Couple of fixes to mention bunzip2 and make instructions more clear.
[llvm-complete.git] / lib / Target / ARM / ARMConstantIslandPass.cpp
blob1b936312c0a4010e48b2862ea04dbacd7be9a10f
1 //===-- ARMConstantIslandPass.cpp - ARM constant islands --------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file was developed by Chris Lattner and is distributed under the
6 // University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a pass that splits the constant pool up into 'islands'
11 // which are scattered through-out the function. This is required due to the
12 // limited pc-relative displacements that ARM has.
14 //===----------------------------------------------------------------------===//
16 #define DEBUG_TYPE "arm-cp-islands"
17 #include "ARM.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMInstrInfo.h"
20 #include "llvm/CodeGen/MachineConstantPool.h"
21 #include "llvm/CodeGen/MachineFunctionPass.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/Target/TargetData.h"
24 #include "llvm/Target/TargetMachine.h"
25 #include "llvm/Support/Compiler.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/Statistic.h"
30 using namespace llvm;
32 STATISTIC(NumCPEs, "Number of constpool entries");
33 STATISTIC(NumSplit, "Number of uncond branches inserted");
34 STATISTIC(NumCBrFixed, "Number of cond branches fixed");
35 STATISTIC(NumUBrFixed, "Number of uncond branches fixed");
37 namespace {
38 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
39 /// requires constant pool entries to be scattered among the instructions
40 /// inside a function. To do this, it completely ignores the normal LLVM
41 /// constant pool; instead, it places constants wherever it feels like with
42 /// special instructions.
43 ///
44 /// The terminology used in this pass includes:
45 /// Islands - Clumps of constants placed in the function.
46 /// Water - Potential places where an island could be formed.
47 /// CPE - A constant pool entry that has been placed somewhere, which
48 /// tracks a list of users.
49 class VISIBILITY_HIDDEN ARMConstantIslands : public MachineFunctionPass {
50 /// NextUID - Assign unique ID's to CPE's.
51 unsigned NextUID;
53 /// BBSizes - The size of each MachineBasicBlock in bytes of code, indexed
54 /// by MBB Number. The two-byte pads required for Thumb alignment are
55 /// counted as part of the following block (i.e., the offset and size for
56 /// a padded block will both be ==2 mod 4).
57 std::vector<unsigned> BBSizes;
59 /// BBOffsets - the offset of each MBB in bytes, starting from 0.
60 /// The two-byte pads required for Thumb alignment are counted as part of
61 /// the following block.
62 std::vector<unsigned> BBOffsets;
64 /// WaterList - A sorted list of basic blocks where islands could be placed
65 /// (i.e. blocks that don't fall through to the following block, due
66 /// to a return, unreachable, or unconditional branch).
67 std::vector<MachineBasicBlock*> WaterList;
69 /// CPUser - One user of a constant pool, keeping the machine instruction
70 /// pointer, the constant pool being referenced, and the max displacement
71 /// allowed from the instruction to the CP.
72 struct CPUser {
73 MachineInstr *MI;
74 MachineInstr *CPEMI;
75 unsigned MaxDisp;
76 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp)
77 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp) {}
80 /// CPUsers - Keep track of all of the machine instructions that use various
81 /// constant pools and their max displacement.
82 std::vector<CPUser> CPUsers;
84 /// CPEntry - One per constant pool entry, keeping the machine instruction
85 /// pointer, the constpool index, and the number of CPUser's which
86 /// reference this entry.
87 struct CPEntry {
88 MachineInstr *CPEMI;
89 unsigned CPI;
90 unsigned RefCount;
91 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
92 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
95 /// CPEntries - Keep track of all of the constant pool entry machine
96 /// instructions. For each original constpool index (i.e. those that
97 /// existed upon entry to this pass), it keeps a vector of entries.
98 /// Original elements are cloned as we go along; the clones are
99 /// put in the vector of the original element, but have distinct CPIs.
100 std::vector<std::vector<CPEntry> > CPEntries;
102 /// ImmBranch - One per immediate branch, keeping the machine instruction
103 /// pointer, conditional or unconditional, the max displacement,
104 /// and (if isCond is true) the corresponding unconditional branch
105 /// opcode.
106 struct ImmBranch {
107 MachineInstr *MI;
108 unsigned MaxDisp : 31;
109 bool isCond : 1;
110 int UncondBr;
111 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
112 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
115 /// ImmBranches - Keep track of all the immediate branch instructions.
117 std::vector<ImmBranch> ImmBranches;
119 /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
121 SmallVector<MachineInstr*, 4> PushPopMIs;
123 /// HasFarJump - True if any far jump instruction has been emitted during
124 /// the branch fix up pass.
125 bool HasFarJump;
127 const TargetInstrInfo *TII;
128 ARMFunctionInfo *AFI;
129 bool isThumb;
130 public:
131 static char ID;
132 ARMConstantIslands() : MachineFunctionPass((intptr_t)&ID) {}
134 virtual bool runOnMachineFunction(MachineFunction &Fn);
136 virtual const char *getPassName() const {
137 return "ARM constant island placement and branch shortening pass";
140 private:
141 void DoInitialPlacement(MachineFunction &Fn,
142 std::vector<MachineInstr*> &CPEMIs);
143 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
144 void InitialFunctionScan(MachineFunction &Fn,
145 const std::vector<MachineInstr*> &CPEMIs);
146 MachineBasicBlock *SplitBlockBeforeInstr(MachineInstr *MI);
147 void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB);
148 void AdjustBBOffsetsAfter(MachineBasicBlock *BB, int delta);
149 bool DecrementOldEntry(unsigned CPI, MachineInstr* CPEMI);
150 int LookForExistingCPEntry(CPUser& U, unsigned UserOffset);
151 bool LookForWater(CPUser&U, unsigned UserOffset,
152 MachineBasicBlock** NewMBB);
153 MachineBasicBlock* AcceptWater(MachineBasicBlock *WaterBB,
154 std::vector<MachineBasicBlock*>::iterator IP);
155 void CreateNewWater(unsigned CPUserIndex, unsigned UserOffset,
156 MachineBasicBlock** NewMBB);
157 bool HandleConstantPoolUser(MachineFunction &Fn, unsigned CPUserIndex);
158 void RemoveDeadCPEMI(MachineInstr *CPEMI);
159 bool RemoveUnusedCPEntries();
160 bool CPEIsInRange(MachineInstr *MI, unsigned UserOffset,
161 MachineInstr *CPEMI, unsigned Disp,
162 bool DoDump);
163 bool WaterIsInRange(unsigned UserOffset, MachineBasicBlock *Water,
164 CPUser &U);
165 bool OffsetIsInRange(unsigned UserOffset, unsigned TrialOffset,
166 unsigned Disp, bool NegativeOK);
167 bool BBIsInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
168 bool FixUpImmediateBr(MachineFunction &Fn, ImmBranch &Br);
169 bool FixUpConditionalBr(MachineFunction &Fn, ImmBranch &Br);
170 bool FixUpUnconditionalBr(MachineFunction &Fn, ImmBranch &Br);
171 bool UndoLRSpillRestore();
173 unsigned GetOffsetOf(MachineInstr *MI) const;
174 void dumpBBs();
175 void verify(MachineFunction &Fn);
177 char ARMConstantIslands::ID = 0;
180 /// verify - check BBOffsets, BBSizes, alignment of islands
181 void ARMConstantIslands::verify(MachineFunction &Fn) {
182 assert(BBOffsets.size() == BBSizes.size());
183 for (unsigned i = 1, e = BBOffsets.size(); i != e; ++i)
184 assert(BBOffsets[i-1]+BBSizes[i-1] == BBOffsets[i]);
185 if (isThumb) {
186 for (MachineFunction::iterator MBBI = Fn.begin(), E = Fn.end();
187 MBBI != E; ++MBBI) {
188 MachineBasicBlock *MBB = MBBI;
189 if (!MBB->empty() &&
190 MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY)
191 assert((BBOffsets[MBB->getNumber()]%4 == 0 &&
192 BBSizes[MBB->getNumber()]%4 == 0) ||
193 (BBOffsets[MBB->getNumber()]%4 != 0 &&
194 BBSizes[MBB->getNumber()]%4 != 0));
199 /// print block size and offset information - debugging
200 void ARMConstantIslands::dumpBBs() {
201 for (unsigned J = 0, E = BBOffsets.size(); J !=E; ++J) {
202 DOUT << "block " << J << " offset " << BBOffsets[J] <<
203 " size " << BBSizes[J] << "\n";
207 /// createARMConstantIslandPass - returns an instance of the constpool
208 /// island pass.
209 FunctionPass *llvm::createARMConstantIslandPass() {
210 return new ARMConstantIslands();
213 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &Fn) {
214 MachineConstantPool &MCP = *Fn.getConstantPool();
216 TII = Fn.getTarget().getInstrInfo();
217 AFI = Fn.getInfo<ARMFunctionInfo>();
218 isThumb = AFI->isThumbFunction();
220 HasFarJump = false;
222 // Renumber all of the machine basic blocks in the function, guaranteeing that
223 // the numbers agree with the position of the block in the function.
224 Fn.RenumberBlocks();
226 /// Thumb functions containing constant pools get 2-byte alignment. This is so
227 /// we can keep exact track of where the alignment padding goes. Set default.
228 AFI->setAlign(isThumb ? 1U : 2U);
230 // Perform the initial placement of the constant pool entries. To start with,
231 // we put them all at the end of the function.
232 std::vector<MachineInstr*> CPEMIs;
233 if (!MCP.isEmpty()) {
234 DoInitialPlacement(Fn, CPEMIs);
235 if (isThumb)
236 AFI->setAlign(2U);
239 /// The next UID to take is the first unused one.
240 NextUID = CPEMIs.size();
242 // Do the initial scan of the function, building up information about the
243 // sizes of each block, the location of all the water, and finding all of the
244 // constant pool users.
245 InitialFunctionScan(Fn, CPEMIs);
246 CPEMIs.clear();
248 /// Remove dead constant pool entries.
249 RemoveUnusedCPEntries();
251 // Iteratively place constant pool entries and fix up branches until there
252 // is no change.
253 bool MadeChange = false;
254 while (true) {
255 bool Change = false;
256 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
257 Change |= HandleConstantPoolUser(Fn, i);
258 DEBUG(dumpBBs());
259 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
260 Change |= FixUpImmediateBr(Fn, ImmBranches[i]);
261 DEBUG(dumpBBs());
262 if (!Change)
263 break;
264 MadeChange = true;
267 // After a while, this might be made debug-only, but it is not expensive.
268 verify(Fn);
270 // If LR has been forced spilled and no far jumps (i.e. BL) has been issued.
271 // Undo the spill / restore of LR if possible.
272 if (!HasFarJump && AFI->isLRSpilledForFarJump() && isThumb)
273 MadeChange |= UndoLRSpillRestore();
275 BBSizes.clear();
276 BBOffsets.clear();
277 WaterList.clear();
278 CPUsers.clear();
279 CPEntries.clear();
280 ImmBranches.clear();
281 PushPopMIs.clear();
283 return MadeChange;
286 /// DoInitialPlacement - Perform the initial placement of the constant pool
287 /// entries. To start with, we put them all at the end of the function.
288 void ARMConstantIslands::DoInitialPlacement(MachineFunction &Fn,
289 std::vector<MachineInstr*> &CPEMIs){
290 // Create the basic block to hold the CPE's.
291 MachineBasicBlock *BB = new MachineBasicBlock();
292 Fn.getBasicBlockList().push_back(BB);
294 // Add all of the constants from the constant pool to the end block, use an
295 // identity mapping of CPI's to CPE's.
296 const std::vector<MachineConstantPoolEntry> &CPs =
297 Fn.getConstantPool()->getConstants();
299 const TargetData &TD = *Fn.getTarget().getTargetData();
300 for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
301 unsigned Size = TD.getTypeSize(CPs[i].getType());
302 // Verify that all constant pool entries are a multiple of 4 bytes. If not,
303 // we would have to pad them out or something so that instructions stay
304 // aligned.
305 assert((Size & 3) == 0 && "CP Entry not multiple of 4 bytes!");
306 MachineInstr *CPEMI =
307 BuildMI(BB, TII->get(ARM::CONSTPOOL_ENTRY))
308 .addImm(i).addConstantPoolIndex(i).addImm(Size);
309 CPEMIs.push_back(CPEMI);
311 // Add a new CPEntry, but no corresponding CPUser yet.
312 std::vector<CPEntry> CPEs;
313 CPEs.push_back(CPEntry(CPEMI, i));
314 CPEntries.push_back(CPEs);
315 NumCPEs++;
316 DOUT << "Moved CPI#" << i << " to end of function as #" << i << "\n";
320 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
321 /// into the block immediately after it.
322 static bool BBHasFallthrough(MachineBasicBlock *MBB) {
323 // Get the next machine basic block in the function.
324 MachineFunction::iterator MBBI = MBB;
325 if (next(MBBI) == MBB->getParent()->end()) // Can't fall off end of function.
326 return false;
328 MachineBasicBlock *NextBB = next(MBBI);
329 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
330 E = MBB->succ_end(); I != E; ++I)
331 if (*I == NextBB)
332 return true;
334 return false;
337 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
338 /// look up the corresponding CPEntry.
339 ARMConstantIslands::CPEntry
340 *ARMConstantIslands::findConstPoolEntry(unsigned CPI,
341 const MachineInstr *CPEMI) {
342 std::vector<CPEntry> &CPEs = CPEntries[CPI];
343 // Number of entries per constpool index should be small, just do a
344 // linear search.
345 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
346 if (CPEs[i].CPEMI == CPEMI)
347 return &CPEs[i];
349 return NULL;
352 /// InitialFunctionScan - Do the initial scan of the function, building up
353 /// information about the sizes of each block, the location of all the water,
354 /// and finding all of the constant pool users.
355 void ARMConstantIslands::InitialFunctionScan(MachineFunction &Fn,
356 const std::vector<MachineInstr*> &CPEMIs) {
357 unsigned Offset = 0;
358 for (MachineFunction::iterator MBBI = Fn.begin(), E = Fn.end();
359 MBBI != E; ++MBBI) {
360 MachineBasicBlock &MBB = *MBBI;
362 // If this block doesn't fall through into the next MBB, then this is
363 // 'water' that a constant pool island could be placed.
364 if (!BBHasFallthrough(&MBB))
365 WaterList.push_back(&MBB);
367 unsigned MBBSize = 0;
368 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
369 I != E; ++I) {
370 // Add instruction size to MBBSize.
371 MBBSize += ARM::GetInstSize(I);
373 int Opc = I->getOpcode();
374 if (TII->isBranch(Opc)) {
375 bool isCond = false;
376 unsigned Bits = 0;
377 unsigned Scale = 1;
378 int UOpc = Opc;
379 switch (Opc) {
380 case ARM::tBR_JTr:
381 // A Thumb table jump may involve padding; for the offsets to
382 // be right, functions containing these must be 4-byte aligned.
383 AFI->setAlign(2U);
384 if ((Offset+MBBSize)%4 != 0)
385 MBBSize += 2; // padding
386 continue; // Does not get an entry in ImmBranches
387 default:
388 continue; // Ignore other JT branches
389 case ARM::Bcc:
390 isCond = true;
391 UOpc = ARM::B;
392 // Fallthrough
393 case ARM::B:
394 Bits = 24;
395 Scale = 4;
396 break;
397 case ARM::tBcc:
398 isCond = true;
399 UOpc = ARM::tB;
400 Bits = 8;
401 Scale = 2;
402 break;
403 case ARM::tB:
404 Bits = 11;
405 Scale = 2;
406 break;
409 // Record this immediate branch.
410 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
411 ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc));
414 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
415 PushPopMIs.push_back(I);
417 // Scan the instructions for constant pool operands.
418 for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
419 if (I->getOperand(op).isConstantPoolIndex()) {
420 // We found one. The addressing mode tells us the max displacement
421 // from the PC that this instruction permits.
423 // Basic size info comes from the TSFlags field.
424 unsigned Bits = 0;
425 unsigned Scale = 1;
426 unsigned TSFlags = I->getInstrDescriptor()->TSFlags;
427 switch (TSFlags & ARMII::AddrModeMask) {
428 default:
429 // Constant pool entries can reach anything.
430 if (I->getOpcode() == ARM::CONSTPOOL_ENTRY)
431 continue;
432 if (I->getOpcode() == ARM::tLEApcrel) {
433 Bits = 8; // Taking the address of a CP entry.
434 break;
436 assert(0 && "Unknown addressing mode for CP reference!");
437 case ARMII::AddrMode1: // AM1: 8 bits << 2
438 Bits = 8;
439 Scale = 4; // Taking the address of a CP entry.
440 break;
441 case ARMII::AddrMode2:
442 Bits = 12; // +-offset_12
443 break;
444 case ARMII::AddrMode3:
445 Bits = 8; // +-offset_8
446 break;
447 // addrmode4 has no immediate offset.
448 case ARMII::AddrMode5:
449 Bits = 8;
450 Scale = 4; // +-(offset_8*4)
451 break;
452 case ARMII::AddrModeT1:
453 Bits = 5; // +offset_5
454 break;
455 case ARMII::AddrModeT2:
456 Bits = 5;
457 Scale = 2; // +(offset_5*2)
458 break;
459 case ARMII::AddrModeT4:
460 Bits = 5;
461 Scale = 4; // +(offset_5*4)
462 break;
463 case ARMII::AddrModeTs:
464 Bits = 8;
465 Scale = 4; // +(offset_8*4)
466 break;
469 // Remember that this is a user of a CP entry.
470 unsigned CPI = I->getOperand(op).getConstantPoolIndex();
471 MachineInstr *CPEMI = CPEMIs[CPI];
472 unsigned MaxOffs = ((1 << Bits)-1) * Scale;
473 CPUsers.push_back(CPUser(I, CPEMI, MaxOffs));
475 // Increment corresponding CPEntry reference count.
476 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
477 assert(CPE && "Cannot find a corresponding CPEntry!");
478 CPE->RefCount++;
480 // Instructions can only use one CP entry, don't bother scanning the
481 // rest of the operands.
482 break;
486 // In thumb mode, if this block is a constpool island, we may need padding
487 // so it's aligned on 4 byte boundary.
488 if (isThumb &&
489 !MBB.empty() &&
490 MBB.begin()->getOpcode() == ARM::CONSTPOOL_ENTRY &&
491 (Offset%4) != 0)
492 MBBSize += 2;
494 BBSizes.push_back(MBBSize);
495 BBOffsets.push_back(Offset);
496 Offset += MBBSize;
500 /// GetOffsetOf - Return the current offset of the specified machine instruction
501 /// from the start of the function. This offset changes as stuff is moved
502 /// around inside the function.
503 unsigned ARMConstantIslands::GetOffsetOf(MachineInstr *MI) const {
504 MachineBasicBlock *MBB = MI->getParent();
506 // The offset is composed of two things: the sum of the sizes of all MBB's
507 // before this instruction's block, and the offset from the start of the block
508 // it is in.
509 unsigned Offset = BBOffsets[MBB->getNumber()];
511 // If we're looking for a CONSTPOOL_ENTRY in Thumb, see if this block has
512 // alignment padding, and compensate if so.
513 if (isThumb &&
514 MI->getOpcode() == ARM::CONSTPOOL_ENTRY &&
515 Offset%4 != 0)
516 Offset += 2;
518 // Sum instructions before MI in MBB.
519 for (MachineBasicBlock::iterator I = MBB->begin(); ; ++I) {
520 assert(I != MBB->end() && "Didn't find MI in its own basic block?");
521 if (&*I == MI) return Offset;
522 Offset += ARM::GetInstSize(I);
526 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
527 /// ID.
528 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
529 const MachineBasicBlock *RHS) {
530 return LHS->getNumber() < RHS->getNumber();
533 /// UpdateForInsertedWaterBlock - When a block is newly inserted into the
534 /// machine function, it upsets all of the block numbers. Renumber the blocks
535 /// and update the arrays that parallel this numbering.
536 void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
537 // Renumber the MBB's to keep them consequtive.
538 NewBB->getParent()->RenumberBlocks(NewBB);
540 // Insert a size into BBSizes to align it properly with the (newly
541 // renumbered) block numbers.
542 BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0);
544 // Likewise for BBOffsets.
545 BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0);
547 // Next, update WaterList. Specifically, we need to add NewMBB as having
548 // available water after it.
549 std::vector<MachineBasicBlock*>::iterator IP =
550 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
551 CompareMBBNumbers);
552 WaterList.insert(IP, NewBB);
556 /// Split the basic block containing MI into two blocks, which are joined by
557 /// an unconditional branch. Update datastructures and renumber blocks to
558 /// account for this change and returns the newly created block.
559 MachineBasicBlock *ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) {
560 MachineBasicBlock *OrigBB = MI->getParent();
562 // Create a new MBB for the code after the OrigBB.
563 MachineBasicBlock *NewBB = new MachineBasicBlock(OrigBB->getBasicBlock());
564 MachineFunction::iterator MBBI = OrigBB; ++MBBI;
565 OrigBB->getParent()->getBasicBlockList().insert(MBBI, NewBB);
567 // Splice the instructions starting with MI over to NewBB.
568 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
570 // Add an unconditional branch from OrigBB to NewBB.
571 // Note the new unconditional branch is not being recorded.
572 BuildMI(OrigBB, TII->get(isThumb ? ARM::tB : ARM::B)).addMBB(NewBB);
573 NumSplit++;
575 // Update the CFG. All succs of OrigBB are now succs of NewBB.
576 while (!OrigBB->succ_empty()) {
577 MachineBasicBlock *Succ = *OrigBB->succ_begin();
578 OrigBB->removeSuccessor(Succ);
579 NewBB->addSuccessor(Succ);
581 // This pass should be run after register allocation, so there should be no
582 // PHI nodes to update.
583 assert((Succ->empty() || Succ->begin()->getOpcode() != TargetInstrInfo::PHI)
584 && "PHI nodes should be eliminated by now!");
587 // OrigBB branches to NewBB.
588 OrigBB->addSuccessor(NewBB);
590 // Update internal data structures to account for the newly inserted MBB.
591 // This is almost the same as UpdateForInsertedWaterBlock, except that
592 // the Water goes after OrigBB, not NewBB.
593 NewBB->getParent()->RenumberBlocks(NewBB);
595 // Insert a size into BBSizes to align it properly with the (newly
596 // renumbered) block numbers.
597 BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0);
599 // Likewise for BBOffsets.
600 BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0);
602 // Next, update WaterList. Specifically, we need to add OrigMBB as having
603 // available water after it (but not if it's already there, which happens
604 // when splitting before a conditional branch that is followed by an
605 // unconditional branch - in that case we want to insert NewBB).
606 std::vector<MachineBasicBlock*>::iterator IP =
607 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
608 CompareMBBNumbers);
609 MachineBasicBlock* WaterBB = *IP;
610 if (WaterBB == OrigBB)
611 WaterList.insert(next(IP), NewBB);
612 else
613 WaterList.insert(IP, OrigBB);
615 // Figure out how large the first NewMBB is. (It cannot
616 // contain a constpool_entry or tablejump.)
617 unsigned NewBBSize = 0;
618 for (MachineBasicBlock::iterator I = NewBB->begin(), E = NewBB->end();
619 I != E; ++I)
620 NewBBSize += ARM::GetInstSize(I);
622 unsigned OrigBBI = OrigBB->getNumber();
623 unsigned NewBBI = NewBB->getNumber();
624 // Set the size of NewBB in BBSizes.
625 BBSizes[NewBBI] = NewBBSize;
627 // We removed instructions from UserMBB, subtract that off from its size.
628 // Add 2 or 4 to the block to count the unconditional branch we added to it.
629 unsigned delta = isThumb ? 2 : 4;
630 BBSizes[OrigBBI] -= NewBBSize - delta;
632 // ...and adjust BBOffsets for NewBB accordingly.
633 BBOffsets[NewBBI] = BBOffsets[OrigBBI] + BBSizes[OrigBBI];
635 // All BBOffsets following these blocks must be modified.
636 AdjustBBOffsetsAfter(NewBB, delta);
638 return NewBB;
641 /// OffsetIsInRange - Checks whether UserOffset (the location of a constant pool
642 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
643 /// constant pool entry).
644 bool ARMConstantIslands::OffsetIsInRange(unsigned UserOffset,
645 unsigned TrialOffset, unsigned MaxDisp, bool NegativeOK) {
646 // On Thumb offsets==2 mod 4 are rounded down by the hardware for
647 // purposes of the displacement computation; compensate for that here.
648 // Effectively, the valid range of displacements is 2 bytes smaller for such
649 // references.
650 if (isThumb && UserOffset%4 !=0)
651 UserOffset -= 2;
652 // CPEs will be rounded up to a multiple of 4.
653 if (isThumb && TrialOffset%4 != 0)
654 TrialOffset += 2;
656 if (UserOffset <= TrialOffset) {
657 // User before the Trial.
658 if (TrialOffset-UserOffset <= MaxDisp)
659 return true;
660 } else if (NegativeOK) {
661 if (UserOffset-TrialOffset <= MaxDisp)
662 return true;
664 return false;
667 /// WaterIsInRange - Returns true if a CPE placed after the specified
668 /// Water (a basic block) will be in range for the specific MI.
670 bool ARMConstantIslands::WaterIsInRange(unsigned UserOffset,
671 MachineBasicBlock* Water, CPUser &U)
673 unsigned MaxDisp = U.MaxDisp;
674 MachineFunction::iterator I = next(MachineFunction::iterator(Water));
675 unsigned CPEOffset = BBOffsets[Water->getNumber()] +
676 BBSizes[Water->getNumber()];
678 // If the CPE is to be inserted before the instruction, that will raise
679 // the offset of the instruction. (Currently applies only to ARM, so
680 // no alignment compensation attempted here.)
681 if (CPEOffset < UserOffset)
682 UserOffset += U.CPEMI->getOperand(2).getImm();
684 return OffsetIsInRange (UserOffset, CPEOffset, MaxDisp, !isThumb);
687 /// CPEIsInRange - Returns true if the distance between specific MI and
688 /// specific ConstPool entry instruction can fit in MI's displacement field.
689 bool ARMConstantIslands::CPEIsInRange(MachineInstr *MI, unsigned UserOffset,
690 MachineInstr *CPEMI,
691 unsigned MaxDisp, bool DoDump) {
692 unsigned CPEOffset = GetOffsetOf(CPEMI);
693 assert(CPEOffset%4 == 0 && "Misaligned CPE");
695 if (DoDump) {
696 DOUT << "User of CPE#" << CPEMI->getOperand(0).getImm()
697 << " max delta=" << MaxDisp
698 << " insn address=" << UserOffset
699 << " CPE address=" << CPEOffset
700 << " offset=" << int(CPEOffset-UserOffset) << "\t" << *MI;
703 return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, !isThumb);
706 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
707 /// unconditionally branches to its only successor.
708 static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
709 if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
710 return false;
712 MachineBasicBlock *Succ = *MBB->succ_begin();
713 MachineBasicBlock *Pred = *MBB->pred_begin();
714 MachineInstr *PredMI = &Pred->back();
715 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB)
716 return PredMI->getOperand(0).getMBB() == Succ;
717 return false;
720 void ARMConstantIslands::AdjustBBOffsetsAfter(MachineBasicBlock *BB,
721 int delta) {
722 MachineFunction::iterator MBBI = BB; MBBI = next(MBBI);
723 for(unsigned i=BB->getNumber()+1; i<BB->getParent()->getNumBlockIDs(); i++) {
724 BBOffsets[i] += delta;
725 // If some existing blocks have padding, adjust the padding as needed, a
726 // bit tricky. delta can be negative so don't use % on that.
727 if (isThumb) {
728 MachineBasicBlock *MBB = MBBI;
729 if (!MBB->empty()) {
730 // Constant pool entries require padding.
731 if (MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) {
732 unsigned oldOffset = BBOffsets[i] - delta;
733 if (oldOffset%4==0 && BBOffsets[i]%4!=0) {
734 // add new padding
735 BBSizes[i] += 2;
736 delta += 2;
737 } else if (oldOffset%4!=0 && BBOffsets[i]%4==0) {
738 // remove existing padding
739 BBSizes[i] -=2;
740 delta -= 2;
743 // Thumb jump tables require padding. They should be at the end;
744 // following unconditional branches are removed by AnalyzeBranch.
745 MachineInstr *ThumbJTMI = NULL;
746 if (prior(MBB->end())->getOpcode() == ARM::tBR_JTr)
747 ThumbJTMI = prior(MBB->end());
748 if (ThumbJTMI) {
749 unsigned newMIOffset = GetOffsetOf(ThumbJTMI);
750 unsigned oldMIOffset = newMIOffset - delta;
751 if (oldMIOffset%4 == 0 && newMIOffset%4 != 0) {
752 // remove existing padding
753 BBSizes[i] -= 2;
754 delta -= 2;
755 } else if (oldMIOffset%4 != 0 && newMIOffset%4 == 0) {
756 // add new padding
757 BBSizes[i] += 2;
758 delta += 2;
761 if (delta==0)
762 return;
764 MBBI = next(MBBI);
769 /// DecrementOldEntry - find the constant pool entry with index CPI
770 /// and instruction CPEMI, and decrement its refcount. If the refcount
771 /// becomes 0 remove the entry and instruction. Returns true if we removed
772 /// the entry, false if we didn't.
774 bool ARMConstantIslands::DecrementOldEntry(unsigned CPI, MachineInstr *CPEMI) {
775 // Find the old entry. Eliminate it if it is no longer used.
776 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
777 assert(CPE && "Unexpected!");
778 if (--CPE->RefCount == 0) {
779 RemoveDeadCPEMI(CPEMI);
780 CPE->CPEMI = NULL;
781 NumCPEs--;
782 return true;
784 return false;
787 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
788 /// if not, see if an in-range clone of the CPE is in range, and if so,
789 /// change the data structures so the user references the clone. Returns:
790 /// 0 = no existing entry found
791 /// 1 = entry found, and there were no code insertions or deletions
792 /// 2 = entry found, and there were code insertions or deletions
793 int ARMConstantIslands::LookForExistingCPEntry(CPUser& U, unsigned UserOffset)
795 MachineInstr *UserMI = U.MI;
796 MachineInstr *CPEMI = U.CPEMI;
798 // Check to see if the CPE is already in-range.
799 if (CPEIsInRange(UserMI, UserOffset, CPEMI, U.MaxDisp, true)) {
800 DOUT << "In range\n";
801 return 1;
804 // No. Look for previously created clones of the CPE that are in range.
805 unsigned CPI = CPEMI->getOperand(1).getConstantPoolIndex();
806 std::vector<CPEntry> &CPEs = CPEntries[CPI];
807 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
808 // We already tried this one
809 if (CPEs[i].CPEMI == CPEMI)
810 continue;
811 // Removing CPEs can leave empty entries, skip
812 if (CPEs[i].CPEMI == NULL)
813 continue;
814 if (CPEIsInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.MaxDisp, false)) {
815 DOUT << "Replacing CPE#" << CPI << " with CPE#" << CPEs[i].CPI << "\n";
816 // Point the CPUser node to the replacement
817 U.CPEMI = CPEs[i].CPEMI;
818 // Change the CPI in the instruction operand to refer to the clone.
819 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
820 if (UserMI->getOperand(j).isConstantPoolIndex()) {
821 UserMI->getOperand(j).setConstantPoolIndex(CPEs[i].CPI);
822 break;
824 // Adjust the refcount of the clone...
825 CPEs[i].RefCount++;
826 // ...and the original. If we didn't remove the old entry, none of the
827 // addresses changed, so we don't need another pass.
828 return DecrementOldEntry(CPI, CPEMI) ? 2 : 1;
831 return 0;
834 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
835 /// the specific unconditional branch instruction.
836 static inline unsigned getUnconditionalBrDisp(int Opc) {
837 return (Opc == ARM::tB) ? ((1<<10)-1)*2 : ((1<<23)-1)*4;
840 /// AcceptWater - Small amount of common code factored out of the following.
842 MachineBasicBlock* ARMConstantIslands::AcceptWater(MachineBasicBlock *WaterBB,
843 std::vector<MachineBasicBlock*>::iterator IP) {
844 DOUT << "found water in range\n";
845 // Remove the original WaterList entry; we want subsequent
846 // insertions in this vicinity to go after the one we're
847 // about to insert. This considerably reduces the number
848 // of times we have to move the same CPE more than once.
849 WaterList.erase(IP);
850 // CPE goes before following block (NewMBB).
851 return next(MachineFunction::iterator(WaterBB));
854 /// LookForWater - look for an existing entry in the WaterList in which
855 /// we can place the CPE referenced from U so it's within range of U's MI.
856 /// Returns true if found, false if not. If it returns true, *NewMBB
857 /// is set to the WaterList entry.
858 /// For ARM, we prefer the water that's farthest away. For Thumb, prefer
859 /// water that will not introduce padding to water that will; within each
860 /// group, prefer the water that's farthest away.
862 bool ARMConstantIslands::LookForWater(CPUser &U, unsigned UserOffset,
863 MachineBasicBlock** NewMBB) {
864 std::vector<MachineBasicBlock*>::iterator IPThatWouldPad;
865 MachineBasicBlock* WaterBBThatWouldPad = NULL;
866 if (!WaterList.empty()) {
867 for (std::vector<MachineBasicBlock*>::iterator IP = prior(WaterList.end()),
868 B = WaterList.begin();; --IP) {
869 MachineBasicBlock* WaterBB = *IP;
870 if (WaterIsInRange(UserOffset, WaterBB, U)) {
871 if (isThumb &&
872 (BBOffsets[WaterBB->getNumber()] +
873 BBSizes[WaterBB->getNumber()])%4 != 0) {
874 // This is valid Water, but would introduce padding. Remember
875 // it in case we don't find any Water that doesn't do this.
876 if (!WaterBBThatWouldPad) {
877 WaterBBThatWouldPad = WaterBB;
878 IPThatWouldPad = IP;
880 } else {
881 *NewMBB = AcceptWater(WaterBB, IP);
882 return true;
885 if (IP == B)
886 break;
889 if (isThumb && WaterBBThatWouldPad) {
890 *NewMBB = AcceptWater(WaterBBThatWouldPad, IPThatWouldPad);
891 return true;
893 return false;
896 /// CreateNewWater - No existing WaterList entry will work for
897 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the
898 /// block is used if in range, and the conditional branch munged so control
899 /// flow is correct. Otherwise the block is split to create a hole with an
900 /// unconditional branch around it. In either case *NewMBB is set to a
901 /// block following which the new island can be inserted (the WaterList
902 /// is not adjusted).
904 void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex,
905 unsigned UserOffset, MachineBasicBlock** NewMBB) {
906 CPUser &U = CPUsers[CPUserIndex];
907 MachineInstr *UserMI = U.MI;
908 MachineInstr *CPEMI = U.CPEMI;
909 MachineBasicBlock *UserMBB = UserMI->getParent();
910 unsigned OffsetOfNextBlock = BBOffsets[UserMBB->getNumber()] +
911 BBSizes[UserMBB->getNumber()];
912 assert(OffsetOfNextBlock== BBOffsets[UserMBB->getNumber()+1]);
914 // If the use is at the end of the block, or the end of the block
915 // is within range, make new water there. (The addition below is
916 // for the unconditional branch we will be adding: 4 bytes on ARM,
917 // 2 on Thumb. Possible Thumb alignment padding is allowed for
918 // inside OffsetIsInRange.
919 // If the block ends in an unconditional branch already, it is water,
920 // and is known to be out of range, so we'll always be adding a branch.)
921 if (&UserMBB->back() == UserMI ||
922 OffsetIsInRange(UserOffset, OffsetOfNextBlock + (isThumb ? 2: 4),
923 U.MaxDisp, !isThumb)) {
924 DOUT << "Split at end of block\n";
925 if (&UserMBB->back() == UserMI)
926 assert(BBHasFallthrough(UserMBB) && "Expected a fallthrough BB!");
927 *NewMBB = next(MachineFunction::iterator(UserMBB));
928 // Add an unconditional branch from UserMBB to fallthrough block.
929 // Record it for branch lengthening; this new branch will not get out of
930 // range, but if the preceding conditional branch is out of range, the
931 // targets will be exchanged, and the altered branch may be out of
932 // range, so the machinery has to know about it.
933 int UncondBr = isThumb ? ARM::tB : ARM::B;
934 BuildMI(UserMBB, TII->get(UncondBr)).addMBB(*NewMBB);
935 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
936 ImmBranches.push_back(ImmBranch(&UserMBB->back(),
937 MaxDisp, false, UncondBr));
938 int delta = isThumb ? 2 : 4;
939 BBSizes[UserMBB->getNumber()] += delta;
940 AdjustBBOffsetsAfter(UserMBB, delta);
941 } else {
942 // What a big block. Find a place within the block to split it.
943 // This is a little tricky on Thumb since instructions are 2 bytes
944 // and constant pool entries are 4 bytes: if instruction I references
945 // island CPE, and instruction I+1 references CPE', it will
946 // not work well to put CPE as far forward as possible, since then
947 // CPE' cannot immediately follow it (that location is 2 bytes
948 // farther away from I+1 than CPE was from I) and we'd need to create
949 // a new island. So, we make a first guess, then walk through the
950 // instructions between the one currently being looked at and the
951 // possible insertion point, and make sure any other instructions
952 // that reference CPEs will be able to use the same island area;
953 // if not, we back up the insertion point.
955 // The 4 in the following is for the unconditional branch we'll be
956 // inserting (allows for long branch on Thumb). Alignment of the
957 // island is handled inside OffsetIsInRange.
958 unsigned BaseInsertOffset = UserOffset + U.MaxDisp -4;
959 // This could point off the end of the block if we've already got
960 // constant pool entries following this block; only the last one is
961 // in the water list. Back past any possible branches (allow for a
962 // conditional and a maximally long unconditional).
963 if (BaseInsertOffset >= BBOffsets[UserMBB->getNumber()+1])
964 BaseInsertOffset = BBOffsets[UserMBB->getNumber()+1] -
965 (isThumb ? 6 : 8);
966 unsigned EndInsertOffset = BaseInsertOffset +
967 CPEMI->getOperand(2).getImm();
968 MachineBasicBlock::iterator MI = UserMI;
969 ++MI;
970 unsigned CPUIndex = CPUserIndex+1;
971 for (unsigned Offset = UserOffset+ARM::GetInstSize(UserMI);
972 Offset < BaseInsertOffset;
973 Offset += ARM::GetInstSize(MI),
974 MI = next(MI)) {
975 if (CPUIndex < CPUsers.size() && CPUsers[CPUIndex].MI == MI) {
976 if (!OffsetIsInRange(Offset, EndInsertOffset,
977 CPUsers[CPUIndex].MaxDisp, !isThumb)) {
978 BaseInsertOffset -= (isThumb ? 2 : 4);
979 EndInsertOffset -= (isThumb ? 2 : 4);
981 // This is overly conservative, as we don't account for CPEMIs
982 // being reused within the block, but it doesn't matter much.
983 EndInsertOffset += CPUsers[CPUIndex].CPEMI->getOperand(2).getImm();
984 CPUIndex++;
987 DOUT << "Split in middle of big block\n";
988 *NewMBB = SplitBlockBeforeInstr(prior(MI));
992 /// HandleConstantPoolUser - Analyze the specified user, checking to see if it
993 /// is out-of-range. If so, pick it up the constant pool value and move it some
994 /// place in-range. Return true if we changed any addresses (thus must run
995 /// another pass of branch lengthening), false otherwise.
996 bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &Fn,
997 unsigned CPUserIndex){
998 CPUser &U = CPUsers[CPUserIndex];
999 MachineInstr *UserMI = U.MI;
1000 MachineInstr *CPEMI = U.CPEMI;
1001 unsigned CPI = CPEMI->getOperand(1).getConstantPoolIndex();
1002 unsigned Size = CPEMI->getOperand(2).getImm();
1003 MachineBasicBlock *NewMBB;
1004 // Compute this only once, it's expensive. The 4 or 8 is the value the
1005 // hardware keeps in the PC (2 insns ahead of the reference).
1006 unsigned UserOffset = GetOffsetOf(UserMI) + (isThumb ? 4 : 8);
1008 // Special case: tLEApcrel are two instructions MI's. The actual user is the
1009 // second instruction.
1010 if (UserMI->getOpcode() == ARM::tLEApcrel)
1011 UserOffset += 2;
1013 // See if the current entry is within range, or there is a clone of it
1014 // in range.
1015 int result = LookForExistingCPEntry(U, UserOffset);
1016 if (result==1) return false;
1017 else if (result==2) return true;
1019 // No existing clone of this CPE is within range.
1020 // We will be generating a new clone. Get a UID for it.
1021 unsigned ID = NextUID++;
1023 // Look for water where we can place this CPE. We look for the farthest one
1024 // away that will work. Forward references only for now (although later
1025 // we might find some that are backwards).
1027 if (!LookForWater(U, UserOffset, &NewMBB)) {
1028 // No water found.
1029 DOUT << "No water found\n";
1030 CreateNewWater(CPUserIndex, UserOffset, &NewMBB);
1033 // Okay, we know we can put an island before NewMBB now, do it!
1034 MachineBasicBlock *NewIsland = new MachineBasicBlock();
1035 Fn.getBasicBlockList().insert(NewMBB, NewIsland);
1037 // Update internal data structures to account for the newly inserted MBB.
1038 UpdateForInsertedWaterBlock(NewIsland);
1040 // Decrement the old entry, and remove it if refcount becomes 0.
1041 DecrementOldEntry(CPI, CPEMI);
1043 // Now that we have an island to add the CPE to, clone the original CPE and
1044 // add it to the island.
1045 U.CPEMI = BuildMI(NewIsland, TII->get(ARM::CONSTPOOL_ENTRY))
1046 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
1047 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1048 NumCPEs++;
1050 BBOffsets[NewIsland->getNumber()] = BBOffsets[NewMBB->getNumber()];
1051 // Compensate for .align 2 in thumb mode.
1052 if (isThumb && BBOffsets[NewIsland->getNumber()]%4 != 0)
1053 Size += 2;
1054 // Increase the size of the island block to account for the new entry.
1055 BBSizes[NewIsland->getNumber()] += Size;
1056 AdjustBBOffsetsAfter(NewIsland, Size);
1058 // Finally, change the CPI in the instruction operand to be ID.
1059 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1060 if (UserMI->getOperand(i).isConstantPoolIndex()) {
1061 UserMI->getOperand(i).setConstantPoolIndex(ID);
1062 break;
1065 DOUT << " Moved CPE to #" << ID << " CPI=" << CPI << "\t" << *UserMI;
1067 return true;
1070 /// RemoveDeadCPEMI - Remove a dead constant pool entry instruction. Update
1071 /// sizes and offsets of impacted basic blocks.
1072 void ARMConstantIslands::RemoveDeadCPEMI(MachineInstr *CPEMI) {
1073 MachineBasicBlock *CPEBB = CPEMI->getParent();
1074 unsigned Size = CPEMI->getOperand(2).getImm();
1075 CPEMI->eraseFromParent();
1076 BBSizes[CPEBB->getNumber()] -= Size;
1077 // All succeeding offsets have the current size value added in, fix this.
1078 if (CPEBB->empty()) {
1079 // In thumb mode, the size of island may be padded by two to compensate for
1080 // the alignment requirement. Then it will now be 2 when the block is
1081 // empty, so fix this.
1082 // All succeeding offsets have the current size value added in, fix this.
1083 if (BBSizes[CPEBB->getNumber()] != 0) {
1084 Size += BBSizes[CPEBB->getNumber()];
1085 BBSizes[CPEBB->getNumber()] = 0;
1088 AdjustBBOffsetsAfter(CPEBB, -Size);
1089 // An island has only one predecessor BB and one successor BB. Check if
1090 // this BB's predecessor jumps directly to this BB's successor. This
1091 // shouldn't happen currently.
1092 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1093 // FIXME: remove the empty blocks after all the work is done?
1096 /// RemoveUnusedCPEntries - Remove constant pool entries whose refcounts
1097 /// are zero.
1098 bool ARMConstantIslands::RemoveUnusedCPEntries() {
1099 unsigned MadeChange = false;
1100 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1101 std::vector<CPEntry> &CPEs = CPEntries[i];
1102 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1103 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1104 RemoveDeadCPEMI(CPEs[j].CPEMI);
1105 CPEs[j].CPEMI = NULL;
1106 MadeChange = true;
1110 return MadeChange;
1113 /// BBIsInRange - Returns true if the distance between specific MI and
1114 /// specific BB can fit in MI's displacement field.
1115 bool ARMConstantIslands::BBIsInRange(MachineInstr *MI,MachineBasicBlock *DestBB,
1116 unsigned MaxDisp) {
1117 unsigned PCAdj = isThumb ? 4 : 8;
1118 unsigned BrOffset = GetOffsetOf(MI) + PCAdj;
1119 unsigned DestOffset = BBOffsets[DestBB->getNumber()];
1121 DOUT << "Branch of destination BB#" << DestBB->getNumber()
1122 << " from BB#" << MI->getParent()->getNumber()
1123 << " max delta=" << MaxDisp
1124 << " from " << GetOffsetOf(MI) << " to " << DestOffset
1125 << " offset " << int(DestOffset-BrOffset) << "\t" << *MI;
1127 if (BrOffset <= DestOffset) {
1128 // Branch before the Dest.
1129 if (DestOffset-BrOffset <= MaxDisp)
1130 return true;
1131 } else {
1132 if (BrOffset-DestOffset <= MaxDisp)
1133 return true;
1135 return false;
1138 /// FixUpImmediateBr - Fix up an immediate branch whose destination is too far
1139 /// away to fit in its displacement field.
1140 bool ARMConstantIslands::FixUpImmediateBr(MachineFunction &Fn, ImmBranch &Br) {
1141 MachineInstr *MI = Br.MI;
1142 MachineBasicBlock *DestBB = MI->getOperand(0).getMachineBasicBlock();
1144 // Check to see if the DestBB is already in-range.
1145 if (BBIsInRange(MI, DestBB, Br.MaxDisp))
1146 return false;
1148 if (!Br.isCond)
1149 return FixUpUnconditionalBr(Fn, Br);
1150 return FixUpConditionalBr(Fn, Br);
1153 /// FixUpUnconditionalBr - Fix up an unconditional branch whose destination is
1154 /// too far away to fit in its displacement field. If the LR register has been
1155 /// spilled in the epilogue, then we can use BL to implement a far jump.
1156 /// Otherwise, add an intermediate branch instruction to to a branch.
1157 bool
1158 ARMConstantIslands::FixUpUnconditionalBr(MachineFunction &Fn, ImmBranch &Br) {
1159 MachineInstr *MI = Br.MI;
1160 MachineBasicBlock *MBB = MI->getParent();
1161 assert(isThumb && "Expected a Thumb function!");
1163 // Use BL to implement far jump.
1164 Br.MaxDisp = (1 << 21) * 2;
1165 MI->setInstrDescriptor(TII->get(ARM::tBfar));
1166 BBSizes[MBB->getNumber()] += 2;
1167 AdjustBBOffsetsAfter(MBB, 2);
1168 HasFarJump = true;
1169 NumUBrFixed++;
1171 DOUT << " Changed B to long jump " << *MI;
1173 return true;
1176 /// FixUpConditionalBr - Fix up a conditional branch whose destination is too
1177 /// far away to fit in its displacement field. It is converted to an inverse
1178 /// conditional branch + an unconditional branch to the destination.
1179 bool
1180 ARMConstantIslands::FixUpConditionalBr(MachineFunction &Fn, ImmBranch &Br) {
1181 MachineInstr *MI = Br.MI;
1182 MachineBasicBlock *DestBB = MI->getOperand(0).getMachineBasicBlock();
1184 // Add a unconditional branch to the destination and invert the branch
1185 // condition to jump over it:
1186 // blt L1
1187 // =>
1188 // bge L2
1189 // b L1
1190 // L2:
1191 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImmedValue();
1192 CC = ARMCC::getOppositeCondition(CC);
1193 unsigned CCReg = MI->getOperand(2).getReg();
1195 // If the branch is at the end of its MBB and that has a fall-through block,
1196 // direct the updated conditional branch to the fall-through block. Otherwise,
1197 // split the MBB before the next instruction.
1198 MachineBasicBlock *MBB = MI->getParent();
1199 MachineInstr *BMI = &MBB->back();
1200 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1202 NumCBrFixed++;
1203 if (BMI != MI) {
1204 if (next(MachineBasicBlock::iterator(MI)) == MBB->back() &&
1205 BMI->getOpcode() == Br.UncondBr) {
1206 // Last MI in the BB is a unconditional branch. Can we simply invert the
1207 // condition and swap destinations:
1208 // beq L1
1209 // b L2
1210 // =>
1211 // bne L2
1212 // b L1
1213 MachineBasicBlock *NewDest = BMI->getOperand(0).getMachineBasicBlock();
1214 if (BBIsInRange(MI, NewDest, Br.MaxDisp)) {
1215 DOUT << " Invert Bcc condition and swap its destination with " << *BMI;
1216 BMI->getOperand(0).setMachineBasicBlock(DestBB);
1217 MI->getOperand(0).setMachineBasicBlock(NewDest);
1218 MI->getOperand(1).setImm(CC);
1219 return true;
1224 if (NeedSplit) {
1225 SplitBlockBeforeInstr(MI);
1226 // No need for the branch to the next block. We're adding a unconditional
1227 // branch to the destination.
1228 int delta = ARM::GetInstSize(&MBB->back());
1229 BBSizes[MBB->getNumber()] -= delta;
1230 MachineBasicBlock* SplitBB = next(MachineFunction::iterator(MBB));
1231 AdjustBBOffsetsAfter(SplitBB, -delta);
1232 MBB->back().eraseFromParent();
1233 // BBOffsets[SplitBB] is wrong temporarily, fixed below
1235 MachineBasicBlock *NextBB = next(MachineFunction::iterator(MBB));
1237 DOUT << " Insert B to BB#" << DestBB->getNumber()
1238 << " also invert condition and change dest. to BB#"
1239 << NextBB->getNumber() << "\n";
1241 // Insert a new conditional branch and a new unconditional branch.
1242 // Also update the ImmBranch as well as adding a new entry for the new branch.
1243 BuildMI(MBB, TII->get(MI->getOpcode())).addMBB(NextBB)
1244 .addImm(CC).addReg(CCReg);
1245 Br.MI = &MBB->back();
1246 BBSizes[MBB->getNumber()] += ARM::GetInstSize(&MBB->back());
1247 BuildMI(MBB, TII->get(Br.UncondBr)).addMBB(DestBB);
1248 BBSizes[MBB->getNumber()] += ARM::GetInstSize(&MBB->back());
1249 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1250 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1252 // Remove the old conditional branch. It may or may not still be in MBB.
1253 BBSizes[MI->getParent()->getNumber()] -= ARM::GetInstSize(MI);
1254 MI->eraseFromParent();
1256 // The net size change is an addition of one unconditional branch.
1257 int delta = ARM::GetInstSize(&MBB->back());
1258 AdjustBBOffsetsAfter(MBB, delta);
1259 return true;
1262 /// UndoLRSpillRestore - Remove Thumb push / pop instructions that only spills
1263 /// LR / restores LR to pc.
1264 bool ARMConstantIslands::UndoLRSpillRestore() {
1265 bool MadeChange = false;
1266 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) {
1267 MachineInstr *MI = PushPopMIs[i];
1268 if (MI->getOpcode() == ARM::tPOP_RET &&
1269 MI->getOperand(0).getReg() == ARM::PC &&
1270 MI->getNumExplicitOperands() == 1) {
1271 BuildMI(MI->getParent(), TII->get(ARM::tBX_RET));
1272 MI->eraseFromParent();
1273 MadeChange = true;
1276 return MadeChange;