI operand.
119 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
120 Value *PHIInVal = PN->getIncomingValue(i);
121 BasicBlock *inBB = PN->getIncomingBlock(i);
122 Value *Elt = EI.getIndexOperand();
123 // If the operand is the PHI induction variable:
124 if (PHIInVal == PHIUser) {
125 // Scalarize the binary operation. Its first operand is the
126 // scalar PHI, and the second operand is extracted from the other
127 // vector operand.
128 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
129 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
130 Value *Op = InsertNewInstWith(
131 ExtractElementInst::Create(B0->getOperand(opId), Elt,
132 B0->getOperand(opId)->getName() + ".Elt"),
133 *B0);
134 Value *newPHIUser = InsertNewInstWith(
135 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
136 scalarPHI, Op, B0), *B0);
137 scalarPHI->addIncoming(newPHIUser, inBB);
138 } else {
139 // Scalarize PHI input:
140 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
141 // Insert the new instruction into the predecessor basic block.
142 Instruction *pos = dyn_cast<Instruction>(PHIInVal);
143 BasicBlock::iterator InsertPos;
144 if (pos && !isa<PHINode>(pos)) {
145 InsertPos = ++pos->getIterator();
146 } else {
147 InsertPos = inBB->getFirstInsertionPt();
150 InsertNewInstWith(newEI, *InsertPos);
152 scalarPHI->addIncoming(newEI, inBB);
156 for (auto E : Extracts)
157 replaceInstUsesWith(*E, scalarPHI);
159 return &EI;
162 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext,
163 InstCombiner::BuilderTy &Builder,
164 bool IsBigEndian) {
165 Value *X;
166 uint64_t ExtIndexC;
167 if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
168 !X->getType()->isVectorTy() ||
169 !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
170 return nullptr;
172 // If this extractelement is using a bitcast from a vector of the same number
173 // of elements, see if we can find the source element from the source vector:
174 // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
175 Type *SrcTy = X->getType();
176 Type *DestTy = Ext.getType();
177 unsigned NumSrcElts = SrcTy->getVectorNumElements();
178 unsigned NumElts = Ext.getVectorOperandType()->getNumElements();
179 if (NumSrcElts == NumElts)
180 if (Value *Elt = findScalarElement(X, ExtIndexC))
181 return new BitCastInst(Elt, DestTy);
183 // If the source elements are wider than the destination, try to shift and
184 // truncate a subset of scalar bits of an insert op.
185 if (NumSrcElts < NumElts) {
186 Value *Scalar;
187 uint64_t InsIndexC;
188 if (!match(X, m_InsertElement(m_Value(), m_Value(Scalar),
189 m_ConstantInt(InsIndexC))))
190 return nullptr;
192 // The extract must be from the subset of vector elements that we inserted
193 // into. Example: if we inserted element 1 of a <2 x i64> and we are
194 // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
195 // of elements 4-7 of the bitcasted vector.
196 unsigned NarrowingRatio = NumElts / NumSrcElts;
197 if (ExtIndexC / NarrowingRatio != InsIndexC)
198 return nullptr;
200 // We are extracting part of the original scalar. How that scalar is
201 // inserted into the vector depends on the endian-ness. Example:
202 // Vector Byte Elt Index: 0 1 2 3 4 5 6 7
203 // +--+--+--+--+--+--+--+--+
204 // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3|
205 // extelt <4 x i16> V', 3: | |S2|S3|
206 // +--+--+--+--+--+--+--+--+
207 // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
208 // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
209 // In this example, we must right-shift little-endian. Big-endian is just a
210 // truncate.
211 unsigned Chunk = ExtIndexC % NarrowingRatio;
212 if (IsBigEndian)
213 Chunk = NarrowingRatio - 1 - Chunk;
215 // Bail out if this is an FP vector to FP vector sequence. That would take
216 // more instructions than we started with unless there is no shift, and it
217 // may not be handled as well in the backend.
218 bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
219 bool NeedDestBitcast = DestTy->isFloatingPointTy();
220 if (NeedSrcBitcast && NeedDestBitcast)
221 return nullptr;
223 unsigned SrcWidth = SrcTy->getScalarSizeInBits();
224 unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
225 unsigned ShAmt = Chunk * DestWidth;
227 // TODO: This limitation is more strict than necessary. We could sum the
228 // number of new instructions and subtract the number eliminated to know if
229 // we can proceed.
230 if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
231 if (NeedSrcBitcast || NeedDestBitcast)
232 return nullptr;
234 if (NeedSrcBitcast) {
235 Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
236 Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
239 if (ShAmt) {
240 // Bail out if we could end with more instructions than we started with.
241 if (!Ext.getVectorOperand()->hasOneUse())
242 return nullptr;
243 Scalar = Builder.CreateLShr(Scalar, ShAmt);
246 if (NeedDestBitcast) {
247 Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
248 return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
250 return new TruncInst(Scalar, DestTy);
253 return nullptr;
256 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
257 Value *SrcVec = EI.getVectorOperand();
258 Value *Index = EI.getIndexOperand();
259 if (Value *V = SimplifyExtractElementInst(SrcVec, Index,
260 SQ.getWithInstruction(&EI)))
261 return replaceInstUsesWith(EI, V);
263 // If extracting a specified index from the vector, see if we can recursively
264 // find a previously computed scalar that was inserted into the vector.
265 auto *IndexC = dyn_cast<ConstantInt>(Index);
266 if (IndexC) {
267 unsigned NumElts = EI.getVectorOperandType()->getNumElements();
269 // InstSimplify should handle cases where the index is invalid.
270 if (!IndexC->getValue().ule(NumElts))
271 return nullptr;
273 // This instruction only demands the single element from the input vector.
274 // If the input vector has a single use, simplify it based on this use
275 // property.
276 if (SrcVec->hasOneUse() && NumElts != 1) {
277 APInt UndefElts(NumElts, 0);
278 APInt DemandedElts(NumElts, 0);
279 DemandedElts.setBit(IndexC->getZExtValue());
280 if (Value *V = SimplifyDemandedVectorElts(SrcVec, DemandedElts,
281 UndefElts)) {
282 EI.setOperand(0, V);
283 return &EI;
287 if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian()))
288 return I;
290 // If there's a vector PHI feeding a scalar use through this extractelement
291 // instruction, try to scalarize the PHI.
292 if (auto *Phi = dyn_cast<PHINode>(SrcVec))
293 if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
294 return ScalarPHI;
297 BinaryOperator *BO;
298 if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) {
299 // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
300 Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
301 Value *E0 = Builder.CreateExtractElement(X, Index);
302 Value *E1 = Builder.CreateExtractElement(Y, Index);
303 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
306 Value *X, *Y;
307 CmpInst::Predicate Pred;
308 if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
309 cheapToScalarize(SrcVec, IndexC)) {
310 // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
311 Value *E0 = Builder.CreateExtractElement(X, Index);
312 Value *E1 = Builder.CreateExtractElement(Y, Index);
313 return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
316 if (auto *I = dyn_cast<Instruction>(SrcVec)) {
317 if (auto *IE = dyn_cast<InsertElementInst>(I)) {
318 // Extracting the inserted element?
319 if (IE->getOperand(2) == Index)
320 return replaceInstUsesWith(EI, IE->getOperand(1));
321 // If the inserted and extracted elements are constants, they must not
322 // be the same value, extract from the pre-inserted value instead.
323 if (isa<Constant>(IE->getOperand(2)) && IndexC) {
324 Worklist.AddValue(SrcVec);
325 EI.setOperand(0, IE->getOperand(0));
326 return &EI;
328 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
329 // If this is extracting an element from a shufflevector, figure out where
330 // it came from and extract from the appropriate input element instead.
331 if (auto *Elt = dyn_cast<ConstantInt>(Index)) {
332 int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
333 Value *Src;
334 unsigned LHSWidth =
335 SVI->getOperand(0)->getType()->getVectorNumElements();
337 if (SrcIdx < 0)
338 return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
339 if (SrcIdx < (int)LHSWidth)
340 Src = SVI->getOperand(0);
341 else {
342 SrcIdx -= LHSWidth;
343 Src = SVI->getOperand(1);
345 Type *Int32Ty = Type::getInt32Ty(EI.getContext());
346 return ExtractElementInst::Create(Src,
347 ConstantInt::get(Int32Ty,
348 SrcIdx, false));
350 } else if (auto *CI = dyn_cast<CastInst>(I)) {
351 // Canonicalize extractelement(cast) -> cast(extractelement).
352 // Bitcasts can change the number of vector elements, and they cost
353 // nothing.
354 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
355 Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
356 Worklist.AddValue(EE);
357 return CastInst::Create(CI->getOpcode(), EE, EI.getType());
361 return nullptr;
364 /// If V is a shuffle of values that ONLY returns elements from either LHS or
365 /// RHS, return the shuffle mask and true. Otherwise, return false.
366 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
367 SmallVectorImpl<Constant*> &Mask) {
368 assert(LHS->getType() == RHS->getType() &&
369 "Invalid CollectSingleShuffleElements");
370 unsigned NumElts = V->getType()->getVectorNumElements();
372 if (isa<UndefValue>(V)) {
373 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
374 return true;
377 if (V == LHS) {
378 for (unsigned i = 0; i != NumElts; ++i)
379 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
380 return true;
383 if (V == RHS) {
384 for (unsigned i = 0; i != NumElts; ++i)
385 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
386 i+NumElts));
387 return true;
390 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
391 // If this is an insert of an extract from some other vector, include it.
392 Value *VecOp = IEI->getOperand(0);
393 Value *ScalarOp = IEI->getOperand(1);
394 Value *IdxOp = IEI->getOperand(2);
396 if (!isa<ConstantInt>(IdxOp))
397 return false;
398 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
400 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
401 // We can handle this if the vector we are inserting into is
402 // transitively ok.
403 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
404 // If so, update the mask to reflect the inserted undef.
405 Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
406 return true;
408 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
409 if (isa<ConstantInt>(EI->getOperand(1))) {
410 unsigned ExtractedIdx =
411 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
412 unsigned NumLHSElts = LHS->getType()->getVectorNumElements();
414 // This must be extracting from either LHS or RHS.
415 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
416 // We can handle this if the vector we are inserting into is
417 // transitively ok.
418 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
419 // If so, update the mask to reflect the inserted value.
420 if (EI->getOperand(0) == LHS) {
421 Mask[InsertedIdx % NumElts] =
422 ConstantInt::get(Type::getInt32Ty(V->getContext()),
423 ExtractedIdx);
424 } else {
425 assert(EI->getOperand(0) == RHS);
426 Mask[InsertedIdx % NumElts] =
427 ConstantInt::get(Type::getInt32Ty(V->getContext()),
428 ExtractedIdx + NumLHSElts);
430 return true;
437 return false;
440 /// If we have insertion into a vector that is wider than the vector that we
441 /// are extracting from, try to widen the source vector to allow a single
442 /// shufflevector to replace one or more insert/extract pairs.
443 static void replaceExtractElements(InsertElementInst *InsElt,
444 ExtractElementInst *ExtElt,
445 InstCombiner &IC) {
446 VectorType *InsVecType = InsElt->getType();
447 VectorType *ExtVecType = ExtElt->getVectorOperandType();
448 unsigned NumInsElts = InsVecType->getVectorNumElements();
449 unsigned NumExtElts = ExtVecType->getVectorNumElements();
451 // The inserted-to vector must be wider than the extracted-from vector.
452 if (InsVecType->getElementType() != ExtVecType->getElementType() ||
453 NumExtElts >= NumInsElts)
454 return;
456 // Create a shuffle mask to widen the extended-from vector using undefined
457 // values. The mask selects all of the values of the original vector followed
458 // by as many undefined values as needed to create a vector of the same length
459 // as the inserted-to vector.
460 SmallVector<Constant *, 16> ExtendMask;
461 IntegerType *IntType = Type::getInt32Ty(InsElt->getContext());
462 for (unsigned i = 0; i < NumExtElts; ++i)
463 ExtendMask.push_back(ConstantInt::get(IntType, i));
464 for (unsigned i = NumExtElts; i < NumInsElts; ++i)
465 ExtendMask.push_back(UndefValue::get(IntType));
467 Value *ExtVecOp = ExtElt->getVectorOperand();
468 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
469 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
470 ? ExtVecOpInst->getParent()
471 : ExtElt->getParent();
473 // TODO: This restriction matches the basic block check below when creating
474 // new extractelement instructions. If that limitation is removed, this one
475 // could also be removed. But for now, we just bail out to ensure that we
476 // will replace the extractelement instruction that is feeding our
477 // insertelement instruction. This allows the insertelement to then be
478 // replaced by a shufflevector. If the insertelement is not replaced, we can
479 // induce infinite looping because there's an optimization for extractelement
480 // that will delete our widening shuffle. This would trigger another attempt
481 // here to create that shuffle, and we spin forever.
482 if (InsertionBlock != InsElt->getParent())
483 return;
485 // TODO: This restriction matches the check in visitInsertElementInst() and
486 // prevents an infinite loop caused by not turning the extract/insert pair
487 // into a shuffle. We really should not need either check, but we're lacking
488 // folds for shufflevectors because we're afraid to generate shuffle masks
489 // that the backend can't handle.
490 if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
491 return;
493 auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType),
494 ConstantVector::get(ExtendMask));
496 // Insert the new shuffle after the vector operand of the extract is defined
497 // (as long as it's not a PHI) or at the start of the basic block of the
498 // extract, so any subsequent extracts in the same basic block can use it.
499 // TODO: Insert before the earliest ExtractElementInst that is replaced.
500 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
501 WideVec->insertAfter(ExtVecOpInst);
502 else
503 IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
505 // Replace extracts from the original narrow vector with extracts from the new
506 // wide vector.
507 for (User *U : ExtVecOp->users()) {
508 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
509 if (!OldExt || OldExt->getParent() != WideVec->getParent())
510 continue;
511 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
512 NewExt->insertAfter(OldExt);
513 IC.replaceInstUsesWith(*OldExt, NewExt);
517 /// We are building a shuffle to create V, which is a sequence of insertelement,
518 /// extractelement pairs. If PermittedRHS is set, then we must either use it or
519 /// not rely on the second vector source. Return a std::pair containing the
520 /// left and right vectors of the proposed shuffle (or 0), and set the Mask
521 /// parameter as required.
523 /// Note: we intentionally don't try to fold earlier shuffles since they have
524 /// often been chosen carefully to be efficiently implementable on the target.
525 using ShuffleOps = std::pair<Value *, Value *>;
527 static ShuffleOps collectShuffleElements(Value *V,
528 SmallVectorImpl<Constant *> &Mask,
529 Value *PermittedRHS,
530 InstCombiner &IC) {
531 assert(V->getType()->isVectorTy() && "Invalid shuffle!");
532 unsigned NumElts = V->getType()->getVectorNumElements();
534 if (isa<UndefValue>(V)) {
535 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
536 return std::make_pair(
537 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
540 if (isa<ConstantAggregateZero>(V)) {
541 Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
542 return std::make_pair(V, nullptr);
545 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
546 // If this is an insert of an extract from some other vector, include it.
547 Value *VecOp = IEI->getOperand(0);
548 Value *ScalarOp = IEI->getOperand(1);
549 Value *IdxOp = IEI->getOperand(2);
551 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
552 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
553 unsigned ExtractedIdx =
554 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
555 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
557 // Either the extracted from or inserted into vector must be RHSVec,
558 // otherwise we'd end up with a shuffle of three inputs.
559 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
560 Value *RHS = EI->getOperand(0);
561 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
562 assert(LR.second == nullptr || LR.second == RHS);
564 if (LR.first->getType() != RHS->getType()) {
565 // Although we are giving up for now, see if we can create extracts
566 // that match the inserts for another round of combining.
567 replaceExtractElements(IEI, EI, IC);
569 // We tried our best, but we can't find anything compatible with RHS
570 // further up the chain. Return a trivial shuffle.
571 for (unsigned i = 0; i < NumElts; ++i)
572 Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i);
573 return std::make_pair(V, nullptr);
576 unsigned NumLHSElts = RHS->getType()->getVectorNumElements();
577 Mask[InsertedIdx % NumElts] =
578 ConstantInt::get(Type::getInt32Ty(V->getContext()),
579 NumLHSElts+ExtractedIdx);
580 return std::make_pair(LR.first, RHS);
583 if (VecOp == PermittedRHS) {
584 // We've gone as far as we can: anything on the other side of the
585 // extractelement will already have been converted into a shuffle.
586 unsigned NumLHSElts =
587 EI->getOperand(0)->getType()->getVectorNumElements();
588 for (unsigned i = 0; i != NumElts; ++i)
589 Mask.push_back(ConstantInt::get(
590 Type::getInt32Ty(V->getContext()),
591 i == InsertedIdx ? ExtractedIdx : NumLHSElts + i));
592 return std::make_pair(EI->getOperand(0), PermittedRHS);
595 // If this insertelement is a chain that comes from exactly these two
596 // vectors, return the vector and the effective shuffle.
597 if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
598 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
599 Mask))
600 return std::make_pair(EI->getOperand(0), PermittedRHS);
605 // Otherwise, we can't do anything fancy. Return an identity vector.
606 for (unsigned i = 0; i != NumElts; ++i)
607 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
608 return std::make_pair(V, nullptr);
611 /// Try to find redundant insertvalue instructions, like the following ones:
612 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0
613 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0
614 /// Here the second instruction inserts values at the same indices, as the
615 /// first one, making the first one redundant.
616 /// It should be transformed to:
617 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0
618 Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) {
619 bool IsRedundant = false;
620 ArrayRef<unsigned int> FirstIndices = I.getIndices();
622 // If there is a chain of insertvalue instructions (each of them except the
623 // last one has only one use and it's another insertvalue insn from this
624 // chain), check if any of the 'children' uses the same indices as the first
625 // instruction. In this case, the first one is redundant.
626 Value *V = &I;
627 unsigned Depth = 0;
628 while (V->hasOneUse() && Depth < 10) {
629 User *U = V->user_back();
630 auto UserInsInst = dyn_cast<InsertValueInst>(U);
631 if (!UserInsInst || U->getOperand(0) != V)
632 break;
633 if (UserInsInst->getIndices() == FirstIndices) {
634 IsRedundant = true;
635 break;
637 V = UserInsInst;
638 Depth++;
641 if (IsRedundant)
642 return replaceInstUsesWith(I, I.getOperand(0));
643 return nullptr;
646 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
647 int MaskSize = Shuf.getMask()->getType()->getVectorNumElements();
648 int VecSize = Shuf.getOperand(0)->getType()->getVectorNumElements();
650 // A vector select does not change the size of the operands.
651 if (MaskSize != VecSize)
652 return false;
654 // Each mask element must be undefined or choose a vector element from one of
655 // the source operands without crossing vector lanes.
656 for (int i = 0; i != MaskSize; ++i) {
657 int Elt = Shuf.getMaskValue(i);
658 if (Elt != -1 && Elt != i && Elt != i + VecSize)
659 return false;
662 return true;
665 /// Turn a chain of inserts that splats a value into an insert + shuffle:
666 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
667 /// shufflevector(insertelt(X, %k, 0), undef, zero)
668 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) {
669 // We are interested in the last insert in a chain. So if this insert has a
670 // single user and that user is an insert, bail.
671 if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
672 return nullptr;
674 auto *VecTy = cast<VectorType>(InsElt.getType());
675 unsigned NumElements = VecTy->getNumElements();
677 // Do not try to do this for a one-element vector, since that's a nop,
678 // and will cause an inf-loop.
679 if (NumElements == 1)
680 return nullptr;
682 Value *SplatVal = InsElt.getOperand(1);
683 InsertElementInst *CurrIE = &InsElt;
684 SmallVector<bool, 16> ElementPresent(NumElements, false);
685 InsertElementInst *FirstIE = nullptr;
687 // Walk the chain backwards, keeping track of which indices we inserted into,
688 // until we hit something that isn't an insert of the splatted value.
689 while (CurrIE) {
690 auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
691 if (!Idx || CurrIE->getOperand(1) != SplatVal)
692 return nullptr;
694 auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
695 // Check none of the intermediate steps have any additional uses, except
696 // for the root insertelement instruction, which can be re-used, if it
697 // inserts at position 0.
698 if (CurrIE != &InsElt &&
699 (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
700 return nullptr;
702 ElementPresent[Idx->getZExtValue()] = true;
703 FirstIE = CurrIE;
704 CurrIE = NextIE;
707 // If this is just a single insertelement (not a sequence), we are done.
708 if (FirstIE == &InsElt)
709 return nullptr;
711 // If we are not inserting into an undef vector, make sure we've seen an
712 // insert into every element.
713 // TODO: If the base vector is not undef, it might be better to create a splat
714 // and then a select-shuffle (blend) with the base vector.
715 if (!isa<UndefValue>(FirstIE->getOperand(0)))
716 if (any_of(ElementPresent, [](bool Present) { return !Present; }))
717 return nullptr;
719 // Create the insert + shuffle.
720 Type *Int32Ty = Type::getInt32Ty(InsElt.getContext());
721 UndefValue *UndefVec = UndefValue::get(VecTy);
722 Constant *Zero = ConstantInt::get(Int32Ty, 0);
723 if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
724 FirstIE = InsertElementInst::Create(UndefVec, SplatVal, Zero, "", &InsElt);
726 // Splat from element 0, but replace absent elements with undef in the mask.
727 SmallVector<Constant *, 16> Mask(NumElements, Zero);
728 for (unsigned i = 0; i != NumElements; ++i)
729 if (!ElementPresent[i])
730 Mask[i] = UndefValue::get(Int32Ty);
732 return new ShuffleVectorInst(FirstIE, UndefVec, ConstantVector::get(Mask));
735 /// Try to fold an insert element into an existing splat shuffle by changing
736 /// the shuffle's mask to include the index of this insert element.
737 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) {
738 // Check if the vector operand of this insert is a canonical splat shuffle.
739 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
740 if (!Shuf || !Shuf->isZeroEltSplat())
741 return nullptr;
743 // Check for a constant insertion index.
744 uint64_t IdxC;
745 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
746 return nullptr;
748 // Check if the splat shuffle's input is the same as this insert's scalar op.
749 Value *X = InsElt.getOperand(1);
750 Value *Op0 = Shuf->getOperand(0);
751 if (!match(Op0, m_InsertElement(m_Undef(), m_Specific(X), m_ZeroInt())))
752 return nullptr;
754 // Replace the shuffle mask element at the index of this insert with a zero.
755 // For example:
756 // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1
757 // --> shuf (inselt undef, X, 0), undef, <0,0,0,undef>
758 unsigned NumMaskElts = Shuf->getType()->getVectorNumElements();
759 SmallVector<Constant *, 16> NewMaskVec(NumMaskElts);
760 Type *I32Ty = IntegerType::getInt32Ty(Shuf->getContext());
761 Constant *Zero = ConstantInt::getNullValue(I32Ty);
762 for (unsigned i = 0; i != NumMaskElts; ++i)
763 NewMaskVec[i] = i == IdxC ? Zero : Shuf->getMask()->getAggregateElement(i);
765 Constant *NewMask = ConstantVector::get(NewMaskVec);
766 return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask);
769 /// If we have an insertelement instruction feeding into another insertelement
770 /// and the 2nd is inserting a constant into the vector, canonicalize that
771 /// constant insertion before the insertion of a variable:
773 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
774 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
776 /// This has the potential of eliminating the 2nd insertelement instruction
777 /// via constant folding of the scalar constant into a vector constant.
778 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
779 InstCombiner::BuilderTy &Builder) {
780 auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
781 if (!InsElt1 || !InsElt1->hasOneUse())
782 return nullptr;
784 Value *X, *Y;
785 Constant *ScalarC;
786 ConstantInt *IdxC1, *IdxC2;
787 if (match(InsElt1->getOperand(0), m_Value(X)) &&
788 match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
789 match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
790 match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
791 match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
792 Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
793 return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
796 return nullptr;
799 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
800 /// --> shufflevector X, CVec', Mask'
801 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
802 auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
803 // Bail out if the parent has more than one use. In that case, we'd be
804 // replacing the insertelt with a shuffle, and that's not a clear win.
805 if (!Inst || !Inst->hasOneUse())
806 return nullptr;
807 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
808 // The shuffle must have a constant vector operand. The insertelt must have
809 // a constant scalar being inserted at a constant position in the vector.
810 Constant *ShufConstVec, *InsEltScalar;
811 uint64_t InsEltIndex;
812 if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
813 !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
814 !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
815 return nullptr;
817 // Adding an element to an arbitrary shuffle could be expensive, but a
818 // shuffle that selects elements from vectors without crossing lanes is
819 // assumed cheap.
820 // If we're just adding a constant into that shuffle, it will still be
821 // cheap.
822 if (!isShuffleEquivalentToSelect(*Shuf))
823 return nullptr;
825 // From the above 'select' check, we know that the mask has the same number
826 // of elements as the vector input operands. We also know that each constant
827 // input element is used in its lane and can not be used more than once by
828 // the shuffle. Therefore, replace the constant in the shuffle's constant
829 // vector with the insertelt constant. Replace the constant in the shuffle's
830 // mask vector with the insertelt index plus the length of the vector
831 // (because the constant vector operand of a shuffle is always the 2nd
832 // operand).
833 Constant *Mask = Shuf->getMask();
834 unsigned NumElts = Mask->getType()->getVectorNumElements();
835 SmallVector<Constant *, 16> NewShufElts(NumElts);
836 SmallVector<Constant *, 16> NewMaskElts(NumElts);
837 for (unsigned I = 0; I != NumElts; ++I) {
838 if (I == InsEltIndex) {
839 NewShufElts[I] = InsEltScalar;
840 Type *Int32Ty = Type::getInt32Ty(Shuf->getContext());
841 NewMaskElts[I] = ConstantInt::get(Int32Ty, InsEltIndex + NumElts);
842 } else {
843 // Copy over the existing values.
844 NewShufElts[I] = ShufConstVec->getAggregateElement(I);
845 NewMaskElts[I] = Mask->getAggregateElement(I);
849 // Create new operands for a shuffle that includes the constant of the
850 // original insertelt. The old shuffle will be dead now.
851 return new ShuffleVectorInst(Shuf->getOperand(0),
852 ConstantVector::get(NewShufElts),
853 ConstantVector::get(NewMaskElts));
854 } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
855 // Transform sequences of insertelements ops with constant data/indexes into
856 // a single shuffle op.
857 unsigned NumElts = InsElt.getType()->getNumElements();
859 uint64_t InsertIdx[2];
860 Constant *Val[2];
861 if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
862 !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
863 !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
864 !match(IEI->getOperand(1), m_Constant(Val[1])))
865 return nullptr;
866 SmallVector<Constant *, 16> Values(NumElts);
867 SmallVector<Constant *, 16> Mask(NumElts);
868 auto ValI = std::begin(Val);
869 // Generate new constant vector and mask.
870 // We have 2 values/masks from the insertelements instructions. Insert them
871 // into new value/mask vectors.
872 for (uint64_t I : InsertIdx) {
873 if (!Values[I]) {
874 assert(!Mask[I]);
875 Values[I] = *ValI;
876 Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()),
877 NumElts + I);
879 ++ValI;
881 // Remaining values are filled with 'undef' values.
882 for (unsigned I = 0; I < NumElts; ++I) {
883 if (!Values[I]) {
884 assert(!Mask[I]);
885 Values[I] = UndefValue::get(InsElt.getType()->getElementType());
886 Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I);
889 // Create new operands for a shuffle that includes the constant of the
890 // original insertelt.
891 return new ShuffleVectorInst(IEI->getOperand(0),
892 ConstantVector::get(Values),
893 ConstantVector::get(Mask));
895 return nullptr;
898 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
899 Value *VecOp = IE.getOperand(0);
900 Value *ScalarOp = IE.getOperand(1);
901 Value *IdxOp = IE.getOperand(2);
903 if (auto *V = SimplifyInsertElementInst(
904 VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
905 return replaceInstUsesWith(IE, V);
907 // If the vector and scalar are both bitcast from the same element type, do
908 // the insert in that source type followed by bitcast.
909 Value *VecSrc, *ScalarSrc;
910 if (match(VecOp, m_BitCast(m_Value(VecSrc))) &&
911 match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) &&
912 (VecOp->hasOneUse() || ScalarOp->hasOneUse()) &&
913 VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() &&
914 VecSrc->getType()->getVectorElementType() == ScalarSrc->getType()) {
915 // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
916 // bitcast (inselt VecSrc, ScalarSrc, IdxOp)
917 Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
918 return new BitCastInst(NewInsElt, IE.getType());
921 // If the inserted element was extracted from some other vector and both
922 // indexes are valid constants, try to turn this into a shuffle.
923 uint64_t InsertedIdx, ExtractedIdx;
924 Value *ExtVecOp;
925 if (match(IdxOp, m_ConstantInt(InsertedIdx)) &&
926 match(ScalarOp, m_ExtractElement(m_Value(ExtVecOp),
927 m_ConstantInt(ExtractedIdx))) &&
928 ExtractedIdx < ExtVecOp->getType()->getVectorNumElements()) {
929 // TODO: Looking at the user(s) to determine if this insert is a
930 // fold-to-shuffle opportunity does not match the usual instcombine
931 // constraints. We should decide if the transform is worthy based only
932 // on this instruction and its operands, but that may not work currently.
934 // Here, we are trying to avoid creating shuffles before reaching
935 // the end of a chain of extract-insert pairs. This is complicated because
936 // we do not generally form arbitrary shuffle masks in instcombine
937 // (because those may codegen poorly), but collectShuffleElements() does
938 // exactly that.
940 // The rules for determining what is an acceptable target-independent
941 // shuffle mask are fuzzy because they evolve based on the backend's
942 // capabilities and real-world impact.
943 auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
944 if (!Insert.hasOneUse())
945 return true;
946 auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
947 if (!InsertUser)
948 return true;
949 return false;
952 // Try to form a shuffle from a chain of extract-insert ops.
953 if (isShuffleRootCandidate(IE)) {
954 SmallVector<Constant*, 16> Mask;
955 ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);
957 // The proposed shuffle may be trivial, in which case we shouldn't
958 // perform the combine.
959 if (LR.first != &IE && LR.second != &IE) {
960 // We now have a shuffle of LHS, RHS, Mask.
961 if (LR.second == nullptr)
962 LR.second = UndefValue::get(LR.first->getType());
963 return new ShuffleVectorInst(LR.first, LR.second,
964 ConstantVector::get(Mask));
969 unsigned VWidth = VecOp->getType()->getVectorNumElements();
970 APInt UndefElts(VWidth, 0);
971 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
972 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
973 if (V != &IE)
974 return replaceInstUsesWith(IE, V);
975 return &IE;
978 if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
979 return Shuf;
981 if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
982 return NewInsElt;
984 if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE))
985 return Broadcast;
987 if (Instruction *Splat = foldInsEltIntoSplat(IE))
988 return Splat;
990 return nullptr;
993 /// Return true if we can evaluate the specified expression tree if the vector
994 /// elements were shuffled in a different order.
995 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
996 unsigned Depth = 5) {
997 // We can always reorder the elements of a constant.
998 if (isa<Constant>(V))
999 return true;
1001 // We won't reorder vector arguments. No IPO here.
1002 Instruction *I = dyn_cast<Instruction>(V);
1003 if (!I) return false;
1005 // Two users may expect different orders of the elements. Don't try it.
1006 if (!I->hasOneUse())
1007 return false;
1009 if (Depth == 0) return false;
1011 switch (I->getOpcode()) {
1012 case Instruction::Add:
1013 case Instruction::FAdd:
1014 case Instruction::Sub:
1015 case Instruction::FSub:
1016 case Instruction::Mul:
1017 case Instruction::FMul:
1018 case Instruction::UDiv:
1019 case Instruction::SDiv:
1020 case Instruction::FDiv:
1021 case Instruction::URem:
1022 case Instruction::SRem:
1023 case Instruction::FRem:
1024 case Instruction::Shl:
1025 case Instruction::LShr:
1026 case Instruction::AShr:
1027 case Instruction::And:
1028 case Instruction::Or:
1029 case Instruction::Xor:
1030 case Instruction::ICmp:
1031 case Instruction::FCmp:
1032 case Instruction::Trunc:
1033 case Instruction::ZExt:
1034 case Instruction::SExt:
1035 case Instruction::FPToUI:
1036 case Instruction::FPToSI:
1037 case Instruction::UIToFP:
1038 case Instruction::SIToFP:
1039 case Instruction::FPTrunc:
1040 case Instruction::FPExt:
1041 case Instruction::GetElementPtr: {
1042 // Bail out if we would create longer vector ops. We could allow creating
1043 // longer vector ops, but that may result in more expensive codegen. We
1044 // would also need to limit the transform to avoid undefined behavior for
1045 // integer div/rem.
1046 Type *ITy = I->getType();
1047 if (ITy->isVectorTy() && Mask.size() > ITy->getVectorNumElements())
1048 return false;
1049 for (Value *Operand : I->operands()) {
1050 if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
1051 return false;
1053 return true;
1055 case Instruction::InsertElement: {
1056 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
1057 if (!CI) return false;
1058 int ElementNumber = CI->getLimitedValue();
1060 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
1061 // can't put an element into multiple indices.
1062 bool SeenOnce = false;
1063 for (int i = 0, e = Mask.size(); i != e; ++i) {
1064 if (Mask[i] == ElementNumber) {
1065 if (SeenOnce)
1066 return false;
1067 SeenOnce = true;
1070 return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
1073 return false;
1076 /// Rebuild a new instruction just like 'I' but with the new operands given.
1077 /// In the event of type mismatch, the type of the operands is correct.
1078 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
1079 // We don't want to use the IRBuilder here because we want the replacement
1080 // instructions to appear next to 'I', not the builder's insertion point.
1081 switch (I->getOpcode()) {
1082 case Instruction::Add:
1083 case Instruction::FAdd:
1084 case Instruction::Sub:
1085 case Instruction::FSub:
1086 case Instruction::Mul:
1087 case Instruction::FMul:
1088 case Instruction::UDiv:
1089 case Instruction::SDiv:
1090 case Instruction::FDiv:
1091 case Instruction::URem:
1092 case Instruction::SRem:
1093 case Instruction::FRem:
1094 case Instruction::Shl:
1095 case Instruction::LShr:
1096 case Instruction::AShr:
1097 case Instruction::And:
1098 case Instruction::Or:
1099 case Instruction::Xor: {
1100 BinaryOperator *BO = cast<BinaryOperator>(I);
1101 assert(NewOps.size() == 2 && "binary operator with #ops != 2");
1102 BinaryOperator *New =
1103 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
1104 NewOps[0], NewOps[1], "", BO);
1105 if (isa<OverflowingBinaryOperator>(BO)) {
1106 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
1107 New->setHasNoSignedWrap(BO->hasNoSignedWrap());
1109 if (isa<PossiblyExactOperator>(BO)) {
1110 New->setIsExact(BO->isExact());
1112 if (isa<FPMathOperator>(BO))
1113 New->copyFastMathFlags(I);
1114 return New;
1116 case Instruction::ICmp:
1117 assert(NewOps.size() == 2 && "icmp with #ops != 2");
1118 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
1119 NewOps[0], NewOps[1]);
1120 case Instruction::FCmp:
1121 assert(NewOps.size() == 2 && "fcmp with #ops != 2");
1122 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
1123 NewOps[0], NewOps[1]);
1124 case Instruction::Trunc:
1125 case Instruction::ZExt:
1126 case Instruction::SExt:
1127 case Instruction::FPToUI:
1128 case Instruction::FPToSI:
1129 case Instruction::UIToFP:
1130 case Instruction::SIToFP:
1131 case Instruction::FPTrunc:
1132 case Instruction::FPExt: {
1133 // It's possible that the mask has a different number of elements from
1134 // the original cast. We recompute the destination type to match the mask.
1135 Type *DestTy =
1136 VectorType::get(I->getType()->getScalarType(),
1137 NewOps[0]->getType()->getVectorNumElements());
1138 assert(NewOps.size() == 1 && "cast with #ops != 1");
1139 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
1140 "", I);
1142 case Instruction::GetElementPtr: {
1143 Value *Ptr = NewOps[0];
1144 ArrayRef<Value*> Idx = NewOps.slice(1);
1145 GetElementPtrInst *GEP = GetElementPtrInst::Create(
1146 cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
1147 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
1148 return GEP;
1151 llvm_unreachable("failed to rebuild vector instructions");
1154 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
1155 // Mask.size() does not need to be equal to the number of vector elements.
1157 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
1158 Type *EltTy = V->getType()->getScalarType();
1159 Type *I32Ty = IntegerType::getInt32Ty(V->getContext());
1160 if (isa<UndefValue>(V))
1161 return UndefValue::get(VectorType::get(EltTy, Mask.size()));
1163 if (isa<ConstantAggregateZero>(V))
1164 return ConstantAggregateZero::get(VectorType::get(EltTy, Mask.size()));
1166 if (Constant *C = dyn_cast<Constant>(V)) {
1167 SmallVector<Constant *, 16> MaskValues;
1168 for (int i = 0, e = Mask.size(); i != e; ++i) {
1169 if (Mask[i] == -1)
1170 MaskValues.push_back(UndefValue::get(I32Ty));
1171 else
1172 MaskValues.push_back(ConstantInt::get(I32Ty, Mask[i]));
1174 return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
1175 ConstantVector::get(MaskValues));
1178 Instruction *I = cast<Instruction>(V);
1179 switch (I->getOpcode()) {
1180 case Instruction::Add:
1181 case Instruction::FAdd:
1182 case Instruction::Sub:
1183 case Instruction::FSub:
1184 case Instruction::Mul:
1185 case Instruction::FMul:
1186 case Instruction::UDiv:
1187 case Instruction::SDiv:
1188 case Instruction::FDiv:
1189 case Instruction::URem:
1190 case Instruction::SRem:
1191 case Instruction::FRem:
1192 case Instruction::Shl:
1193 case Instruction::LShr:
1194 case Instruction::AShr:
1195 case Instruction::And:
1196 case Instruction::Or:
1197 case Instruction::Xor:
1198 case Instruction::ICmp:
1199 case Instruction::FCmp:
1200 case Instruction::Trunc:
1201 case Instruction::ZExt:
1202 case Instruction::SExt:
1203 case Instruction::FPToUI:
1204 case Instruction::FPToSI:
1205 case Instruction::UIToFP:
1206 case Instruction::SIToFP:
1207 case Instruction::FPTrunc:
1208 case Instruction::FPExt:
1209 case Instruction::Select:
1210 case Instruction::GetElementPtr: {
1211 SmallVector<Value*, 8> NewOps;
1212 bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
1213 for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
1214 Value *V;
1215 // Recursively call evaluateInDifferentElementOrder on vector arguments
1216 // as well. E.g. GetElementPtr may have scalar operands even if the
1217 // return value is a vector, so we need to examine the operand type.
1218 if (I->getOperand(i)->getType()->isVectorTy())
1219 V = evaluateInDifferentElementOrder(I->getOperand(i), Mask);
1220 else
1221 V = I->getOperand(i);
1222 NewOps.push_back(V);
1223 NeedsRebuild |= (V != I->getOperand(i));
1225 if (NeedsRebuild) {
1226 return buildNew(I, NewOps);
1228 return I;
1230 case Instruction::InsertElement: {
1231 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
1233 // The insertelement was inserting at Element. Figure out which element
1234 // that becomes after shuffling. The answer is guaranteed to be unique
1235 // by CanEvaluateShuffled.
1236 bool Found = false;
1237 int Index = 0;
1238 for (int e = Mask.size(); Index != e; ++Index) {
1239 if (Mask[Index] == Element) {
1240 Found = true;
1241 break;
1245 // If element is not in Mask, no need to handle the operand 1 (element to
1246 // be inserted). Just evaluate values in operand 0 according to Mask.
1247 if (!Found)
1248 return evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1250 Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1251 return InsertElementInst::Create(V, I->getOperand(1),
1252 ConstantInt::get(I32Ty, Index), "", I);
1255 llvm_unreachable("failed to reorder elements of vector instruction!");
1258 static void recognizeIdentityMask(const SmallVectorImpl<int> &Mask,
1259 bool &isLHSID, bool &isRHSID) {
1260 isLHSID = isRHSID = true;
1262 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
1263 if (Mask[i] < 0) continue; // Ignore undef values.
1264 // Is this an identity shuffle of the LHS value?
1265 isLHSID &= (Mask[i] == (int)i);
1267 // Is this an identity shuffle of the RHS value?
1268 isRHSID &= (Mask[i]-e == i);
1272 // Returns true if the shuffle is extracting a contiguous range of values from
1273 // LHS, for example:
1274 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1275 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
1276 // Shuffles to: |EE|FF|GG|HH|
1277 // +--+--+--+--+
1278 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
1279 SmallVector<int, 16> &Mask) {
1280 unsigned LHSElems = SVI.getOperand(0)->getType()->getVectorNumElements();
1281 unsigned MaskElems = Mask.size();
1282 unsigned BegIdx = Mask.front();
1283 unsigned EndIdx = Mask.back();
1284 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
1285 return false;
1286 for (unsigned I = 0; I != MaskElems; ++I)
1287 if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
1288 return false;
1289 return true;
1292 /// These are the ingredients in an alternate form binary operator as described
1293 /// below.
1294 struct BinopElts {
1295 BinaryOperator::BinaryOps Opcode;
1296 Value *Op0;
1297 Value *Op1;
1298 BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
1299 Value *V0 = nullptr, Value *V1 = nullptr) :
1300 Opcode(Opc), Op0(V0), Op1(V1) {}
1301 operator bool() const { return Opcode != 0; }
1304 /// Binops may be transformed into binops with different opcodes and operands.
1305 /// Reverse the usual canonicalization to enable folds with the non-canonical
1306 /// form of the binop. If a transform is possible, return the elements of the
1307 /// new binop. If not, return invalid elements.
1308 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
1309 Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
1310 Type *Ty = BO->getType();
1311 switch (BO->getOpcode()) {
1312 case Instruction::Shl: {
1313 // shl X, C --> mul X, (1 << C)
1314 Constant *C;
1315 if (match(BO1, m_Constant(C))) {
1316 Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
1317 return { Instruction::Mul, BO0, ShlOne };
1319 break;
1321 case Instruction::Or: {
1322 // or X, C --> add X, C (when X and C have no common bits set)
1323 const APInt *C;
1324 if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
1325 return { Instruction::Add, BO0, BO1 };
1326 break;
1328 default:
1329 break;
1331 return {};
1334 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) {
1335 assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
1337 // Are we shuffling together some value and that same value after it has been
1338 // modified by a binop with a constant?
1339 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1340 Constant *C;
1341 bool Op0IsBinop;
1342 if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
1343 Op0IsBinop = true;
1344 else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
1345 Op0IsBinop = false;
1346 else
1347 return nullptr;
1349 // The identity constant for a binop leaves a variable operand unchanged. For
1350 // a vector, this is a splat of something like 0, -1, or 1.
1351 // If there's no identity constant for this binop, we're done.
1352 auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
1353 BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
1354 Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
1355 if (!IdC)
1356 return nullptr;
1358 // Shuffle identity constants into the lanes that return the original value.
1359 // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
1360 // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
1361 // The existing binop constant vector remains in the same operand position.
1362 Constant *Mask = Shuf.getMask();
1363 Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
1364 ConstantExpr::getShuffleVector(IdC, C, Mask);
1366 bool MightCreatePoisonOrUB =
1367 Mask->containsUndefElement() &&
1368 (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
1369 if (MightCreatePoisonOrUB)
1370 NewC = getSafeVectorConstantForBinop(BOpcode, NewC, true);
1372 // shuf (bop X, C), X, M --> bop X, C'
1373 // shuf X, (bop X, C), M --> bop X, C'
1374 Value *X = Op0IsBinop ? Op1 : Op0;
1375 Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
1376 NewBO->copyIRFlags(BO);
1378 // An undef shuffle mask element may propagate as an undef constant element in
1379 // the new binop. That would produce poison where the original code might not.
1380 // If we already made a safe constant, then there's no danger.
1381 if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
1382 NewBO->dropPoisonGeneratingFlags();
1383 return NewBO;
1386 /// If we have an insert of a scalar to a non-zero element of an undefined
1387 /// vector and then shuffle that value, that's the same as inserting to the zero
1388 /// element and shuffling. Splatting from the zero element is recognized as the
1389 /// canonical form of splat.
1390 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf,
1391 InstCombiner::BuilderTy &Builder) {
1392 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1393 Constant *Mask = Shuf.getMask();
1394 Value *X;
1395 uint64_t IndexC;
1397 // Match a shuffle that is a splat to a non-zero element.
1398 if (!match(Op0, m_OneUse(m_InsertElement(m_Undef(), m_Value(X),
1399 m_ConstantInt(IndexC)))) ||
1400 !match(Op1, m_Undef()) || match(Mask, m_ZeroInt()) || IndexC == 0)
1401 return nullptr;
1403 // Insert into element 0 of an undef vector.
1404 UndefValue *UndefVec = UndefValue::get(Shuf.getType());
1405 Constant *Zero = Builder.getInt32(0);
1406 Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero);
1408 // Splat from element 0. Any mask element that is undefined remains undefined.
1409 // For example:
1410 // shuf (inselt undef, X, 2), undef, <2,2,undef>
1411 // --> shuf (inselt undef, X, 0), undef, <0,0,undef>
1412 unsigned NumMaskElts = Shuf.getType()->getVectorNumElements();
1413 SmallVector<Constant *, 16> NewMask(NumMaskElts, Zero);
1414 for (unsigned i = 0; i != NumMaskElts; ++i)
1415 if (isa<UndefValue>(Mask->getAggregateElement(i)))
1416 NewMask[i] = Mask->getAggregateElement(i);
1418 return new ShuffleVectorInst(NewIns, UndefVec, ConstantVector::get(NewMask));
1421 /// Try to fold shuffles that are the equivalent of a vector select.
1422 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf,
1423 InstCombiner::BuilderTy &Builder,
1424 const DataLayout &DL) {
1425 if (!Shuf.isSelect())
1426 return nullptr;
1428 // Canonicalize to choose from operand 0 first.
1429 unsigned NumElts = Shuf.getType()->getVectorNumElements();
1430 if (Shuf.getMaskValue(0) >= (int)NumElts) {
1431 // TODO: Can we assert that both operands of a shuffle-select are not undef
1432 // (otherwise, it would have been folded by instsimplify?
1433 Shuf.commute();
1434 return &Shuf;
1437 if (Instruction *I = foldSelectShuffleWith1Binop(Shuf))
1438 return I;
1440 BinaryOperator *B0, *B1;
1441 if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
1442 !match(Shuf.getOperand(1), m_BinOp(B1)))
1443 return nullptr;
1445 Value *X, *Y;
1446 Constant *C0, *C1;
1447 bool ConstantsAreOp1;
1448 if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) &&
1449 match(B1, m_BinOp(m_Value(Y), m_Constant(C1))))
1450 ConstantsAreOp1 = true;
1451 else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
1452 match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
1453 ConstantsAreOp1 = false;
1454 else
1455 return nullptr;
1457 // We need matching binops to fold the lanes together.
1458 BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
1459 BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
1460 bool DropNSW = false;
1461 if (ConstantsAreOp1 && Opc0 != Opc1) {
1462 // TODO: We drop "nsw" if shift is converted into multiply because it may
1463 // not be correct when the shift amount is BitWidth - 1. We could examine
1464 // each vector element to determine if it is safe to keep that flag.
1465 if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
1466 DropNSW = true;
1467 if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
1468 assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
1469 Opc0 = AltB0.Opcode;
1470 C0 = cast<Constant>(AltB0.Op1);
1471 } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
1472 assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
1473 Opc1 = AltB1.Opcode;
1474 C1 = cast<Constant>(AltB1.Op1);
1478 if (Opc0 != Opc1)
1479 return nullptr;
1481 // The opcodes must be the same. Use a new name to make that clear.
1482 BinaryOperator::BinaryOps BOpc = Opc0;
1484 // Select the constant elements needed for the single binop.
1485 Constant *Mask = Shuf.getMask();
1486 Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);
1488 // We are moving a binop after a shuffle. When a shuffle has an undefined
1489 // mask element, the result is undefined, but it is not poison or undefined
1490 // behavior. That is not necessarily true for div/rem/shift.
1491 bool MightCreatePoisonOrUB =
1492 Mask->containsUndefElement() &&
1493 (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
1494 if (MightCreatePoisonOrUB)
1495 NewC = getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1);
1497 Value *V;
1498 if (X == Y) {
1499 // Remove a binop and the shuffle by rearranging the constant:
1500 // shuffle (op V, C0), (op V, C1), M --> op V, C'
1501 // shuffle (op C0, V), (op C1, V), M --> op C', V
1502 V = X;
1503 } else {
1504 // If there are 2 different variable operands, we must create a new shuffle
1505 // (select) first, so check uses to ensure that we don't end up with more
1506 // instructions than we started with.
1507 if (!B0->hasOneUse() && !B1->hasOneUse())
1508 return nullptr;
1510 // If we use the original shuffle mask and op1 is *variable*, we would be
1511 // putting an undef into operand 1 of div/rem/shift. This is either UB or
1512 // poison. We do not have to guard against UB when *constants* are op1
1513 // because safe constants guarantee that we do not overflow sdiv/srem (and
1514 // there's no danger for other opcodes).
1515 // TODO: To allow this case, create a new shuffle mask with no undefs.
1516 if (MightCreatePoisonOrUB && !ConstantsAreOp1)
1517 return nullptr;
1519 // Note: In general, we do not create new shuffles in InstCombine because we
1520 // do not know if a target can lower an arbitrary shuffle optimally. In this
1521 // case, the shuffle uses the existing mask, so there is no additional risk.
1523 // Select the variable vectors first, then perform the binop:
1524 // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
1525 // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
1526 V = Builder.CreateShuffleVector(X, Y, Mask);
1529 Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) :
1530 BinaryOperator::Create(BOpc, NewC, V);
1532 // Flags are intersected from the 2 source binops. But there are 2 exceptions:
1533 // 1. If we changed an opcode, poison conditions might have changed.
1534 // 2. If the shuffle had undef mask elements, the new binop might have undefs
1535 // where the original code did not. But if we already made a safe constant,
1536 // then there's no danger.
1537 NewBO->copyIRFlags(B0);
1538 NewBO->andIRFlags(B1);
1539 if (DropNSW)
1540 NewBO->setHasNoSignedWrap(false);
1541 if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
1542 NewBO->dropPoisonGeneratingFlags();
1543 return NewBO;
1546 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and
1547 /// narrowing (concatenating with undef and extracting back to the original
1548 /// length). This allows replacing the wide select with a narrow select.
1549 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
1550 InstCombiner::BuilderTy &Builder) {
1551 // This must be a narrowing identity shuffle. It extracts the 1st N elements
1552 // of the 1st vector operand of a shuffle.
1553 if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
1554 return nullptr;
1556 // The vector being shuffled must be a vector select that we can eliminate.
1557 // TODO: The one-use requirement could be eased if X and/or Y are constants.
1558 Value *Cond, *X, *Y;
1559 if (!match(Shuf.getOperand(0),
1560 m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
1561 return nullptr;
1563 // We need a narrow condition value. It must be extended with undef elements
1564 // and have the same number of elements as this shuffle.
1565 unsigned NarrowNumElts = Shuf.getType()->getVectorNumElements();
1566 Value *NarrowCond;
1567 if (!match(Cond, m_OneUse(m_ShuffleVector(m_Value(NarrowCond), m_Undef(),
1568 m_Constant()))) ||
1569 NarrowCond->getType()->getVectorNumElements() != NarrowNumElts ||
1570 !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
1571 return nullptr;
1573 // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
1574 // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
1575 Value *Undef = UndefValue::get(X->getType());
1576 Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getMask());
1577 Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getMask());
1578 return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
1581 /// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
1582 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
1583 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1584 if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1))
1585 return nullptr;
1587 Value *X, *Y;
1588 Constant *Mask;
1589 if (!match(Op0, m_ShuffleVector(m_Value(X), m_Value(Y), m_Constant(Mask))))
1590 return nullptr;
1592 // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
1593 // then combining may result in worse codegen.
1594 if (!Op0->hasOneUse())
1595 return nullptr;
1597 // We are extracting a subvector from a shuffle. Remove excess elements from
1598 // the 1st shuffle mask to eliminate the extract.
1600 // This transform is conservatively limited to identity extracts because we do
1601 // not allow arbitrary shuffle mask creation as a target-independent transform
1602 // (because we can't guarantee that will lower efficiently).
1604 // If the extracting shuffle has an undef mask element, it transfers to the
1605 // new shuffle mask. Otherwise, copy the original mask element. Example:
1606 // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
1607 // shuf X, Y, <C0, undef, C2, undef>
1608 unsigned NumElts = Shuf.getType()->getVectorNumElements();
1609 SmallVector<Constant *, 16> NewMask(NumElts);
1610 assert(NumElts < Mask->getType()->getVectorNumElements() &&
1611 "Identity with extract must have less elements than its inputs");
1613 for (unsigned i = 0; i != NumElts; ++i) {
1614 Constant *ExtractMaskElt = Shuf.getMask()->getAggregateElement(i);
1615 Constant *MaskElt = Mask->getAggregateElement(i);
1616 NewMask[i] = isa<UndefValue>(ExtractMaskElt) ? ExtractMaskElt : MaskElt;
1618 return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
1621 /// Try to replace a shuffle with an insertelement.
1622 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf) {
1623 Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
1624 SmallVector<int, 16> Mask = Shuf.getShuffleMask();
1626 // The shuffle must not change vector sizes.
1627 // TODO: This restriction could be removed if the insert has only one use
1628 // (because the transform would require a new length-changing shuffle).
1629 int NumElts = Mask.size();
1630 if (NumElts != (int)(V0->getType()->getVectorNumElements()))
1631 return nullptr;
1633 // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
1634 auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
1635 // We need an insertelement with a constant index.
1636 if (!match(V0, m_InsertElement(m_Value(), m_Value(Scalar),
1637 m_ConstantInt(IndexC))))
1638 return false;
1640 // Test the shuffle mask to see if it splices the inserted scalar into the
1641 // operand 1 vector of the shuffle.
1642 int NewInsIndex = -1;
1643 for (int i = 0; i != NumElts; ++i) {
1644 // Ignore undef mask elements.
1645 if (Mask[i] == -1)
1646 continue;
1648 // The shuffle takes elements of operand 1 without lane changes.
1649 if (Mask[i] == NumElts + i)
1650 continue;
1652 // The shuffle must choose the inserted scalar exactly once.
1653 if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
1654 return false;
1656 // The shuffle is placing the inserted scalar into element i.
1657 NewInsIndex = i;
1660 assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");
1662 // Index is updated to the potentially translated insertion lane.
1663 IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex);
1664 return true;
1667 // If the shuffle is unnecessary, insert the scalar operand directly into
1668 // operand 1 of the shuffle. Example:
1669 // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
1670 Value *Scalar;
1671 ConstantInt *IndexC;
1672 if (isShufflingScalarIntoOp1(Scalar, IndexC))
1673 return InsertElementInst::Create(V1, Scalar, IndexC);
1675 // Try again after commuting shuffle. Example:
1676 // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
1677 // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
1678 std::swap(V0, V1);
1679 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
1680 if (isShufflingScalarIntoOp1(Scalar, IndexC))
1681 return InsertElementInst::Create(V1, Scalar, IndexC);
1683 return nullptr;
1686 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) {
1687 // Match the operands as identity with padding (also known as concatenation
1688 // with undef) shuffles of the same source type. The backend is expected to
1689 // recreate these concatenations from a shuffle of narrow operands.
1690 auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0));
1691 auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1));
1692 if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
1693 !Shuffle1 || !Shuffle1->isIdentityWithPadding())
1694 return nullptr;
1696 // We limit this transform to power-of-2 types because we expect that the
1697 // backend can convert the simplified IR patterns to identical nodes as the
1698 // original IR.
1699 // TODO: If we can verify the same behavior for arbitrary types, the
1700 // power-of-2 checks can be removed.
1701 Value *X = Shuffle0->getOperand(0);
1702 Value *Y = Shuffle1->getOperand(0);
1703 if (X->getType() != Y->getType() ||
1704 !isPowerOf2_32(Shuf.getType()->getVectorNumElements()) ||
1705 !isPowerOf2_32(Shuffle0->getType()->getVectorNumElements()) ||
1706 !isPowerOf2_32(X->getType()->getVectorNumElements()) ||
1707 isa<UndefValue>(X) || isa<UndefValue>(Y))
1708 return nullptr;
1709 assert(isa<UndefValue>(Shuffle0->getOperand(1)) &&
1710 isa<UndefValue>(Shuffle1->getOperand(1)) &&
1711 "Unexpected operand for identity shuffle");
1713 // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
1714 // operands directly by adjusting the shuffle mask to account for the narrower
1715 // types:
1716 // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
1717 int NarrowElts = X->getType()->getVectorNumElements();
1718 int WideElts = Shuffle0->getType()->getVectorNumElements();
1719 assert(WideElts > NarrowElts && "Unexpected types for identity with padding");
1721 Type *I32Ty = IntegerType::getInt32Ty(Shuf.getContext());
1722 SmallVector<int, 16> Mask = Shuf.getShuffleMask();
1723 SmallVector<Constant *, 16> NewMask(Mask.size(), UndefValue::get(I32Ty));
1724 for (int i = 0, e = Mask.size(); i != e; ++i) {
1725 if (Mask[i] == -1)
1726 continue;
1728 // If this shuffle is choosing an undef element from 1 of the sources, that
1729 // element is undef.
1730 if (Mask[i] < WideElts) {
1731 if (Shuffle0->getMaskValue(Mask[i]) == -1)
1732 continue;
1733 } else {
1734 if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
1735 continue;
1738 // If this shuffle is choosing from the 1st narrow op, the mask element is
1739 // the same. If this shuffle is choosing from the 2nd narrow op, the mask
1740 // element is offset down to adjust for the narrow vector widths.
1741 if (Mask[i] < WideElts) {
1742 assert(Mask[i] < NarrowElts && "Unexpected shuffle mask");
1743 NewMask[i] = ConstantInt::get(I32Ty, Mask[i]);
1744 } else {
1745 assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask");
1746 NewMask[i] = ConstantInt::get(I32Ty, Mask[i] - (WideElts - NarrowElts));
1749 return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
1752 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
1753 Value *LHS = SVI.getOperand(0);
1754 Value *RHS = SVI.getOperand(1);
1755 if (auto *V = SimplifyShuffleVectorInst(
1756 LHS, RHS, SVI.getMask(), SVI.getType(), SQ.getWithInstruction(&SVI)))
1757 return replaceInstUsesWith(SVI, V);
1759 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
1760 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
1761 unsigned VWidth = SVI.getType()->getVectorNumElements();
1762 unsigned LHSWidth = LHS->getType()->getVectorNumElements();
1763 SmallVector<int, 16> Mask = SVI.getShuffleMask();
1764 Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
1765 if (LHS == RHS || isa<UndefValue>(LHS)) {
1766 // Remap any references to RHS to use LHS.
1767 SmallVector<Constant*, 16> Elts;
1768 for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) {
1769 if (Mask[i] < 0) {
1770 Elts.push_back(UndefValue::get(Int32Ty));
1771 continue;
1774 if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) ||
1775 (Mask[i] < (int)e && isa<UndefValue>(LHS))) {
1776 Mask[i] = -1; // Turn into undef.
1777 Elts.push_back(UndefValue::get(Int32Ty));
1778 } else {
1779 Mask[i] = Mask[i] % e; // Force to LHS.
1780 Elts.push_back(ConstantInt::get(Int32Ty, Mask[i]));
1783 SVI.setOperand(0, SVI.getOperand(1));
1784 SVI.setOperand(1, UndefValue::get(RHS->getType()));
1785 SVI.setOperand(2, ConstantVector::get(Elts));
1786 return &SVI;
1789 if (Instruction *I = canonicalizeInsertSplat(SVI, Builder))
1790 return I;
1792 if (Instruction *I = foldSelectShuffle(SVI, Builder, DL))
1793 return I;
1795 if (Instruction *I = narrowVectorSelect(SVI, Builder))
1796 return I;
1798 APInt UndefElts(VWidth, 0);
1799 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1800 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
1801 if (V != &SVI)
1802 return replaceInstUsesWith(SVI, V);
1803 return &SVI;
1806 if (Instruction *I = foldIdentityExtractShuffle(SVI))
1807 return I;
1809 // These transforms have the potential to lose undef knowledge, so they are
1810 // intentionally placed after SimplifyDemandedVectorElts().
1811 if (Instruction *I = foldShuffleWithInsert(SVI))
1812 return I;
1813 if (Instruction *I = foldIdentityPaddedShuffles(SVI))
1814 return I;
1816 if (VWidth == LHSWidth) {
1817 // Analyze the shuffle, are the LHS or RHS and identity shuffles?
1818 bool isLHSID, isRHSID;
1819 recognizeIdentityMask(Mask, isLHSID, isRHSID);
1821 // Eliminate identity shuffles.
1822 if (isLHSID) return replaceInstUsesWith(SVI, LHS);
1823 if (isRHSID) return replaceInstUsesWith(SVI, RHS);
1826 if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) {
1827 Value *V = evaluateInDifferentElementOrder(LHS, Mask);
1828 return replaceInstUsesWith(SVI, V);
1831 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
1832 // a non-vector type. We can instead bitcast the original vector followed by
1833 // an extract of the desired element:
1835 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
1836 // <4 x i32> <i32 0, i32 1, i32 2, i32 3>
1837 // %1 = bitcast <4 x i8> %sroa to i32
1838 // Becomes:
1839 // %bc = bitcast <16 x i8> %in to <4 x i32>
1840 // %ext = extractelement <4 x i32> %bc, i32 0
1842 // If the shuffle is extracting a contiguous range of values from the input
1843 // vector then each use which is a bitcast of the extracted size can be
1844 // replaced. This will work if the vector types are compatible, and the begin
1845 // index is aligned to a value in the casted vector type. If the begin index
1846 // isn't aligned then we can shuffle the original vector (keeping the same
1847 // vector type) before extracting.
1849 // This code will bail out if the target type is fundamentally incompatible
1850 // with vectors of the source type.
1852 // Example of <16 x i8>, target type i32:
1853 // Index range [4,8): v-----------v Will work.
1854 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1855 // <16 x i8>: | | | | | | | | | | | | | | | | |
1856 // <4 x i32>: | | | | |
1857 // +-----------+-----------+-----------+-----------+
1858 // Index range [6,10): ^-----------^ Needs an extra shuffle.
1859 // Target type i40: ^--------------^ Won't work, bail.
1860 bool MadeChange = false;
1861 if (isShuffleExtractingFromLHS(SVI, Mask)) {
1862 Value *V = LHS;
1863 unsigned MaskElems = Mask.size();
1864 VectorType *SrcTy = cast<VectorType>(V->getType());
1865 unsigned VecBitWidth = SrcTy->getBitWidth();
1866 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
1867 assert(SrcElemBitWidth && "vector elements must have a bitwidth");
1868 unsigned SrcNumElems = SrcTy->getNumElements();
1869 SmallVector<BitCastInst *, 8> BCs;
1870 DenseMap<Type *, Value *> NewBCs;
1871 for (User *U : SVI.users())
1872 if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
1873 if (!BC->use_empty())
1874 // Only visit bitcasts that weren't previously handled.
1875 BCs.push_back(BC);
1876 for (BitCastInst *BC : BCs) {
1877 unsigned BegIdx = Mask.front();
1878 Type *TgtTy = BC->getDestTy();
1879 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
1880 if (!TgtElemBitWidth)
1881 continue;
1882 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
1883 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
1884 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
1885 if (!VecBitWidthsEqual)
1886 continue;
1887 if (!VectorType::isValidElementType(TgtTy))
1888 continue;
1889 VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems);
1890 if (!BegIsAligned) {
1891 // Shuffle the input so [0,NumElements) contains the output, and
1892 // [NumElems,SrcNumElems) is undef.
1893 SmallVector<Constant *, 16> ShuffleMask(SrcNumElems,
1894 UndefValue::get(Int32Ty));
1895 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
1896 ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx);
1897 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
1898 ConstantVector::get(ShuffleMask),
1899 SVI.getName() + ".extract");
1900 BegIdx = 0;
1902 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
1903 assert(SrcElemsPerTgtElem);
1904 BegIdx /= SrcElemsPerTgtElem;
1905 bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
1906 auto *NewBC =
1907 BCAlreadyExists
1908 ? NewBCs[CastSrcTy]
1909 : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
1910 if (!BCAlreadyExists)
1911 NewBCs[CastSrcTy] = NewBC;
1912 auto *Ext = Builder.CreateExtractElement(
1913 NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
1914 // The shufflevector isn't being replaced: the bitcast that used it
1915 // is. InstCombine will visit the newly-created instructions.
1916 replaceInstUsesWith(*BC, Ext);
1917 MadeChange = true;
1921 // If the LHS is a shufflevector itself, see if we can combine it with this
1922 // one without producing an unusual shuffle.
1923 // Cases that might be simplified:
1924 // 1.
1925 // x1=shuffle(v1,v2,mask1)
1926 // x=shuffle(x1,undef,mask)
1927 // ==>
1928 // x=shuffle(v1,undef,newMask)
1929 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
1930 // 2.
1931 // x1=shuffle(v1,undef,mask1)
1932 // x=shuffle(x1,x2,mask)
1933 // where v1.size() == mask1.size()
1934 // ==>
1935 // x=shuffle(v1,x2,newMask)
1936 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
1937 // 3.
1938 // x2=shuffle(v2,undef,mask2)
1939 // x=shuffle(x1,x2,mask)
1940 // where v2.size() == mask2.size()
1941 // ==>
1942 // x=shuffle(x1,v2,newMask)
1943 // newMask[i] = (mask[i] < x1.size())
1944 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
1945 // 4.
1946 // x1=shuffle(v1,undef,mask1)
1947 // x2=shuffle(v2,undef,mask2)
1948 // x=shuffle(x1,x2,mask)
1949 // where v1.size() == v2.size()
1950 // ==>
1951 // x=shuffle(v1,v2,newMask)
1952 // newMask[i] = (mask[i] < x1.size())
1953 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
1955 // Here we are really conservative:
1956 // we are absolutely afraid of producing a shuffle mask not in the input
1957 // program, because the code gen may not be smart enough to turn a merged
1958 // shuffle into two specific shuffles: it may produce worse code. As such,
1959 // we only merge two shuffles if the result is either a splat or one of the
1960 // input shuffle masks. In this case, merging the shuffles just removes
1961 // one instruction, which we know is safe. This is good for things like
1962 // turning: (splat(splat)) -> splat, or
1963 // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
1964 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
1965 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
1966 if (LHSShuffle)
1967 if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
1968 LHSShuffle = nullptr;
1969 if (RHSShuffle)
1970 if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
1971 RHSShuffle = nullptr;
1972 if (!LHSShuffle && !RHSShuffle)
1973 return MadeChange ? &SVI : nullptr;
1975 Value* LHSOp0 = nullptr;
1976 Value* LHSOp1 = nullptr;
1977 Value* RHSOp0 = nullptr;
1978 unsigned LHSOp0Width = 0;
1979 unsigned RHSOp0Width = 0;
1980 if (LHSShuffle) {
1981 LHSOp0 = LHSShuffle->getOperand(0);
1982 LHSOp1 = LHSShuffle->getOperand(1);
1983 LHSOp0Width = LHSOp0->getType()->getVectorNumElements();
1985 if (RHSShuffle) {
1986 RHSOp0 = RHSShuffle->getOperand(0);
1987 RHSOp0Width = RHSOp0->getType()->getVectorNumElements();
1989 Value* newLHS = LHS;
1990 Value* newRHS = RHS;
1991 if (LHSShuffle) {
1992 // case 1
1993 if (isa<UndefValue>(RHS)) {
1994 newLHS = LHSOp0;
1995 newRHS = LHSOp1;
1997 // case 2 or 4
1998 else if (LHSOp0Width == LHSWidth) {
1999 newLHS = LHSOp0;
2002 // case 3 or 4
2003 if (RHSShuffle && RHSOp0Width == LHSWidth) {
2004 newRHS = RHSOp0;
2006 // case 4
2007 if (LHSOp0 == RHSOp0) {
2008 newLHS = LHSOp0;
2009 newRHS = nullptr;
2012 if (newLHS == LHS && newRHS == RHS)
2013 return MadeChange ? &SVI : nullptr;
2015 SmallVector<int, 16> LHSMask;
2016 SmallVector<int, 16> RHSMask;
2017 if (newLHS != LHS)
2018 LHSMask = LHSShuffle->getShuffleMask();
2019 if (RHSShuffle && newRHS != RHS)
2020 RHSMask = RHSShuffle->getShuffleMask();
2022 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
2023 SmallVector<int, 16> newMask;
2024 bool isSplat = true;
2025 int SplatElt = -1;
2026 // Create a new mask for the new ShuffleVectorInst so that the new
2027 // ShuffleVectorInst is equivalent to the original one.
2028 for (unsigned i = 0; i < VWidth; ++i) {
2029 int eltMask;
2030 if (Mask[i] < 0) {
2031 // This element is an undef value.
2032 eltMask = -1;
2033 } else if (Mask[i] < (int)LHSWidth) {
2034 // This element is from left hand side vector operand.
2036 // If LHS is going to be replaced (case 1, 2, or 4), calculate the
2037 // new mask value for the element.
2038 if (newLHS != LHS) {
2039 eltMask = LHSMask[Mask[i]];
2040 // If the value selected is an undef value, explicitly specify it
2041 // with a -1 mask value.
2042 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
2043 eltMask = -1;
2044 } else
2045 eltMask = Mask[i];
2046 } else {
2047 // This element is from right hand side vector operand
2049 // If the value selected is an undef value, explicitly specify it
2050 // with a -1 mask value. (case 1)
2051 if (isa<UndefValue>(RHS))
2052 eltMask = -1;
2053 // If RHS is going to be replaced (case 3 or 4), calculate the
2054 // new mask value for the element.
2055 else if (newRHS != RHS) {
2056 eltMask = RHSMask[Mask[i]-LHSWidth];
2057 // If the value selected is an undef value, explicitly specify it
2058 // with a -1 mask value.
2059 if (eltMask >= (int)RHSOp0Width) {
2060 assert(isa<UndefValue>(RHSShuffle->getOperand(1))
2061 && "should have been check above");
2062 eltMask = -1;
2064 } else
2065 eltMask = Mask[i]-LHSWidth;
2067 // If LHS's width is changed, shift the mask value accordingly.
2068 // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
2069 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
2070 // If newRHS == newLHS, we want to remap any references from newRHS to
2071 // newLHS so that we can properly identify splats that may occur due to
2072 // obfuscation across the two vectors.
2073 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
2074 eltMask += newLHSWidth;
2077 // Check if this could still be a splat.
2078 if (eltMask >= 0) {
2079 if (SplatElt >= 0 && SplatElt != eltMask)
2080 isSplat = false;
2081 SplatElt = eltMask;
2084 newMask.push_back(eltMask);
2087 // If the result mask is equal to one of the original shuffle masks,
2088 // or is a splat, do the replacement.
2089 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
2090 SmallVector<Constant*, 16> Elts;
2091 for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
2092 if (newMask[i] < 0) {
2093 Elts.push_back(UndefValue::get(Int32Ty));
2094 } else {
2095 Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
2098 if (!newRHS)
2099 newRHS = UndefValue::get(newLHS->getType());
2100 return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
2103 // If the result mask is an identity, replace uses of this instruction with
2104 // corresponding argument.
2105 bool isLHSID, isRHSID;
2106 recognizeIdentityMask(newMask, isLHSID, isRHSID);
2107 if (isLHSID && VWidth == LHSOp0Width) return replaceInstUsesWith(SVI, newLHS);
2108 if (isRHSID && VWidth == RHSOp0Width) return replaceInstUsesWith(SVI, newRHS);
2110 return MadeChange ? &SVI : nullptr;