[llvm-objdump] - Remove one overload of reportError. NFCI.
[llvm-complete.git] / lib / Transforms / Scalar / LoopFuse.cpp
blob3892d09bc7d7eec700bac2bb85eccb76a1985f42
1 //===- LoopFuse.cpp - Loop Fusion Pass ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the loop fusion pass.
11 /// The implementation is largely based on the following document:
12 ///
13 /// Code Transformations to Augment the Scope of Loop Fusion in a
14 /// Production Compiler
15 /// Christopher Mark Barton
16 /// MSc Thesis
17 /// https://webdocs.cs.ualberta.ca/~amaral/thesis/ChristopherBartonMSc.pdf
18 ///
19 /// The general approach taken is to collect sets of control flow equivalent
20 /// loops and test whether they can be fused. The necessary conditions for
21 /// fusion are:
22 /// 1. The loops must be adjacent (there cannot be any statements between
23 /// the two loops).
24 /// 2. The loops must be conforming (they must execute the same number of
25 /// iterations).
26 /// 3. The loops must be control flow equivalent (if one loop executes, the
27 /// other is guaranteed to execute).
28 /// 4. There cannot be any negative distance dependencies between the loops.
29 /// If all of these conditions are satisfied, it is safe to fuse the loops.
30 ///
31 /// This implementation creates FusionCandidates that represent the loop and the
32 /// necessary information needed by fusion. It then operates on the fusion
33 /// candidates, first confirming that the candidate is eligible for fusion. The
34 /// candidates are then collected into control flow equivalent sets, sorted in
35 /// dominance order. Each set of control flow equivalent candidates is then
36 /// traversed, attempting to fuse pairs of candidates in the set. If all
37 /// requirements for fusion are met, the two candidates are fused, creating a
38 /// new (fused) candidate which is then added back into the set to consider for
39 /// additional fusion.
40 ///
41 /// This implementation currently does not make any modifications to remove
42 /// conditions for fusion. Code transformations to make loops conform to each of
43 /// the conditions for fusion are discussed in more detail in the document
44 /// above. These can be added to the current implementation in the future.
45 //===----------------------------------------------------------------------===//
47 #include "llvm/Transforms/Scalar/LoopFuse.h"
48 #include "llvm/ADT/Statistic.h"
49 #include "llvm/Analysis/DependenceAnalysis.h"
50 #include "llvm/Analysis/DomTreeUpdater.h"
51 #include "llvm/Analysis/LoopInfo.h"
52 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
53 #include "llvm/Analysis/PostDominators.h"
54 #include "llvm/Analysis/ScalarEvolution.h"
55 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/Verifier.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Transforms/Scalar.h"
62 #include "llvm/Transforms/Utils.h"
63 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
65 using namespace llvm;
67 #define DEBUG_TYPE "loop-fusion"
69 STATISTIC(FuseCounter, "Loops fused");
70 STATISTIC(NumFusionCandidates, "Number of candidates for loop fusion");
71 STATISTIC(InvalidPreheader, "Loop has invalid preheader");
72 STATISTIC(InvalidHeader, "Loop has invalid header");
73 STATISTIC(InvalidExitingBlock, "Loop has invalid exiting blocks");
74 STATISTIC(InvalidExitBlock, "Loop has invalid exit block");
75 STATISTIC(InvalidLatch, "Loop has invalid latch");
76 STATISTIC(InvalidLoop, "Loop is invalid");
77 STATISTIC(AddressTakenBB, "Basic block has address taken");
78 STATISTIC(MayThrowException, "Loop may throw an exception");
79 STATISTIC(ContainsVolatileAccess, "Loop contains a volatile access");
80 STATISTIC(NotSimplifiedForm, "Loop is not in simplified form");
81 STATISTIC(InvalidDependencies, "Dependencies prevent fusion");
82 STATISTIC(UnknownTripCount, "Loop has unknown trip count");
83 STATISTIC(UncomputableTripCount, "SCEV cannot compute trip count of loop");
84 STATISTIC(NonEqualTripCount, "Loop trip counts are not the same");
85 STATISTIC(NonAdjacent, "Loops are not adjacent");
86 STATISTIC(NonEmptyPreheader, "Loop has a non-empty preheader");
87 STATISTIC(FusionNotBeneficial, "Fusion is not beneficial");
89 enum FusionDependenceAnalysisChoice {
90 FUSION_DEPENDENCE_ANALYSIS_SCEV,
91 FUSION_DEPENDENCE_ANALYSIS_DA,
92 FUSION_DEPENDENCE_ANALYSIS_ALL,
95 static cl::opt<FusionDependenceAnalysisChoice> FusionDependenceAnalysis(
96 "loop-fusion-dependence-analysis",
97 cl::desc("Which dependence analysis should loop fusion use?"),
98 cl::values(clEnumValN(FUSION_DEPENDENCE_ANALYSIS_SCEV, "scev",
99 "Use the scalar evolution interface"),
100 clEnumValN(FUSION_DEPENDENCE_ANALYSIS_DA, "da",
101 "Use the dependence analysis interface"),
102 clEnumValN(FUSION_DEPENDENCE_ANALYSIS_ALL, "all",
103 "Use all available analyses")),
104 cl::Hidden, cl::init(FUSION_DEPENDENCE_ANALYSIS_ALL), cl::ZeroOrMore);
106 #ifndef NDEBUG
107 static cl::opt<bool>
108 VerboseFusionDebugging("loop-fusion-verbose-debug",
109 cl::desc("Enable verbose debugging for Loop Fusion"),
110 cl::Hidden, cl::init(false), cl::ZeroOrMore);
111 #endif
113 namespace {
114 /// This class is used to represent a candidate for loop fusion. When it is
115 /// constructed, it checks the conditions for loop fusion to ensure that it
116 /// represents a valid candidate. It caches several parts of a loop that are
117 /// used throughout loop fusion (e.g., loop preheader, loop header, etc) instead
118 /// of continually querying the underlying Loop to retrieve these values. It is
119 /// assumed these will not change throughout loop fusion.
121 /// The invalidate method should be used to indicate that the FusionCandidate is
122 /// no longer a valid candidate for fusion. Similarly, the isValid() method can
123 /// be used to ensure that the FusionCandidate is still valid for fusion.
124 struct FusionCandidate {
125 /// Cache of parts of the loop used throughout loop fusion. These should not
126 /// need to change throughout the analysis and transformation.
127 /// These parts are cached to avoid repeatedly looking up in the Loop class.
129 /// Preheader of the loop this candidate represents
130 BasicBlock *Preheader;
131 /// Header of the loop this candidate represents
132 BasicBlock *Header;
133 /// Blocks in the loop that exit the loop
134 BasicBlock *ExitingBlock;
135 /// The successor block of this loop (where the exiting blocks go to)
136 BasicBlock *ExitBlock;
137 /// Latch of the loop
138 BasicBlock *Latch;
139 /// The loop that this fusion candidate represents
140 Loop *L;
141 /// Vector of instructions in this loop that read from memory
142 SmallVector<Instruction *, 16> MemReads;
143 /// Vector of instructions in this loop that write to memory
144 SmallVector<Instruction *, 16> MemWrites;
145 /// Are all of the members of this fusion candidate still valid
146 bool Valid;
148 /// Dominator and PostDominator trees are needed for the
149 /// FusionCandidateCompare function, required by FusionCandidateSet to
150 /// determine where the FusionCandidate should be inserted into the set. These
151 /// are used to establish ordering of the FusionCandidates based on dominance.
152 const DominatorTree *DT;
153 const PostDominatorTree *PDT;
155 OptimizationRemarkEmitter &ORE;
157 FusionCandidate(Loop *L, const DominatorTree *DT,
158 const PostDominatorTree *PDT, OptimizationRemarkEmitter &ORE)
159 : Preheader(L->getLoopPreheader()), Header(L->getHeader()),
160 ExitingBlock(L->getExitingBlock()), ExitBlock(L->getExitBlock()),
161 Latch(L->getLoopLatch()), L(L), Valid(true), DT(DT), PDT(PDT),
162 ORE(ORE) {
164 // Walk over all blocks in the loop and check for conditions that may
165 // prevent fusion. For each block, walk over all instructions and collect
166 // the memory reads and writes If any instructions that prevent fusion are
167 // found, invalidate this object and return.
168 for (BasicBlock *BB : L->blocks()) {
169 if (BB->hasAddressTaken()) {
170 invalidate();
171 reportInvalidCandidate(AddressTakenBB);
172 return;
175 for (Instruction &I : *BB) {
176 if (I.mayThrow()) {
177 invalidate();
178 reportInvalidCandidate(MayThrowException);
179 return;
181 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
182 if (SI->isVolatile()) {
183 invalidate();
184 reportInvalidCandidate(ContainsVolatileAccess);
185 return;
188 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
189 if (LI->isVolatile()) {
190 invalidate();
191 reportInvalidCandidate(ContainsVolatileAccess);
192 return;
195 if (I.mayWriteToMemory())
196 MemWrites.push_back(&I);
197 if (I.mayReadFromMemory())
198 MemReads.push_back(&I);
203 /// Check if all members of the class are valid.
204 bool isValid() const {
205 return Preheader && Header && ExitingBlock && ExitBlock && Latch && L &&
206 !L->isInvalid() && Valid;
209 /// Verify that all members are in sync with the Loop object.
210 void verify() const {
211 assert(isValid() && "Candidate is not valid!!");
212 assert(!L->isInvalid() && "Loop is invalid!");
213 assert(Preheader == L->getLoopPreheader() && "Preheader is out of sync");
214 assert(Header == L->getHeader() && "Header is out of sync");
215 assert(ExitingBlock == L->getExitingBlock() &&
216 "Exiting Blocks is out of sync");
217 assert(ExitBlock == L->getExitBlock() && "Exit block is out of sync");
218 assert(Latch == L->getLoopLatch() && "Latch is out of sync");
221 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
222 LLVM_DUMP_METHOD void dump() const {
223 dbgs() << "\tPreheader: " << (Preheader ? Preheader->getName() : "nullptr")
224 << "\n"
225 << "\tHeader: " << (Header ? Header->getName() : "nullptr") << "\n"
226 << "\tExitingBB: "
227 << (ExitingBlock ? ExitingBlock->getName() : "nullptr") << "\n"
228 << "\tExitBB: " << (ExitBlock ? ExitBlock->getName() : "nullptr")
229 << "\n"
230 << "\tLatch: " << (Latch ? Latch->getName() : "nullptr") << "\n";
232 #endif
234 /// Determine if a fusion candidate (representing a loop) is eligible for
235 /// fusion. Note that this only checks whether a single loop can be fused - it
236 /// does not check whether it is *legal* to fuse two loops together.
237 bool isEligibleForFusion(ScalarEvolution &SE) const {
238 if (!isValid()) {
239 LLVM_DEBUG(dbgs() << "FC has invalid CFG requirements!\n");
240 if (!Preheader)
241 ++InvalidPreheader;
242 if (!Header)
243 ++InvalidHeader;
244 if (!ExitingBlock)
245 ++InvalidExitingBlock;
246 if (!ExitBlock)
247 ++InvalidExitBlock;
248 if (!Latch)
249 ++InvalidLatch;
250 if (L->isInvalid())
251 ++InvalidLoop;
253 return false;
256 // Require ScalarEvolution to be able to determine a trip count.
257 if (!SE.hasLoopInvariantBackedgeTakenCount(L)) {
258 LLVM_DEBUG(dbgs() << "Loop " << L->getName()
259 << " trip count not computable!\n");
260 return reportInvalidCandidate(UnknownTripCount);
263 if (!L->isLoopSimplifyForm()) {
264 LLVM_DEBUG(dbgs() << "Loop " << L->getName()
265 << " is not in simplified form!\n");
266 return reportInvalidCandidate(NotSimplifiedForm);
269 return true;
272 private:
273 // This is only used internally for now, to clear the MemWrites and MemReads
274 // list and setting Valid to false. I can't envision other uses of this right
275 // now, since once FusionCandidates are put into the FusionCandidateSet they
276 // are immutable. Thus, any time we need to change/update a FusionCandidate,
277 // we must create a new one and insert it into the FusionCandidateSet to
278 // ensure the FusionCandidateSet remains ordered correctly.
279 void invalidate() {
280 MemWrites.clear();
281 MemReads.clear();
282 Valid = false;
285 bool reportInvalidCandidate(llvm::Statistic &Stat) const {
286 using namespace ore;
287 assert(L && Preheader && "Fusion candidate not initialized properly!");
288 ++Stat;
289 ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, Stat.getName(),
290 L->getStartLoc(), Preheader)
291 << "[" << Preheader->getParent()->getName() << "]: "
292 << "Loop is not a candidate for fusion: " << Stat.getDesc());
293 return false;
297 inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
298 const FusionCandidate &FC) {
299 if (FC.isValid())
300 OS << FC.Preheader->getName();
301 else
302 OS << "<Invalid>";
304 return OS;
307 struct FusionCandidateCompare {
308 /// Comparison functor to sort two Control Flow Equivalent fusion candidates
309 /// into dominance order.
310 /// If LHS dominates RHS and RHS post-dominates LHS, return true;
311 /// IF RHS dominates LHS and LHS post-dominates RHS, return false;
312 bool operator()(const FusionCandidate &LHS,
313 const FusionCandidate &RHS) const {
314 const DominatorTree *DT = LHS.DT;
316 // Do not save PDT to local variable as it is only used in asserts and thus
317 // will trigger an unused variable warning if building without asserts.
318 assert(DT && LHS.PDT && "Expecting valid dominator tree");
320 // Do this compare first so if LHS == RHS, function returns false.
321 if (DT->dominates(RHS.Preheader, LHS.Preheader)) {
322 // RHS dominates LHS
323 // Verify LHS post-dominates RHS
324 assert(LHS.PDT->dominates(LHS.Preheader, RHS.Preheader));
325 return false;
328 if (DT->dominates(LHS.Preheader, RHS.Preheader)) {
329 // Verify RHS Postdominates LHS
330 assert(LHS.PDT->dominates(RHS.Preheader, LHS.Preheader));
331 return true;
334 // If LHS does not dominate RHS and RHS does not dominate LHS then there is
335 // no dominance relationship between the two FusionCandidates. Thus, they
336 // should not be in the same set together.
337 llvm_unreachable(
338 "No dominance relationship between these fusion candidates!");
342 using LoopVector = SmallVector<Loop *, 4>;
344 // Set of Control Flow Equivalent (CFE) Fusion Candidates, sorted in dominance
345 // order. Thus, if FC0 comes *before* FC1 in a FusionCandidateSet, then FC0
346 // dominates FC1 and FC1 post-dominates FC0.
347 // std::set was chosen because we want a sorted data structure with stable
348 // iterators. A subsequent patch to loop fusion will enable fusing non-ajdacent
349 // loops by moving intervening code around. When this intervening code contains
350 // loops, those loops will be moved also. The corresponding FusionCandidates
351 // will also need to be moved accordingly. As this is done, having stable
352 // iterators will simplify the logic. Similarly, having an efficient insert that
353 // keeps the FusionCandidateSet sorted will also simplify the implementation.
354 using FusionCandidateSet = std::set<FusionCandidate, FusionCandidateCompare>;
355 using FusionCandidateCollection = SmallVector<FusionCandidateSet, 4>;
357 #if !defined(NDEBUG)
358 static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
359 const FusionCandidateSet &CandSet) {
360 for (const FusionCandidate &FC : CandSet)
361 OS << FC << '\n';
363 return OS;
366 static void
367 printFusionCandidates(const FusionCandidateCollection &FusionCandidates) {
368 dbgs() << "Fusion Candidates: \n";
369 for (const auto &CandidateSet : FusionCandidates) {
370 dbgs() << "*** Fusion Candidate Set ***\n";
371 dbgs() << CandidateSet;
372 dbgs() << "****************************\n";
375 #endif
377 /// Collect all loops in function at the same nest level, starting at the
378 /// outermost level.
380 /// This data structure collects all loops at the same nest level for a
381 /// given function (specified by the LoopInfo object). It starts at the
382 /// outermost level.
383 struct LoopDepthTree {
384 using LoopsOnLevelTy = SmallVector<LoopVector, 4>;
385 using iterator = LoopsOnLevelTy::iterator;
386 using const_iterator = LoopsOnLevelTy::const_iterator;
388 LoopDepthTree(LoopInfo &LI) : Depth(1) {
389 if (!LI.empty())
390 LoopsOnLevel.emplace_back(LoopVector(LI.rbegin(), LI.rend()));
393 /// Test whether a given loop has been removed from the function, and thus is
394 /// no longer valid.
395 bool isRemovedLoop(const Loop *L) const { return RemovedLoops.count(L); }
397 /// Record that a given loop has been removed from the function and is no
398 /// longer valid.
399 void removeLoop(const Loop *L) { RemovedLoops.insert(L); }
401 /// Descend the tree to the next (inner) nesting level
402 void descend() {
403 LoopsOnLevelTy LoopsOnNextLevel;
405 for (const LoopVector &LV : *this)
406 for (Loop *L : LV)
407 if (!isRemovedLoop(L) && L->begin() != L->end())
408 LoopsOnNextLevel.emplace_back(LoopVector(L->begin(), L->end()));
410 LoopsOnLevel = LoopsOnNextLevel;
411 RemovedLoops.clear();
412 Depth++;
415 bool empty() const { return size() == 0; }
416 size_t size() const { return LoopsOnLevel.size() - RemovedLoops.size(); }
417 unsigned getDepth() const { return Depth; }
419 iterator begin() { return LoopsOnLevel.begin(); }
420 iterator end() { return LoopsOnLevel.end(); }
421 const_iterator begin() const { return LoopsOnLevel.begin(); }
422 const_iterator end() const { return LoopsOnLevel.end(); }
424 private:
425 /// Set of loops that have been removed from the function and are no longer
426 /// valid.
427 SmallPtrSet<const Loop *, 8> RemovedLoops;
429 /// Depth of the current level, starting at 1 (outermost loops).
430 unsigned Depth;
432 /// Vector of loops at the current depth level that have the same parent loop
433 LoopsOnLevelTy LoopsOnLevel;
436 #ifndef NDEBUG
437 static void printLoopVector(const LoopVector &LV) {
438 dbgs() << "****************************\n";
439 for (auto L : LV)
440 printLoop(*L, dbgs());
441 dbgs() << "****************************\n";
443 #endif
445 struct LoopFuser {
446 private:
447 // Sets of control flow equivalent fusion candidates for a given nest level.
448 FusionCandidateCollection FusionCandidates;
450 LoopDepthTree LDT;
451 DomTreeUpdater DTU;
453 LoopInfo &LI;
454 DominatorTree &DT;
455 DependenceInfo &DI;
456 ScalarEvolution &SE;
457 PostDominatorTree &PDT;
458 OptimizationRemarkEmitter &ORE;
460 public:
461 LoopFuser(LoopInfo &LI, DominatorTree &DT, DependenceInfo &DI,
462 ScalarEvolution &SE, PostDominatorTree &PDT,
463 OptimizationRemarkEmitter &ORE, const DataLayout &DL)
464 : LDT(LI), DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy), LI(LI),
465 DT(DT), DI(DI), SE(SE), PDT(PDT), ORE(ORE) {}
467 /// This is the main entry point for loop fusion. It will traverse the
468 /// specified function and collect candidate loops to fuse, starting at the
469 /// outermost nesting level and working inwards.
470 bool fuseLoops(Function &F) {
471 #ifndef NDEBUG
472 if (VerboseFusionDebugging) {
473 LI.print(dbgs());
475 #endif
477 LLVM_DEBUG(dbgs() << "Performing Loop Fusion on function " << F.getName()
478 << "\n");
479 bool Changed = false;
481 while (!LDT.empty()) {
482 LLVM_DEBUG(dbgs() << "Got " << LDT.size() << " loop sets for depth "
483 << LDT.getDepth() << "\n";);
485 for (const LoopVector &LV : LDT) {
486 assert(LV.size() > 0 && "Empty loop set was build!");
488 // Skip singleton loop sets as they do not offer fusion opportunities on
489 // this level.
490 if (LV.size() == 1)
491 continue;
492 #ifndef NDEBUG
493 if (VerboseFusionDebugging) {
494 LLVM_DEBUG({
495 dbgs() << " Visit loop set (#" << LV.size() << "):\n";
496 printLoopVector(LV);
499 #endif
501 collectFusionCandidates(LV);
502 Changed |= fuseCandidates();
505 // Finished analyzing candidates at this level.
506 // Descend to the next level and clear all of the candidates currently
507 // collected. Note that it will not be possible to fuse any of the
508 // existing candidates with new candidates because the new candidates will
509 // be at a different nest level and thus not be control flow equivalent
510 // with all of the candidates collected so far.
511 LLVM_DEBUG(dbgs() << "Descend one level!\n");
512 LDT.descend();
513 FusionCandidates.clear();
516 if (Changed)
517 LLVM_DEBUG(dbgs() << "Function after Loop Fusion: \n"; F.dump(););
519 #ifndef NDEBUG
520 assert(DT.verify());
521 assert(PDT.verify());
522 LI.verify(DT);
523 SE.verify();
524 #endif
526 LLVM_DEBUG(dbgs() << "Loop Fusion complete\n");
527 return Changed;
530 private:
531 /// Determine if two fusion candidates are control flow equivalent.
533 /// Two fusion candidates are control flow equivalent if when one executes,
534 /// the other is guaranteed to execute. This is determined using dominators
535 /// and post-dominators: if A dominates B and B post-dominates A then A and B
536 /// are control-flow equivalent.
537 bool isControlFlowEquivalent(const FusionCandidate &FC0,
538 const FusionCandidate &FC1) const {
539 assert(FC0.Preheader && FC1.Preheader && "Expecting valid preheaders");
541 if (DT.dominates(FC0.Preheader, FC1.Preheader))
542 return PDT.dominates(FC1.Preheader, FC0.Preheader);
544 if (DT.dominates(FC1.Preheader, FC0.Preheader))
545 return PDT.dominates(FC0.Preheader, FC1.Preheader);
547 return false;
550 /// Iterate over all loops in the given loop set and identify the loops that
551 /// are eligible for fusion. Place all eligible fusion candidates into Control
552 /// Flow Equivalent sets, sorted by dominance.
553 void collectFusionCandidates(const LoopVector &LV) {
554 for (Loop *L : LV) {
555 FusionCandidate CurrCand(L, &DT, &PDT, ORE);
556 if (!CurrCand.isEligibleForFusion(SE))
557 continue;
559 // Go through each list in FusionCandidates and determine if L is control
560 // flow equivalent with the first loop in that list. If it is, append LV.
561 // If not, go to the next list.
562 // If no suitable list is found, start another list and add it to
563 // FusionCandidates.
564 bool FoundSet = false;
566 for (auto &CurrCandSet : FusionCandidates) {
567 if (isControlFlowEquivalent(*CurrCandSet.begin(), CurrCand)) {
568 CurrCandSet.insert(CurrCand);
569 FoundSet = true;
570 #ifndef NDEBUG
571 if (VerboseFusionDebugging)
572 LLVM_DEBUG(dbgs() << "Adding " << CurrCand
573 << " to existing candidate set\n");
574 #endif
575 break;
578 if (!FoundSet) {
579 // No set was found. Create a new set and add to FusionCandidates
580 #ifndef NDEBUG
581 if (VerboseFusionDebugging)
582 LLVM_DEBUG(dbgs() << "Adding " << CurrCand << " to new set\n");
583 #endif
584 FusionCandidateSet NewCandSet;
585 NewCandSet.insert(CurrCand);
586 FusionCandidates.push_back(NewCandSet);
588 NumFusionCandidates++;
592 /// Determine if it is beneficial to fuse two loops.
594 /// For now, this method simply returns true because we want to fuse as much
595 /// as possible (primarily to test the pass). This method will evolve, over
596 /// time, to add heuristics for profitability of fusion.
597 bool isBeneficialFusion(const FusionCandidate &FC0,
598 const FusionCandidate &FC1) {
599 return true;
602 /// Determine if two fusion candidates have the same trip count (i.e., they
603 /// execute the same number of iterations).
605 /// Note that for now this method simply returns a boolean value because there
606 /// are no mechanisms in loop fusion to handle different trip counts. In the
607 /// future, this behaviour can be extended to adjust one of the loops to make
608 /// the trip counts equal (e.g., loop peeling). When this is added, this
609 /// interface may need to change to return more information than just a
610 /// boolean value.
611 bool identicalTripCounts(const FusionCandidate &FC0,
612 const FusionCandidate &FC1) const {
613 const SCEV *TripCount0 = SE.getBackedgeTakenCount(FC0.L);
614 if (isa<SCEVCouldNotCompute>(TripCount0)) {
615 UncomputableTripCount++;
616 LLVM_DEBUG(dbgs() << "Trip count of first loop could not be computed!");
617 return false;
620 const SCEV *TripCount1 = SE.getBackedgeTakenCount(FC1.L);
621 if (isa<SCEVCouldNotCompute>(TripCount1)) {
622 UncomputableTripCount++;
623 LLVM_DEBUG(dbgs() << "Trip count of second loop could not be computed!");
624 return false;
626 LLVM_DEBUG(dbgs() << "\tTrip counts: " << *TripCount0 << " & "
627 << *TripCount1 << " are "
628 << (TripCount0 == TripCount1 ? "identical" : "different")
629 << "\n");
631 return (TripCount0 == TripCount1);
634 /// Walk each set of control flow equivalent fusion candidates and attempt to
635 /// fuse them. This does a single linear traversal of all candidates in the
636 /// set. The conditions for legal fusion are checked at this point. If a pair
637 /// of fusion candidates passes all legality checks, they are fused together
638 /// and a new fusion candidate is created and added to the FusionCandidateSet.
639 /// The original fusion candidates are then removed, as they are no longer
640 /// valid.
641 bool fuseCandidates() {
642 bool Fused = false;
643 LLVM_DEBUG(printFusionCandidates(FusionCandidates));
644 for (auto &CandidateSet : FusionCandidates) {
645 if (CandidateSet.size() < 2)
646 continue;
648 LLVM_DEBUG(dbgs() << "Attempting fusion on Candidate Set:\n"
649 << CandidateSet << "\n");
651 for (auto FC0 = CandidateSet.begin(); FC0 != CandidateSet.end(); ++FC0) {
652 assert(!LDT.isRemovedLoop(FC0->L) &&
653 "Should not have removed loops in CandidateSet!");
654 auto FC1 = FC0;
655 for (++FC1; FC1 != CandidateSet.end(); ++FC1) {
656 assert(!LDT.isRemovedLoop(FC1->L) &&
657 "Should not have removed loops in CandidateSet!");
659 LLVM_DEBUG(dbgs() << "Attempting to fuse candidate \n"; FC0->dump();
660 dbgs() << " with\n"; FC1->dump(); dbgs() << "\n");
662 FC0->verify();
663 FC1->verify();
665 if (!identicalTripCounts(*FC0, *FC1)) {
666 LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical trip "
667 "counts. Not fusing.\n");
668 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
669 NonEqualTripCount);
670 continue;
673 if (!isAdjacent(*FC0, *FC1)) {
674 LLVM_DEBUG(dbgs()
675 << "Fusion candidates are not adjacent. Not fusing.\n");
676 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, NonAdjacent);
677 continue;
680 // For now we skip fusing if the second candidate has any instructions
681 // in the preheader. This is done because we currently do not have the
682 // safety checks to determine if it is save to move the preheader of
683 // the second candidate past the body of the first candidate. Once
684 // these checks are added, this condition can be removed.
685 if (!isEmptyPreheader(*FC1)) {
686 LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty "
687 "preheader. Not fusing.\n");
688 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
689 NonEmptyPreheader);
690 continue;
693 if (!dependencesAllowFusion(*FC0, *FC1)) {
694 LLVM_DEBUG(dbgs() << "Memory dependencies do not allow fusion!\n");
695 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
696 InvalidDependencies);
697 continue;
700 bool BeneficialToFuse = isBeneficialFusion(*FC0, *FC1);
701 LLVM_DEBUG(dbgs()
702 << "\tFusion appears to be "
703 << (BeneficialToFuse ? "" : "un") << "profitable!\n");
704 if (!BeneficialToFuse) {
705 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
706 FusionNotBeneficial);
707 continue;
709 // All analysis has completed and has determined that fusion is legal
710 // and profitable. At this point, start transforming the code and
711 // perform fusion.
713 LLVM_DEBUG(dbgs() << "\tFusion is performed: " << *FC0 << " and "
714 << *FC1 << "\n");
716 // Report fusion to the Optimization Remarks.
717 // Note this needs to be done *before* performFusion because
718 // performFusion will change the original loops, making it not
719 // possible to identify them after fusion is complete.
720 reportLoopFusion<OptimizationRemark>(*FC0, *FC1, FuseCounter);
722 FusionCandidate FusedCand(performFusion(*FC0, *FC1), &DT, &PDT, ORE);
723 FusedCand.verify();
724 assert(FusedCand.isEligibleForFusion(SE) &&
725 "Fused candidate should be eligible for fusion!");
727 // Notify the loop-depth-tree that these loops are not valid objects
728 LDT.removeLoop(FC1->L);
730 CandidateSet.erase(FC0);
731 CandidateSet.erase(FC1);
733 auto InsertPos = CandidateSet.insert(FusedCand);
735 assert(InsertPos.second &&
736 "Unable to insert TargetCandidate in CandidateSet!");
738 // Reset FC0 and FC1 the new (fused) candidate. Subsequent iterations
739 // of the FC1 loop will attempt to fuse the new (fused) loop with the
740 // remaining candidates in the current candidate set.
741 FC0 = FC1 = InsertPos.first;
743 LLVM_DEBUG(dbgs() << "Candidate Set (after fusion): " << CandidateSet
744 << "\n");
746 Fused = true;
750 return Fused;
753 /// Rewrite all additive recurrences in a SCEV to use a new loop.
754 class AddRecLoopReplacer : public SCEVRewriteVisitor<AddRecLoopReplacer> {
755 public:
756 AddRecLoopReplacer(ScalarEvolution &SE, const Loop &OldL, const Loop &NewL,
757 bool UseMax = true)
758 : SCEVRewriteVisitor(SE), Valid(true), UseMax(UseMax), OldL(OldL),
759 NewL(NewL) {}
761 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
762 const Loop *ExprL = Expr->getLoop();
763 SmallVector<const SCEV *, 2> Operands;
764 if (ExprL == &OldL) {
765 Operands.append(Expr->op_begin(), Expr->op_end());
766 return SE.getAddRecExpr(Operands, &NewL, Expr->getNoWrapFlags());
769 if (OldL.contains(ExprL)) {
770 bool Pos = SE.isKnownPositive(Expr->getStepRecurrence(SE));
771 if (!UseMax || !Pos || !Expr->isAffine()) {
772 Valid = false;
773 return Expr;
775 return visit(Expr->getStart());
778 for (const SCEV *Op : Expr->operands())
779 Operands.push_back(visit(Op));
780 return SE.getAddRecExpr(Operands, ExprL, Expr->getNoWrapFlags());
783 bool wasValidSCEV() const { return Valid; }
785 private:
786 bool Valid, UseMax;
787 const Loop &OldL, &NewL;
790 /// Return false if the access functions of \p I0 and \p I1 could cause
791 /// a negative dependence.
792 bool accessDiffIsPositive(const Loop &L0, const Loop &L1, Instruction &I0,
793 Instruction &I1, bool EqualIsInvalid) {
794 Value *Ptr0 = getLoadStorePointerOperand(&I0);
795 Value *Ptr1 = getLoadStorePointerOperand(&I1);
796 if (!Ptr0 || !Ptr1)
797 return false;
799 const SCEV *SCEVPtr0 = SE.getSCEVAtScope(Ptr0, &L0);
800 const SCEV *SCEVPtr1 = SE.getSCEVAtScope(Ptr1, &L1);
801 #ifndef NDEBUG
802 if (VerboseFusionDebugging)
803 LLVM_DEBUG(dbgs() << " Access function check: " << *SCEVPtr0 << " vs "
804 << *SCEVPtr1 << "\n");
805 #endif
806 AddRecLoopReplacer Rewriter(SE, L0, L1);
807 SCEVPtr0 = Rewriter.visit(SCEVPtr0);
808 #ifndef NDEBUG
809 if (VerboseFusionDebugging)
810 LLVM_DEBUG(dbgs() << " Access function after rewrite: " << *SCEVPtr0
811 << " [Valid: " << Rewriter.wasValidSCEV() << "]\n");
812 #endif
813 if (!Rewriter.wasValidSCEV())
814 return false;
816 // TODO: isKnownPredicate doesnt work well when one SCEV is loop carried (by
817 // L0) and the other is not. We could check if it is monotone and test
818 // the beginning and end value instead.
820 BasicBlock *L0Header = L0.getHeader();
821 auto HasNonLinearDominanceRelation = [&](const SCEV *S) {
822 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S);
823 if (!AddRec)
824 return false;
825 return !DT.dominates(L0Header, AddRec->getLoop()->getHeader()) &&
826 !DT.dominates(AddRec->getLoop()->getHeader(), L0Header);
828 if (SCEVExprContains(SCEVPtr1, HasNonLinearDominanceRelation))
829 return false;
831 ICmpInst::Predicate Pred =
832 EqualIsInvalid ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_SGE;
833 bool IsAlwaysGE = SE.isKnownPredicate(Pred, SCEVPtr0, SCEVPtr1);
834 #ifndef NDEBUG
835 if (VerboseFusionDebugging)
836 LLVM_DEBUG(dbgs() << " Relation: " << *SCEVPtr0
837 << (IsAlwaysGE ? " >= " : " may < ") << *SCEVPtr1
838 << "\n");
839 #endif
840 return IsAlwaysGE;
843 /// Return true if the dependences between @p I0 (in @p L0) and @p I1 (in
844 /// @p L1) allow loop fusion of @p L0 and @p L1. The dependence analyses
845 /// specified by @p DepChoice are used to determine this.
846 bool dependencesAllowFusion(const FusionCandidate &FC0,
847 const FusionCandidate &FC1, Instruction &I0,
848 Instruction &I1, bool AnyDep,
849 FusionDependenceAnalysisChoice DepChoice) {
850 #ifndef NDEBUG
851 if (VerboseFusionDebugging) {
852 LLVM_DEBUG(dbgs() << "Check dep: " << I0 << " vs " << I1 << " : "
853 << DepChoice << "\n");
855 #endif
856 switch (DepChoice) {
857 case FUSION_DEPENDENCE_ANALYSIS_SCEV:
858 return accessDiffIsPositive(*FC0.L, *FC1.L, I0, I1, AnyDep);
859 case FUSION_DEPENDENCE_ANALYSIS_DA: {
860 auto DepResult = DI.depends(&I0, &I1, true);
861 if (!DepResult)
862 return true;
863 #ifndef NDEBUG
864 if (VerboseFusionDebugging) {
865 LLVM_DEBUG(dbgs() << "DA res: "; DepResult->dump(dbgs());
866 dbgs() << " [#l: " << DepResult->getLevels() << "][Ordered: "
867 << (DepResult->isOrdered() ? "true" : "false")
868 << "]\n");
869 LLVM_DEBUG(dbgs() << "DepResult Levels: " << DepResult->getLevels()
870 << "\n");
872 #endif
874 if (DepResult->getNextPredecessor() || DepResult->getNextSuccessor())
875 LLVM_DEBUG(
876 dbgs() << "TODO: Implement pred/succ dependence handling!\n");
878 // TODO: Can we actually use the dependence info analysis here?
879 return false;
882 case FUSION_DEPENDENCE_ANALYSIS_ALL:
883 return dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
884 FUSION_DEPENDENCE_ANALYSIS_SCEV) ||
885 dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
886 FUSION_DEPENDENCE_ANALYSIS_DA);
889 llvm_unreachable("Unknown fusion dependence analysis choice!");
892 /// Perform a dependence check and return if @p FC0 and @p FC1 can be fused.
893 bool dependencesAllowFusion(const FusionCandidate &FC0,
894 const FusionCandidate &FC1) {
895 LLVM_DEBUG(dbgs() << "Check if " << FC0 << " can be fused with " << FC1
896 << "\n");
897 assert(FC0.L->getLoopDepth() == FC1.L->getLoopDepth());
898 assert(DT.dominates(FC0.Preheader, FC1.Preheader));
900 for (Instruction *WriteL0 : FC0.MemWrites) {
901 for (Instruction *WriteL1 : FC1.MemWrites)
902 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
903 /* AnyDep */ false,
904 FusionDependenceAnalysis)) {
905 InvalidDependencies++;
906 return false;
908 for (Instruction *ReadL1 : FC1.MemReads)
909 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *ReadL1,
910 /* AnyDep */ false,
911 FusionDependenceAnalysis)) {
912 InvalidDependencies++;
913 return false;
917 for (Instruction *WriteL1 : FC1.MemWrites) {
918 for (Instruction *WriteL0 : FC0.MemWrites)
919 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
920 /* AnyDep */ false,
921 FusionDependenceAnalysis)) {
922 InvalidDependencies++;
923 return false;
925 for (Instruction *ReadL0 : FC0.MemReads)
926 if (!dependencesAllowFusion(FC0, FC1, *ReadL0, *WriteL1,
927 /* AnyDep */ false,
928 FusionDependenceAnalysis)) {
929 InvalidDependencies++;
930 return false;
934 // Walk through all uses in FC1. For each use, find the reaching def. If the
935 // def is located in FC0 then it is is not safe to fuse.
936 for (BasicBlock *BB : FC1.L->blocks())
937 for (Instruction &I : *BB)
938 for (auto &Op : I.operands())
939 if (Instruction *Def = dyn_cast<Instruction>(Op))
940 if (FC0.L->contains(Def->getParent())) {
941 InvalidDependencies++;
942 return false;
945 return true;
948 /// Determine if the exit block of \p FC0 is the preheader of \p FC1. In this
949 /// case, there is no code in between the two fusion candidates, thus making
950 /// them adjacent.
951 bool isAdjacent(const FusionCandidate &FC0,
952 const FusionCandidate &FC1) const {
953 return FC0.ExitBlock == FC1.Preheader;
956 bool isEmptyPreheader(const FusionCandidate &FC) const {
957 return FC.Preheader->size() == 1;
960 /// Fuse two fusion candidates, creating a new fused loop.
962 /// This method contains the mechanics of fusing two loops, represented by \p
963 /// FC0 and \p FC1. It is assumed that \p FC0 dominates \p FC1 and \p FC1
964 /// postdominates \p FC0 (making them control flow equivalent). It also
965 /// assumes that the other conditions for fusion have been met: adjacent,
966 /// identical trip counts, and no negative distance dependencies exist that
967 /// would prevent fusion. Thus, there is no checking for these conditions in
968 /// this method.
970 /// Fusion is performed by rewiring the CFG to update successor blocks of the
971 /// components of tho loop. Specifically, the following changes are done:
973 /// 1. The preheader of \p FC1 is removed as it is no longer necessary
974 /// (because it is currently only a single statement block).
975 /// 2. The latch of \p FC0 is modified to jump to the header of \p FC1.
976 /// 3. The latch of \p FC1 i modified to jump to the header of \p FC0.
977 /// 4. All blocks from \p FC1 are removed from FC1 and added to FC0.
979 /// All of these modifications are done with dominator tree updates, thus
980 /// keeping the dominator (and post dominator) information up-to-date.
982 /// This can be improved in the future by actually merging blocks during
983 /// fusion. For example, the preheader of \p FC1 can be merged with the
984 /// preheader of \p FC0. This would allow loops with more than a single
985 /// statement in the preheader to be fused. Similarly, the latch blocks of the
986 /// two loops could also be fused into a single block. This will require
987 /// analysis to prove it is safe to move the contents of the block past
988 /// existing code, which currently has not been implemented.
989 Loop *performFusion(const FusionCandidate &FC0, const FusionCandidate &FC1) {
990 assert(FC0.isValid() && FC1.isValid() &&
991 "Expecting valid fusion candidates");
993 LLVM_DEBUG(dbgs() << "Fusion Candidate 0: \n"; FC0.dump();
994 dbgs() << "Fusion Candidate 1: \n"; FC1.dump(););
996 assert(FC1.Preheader == FC0.ExitBlock);
997 assert(FC1.Preheader->size() == 1 &&
998 FC1.Preheader->getSingleSuccessor() == FC1.Header);
1000 // Remember the phi nodes originally in the header of FC0 in order to rewire
1001 // them later. However, this is only necessary if the new loop carried
1002 // values might not dominate the exiting branch. While we do not generally
1003 // test if this is the case but simply insert intermediate phi nodes, we
1004 // need to make sure these intermediate phi nodes have different
1005 // predecessors. To this end, we filter the special case where the exiting
1006 // block is the latch block of the first loop. Nothing needs to be done
1007 // anyway as all loop carried values dominate the latch and thereby also the
1008 // exiting branch.
1009 SmallVector<PHINode *, 8> OriginalFC0PHIs;
1010 if (FC0.ExitingBlock != FC0.Latch)
1011 for (PHINode &PHI : FC0.Header->phis())
1012 OriginalFC0PHIs.push_back(&PHI);
1014 // Replace incoming blocks for header PHIs first.
1015 FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
1016 FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);
1018 // Then modify the control flow and update DT and PDT.
1019 SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
1021 // The old exiting block of the first loop (FC0) has to jump to the header
1022 // of the second as we need to execute the code in the second header block
1023 // regardless of the trip count. That is, if the trip count is 0, so the
1024 // back edge is never taken, we still have to execute both loop headers,
1025 // especially (but not only!) if the second is a do-while style loop.
1026 // However, doing so might invalidate the phi nodes of the first loop as
1027 // the new values do only need to dominate their latch and not the exiting
1028 // predicate. To remedy this potential problem we always introduce phi
1029 // nodes in the header of the second loop later that select the loop carried
1030 // value, if the second header was reached through an old latch of the
1031 // first, or undef otherwise. This is sound as exiting the first implies the
1032 // second will exit too, __without__ taking the back-edge. [Their
1033 // trip-counts are equal after all.
1034 // KB: Would this sequence be simpler to just just make FC0.ExitingBlock go
1035 // to FC1.Header? I think this is basically what the three sequences are
1036 // trying to accomplish; however, doing this directly in the CFG may mean
1037 // the DT/PDT becomes invalid
1038 FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC1.Preheader,
1039 FC1.Header);
1040 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1041 DominatorTree::Delete, FC0.ExitingBlock, FC1.Preheader));
1042 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1043 DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1045 // The pre-header of L1 is not necessary anymore.
1046 assert(pred_begin(FC1.Preheader) == pred_end(FC1.Preheader));
1047 FC1.Preheader->getTerminator()->eraseFromParent();
1048 new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
1049 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1050 DominatorTree::Delete, FC1.Preheader, FC1.Header));
1052 // Moves the phi nodes from the second to the first loops header block.
1053 while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
1054 if (SE.isSCEVable(PHI->getType()))
1055 SE.forgetValue(PHI);
1056 if (PHI->hasNUsesOrMore(1))
1057 PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
1058 else
1059 PHI->eraseFromParent();
1062 // Introduce new phi nodes in the second loop header to ensure
1063 // exiting the first and jumping to the header of the second does not break
1064 // the SSA property of the phis originally in the first loop. See also the
1065 // comment above.
1066 Instruction *L1HeaderIP = &FC1.Header->front();
1067 for (PHINode *LCPHI : OriginalFC0PHIs) {
1068 int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
1069 assert(L1LatchBBIdx >= 0 &&
1070 "Expected loop carried value to be rewired at this point!");
1072 Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
1074 PHINode *L1HeaderPHI = PHINode::Create(
1075 LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
1076 L1HeaderPHI->addIncoming(LCV, FC0.Latch);
1077 L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
1078 FC0.ExitingBlock);
1080 LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
1083 // Replace latch terminator destinations.
1084 FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
1085 FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);
1087 // If FC0.Latch and FC0.ExitingBlock are the same then we have already
1088 // performed the updates above.
1089 if (FC0.Latch != FC0.ExitingBlock)
1090 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1091 DominatorTree::Insert, FC0.Latch, FC1.Header));
1093 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1094 FC0.Latch, FC0.Header));
1095 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
1096 FC1.Latch, FC0.Header));
1097 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1098 FC1.Latch, FC1.Header));
1100 // Update DT/PDT
1101 DTU.applyUpdates(TreeUpdates);
1103 LI.removeBlock(FC1.Preheader);
1104 DTU.deleteBB(FC1.Preheader);
1105 DTU.flush();
1107 // Is there a way to keep SE up-to-date so we don't need to forget the loops
1108 // and rebuild the information in subsequent passes of fusion?
1109 SE.forgetLoop(FC1.L);
1110 SE.forgetLoop(FC0.L);
1112 // Merge the loops.
1113 SmallVector<BasicBlock *, 8> Blocks(FC1.L->block_begin(),
1114 FC1.L->block_end());
1115 for (BasicBlock *BB : Blocks) {
1116 FC0.L->addBlockEntry(BB);
1117 FC1.L->removeBlockFromLoop(BB);
1118 if (LI.getLoopFor(BB) != FC1.L)
1119 continue;
1120 LI.changeLoopFor(BB, FC0.L);
1122 while (!FC1.L->empty()) {
1123 const auto &ChildLoopIt = FC1.L->begin();
1124 Loop *ChildLoop = *ChildLoopIt;
1125 FC1.L->removeChildLoop(ChildLoopIt);
1126 FC0.L->addChildLoop(ChildLoop);
1129 // Delete the now empty loop L1.
1130 LI.erase(FC1.L);
1132 #ifndef NDEBUG
1133 assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
1134 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1135 assert(PDT.verify());
1136 LI.verify(DT);
1137 SE.verify();
1138 #endif
1140 FuseCounter++;
1142 LLVM_DEBUG(dbgs() << "Fusion done:\n");
1144 return FC0.L;
1147 /// Report details on loop fusion opportunities.
1149 /// This template function can be used to report both successful and missed
1150 /// loop fusion opportunities, based on the RemarkKind. The RemarkKind should
1151 /// be one of:
1152 /// - OptimizationRemarkMissed to report when loop fusion is unsuccessful
1153 /// given two valid fusion candidates.
1154 /// - OptimizationRemark to report successful fusion of two fusion
1155 /// candidates.
1156 /// The remarks will be printed using the form:
1157 /// <path/filename>:<line number>:<column number>: [<function name>]:
1158 /// <Cand1 Preheader> and <Cand2 Preheader>: <Stat Description>
1159 template <typename RemarkKind>
1160 void reportLoopFusion(const FusionCandidate &FC0, const FusionCandidate &FC1,
1161 llvm::Statistic &Stat) {
1162 assert(FC0.Preheader && FC1.Preheader &&
1163 "Expecting valid fusion candidates");
1164 using namespace ore;
1165 ++Stat;
1166 ORE.emit(RemarkKind(DEBUG_TYPE, Stat.getName(), FC0.L->getStartLoc(),
1167 FC0.Preheader)
1168 << "[" << FC0.Preheader->getParent()->getName()
1169 << "]: " << NV("Cand1", StringRef(FC0.Preheader->getName()))
1170 << " and " << NV("Cand2", StringRef(FC1.Preheader->getName()))
1171 << ": " << Stat.getDesc());
1175 struct LoopFuseLegacy : public FunctionPass {
1177 static char ID;
1179 LoopFuseLegacy() : FunctionPass(ID) {
1180 initializeLoopFuseLegacyPass(*PassRegistry::getPassRegistry());
1183 void getAnalysisUsage(AnalysisUsage &AU) const override {
1184 AU.addRequiredID(LoopSimplifyID);
1185 AU.addRequired<ScalarEvolutionWrapperPass>();
1186 AU.addRequired<LoopInfoWrapperPass>();
1187 AU.addRequired<DominatorTreeWrapperPass>();
1188 AU.addRequired<PostDominatorTreeWrapperPass>();
1189 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1190 AU.addRequired<DependenceAnalysisWrapperPass>();
1192 AU.addPreserved<ScalarEvolutionWrapperPass>();
1193 AU.addPreserved<LoopInfoWrapperPass>();
1194 AU.addPreserved<DominatorTreeWrapperPass>();
1195 AU.addPreserved<PostDominatorTreeWrapperPass>();
1198 bool runOnFunction(Function &F) override {
1199 if (skipFunction(F))
1200 return false;
1201 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1202 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1203 auto &DI = getAnalysis<DependenceAnalysisWrapperPass>().getDI();
1204 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1205 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
1206 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1208 const DataLayout &DL = F.getParent()->getDataLayout();
1209 LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL);
1210 return LF.fuseLoops(F);
1213 } // namespace
1215 PreservedAnalyses LoopFusePass::run(Function &F, FunctionAnalysisManager &AM) {
1216 auto &LI = AM.getResult<LoopAnalysis>(F);
1217 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1218 auto &DI = AM.getResult<DependenceAnalysis>(F);
1219 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1220 auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
1221 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1223 const DataLayout &DL = F.getParent()->getDataLayout();
1224 LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL);
1225 bool Changed = LF.fuseLoops(F);
1226 if (!Changed)
1227 return PreservedAnalyses::all();
1229 PreservedAnalyses PA;
1230 PA.preserve<DominatorTreeAnalysis>();
1231 PA.preserve<PostDominatorTreeAnalysis>();
1232 PA.preserve<ScalarEvolutionAnalysis>();
1233 PA.preserve<LoopAnalysis>();
1234 return PA;
1237 char LoopFuseLegacy::ID = 0;
1239 INITIALIZE_PASS_BEGIN(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false,
1240 false)
1241 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
1242 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1243 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1244 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
1245 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1246 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1247 INITIALIZE_PASS_END(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, false)
1249 FunctionPass *llvm::createLoopFusePass() { return new LoopFuseLegacy(); }