[llvm-objdump] - Remove one overload of reportError. NFCI.
[llvm-complete.git] / utils / TableGen / CodeGenSchedule.cpp
blobcb05f78fba411c53f2e4cf4c698947bda6cb8bd4
1 //===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines structures to encapsulate the machine model as described in
10 // the target description.
12 //===----------------------------------------------------------------------===//
14 #include "CodeGenSchedule.h"
15 #include "CodeGenInstruction.h"
16 #include "CodeGenTarget.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/Support/Casting.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/Regex.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/TableGen/Error.h"
27 #include <algorithm>
28 #include <iterator>
29 #include <utility>
31 using namespace llvm;
33 #define DEBUG_TYPE "subtarget-emitter"
35 #ifndef NDEBUG
36 static void dumpIdxVec(ArrayRef<unsigned> V) {
37 for (unsigned Idx : V)
38 dbgs() << Idx << ", ";
40 #endif
42 namespace {
44 // (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp.
45 struct InstrsOp : public SetTheory::Operator {
46 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
47 ArrayRef<SMLoc> Loc) override {
48 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc);
52 // (instregex "OpcPat",...) Find all instructions matching an opcode pattern.
53 struct InstRegexOp : public SetTheory::Operator {
54 const CodeGenTarget &Target;
55 InstRegexOp(const CodeGenTarget &t): Target(t) {}
57 /// Remove any text inside of parentheses from S.
58 static std::string removeParens(llvm::StringRef S) {
59 std::string Result;
60 unsigned Paren = 0;
61 // NB: We don't care about escaped parens here.
62 for (char C : S) {
63 switch (C) {
64 case '(':
65 ++Paren;
66 break;
67 case ')':
68 --Paren;
69 break;
70 default:
71 if (Paren == 0)
72 Result += C;
75 return Result;
78 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
79 ArrayRef<SMLoc> Loc) override {
80 ArrayRef<const CodeGenInstruction *> Instructions =
81 Target.getInstructionsByEnumValue();
83 unsigned NumGeneric = Target.getNumFixedInstructions();
84 unsigned NumPseudos = Target.getNumPseudoInstructions();
85 auto Generics = Instructions.slice(0, NumGeneric);
86 auto Pseudos = Instructions.slice(NumGeneric, NumPseudos);
87 auto NonPseudos = Instructions.slice(NumGeneric + NumPseudos);
89 for (Init *Arg : make_range(Expr->arg_begin(), Expr->arg_end())) {
90 StringInit *SI = dyn_cast<StringInit>(Arg);
91 if (!SI)
92 PrintFatalError(Loc, "instregex requires pattern string: " +
93 Expr->getAsString());
94 StringRef Original = SI->getValue();
96 // Extract a prefix that we can binary search on.
97 static const char RegexMetachars[] = "()^$|*+?.[]\\{}";
98 auto FirstMeta = Original.find_first_of(RegexMetachars);
100 // Look for top-level | or ?. We cannot optimize them to binary search.
101 if (removeParens(Original).find_first_of("|?") != std::string::npos)
102 FirstMeta = 0;
104 Optional<Regex> Regexpr = None;
105 StringRef Prefix = Original.substr(0, FirstMeta);
106 StringRef PatStr = Original.substr(FirstMeta);
107 if (!PatStr.empty()) {
108 // For the rest use a python-style prefix match.
109 std::string pat = PatStr;
110 if (pat[0] != '^') {
111 pat.insert(0, "^(");
112 pat.insert(pat.end(), ')');
114 Regexpr = Regex(pat);
117 int NumMatches = 0;
119 // The generic opcodes are unsorted, handle them manually.
120 for (auto *Inst : Generics) {
121 StringRef InstName = Inst->TheDef->getName();
122 if (InstName.startswith(Prefix) &&
123 (!Regexpr || Regexpr->match(InstName.substr(Prefix.size())))) {
124 Elts.insert(Inst->TheDef);
125 NumMatches++;
129 // Target instructions are split into two ranges: pseudo instructions
130 // first, than non-pseudos. Each range is in lexicographical order
131 // sorted by name. Find the sub-ranges that start with our prefix.
132 struct Comp {
133 bool operator()(const CodeGenInstruction *LHS, StringRef RHS) {
134 return LHS->TheDef->getName() < RHS;
136 bool operator()(StringRef LHS, const CodeGenInstruction *RHS) {
137 return LHS < RHS->TheDef->getName() &&
138 !RHS->TheDef->getName().startswith(LHS);
141 auto Range1 =
142 std::equal_range(Pseudos.begin(), Pseudos.end(), Prefix, Comp());
143 auto Range2 = std::equal_range(NonPseudos.begin(), NonPseudos.end(),
144 Prefix, Comp());
146 // For these ranges we know that instruction names start with the prefix.
147 // Check if there's a regex that needs to be checked.
148 const auto HandleNonGeneric = [&](const CodeGenInstruction *Inst) {
149 StringRef InstName = Inst->TheDef->getName();
150 if (!Regexpr || Regexpr->match(InstName.substr(Prefix.size()))) {
151 Elts.insert(Inst->TheDef);
152 NumMatches++;
155 std::for_each(Range1.first, Range1.second, HandleNonGeneric);
156 std::for_each(Range2.first, Range2.second, HandleNonGeneric);
158 if (0 == NumMatches)
159 PrintFatalError(Loc, "instregex has no matches: " + Original);
164 } // end anonymous namespace
166 /// CodeGenModels ctor interprets machine model records and populates maps.
167 CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK,
168 const CodeGenTarget &TGT):
169 Records(RK), Target(TGT) {
171 Sets.addFieldExpander("InstRW", "Instrs");
173 // Allow Set evaluation to recognize the dags used in InstRW records:
174 // (instrs Op1, Op1...)
175 Sets.addOperator("instrs", std::make_unique<InstrsOp>());
176 Sets.addOperator("instregex", std::make_unique<InstRegexOp>(Target));
178 // Instantiate a CodeGenProcModel for each SchedMachineModel with the values
179 // that are explicitly referenced in tablegen records. Resources associated
180 // with each processor will be derived later. Populate ProcModelMap with the
181 // CodeGenProcModel instances.
182 collectProcModels();
184 // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly
185 // defined, and populate SchedReads and SchedWrites vectors. Implicit
186 // SchedReadWrites that represent sequences derived from expanded variant will
187 // be inferred later.
188 collectSchedRW();
190 // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly
191 // required by an instruction definition, and populate SchedClassIdxMap. Set
192 // NumItineraryClasses to the number of explicit itinerary classes referenced
193 // by instructions. Set NumInstrSchedClasses to the number of itinerary
194 // classes plus any classes implied by instructions that derive from class
195 // Sched and provide SchedRW list. This does not infer any new classes from
196 // SchedVariant.
197 collectSchedClasses();
199 // Find instruction itineraries for each processor. Sort and populate
200 // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires
201 // all itinerary classes to be discovered.
202 collectProcItins();
204 // Find ItinRW records for each processor and itinerary class.
205 // (For per-operand resources mapped to itinerary classes).
206 collectProcItinRW();
208 // Find UnsupportedFeatures records for each processor.
209 // (For per-operand resources mapped to itinerary classes).
210 collectProcUnsupportedFeatures();
212 // Infer new SchedClasses from SchedVariant.
213 inferSchedClasses();
215 // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and
216 // ProcResourceDefs.
217 LLVM_DEBUG(
218 dbgs() << "\n+++ RESOURCE DEFINITIONS (collectProcResources) +++\n");
219 collectProcResources();
221 // Collect optional processor description.
222 collectOptionalProcessorInfo();
224 // Check MCInstPredicate definitions.
225 checkMCInstPredicates();
227 // Check STIPredicate definitions.
228 checkSTIPredicates();
230 // Find STIPredicate definitions for each processor model, and construct
231 // STIPredicateFunction objects.
232 collectSTIPredicates();
234 checkCompleteness();
237 void CodeGenSchedModels::checkSTIPredicates() const {
238 DenseMap<StringRef, const Record *> Declarations;
240 // There cannot be multiple declarations with the same name.
241 const RecVec Decls = Records.getAllDerivedDefinitions("STIPredicateDecl");
242 for (const Record *R : Decls) {
243 StringRef Name = R->getValueAsString("Name");
244 const auto It = Declarations.find(Name);
245 if (It == Declarations.end()) {
246 Declarations[Name] = R;
247 continue;
250 PrintError(R->getLoc(), "STIPredicate " + Name + " multiply declared.");
251 PrintNote(It->second->getLoc(), "Previous declaration was here.");
252 PrintFatalError(R->getLoc(), "Invalid STIPredicateDecl found.");
255 // Disallow InstructionEquivalenceClasses with an empty instruction list.
256 const RecVec Defs =
257 Records.getAllDerivedDefinitions("InstructionEquivalenceClass");
258 for (const Record *R : Defs) {
259 RecVec Opcodes = R->getValueAsListOfDefs("Opcodes");
260 if (Opcodes.empty()) {
261 PrintFatalError(R->getLoc(), "Invalid InstructionEquivalenceClass "
262 "defined with an empty opcode list.");
267 // Used by function `processSTIPredicate` to construct a mask of machine
268 // instruction operands.
269 static APInt constructOperandMask(ArrayRef<int64_t> Indices) {
270 APInt OperandMask;
271 if (Indices.empty())
272 return OperandMask;
274 int64_t MaxIndex = *std::max_element(Indices.begin(), Indices.end());
275 assert(MaxIndex >= 0 && "Invalid negative indices in input!");
276 OperandMask = OperandMask.zext(MaxIndex + 1);
277 for (const int64_t Index : Indices) {
278 assert(Index >= 0 && "Invalid negative indices!");
279 OperandMask.setBit(Index);
282 return OperandMask;
285 static void
286 processSTIPredicate(STIPredicateFunction &Fn,
287 const DenseMap<Record *, unsigned> &ProcModelMap) {
288 DenseMap<const Record *, unsigned> Opcode2Index;
289 using OpcodeMapPair = std::pair<const Record *, OpcodeInfo>;
290 std::vector<OpcodeMapPair> OpcodeMappings;
291 std::vector<std::pair<APInt, APInt>> OpcodeMasks;
293 DenseMap<const Record *, unsigned> Predicate2Index;
294 unsigned NumUniquePredicates = 0;
296 // Number unique predicates and opcodes used by InstructionEquivalenceClass
297 // definitions. Each unique opcode will be associated with an OpcodeInfo
298 // object.
299 for (const Record *Def : Fn.getDefinitions()) {
300 RecVec Classes = Def->getValueAsListOfDefs("Classes");
301 for (const Record *EC : Classes) {
302 const Record *Pred = EC->getValueAsDef("Predicate");
303 if (Predicate2Index.find(Pred) == Predicate2Index.end())
304 Predicate2Index[Pred] = NumUniquePredicates++;
306 RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
307 for (const Record *Opcode : Opcodes) {
308 if (Opcode2Index.find(Opcode) == Opcode2Index.end()) {
309 Opcode2Index[Opcode] = OpcodeMappings.size();
310 OpcodeMappings.emplace_back(Opcode, OpcodeInfo());
316 // Initialize vector `OpcodeMasks` with default values. We want to keep track
317 // of which processors "use" which opcodes. We also want to be able to
318 // identify predicates that are used by different processors for a same
319 // opcode.
320 // This information is used later on by this algorithm to sort OpcodeMapping
321 // elements based on their processor and predicate sets.
322 OpcodeMasks.resize(OpcodeMappings.size());
323 APInt DefaultProcMask(ProcModelMap.size(), 0);
324 APInt DefaultPredMask(NumUniquePredicates, 0);
325 for (std::pair<APInt, APInt> &MaskPair : OpcodeMasks)
326 MaskPair = std::make_pair(DefaultProcMask, DefaultPredMask);
328 // Construct a OpcodeInfo object for every unique opcode declared by an
329 // InstructionEquivalenceClass definition.
330 for (const Record *Def : Fn.getDefinitions()) {
331 RecVec Classes = Def->getValueAsListOfDefs("Classes");
332 const Record *SchedModel = Def->getValueAsDef("SchedModel");
333 unsigned ProcIndex = ProcModelMap.find(SchedModel)->second;
334 APInt ProcMask(ProcModelMap.size(), 0);
335 ProcMask.setBit(ProcIndex);
337 for (const Record *EC : Classes) {
338 RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
340 std::vector<int64_t> OpIndices =
341 EC->getValueAsListOfInts("OperandIndices");
342 APInt OperandMask = constructOperandMask(OpIndices);
344 const Record *Pred = EC->getValueAsDef("Predicate");
345 APInt PredMask(NumUniquePredicates, 0);
346 PredMask.setBit(Predicate2Index[Pred]);
348 for (const Record *Opcode : Opcodes) {
349 unsigned OpcodeIdx = Opcode2Index[Opcode];
350 if (OpcodeMasks[OpcodeIdx].first[ProcIndex]) {
351 std::string Message =
352 "Opcode " + Opcode->getName().str() +
353 " used by multiple InstructionEquivalenceClass definitions.";
354 PrintFatalError(EC->getLoc(), Message);
356 OpcodeMasks[OpcodeIdx].first |= ProcMask;
357 OpcodeMasks[OpcodeIdx].second |= PredMask;
358 OpcodeInfo &OI = OpcodeMappings[OpcodeIdx].second;
360 OI.addPredicateForProcModel(ProcMask, OperandMask, Pred);
365 // Sort OpcodeMappings elements based on their CPU and predicate masks.
366 // As a last resort, order elements by opcode identifier.
367 llvm::sort(OpcodeMappings,
368 [&](const OpcodeMapPair &Lhs, const OpcodeMapPair &Rhs) {
369 unsigned LhsIdx = Opcode2Index[Lhs.first];
370 unsigned RhsIdx = Opcode2Index[Rhs.first];
371 const std::pair<APInt, APInt> &LhsMasks = OpcodeMasks[LhsIdx];
372 const std::pair<APInt, APInt> &RhsMasks = OpcodeMasks[RhsIdx];
374 auto LessThan = [](const APInt &Lhs, const APInt &Rhs) {
375 unsigned LhsCountPopulation = Lhs.countPopulation();
376 unsigned RhsCountPopulation = Rhs.countPopulation();
377 return ((LhsCountPopulation < RhsCountPopulation) ||
378 ((LhsCountPopulation == RhsCountPopulation) &&
379 (Lhs.countLeadingZeros() > Rhs.countLeadingZeros())));
382 if (LhsMasks.first != RhsMasks.first)
383 return LessThan(LhsMasks.first, RhsMasks.first);
385 if (LhsMasks.second != RhsMasks.second)
386 return LessThan(LhsMasks.second, RhsMasks.second);
388 return LhsIdx < RhsIdx;
391 // Now construct opcode groups. Groups are used by the SubtargetEmitter when
392 // expanding the body of a STIPredicate function. In particular, each opcode
393 // group is expanded into a sequence of labels in a switch statement.
394 // It identifies opcodes for which different processors define same predicates
395 // and same opcode masks.
396 for (OpcodeMapPair &Info : OpcodeMappings)
397 Fn.addOpcode(Info.first, std::move(Info.second));
400 void CodeGenSchedModels::collectSTIPredicates() {
401 // Map STIPredicateDecl records to elements of vector
402 // CodeGenSchedModels::STIPredicates.
403 DenseMap<const Record *, unsigned> Decl2Index;
405 RecVec RV = Records.getAllDerivedDefinitions("STIPredicate");
406 for (const Record *R : RV) {
407 const Record *Decl = R->getValueAsDef("Declaration");
409 const auto It = Decl2Index.find(Decl);
410 if (It == Decl2Index.end()) {
411 Decl2Index[Decl] = STIPredicates.size();
412 STIPredicateFunction Predicate(Decl);
413 Predicate.addDefinition(R);
414 STIPredicates.emplace_back(std::move(Predicate));
415 continue;
418 STIPredicateFunction &PreviousDef = STIPredicates[It->second];
419 PreviousDef.addDefinition(R);
422 for (STIPredicateFunction &Fn : STIPredicates)
423 processSTIPredicate(Fn, ProcModelMap);
426 void OpcodeInfo::addPredicateForProcModel(const llvm::APInt &CpuMask,
427 const llvm::APInt &OperandMask,
428 const Record *Predicate) {
429 auto It = llvm::find_if(
430 Predicates, [&OperandMask, &Predicate](const PredicateInfo &P) {
431 return P.Predicate == Predicate && P.OperandMask == OperandMask;
433 if (It == Predicates.end()) {
434 Predicates.emplace_back(CpuMask, OperandMask, Predicate);
435 return;
437 It->ProcModelMask |= CpuMask;
440 void CodeGenSchedModels::checkMCInstPredicates() const {
441 RecVec MCPredicates = Records.getAllDerivedDefinitions("TIIPredicate");
442 if (MCPredicates.empty())
443 return;
445 // A target cannot have multiple TIIPredicate definitions with a same name.
446 llvm::StringMap<const Record *> TIIPredicates(MCPredicates.size());
447 for (const Record *TIIPred : MCPredicates) {
448 StringRef Name = TIIPred->getValueAsString("FunctionName");
449 StringMap<const Record *>::const_iterator It = TIIPredicates.find(Name);
450 if (It == TIIPredicates.end()) {
451 TIIPredicates[Name] = TIIPred;
452 continue;
455 PrintError(TIIPred->getLoc(),
456 "TIIPredicate " + Name + " is multiply defined.");
457 PrintNote(It->second->getLoc(),
458 " Previous definition of " + Name + " was here.");
459 PrintFatalError(TIIPred->getLoc(),
460 "Found conflicting definitions of TIIPredicate.");
464 void CodeGenSchedModels::collectRetireControlUnits() {
465 RecVec Units = Records.getAllDerivedDefinitions("RetireControlUnit");
467 for (Record *RCU : Units) {
468 CodeGenProcModel &PM = getProcModel(RCU->getValueAsDef("SchedModel"));
469 if (PM.RetireControlUnit) {
470 PrintError(RCU->getLoc(),
471 "Expected a single RetireControlUnit definition");
472 PrintNote(PM.RetireControlUnit->getLoc(),
473 "Previous definition of RetireControlUnit was here");
475 PM.RetireControlUnit = RCU;
479 void CodeGenSchedModels::collectLoadStoreQueueInfo() {
480 RecVec Queues = Records.getAllDerivedDefinitions("MemoryQueue");
482 for (Record *Queue : Queues) {
483 CodeGenProcModel &PM = getProcModel(Queue->getValueAsDef("SchedModel"));
484 if (Queue->isSubClassOf("LoadQueue")) {
485 if (PM.LoadQueue) {
486 PrintError(Queue->getLoc(),
487 "Expected a single LoadQueue definition");
488 PrintNote(PM.LoadQueue->getLoc(),
489 "Previous definition of LoadQueue was here");
492 PM.LoadQueue = Queue;
495 if (Queue->isSubClassOf("StoreQueue")) {
496 if (PM.StoreQueue) {
497 PrintError(Queue->getLoc(),
498 "Expected a single StoreQueue definition");
499 PrintNote(PM.LoadQueue->getLoc(),
500 "Previous definition of StoreQueue was here");
503 PM.StoreQueue = Queue;
508 /// Collect optional processor information.
509 void CodeGenSchedModels::collectOptionalProcessorInfo() {
510 // Find register file definitions for each processor.
511 collectRegisterFiles();
513 // Collect processor RetireControlUnit descriptors if available.
514 collectRetireControlUnits();
516 // Collect information about load/store queues.
517 collectLoadStoreQueueInfo();
519 checkCompleteness();
522 /// Gather all processor models.
523 void CodeGenSchedModels::collectProcModels() {
524 RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor");
525 llvm::sort(ProcRecords, LessRecordFieldName());
527 // Reserve space because we can. Reallocation would be ok.
528 ProcModels.reserve(ProcRecords.size()+1);
530 // Use idx=0 for NoModel/NoItineraries.
531 Record *NoModelDef = Records.getDef("NoSchedModel");
532 Record *NoItinsDef = Records.getDef("NoItineraries");
533 ProcModels.emplace_back(0, "NoSchedModel", NoModelDef, NoItinsDef);
534 ProcModelMap[NoModelDef] = 0;
536 // For each processor, find a unique machine model.
537 LLVM_DEBUG(dbgs() << "+++ PROCESSOR MODELs (addProcModel) +++\n");
538 for (Record *ProcRecord : ProcRecords)
539 addProcModel(ProcRecord);
542 /// Get a unique processor model based on the defined MachineModel and
543 /// ProcessorItineraries.
544 void CodeGenSchedModels::addProcModel(Record *ProcDef) {
545 Record *ModelKey = getModelOrItinDef(ProcDef);
546 if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second)
547 return;
549 std::string Name = ModelKey->getName();
550 if (ModelKey->isSubClassOf("SchedMachineModel")) {
551 Record *ItinsDef = ModelKey->getValueAsDef("Itineraries");
552 ProcModels.emplace_back(ProcModels.size(), Name, ModelKey, ItinsDef);
554 else {
555 // An itinerary is defined without a machine model. Infer a new model.
556 if (!ModelKey->getValueAsListOfDefs("IID").empty())
557 Name = Name + "Model";
558 ProcModels.emplace_back(ProcModels.size(), Name,
559 ProcDef->getValueAsDef("SchedModel"), ModelKey);
561 LLVM_DEBUG(ProcModels.back().dump());
564 // Recursively find all reachable SchedReadWrite records.
565 static void scanSchedRW(Record *RWDef, RecVec &RWDefs,
566 SmallPtrSet<Record*, 16> &RWSet) {
567 if (!RWSet.insert(RWDef).second)
568 return;
569 RWDefs.push_back(RWDef);
570 // Reads don't currently have sequence records, but it can be added later.
571 if (RWDef->isSubClassOf("WriteSequence")) {
572 RecVec Seq = RWDef->getValueAsListOfDefs("Writes");
573 for (Record *WSRec : Seq)
574 scanSchedRW(WSRec, RWDefs, RWSet);
576 else if (RWDef->isSubClassOf("SchedVariant")) {
577 // Visit each variant (guarded by a different predicate).
578 RecVec Vars = RWDef->getValueAsListOfDefs("Variants");
579 for (Record *Variant : Vars) {
580 // Visit each RW in the sequence selected by the current variant.
581 RecVec Selected = Variant->getValueAsListOfDefs("Selected");
582 for (Record *SelDef : Selected)
583 scanSchedRW(SelDef, RWDefs, RWSet);
588 // Collect and sort all SchedReadWrites reachable via tablegen records.
589 // More may be inferred later when inferring new SchedClasses from variants.
590 void CodeGenSchedModels::collectSchedRW() {
591 // Reserve idx=0 for invalid writes/reads.
592 SchedWrites.resize(1);
593 SchedReads.resize(1);
595 SmallPtrSet<Record*, 16> RWSet;
597 // Find all SchedReadWrites referenced by instruction defs.
598 RecVec SWDefs, SRDefs;
599 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
600 Record *SchedDef = Inst->TheDef;
601 if (SchedDef->isValueUnset("SchedRW"))
602 continue;
603 RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW");
604 for (Record *RW : RWs) {
605 if (RW->isSubClassOf("SchedWrite"))
606 scanSchedRW(RW, SWDefs, RWSet);
607 else {
608 assert(RW->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
609 scanSchedRW(RW, SRDefs, RWSet);
613 // Find all ReadWrites referenced by InstRW.
614 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
615 for (Record *InstRWDef : InstRWDefs) {
616 // For all OperandReadWrites.
617 RecVec RWDefs = InstRWDef->getValueAsListOfDefs("OperandReadWrites");
618 for (Record *RWDef : RWDefs) {
619 if (RWDef->isSubClassOf("SchedWrite"))
620 scanSchedRW(RWDef, SWDefs, RWSet);
621 else {
622 assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
623 scanSchedRW(RWDef, SRDefs, RWSet);
627 // Find all ReadWrites referenced by ItinRW.
628 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
629 for (Record *ItinRWDef : ItinRWDefs) {
630 // For all OperandReadWrites.
631 RecVec RWDefs = ItinRWDef->getValueAsListOfDefs("OperandReadWrites");
632 for (Record *RWDef : RWDefs) {
633 if (RWDef->isSubClassOf("SchedWrite"))
634 scanSchedRW(RWDef, SWDefs, RWSet);
635 else {
636 assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
637 scanSchedRW(RWDef, SRDefs, RWSet);
641 // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted
642 // for the loop below that initializes Alias vectors.
643 RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias");
644 llvm::sort(AliasDefs, LessRecord());
645 for (Record *ADef : AliasDefs) {
646 Record *MatchDef = ADef->getValueAsDef("MatchRW");
647 Record *AliasDef = ADef->getValueAsDef("AliasRW");
648 if (MatchDef->isSubClassOf("SchedWrite")) {
649 if (!AliasDef->isSubClassOf("SchedWrite"))
650 PrintFatalError(ADef->getLoc(), "SchedWrite Alias must be SchedWrite");
651 scanSchedRW(AliasDef, SWDefs, RWSet);
653 else {
654 assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
655 if (!AliasDef->isSubClassOf("SchedRead"))
656 PrintFatalError(ADef->getLoc(), "SchedRead Alias must be SchedRead");
657 scanSchedRW(AliasDef, SRDefs, RWSet);
660 // Sort and add the SchedReadWrites directly referenced by instructions or
661 // itinerary resources. Index reads and writes in separate domains.
662 llvm::sort(SWDefs, LessRecord());
663 for (Record *SWDef : SWDefs) {
664 assert(!getSchedRWIdx(SWDef, /*IsRead=*/false) && "duplicate SchedWrite");
665 SchedWrites.emplace_back(SchedWrites.size(), SWDef);
667 llvm::sort(SRDefs, LessRecord());
668 for (Record *SRDef : SRDefs) {
669 assert(!getSchedRWIdx(SRDef, /*IsRead-*/true) && "duplicate SchedWrite");
670 SchedReads.emplace_back(SchedReads.size(), SRDef);
672 // Initialize WriteSequence vectors.
673 for (CodeGenSchedRW &CGRW : SchedWrites) {
674 if (!CGRW.IsSequence)
675 continue;
676 findRWs(CGRW.TheDef->getValueAsListOfDefs("Writes"), CGRW.Sequence,
677 /*IsRead=*/false);
679 // Initialize Aliases vectors.
680 for (Record *ADef : AliasDefs) {
681 Record *AliasDef = ADef->getValueAsDef("AliasRW");
682 getSchedRW(AliasDef).IsAlias = true;
683 Record *MatchDef = ADef->getValueAsDef("MatchRW");
684 CodeGenSchedRW &RW = getSchedRW(MatchDef);
685 if (RW.IsAlias)
686 PrintFatalError(ADef->getLoc(), "Cannot Alias an Alias");
687 RW.Aliases.push_back(ADef);
689 LLVM_DEBUG(
690 dbgs() << "\n+++ SCHED READS and WRITES (collectSchedRW) +++\n";
691 for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) {
692 dbgs() << WIdx << ": ";
693 SchedWrites[WIdx].dump();
694 dbgs() << '\n';
695 } for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd;
696 ++RIdx) {
697 dbgs() << RIdx << ": ";
698 SchedReads[RIdx].dump();
699 dbgs() << '\n';
700 } RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite");
701 for (Record *RWDef
702 : RWDefs) {
703 if (!getSchedRWIdx(RWDef, RWDef->isSubClassOf("SchedRead"))) {
704 StringRef Name = RWDef->getName();
705 if (Name != "NoWrite" && Name != "ReadDefault")
706 dbgs() << "Unused SchedReadWrite " << Name << '\n';
711 /// Compute a SchedWrite name from a sequence of writes.
712 std::string CodeGenSchedModels::genRWName(ArrayRef<unsigned> Seq, bool IsRead) {
713 std::string Name("(");
714 for (auto I = Seq.begin(), E = Seq.end(); I != E; ++I) {
715 if (I != Seq.begin())
716 Name += '_';
717 Name += getSchedRW(*I, IsRead).Name;
719 Name += ')';
720 return Name;
723 unsigned CodeGenSchedModels::getSchedRWIdx(const Record *Def,
724 bool IsRead) const {
725 const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
726 const auto I = find_if(
727 RWVec, [Def](const CodeGenSchedRW &RW) { return RW.TheDef == Def; });
728 return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
731 bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const {
732 for (const CodeGenSchedRW &Read : SchedReads) {
733 Record *ReadDef = Read.TheDef;
734 if (!ReadDef || !ReadDef->isSubClassOf("ProcReadAdvance"))
735 continue;
737 RecVec ValidWrites = ReadDef->getValueAsListOfDefs("ValidWrites");
738 if (is_contained(ValidWrites, WriteDef)) {
739 return true;
742 return false;
745 static void splitSchedReadWrites(const RecVec &RWDefs,
746 RecVec &WriteDefs, RecVec &ReadDefs) {
747 for (Record *RWDef : RWDefs) {
748 if (RWDef->isSubClassOf("SchedWrite"))
749 WriteDefs.push_back(RWDef);
750 else {
751 assert(RWDef->isSubClassOf("SchedRead") && "unknown SchedReadWrite");
752 ReadDefs.push_back(RWDef);
757 // Split the SchedReadWrites defs and call findRWs for each list.
758 void CodeGenSchedModels::findRWs(const RecVec &RWDefs,
759 IdxVec &Writes, IdxVec &Reads) const {
760 RecVec WriteDefs;
761 RecVec ReadDefs;
762 splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs);
763 findRWs(WriteDefs, Writes, false);
764 findRWs(ReadDefs, Reads, true);
767 // Call getSchedRWIdx for all elements in a sequence of SchedRW defs.
768 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs,
769 bool IsRead) const {
770 for (Record *RWDef : RWDefs) {
771 unsigned Idx = getSchedRWIdx(RWDef, IsRead);
772 assert(Idx && "failed to collect SchedReadWrite");
773 RWs.push_back(Idx);
777 void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq,
778 bool IsRead) const {
779 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
780 if (!SchedRW.IsSequence) {
781 RWSeq.push_back(RWIdx);
782 return;
784 int Repeat =
785 SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1;
786 for (int i = 0; i < Repeat; ++i) {
787 for (unsigned I : SchedRW.Sequence) {
788 expandRWSequence(I, RWSeq, IsRead);
793 // Expand a SchedWrite as a sequence following any aliases that coincide with
794 // the given processor model.
795 void CodeGenSchedModels::expandRWSeqForProc(
796 unsigned RWIdx, IdxVec &RWSeq, bool IsRead,
797 const CodeGenProcModel &ProcModel) const {
799 const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead);
800 Record *AliasDef = nullptr;
801 for (const Record *Rec : SchedWrite.Aliases) {
802 const CodeGenSchedRW &AliasRW = getSchedRW(Rec->getValueAsDef("AliasRW"));
803 if (Rec->getValueInit("SchedModel")->isComplete()) {
804 Record *ModelDef = Rec->getValueAsDef("SchedModel");
805 if (&getProcModel(ModelDef) != &ProcModel)
806 continue;
808 if (AliasDef)
809 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
810 "defined for processor " + ProcModel.ModelName +
811 " Ensure only one SchedAlias exists per RW.");
812 AliasDef = AliasRW.TheDef;
814 if (AliasDef) {
815 expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead),
816 RWSeq, IsRead,ProcModel);
817 return;
819 if (!SchedWrite.IsSequence) {
820 RWSeq.push_back(RWIdx);
821 return;
823 int Repeat =
824 SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1;
825 for (int I = 0, E = Repeat; I < E; ++I) {
826 for (unsigned Idx : SchedWrite.Sequence) {
827 expandRWSeqForProc(Idx, RWSeq, IsRead, ProcModel);
832 // Find the existing SchedWrite that models this sequence of writes.
833 unsigned CodeGenSchedModels::findRWForSequence(ArrayRef<unsigned> Seq,
834 bool IsRead) {
835 std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
837 auto I = find_if(RWVec, [Seq](CodeGenSchedRW &RW) {
838 return makeArrayRef(RW.Sequence) == Seq;
840 // Index zero reserved for invalid RW.
841 return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
844 /// Add this ReadWrite if it doesn't already exist.
845 unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq,
846 bool IsRead) {
847 assert(!Seq.empty() && "cannot insert empty sequence");
848 if (Seq.size() == 1)
849 return Seq.back();
851 unsigned Idx = findRWForSequence(Seq, IsRead);
852 if (Idx)
853 return Idx;
855 std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
856 unsigned RWIdx = RWVec.size();
857 CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead));
858 RWVec.push_back(SchedRW);
859 return RWIdx;
862 /// Visit all the instruction definitions for this target to gather and
863 /// enumerate the itinerary classes. These are the explicitly specified
864 /// SchedClasses. More SchedClasses may be inferred.
865 void CodeGenSchedModels::collectSchedClasses() {
867 // NoItinerary is always the first class at Idx=0
868 assert(SchedClasses.empty() && "Expected empty sched class");
869 SchedClasses.emplace_back(0, "NoInstrModel",
870 Records.getDef("NoItinerary"));
871 SchedClasses.back().ProcIndices.push_back(0);
873 // Create a SchedClass for each unique combination of itinerary class and
874 // SchedRW list.
875 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
876 Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary");
877 IdxVec Writes, Reads;
878 if (!Inst->TheDef->isValueUnset("SchedRW"))
879 findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads);
881 // ProcIdx == 0 indicates the class applies to all processors.
882 unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, /*ProcIndices*/{0});
883 InstrClassMap[Inst->TheDef] = SCIdx;
885 // Create classes for InstRW defs.
886 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
887 llvm::sort(InstRWDefs, LessRecord());
888 LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (createInstRWClass) +++\n");
889 for (Record *RWDef : InstRWDefs)
890 createInstRWClass(RWDef);
892 NumInstrSchedClasses = SchedClasses.size();
894 bool EnableDump = false;
895 LLVM_DEBUG(EnableDump = true);
896 if (!EnableDump)
897 return;
899 LLVM_DEBUG(
900 dbgs()
901 << "\n+++ ITINERARIES and/or MACHINE MODELS (collectSchedClasses) +++\n");
902 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
903 StringRef InstName = Inst->TheDef->getName();
904 unsigned SCIdx = getSchedClassIdx(*Inst);
905 if (!SCIdx) {
906 LLVM_DEBUG({
907 if (!Inst->hasNoSchedulingInfo)
908 dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n';
910 continue;
912 CodeGenSchedClass &SC = getSchedClass(SCIdx);
913 if (SC.ProcIndices[0] != 0)
914 PrintFatalError(Inst->TheDef->getLoc(), "Instruction's sched class "
915 "must not be subtarget specific.");
917 IdxVec ProcIndices;
918 if (SC.ItinClassDef->getName() != "NoItinerary") {
919 ProcIndices.push_back(0);
920 dbgs() << "Itinerary for " << InstName << ": "
921 << SC.ItinClassDef->getName() << '\n';
923 if (!SC.Writes.empty()) {
924 ProcIndices.push_back(0);
925 LLVM_DEBUG({
926 dbgs() << "SchedRW machine model for " << InstName;
927 for (IdxIter WI = SC.Writes.begin(), WE = SC.Writes.end(); WI != WE;
928 ++WI)
929 dbgs() << " " << SchedWrites[*WI].Name;
930 for (IdxIter RI = SC.Reads.begin(), RE = SC.Reads.end(); RI != RE; ++RI)
931 dbgs() << " " << SchedReads[*RI].Name;
932 dbgs() << '\n';
935 const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs;
936 for (Record *RWDef : RWDefs) {
937 const CodeGenProcModel &ProcModel =
938 getProcModel(RWDef->getValueAsDef("SchedModel"));
939 ProcIndices.push_back(ProcModel.Index);
940 LLVM_DEBUG(dbgs() << "InstRW on " << ProcModel.ModelName << " for "
941 << InstName);
942 IdxVec Writes;
943 IdxVec Reads;
944 findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
945 Writes, Reads);
946 LLVM_DEBUG({
947 for (unsigned WIdx : Writes)
948 dbgs() << " " << SchedWrites[WIdx].Name;
949 for (unsigned RIdx : Reads)
950 dbgs() << " " << SchedReads[RIdx].Name;
951 dbgs() << '\n';
954 // If ProcIndices contains zero, the class applies to all processors.
955 LLVM_DEBUG({
956 if (!std::count(ProcIndices.begin(), ProcIndices.end(), 0)) {
957 for (const CodeGenProcModel &PM : ProcModels) {
958 if (!std::count(ProcIndices.begin(), ProcIndices.end(), PM.Index))
959 dbgs() << "No machine model for " << Inst->TheDef->getName()
960 << " on processor " << PM.ModelName << '\n';
967 // Get the SchedClass index for an instruction.
968 unsigned
969 CodeGenSchedModels::getSchedClassIdx(const CodeGenInstruction &Inst) const {
970 return InstrClassMap.lookup(Inst.TheDef);
973 std::string
974 CodeGenSchedModels::createSchedClassName(Record *ItinClassDef,
975 ArrayRef<unsigned> OperWrites,
976 ArrayRef<unsigned> OperReads) {
978 std::string Name;
979 if (ItinClassDef && ItinClassDef->getName() != "NoItinerary")
980 Name = ItinClassDef->getName();
981 for (unsigned Idx : OperWrites) {
982 if (!Name.empty())
983 Name += '_';
984 Name += SchedWrites[Idx].Name;
986 for (unsigned Idx : OperReads) {
987 Name += '_';
988 Name += SchedReads[Idx].Name;
990 return Name;
993 std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) {
995 std::string Name;
996 for (RecIter I = InstDefs.begin(), E = InstDefs.end(); I != E; ++I) {
997 if (I != InstDefs.begin())
998 Name += '_';
999 Name += (*I)->getName();
1001 return Name;
1004 /// Add an inferred sched class from an itinerary class and per-operand list of
1005 /// SchedWrites and SchedReads. ProcIndices contains the set of IDs of
1006 /// processors that may utilize this class.
1007 unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef,
1008 ArrayRef<unsigned> OperWrites,
1009 ArrayRef<unsigned> OperReads,
1010 ArrayRef<unsigned> ProcIndices) {
1011 assert(!ProcIndices.empty() && "expect at least one ProcIdx");
1013 auto IsKeyEqual = [=](const CodeGenSchedClass &SC) {
1014 return SC.isKeyEqual(ItinClassDef, OperWrites, OperReads);
1017 auto I = find_if(make_range(schedClassBegin(), schedClassEnd()), IsKeyEqual);
1018 unsigned Idx = I == schedClassEnd() ? 0 : std::distance(schedClassBegin(), I);
1019 if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) {
1020 IdxVec PI;
1021 std::set_union(SchedClasses[Idx].ProcIndices.begin(),
1022 SchedClasses[Idx].ProcIndices.end(),
1023 ProcIndices.begin(), ProcIndices.end(),
1024 std::back_inserter(PI));
1025 SchedClasses[Idx].ProcIndices = std::move(PI);
1026 return Idx;
1028 Idx = SchedClasses.size();
1029 SchedClasses.emplace_back(Idx,
1030 createSchedClassName(ItinClassDef, OperWrites,
1031 OperReads),
1032 ItinClassDef);
1033 CodeGenSchedClass &SC = SchedClasses.back();
1034 SC.Writes = OperWrites;
1035 SC.Reads = OperReads;
1036 SC.ProcIndices = ProcIndices;
1038 return Idx;
1041 // Create classes for each set of opcodes that are in the same InstReadWrite
1042 // definition across all processors.
1043 void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) {
1044 // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that
1045 // intersects with an existing class via a previous InstRWDef. Instrs that do
1046 // not intersect with an existing class refer back to their former class as
1047 // determined from ItinDef or SchedRW.
1048 SmallMapVector<unsigned, SmallVector<Record *, 8>, 4> ClassInstrs;
1049 // Sort Instrs into sets.
1050 const RecVec *InstDefs = Sets.expand(InstRWDef);
1051 if (InstDefs->empty())
1052 PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes");
1054 for (Record *InstDef : *InstDefs) {
1055 InstClassMapTy::const_iterator Pos = InstrClassMap.find(InstDef);
1056 if (Pos == InstrClassMap.end())
1057 PrintFatalError(InstDef->getLoc(), "No sched class for instruction.");
1058 unsigned SCIdx = Pos->second;
1059 ClassInstrs[SCIdx].push_back(InstDef);
1061 // For each set of Instrs, create a new class if necessary, and map or remap
1062 // the Instrs to it.
1063 for (auto &Entry : ClassInstrs) {
1064 unsigned OldSCIdx = Entry.first;
1065 ArrayRef<Record*> InstDefs = Entry.second;
1066 // If the all instrs in the current class are accounted for, then leave
1067 // them mapped to their old class.
1068 if (OldSCIdx) {
1069 const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs;
1070 if (!RWDefs.empty()) {
1071 const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]);
1072 unsigned OrigNumInstrs =
1073 count_if(*OrigInstDefs, [&](Record *OIDef) {
1074 return InstrClassMap[OIDef] == OldSCIdx;
1076 if (OrigNumInstrs == InstDefs.size()) {
1077 assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 &&
1078 "expected a generic SchedClass");
1079 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
1080 // Make sure we didn't already have a InstRW containing this
1081 // instruction on this model.
1082 for (Record *RWD : RWDefs) {
1083 if (RWD->getValueAsDef("SchedModel") == RWModelDef &&
1084 RWModelDef->getValueAsBit("FullInstRWOverlapCheck")) {
1085 for (Record *Inst : InstDefs) {
1086 PrintFatalError(InstRWDef->getLoc(), "Overlapping InstRW def " +
1087 Inst->getName() + " also matches " +
1088 RWD->getValue("Instrs")->getValue()->getAsString());
1092 LLVM_DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":"
1093 << SchedClasses[OldSCIdx].Name << " on "
1094 << RWModelDef->getName() << "\n");
1095 SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef);
1096 continue;
1100 unsigned SCIdx = SchedClasses.size();
1101 SchedClasses.emplace_back(SCIdx, createSchedClassName(InstDefs), nullptr);
1102 CodeGenSchedClass &SC = SchedClasses.back();
1103 LLVM_DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on "
1104 << InstRWDef->getValueAsDef("SchedModel")->getName()
1105 << "\n");
1107 // Preserve ItinDef and Writes/Reads for processors without an InstRW entry.
1108 SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef;
1109 SC.Writes = SchedClasses[OldSCIdx].Writes;
1110 SC.Reads = SchedClasses[OldSCIdx].Reads;
1111 SC.ProcIndices.push_back(0);
1112 // If we had an old class, copy it's InstRWs to this new class.
1113 if (OldSCIdx) {
1114 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
1115 for (Record *OldRWDef : SchedClasses[OldSCIdx].InstRWs) {
1116 if (OldRWDef->getValueAsDef("SchedModel") == RWModelDef) {
1117 for (Record *InstDef : InstDefs) {
1118 PrintFatalError(OldRWDef->getLoc(), "Overlapping InstRW def " +
1119 InstDef->getName() + " also matches " +
1120 OldRWDef->getValue("Instrs")->getValue()->getAsString());
1123 assert(OldRWDef != InstRWDef &&
1124 "SchedClass has duplicate InstRW def");
1125 SC.InstRWs.push_back(OldRWDef);
1128 // Map each Instr to this new class.
1129 for (Record *InstDef : InstDefs)
1130 InstrClassMap[InstDef] = SCIdx;
1131 SC.InstRWs.push_back(InstRWDef);
1135 // True if collectProcItins found anything.
1136 bool CodeGenSchedModels::hasItineraries() const {
1137 for (const CodeGenProcModel &PM : make_range(procModelBegin(),procModelEnd()))
1138 if (PM.hasItineraries())
1139 return true;
1140 return false;
1143 // Gather the processor itineraries.
1144 void CodeGenSchedModels::collectProcItins() {
1145 LLVM_DEBUG(dbgs() << "\n+++ PROBLEM ITINERARIES (collectProcItins) +++\n");
1146 for (CodeGenProcModel &ProcModel : ProcModels) {
1147 if (!ProcModel.hasItineraries())
1148 continue;
1150 RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID");
1151 assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect");
1153 // Populate ItinDefList with Itinerary records.
1154 ProcModel.ItinDefList.resize(NumInstrSchedClasses);
1156 // Insert each itinerary data record in the correct position within
1157 // the processor model's ItinDefList.
1158 for (Record *ItinData : ItinRecords) {
1159 const Record *ItinDef = ItinData->getValueAsDef("TheClass");
1160 bool FoundClass = false;
1162 for (const CodeGenSchedClass &SC :
1163 make_range(schedClassBegin(), schedClassEnd())) {
1164 // Multiple SchedClasses may share an itinerary. Update all of them.
1165 if (SC.ItinClassDef == ItinDef) {
1166 ProcModel.ItinDefList[SC.Index] = ItinData;
1167 FoundClass = true;
1170 if (!FoundClass) {
1171 LLVM_DEBUG(dbgs() << ProcModel.ItinsDef->getName()
1172 << " missing class for itinerary "
1173 << ItinDef->getName() << '\n');
1176 // Check for missing itinerary entries.
1177 assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec");
1178 LLVM_DEBUG(
1179 for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) {
1180 if (!ProcModel.ItinDefList[i])
1181 dbgs() << ProcModel.ItinsDef->getName()
1182 << " missing itinerary for class " << SchedClasses[i].Name
1183 << '\n';
1188 // Gather the read/write types for each itinerary class.
1189 void CodeGenSchedModels::collectProcItinRW() {
1190 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
1191 llvm::sort(ItinRWDefs, LessRecord());
1192 for (Record *RWDef : ItinRWDefs) {
1193 if (!RWDef->getValueInit("SchedModel")->isComplete())
1194 PrintFatalError(RWDef->getLoc(), "SchedModel is undefined");
1195 Record *ModelDef = RWDef->getValueAsDef("SchedModel");
1196 ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef);
1197 if (I == ProcModelMap.end()) {
1198 PrintFatalError(RWDef->getLoc(), "Undefined SchedMachineModel "
1199 + ModelDef->getName());
1201 ProcModels[I->second].ItinRWDefs.push_back(RWDef);
1205 // Gather the unsupported features for processor models.
1206 void CodeGenSchedModels::collectProcUnsupportedFeatures() {
1207 for (CodeGenProcModel &ProcModel : ProcModels) {
1208 for (Record *Pred : ProcModel.ModelDef->getValueAsListOfDefs("UnsupportedFeatures")) {
1209 ProcModel.UnsupportedFeaturesDefs.push_back(Pred);
1214 /// Infer new classes from existing classes. In the process, this may create new
1215 /// SchedWrites from sequences of existing SchedWrites.
1216 void CodeGenSchedModels::inferSchedClasses() {
1217 LLVM_DEBUG(
1218 dbgs() << "\n+++ INFERRING SCHED CLASSES (inferSchedClasses) +++\n");
1219 LLVM_DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n");
1221 // Visit all existing classes and newly created classes.
1222 for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) {
1223 assert(SchedClasses[Idx].Index == Idx && "bad SCIdx");
1225 if (SchedClasses[Idx].ItinClassDef)
1226 inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx);
1227 if (!SchedClasses[Idx].InstRWs.empty())
1228 inferFromInstRWs(Idx);
1229 if (!SchedClasses[Idx].Writes.empty()) {
1230 inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads,
1231 Idx, SchedClasses[Idx].ProcIndices);
1233 assert(SchedClasses.size() < (NumInstrSchedClasses*6) &&
1234 "too many SchedVariants");
1238 /// Infer classes from per-processor itinerary resources.
1239 void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef,
1240 unsigned FromClassIdx) {
1241 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
1242 const CodeGenProcModel &PM = ProcModels[PIdx];
1243 // For all ItinRW entries.
1244 bool HasMatch = false;
1245 for (const Record *Rec : PM.ItinRWDefs) {
1246 RecVec Matched = Rec->getValueAsListOfDefs("MatchedItinClasses");
1247 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef))
1248 continue;
1249 if (HasMatch)
1250 PrintFatalError(Rec->getLoc(), "Duplicate itinerary class "
1251 + ItinClassDef->getName()
1252 + " in ItinResources for " + PM.ModelName);
1253 HasMatch = true;
1254 IdxVec Writes, Reads;
1255 findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1256 inferFromRW(Writes, Reads, FromClassIdx, PIdx);
1261 /// Infer classes from per-processor InstReadWrite definitions.
1262 void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) {
1263 for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) {
1264 assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!");
1265 Record *Rec = SchedClasses[SCIdx].InstRWs[I];
1266 const RecVec *InstDefs = Sets.expand(Rec);
1267 RecIter II = InstDefs->begin(), IE = InstDefs->end();
1268 for (; II != IE; ++II) {
1269 if (InstrClassMap[*II] == SCIdx)
1270 break;
1272 // If this class no longer has any instructions mapped to it, it has become
1273 // irrelevant.
1274 if (II == IE)
1275 continue;
1276 IdxVec Writes, Reads;
1277 findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1278 unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index;
1279 inferFromRW(Writes, Reads, SCIdx, PIdx); // May mutate SchedClasses.
1283 namespace {
1285 // Helper for substituteVariantOperand.
1286 struct TransVariant {
1287 Record *VarOrSeqDef; // Variant or sequence.
1288 unsigned RWIdx; // Index of this variant or sequence's matched type.
1289 unsigned ProcIdx; // Processor model index or zero for any.
1290 unsigned TransVecIdx; // Index into PredTransitions::TransVec.
1292 TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti):
1293 VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {}
1296 // Associate a predicate with the SchedReadWrite that it guards.
1297 // RWIdx is the index of the read/write variant.
1298 struct PredCheck {
1299 bool IsRead;
1300 unsigned RWIdx;
1301 Record *Predicate;
1303 PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {}
1306 // A Predicate transition is a list of RW sequences guarded by a PredTerm.
1307 struct PredTransition {
1308 // A predicate term is a conjunction of PredChecks.
1309 SmallVector<PredCheck, 4> PredTerm;
1310 SmallVector<SmallVector<unsigned,4>, 16> WriteSequences;
1311 SmallVector<SmallVector<unsigned,4>, 16> ReadSequences;
1312 SmallVector<unsigned, 4> ProcIndices;
1315 // Encapsulate a set of partially constructed transitions.
1316 // The results are built by repeated calls to substituteVariants.
1317 class PredTransitions {
1318 CodeGenSchedModels &SchedModels;
1320 public:
1321 std::vector<PredTransition> TransVec;
1323 PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {}
1325 void substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq,
1326 bool IsRead, unsigned StartIdx);
1328 void substituteVariants(const PredTransition &Trans);
1330 #ifndef NDEBUG
1331 void dump() const;
1332 #endif
1334 private:
1335 bool mutuallyExclusive(Record *PredDef, ArrayRef<PredCheck> Term);
1336 void getIntersectingVariants(
1337 const CodeGenSchedRW &SchedRW, unsigned TransIdx,
1338 std::vector<TransVariant> &IntersectingVariants);
1339 void pushVariant(const TransVariant &VInfo, bool IsRead);
1342 } // end anonymous namespace
1344 // Return true if this predicate is mutually exclusive with a PredTerm. This
1345 // degenerates into checking if the predicate is mutually exclusive with any
1346 // predicate in the Term's conjunction.
1348 // All predicates associated with a given SchedRW are considered mutually
1349 // exclusive. This should work even if the conditions expressed by the
1350 // predicates are not exclusive because the predicates for a given SchedWrite
1351 // are always checked in the order they are defined in the .td file. Later
1352 // conditions implicitly negate any prior condition.
1353 bool PredTransitions::mutuallyExclusive(Record *PredDef,
1354 ArrayRef<PredCheck> Term) {
1355 for (const PredCheck &PC: Term) {
1356 if (PC.Predicate == PredDef)
1357 return false;
1359 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(PC.RWIdx, PC.IsRead);
1360 assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant");
1361 RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants");
1362 if (any_of(Variants, [PredDef](const Record *R) {
1363 return R->getValueAsDef("Predicate") == PredDef;
1365 return true;
1367 return false;
1370 static bool hasAliasedVariants(const CodeGenSchedRW &RW,
1371 CodeGenSchedModels &SchedModels) {
1372 if (RW.HasVariants)
1373 return true;
1375 for (Record *Alias : RW.Aliases) {
1376 const CodeGenSchedRW &AliasRW =
1377 SchedModels.getSchedRW(Alias->getValueAsDef("AliasRW"));
1378 if (AliasRW.HasVariants)
1379 return true;
1380 if (AliasRW.IsSequence) {
1381 IdxVec ExpandedRWs;
1382 SchedModels.expandRWSequence(AliasRW.Index, ExpandedRWs, AliasRW.IsRead);
1383 for (unsigned SI : ExpandedRWs) {
1384 if (hasAliasedVariants(SchedModels.getSchedRW(SI, AliasRW.IsRead),
1385 SchedModels))
1386 return true;
1390 return false;
1393 static bool hasVariant(ArrayRef<PredTransition> Transitions,
1394 CodeGenSchedModels &SchedModels) {
1395 for (const PredTransition &PTI : Transitions) {
1396 for (const SmallVectorImpl<unsigned> &WSI : PTI.WriteSequences)
1397 for (unsigned WI : WSI)
1398 if (hasAliasedVariants(SchedModels.getSchedWrite(WI), SchedModels))
1399 return true;
1401 for (const SmallVectorImpl<unsigned> &RSI : PTI.ReadSequences)
1402 for (unsigned RI : RSI)
1403 if (hasAliasedVariants(SchedModels.getSchedRead(RI), SchedModels))
1404 return true;
1406 return false;
1409 // Populate IntersectingVariants with any variants or aliased sequences of the
1410 // given SchedRW whose processor indices and predicates are not mutually
1411 // exclusive with the given transition.
1412 void PredTransitions::getIntersectingVariants(
1413 const CodeGenSchedRW &SchedRW, unsigned TransIdx,
1414 std::vector<TransVariant> &IntersectingVariants) {
1416 bool GenericRW = false;
1418 std::vector<TransVariant> Variants;
1419 if (SchedRW.HasVariants) {
1420 unsigned VarProcIdx = 0;
1421 if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) {
1422 Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel");
1423 VarProcIdx = SchedModels.getProcModel(ModelDef).Index;
1425 // Push each variant. Assign TransVecIdx later.
1426 const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants");
1427 for (Record *VarDef : VarDefs)
1428 Variants.emplace_back(VarDef, SchedRW.Index, VarProcIdx, 0);
1429 if (VarProcIdx == 0)
1430 GenericRW = true;
1432 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end();
1433 AI != AE; ++AI) {
1434 // If either the SchedAlias itself or the SchedReadWrite that it aliases
1435 // to is defined within a processor model, constrain all variants to
1436 // that processor.
1437 unsigned AliasProcIdx = 0;
1438 if ((*AI)->getValueInit("SchedModel")->isComplete()) {
1439 Record *ModelDef = (*AI)->getValueAsDef("SchedModel");
1440 AliasProcIdx = SchedModels.getProcModel(ModelDef).Index;
1442 const CodeGenSchedRW &AliasRW =
1443 SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW"));
1445 if (AliasRW.HasVariants) {
1446 const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants");
1447 for (Record *VD : VarDefs)
1448 Variants.emplace_back(VD, AliasRW.Index, AliasProcIdx, 0);
1450 if (AliasRW.IsSequence)
1451 Variants.emplace_back(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0);
1452 if (AliasProcIdx == 0)
1453 GenericRW = true;
1455 for (TransVariant &Variant : Variants) {
1456 // Don't expand variants if the processor models don't intersect.
1457 // A zero processor index means any processor.
1458 SmallVectorImpl<unsigned> &ProcIndices = TransVec[TransIdx].ProcIndices;
1459 if (ProcIndices[0] && Variant.ProcIdx) {
1460 unsigned Cnt = std::count(ProcIndices.begin(), ProcIndices.end(),
1461 Variant.ProcIdx);
1462 if (!Cnt)
1463 continue;
1464 if (Cnt > 1) {
1465 const CodeGenProcModel &PM =
1466 *(SchedModels.procModelBegin() + Variant.ProcIdx);
1467 PrintFatalError(Variant.VarOrSeqDef->getLoc(),
1468 "Multiple variants defined for processor " +
1469 PM.ModelName +
1470 " Ensure only one SchedAlias exists per RW.");
1473 if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) {
1474 Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate");
1475 if (mutuallyExclusive(PredDef, TransVec[TransIdx].PredTerm))
1476 continue;
1478 if (IntersectingVariants.empty()) {
1479 // The first variant builds on the existing transition.
1480 Variant.TransVecIdx = TransIdx;
1481 IntersectingVariants.push_back(Variant);
1483 else {
1484 // Push another copy of the current transition for more variants.
1485 Variant.TransVecIdx = TransVec.size();
1486 IntersectingVariants.push_back(Variant);
1487 TransVec.push_back(TransVec[TransIdx]);
1490 if (GenericRW && IntersectingVariants.empty()) {
1491 PrintFatalError(SchedRW.TheDef->getLoc(), "No variant of this type has "
1492 "a matching predicate on any processor");
1496 // Push the Reads/Writes selected by this variant onto the PredTransition
1497 // specified by VInfo.
1498 void PredTransitions::
1499 pushVariant(const TransVariant &VInfo, bool IsRead) {
1500 PredTransition &Trans = TransVec[VInfo.TransVecIdx];
1502 // If this operand transition is reached through a processor-specific alias,
1503 // then the whole transition is specific to this processor.
1504 if (VInfo.ProcIdx != 0)
1505 Trans.ProcIndices.assign(1, VInfo.ProcIdx);
1507 IdxVec SelectedRWs;
1508 if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) {
1509 Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate");
1510 Trans.PredTerm.emplace_back(IsRead, VInfo.RWIdx,PredDef);
1511 RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected");
1512 SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead);
1514 else {
1515 assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") &&
1516 "variant must be a SchedVariant or aliased WriteSequence");
1517 SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead));
1520 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead);
1522 SmallVectorImpl<SmallVector<unsigned,4>> &RWSequences = IsRead
1523 ? Trans.ReadSequences : Trans.WriteSequences;
1524 if (SchedRW.IsVariadic) {
1525 unsigned OperIdx = RWSequences.size()-1;
1526 // Make N-1 copies of this transition's last sequence.
1527 RWSequences.insert(RWSequences.end(), SelectedRWs.size() - 1,
1528 RWSequences[OperIdx]);
1529 // Push each of the N elements of the SelectedRWs onto a copy of the last
1530 // sequence (split the current operand into N operands).
1531 // Note that write sequences should be expanded within this loop--the entire
1532 // sequence belongs to a single operand.
1533 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end();
1534 RWI != RWE; ++RWI, ++OperIdx) {
1535 IdxVec ExpandedRWs;
1536 if (IsRead)
1537 ExpandedRWs.push_back(*RWI);
1538 else
1539 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead);
1540 RWSequences[OperIdx].insert(RWSequences[OperIdx].end(),
1541 ExpandedRWs.begin(), ExpandedRWs.end());
1543 assert(OperIdx == RWSequences.size() && "missed a sequence");
1545 else {
1546 // Push this transition's expanded sequence onto this transition's last
1547 // sequence (add to the current operand's sequence).
1548 SmallVectorImpl<unsigned> &Seq = RWSequences.back();
1549 IdxVec ExpandedRWs;
1550 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end();
1551 RWI != RWE; ++RWI) {
1552 if (IsRead)
1553 ExpandedRWs.push_back(*RWI);
1554 else
1555 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead);
1557 Seq.insert(Seq.end(), ExpandedRWs.begin(), ExpandedRWs.end());
1561 // RWSeq is a sequence of all Reads or all Writes for the next read or write
1562 // operand. StartIdx is an index into TransVec where partial results
1563 // starts. RWSeq must be applied to all transitions between StartIdx and the end
1564 // of TransVec.
1565 void PredTransitions::substituteVariantOperand(
1566 const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) {
1568 // Visit each original RW within the current sequence.
1569 for (SmallVectorImpl<unsigned>::const_iterator
1570 RWI = RWSeq.begin(), RWE = RWSeq.end(); RWI != RWE; ++RWI) {
1571 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(*RWI, IsRead);
1572 // Push this RW on all partial PredTransitions or distribute variants.
1573 // New PredTransitions may be pushed within this loop which should not be
1574 // revisited (TransEnd must be loop invariant).
1575 for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size();
1576 TransIdx != TransEnd; ++TransIdx) {
1577 // In the common case, push RW onto the current operand's sequence.
1578 if (!hasAliasedVariants(SchedRW, SchedModels)) {
1579 if (IsRead)
1580 TransVec[TransIdx].ReadSequences.back().push_back(*RWI);
1581 else
1582 TransVec[TransIdx].WriteSequences.back().push_back(*RWI);
1583 continue;
1585 // Distribute this partial PredTransition across intersecting variants.
1586 // This will push a copies of TransVec[TransIdx] on the back of TransVec.
1587 std::vector<TransVariant> IntersectingVariants;
1588 getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants);
1589 // Now expand each variant on top of its copy of the transition.
1590 for (std::vector<TransVariant>::const_iterator
1591 IVI = IntersectingVariants.begin(),
1592 IVE = IntersectingVariants.end();
1593 IVI != IVE; ++IVI) {
1594 pushVariant(*IVI, IsRead);
1600 // For each variant of a Read/Write in Trans, substitute the sequence of
1601 // Read/Writes guarded by the variant. This is exponential in the number of
1602 // variant Read/Writes, but in practice detection of mutually exclusive
1603 // predicates should result in linear growth in the total number variants.
1605 // This is one step in a breadth-first search of nested variants.
1606 void PredTransitions::substituteVariants(const PredTransition &Trans) {
1607 // Build up a set of partial results starting at the back of
1608 // PredTransitions. Remember the first new transition.
1609 unsigned StartIdx = TransVec.size();
1610 TransVec.emplace_back();
1611 TransVec.back().PredTerm = Trans.PredTerm;
1612 TransVec.back().ProcIndices = Trans.ProcIndices;
1614 // Visit each original write sequence.
1615 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator
1616 WSI = Trans.WriteSequences.begin(), WSE = Trans.WriteSequences.end();
1617 WSI != WSE; ++WSI) {
1618 // Push a new (empty) write sequence onto all partial Transitions.
1619 for (std::vector<PredTransition>::iterator I =
1620 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
1621 I->WriteSequences.emplace_back();
1623 substituteVariantOperand(*WSI, /*IsRead=*/false, StartIdx);
1625 // Visit each original read sequence.
1626 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator
1627 RSI = Trans.ReadSequences.begin(), RSE = Trans.ReadSequences.end();
1628 RSI != RSE; ++RSI) {
1629 // Push a new (empty) read sequence onto all partial Transitions.
1630 for (std::vector<PredTransition>::iterator I =
1631 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
1632 I->ReadSequences.emplace_back();
1634 substituteVariantOperand(*RSI, /*IsRead=*/true, StartIdx);
1638 // Create a new SchedClass for each variant found by inferFromRW. Pass
1639 static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions,
1640 unsigned FromClassIdx,
1641 CodeGenSchedModels &SchedModels) {
1642 // For each PredTransition, create a new CodeGenSchedTransition, which usually
1643 // requires creating a new SchedClass.
1644 for (ArrayRef<PredTransition>::iterator
1645 I = LastTransitions.begin(), E = LastTransitions.end(); I != E; ++I) {
1646 IdxVec OperWritesVariant;
1647 transform(I->WriteSequences, std::back_inserter(OperWritesVariant),
1648 [&SchedModels](ArrayRef<unsigned> WS) {
1649 return SchedModels.findOrInsertRW(WS, /*IsRead=*/false);
1651 IdxVec OperReadsVariant;
1652 transform(I->ReadSequences, std::back_inserter(OperReadsVariant),
1653 [&SchedModels](ArrayRef<unsigned> RS) {
1654 return SchedModels.findOrInsertRW(RS, /*IsRead=*/true);
1656 CodeGenSchedTransition SCTrans;
1657 SCTrans.ToClassIdx =
1658 SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant,
1659 OperReadsVariant, I->ProcIndices);
1660 SCTrans.ProcIndices.assign(I->ProcIndices.begin(), I->ProcIndices.end());
1661 // The final PredTerm is unique set of predicates guarding the transition.
1662 RecVec Preds;
1663 transform(I->PredTerm, std::back_inserter(Preds),
1664 [](const PredCheck &P) {
1665 return P.Predicate;
1667 Preds.erase(std::unique(Preds.begin(), Preds.end()), Preds.end());
1668 SCTrans.PredTerm = std::move(Preds);
1669 SchedModels.getSchedClass(FromClassIdx)
1670 .Transitions.push_back(std::move(SCTrans));
1674 // Create new SchedClasses for the given ReadWrite list. If any of the
1675 // ReadWrites refers to a SchedVariant, create a new SchedClass for each variant
1676 // of the ReadWrite list, following Aliases if necessary.
1677 void CodeGenSchedModels::inferFromRW(ArrayRef<unsigned> OperWrites,
1678 ArrayRef<unsigned> OperReads,
1679 unsigned FromClassIdx,
1680 ArrayRef<unsigned> ProcIndices) {
1681 LLVM_DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices);
1682 dbgs() << ") ");
1684 // Create a seed transition with an empty PredTerm and the expanded sequences
1685 // of SchedWrites for the current SchedClass.
1686 std::vector<PredTransition> LastTransitions;
1687 LastTransitions.emplace_back();
1688 LastTransitions.back().ProcIndices.append(ProcIndices.begin(),
1689 ProcIndices.end());
1691 for (unsigned WriteIdx : OperWrites) {
1692 IdxVec WriteSeq;
1693 expandRWSequence(WriteIdx, WriteSeq, /*IsRead=*/false);
1694 LastTransitions[0].WriteSequences.emplace_back();
1695 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences.back();
1696 Seq.append(WriteSeq.begin(), WriteSeq.end());
1697 LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
1699 LLVM_DEBUG(dbgs() << " Reads: ");
1700 for (unsigned ReadIdx : OperReads) {
1701 IdxVec ReadSeq;
1702 expandRWSequence(ReadIdx, ReadSeq, /*IsRead=*/true);
1703 LastTransitions[0].ReadSequences.emplace_back();
1704 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences.back();
1705 Seq.append(ReadSeq.begin(), ReadSeq.end());
1706 LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
1708 LLVM_DEBUG(dbgs() << '\n');
1710 // Collect all PredTransitions for individual operands.
1711 // Iterate until no variant writes remain.
1712 while (hasVariant(LastTransitions, *this)) {
1713 PredTransitions Transitions(*this);
1714 for (const PredTransition &Trans : LastTransitions)
1715 Transitions.substituteVariants(Trans);
1716 LLVM_DEBUG(Transitions.dump());
1717 LastTransitions.swap(Transitions.TransVec);
1719 // If the first transition has no variants, nothing to do.
1720 if (LastTransitions[0].PredTerm.empty())
1721 return;
1723 // WARNING: We are about to mutate the SchedClasses vector. Do not refer to
1724 // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions.
1725 inferFromTransitions(LastTransitions, FromClassIdx, *this);
1728 // Check if any processor resource group contains all resource records in
1729 // SubUnits.
1730 bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) {
1731 for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) {
1732 if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup"))
1733 continue;
1734 RecVec SuperUnits =
1735 PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources");
1736 RecIter RI = SubUnits.begin(), RE = SubUnits.end();
1737 for ( ; RI != RE; ++RI) {
1738 if (!is_contained(SuperUnits, *RI)) {
1739 break;
1742 if (RI == RE)
1743 return true;
1745 return false;
1748 // Verify that overlapping groups have a common supergroup.
1749 void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) {
1750 for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) {
1751 if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup"))
1752 continue;
1753 RecVec CheckUnits =
1754 PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources");
1755 for (unsigned j = i+1; j < e; ++j) {
1756 if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup"))
1757 continue;
1758 RecVec OtherUnits =
1759 PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources");
1760 if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(),
1761 OtherUnits.begin(), OtherUnits.end())
1762 != CheckUnits.end()) {
1763 // CheckUnits and OtherUnits overlap
1764 OtherUnits.insert(OtherUnits.end(), CheckUnits.begin(),
1765 CheckUnits.end());
1766 if (!hasSuperGroup(OtherUnits, PM)) {
1767 PrintFatalError((PM.ProcResourceDefs[i])->getLoc(),
1768 "proc resource group overlaps with "
1769 + PM.ProcResourceDefs[j]->getName()
1770 + " but no supergroup contains both.");
1777 // Collect all the RegisterFile definitions available in this target.
1778 void CodeGenSchedModels::collectRegisterFiles() {
1779 RecVec RegisterFileDefs = Records.getAllDerivedDefinitions("RegisterFile");
1781 // RegisterFiles is the vector of CodeGenRegisterFile.
1782 for (Record *RF : RegisterFileDefs) {
1783 // For each register file definition, construct a CodeGenRegisterFile object
1784 // and add it to the appropriate scheduling model.
1785 CodeGenProcModel &PM = getProcModel(RF->getValueAsDef("SchedModel"));
1786 PM.RegisterFiles.emplace_back(CodeGenRegisterFile(RF->getName(),RF));
1787 CodeGenRegisterFile &CGRF = PM.RegisterFiles.back();
1788 CGRF.MaxMovesEliminatedPerCycle =
1789 RF->getValueAsInt("MaxMovesEliminatedPerCycle");
1790 CGRF.AllowZeroMoveEliminationOnly =
1791 RF->getValueAsBit("AllowZeroMoveEliminationOnly");
1793 // Now set the number of physical registers as well as the cost of registers
1794 // in each register class.
1795 CGRF.NumPhysRegs = RF->getValueAsInt("NumPhysRegs");
1796 if (!CGRF.NumPhysRegs) {
1797 PrintFatalError(RF->getLoc(),
1798 "Invalid RegisterFile with zero physical registers");
1801 RecVec RegisterClasses = RF->getValueAsListOfDefs("RegClasses");
1802 std::vector<int64_t> RegisterCosts = RF->getValueAsListOfInts("RegCosts");
1803 ListInit *MoveElimInfo = RF->getValueAsListInit("AllowMoveElimination");
1804 for (unsigned I = 0, E = RegisterClasses.size(); I < E; ++I) {
1805 int Cost = RegisterCosts.size() > I ? RegisterCosts[I] : 1;
1807 bool AllowMoveElim = false;
1808 if (MoveElimInfo->size() > I) {
1809 BitInit *Val = cast<BitInit>(MoveElimInfo->getElement(I));
1810 AllowMoveElim = Val->getValue();
1813 CGRF.Costs.emplace_back(RegisterClasses[I], Cost, AllowMoveElim);
1818 // Collect and sort WriteRes, ReadAdvance, and ProcResources.
1819 void CodeGenSchedModels::collectProcResources() {
1820 ProcResourceDefs = Records.getAllDerivedDefinitions("ProcResourceUnits");
1821 ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
1823 // Add any subtarget-specific SchedReadWrites that are directly associated
1824 // with processor resources. Refer to the parent SchedClass's ProcIndices to
1825 // determine which processors they apply to.
1826 for (const CodeGenSchedClass &SC :
1827 make_range(schedClassBegin(), schedClassEnd())) {
1828 if (SC.ItinClassDef) {
1829 collectItinProcResources(SC.ItinClassDef);
1830 continue;
1833 // This class may have a default ReadWrite list which can be overriden by
1834 // InstRW definitions.
1835 for (Record *RW : SC.InstRWs) {
1836 Record *RWModelDef = RW->getValueAsDef("SchedModel");
1837 unsigned PIdx = getProcModel(RWModelDef).Index;
1838 IdxVec Writes, Reads;
1839 findRWs(RW->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1840 collectRWResources(Writes, Reads, PIdx);
1843 collectRWResources(SC.Writes, SC.Reads, SC.ProcIndices);
1845 // Add resources separately defined by each subtarget.
1846 RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes");
1847 for (Record *WR : WRDefs) {
1848 Record *ModelDef = WR->getValueAsDef("SchedModel");
1849 addWriteRes(WR, getProcModel(ModelDef).Index);
1851 RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes");
1852 for (Record *SWR : SWRDefs) {
1853 Record *ModelDef = SWR->getValueAsDef("SchedModel");
1854 addWriteRes(SWR, getProcModel(ModelDef).Index);
1856 RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance");
1857 for (Record *RA : RADefs) {
1858 Record *ModelDef = RA->getValueAsDef("SchedModel");
1859 addReadAdvance(RA, getProcModel(ModelDef).Index);
1861 RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance");
1862 for (Record *SRA : SRADefs) {
1863 if (SRA->getValueInit("SchedModel")->isComplete()) {
1864 Record *ModelDef = SRA->getValueAsDef("SchedModel");
1865 addReadAdvance(SRA, getProcModel(ModelDef).Index);
1868 // Add ProcResGroups that are defined within this processor model, which may
1869 // not be directly referenced but may directly specify a buffer size.
1870 RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
1871 for (Record *PRG : ProcResGroups) {
1872 if (!PRG->getValueInit("SchedModel")->isComplete())
1873 continue;
1874 CodeGenProcModel &PM = getProcModel(PRG->getValueAsDef("SchedModel"));
1875 if (!is_contained(PM.ProcResourceDefs, PRG))
1876 PM.ProcResourceDefs.push_back(PRG);
1878 // Add ProcResourceUnits unconditionally.
1879 for (Record *PRU : Records.getAllDerivedDefinitions("ProcResourceUnits")) {
1880 if (!PRU->getValueInit("SchedModel")->isComplete())
1881 continue;
1882 CodeGenProcModel &PM = getProcModel(PRU->getValueAsDef("SchedModel"));
1883 if (!is_contained(PM.ProcResourceDefs, PRU))
1884 PM.ProcResourceDefs.push_back(PRU);
1886 // Finalize each ProcModel by sorting the record arrays.
1887 for (CodeGenProcModel &PM : ProcModels) {
1888 llvm::sort(PM.WriteResDefs, LessRecord());
1889 llvm::sort(PM.ReadAdvanceDefs, LessRecord());
1890 llvm::sort(PM.ProcResourceDefs, LessRecord());
1891 LLVM_DEBUG(
1892 PM.dump();
1893 dbgs() << "WriteResDefs: "; for (RecIter RI = PM.WriteResDefs.begin(),
1894 RE = PM.WriteResDefs.end();
1895 RI != RE; ++RI) {
1896 if ((*RI)->isSubClassOf("WriteRes"))
1897 dbgs() << (*RI)->getValueAsDef("WriteType")->getName() << " ";
1898 else
1899 dbgs() << (*RI)->getName() << " ";
1900 } dbgs() << "\nReadAdvanceDefs: ";
1901 for (RecIter RI = PM.ReadAdvanceDefs.begin(),
1902 RE = PM.ReadAdvanceDefs.end();
1903 RI != RE; ++RI) {
1904 if ((*RI)->isSubClassOf("ReadAdvance"))
1905 dbgs() << (*RI)->getValueAsDef("ReadType")->getName() << " ";
1906 else
1907 dbgs() << (*RI)->getName() << " ";
1908 } dbgs()
1909 << "\nProcResourceDefs: ";
1910 for (RecIter RI = PM.ProcResourceDefs.begin(),
1911 RE = PM.ProcResourceDefs.end();
1912 RI != RE; ++RI) { dbgs() << (*RI)->getName() << " "; } dbgs()
1913 << '\n');
1914 verifyProcResourceGroups(PM);
1917 ProcResourceDefs.clear();
1918 ProcResGroups.clear();
1921 void CodeGenSchedModels::checkCompleteness() {
1922 bool Complete = true;
1923 bool HadCompleteModel = false;
1924 for (const CodeGenProcModel &ProcModel : procModels()) {
1925 const bool HasItineraries = ProcModel.hasItineraries();
1926 if (!ProcModel.ModelDef->getValueAsBit("CompleteModel"))
1927 continue;
1928 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
1929 if (Inst->hasNoSchedulingInfo)
1930 continue;
1931 if (ProcModel.isUnsupported(*Inst))
1932 continue;
1933 unsigned SCIdx = getSchedClassIdx(*Inst);
1934 if (!SCIdx) {
1935 if (Inst->TheDef->isValueUnset("SchedRW") && !HadCompleteModel) {
1936 PrintError(Inst->TheDef->getLoc(),
1937 "No schedule information for instruction '" +
1938 Inst->TheDef->getName() + "' in SchedMachineModel '" +
1939 ProcModel.ModelDef->getName() + "'");
1940 Complete = false;
1942 continue;
1945 const CodeGenSchedClass &SC = getSchedClass(SCIdx);
1946 if (!SC.Writes.empty())
1947 continue;
1948 if (HasItineraries && SC.ItinClassDef != nullptr &&
1949 SC.ItinClassDef->getName() != "NoItinerary")
1950 continue;
1952 const RecVec &InstRWs = SC.InstRWs;
1953 auto I = find_if(InstRWs, [&ProcModel](const Record *R) {
1954 return R->getValueAsDef("SchedModel") == ProcModel.ModelDef;
1956 if (I == InstRWs.end()) {
1957 PrintError(Inst->TheDef->getLoc(), "'" + ProcModel.ModelName +
1958 "' lacks information for '" +
1959 Inst->TheDef->getName() + "'");
1960 Complete = false;
1963 HadCompleteModel = true;
1965 if (!Complete) {
1966 errs() << "\n\nIncomplete schedule models found.\n"
1967 << "- Consider setting 'CompleteModel = 0' while developing new models.\n"
1968 << "- Pseudo instructions can be marked with 'hasNoSchedulingInfo = 1'.\n"
1969 << "- Instructions should usually have Sched<[...]> as a superclass, "
1970 "you may temporarily use an empty list.\n"
1971 << "- Instructions related to unsupported features can be excluded with "
1972 "list<Predicate> UnsupportedFeatures = [HasA,..,HasY]; in the "
1973 "processor model.\n\n";
1974 PrintFatalError("Incomplete schedule model");
1978 // Collect itinerary class resources for each processor.
1979 void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) {
1980 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
1981 const CodeGenProcModel &PM = ProcModels[PIdx];
1982 // For all ItinRW entries.
1983 bool HasMatch = false;
1984 for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end();
1985 II != IE; ++II) {
1986 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses");
1987 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef))
1988 continue;
1989 if (HasMatch)
1990 PrintFatalError((*II)->getLoc(), "Duplicate itinerary class "
1991 + ItinClassDef->getName()
1992 + " in ItinResources for " + PM.ModelName);
1993 HasMatch = true;
1994 IdxVec Writes, Reads;
1995 findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1996 collectRWResources(Writes, Reads, PIdx);
2001 void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead,
2002 ArrayRef<unsigned> ProcIndices) {
2003 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
2004 if (SchedRW.TheDef) {
2005 if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) {
2006 for (unsigned Idx : ProcIndices)
2007 addWriteRes(SchedRW.TheDef, Idx);
2009 else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) {
2010 for (unsigned Idx : ProcIndices)
2011 addReadAdvance(SchedRW.TheDef, Idx);
2014 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end();
2015 AI != AE; ++AI) {
2016 IdxVec AliasProcIndices;
2017 if ((*AI)->getValueInit("SchedModel")->isComplete()) {
2018 AliasProcIndices.push_back(
2019 getProcModel((*AI)->getValueAsDef("SchedModel")).Index);
2021 else
2022 AliasProcIndices = ProcIndices;
2023 const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW"));
2024 assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes");
2026 IdxVec ExpandedRWs;
2027 expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead);
2028 for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end();
2029 SI != SE; ++SI) {
2030 collectRWResources(*SI, IsRead, AliasProcIndices);
2035 // Collect resources for a set of read/write types and processor indices.
2036 void CodeGenSchedModels::collectRWResources(ArrayRef<unsigned> Writes,
2037 ArrayRef<unsigned> Reads,
2038 ArrayRef<unsigned> ProcIndices) {
2039 for (unsigned Idx : Writes)
2040 collectRWResources(Idx, /*IsRead=*/false, ProcIndices);
2042 for (unsigned Idx : Reads)
2043 collectRWResources(Idx, /*IsRead=*/true, ProcIndices);
2046 // Find the processor's resource units for this kind of resource.
2047 Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind,
2048 const CodeGenProcModel &PM,
2049 ArrayRef<SMLoc> Loc) const {
2050 if (ProcResKind->isSubClassOf("ProcResourceUnits"))
2051 return ProcResKind;
2053 Record *ProcUnitDef = nullptr;
2054 assert(!ProcResourceDefs.empty());
2055 assert(!ProcResGroups.empty());
2057 for (Record *ProcResDef : ProcResourceDefs) {
2058 if (ProcResDef->getValueAsDef("Kind") == ProcResKind
2059 && ProcResDef->getValueAsDef("SchedModel") == PM.ModelDef) {
2060 if (ProcUnitDef) {
2061 PrintFatalError(Loc,
2062 "Multiple ProcessorResourceUnits associated with "
2063 + ProcResKind->getName());
2065 ProcUnitDef = ProcResDef;
2068 for (Record *ProcResGroup : ProcResGroups) {
2069 if (ProcResGroup == ProcResKind
2070 && ProcResGroup->getValueAsDef("SchedModel") == PM.ModelDef) {
2071 if (ProcUnitDef) {
2072 PrintFatalError(Loc,
2073 "Multiple ProcessorResourceUnits associated with "
2074 + ProcResKind->getName());
2076 ProcUnitDef = ProcResGroup;
2079 if (!ProcUnitDef) {
2080 PrintFatalError(Loc,
2081 "No ProcessorResources associated with "
2082 + ProcResKind->getName());
2084 return ProcUnitDef;
2087 // Iteratively add a resource and its super resources.
2088 void CodeGenSchedModels::addProcResource(Record *ProcResKind,
2089 CodeGenProcModel &PM,
2090 ArrayRef<SMLoc> Loc) {
2091 while (true) {
2092 Record *ProcResUnits = findProcResUnits(ProcResKind, PM, Loc);
2094 // See if this ProcResource is already associated with this processor.
2095 if (is_contained(PM.ProcResourceDefs, ProcResUnits))
2096 return;
2098 PM.ProcResourceDefs.push_back(ProcResUnits);
2099 if (ProcResUnits->isSubClassOf("ProcResGroup"))
2100 return;
2102 if (!ProcResUnits->getValueInit("Super")->isComplete())
2103 return;
2105 ProcResKind = ProcResUnits->getValueAsDef("Super");
2109 // Add resources for a SchedWrite to this processor if they don't exist.
2110 void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) {
2111 assert(PIdx && "don't add resources to an invalid Processor model");
2113 RecVec &WRDefs = ProcModels[PIdx].WriteResDefs;
2114 if (is_contained(WRDefs, ProcWriteResDef))
2115 return;
2116 WRDefs.push_back(ProcWriteResDef);
2118 // Visit ProcResourceKinds referenced by the newly discovered WriteRes.
2119 RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources");
2120 for (RecIter WritePRI = ProcResDefs.begin(), WritePRE = ProcResDefs.end();
2121 WritePRI != WritePRE; ++WritePRI) {
2122 addProcResource(*WritePRI, ProcModels[PIdx], ProcWriteResDef->getLoc());
2126 // Add resources for a ReadAdvance to this processor if they don't exist.
2127 void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef,
2128 unsigned PIdx) {
2129 RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs;
2130 if (is_contained(RADefs, ProcReadAdvanceDef))
2131 return;
2132 RADefs.push_back(ProcReadAdvanceDef);
2135 unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const {
2136 RecIter PRPos = find(ProcResourceDefs, PRDef);
2137 if (PRPos == ProcResourceDefs.end())
2138 PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in "
2139 "the ProcResources list for " + ModelName);
2140 // Idx=0 is reserved for invalid.
2141 return 1 + (PRPos - ProcResourceDefs.begin());
2144 bool CodeGenProcModel::isUnsupported(const CodeGenInstruction &Inst) const {
2145 for (const Record *TheDef : UnsupportedFeaturesDefs) {
2146 for (const Record *PredDef : Inst.TheDef->getValueAsListOfDefs("Predicates")) {
2147 if (TheDef->getName() == PredDef->getName())
2148 return true;
2151 return false;
2154 #ifndef NDEBUG
2155 void CodeGenProcModel::dump() const {
2156 dbgs() << Index << ": " << ModelName << " "
2157 << (ModelDef ? ModelDef->getName() : "inferred") << " "
2158 << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n';
2161 void CodeGenSchedRW::dump() const {
2162 dbgs() << Name << (IsVariadic ? " (V) " : " ");
2163 if (IsSequence) {
2164 dbgs() << "(";
2165 dumpIdxVec(Sequence);
2166 dbgs() << ")";
2170 void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const {
2171 dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n'
2172 << " Writes: ";
2173 for (unsigned i = 0, N = Writes.size(); i < N; ++i) {
2174 SchedModels->getSchedWrite(Writes[i]).dump();
2175 if (i < N-1) {
2176 dbgs() << '\n';
2177 dbgs().indent(10);
2180 dbgs() << "\n Reads: ";
2181 for (unsigned i = 0, N = Reads.size(); i < N; ++i) {
2182 SchedModels->getSchedRead(Reads[i]).dump();
2183 if (i < N-1) {
2184 dbgs() << '\n';
2185 dbgs().indent(10);
2188 dbgs() << "\n ProcIdx: "; dumpIdxVec(ProcIndices); dbgs() << '\n';
2189 if (!Transitions.empty()) {
2190 dbgs() << "\n Transitions for Proc ";
2191 for (const CodeGenSchedTransition &Transition : Transitions) {
2192 dumpIdxVec(Transition.ProcIndices);
2197 void PredTransitions::dump() const {
2198 dbgs() << "Expanded Variants:\n";
2199 for (std::vector<PredTransition>::const_iterator
2200 TI = TransVec.begin(), TE = TransVec.end(); TI != TE; ++TI) {
2201 dbgs() << "{";
2202 for (SmallVectorImpl<PredCheck>::const_iterator
2203 PCI = TI->PredTerm.begin(), PCE = TI->PredTerm.end();
2204 PCI != PCE; ++PCI) {
2205 if (PCI != TI->PredTerm.begin())
2206 dbgs() << ", ";
2207 dbgs() << SchedModels.getSchedRW(PCI->RWIdx, PCI->IsRead).Name
2208 << ":" << PCI->Predicate->getName();
2210 dbgs() << "},\n => {";
2211 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator
2212 WSI = TI->WriteSequences.begin(), WSE = TI->WriteSequences.end();
2213 WSI != WSE; ++WSI) {
2214 dbgs() << "(";
2215 for (SmallVectorImpl<unsigned>::const_iterator
2216 WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) {
2217 if (WI != WSI->begin())
2218 dbgs() << ", ";
2219 dbgs() << SchedModels.getSchedWrite(*WI).Name;
2221 dbgs() << "),";
2223 dbgs() << "}\n";
2226 #endif // NDEBUG