1 //===- LoopFuse.cpp - Loop Fusion Pass ------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file implements the loop fusion pass.
11 /// The implementation is largely based on the following document:
13 /// Code Transformations to Augment the Scope of Loop Fusion in a
14 /// Production Compiler
15 /// Christopher Mark Barton
17 /// https://webdocs.cs.ualberta.ca/~amaral/thesis/ChristopherBartonMSc.pdf
19 /// The general approach taken is to collect sets of control flow equivalent
20 /// loops and test whether they can be fused. The necessary conditions for
22 /// 1. The loops must be adjacent (there cannot be any statements between
24 /// 2. The loops must be conforming (they must execute the same number of
26 /// 3. The loops must be control flow equivalent (if one loop executes, the
27 /// other is guaranteed to execute).
28 /// 4. There cannot be any negative distance dependencies between the loops.
29 /// If all of these conditions are satisfied, it is safe to fuse the loops.
31 /// This implementation creates FusionCandidates that represent the loop and the
32 /// necessary information needed by fusion. It then operates on the fusion
33 /// candidates, first confirming that the candidate is eligible for fusion. The
34 /// candidates are then collected into control flow equivalent sets, sorted in
35 /// dominance order. Each set of control flow equivalent candidates is then
36 /// traversed, attempting to fuse pairs of candidates in the set. If all
37 /// requirements for fusion are met, the two candidates are fused, creating a
38 /// new (fused) candidate which is then added back into the set to consider for
39 /// additional fusion.
41 /// This implementation currently does not make any modifications to remove
42 /// conditions for fusion. Code transformations to make loops conform to each of
43 /// the conditions for fusion are discussed in more detail in the document
44 /// above. These can be added to the current implementation in the future.
45 //===----------------------------------------------------------------------===//
47 #include "llvm/Transforms/Scalar/LoopFuse.h"
48 #include "llvm/ADT/Statistic.h"
49 #include "llvm/Analysis/DependenceAnalysis.h"
50 #include "llvm/Analysis/DomTreeUpdater.h"
51 #include "llvm/Analysis/LoopInfo.h"
52 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
53 #include "llvm/Analysis/PostDominators.h"
54 #include "llvm/Analysis/ScalarEvolution.h"
55 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/Verifier.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Transforms/Scalar.h"
62 #include "llvm/Transforms/Utils.h"
63 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #define DEBUG_TYPE "loop-fusion"
69 STATISTIC(FuseCounter
, "Loops fused");
70 STATISTIC(NumFusionCandidates
, "Number of candidates for loop fusion");
71 STATISTIC(InvalidPreheader
, "Loop has invalid preheader");
72 STATISTIC(InvalidHeader
, "Loop has invalid header");
73 STATISTIC(InvalidExitingBlock
, "Loop has invalid exiting blocks");
74 STATISTIC(InvalidExitBlock
, "Loop has invalid exit block");
75 STATISTIC(InvalidLatch
, "Loop has invalid latch");
76 STATISTIC(InvalidLoop
, "Loop is invalid");
77 STATISTIC(AddressTakenBB
, "Basic block has address taken");
78 STATISTIC(MayThrowException
, "Loop may throw an exception");
79 STATISTIC(ContainsVolatileAccess
, "Loop contains a volatile access");
80 STATISTIC(NotSimplifiedForm
, "Loop is not in simplified form");
81 STATISTIC(InvalidDependencies
, "Dependencies prevent fusion");
82 STATISTIC(UnknownTripCount
, "Loop has unknown trip count");
83 STATISTIC(UncomputableTripCount
, "SCEV cannot compute trip count of loop");
84 STATISTIC(NonEqualTripCount
, "Loop trip counts are not the same");
85 STATISTIC(NonAdjacent
, "Loops are not adjacent");
86 STATISTIC(NonEmptyPreheader
, "Loop has a non-empty preheader");
87 STATISTIC(FusionNotBeneficial
, "Fusion is not beneficial");
89 enum FusionDependenceAnalysisChoice
{
90 FUSION_DEPENDENCE_ANALYSIS_SCEV
,
91 FUSION_DEPENDENCE_ANALYSIS_DA
,
92 FUSION_DEPENDENCE_ANALYSIS_ALL
,
95 static cl::opt
<FusionDependenceAnalysisChoice
> FusionDependenceAnalysis(
96 "loop-fusion-dependence-analysis",
97 cl::desc("Which dependence analysis should loop fusion use?"),
98 cl::values(clEnumValN(FUSION_DEPENDENCE_ANALYSIS_SCEV
, "scev",
99 "Use the scalar evolution interface"),
100 clEnumValN(FUSION_DEPENDENCE_ANALYSIS_DA
, "da",
101 "Use the dependence analysis interface"),
102 clEnumValN(FUSION_DEPENDENCE_ANALYSIS_ALL
, "all",
103 "Use all available analyses")),
104 cl::Hidden
, cl::init(FUSION_DEPENDENCE_ANALYSIS_ALL
), cl::ZeroOrMore
);
108 VerboseFusionDebugging("loop-fusion-verbose-debug",
109 cl::desc("Enable verbose debugging for Loop Fusion"),
110 cl::Hidden
, cl::init(false), cl::ZeroOrMore
);
114 /// This class is used to represent a candidate for loop fusion. When it is
115 /// constructed, it checks the conditions for loop fusion to ensure that it
116 /// represents a valid candidate. It caches several parts of a loop that are
117 /// used throughout loop fusion (e.g., loop preheader, loop header, etc) instead
118 /// of continually querying the underlying Loop to retrieve these values. It is
119 /// assumed these will not change throughout loop fusion.
121 /// The invalidate method should be used to indicate that the FusionCandidate is
122 /// no longer a valid candidate for fusion. Similarly, the isValid() method can
123 /// be used to ensure that the FusionCandidate is still valid for fusion.
124 struct FusionCandidate
{
125 /// Cache of parts of the loop used throughout loop fusion. These should not
126 /// need to change throughout the analysis and transformation.
127 /// These parts are cached to avoid repeatedly looking up in the Loop class.
129 /// Preheader of the loop this candidate represents
130 BasicBlock
*Preheader
;
131 /// Header of the loop this candidate represents
133 /// Blocks in the loop that exit the loop
134 BasicBlock
*ExitingBlock
;
135 /// The successor block of this loop (where the exiting blocks go to)
136 BasicBlock
*ExitBlock
;
137 /// Latch of the loop
139 /// The loop that this fusion candidate represents
141 /// Vector of instructions in this loop that read from memory
142 SmallVector
<Instruction
*, 16> MemReads
;
143 /// Vector of instructions in this loop that write to memory
144 SmallVector
<Instruction
*, 16> MemWrites
;
145 /// Are all of the members of this fusion candidate still valid
148 /// Dominator and PostDominator trees are needed for the
149 /// FusionCandidateCompare function, required by FusionCandidateSet to
150 /// determine where the FusionCandidate should be inserted into the set. These
151 /// are used to establish ordering of the FusionCandidates based on dominance.
152 const DominatorTree
*DT
;
153 const PostDominatorTree
*PDT
;
155 OptimizationRemarkEmitter
&ORE
;
157 FusionCandidate(Loop
*L
, const DominatorTree
*DT
,
158 const PostDominatorTree
*PDT
, OptimizationRemarkEmitter
&ORE
)
159 : Preheader(L
->getLoopPreheader()), Header(L
->getHeader()),
160 ExitingBlock(L
->getExitingBlock()), ExitBlock(L
->getExitBlock()),
161 Latch(L
->getLoopLatch()), L(L
), Valid(true), DT(DT
), PDT(PDT
),
164 // Walk over all blocks in the loop and check for conditions that may
165 // prevent fusion. For each block, walk over all instructions and collect
166 // the memory reads and writes If any instructions that prevent fusion are
167 // found, invalidate this object and return.
168 for (BasicBlock
*BB
: L
->blocks()) {
169 if (BB
->hasAddressTaken()) {
171 reportInvalidCandidate(AddressTakenBB
);
175 for (Instruction
&I
: *BB
) {
178 reportInvalidCandidate(MayThrowException
);
181 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(&I
)) {
182 if (SI
->isVolatile()) {
184 reportInvalidCandidate(ContainsVolatileAccess
);
188 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(&I
)) {
189 if (LI
->isVolatile()) {
191 reportInvalidCandidate(ContainsVolatileAccess
);
195 if (I
.mayWriteToMemory())
196 MemWrites
.push_back(&I
);
197 if (I
.mayReadFromMemory())
198 MemReads
.push_back(&I
);
203 /// Check if all members of the class are valid.
204 bool isValid() const {
205 return Preheader
&& Header
&& ExitingBlock
&& ExitBlock
&& Latch
&& L
&&
206 !L
->isInvalid() && Valid
;
209 /// Verify that all members are in sync with the Loop object.
210 void verify() const {
211 assert(isValid() && "Candidate is not valid!!");
212 assert(!L
->isInvalid() && "Loop is invalid!");
213 assert(Preheader
== L
->getLoopPreheader() && "Preheader is out of sync");
214 assert(Header
== L
->getHeader() && "Header is out of sync");
215 assert(ExitingBlock
== L
->getExitingBlock() &&
216 "Exiting Blocks is out of sync");
217 assert(ExitBlock
== L
->getExitBlock() && "Exit block is out of sync");
218 assert(Latch
== L
->getLoopLatch() && "Latch is out of sync");
221 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
222 LLVM_DUMP_METHOD
void dump() const {
223 dbgs() << "\tPreheader: " << (Preheader
? Preheader
->getName() : "nullptr")
225 << "\tHeader: " << (Header
? Header
->getName() : "nullptr") << "\n"
227 << (ExitingBlock
? ExitingBlock
->getName() : "nullptr") << "\n"
228 << "\tExitBB: " << (ExitBlock
? ExitBlock
->getName() : "nullptr")
230 << "\tLatch: " << (Latch
? Latch
->getName() : "nullptr") << "\n";
234 /// Determine if a fusion candidate (representing a loop) is eligible for
235 /// fusion. Note that this only checks whether a single loop can be fused - it
236 /// does not check whether it is *legal* to fuse two loops together.
237 bool isEligibleForFusion(ScalarEvolution
&SE
) const {
239 LLVM_DEBUG(dbgs() << "FC has invalid CFG requirements!\n");
245 ++InvalidExitingBlock
;
256 // Require ScalarEvolution to be able to determine a trip count.
257 if (!SE
.hasLoopInvariantBackedgeTakenCount(L
)) {
258 LLVM_DEBUG(dbgs() << "Loop " << L
->getName()
259 << " trip count not computable!\n");
260 return reportInvalidCandidate(UnknownTripCount
);
263 if (!L
->isLoopSimplifyForm()) {
264 LLVM_DEBUG(dbgs() << "Loop " << L
->getName()
265 << " is not in simplified form!\n");
266 return reportInvalidCandidate(NotSimplifiedForm
);
273 // This is only used internally for now, to clear the MemWrites and MemReads
274 // list and setting Valid to false. I can't envision other uses of this right
275 // now, since once FusionCandidates are put into the FusionCandidateSet they
276 // are immutable. Thus, any time we need to change/update a FusionCandidate,
277 // we must create a new one and insert it into the FusionCandidateSet to
278 // ensure the FusionCandidateSet remains ordered correctly.
285 bool reportInvalidCandidate(llvm::Statistic
&Stat
) const {
287 assert(L
&& Preheader
&& "Fusion candidate not initialized properly!");
289 ORE
.emit(OptimizationRemarkAnalysis(DEBUG_TYPE
, Stat
.getName(),
290 L
->getStartLoc(), Preheader
)
291 << "[" << Preheader
->getParent()->getName() << "]: "
292 << "Loop is not a candidate for fusion: " << Stat
.getDesc());
297 inline llvm::raw_ostream
&operator<<(llvm::raw_ostream
&OS
,
298 const FusionCandidate
&FC
) {
300 OS
<< FC
.Preheader
->getName();
307 struct FusionCandidateCompare
{
308 /// Comparison functor to sort two Control Flow Equivalent fusion candidates
309 /// into dominance order.
310 /// If LHS dominates RHS and RHS post-dominates LHS, return true;
311 /// IF RHS dominates LHS and LHS post-dominates RHS, return false;
312 bool operator()(const FusionCandidate
&LHS
,
313 const FusionCandidate
&RHS
) const {
314 const DominatorTree
*DT
= LHS
.DT
;
316 // Do not save PDT to local variable as it is only used in asserts and thus
317 // will trigger an unused variable warning if building without asserts.
318 assert(DT
&& LHS
.PDT
&& "Expecting valid dominator tree");
320 // Do this compare first so if LHS == RHS, function returns false.
321 if (DT
->dominates(RHS
.Preheader
, LHS
.Preheader
)) {
323 // Verify LHS post-dominates RHS
324 assert(LHS
.PDT
->dominates(LHS
.Preheader
, RHS
.Preheader
));
328 if (DT
->dominates(LHS
.Preheader
, RHS
.Preheader
)) {
329 // Verify RHS Postdominates LHS
330 assert(LHS
.PDT
->dominates(RHS
.Preheader
, LHS
.Preheader
));
334 // If LHS does not dominate RHS and RHS does not dominate LHS then there is
335 // no dominance relationship between the two FusionCandidates. Thus, they
336 // should not be in the same set together.
338 "No dominance relationship between these fusion candidates!");
342 using LoopVector
= SmallVector
<Loop
*, 4>;
344 // Set of Control Flow Equivalent (CFE) Fusion Candidates, sorted in dominance
345 // order. Thus, if FC0 comes *before* FC1 in a FusionCandidateSet, then FC0
346 // dominates FC1 and FC1 post-dominates FC0.
347 // std::set was chosen because we want a sorted data structure with stable
348 // iterators. A subsequent patch to loop fusion will enable fusing non-ajdacent
349 // loops by moving intervening code around. When this intervening code contains
350 // loops, those loops will be moved also. The corresponding FusionCandidates
351 // will also need to be moved accordingly. As this is done, having stable
352 // iterators will simplify the logic. Similarly, having an efficient insert that
353 // keeps the FusionCandidateSet sorted will also simplify the implementation.
354 using FusionCandidateSet
= std::set
<FusionCandidate
, FusionCandidateCompare
>;
355 using FusionCandidateCollection
= SmallVector
<FusionCandidateSet
, 4>;
358 static llvm::raw_ostream
&operator<<(llvm::raw_ostream
&OS
,
359 const FusionCandidateSet
&CandSet
) {
360 for (const FusionCandidate
&FC
: CandSet
)
367 printFusionCandidates(const FusionCandidateCollection
&FusionCandidates
) {
368 dbgs() << "Fusion Candidates: \n";
369 for (const auto &CandidateSet
: FusionCandidates
) {
370 dbgs() << "*** Fusion Candidate Set ***\n";
371 dbgs() << CandidateSet
;
372 dbgs() << "****************************\n";
377 /// Collect all loops in function at the same nest level, starting at the
380 /// This data structure collects all loops at the same nest level for a
381 /// given function (specified by the LoopInfo object). It starts at the
383 struct LoopDepthTree
{
384 using LoopsOnLevelTy
= SmallVector
<LoopVector
, 4>;
385 using iterator
= LoopsOnLevelTy::iterator
;
386 using const_iterator
= LoopsOnLevelTy::const_iterator
;
388 LoopDepthTree(LoopInfo
&LI
) : Depth(1) {
390 LoopsOnLevel
.emplace_back(LoopVector(LI
.rbegin(), LI
.rend()));
393 /// Test whether a given loop has been removed from the function, and thus is
395 bool isRemovedLoop(const Loop
*L
) const { return RemovedLoops
.count(L
); }
397 /// Record that a given loop has been removed from the function and is no
399 void removeLoop(const Loop
*L
) { RemovedLoops
.insert(L
); }
401 /// Descend the tree to the next (inner) nesting level
403 LoopsOnLevelTy LoopsOnNextLevel
;
405 for (const LoopVector
&LV
: *this)
407 if (!isRemovedLoop(L
) && L
->begin() != L
->end())
408 LoopsOnNextLevel
.emplace_back(LoopVector(L
->begin(), L
->end()));
410 LoopsOnLevel
= LoopsOnNextLevel
;
411 RemovedLoops
.clear();
415 bool empty() const { return size() == 0; }
416 size_t size() const { return LoopsOnLevel
.size() - RemovedLoops
.size(); }
417 unsigned getDepth() const { return Depth
; }
419 iterator
begin() { return LoopsOnLevel
.begin(); }
420 iterator
end() { return LoopsOnLevel
.end(); }
421 const_iterator
begin() const { return LoopsOnLevel
.begin(); }
422 const_iterator
end() const { return LoopsOnLevel
.end(); }
425 /// Set of loops that have been removed from the function and are no longer
427 SmallPtrSet
<const Loop
*, 8> RemovedLoops
;
429 /// Depth of the current level, starting at 1 (outermost loops).
432 /// Vector of loops at the current depth level that have the same parent loop
433 LoopsOnLevelTy LoopsOnLevel
;
437 static void printLoopVector(const LoopVector
&LV
) {
438 dbgs() << "****************************\n";
440 printLoop(*L
, dbgs());
441 dbgs() << "****************************\n";
447 // Sets of control flow equivalent fusion candidates for a given nest level.
448 FusionCandidateCollection FusionCandidates
;
457 PostDominatorTree
&PDT
;
458 OptimizationRemarkEmitter
&ORE
;
461 LoopFuser(LoopInfo
&LI
, DominatorTree
&DT
, DependenceInfo
&DI
,
462 ScalarEvolution
&SE
, PostDominatorTree
&PDT
,
463 OptimizationRemarkEmitter
&ORE
, const DataLayout
&DL
)
464 : LDT(LI
), DTU(DT
, PDT
, DomTreeUpdater::UpdateStrategy::Lazy
), LI(LI
),
465 DT(DT
), DI(DI
), SE(SE
), PDT(PDT
), ORE(ORE
) {}
467 /// This is the main entry point for loop fusion. It will traverse the
468 /// specified function and collect candidate loops to fuse, starting at the
469 /// outermost nesting level and working inwards.
470 bool fuseLoops(Function
&F
) {
472 if (VerboseFusionDebugging
) {
477 LLVM_DEBUG(dbgs() << "Performing Loop Fusion on function " << F
.getName()
479 bool Changed
= false;
481 while (!LDT
.empty()) {
482 LLVM_DEBUG(dbgs() << "Got " << LDT
.size() << " loop sets for depth "
483 << LDT
.getDepth() << "\n";);
485 for (const LoopVector
&LV
: LDT
) {
486 assert(LV
.size() > 0 && "Empty loop set was build!");
488 // Skip singleton loop sets as they do not offer fusion opportunities on
493 if (VerboseFusionDebugging
) {
495 dbgs() << " Visit loop set (#" << LV
.size() << "):\n";
501 collectFusionCandidates(LV
);
502 Changed
|= fuseCandidates();
505 // Finished analyzing candidates at this level.
506 // Descend to the next level and clear all of the candidates currently
507 // collected. Note that it will not be possible to fuse any of the
508 // existing candidates with new candidates because the new candidates will
509 // be at a different nest level and thus not be control flow equivalent
510 // with all of the candidates collected so far.
511 LLVM_DEBUG(dbgs() << "Descend one level!\n");
513 FusionCandidates
.clear();
517 LLVM_DEBUG(dbgs() << "Function after Loop Fusion: \n"; F
.dump(););
521 assert(PDT
.verify());
526 LLVM_DEBUG(dbgs() << "Loop Fusion complete\n");
531 /// Determine if two fusion candidates are control flow equivalent.
533 /// Two fusion candidates are control flow equivalent if when one executes,
534 /// the other is guaranteed to execute. This is determined using dominators
535 /// and post-dominators: if A dominates B and B post-dominates A then A and B
536 /// are control-flow equivalent.
537 bool isControlFlowEquivalent(const FusionCandidate
&FC0
,
538 const FusionCandidate
&FC1
) const {
539 assert(FC0
.Preheader
&& FC1
.Preheader
&& "Expecting valid preheaders");
541 if (DT
.dominates(FC0
.Preheader
, FC1
.Preheader
))
542 return PDT
.dominates(FC1
.Preheader
, FC0
.Preheader
);
544 if (DT
.dominates(FC1
.Preheader
, FC0
.Preheader
))
545 return PDT
.dominates(FC0
.Preheader
, FC1
.Preheader
);
550 /// Iterate over all loops in the given loop set and identify the loops that
551 /// are eligible for fusion. Place all eligible fusion candidates into Control
552 /// Flow Equivalent sets, sorted by dominance.
553 void collectFusionCandidates(const LoopVector
&LV
) {
555 FusionCandidate
CurrCand(L
, &DT
, &PDT
, ORE
);
556 if (!CurrCand
.isEligibleForFusion(SE
))
559 // Go through each list in FusionCandidates and determine if L is control
560 // flow equivalent with the first loop in that list. If it is, append LV.
561 // If not, go to the next list.
562 // If no suitable list is found, start another list and add it to
564 bool FoundSet
= false;
566 for (auto &CurrCandSet
: FusionCandidates
) {
567 if (isControlFlowEquivalent(*CurrCandSet
.begin(), CurrCand
)) {
568 CurrCandSet
.insert(CurrCand
);
571 if (VerboseFusionDebugging
)
572 LLVM_DEBUG(dbgs() << "Adding " << CurrCand
573 << " to existing candidate set\n");
579 // No set was found. Create a new set and add to FusionCandidates
581 if (VerboseFusionDebugging
)
582 LLVM_DEBUG(dbgs() << "Adding " << CurrCand
<< " to new set\n");
584 FusionCandidateSet NewCandSet
;
585 NewCandSet
.insert(CurrCand
);
586 FusionCandidates
.push_back(NewCandSet
);
588 NumFusionCandidates
++;
592 /// Determine if it is beneficial to fuse two loops.
594 /// For now, this method simply returns true because we want to fuse as much
595 /// as possible (primarily to test the pass). This method will evolve, over
596 /// time, to add heuristics for profitability of fusion.
597 bool isBeneficialFusion(const FusionCandidate
&FC0
,
598 const FusionCandidate
&FC1
) {
602 /// Determine if two fusion candidates have the same trip count (i.e., they
603 /// execute the same number of iterations).
605 /// Note that for now this method simply returns a boolean value because there
606 /// are no mechanisms in loop fusion to handle different trip counts. In the
607 /// future, this behaviour can be extended to adjust one of the loops to make
608 /// the trip counts equal (e.g., loop peeling). When this is added, this
609 /// interface may need to change to return more information than just a
611 bool identicalTripCounts(const FusionCandidate
&FC0
,
612 const FusionCandidate
&FC1
) const {
613 const SCEV
*TripCount0
= SE
.getBackedgeTakenCount(FC0
.L
);
614 if (isa
<SCEVCouldNotCompute
>(TripCount0
)) {
615 UncomputableTripCount
++;
616 LLVM_DEBUG(dbgs() << "Trip count of first loop could not be computed!");
620 const SCEV
*TripCount1
= SE
.getBackedgeTakenCount(FC1
.L
);
621 if (isa
<SCEVCouldNotCompute
>(TripCount1
)) {
622 UncomputableTripCount
++;
623 LLVM_DEBUG(dbgs() << "Trip count of second loop could not be computed!");
626 LLVM_DEBUG(dbgs() << "\tTrip counts: " << *TripCount0
<< " & "
627 << *TripCount1
<< " are "
628 << (TripCount0
== TripCount1
? "identical" : "different")
631 return (TripCount0
== TripCount1
);
634 /// Walk each set of control flow equivalent fusion candidates and attempt to
635 /// fuse them. This does a single linear traversal of all candidates in the
636 /// set. The conditions for legal fusion are checked at this point. If a pair
637 /// of fusion candidates passes all legality checks, they are fused together
638 /// and a new fusion candidate is created and added to the FusionCandidateSet.
639 /// The original fusion candidates are then removed, as they are no longer
641 bool fuseCandidates() {
643 LLVM_DEBUG(printFusionCandidates(FusionCandidates
));
644 for (auto &CandidateSet
: FusionCandidates
) {
645 if (CandidateSet
.size() < 2)
648 LLVM_DEBUG(dbgs() << "Attempting fusion on Candidate Set:\n"
649 << CandidateSet
<< "\n");
651 for (auto FC0
= CandidateSet
.begin(); FC0
!= CandidateSet
.end(); ++FC0
) {
652 assert(!LDT
.isRemovedLoop(FC0
->L
) &&
653 "Should not have removed loops in CandidateSet!");
655 for (++FC1
; FC1
!= CandidateSet
.end(); ++FC1
) {
656 assert(!LDT
.isRemovedLoop(FC1
->L
) &&
657 "Should not have removed loops in CandidateSet!");
659 LLVM_DEBUG(dbgs() << "Attempting to fuse candidate \n"; FC0
->dump();
660 dbgs() << " with\n"; FC1
->dump(); dbgs() << "\n");
665 if (!identicalTripCounts(*FC0
, *FC1
)) {
666 LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical trip "
667 "counts. Not fusing.\n");
668 reportLoopFusion
<OptimizationRemarkMissed
>(*FC0
, *FC1
,
673 if (!isAdjacent(*FC0
, *FC1
)) {
675 << "Fusion candidates are not adjacent. Not fusing.\n");
676 reportLoopFusion
<OptimizationRemarkMissed
>(*FC0
, *FC1
, NonAdjacent
);
680 // For now we skip fusing if the second candidate has any instructions
681 // in the preheader. This is done because we currently do not have the
682 // safety checks to determine if it is save to move the preheader of
683 // the second candidate past the body of the first candidate. Once
684 // these checks are added, this condition can be removed.
685 if (!isEmptyPreheader(*FC1
)) {
686 LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty "
687 "preheader. Not fusing.\n");
688 reportLoopFusion
<OptimizationRemarkMissed
>(*FC0
, *FC1
,
693 if (!dependencesAllowFusion(*FC0
, *FC1
)) {
694 LLVM_DEBUG(dbgs() << "Memory dependencies do not allow fusion!\n");
695 reportLoopFusion
<OptimizationRemarkMissed
>(*FC0
, *FC1
,
696 InvalidDependencies
);
700 bool BeneficialToFuse
= isBeneficialFusion(*FC0
, *FC1
);
702 << "\tFusion appears to be "
703 << (BeneficialToFuse
? "" : "un") << "profitable!\n");
704 if (!BeneficialToFuse
) {
705 reportLoopFusion
<OptimizationRemarkMissed
>(*FC0
, *FC1
,
706 FusionNotBeneficial
);
709 // All analysis has completed and has determined that fusion is legal
710 // and profitable. At this point, start transforming the code and
713 LLVM_DEBUG(dbgs() << "\tFusion is performed: " << *FC0
<< " and "
716 // Report fusion to the Optimization Remarks.
717 // Note this needs to be done *before* performFusion because
718 // performFusion will change the original loops, making it not
719 // possible to identify them after fusion is complete.
720 reportLoopFusion
<OptimizationRemark
>(*FC0
, *FC1
, FuseCounter
);
722 FusionCandidate
FusedCand(performFusion(*FC0
, *FC1
), &DT
, &PDT
, ORE
);
724 assert(FusedCand
.isEligibleForFusion(SE
) &&
725 "Fused candidate should be eligible for fusion!");
727 // Notify the loop-depth-tree that these loops are not valid objects
728 LDT
.removeLoop(FC1
->L
);
730 CandidateSet
.erase(FC0
);
731 CandidateSet
.erase(FC1
);
733 auto InsertPos
= CandidateSet
.insert(FusedCand
);
735 assert(InsertPos
.second
&&
736 "Unable to insert TargetCandidate in CandidateSet!");
738 // Reset FC0 and FC1 the new (fused) candidate. Subsequent iterations
739 // of the FC1 loop will attempt to fuse the new (fused) loop with the
740 // remaining candidates in the current candidate set.
741 FC0
= FC1
= InsertPos
.first
;
743 LLVM_DEBUG(dbgs() << "Candidate Set (after fusion): " << CandidateSet
753 /// Rewrite all additive recurrences in a SCEV to use a new loop.
754 class AddRecLoopReplacer
: public SCEVRewriteVisitor
<AddRecLoopReplacer
> {
756 AddRecLoopReplacer(ScalarEvolution
&SE
, const Loop
&OldL
, const Loop
&NewL
,
758 : SCEVRewriteVisitor(SE
), Valid(true), UseMax(UseMax
), OldL(OldL
),
761 const SCEV
*visitAddRecExpr(const SCEVAddRecExpr
*Expr
) {
762 const Loop
*ExprL
= Expr
->getLoop();
763 SmallVector
<const SCEV
*, 2> Operands
;
764 if (ExprL
== &OldL
) {
765 Operands
.append(Expr
->op_begin(), Expr
->op_end());
766 return SE
.getAddRecExpr(Operands
, &NewL
, Expr
->getNoWrapFlags());
769 if (OldL
.contains(ExprL
)) {
770 bool Pos
= SE
.isKnownPositive(Expr
->getStepRecurrence(SE
));
771 if (!UseMax
|| !Pos
|| !Expr
->isAffine()) {
775 return visit(Expr
->getStart());
778 for (const SCEV
*Op
: Expr
->operands())
779 Operands
.push_back(visit(Op
));
780 return SE
.getAddRecExpr(Operands
, ExprL
, Expr
->getNoWrapFlags());
783 bool wasValidSCEV() const { return Valid
; }
787 const Loop
&OldL
, &NewL
;
790 /// Return false if the access functions of \p I0 and \p I1 could cause
791 /// a negative dependence.
792 bool accessDiffIsPositive(const Loop
&L0
, const Loop
&L1
, Instruction
&I0
,
793 Instruction
&I1
, bool EqualIsInvalid
) {
794 Value
*Ptr0
= getLoadStorePointerOperand(&I0
);
795 Value
*Ptr1
= getLoadStorePointerOperand(&I1
);
799 const SCEV
*SCEVPtr0
= SE
.getSCEVAtScope(Ptr0
, &L0
);
800 const SCEV
*SCEVPtr1
= SE
.getSCEVAtScope(Ptr1
, &L1
);
802 if (VerboseFusionDebugging
)
803 LLVM_DEBUG(dbgs() << " Access function check: " << *SCEVPtr0
<< " vs "
804 << *SCEVPtr1
<< "\n");
806 AddRecLoopReplacer
Rewriter(SE
, L0
, L1
);
807 SCEVPtr0
= Rewriter
.visit(SCEVPtr0
);
809 if (VerboseFusionDebugging
)
810 LLVM_DEBUG(dbgs() << " Access function after rewrite: " << *SCEVPtr0
811 << " [Valid: " << Rewriter
.wasValidSCEV() << "]\n");
813 if (!Rewriter
.wasValidSCEV())
816 // TODO: isKnownPredicate doesnt work well when one SCEV is loop carried (by
817 // L0) and the other is not. We could check if it is monotone and test
818 // the beginning and end value instead.
820 BasicBlock
*L0Header
= L0
.getHeader();
821 auto HasNonLinearDominanceRelation
= [&](const SCEV
*S
) {
822 const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(S
);
825 return !DT
.dominates(L0Header
, AddRec
->getLoop()->getHeader()) &&
826 !DT
.dominates(AddRec
->getLoop()->getHeader(), L0Header
);
828 if (SCEVExprContains(SCEVPtr1
, HasNonLinearDominanceRelation
))
831 ICmpInst::Predicate Pred
=
832 EqualIsInvalid
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_SGE
;
833 bool IsAlwaysGE
= SE
.isKnownPredicate(Pred
, SCEVPtr0
, SCEVPtr1
);
835 if (VerboseFusionDebugging
)
836 LLVM_DEBUG(dbgs() << " Relation: " << *SCEVPtr0
837 << (IsAlwaysGE
? " >= " : " may < ") << *SCEVPtr1
843 /// Return true if the dependences between @p I0 (in @p L0) and @p I1 (in
844 /// @p L1) allow loop fusion of @p L0 and @p L1. The dependence analyses
845 /// specified by @p DepChoice are used to determine this.
846 bool dependencesAllowFusion(const FusionCandidate
&FC0
,
847 const FusionCandidate
&FC1
, Instruction
&I0
,
848 Instruction
&I1
, bool AnyDep
,
849 FusionDependenceAnalysisChoice DepChoice
) {
851 if (VerboseFusionDebugging
) {
852 LLVM_DEBUG(dbgs() << "Check dep: " << I0
<< " vs " << I1
<< " : "
853 << DepChoice
<< "\n");
857 case FUSION_DEPENDENCE_ANALYSIS_SCEV
:
858 return accessDiffIsPositive(*FC0
.L
, *FC1
.L
, I0
, I1
, AnyDep
);
859 case FUSION_DEPENDENCE_ANALYSIS_DA
: {
860 auto DepResult
= DI
.depends(&I0
, &I1
, true);
864 if (VerboseFusionDebugging
) {
865 LLVM_DEBUG(dbgs() << "DA res: "; DepResult
->dump(dbgs());
866 dbgs() << " [#l: " << DepResult
->getLevels() << "][Ordered: "
867 << (DepResult
->isOrdered() ? "true" : "false")
869 LLVM_DEBUG(dbgs() << "DepResult Levels: " << DepResult
->getLevels()
874 if (DepResult
->getNextPredecessor() || DepResult
->getNextSuccessor())
876 dbgs() << "TODO: Implement pred/succ dependence handling!\n");
878 // TODO: Can we actually use the dependence info analysis here?
882 case FUSION_DEPENDENCE_ANALYSIS_ALL
:
883 return dependencesAllowFusion(FC0
, FC1
, I0
, I1
, AnyDep
,
884 FUSION_DEPENDENCE_ANALYSIS_SCEV
) ||
885 dependencesAllowFusion(FC0
, FC1
, I0
, I1
, AnyDep
,
886 FUSION_DEPENDENCE_ANALYSIS_DA
);
889 llvm_unreachable("Unknown fusion dependence analysis choice!");
892 /// Perform a dependence check and return if @p FC0 and @p FC1 can be fused.
893 bool dependencesAllowFusion(const FusionCandidate
&FC0
,
894 const FusionCandidate
&FC1
) {
895 LLVM_DEBUG(dbgs() << "Check if " << FC0
<< " can be fused with " << FC1
897 assert(FC0
.L
->getLoopDepth() == FC1
.L
->getLoopDepth());
898 assert(DT
.dominates(FC0
.Preheader
, FC1
.Preheader
));
900 for (Instruction
*WriteL0
: FC0
.MemWrites
) {
901 for (Instruction
*WriteL1
: FC1
.MemWrites
)
902 if (!dependencesAllowFusion(FC0
, FC1
, *WriteL0
, *WriteL1
,
904 FusionDependenceAnalysis
)) {
905 InvalidDependencies
++;
908 for (Instruction
*ReadL1
: FC1
.MemReads
)
909 if (!dependencesAllowFusion(FC0
, FC1
, *WriteL0
, *ReadL1
,
911 FusionDependenceAnalysis
)) {
912 InvalidDependencies
++;
917 for (Instruction
*WriteL1
: FC1
.MemWrites
) {
918 for (Instruction
*WriteL0
: FC0
.MemWrites
)
919 if (!dependencesAllowFusion(FC0
, FC1
, *WriteL0
, *WriteL1
,
921 FusionDependenceAnalysis
)) {
922 InvalidDependencies
++;
925 for (Instruction
*ReadL0
: FC0
.MemReads
)
926 if (!dependencesAllowFusion(FC0
, FC1
, *ReadL0
, *WriteL1
,
928 FusionDependenceAnalysis
)) {
929 InvalidDependencies
++;
934 // Walk through all uses in FC1. For each use, find the reaching def. If the
935 // def is located in FC0 then it is is not safe to fuse.
936 for (BasicBlock
*BB
: FC1
.L
->blocks())
937 for (Instruction
&I
: *BB
)
938 for (auto &Op
: I
.operands())
939 if (Instruction
*Def
= dyn_cast
<Instruction
>(Op
))
940 if (FC0
.L
->contains(Def
->getParent())) {
941 InvalidDependencies
++;
948 /// Determine if the exit block of \p FC0 is the preheader of \p FC1. In this
949 /// case, there is no code in between the two fusion candidates, thus making
951 bool isAdjacent(const FusionCandidate
&FC0
,
952 const FusionCandidate
&FC1
) const {
953 return FC0
.ExitBlock
== FC1
.Preheader
;
956 bool isEmptyPreheader(const FusionCandidate
&FC
) const {
957 return FC
.Preheader
->size() == 1;
960 /// Fuse two fusion candidates, creating a new fused loop.
962 /// This method contains the mechanics of fusing two loops, represented by \p
963 /// FC0 and \p FC1. It is assumed that \p FC0 dominates \p FC1 and \p FC1
964 /// postdominates \p FC0 (making them control flow equivalent). It also
965 /// assumes that the other conditions for fusion have been met: adjacent,
966 /// identical trip counts, and no negative distance dependencies exist that
967 /// would prevent fusion. Thus, there is no checking for these conditions in
970 /// Fusion is performed by rewiring the CFG to update successor blocks of the
971 /// components of tho loop. Specifically, the following changes are done:
973 /// 1. The preheader of \p FC1 is removed as it is no longer necessary
974 /// (because it is currently only a single statement block).
975 /// 2. The latch of \p FC0 is modified to jump to the header of \p FC1.
976 /// 3. The latch of \p FC1 i modified to jump to the header of \p FC0.
977 /// 4. All blocks from \p FC1 are removed from FC1 and added to FC0.
979 /// All of these modifications are done with dominator tree updates, thus
980 /// keeping the dominator (and post dominator) information up-to-date.
982 /// This can be improved in the future by actually merging blocks during
983 /// fusion. For example, the preheader of \p FC1 can be merged with the
984 /// preheader of \p FC0. This would allow loops with more than a single
985 /// statement in the preheader to be fused. Similarly, the latch blocks of the
986 /// two loops could also be fused into a single block. This will require
987 /// analysis to prove it is safe to move the contents of the block past
988 /// existing code, which currently has not been implemented.
989 Loop
*performFusion(const FusionCandidate
&FC0
, const FusionCandidate
&FC1
) {
990 assert(FC0
.isValid() && FC1
.isValid() &&
991 "Expecting valid fusion candidates");
993 LLVM_DEBUG(dbgs() << "Fusion Candidate 0: \n"; FC0
.dump();
994 dbgs() << "Fusion Candidate 1: \n"; FC1
.dump(););
996 assert(FC1
.Preheader
== FC0
.ExitBlock
);
997 assert(FC1
.Preheader
->size() == 1 &&
998 FC1
.Preheader
->getSingleSuccessor() == FC1
.Header
);
1000 // Remember the phi nodes originally in the header of FC0 in order to rewire
1001 // them later. However, this is only necessary if the new loop carried
1002 // values might not dominate the exiting branch. While we do not generally
1003 // test if this is the case but simply insert intermediate phi nodes, we
1004 // need to make sure these intermediate phi nodes have different
1005 // predecessors. To this end, we filter the special case where the exiting
1006 // block is the latch block of the first loop. Nothing needs to be done
1007 // anyway as all loop carried values dominate the latch and thereby also the
1009 SmallVector
<PHINode
*, 8> OriginalFC0PHIs
;
1010 if (FC0
.ExitingBlock
!= FC0
.Latch
)
1011 for (PHINode
&PHI
: FC0
.Header
->phis())
1012 OriginalFC0PHIs
.push_back(&PHI
);
1014 // Replace incoming blocks for header PHIs first.
1015 FC1
.Preheader
->replaceSuccessorsPhiUsesWith(FC0
.Preheader
);
1016 FC0
.Latch
->replaceSuccessorsPhiUsesWith(FC1
.Latch
);
1018 // Then modify the control flow and update DT and PDT.
1019 SmallVector
<DominatorTree::UpdateType
, 8> TreeUpdates
;
1021 // The old exiting block of the first loop (FC0) has to jump to the header
1022 // of the second as we need to execute the code in the second header block
1023 // regardless of the trip count. That is, if the trip count is 0, so the
1024 // back edge is never taken, we still have to execute both loop headers,
1025 // especially (but not only!) if the second is a do-while style loop.
1026 // However, doing so might invalidate the phi nodes of the first loop as
1027 // the new values do only need to dominate their latch and not the exiting
1028 // predicate. To remedy this potential problem we always introduce phi
1029 // nodes in the header of the second loop later that select the loop carried
1030 // value, if the second header was reached through an old latch of the
1031 // first, or undef otherwise. This is sound as exiting the first implies the
1032 // second will exit too, __without__ taking the back-edge. [Their
1033 // trip-counts are equal after all.
1034 // KB: Would this sequence be simpler to just just make FC0.ExitingBlock go
1035 // to FC1.Header? I think this is basically what the three sequences are
1036 // trying to accomplish; however, doing this directly in the CFG may mean
1037 // the DT/PDT becomes invalid
1038 FC0
.ExitingBlock
->getTerminator()->replaceUsesOfWith(FC1
.Preheader
,
1040 TreeUpdates
.emplace_back(DominatorTree::UpdateType(
1041 DominatorTree::Delete
, FC0
.ExitingBlock
, FC1
.Preheader
));
1042 TreeUpdates
.emplace_back(DominatorTree::UpdateType(
1043 DominatorTree::Insert
, FC0
.ExitingBlock
, FC1
.Header
));
1045 // The pre-header of L1 is not necessary anymore.
1046 assert(pred_begin(FC1
.Preheader
) == pred_end(FC1
.Preheader
));
1047 FC1
.Preheader
->getTerminator()->eraseFromParent();
1048 new UnreachableInst(FC1
.Preheader
->getContext(), FC1
.Preheader
);
1049 TreeUpdates
.emplace_back(DominatorTree::UpdateType(
1050 DominatorTree::Delete
, FC1
.Preheader
, FC1
.Header
));
1052 // Moves the phi nodes from the second to the first loops header block.
1053 while (PHINode
*PHI
= dyn_cast
<PHINode
>(&FC1
.Header
->front())) {
1054 if (SE
.isSCEVable(PHI
->getType()))
1055 SE
.forgetValue(PHI
);
1056 if (PHI
->hasNUsesOrMore(1))
1057 PHI
->moveBefore(&*FC0
.Header
->getFirstInsertionPt());
1059 PHI
->eraseFromParent();
1062 // Introduce new phi nodes in the second loop header to ensure
1063 // exiting the first and jumping to the header of the second does not break
1064 // the SSA property of the phis originally in the first loop. See also the
1066 Instruction
*L1HeaderIP
= &FC1
.Header
->front();
1067 for (PHINode
*LCPHI
: OriginalFC0PHIs
) {
1068 int L1LatchBBIdx
= LCPHI
->getBasicBlockIndex(FC1
.Latch
);
1069 assert(L1LatchBBIdx
>= 0 &&
1070 "Expected loop carried value to be rewired at this point!");
1072 Value
*LCV
= LCPHI
->getIncomingValue(L1LatchBBIdx
);
1074 PHINode
*L1HeaderPHI
= PHINode::Create(
1075 LCV
->getType(), 2, LCPHI
->getName() + ".afterFC0", L1HeaderIP
);
1076 L1HeaderPHI
->addIncoming(LCV
, FC0
.Latch
);
1077 L1HeaderPHI
->addIncoming(UndefValue::get(LCV
->getType()),
1080 LCPHI
->setIncomingValue(L1LatchBBIdx
, L1HeaderPHI
);
1083 // Replace latch terminator destinations.
1084 FC0
.Latch
->getTerminator()->replaceUsesOfWith(FC0
.Header
, FC1
.Header
);
1085 FC1
.Latch
->getTerminator()->replaceUsesOfWith(FC1
.Header
, FC0
.Header
);
1087 // If FC0.Latch and FC0.ExitingBlock are the same then we have already
1088 // performed the updates above.
1089 if (FC0
.Latch
!= FC0
.ExitingBlock
)
1090 TreeUpdates
.emplace_back(DominatorTree::UpdateType(
1091 DominatorTree::Insert
, FC0
.Latch
, FC1
.Header
));
1093 TreeUpdates
.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete
,
1094 FC0
.Latch
, FC0
.Header
));
1095 TreeUpdates
.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert
,
1096 FC1
.Latch
, FC0
.Header
));
1097 TreeUpdates
.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete
,
1098 FC1
.Latch
, FC1
.Header
));
1101 DTU
.applyUpdates(TreeUpdates
);
1103 LI
.removeBlock(FC1
.Preheader
);
1104 DTU
.deleteBB(FC1
.Preheader
);
1107 // Is there a way to keep SE up-to-date so we don't need to forget the loops
1108 // and rebuild the information in subsequent passes of fusion?
1109 SE
.forgetLoop(FC1
.L
);
1110 SE
.forgetLoop(FC0
.L
);
1113 SmallVector
<BasicBlock
*, 8> Blocks(FC1
.L
->block_begin(),
1114 FC1
.L
->block_end());
1115 for (BasicBlock
*BB
: Blocks
) {
1116 FC0
.L
->addBlockEntry(BB
);
1117 FC1
.L
->removeBlockFromLoop(BB
);
1118 if (LI
.getLoopFor(BB
) != FC1
.L
)
1120 LI
.changeLoopFor(BB
, FC0
.L
);
1122 while (!FC1
.L
->empty()) {
1123 const auto &ChildLoopIt
= FC1
.L
->begin();
1124 Loop
*ChildLoop
= *ChildLoopIt
;
1125 FC1
.L
->removeChildLoop(ChildLoopIt
);
1126 FC0
.L
->addChildLoop(ChildLoop
);
1129 // Delete the now empty loop L1.
1133 assert(!verifyFunction(*FC0
.Header
->getParent(), &errs()));
1134 assert(DT
.verify(DominatorTree::VerificationLevel::Fast
));
1135 assert(PDT
.verify());
1142 LLVM_DEBUG(dbgs() << "Fusion done:\n");
1147 /// Report details on loop fusion opportunities.
1149 /// This template function can be used to report both successful and missed
1150 /// loop fusion opportunities, based on the RemarkKind. The RemarkKind should
1152 /// - OptimizationRemarkMissed to report when loop fusion is unsuccessful
1153 /// given two valid fusion candidates.
1154 /// - OptimizationRemark to report successful fusion of two fusion
1156 /// The remarks will be printed using the form:
1157 /// <path/filename>:<line number>:<column number>: [<function name>]:
1158 /// <Cand1 Preheader> and <Cand2 Preheader>: <Stat Description>
1159 template <typename RemarkKind
>
1160 void reportLoopFusion(const FusionCandidate
&FC0
, const FusionCandidate
&FC1
,
1161 llvm::Statistic
&Stat
) {
1162 assert(FC0
.Preheader
&& FC1
.Preheader
&&
1163 "Expecting valid fusion candidates");
1164 using namespace ore
;
1166 ORE
.emit(RemarkKind(DEBUG_TYPE
, Stat
.getName(), FC0
.L
->getStartLoc(),
1168 << "[" << FC0
.Preheader
->getParent()->getName()
1169 << "]: " << NV("Cand1", StringRef(FC0
.Preheader
->getName()))
1170 << " and " << NV("Cand2", StringRef(FC1
.Preheader
->getName()))
1171 << ": " << Stat
.getDesc());
1175 struct LoopFuseLegacy
: public FunctionPass
{
1179 LoopFuseLegacy() : FunctionPass(ID
) {
1180 initializeLoopFuseLegacyPass(*PassRegistry::getPassRegistry());
1183 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
1184 AU
.addRequiredID(LoopSimplifyID
);
1185 AU
.addRequired
<ScalarEvolutionWrapperPass
>();
1186 AU
.addRequired
<LoopInfoWrapperPass
>();
1187 AU
.addRequired
<DominatorTreeWrapperPass
>();
1188 AU
.addRequired
<PostDominatorTreeWrapperPass
>();
1189 AU
.addRequired
<OptimizationRemarkEmitterWrapperPass
>();
1190 AU
.addRequired
<DependenceAnalysisWrapperPass
>();
1192 AU
.addPreserved
<ScalarEvolutionWrapperPass
>();
1193 AU
.addPreserved
<LoopInfoWrapperPass
>();
1194 AU
.addPreserved
<DominatorTreeWrapperPass
>();
1195 AU
.addPreserved
<PostDominatorTreeWrapperPass
>();
1198 bool runOnFunction(Function
&F
) override
{
1199 if (skipFunction(F
))
1201 auto &LI
= getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
1202 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
1203 auto &DI
= getAnalysis
<DependenceAnalysisWrapperPass
>().getDI();
1204 auto &SE
= getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
1205 auto &PDT
= getAnalysis
<PostDominatorTreeWrapperPass
>().getPostDomTree();
1206 auto &ORE
= getAnalysis
<OptimizationRemarkEmitterWrapperPass
>().getORE();
1208 const DataLayout
&DL
= F
.getParent()->getDataLayout();
1209 LoopFuser
LF(LI
, DT
, DI
, SE
, PDT
, ORE
, DL
);
1210 return LF
.fuseLoops(F
);
1215 PreservedAnalyses
LoopFusePass::run(Function
&F
, FunctionAnalysisManager
&AM
) {
1216 auto &LI
= AM
.getResult
<LoopAnalysis
>(F
);
1217 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
1218 auto &DI
= AM
.getResult
<DependenceAnalysis
>(F
);
1219 auto &SE
= AM
.getResult
<ScalarEvolutionAnalysis
>(F
);
1220 auto &PDT
= AM
.getResult
<PostDominatorTreeAnalysis
>(F
);
1221 auto &ORE
= AM
.getResult
<OptimizationRemarkEmitterAnalysis
>(F
);
1223 const DataLayout
&DL
= F
.getParent()->getDataLayout();
1224 LoopFuser
LF(LI
, DT
, DI
, SE
, PDT
, ORE
, DL
);
1225 bool Changed
= LF
.fuseLoops(F
);
1227 return PreservedAnalyses::all();
1229 PreservedAnalyses PA
;
1230 PA
.preserve
<DominatorTreeAnalysis
>();
1231 PA
.preserve
<PostDominatorTreeAnalysis
>();
1232 PA
.preserve
<ScalarEvolutionAnalysis
>();
1233 PA
.preserve
<LoopAnalysis
>();
1237 char LoopFuseLegacy::ID
= 0;
1239 INITIALIZE_PASS_BEGIN(LoopFuseLegacy
, "loop-fusion", "Loop Fusion", false,
1241 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass
)
1242 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass
)
1243 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
1244 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass
)
1245 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
1246 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass
)
1247 INITIALIZE_PASS_END(LoopFuseLegacy
, "loop-fusion", "Loop Fusion", false, false)
1249 FunctionPass
*llvm::createLoopFusePass() { return new LoopFuseLegacy(); }