[llvm-objdump] - Remove one overload of reportError. NFCI.
[llvm-complete.git] / lib / Transforms / Vectorize / VPlan.h
blob8a06412ad59067015ace9bb9eb9ba9abc1257dbb
1 //===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file contains the declarations of the Vectorization Plan base classes:
11 /// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual
12 /// VPBlockBase, together implementing a Hierarchical CFG;
13 /// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be
14 /// treated as proper graphs for generic algorithms;
15 /// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained
16 /// within VPBasicBlocks;
17 /// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned
18 /// instruction;
19 /// 5. The VPlan class holding a candidate for vectorization;
20 /// 6. The VPlanPrinter class providing a way to print a plan in dot format;
21 /// These are documented in docs/VectorizationPlan.rst.
23 //===----------------------------------------------------------------------===//
25 #ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
26 #define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
28 #include "VPlanLoopInfo.h"
29 #include "VPlanValue.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/DepthFirstIterator.h"
32 #include "llvm/ADT/GraphTraits.h"
33 #include "llvm/ADT/Optional.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallSet.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/ADT/Twine.h"
38 #include "llvm/ADT/ilist.h"
39 #include "llvm/ADT/ilist_node.h"
40 #include "llvm/Analysis/VectorUtils.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include <algorithm>
43 #include <cassert>
44 #include <cstddef>
45 #include <map>
46 #include <string>
48 namespace llvm {
50 class LoopVectorizationLegality;
51 class LoopVectorizationCostModel;
52 class BasicBlock;
53 class DominatorTree;
54 class InnerLoopVectorizer;
55 template <class T> class InterleaveGroup;
56 class LoopInfo;
57 class raw_ostream;
58 class Value;
59 class VPBasicBlock;
60 class VPRegionBlock;
61 class VPlan;
62 class VPlanSlp;
64 /// A range of powers-of-2 vectorization factors with fixed start and
65 /// adjustable end. The range includes start and excludes end, e.g.,:
66 /// [1, 9) = {1, 2, 4, 8}
67 struct VFRange {
68 // A power of 2.
69 const unsigned Start;
71 // Need not be a power of 2. If End <= Start range is empty.
72 unsigned End;
75 using VPlanPtr = std::unique_ptr<VPlan>;
77 /// In what follows, the term "input IR" refers to code that is fed into the
78 /// vectorizer whereas the term "output IR" refers to code that is generated by
79 /// the vectorizer.
81 /// VPIteration represents a single point in the iteration space of the output
82 /// (vectorized and/or unrolled) IR loop.
83 struct VPIteration {
84 /// in [0..UF)
85 unsigned Part;
87 /// in [0..VF)
88 unsigned Lane;
91 /// This is a helper struct for maintaining vectorization state. It's used for
92 /// mapping values from the original loop to their corresponding values in
93 /// the new loop. Two mappings are maintained: one for vectorized values and
94 /// one for scalarized values. Vectorized values are represented with UF
95 /// vector values in the new loop, and scalarized values are represented with
96 /// UF x VF scalar values in the new loop. UF and VF are the unroll and
97 /// vectorization factors, respectively.
98 ///
99 /// Entries can be added to either map with setVectorValue and setScalarValue,
100 /// which assert that an entry was not already added before. If an entry is to
101 /// replace an existing one, call resetVectorValue and resetScalarValue. This is
102 /// currently needed to modify the mapped values during "fix-up" operations that
103 /// occur once the first phase of widening is complete. These operations include
104 /// type truncation and the second phase of recurrence widening.
106 /// Entries from either map can be retrieved using the getVectorValue and
107 /// getScalarValue functions, which assert that the desired value exists.
108 struct VectorizerValueMap {
109 friend struct VPTransformState;
111 private:
112 /// The unroll factor. Each entry in the vector map contains UF vector values.
113 unsigned UF;
115 /// The vectorization factor. Each entry in the scalar map contains UF x VF
116 /// scalar values.
117 unsigned VF;
119 /// The vector and scalar map storage. We use std::map and not DenseMap
120 /// because insertions to DenseMap invalidate its iterators.
121 using VectorParts = SmallVector<Value *, 2>;
122 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
123 std::map<Value *, VectorParts> VectorMapStorage;
124 std::map<Value *, ScalarParts> ScalarMapStorage;
126 public:
127 /// Construct an empty map with the given unroll and vectorization factors.
128 VectorizerValueMap(unsigned UF, unsigned VF) : UF(UF), VF(VF) {}
130 /// \return True if the map has any vector entry for \p Key.
131 bool hasAnyVectorValue(Value *Key) const {
132 return VectorMapStorage.count(Key);
135 /// \return True if the map has a vector entry for \p Key and \p Part.
136 bool hasVectorValue(Value *Key, unsigned Part) const {
137 assert(Part < UF && "Queried Vector Part is too large.");
138 if (!hasAnyVectorValue(Key))
139 return false;
140 const VectorParts &Entry = VectorMapStorage.find(Key)->second;
141 assert(Entry.size() == UF && "VectorParts has wrong dimensions.");
142 return Entry[Part] != nullptr;
145 /// \return True if the map has any scalar entry for \p Key.
146 bool hasAnyScalarValue(Value *Key) const {
147 return ScalarMapStorage.count(Key);
150 /// \return True if the map has a scalar entry for \p Key and \p Instance.
151 bool hasScalarValue(Value *Key, const VPIteration &Instance) const {
152 assert(Instance.Part < UF && "Queried Scalar Part is too large.");
153 assert(Instance.Lane < VF && "Queried Scalar Lane is too large.");
154 if (!hasAnyScalarValue(Key))
155 return false;
156 const ScalarParts &Entry = ScalarMapStorage.find(Key)->second;
157 assert(Entry.size() == UF && "ScalarParts has wrong dimensions.");
158 assert(Entry[Instance.Part].size() == VF &&
159 "ScalarParts has wrong dimensions.");
160 return Entry[Instance.Part][Instance.Lane] != nullptr;
163 /// Retrieve the existing vector value that corresponds to \p Key and
164 /// \p Part.
165 Value *getVectorValue(Value *Key, unsigned Part) {
166 assert(hasVectorValue(Key, Part) && "Getting non-existent value.");
167 return VectorMapStorage[Key][Part];
170 /// Retrieve the existing scalar value that corresponds to \p Key and
171 /// \p Instance.
172 Value *getScalarValue(Value *Key, const VPIteration &Instance) {
173 assert(hasScalarValue(Key, Instance) && "Getting non-existent value.");
174 return ScalarMapStorage[Key][Instance.Part][Instance.Lane];
177 /// Set a vector value associated with \p Key and \p Part. Assumes such a
178 /// value is not already set. If it is, use resetVectorValue() instead.
179 void setVectorValue(Value *Key, unsigned Part, Value *Vector) {
180 assert(!hasVectorValue(Key, Part) && "Vector value already set for part");
181 if (!VectorMapStorage.count(Key)) {
182 VectorParts Entry(UF);
183 VectorMapStorage[Key] = Entry;
185 VectorMapStorage[Key][Part] = Vector;
188 /// Set a scalar value associated with \p Key and \p Instance. Assumes such a
189 /// value is not already set.
190 void setScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar) {
191 assert(!hasScalarValue(Key, Instance) && "Scalar value already set");
192 if (!ScalarMapStorage.count(Key)) {
193 ScalarParts Entry(UF);
194 // TODO: Consider storing uniform values only per-part, as they occupy
195 // lane 0 only, keeping the other VF-1 redundant entries null.
196 for (unsigned Part = 0; Part < UF; ++Part)
197 Entry[Part].resize(VF, nullptr);
198 ScalarMapStorage[Key] = Entry;
200 ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
203 /// Reset the vector value associated with \p Key for the given \p Part.
204 /// This function can be used to update values that have already been
205 /// vectorized. This is the case for "fix-up" operations including type
206 /// truncation and the second phase of recurrence vectorization.
207 void resetVectorValue(Value *Key, unsigned Part, Value *Vector) {
208 assert(hasVectorValue(Key, Part) && "Vector value not set for part");
209 VectorMapStorage[Key][Part] = Vector;
212 /// Reset the scalar value associated with \p Key for \p Part and \p Lane.
213 /// This function can be used to update values that have already been
214 /// scalarized. This is the case for "fix-up" operations including scalar phi
215 /// nodes for scalarized and predicated instructions.
216 void resetScalarValue(Value *Key, const VPIteration &Instance,
217 Value *Scalar) {
218 assert(hasScalarValue(Key, Instance) &&
219 "Scalar value not set for part and lane");
220 ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
224 /// This class is used to enable the VPlan to invoke a method of ILV. This is
225 /// needed until the method is refactored out of ILV and becomes reusable.
226 struct VPCallback {
227 virtual ~VPCallback() {}
228 virtual Value *getOrCreateVectorValues(Value *V, unsigned Part) = 0;
231 /// VPTransformState holds information passed down when "executing" a VPlan,
232 /// needed for generating the output IR.
233 struct VPTransformState {
234 VPTransformState(unsigned VF, unsigned UF, LoopInfo *LI, DominatorTree *DT,
235 IRBuilder<> &Builder, VectorizerValueMap &ValueMap,
236 InnerLoopVectorizer *ILV, VPCallback &Callback)
237 : VF(VF), UF(UF), Instance(), LI(LI), DT(DT), Builder(Builder),
238 ValueMap(ValueMap), ILV(ILV), Callback(Callback) {}
240 /// The chosen Vectorization and Unroll Factors of the loop being vectorized.
241 unsigned VF;
242 unsigned UF;
244 /// Hold the indices to generate specific scalar instructions. Null indicates
245 /// that all instances are to be generated, using either scalar or vector
246 /// instructions.
247 Optional<VPIteration> Instance;
249 struct DataState {
250 /// A type for vectorized values in the new loop. Each value from the
251 /// original loop, when vectorized, is represented by UF vector values in
252 /// the new unrolled loop, where UF is the unroll factor.
253 typedef SmallVector<Value *, 2> PerPartValuesTy;
255 DenseMap<VPValue *, PerPartValuesTy> PerPartOutput;
256 } Data;
258 /// Get the generated Value for a given VPValue and a given Part. Note that
259 /// as some Defs are still created by ILV and managed in its ValueMap, this
260 /// method will delegate the call to ILV in such cases in order to provide
261 /// callers a consistent API.
262 /// \see set.
263 Value *get(VPValue *Def, unsigned Part) {
264 // If Values have been set for this Def return the one relevant for \p Part.
265 if (Data.PerPartOutput.count(Def))
266 return Data.PerPartOutput[Def][Part];
267 // Def is managed by ILV: bring the Values from ValueMap.
268 return Callback.getOrCreateVectorValues(VPValue2Value[Def], Part);
271 /// Set the generated Value for a given VPValue and a given Part.
272 void set(VPValue *Def, Value *V, unsigned Part) {
273 if (!Data.PerPartOutput.count(Def)) {
274 DataState::PerPartValuesTy Entry(UF);
275 Data.PerPartOutput[Def] = Entry;
277 Data.PerPartOutput[Def][Part] = V;
280 /// Hold state information used when constructing the CFG of the output IR,
281 /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks.
282 struct CFGState {
283 /// The previous VPBasicBlock visited. Initially set to null.
284 VPBasicBlock *PrevVPBB = nullptr;
286 /// The previous IR BasicBlock created or used. Initially set to the new
287 /// header BasicBlock.
288 BasicBlock *PrevBB = nullptr;
290 /// The last IR BasicBlock in the output IR. Set to the new latch
291 /// BasicBlock, used for placing the newly created BasicBlocks.
292 BasicBlock *LastBB = nullptr;
294 /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case
295 /// of replication, maps the BasicBlock of the last replica created.
296 SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB;
298 /// Vector of VPBasicBlocks whose terminator instruction needs to be fixed
299 /// up at the end of vector code generation.
300 SmallVector<VPBasicBlock *, 8> VPBBsToFix;
302 CFGState() = default;
303 } CFG;
305 /// Hold a pointer to LoopInfo to register new basic blocks in the loop.
306 LoopInfo *LI;
308 /// Hold a pointer to Dominator Tree to register new basic blocks in the loop.
309 DominatorTree *DT;
311 /// Hold a reference to the IRBuilder used to generate output IR code.
312 IRBuilder<> &Builder;
314 /// Hold a reference to the Value state information used when generating the
315 /// Values of the output IR.
316 VectorizerValueMap &ValueMap;
318 /// Hold a reference to a mapping between VPValues in VPlan and original
319 /// Values they correspond to.
320 VPValue2ValueTy VPValue2Value;
322 /// Hold the trip count of the scalar loop.
323 Value *TripCount = nullptr;
325 /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods.
326 InnerLoopVectorizer *ILV;
328 VPCallback &Callback;
331 /// VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
332 /// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock.
333 class VPBlockBase {
334 friend class VPBlockUtils;
336 private:
337 const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
339 /// An optional name for the block.
340 std::string Name;
342 /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if
343 /// it is a topmost VPBlockBase.
344 VPRegionBlock *Parent = nullptr;
346 /// List of predecessor blocks.
347 SmallVector<VPBlockBase *, 1> Predecessors;
349 /// List of successor blocks.
350 SmallVector<VPBlockBase *, 1> Successors;
352 /// Successor selector, null for zero or single successor blocks.
353 VPValue *CondBit = nullptr;
355 /// Current block predicate - null if the block does not need a predicate.
356 VPValue *Predicate = nullptr;
358 /// Add \p Successor as the last successor to this block.
359 void appendSuccessor(VPBlockBase *Successor) {
360 assert(Successor && "Cannot add nullptr successor!");
361 Successors.push_back(Successor);
364 /// Add \p Predecessor as the last predecessor to this block.
365 void appendPredecessor(VPBlockBase *Predecessor) {
366 assert(Predecessor && "Cannot add nullptr predecessor!");
367 Predecessors.push_back(Predecessor);
370 /// Remove \p Predecessor from the predecessors of this block.
371 void removePredecessor(VPBlockBase *Predecessor) {
372 auto Pos = std::find(Predecessors.begin(), Predecessors.end(), Predecessor);
373 assert(Pos && "Predecessor does not exist");
374 Predecessors.erase(Pos);
377 /// Remove \p Successor from the successors of this block.
378 void removeSuccessor(VPBlockBase *Successor) {
379 auto Pos = std::find(Successors.begin(), Successors.end(), Successor);
380 assert(Pos && "Successor does not exist");
381 Successors.erase(Pos);
384 protected:
385 VPBlockBase(const unsigned char SC, const std::string &N)
386 : SubclassID(SC), Name(N) {}
388 public:
389 /// An enumeration for keeping track of the concrete subclass of VPBlockBase
390 /// that are actually instantiated. Values of this enumeration are kept in the
391 /// SubclassID field of the VPBlockBase objects. They are used for concrete
392 /// type identification.
393 using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC };
395 using VPBlocksTy = SmallVectorImpl<VPBlockBase *>;
397 virtual ~VPBlockBase() = default;
399 const std::string &getName() const { return Name; }
401 void setName(const Twine &newName) { Name = newName.str(); }
403 /// \return an ID for the concrete type of this object.
404 /// This is used to implement the classof checks. This should not be used
405 /// for any other purpose, as the values may change as LLVM evolves.
406 unsigned getVPBlockID() const { return SubclassID; }
408 VPRegionBlock *getParent() { return Parent; }
409 const VPRegionBlock *getParent() const { return Parent; }
411 void setParent(VPRegionBlock *P) { Parent = P; }
413 /// \return the VPBasicBlock that is the entry of this VPBlockBase,
414 /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
415 /// VPBlockBase is a VPBasicBlock, it is returned.
416 const VPBasicBlock *getEntryBasicBlock() const;
417 VPBasicBlock *getEntryBasicBlock();
419 /// \return the VPBasicBlock that is the exit of this VPBlockBase,
420 /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
421 /// VPBlockBase is a VPBasicBlock, it is returned.
422 const VPBasicBlock *getExitBasicBlock() const;
423 VPBasicBlock *getExitBasicBlock();
425 const VPBlocksTy &getSuccessors() const { return Successors; }
426 VPBlocksTy &getSuccessors() { return Successors; }
428 const VPBlocksTy &getPredecessors() const { return Predecessors; }
429 VPBlocksTy &getPredecessors() { return Predecessors; }
431 /// \return the successor of this VPBlockBase if it has a single successor.
432 /// Otherwise return a null pointer.
433 VPBlockBase *getSingleSuccessor() const {
434 return (Successors.size() == 1 ? *Successors.begin() : nullptr);
437 /// \return the predecessor of this VPBlockBase if it has a single
438 /// predecessor. Otherwise return a null pointer.
439 VPBlockBase *getSinglePredecessor() const {
440 return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr);
443 size_t getNumSuccessors() const { return Successors.size(); }
444 size_t getNumPredecessors() const { return Predecessors.size(); }
446 /// An Enclosing Block of a block B is any block containing B, including B
447 /// itself. \return the closest enclosing block starting from "this", which
448 /// has successors. \return the root enclosing block if all enclosing blocks
449 /// have no successors.
450 VPBlockBase *getEnclosingBlockWithSuccessors();
452 /// \return the closest enclosing block starting from "this", which has
453 /// predecessors. \return the root enclosing block if all enclosing blocks
454 /// have no predecessors.
455 VPBlockBase *getEnclosingBlockWithPredecessors();
457 /// \return the successors either attached directly to this VPBlockBase or, if
458 /// this VPBlockBase is the exit block of a VPRegionBlock and has no
459 /// successors of its own, search recursively for the first enclosing
460 /// VPRegionBlock that has successors and return them. If no such
461 /// VPRegionBlock exists, return the (empty) successors of the topmost
462 /// VPBlockBase reached.
463 const VPBlocksTy &getHierarchicalSuccessors() {
464 return getEnclosingBlockWithSuccessors()->getSuccessors();
467 /// \return the hierarchical successor of this VPBlockBase if it has a single
468 /// hierarchical successor. Otherwise return a null pointer.
469 VPBlockBase *getSingleHierarchicalSuccessor() {
470 return getEnclosingBlockWithSuccessors()->getSingleSuccessor();
473 /// \return the predecessors either attached directly to this VPBlockBase or,
474 /// if this VPBlockBase is the entry block of a VPRegionBlock and has no
475 /// predecessors of its own, search recursively for the first enclosing
476 /// VPRegionBlock that has predecessors and return them. If no such
477 /// VPRegionBlock exists, return the (empty) predecessors of the topmost
478 /// VPBlockBase reached.
479 const VPBlocksTy &getHierarchicalPredecessors() {
480 return getEnclosingBlockWithPredecessors()->getPredecessors();
483 /// \return the hierarchical predecessor of this VPBlockBase if it has a
484 /// single hierarchical predecessor. Otherwise return a null pointer.
485 VPBlockBase *getSingleHierarchicalPredecessor() {
486 return getEnclosingBlockWithPredecessors()->getSinglePredecessor();
489 /// \return the condition bit selecting the successor.
490 VPValue *getCondBit() { return CondBit; }
492 const VPValue *getCondBit() const { return CondBit; }
494 void setCondBit(VPValue *CV) { CondBit = CV; }
496 VPValue *getPredicate() { return Predicate; }
498 const VPValue *getPredicate() const { return Predicate; }
500 void setPredicate(VPValue *Pred) { Predicate = Pred; }
502 /// Set a given VPBlockBase \p Successor as the single successor of this
503 /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor.
504 /// This VPBlockBase must have no successors.
505 void setOneSuccessor(VPBlockBase *Successor) {
506 assert(Successors.empty() && "Setting one successor when others exist.");
507 appendSuccessor(Successor);
510 /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two
511 /// successors of this VPBlockBase. \p Condition is set as the successor
512 /// selector. This VPBlockBase is not added as predecessor of \p IfTrue or \p
513 /// IfFalse. This VPBlockBase must have no successors.
514 void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
515 VPValue *Condition) {
516 assert(Successors.empty() && "Setting two successors when others exist.");
517 assert(Condition && "Setting two successors without condition!");
518 CondBit = Condition;
519 appendSuccessor(IfTrue);
520 appendSuccessor(IfFalse);
523 /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase.
524 /// This VPBlockBase must have no predecessors. This VPBlockBase is not added
525 /// as successor of any VPBasicBlock in \p NewPreds.
526 void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) {
527 assert(Predecessors.empty() && "Block predecessors already set.");
528 for (auto *Pred : NewPreds)
529 appendPredecessor(Pred);
532 /// Remove all the predecessor of this block.
533 void clearPredecessors() { Predecessors.clear(); }
535 /// Remove all the successors of this block and set to null its condition bit
536 void clearSuccessors() {
537 Successors.clear();
538 CondBit = nullptr;
541 /// The method which generates the output IR that correspond to this
542 /// VPBlockBase, thereby "executing" the VPlan.
543 virtual void execute(struct VPTransformState *State) = 0;
545 /// Delete all blocks reachable from a given VPBlockBase, inclusive.
546 static void deleteCFG(VPBlockBase *Entry);
548 void printAsOperand(raw_ostream &OS, bool PrintType) const {
549 OS << getName();
552 void print(raw_ostream &OS) const {
553 // TODO: Only printing VPBB name for now since we only have dot printing
554 // support for VPInstructions/Recipes.
555 printAsOperand(OS, false);
558 /// Return true if it is legal to hoist instructions into this block.
559 bool isLegalToHoistInto() {
560 // There are currently no constraints that prevent an instruction to be
561 // hoisted into a VPBlockBase.
562 return true;
566 /// VPRecipeBase is a base class modeling a sequence of one or more output IR
567 /// instructions.
568 class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock> {
569 friend VPBasicBlock;
571 private:
572 const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
574 /// Each VPRecipe belongs to a single VPBasicBlock.
575 VPBasicBlock *Parent = nullptr;
577 public:
578 /// An enumeration for keeping track of the concrete subclass of VPRecipeBase
579 /// that is actually instantiated. Values of this enumeration are kept in the
580 /// SubclassID field of the VPRecipeBase objects. They are used for concrete
581 /// type identification.
582 using VPRecipeTy = enum {
583 VPBlendSC,
584 VPBranchOnMaskSC,
585 VPInstructionSC,
586 VPInterleaveSC,
587 VPPredInstPHISC,
588 VPReplicateSC,
589 VPWidenIntOrFpInductionSC,
590 VPWidenMemoryInstructionSC,
591 VPWidenPHISC,
592 VPWidenSC,
595 VPRecipeBase(const unsigned char SC) : SubclassID(SC) {}
596 virtual ~VPRecipeBase() = default;
598 /// \return an ID for the concrete type of this object.
599 /// This is used to implement the classof checks. This should not be used
600 /// for any other purpose, as the values may change as LLVM evolves.
601 unsigned getVPRecipeID() const { return SubclassID; }
603 /// \return the VPBasicBlock which this VPRecipe belongs to.
604 VPBasicBlock *getParent() { return Parent; }
605 const VPBasicBlock *getParent() const { return Parent; }
607 /// The method which generates the output IR instructions that correspond to
608 /// this VPRecipe, thereby "executing" the VPlan.
609 virtual void execute(struct VPTransformState &State) = 0;
611 /// Each recipe prints itself.
612 virtual void print(raw_ostream &O, const Twine &Indent) const = 0;
614 /// Insert an unlinked recipe into a basic block immediately before
615 /// the specified recipe.
616 void insertBefore(VPRecipeBase *InsertPos);
618 /// This method unlinks 'this' from the containing basic block and deletes it.
620 /// \returns an iterator pointing to the element after the erased one
621 iplist<VPRecipeBase>::iterator eraseFromParent();
624 /// This is a concrete Recipe that models a single VPlan-level instruction.
625 /// While as any Recipe it may generate a sequence of IR instructions when
626 /// executed, these instructions would always form a single-def expression as
627 /// the VPInstruction is also a single def-use vertex.
628 class VPInstruction : public VPUser, public VPRecipeBase {
629 friend class VPlanHCFGTransforms;
630 friend class VPlanSlp;
632 public:
633 /// VPlan opcodes, extending LLVM IR with idiomatics instructions.
634 enum {
635 Not = Instruction::OtherOpsEnd + 1,
636 ICmpULE,
637 SLPLoad,
638 SLPStore,
641 private:
642 typedef unsigned char OpcodeTy;
643 OpcodeTy Opcode;
645 /// Utility method serving execute(): generates a single instance of the
646 /// modeled instruction.
647 void generateInstruction(VPTransformState &State, unsigned Part);
649 protected:
650 Instruction *getUnderlyingInstr() {
651 return cast_or_null<Instruction>(getUnderlyingValue());
654 void setUnderlyingInstr(Instruction *I) { setUnderlyingValue(I); }
656 public:
657 VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands)
658 : VPUser(VPValue::VPInstructionSC, Operands),
659 VPRecipeBase(VPRecipeBase::VPInstructionSC), Opcode(Opcode) {}
661 VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands)
662 : VPInstruction(Opcode, ArrayRef<VPValue *>(Operands)) {}
664 /// Method to support type inquiry through isa, cast, and dyn_cast.
665 static inline bool classof(const VPValue *V) {
666 return V->getVPValueID() == VPValue::VPInstructionSC;
669 VPInstruction *clone() const {
670 SmallVector<VPValue *, 2> Operands(operands());
671 return new VPInstruction(Opcode, Operands);
674 /// Method to support type inquiry through isa, cast, and dyn_cast.
675 static inline bool classof(const VPRecipeBase *R) {
676 return R->getVPRecipeID() == VPRecipeBase::VPInstructionSC;
679 unsigned getOpcode() const { return Opcode; }
681 /// Generate the instruction.
682 /// TODO: We currently execute only per-part unless a specific instance is
683 /// provided.
684 void execute(VPTransformState &State) override;
686 /// Print the Recipe.
687 void print(raw_ostream &O, const Twine &Indent) const override;
689 /// Print the VPInstruction.
690 void print(raw_ostream &O) const;
692 /// Return true if this instruction may modify memory.
693 bool mayWriteToMemory() const {
694 // TODO: we can use attributes of the called function to rule out memory
695 // modifications.
696 return Opcode == Instruction::Store || Opcode == Instruction::Call ||
697 Opcode == Instruction::Invoke || Opcode == SLPStore;
701 /// VPWidenRecipe is a recipe for producing a copy of vector type for each
702 /// Instruction in its ingredients independently, in order. This recipe covers
703 /// most of the traditional vectorization cases where each ingredient transforms
704 /// into a vectorized version of itself.
705 class VPWidenRecipe : public VPRecipeBase {
706 private:
707 /// Hold the ingredients by pointing to their original BasicBlock location.
708 BasicBlock::iterator Begin;
709 BasicBlock::iterator End;
711 public:
712 VPWidenRecipe(Instruction *I) : VPRecipeBase(VPWidenSC) {
713 End = I->getIterator();
714 Begin = End++;
717 ~VPWidenRecipe() override = default;
719 /// Method to support type inquiry through isa, cast, and dyn_cast.
720 static inline bool classof(const VPRecipeBase *V) {
721 return V->getVPRecipeID() == VPRecipeBase::VPWidenSC;
724 /// Produce widened copies of all Ingredients.
725 void execute(VPTransformState &State) override;
727 /// Augment the recipe to include Instr, if it lies at its End.
728 bool appendInstruction(Instruction *Instr) {
729 if (End != Instr->getIterator())
730 return false;
731 End++;
732 return true;
735 /// Print the recipe.
736 void print(raw_ostream &O, const Twine &Indent) const override;
739 /// A recipe for handling phi nodes of integer and floating-point inductions,
740 /// producing their vector and scalar values.
741 class VPWidenIntOrFpInductionRecipe : public VPRecipeBase {
742 private:
743 PHINode *IV;
744 TruncInst *Trunc;
746 public:
747 VPWidenIntOrFpInductionRecipe(PHINode *IV, TruncInst *Trunc = nullptr)
748 : VPRecipeBase(VPWidenIntOrFpInductionSC), IV(IV), Trunc(Trunc) {}
749 ~VPWidenIntOrFpInductionRecipe() override = default;
751 /// Method to support type inquiry through isa, cast, and dyn_cast.
752 static inline bool classof(const VPRecipeBase *V) {
753 return V->getVPRecipeID() == VPRecipeBase::VPWidenIntOrFpInductionSC;
756 /// Generate the vectorized and scalarized versions of the phi node as
757 /// needed by their users.
758 void execute(VPTransformState &State) override;
760 /// Print the recipe.
761 void print(raw_ostream &O, const Twine &Indent) const override;
764 /// A recipe for handling all phi nodes except for integer and FP inductions.
765 class VPWidenPHIRecipe : public VPRecipeBase {
766 private:
767 PHINode *Phi;
769 public:
770 VPWidenPHIRecipe(PHINode *Phi) : VPRecipeBase(VPWidenPHISC), Phi(Phi) {}
771 ~VPWidenPHIRecipe() override = default;
773 /// Method to support type inquiry through isa, cast, and dyn_cast.
774 static inline bool classof(const VPRecipeBase *V) {
775 return V->getVPRecipeID() == VPRecipeBase::VPWidenPHISC;
778 /// Generate the phi/select nodes.
779 void execute(VPTransformState &State) override;
781 /// Print the recipe.
782 void print(raw_ostream &O, const Twine &Indent) const override;
785 /// A recipe for vectorizing a phi-node as a sequence of mask-based select
786 /// instructions.
787 class VPBlendRecipe : public VPRecipeBase {
788 private:
789 PHINode *Phi;
791 /// The blend operation is a User of a mask, if not null.
792 std::unique_ptr<VPUser> User;
794 public:
795 VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Masks)
796 : VPRecipeBase(VPBlendSC), Phi(Phi) {
797 assert((Phi->getNumIncomingValues() == 1 ||
798 Phi->getNumIncomingValues() == Masks.size()) &&
799 "Expected the same number of incoming values and masks");
800 if (!Masks.empty())
801 User.reset(new VPUser(Masks));
804 /// Method to support type inquiry through isa, cast, and dyn_cast.
805 static inline bool classof(const VPRecipeBase *V) {
806 return V->getVPRecipeID() == VPRecipeBase::VPBlendSC;
809 /// Generate the phi/select nodes.
810 void execute(VPTransformState &State) override;
812 /// Print the recipe.
813 void print(raw_ostream &O, const Twine &Indent) const override;
816 /// VPInterleaveRecipe is a recipe for transforming an interleave group of load
817 /// or stores into one wide load/store and shuffles.
818 class VPInterleaveRecipe : public VPRecipeBase {
819 private:
820 const InterleaveGroup<Instruction> *IG;
821 std::unique_ptr<VPUser> User;
823 public:
824 VPInterleaveRecipe(const InterleaveGroup<Instruction> *IG, VPValue *Mask)
825 : VPRecipeBase(VPInterleaveSC), IG(IG) {
826 if (Mask) // Create a VPInstruction to register as a user of the mask.
827 User.reset(new VPUser({Mask}));
829 ~VPInterleaveRecipe() override = default;
831 /// Method to support type inquiry through isa, cast, and dyn_cast.
832 static inline bool classof(const VPRecipeBase *V) {
833 return V->getVPRecipeID() == VPRecipeBase::VPInterleaveSC;
836 /// Generate the wide load or store, and shuffles.
837 void execute(VPTransformState &State) override;
839 /// Print the recipe.
840 void print(raw_ostream &O, const Twine &Indent) const override;
842 const InterleaveGroup<Instruction> *getInterleaveGroup() { return IG; }
845 /// VPReplicateRecipe replicates a given instruction producing multiple scalar
846 /// copies of the original scalar type, one per lane, instead of producing a
847 /// single copy of widened type for all lanes. If the instruction is known to be
848 /// uniform only one copy, per lane zero, will be generated.
849 class VPReplicateRecipe : public VPRecipeBase {
850 private:
851 /// The instruction being replicated.
852 Instruction *Ingredient;
854 /// Indicator if only a single replica per lane is needed.
855 bool IsUniform;
857 /// Indicator if the replicas are also predicated.
858 bool IsPredicated;
860 /// Indicator if the scalar values should also be packed into a vector.
861 bool AlsoPack;
863 public:
864 VPReplicateRecipe(Instruction *I, bool IsUniform, bool IsPredicated = false)
865 : VPRecipeBase(VPReplicateSC), Ingredient(I), IsUniform(IsUniform),
866 IsPredicated(IsPredicated) {
867 // Retain the previous behavior of predicateInstructions(), where an
868 // insert-element of a predicated instruction got hoisted into the
869 // predicated basic block iff it was its only user. This is achieved by
870 // having predicated instructions also pack their values into a vector by
871 // default unless they have a replicated user which uses their scalar value.
872 AlsoPack = IsPredicated && !I->use_empty();
875 ~VPReplicateRecipe() override = default;
877 /// Method to support type inquiry through isa, cast, and dyn_cast.
878 static inline bool classof(const VPRecipeBase *V) {
879 return V->getVPRecipeID() == VPRecipeBase::VPReplicateSC;
882 /// Generate replicas of the desired Ingredient. Replicas will be generated
883 /// for all parts and lanes unless a specific part and lane are specified in
884 /// the \p State.
885 void execute(VPTransformState &State) override;
887 void setAlsoPack(bool Pack) { AlsoPack = Pack; }
889 /// Print the recipe.
890 void print(raw_ostream &O, const Twine &Indent) const override;
893 /// A recipe for generating conditional branches on the bits of a mask.
894 class VPBranchOnMaskRecipe : public VPRecipeBase {
895 private:
896 std::unique_ptr<VPUser> User;
898 public:
899 VPBranchOnMaskRecipe(VPValue *BlockInMask) : VPRecipeBase(VPBranchOnMaskSC) {
900 if (BlockInMask) // nullptr means all-one mask.
901 User.reset(new VPUser({BlockInMask}));
904 /// Method to support type inquiry through isa, cast, and dyn_cast.
905 static inline bool classof(const VPRecipeBase *V) {
906 return V->getVPRecipeID() == VPRecipeBase::VPBranchOnMaskSC;
909 /// Generate the extraction of the appropriate bit from the block mask and the
910 /// conditional branch.
911 void execute(VPTransformState &State) override;
913 /// Print the recipe.
914 void print(raw_ostream &O, const Twine &Indent) const override {
915 O << " +\n" << Indent << "\"BRANCH-ON-MASK ";
916 if (User)
917 O << *User->getOperand(0);
918 else
919 O << " All-One";
920 O << "\\l\"";
924 /// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when
925 /// control converges back from a Branch-on-Mask. The phi nodes are needed in
926 /// order to merge values that are set under such a branch and feed their uses.
927 /// The phi nodes can be scalar or vector depending on the users of the value.
928 /// This recipe works in concert with VPBranchOnMaskRecipe.
929 class VPPredInstPHIRecipe : public VPRecipeBase {
930 private:
931 Instruction *PredInst;
933 public:
934 /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi
935 /// nodes after merging back from a Branch-on-Mask.
936 VPPredInstPHIRecipe(Instruction *PredInst)
937 : VPRecipeBase(VPPredInstPHISC), PredInst(PredInst) {}
938 ~VPPredInstPHIRecipe() override = default;
940 /// Method to support type inquiry through isa, cast, and dyn_cast.
941 static inline bool classof(const VPRecipeBase *V) {
942 return V->getVPRecipeID() == VPRecipeBase::VPPredInstPHISC;
945 /// Generates phi nodes for live-outs as needed to retain SSA form.
946 void execute(VPTransformState &State) override;
948 /// Print the recipe.
949 void print(raw_ostream &O, const Twine &Indent) const override;
952 /// A Recipe for widening load/store operations.
953 /// TODO: We currently execute only per-part unless a specific instance is
954 /// provided.
955 class VPWidenMemoryInstructionRecipe : public VPRecipeBase {
956 private:
957 Instruction &Instr;
958 std::unique_ptr<VPUser> User;
960 public:
961 VPWidenMemoryInstructionRecipe(Instruction &Instr, VPValue *Mask)
962 : VPRecipeBase(VPWidenMemoryInstructionSC), Instr(Instr) {
963 if (Mask) // Create a VPInstruction to register as a user of the mask.
964 User.reset(new VPUser({Mask}));
967 /// Method to support type inquiry through isa, cast, and dyn_cast.
968 static inline bool classof(const VPRecipeBase *V) {
969 return V->getVPRecipeID() == VPRecipeBase::VPWidenMemoryInstructionSC;
972 /// Generate the wide load/store.
973 void execute(VPTransformState &State) override;
975 /// Print the recipe.
976 void print(raw_ostream &O, const Twine &Indent) const override;
979 /// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It
980 /// holds a sequence of zero or more VPRecipe's each representing a sequence of
981 /// output IR instructions.
982 class VPBasicBlock : public VPBlockBase {
983 public:
984 using RecipeListTy = iplist<VPRecipeBase>;
986 private:
987 /// The VPRecipes held in the order of output instructions to generate.
988 RecipeListTy Recipes;
990 public:
991 VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr)
992 : VPBlockBase(VPBasicBlockSC, Name.str()) {
993 if (Recipe)
994 appendRecipe(Recipe);
997 ~VPBasicBlock() override { Recipes.clear(); }
999 /// Instruction iterators...
1000 using iterator = RecipeListTy::iterator;
1001 using const_iterator = RecipeListTy::const_iterator;
1002 using reverse_iterator = RecipeListTy::reverse_iterator;
1003 using const_reverse_iterator = RecipeListTy::const_reverse_iterator;
1005 //===--------------------------------------------------------------------===//
1006 /// Recipe iterator methods
1008 inline iterator begin() { return Recipes.begin(); }
1009 inline const_iterator begin() const { return Recipes.begin(); }
1010 inline iterator end() { return Recipes.end(); }
1011 inline const_iterator end() const { return Recipes.end(); }
1013 inline reverse_iterator rbegin() { return Recipes.rbegin(); }
1014 inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); }
1015 inline reverse_iterator rend() { return Recipes.rend(); }
1016 inline const_reverse_iterator rend() const { return Recipes.rend(); }
1018 inline size_t size() const { return Recipes.size(); }
1019 inline bool empty() const { return Recipes.empty(); }
1020 inline const VPRecipeBase &front() const { return Recipes.front(); }
1021 inline VPRecipeBase &front() { return Recipes.front(); }
1022 inline const VPRecipeBase &back() const { return Recipes.back(); }
1023 inline VPRecipeBase &back() { return Recipes.back(); }
1025 /// Returns a reference to the list of recipes.
1026 RecipeListTy &getRecipeList() { return Recipes; }
1028 /// Returns a pointer to a member of the recipe list.
1029 static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) {
1030 return &VPBasicBlock::Recipes;
1033 /// Method to support type inquiry through isa, cast, and dyn_cast.
1034 static inline bool classof(const VPBlockBase *V) {
1035 return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC;
1038 void insert(VPRecipeBase *Recipe, iterator InsertPt) {
1039 assert(Recipe && "No recipe to append.");
1040 assert(!Recipe->Parent && "Recipe already in VPlan");
1041 Recipe->Parent = this;
1042 Recipes.insert(InsertPt, Recipe);
1045 /// Augment the existing recipes of a VPBasicBlock with an additional
1046 /// \p Recipe as the last recipe.
1047 void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); }
1049 /// The method which generates the output IR instructions that correspond to
1050 /// this VPBasicBlock, thereby "executing" the VPlan.
1051 void execute(struct VPTransformState *State) override;
1053 private:
1054 /// Create an IR BasicBlock to hold the output instructions generated by this
1055 /// VPBasicBlock, and return it. Update the CFGState accordingly.
1056 BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG);
1059 /// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks
1060 /// which form a Single-Entry-Single-Exit subgraph of the output IR CFG.
1061 /// A VPRegionBlock may indicate that its contents are to be replicated several
1062 /// times. This is designed to support predicated scalarization, in which a
1063 /// scalar if-then code structure needs to be generated VF * UF times. Having
1064 /// this replication indicator helps to keep a single model for multiple
1065 /// candidate VF's. The actual replication takes place only once the desired VF
1066 /// and UF have been determined.
1067 class VPRegionBlock : public VPBlockBase {
1068 private:
1069 /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock.
1070 VPBlockBase *Entry;
1072 /// Hold the Single Exit of the SESE region modelled by the VPRegionBlock.
1073 VPBlockBase *Exit;
1075 /// An indicator whether this region is to generate multiple replicated
1076 /// instances of output IR corresponding to its VPBlockBases.
1077 bool IsReplicator;
1079 public:
1080 VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit,
1081 const std::string &Name = "", bool IsReplicator = false)
1082 : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit),
1083 IsReplicator(IsReplicator) {
1084 assert(Entry->getPredecessors().empty() && "Entry block has predecessors.");
1085 assert(Exit->getSuccessors().empty() && "Exit block has successors.");
1086 Entry->setParent(this);
1087 Exit->setParent(this);
1089 VPRegionBlock(const std::string &Name = "", bool IsReplicator = false)
1090 : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exit(nullptr),
1091 IsReplicator(IsReplicator) {}
1093 ~VPRegionBlock() override {
1094 if (Entry)
1095 deleteCFG(Entry);
1098 /// Method to support type inquiry through isa, cast, and dyn_cast.
1099 static inline bool classof(const VPBlockBase *V) {
1100 return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC;
1103 const VPBlockBase *getEntry() const { return Entry; }
1104 VPBlockBase *getEntry() { return Entry; }
1106 /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p
1107 /// EntryBlock must have no predecessors.
1108 void setEntry(VPBlockBase *EntryBlock) {
1109 assert(EntryBlock->getPredecessors().empty() &&
1110 "Entry block cannot have predecessors.");
1111 Entry = EntryBlock;
1112 EntryBlock->setParent(this);
1115 // FIXME: DominatorTreeBase is doing 'A->getParent()->front()'. 'front' is a
1116 // specific interface of llvm::Function, instead of using
1117 // GraphTraints::getEntryNode. We should add a new template parameter to
1118 // DominatorTreeBase representing the Graph type.
1119 VPBlockBase &front() const { return *Entry; }
1121 const VPBlockBase *getExit() const { return Exit; }
1122 VPBlockBase *getExit() { return Exit; }
1124 /// Set \p ExitBlock as the exit VPBlockBase of this VPRegionBlock. \p
1125 /// ExitBlock must have no successors.
1126 void setExit(VPBlockBase *ExitBlock) {
1127 assert(ExitBlock->getSuccessors().empty() &&
1128 "Exit block cannot have successors.");
1129 Exit = ExitBlock;
1130 ExitBlock->setParent(this);
1133 /// An indicator whether this region is to generate multiple replicated
1134 /// instances of output IR corresponding to its VPBlockBases.
1135 bool isReplicator() const { return IsReplicator; }
1137 /// The method which generates the output IR instructions that correspond to
1138 /// this VPRegionBlock, thereby "executing" the VPlan.
1139 void execute(struct VPTransformState *State) override;
1142 /// VPlan models a candidate for vectorization, encoding various decisions take
1143 /// to produce efficient output IR, including which branches, basic-blocks and
1144 /// output IR instructions to generate, and their cost. VPlan holds a
1145 /// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry
1146 /// VPBlock.
1147 class VPlan {
1148 friend class VPlanPrinter;
1150 private:
1151 /// Hold the single entry to the Hierarchical CFG of the VPlan.
1152 VPBlockBase *Entry;
1154 /// Holds the VFs applicable to this VPlan.
1155 SmallSet<unsigned, 2> VFs;
1157 /// Holds the name of the VPlan, for printing.
1158 std::string Name;
1160 /// Holds all the external definitions created for this VPlan.
1161 // TODO: Introduce a specific representation for external definitions in
1162 // VPlan. External definitions must be immutable and hold a pointer to its
1163 // underlying IR that will be used to implement its structural comparison
1164 // (operators '==' and '<').
1165 SmallPtrSet<VPValue *, 16> VPExternalDefs;
1167 /// Represents the backedge taken count of the original loop, for folding
1168 /// the tail.
1169 VPValue *BackedgeTakenCount = nullptr;
1171 /// Holds a mapping between Values and their corresponding VPValue inside
1172 /// VPlan.
1173 Value2VPValueTy Value2VPValue;
1175 /// Holds the VPLoopInfo analysis for this VPlan.
1176 VPLoopInfo VPLInfo;
1178 /// Holds the condition bit values built during VPInstruction to VPRecipe transformation.
1179 SmallVector<VPValue *, 4> VPCBVs;
1181 public:
1182 VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) {}
1184 ~VPlan() {
1185 if (Entry)
1186 VPBlockBase::deleteCFG(Entry);
1187 for (auto &MapEntry : Value2VPValue)
1188 if (MapEntry.second != BackedgeTakenCount)
1189 delete MapEntry.second;
1190 if (BackedgeTakenCount)
1191 delete BackedgeTakenCount; // Delete once, if in Value2VPValue or not.
1192 for (VPValue *Def : VPExternalDefs)
1193 delete Def;
1194 for (VPValue *CBV : VPCBVs)
1195 delete CBV;
1198 /// Generate the IR code for this VPlan.
1199 void execute(struct VPTransformState *State);
1201 VPBlockBase *getEntry() { return Entry; }
1202 const VPBlockBase *getEntry() const { return Entry; }
1204 VPBlockBase *setEntry(VPBlockBase *Block) { return Entry = Block; }
1206 /// The backedge taken count of the original loop.
1207 VPValue *getOrCreateBackedgeTakenCount() {
1208 if (!BackedgeTakenCount)
1209 BackedgeTakenCount = new VPValue();
1210 return BackedgeTakenCount;
1213 void addVF(unsigned VF) { VFs.insert(VF); }
1215 bool hasVF(unsigned VF) { return VFs.count(VF); }
1217 const std::string &getName() const { return Name; }
1219 void setName(const Twine &newName) { Name = newName.str(); }
1221 /// Add \p VPVal to the pool of external definitions if it's not already
1222 /// in the pool.
1223 void addExternalDef(VPValue *VPVal) {
1224 VPExternalDefs.insert(VPVal);
1227 /// Add \p CBV to the vector of condition bit values.
1228 void addCBV(VPValue *CBV) {
1229 VPCBVs.push_back(CBV);
1232 void addVPValue(Value *V) {
1233 assert(V && "Trying to add a null Value to VPlan");
1234 assert(!Value2VPValue.count(V) && "Value already exists in VPlan");
1235 Value2VPValue[V] = new VPValue();
1238 VPValue *getVPValue(Value *V) {
1239 assert(V && "Trying to get the VPValue of a null Value");
1240 assert(Value2VPValue.count(V) && "Value does not exist in VPlan");
1241 return Value2VPValue[V];
1244 /// Return the VPLoopInfo analysis for this VPlan.
1245 VPLoopInfo &getVPLoopInfo() { return VPLInfo; }
1246 const VPLoopInfo &getVPLoopInfo() const { return VPLInfo; }
1248 private:
1249 /// Add to the given dominator tree the header block and every new basic block
1250 /// that was created between it and the latch block, inclusive.
1251 static void updateDominatorTree(DominatorTree *DT,
1252 BasicBlock *LoopPreHeaderBB,
1253 BasicBlock *LoopLatchBB);
1256 /// VPlanPrinter prints a given VPlan to a given output stream. The printing is
1257 /// indented and follows the dot format.
1258 class VPlanPrinter {
1259 friend inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan);
1260 friend inline raw_ostream &operator<<(raw_ostream &OS,
1261 const struct VPlanIngredient &I);
1263 private:
1264 raw_ostream &OS;
1265 VPlan &Plan;
1266 unsigned Depth;
1267 unsigned TabWidth = 2;
1268 std::string Indent;
1269 unsigned BID = 0;
1270 SmallDenseMap<const VPBlockBase *, unsigned> BlockID;
1272 VPlanPrinter(raw_ostream &O, VPlan &P) : OS(O), Plan(P) {}
1274 /// Handle indentation.
1275 void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); }
1277 /// Print a given \p Block of the Plan.
1278 void dumpBlock(const VPBlockBase *Block);
1280 /// Print the information related to the CFG edges going out of a given
1281 /// \p Block, followed by printing the successor blocks themselves.
1282 void dumpEdges(const VPBlockBase *Block);
1284 /// Print a given \p BasicBlock, including its VPRecipes, followed by printing
1285 /// its successor blocks.
1286 void dumpBasicBlock(const VPBasicBlock *BasicBlock);
1288 /// Print a given \p Region of the Plan.
1289 void dumpRegion(const VPRegionBlock *Region);
1291 unsigned getOrCreateBID(const VPBlockBase *Block) {
1292 return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++;
1295 const Twine getOrCreateName(const VPBlockBase *Block);
1297 const Twine getUID(const VPBlockBase *Block);
1299 /// Print the information related to a CFG edge between two VPBlockBases.
1300 void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden,
1301 const Twine &Label);
1303 void dump();
1305 static void printAsIngredient(raw_ostream &O, Value *V);
1308 struct VPlanIngredient {
1309 Value *V;
1311 VPlanIngredient(Value *V) : V(V) {}
1314 inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) {
1315 VPlanPrinter::printAsIngredient(OS, I.V);
1316 return OS;
1319 inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan) {
1320 VPlanPrinter Printer(OS, Plan);
1321 Printer.dump();
1322 return OS;
1325 //===----------------------------------------------------------------------===//
1326 // GraphTraits specializations for VPlan Hierarchical Control-Flow Graphs //
1327 //===----------------------------------------------------------------------===//
1329 // The following set of template specializations implement GraphTraits to treat
1330 // any VPBlockBase as a node in a graph of VPBlockBases. It's important to note
1331 // that VPBlockBase traits don't recurse into VPRegioBlocks, i.e., if the
1332 // VPBlockBase is a VPRegionBlock, this specialization provides access to its
1333 // successors/predecessors but not to the blocks inside the region.
1335 template <> struct GraphTraits<VPBlockBase *> {
1336 using NodeRef = VPBlockBase *;
1337 using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;
1339 static NodeRef getEntryNode(NodeRef N) { return N; }
1341 static inline ChildIteratorType child_begin(NodeRef N) {
1342 return N->getSuccessors().begin();
1345 static inline ChildIteratorType child_end(NodeRef N) {
1346 return N->getSuccessors().end();
1350 template <> struct GraphTraits<const VPBlockBase *> {
1351 using NodeRef = const VPBlockBase *;
1352 using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::const_iterator;
1354 static NodeRef getEntryNode(NodeRef N) { return N; }
1356 static inline ChildIteratorType child_begin(NodeRef N) {
1357 return N->getSuccessors().begin();
1360 static inline ChildIteratorType child_end(NodeRef N) {
1361 return N->getSuccessors().end();
1365 // Inverse order specialization for VPBasicBlocks. Predecessors are used instead
1366 // of successors for the inverse traversal.
1367 template <> struct GraphTraits<Inverse<VPBlockBase *>> {
1368 using NodeRef = VPBlockBase *;
1369 using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;
1371 static NodeRef getEntryNode(Inverse<NodeRef> B) { return B.Graph; }
1373 static inline ChildIteratorType child_begin(NodeRef N) {
1374 return N->getPredecessors().begin();
1377 static inline ChildIteratorType child_end(NodeRef N) {
1378 return N->getPredecessors().end();
1382 // The following set of template specializations implement GraphTraits to
1383 // treat VPRegionBlock as a graph and recurse inside its nodes. It's important
1384 // to note that the blocks inside the VPRegionBlock are treated as VPBlockBases
1385 // (i.e., no dyn_cast is performed, VPBlockBases specialization is used), so
1386 // there won't be automatic recursion into other VPBlockBases that turn to be
1387 // VPRegionBlocks.
1389 template <>
1390 struct GraphTraits<VPRegionBlock *> : public GraphTraits<VPBlockBase *> {
1391 using GraphRef = VPRegionBlock *;
1392 using nodes_iterator = df_iterator<NodeRef>;
1394 static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
1396 static nodes_iterator nodes_begin(GraphRef N) {
1397 return nodes_iterator::begin(N->getEntry());
1400 static nodes_iterator nodes_end(GraphRef N) {
1401 // df_iterator::end() returns an empty iterator so the node used doesn't
1402 // matter.
1403 return nodes_iterator::end(N);
1407 template <>
1408 struct GraphTraits<const VPRegionBlock *>
1409 : public GraphTraits<const VPBlockBase *> {
1410 using GraphRef = const VPRegionBlock *;
1411 using nodes_iterator = df_iterator<NodeRef>;
1413 static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
1415 static nodes_iterator nodes_begin(GraphRef N) {
1416 return nodes_iterator::begin(N->getEntry());
1419 static nodes_iterator nodes_end(GraphRef N) {
1420 // df_iterator::end() returns an empty iterator so the node used doesn't
1421 // matter.
1422 return nodes_iterator::end(N);
1426 template <>
1427 struct GraphTraits<Inverse<VPRegionBlock *>>
1428 : public GraphTraits<Inverse<VPBlockBase *>> {
1429 using GraphRef = VPRegionBlock *;
1430 using nodes_iterator = df_iterator<NodeRef>;
1432 static NodeRef getEntryNode(Inverse<GraphRef> N) {
1433 return N.Graph->getExit();
1436 static nodes_iterator nodes_begin(GraphRef N) {
1437 return nodes_iterator::begin(N->getExit());
1440 static nodes_iterator nodes_end(GraphRef N) {
1441 // df_iterator::end() returns an empty iterator so the node used doesn't
1442 // matter.
1443 return nodes_iterator::end(N);
1447 //===----------------------------------------------------------------------===//
1448 // VPlan Utilities
1449 //===----------------------------------------------------------------------===//
1451 /// Class that provides utilities for VPBlockBases in VPlan.
1452 class VPBlockUtils {
1453 public:
1454 VPBlockUtils() = delete;
1456 /// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p
1457 /// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p
1458 /// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. If \p BlockPtr
1459 /// has more than one successor, its conditional bit is propagated to \p
1460 /// NewBlock. \p NewBlock must have neither successors nor predecessors.
1461 static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) {
1462 assert(NewBlock->getSuccessors().empty() &&
1463 "Can't insert new block with successors.");
1464 // TODO: move successors from BlockPtr to NewBlock when this functionality
1465 // is necessary. For now, setBlockSingleSuccessor will assert if BlockPtr
1466 // already has successors.
1467 BlockPtr->setOneSuccessor(NewBlock);
1468 NewBlock->setPredecessors({BlockPtr});
1469 NewBlock->setParent(BlockPtr->getParent());
1472 /// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p
1473 /// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p
1474 /// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr
1475 /// parent to \p IfTrue and \p IfFalse. \p Condition is set as the successor
1476 /// selector. \p BlockPtr must have no successors and \p IfTrue and \p IfFalse
1477 /// must have neither successors nor predecessors.
1478 static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
1479 VPValue *Condition, VPBlockBase *BlockPtr) {
1480 assert(IfTrue->getSuccessors().empty() &&
1481 "Can't insert IfTrue with successors.");
1482 assert(IfFalse->getSuccessors().empty() &&
1483 "Can't insert IfFalse with successors.");
1484 BlockPtr->setTwoSuccessors(IfTrue, IfFalse, Condition);
1485 IfTrue->setPredecessors({BlockPtr});
1486 IfFalse->setPredecessors({BlockPtr});
1487 IfTrue->setParent(BlockPtr->getParent());
1488 IfFalse->setParent(BlockPtr->getParent());
1491 /// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to
1492 /// the successors of \p From and \p From to the predecessors of \p To. Both
1493 /// VPBlockBases must have the same parent, which can be null. Both
1494 /// VPBlockBases can be already connected to other VPBlockBases.
1495 static void connectBlocks(VPBlockBase *From, VPBlockBase *To) {
1496 assert((From->getParent() == To->getParent()) &&
1497 "Can't connect two block with different parents");
1498 assert(From->getNumSuccessors() < 2 &&
1499 "Blocks can't have more than two successors.");
1500 From->appendSuccessor(To);
1501 To->appendPredecessor(From);
1504 /// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To
1505 /// from the successors of \p From and \p From from the predecessors of \p To.
1506 static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) {
1507 assert(To && "Successor to disconnect is null.");
1508 From->removeSuccessor(To);
1509 To->removePredecessor(From);
1512 /// Returns true if the edge \p FromBlock -> \p ToBlock is a back-edge.
1513 static bool isBackEdge(const VPBlockBase *FromBlock,
1514 const VPBlockBase *ToBlock, const VPLoopInfo *VPLI) {
1515 assert(FromBlock->getParent() == ToBlock->getParent() &&
1516 FromBlock->getParent() && "Must be in same region");
1517 const VPLoop *FromLoop = VPLI->getLoopFor(FromBlock);
1518 const VPLoop *ToLoop = VPLI->getLoopFor(ToBlock);
1519 if (!FromLoop || !ToLoop || FromLoop != ToLoop)
1520 return false;
1522 // A back-edge is a branch from the loop latch to its header.
1523 return ToLoop->isLoopLatch(FromBlock) && ToBlock == ToLoop->getHeader();
1526 /// Returns true if \p Block is a loop latch
1527 static bool blockIsLoopLatch(const VPBlockBase *Block,
1528 const VPLoopInfo *VPLInfo) {
1529 if (const VPLoop *ParentVPL = VPLInfo->getLoopFor(Block))
1530 return ParentVPL->isLoopLatch(Block);
1532 return false;
1535 /// Count and return the number of succesors of \p PredBlock excluding any
1536 /// backedges.
1537 static unsigned countSuccessorsNoBE(VPBlockBase *PredBlock,
1538 VPLoopInfo *VPLI) {
1539 unsigned Count = 0;
1540 for (VPBlockBase *SuccBlock : PredBlock->getSuccessors()) {
1541 if (!VPBlockUtils::isBackEdge(PredBlock, SuccBlock, VPLI))
1542 Count++;
1544 return Count;
1548 class VPInterleavedAccessInfo {
1549 private:
1550 DenseMap<VPInstruction *, InterleaveGroup<VPInstruction> *>
1551 InterleaveGroupMap;
1553 /// Type for mapping of instruction based interleave groups to VPInstruction
1554 /// interleave groups
1555 using Old2NewTy = DenseMap<InterleaveGroup<Instruction> *,
1556 InterleaveGroup<VPInstruction> *>;
1558 /// Recursively \p Region and populate VPlan based interleave groups based on
1559 /// \p IAI.
1560 void visitRegion(VPRegionBlock *Region, Old2NewTy &Old2New,
1561 InterleavedAccessInfo &IAI);
1562 /// Recursively traverse \p Block and populate VPlan based interleave groups
1563 /// based on \p IAI.
1564 void visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1565 InterleavedAccessInfo &IAI);
1567 public:
1568 VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI);
1570 ~VPInterleavedAccessInfo() {
1571 SmallPtrSet<InterleaveGroup<VPInstruction> *, 4> DelSet;
1572 // Avoid releasing a pointer twice.
1573 for (auto &I : InterleaveGroupMap)
1574 DelSet.insert(I.second);
1575 for (auto *Ptr : DelSet)
1576 delete Ptr;
1579 /// Get the interleave group that \p Instr belongs to.
1581 /// \returns nullptr if doesn't have such group.
1582 InterleaveGroup<VPInstruction> *
1583 getInterleaveGroup(VPInstruction *Instr) const {
1584 if (InterleaveGroupMap.count(Instr))
1585 return InterleaveGroupMap.find(Instr)->second;
1586 return nullptr;
1590 /// Class that maps (parts of) an existing VPlan to trees of combined
1591 /// VPInstructions.
1592 class VPlanSlp {
1593 private:
1594 enum class OpMode { Failed, Load, Opcode };
1596 /// A DenseMapInfo implementation for using SmallVector<VPValue *, 4> as
1597 /// DenseMap keys.
1598 struct BundleDenseMapInfo {
1599 static SmallVector<VPValue *, 4> getEmptyKey() {
1600 return {reinterpret_cast<VPValue *>(-1)};
1603 static SmallVector<VPValue *, 4> getTombstoneKey() {
1604 return {reinterpret_cast<VPValue *>(-2)};
1607 static unsigned getHashValue(const SmallVector<VPValue *, 4> &V) {
1608 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1611 static bool isEqual(const SmallVector<VPValue *, 4> &LHS,
1612 const SmallVector<VPValue *, 4> &RHS) {
1613 return LHS == RHS;
1617 /// Mapping of values in the original VPlan to a combined VPInstruction.
1618 DenseMap<SmallVector<VPValue *, 4>, VPInstruction *, BundleDenseMapInfo>
1619 BundleToCombined;
1621 VPInterleavedAccessInfo &IAI;
1623 /// Basic block to operate on. For now, only instructions in a single BB are
1624 /// considered.
1625 const VPBasicBlock &BB;
1627 /// Indicates whether we managed to combine all visited instructions or not.
1628 bool CompletelySLP = true;
1630 /// Width of the widest combined bundle in bits.
1631 unsigned WidestBundleBits = 0;
1633 using MultiNodeOpTy =
1634 typename std::pair<VPInstruction *, SmallVector<VPValue *, 4>>;
1636 // Input operand bundles for the current multi node. Each multi node operand
1637 // bundle contains values not matching the multi node's opcode. They will
1638 // be reordered in reorderMultiNodeOps, once we completed building a
1639 // multi node.
1640 SmallVector<MultiNodeOpTy, 4> MultiNodeOps;
1642 /// Indicates whether we are building a multi node currently.
1643 bool MultiNodeActive = false;
1645 /// Check if we can vectorize Operands together.
1646 bool areVectorizable(ArrayRef<VPValue *> Operands) const;
1648 /// Add combined instruction \p New for the bundle \p Operands.
1649 void addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New);
1651 /// Indicate we hit a bundle we failed to combine. Returns nullptr for now.
1652 VPInstruction *markFailed();
1654 /// Reorder operands in the multi node to maximize sequential memory access
1655 /// and commutative operations.
1656 SmallVector<MultiNodeOpTy, 4> reorderMultiNodeOps();
1658 /// Choose the best candidate to use for the lane after \p Last. The set of
1659 /// candidates to choose from are values with an opcode matching \p Last's
1660 /// or loads consecutive to \p Last.
1661 std::pair<OpMode, VPValue *> getBest(OpMode Mode, VPValue *Last,
1662 SmallPtrSetImpl<VPValue *> &Candidates,
1663 VPInterleavedAccessInfo &IAI);
1665 /// Print bundle \p Values to dbgs().
1666 void dumpBundle(ArrayRef<VPValue *> Values);
1668 public:
1669 VPlanSlp(VPInterleavedAccessInfo &IAI, VPBasicBlock &BB) : IAI(IAI), BB(BB) {}
1671 ~VPlanSlp() {
1672 for (auto &KV : BundleToCombined)
1673 delete KV.second;
1676 /// Tries to build an SLP tree rooted at \p Operands and returns a
1677 /// VPInstruction combining \p Operands, if they can be combined.
1678 VPInstruction *buildGraph(ArrayRef<VPValue *> Operands);
1680 /// Return the width of the widest combined bundle in bits.
1681 unsigned getWidestBundleBits() const { return WidestBundleBits; }
1683 /// Return true if all visited instruction can be combined.
1684 bool isCompletelySLP() const { return CompletelySLP; }
1686 } // end namespace llvm
1688 #endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H