1 //===- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ----------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file declares the SelectionDAG class, and transitively defines the
10 // SDNode class and subclasses.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_CODEGEN_SELECTIONDAG_H
15 #define LLVM_CODEGEN_SELECTIONDAG_H
17 #include "llvm/ADT/APFloat.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/FoldingSet.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringMap.h"
26 #include "llvm/ADT/ilist.h"
27 #include "llvm/ADT/iterator.h"
28 #include "llvm/ADT/iterator_range.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
31 #include "llvm/CodeGen/DAGCombine.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/Metadata.h"
41 #include "llvm/Support/Allocator.h"
42 #include "llvm/Support/ArrayRecycler.h"
43 #include "llvm/Support/AtomicOrdering.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/CodeGen.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/MachineValueType.h"
48 #include "llvm/Support/RecyclingAllocator.h"
70 class MachineBasicBlock
;
71 class MachineConstantPoolValue
;
73 class OptimizationRemarkEmitter
;
77 class SelectionDAGTargetInfo
;
78 class TargetLibraryInfo
;
81 class TargetSubtargetInfo
;
84 class SDVTListNode
: public FoldingSetNode
{
85 friend struct FoldingSetTrait
<SDVTListNode
>;
87 /// A reference to an Interned FoldingSetNodeID for this node.
88 /// The Allocator in SelectionDAG holds the data.
89 /// SDVTList contains all types which are frequently accessed in SelectionDAG.
90 /// The size of this list is not expected to be big so it won't introduce
92 FoldingSetNodeIDRef FastID
;
95 /// The hash value for SDVTList is fixed, so cache it to avoid
100 SDVTListNode(const FoldingSetNodeIDRef ID
, const EVT
*VT
, unsigned int Num
) :
101 FastID(ID
), VTs(VT
), NumVTs(Num
) {
102 HashValue
= ID
.ComputeHash();
105 SDVTList
getSDVTList() {
106 SDVTList result
= {VTs
, NumVTs
};
111 /// Specialize FoldingSetTrait for SDVTListNode
112 /// to avoid computing temp FoldingSetNodeID and hash value.
113 template<> struct FoldingSetTrait
<SDVTListNode
> : DefaultFoldingSetTrait
<SDVTListNode
> {
114 static void Profile(const SDVTListNode
&X
, FoldingSetNodeID
& ID
) {
118 static bool Equals(const SDVTListNode
&X
, const FoldingSetNodeID
&ID
,
119 unsigned IDHash
, FoldingSetNodeID
&TempID
) {
120 if (X
.HashValue
!= IDHash
)
122 return ID
== X
.FastID
;
125 static unsigned ComputeHash(const SDVTListNode
&X
, FoldingSetNodeID
&TempID
) {
130 template <> struct ilist_alloc_traits
<SDNode
> {
131 static void deleteNode(SDNode
*) {
132 llvm_unreachable("ilist_traits<SDNode> shouldn't see a deleteNode call!");
136 /// Keeps track of dbg_value information through SDISel. We do
137 /// not build SDNodes for these so as not to perturb the generated code;
138 /// instead the info is kept off to the side in this structure. Each SDNode may
139 /// have one or more associated dbg_value entries. This information is kept in
141 /// Byval parameters are handled separately because they don't use alloca's,
142 /// which busts the normal mechanism. There is good reason for handling all
143 /// parameters separately: they may not have code generated for them, they
144 /// should always go at the beginning of the function regardless of other code
145 /// motion, and debug info for them is potentially useful even if the parameter
146 /// is unused. Right now only byval parameters are handled separately.
148 BumpPtrAllocator Alloc
;
149 SmallVector
<SDDbgValue
*, 32> DbgValues
;
150 SmallVector
<SDDbgValue
*, 32> ByvalParmDbgValues
;
151 SmallVector
<SDDbgLabel
*, 4> DbgLabels
;
152 using DbgValMapType
= DenseMap
<const SDNode
*, SmallVector
<SDDbgValue
*, 2>>;
153 DbgValMapType DbgValMap
;
156 SDDbgInfo() = default;
157 SDDbgInfo(const SDDbgInfo
&) = delete;
158 SDDbgInfo
&operator=(const SDDbgInfo
&) = delete;
160 void add(SDDbgValue
*V
, const SDNode
*Node
, bool isParameter
) {
162 ByvalParmDbgValues
.push_back(V
);
163 } else DbgValues
.push_back(V
);
165 DbgValMap
[Node
].push_back(V
);
168 void add(SDDbgLabel
*L
) {
169 DbgLabels
.push_back(L
);
172 /// Invalidate all DbgValues attached to the node and remove
173 /// it from the Node-to-DbgValues map.
174 void erase(const SDNode
*Node
);
179 ByvalParmDbgValues
.clear();
184 BumpPtrAllocator
&getAlloc() { return Alloc
; }
187 return DbgValues
.empty() && ByvalParmDbgValues
.empty() && DbgLabels
.empty();
190 ArrayRef
<SDDbgValue
*> getSDDbgValues(const SDNode
*Node
) const {
191 auto I
= DbgValMap
.find(Node
);
192 if (I
!= DbgValMap
.end())
194 return ArrayRef
<SDDbgValue
*>();
197 using DbgIterator
= SmallVectorImpl
<SDDbgValue
*>::iterator
;
198 using DbgLabelIterator
= SmallVectorImpl
<SDDbgLabel
*>::iterator
;
200 DbgIterator
DbgBegin() { return DbgValues
.begin(); }
201 DbgIterator
DbgEnd() { return DbgValues
.end(); }
202 DbgIterator
ByvalParmDbgBegin() { return ByvalParmDbgValues
.begin(); }
203 DbgIterator
ByvalParmDbgEnd() { return ByvalParmDbgValues
.end(); }
204 DbgLabelIterator
DbgLabelBegin() { return DbgLabels
.begin(); }
205 DbgLabelIterator
DbgLabelEnd() { return DbgLabels
.end(); }
208 void checkForCycles(const SelectionDAG
*DAG
, bool force
= false);
210 /// This is used to represent a portion of an LLVM function in a low-level
211 /// Data Dependence DAG representation suitable for instruction selection.
212 /// This DAG is constructed as the first step of instruction selection in order
213 /// to allow implementation of machine specific optimizations
214 /// and code simplifications.
216 /// The representation used by the SelectionDAG is a target-independent
217 /// representation, which has some similarities to the GCC RTL representation,
218 /// but is significantly more simple, powerful, and is a graph form instead of a
222 const TargetMachine
&TM
;
223 const SelectionDAGTargetInfo
*TSI
= nullptr;
224 const TargetLowering
*TLI
= nullptr;
225 const TargetLibraryInfo
*LibInfo
= nullptr;
227 Pass
*SDAGISelPass
= nullptr;
228 LLVMContext
*Context
;
229 CodeGenOpt::Level OptLevel
;
231 LegacyDivergenceAnalysis
* DA
= nullptr;
232 FunctionLoweringInfo
* FLI
= nullptr;
234 /// The function-level optimization remark emitter. Used to emit remarks
235 /// whenever manipulating the DAG.
236 OptimizationRemarkEmitter
*ORE
;
238 /// The starting token.
241 /// The root of the entire DAG.
244 /// A linked list of nodes in the current DAG.
245 ilist
<SDNode
> AllNodes
;
247 /// The AllocatorType for allocating SDNodes. We use
248 /// pool allocation with recycling.
249 using NodeAllocatorType
= RecyclingAllocator
<BumpPtrAllocator
, SDNode
,
250 sizeof(LargestSDNode
),
251 alignof(MostAlignedSDNode
)>;
253 /// Pool allocation for nodes.
254 NodeAllocatorType NodeAllocator
;
256 /// This structure is used to memoize nodes, automatically performing
257 /// CSE with existing nodes when a duplicate is requested.
258 FoldingSet
<SDNode
> CSEMap
;
260 /// Pool allocation for machine-opcode SDNode operands.
261 BumpPtrAllocator OperandAllocator
;
262 ArrayRecycler
<SDUse
> OperandRecycler
;
264 /// Pool allocation for misc. objects that are created once per SelectionDAG.
265 BumpPtrAllocator Allocator
;
267 /// Tracks dbg_value and dbg_label information through SDISel.
270 using CallSiteInfo
= MachineFunction::CallSiteInfo
;
271 using CallSiteInfoImpl
= MachineFunction::CallSiteInfoImpl
;
272 DenseMap
<const SDNode
*, CallSiteInfo
> SDCallSiteInfo
;
274 uint16_t NextPersistentId
= 0;
277 /// Clients of various APIs that cause global effects on
278 /// the DAG can optionally implement this interface. This allows the clients
279 /// to handle the various sorts of updates that happen.
281 /// A DAGUpdateListener automatically registers itself with DAG when it is
282 /// constructed, and removes itself when destroyed in RAII fashion.
283 struct DAGUpdateListener
{
284 DAGUpdateListener
*const Next
;
287 explicit DAGUpdateListener(SelectionDAG
&D
)
288 : Next(D
.UpdateListeners
), DAG(D
) {
289 DAG
.UpdateListeners
= this;
292 virtual ~DAGUpdateListener() {
293 assert(DAG
.UpdateListeners
== this &&
294 "DAGUpdateListeners must be destroyed in LIFO order");
295 DAG
.UpdateListeners
= Next
;
298 /// The node N that was deleted and, if E is not null, an
299 /// equivalent node E that replaced it.
300 virtual void NodeDeleted(SDNode
*N
, SDNode
*E
);
302 /// The node N that was updated.
303 virtual void NodeUpdated(SDNode
*N
);
305 /// The node N that was inserted.
306 virtual void NodeInserted(SDNode
*N
);
309 struct DAGNodeDeletedListener
: public DAGUpdateListener
{
310 std::function
<void(SDNode
*, SDNode
*)> Callback
;
312 DAGNodeDeletedListener(SelectionDAG
&DAG
,
313 std::function
<void(SDNode
*, SDNode
*)> Callback
)
314 : DAGUpdateListener(DAG
), Callback(std::move(Callback
)) {}
316 void NodeDeleted(SDNode
*N
, SDNode
*E
) override
{ Callback(N
, E
); }
319 virtual void anchor();
322 /// When true, additional steps are taken to
323 /// ensure that getConstant() and similar functions return DAG nodes that
324 /// have legal types. This is important after type legalization since
325 /// any illegally typed nodes generated after this point will not experience
326 /// type legalization.
327 bool NewNodesMustHaveLegalTypes
= false;
330 /// DAGUpdateListener is a friend so it can manipulate the listener stack.
331 friend struct DAGUpdateListener
;
333 /// Linked list of registered DAGUpdateListener instances.
334 /// This stack is maintained by DAGUpdateListener RAII.
335 DAGUpdateListener
*UpdateListeners
= nullptr;
337 /// Implementation of setSubgraphColor.
338 /// Return whether we had to truncate the search.
339 bool setSubgraphColorHelper(SDNode
*N
, const char *Color
,
340 DenseSet
<SDNode
*> &visited
,
341 int level
, bool &printed
);
343 template <typename SDNodeT
, typename
... ArgTypes
>
344 SDNodeT
*newSDNode(ArgTypes
&&... Args
) {
345 return new (NodeAllocator
.template Allocate
<SDNodeT
>())
346 SDNodeT(std::forward
<ArgTypes
>(Args
)...);
349 /// Build a synthetic SDNodeT with the given args and extract its subclass
350 /// data as an integer (e.g. for use in a folding set).
352 /// The args to this function are the same as the args to SDNodeT's
353 /// constructor, except the second arg (assumed to be a const DebugLoc&) is
355 template <typename SDNodeT
, typename
... ArgTypes
>
356 static uint16_t getSyntheticNodeSubclassData(unsigned IROrder
,
357 ArgTypes
&&... Args
) {
358 // The compiler can reduce this expression to a constant iff we pass an
359 // empty DebugLoc. Thankfully, the debug location doesn't have any bearing
360 // on the subclass data.
361 return SDNodeT(IROrder
, DebugLoc(), std::forward
<ArgTypes
>(Args
)...)
362 .getRawSubclassData();
365 template <typename SDNodeTy
>
366 static uint16_t getSyntheticNodeSubclassData(unsigned Opc
, unsigned Order
,
367 SDVTList VTs
, EVT MemoryVT
,
368 MachineMemOperand
*MMO
) {
369 return SDNodeTy(Opc
, Order
, DebugLoc(), VTs
, MemoryVT
, MMO
)
370 .getRawSubclassData();
373 void createOperands(SDNode
*Node
, ArrayRef
<SDValue
> Vals
);
375 void removeOperands(SDNode
*Node
) {
376 if (!Node
->OperandList
)
378 OperandRecycler
.deallocate(
379 ArrayRecycler
<SDUse
>::Capacity::get(Node
->NumOperands
),
381 Node
->NumOperands
= 0;
382 Node
->OperandList
= nullptr;
384 void CreateTopologicalOrder(std::vector
<SDNode
*>& Order
);
386 explicit SelectionDAG(const TargetMachine
&TM
, CodeGenOpt::Level
);
387 SelectionDAG(const SelectionDAG
&) = delete;
388 SelectionDAG
&operator=(const SelectionDAG
&) = delete;
391 /// Prepare this SelectionDAG to process code in the given MachineFunction.
392 void init(MachineFunction
&NewMF
, OptimizationRemarkEmitter
&NewORE
,
393 Pass
*PassPtr
, const TargetLibraryInfo
*LibraryInfo
,
394 LegacyDivergenceAnalysis
* Divergence
);
396 void setFunctionLoweringInfo(FunctionLoweringInfo
* FuncInfo
) {
400 /// Clear state and free memory necessary to make this
401 /// SelectionDAG ready to process a new block.
404 MachineFunction
&getMachineFunction() const { return *MF
; }
405 const Pass
*getPass() const { return SDAGISelPass
; }
407 const DataLayout
&getDataLayout() const { return MF
->getDataLayout(); }
408 const TargetMachine
&getTarget() const { return TM
; }
409 const TargetSubtargetInfo
&getSubtarget() const { return MF
->getSubtarget(); }
410 const TargetLowering
&getTargetLoweringInfo() const { return *TLI
; }
411 const TargetLibraryInfo
&getLibInfo() const { return *LibInfo
; }
412 const SelectionDAGTargetInfo
&getSelectionDAGInfo() const { return *TSI
; }
413 const LegacyDivergenceAnalysis
*getDivergenceAnalysis() const { return DA
; }
414 LLVMContext
*getContext() const {return Context
; }
415 OptimizationRemarkEmitter
&getORE() const { return *ORE
; }
417 /// Pop up a GraphViz/gv window with the DAG rendered using 'dot'.
418 void viewGraph(const std::string
&Title
);
422 std::map
<const SDNode
*, std::string
> NodeGraphAttrs
;
425 /// Clear all previously defined node graph attributes.
426 /// Intended to be used from a debugging tool (eg. gdb).
427 void clearGraphAttrs();
429 /// Set graph attributes for a node. (eg. "color=red".)
430 void setGraphAttrs(const SDNode
*N
, const char *Attrs
);
432 /// Get graph attributes for a node. (eg. "color=red".)
433 /// Used from getNodeAttributes.
434 const std::string
getGraphAttrs(const SDNode
*N
) const;
436 /// Convenience for setting node color attribute.
437 void setGraphColor(const SDNode
*N
, const char *Color
);
439 /// Convenience for setting subgraph color attribute.
440 void setSubgraphColor(SDNode
*N
, const char *Color
);
442 using allnodes_const_iterator
= ilist
<SDNode
>::const_iterator
;
444 allnodes_const_iterator
allnodes_begin() const { return AllNodes
.begin(); }
445 allnodes_const_iterator
allnodes_end() const { return AllNodes
.end(); }
447 using allnodes_iterator
= ilist
<SDNode
>::iterator
;
449 allnodes_iterator
allnodes_begin() { return AllNodes
.begin(); }
450 allnodes_iterator
allnodes_end() { return AllNodes
.end(); }
452 ilist
<SDNode
>::size_type
allnodes_size() const {
453 return AllNodes
.size();
456 iterator_range
<allnodes_iterator
> allnodes() {
457 return make_range(allnodes_begin(), allnodes_end());
459 iterator_range
<allnodes_const_iterator
> allnodes() const {
460 return make_range(allnodes_begin(), allnodes_end());
463 /// Return the root tag of the SelectionDAG.
464 const SDValue
&getRoot() const { return Root
; }
466 /// Return the token chain corresponding to the entry of the function.
467 SDValue
getEntryNode() const {
468 return SDValue(const_cast<SDNode
*>(&EntryNode
), 0);
471 /// Set the current root tag of the SelectionDAG.
473 const SDValue
&setRoot(SDValue N
) {
474 assert((!N
.getNode() || N
.getValueType() == MVT::Other
) &&
475 "DAG root value is not a chain!");
477 checkForCycles(N
.getNode(), this);
480 checkForCycles(this);
485 void VerifyDAGDiverence();
488 /// This iterates over the nodes in the SelectionDAG, folding
489 /// certain types of nodes together, or eliminating superfluous nodes. The
490 /// Level argument controls whether Combine is allowed to produce nodes and
491 /// types that are illegal on the target.
492 void Combine(CombineLevel Level
, AliasAnalysis
*AA
,
493 CodeGenOpt::Level OptLevel
);
495 /// This transforms the SelectionDAG into a SelectionDAG that
496 /// only uses types natively supported by the target.
497 /// Returns "true" if it made any changes.
499 /// Note that this is an involved process that may invalidate pointers into
501 bool LegalizeTypes();
503 /// This transforms the SelectionDAG into a SelectionDAG that is
504 /// compatible with the target instruction selector, as indicated by the
505 /// TargetLowering object.
507 /// Note that this is an involved process that may invalidate pointers into
511 /// Transforms a SelectionDAG node and any operands to it into a node
512 /// that is compatible with the target instruction selector, as indicated by
513 /// the TargetLowering object.
515 /// \returns true if \c N is a valid, legal node after calling this.
517 /// This essentially runs a single recursive walk of the \c Legalize process
518 /// over the given node (and its operands). This can be used to incrementally
519 /// legalize the DAG. All of the nodes which are directly replaced,
520 /// potentially including N, are added to the output parameter \c
521 /// UpdatedNodes so that the delta to the DAG can be understood by the
524 /// When this returns false, N has been legalized in a way that make the
525 /// pointer passed in no longer valid. It may have even been deleted from the
526 /// DAG, and so it shouldn't be used further. When this returns true, the
527 /// N passed in is a legal node, and can be immediately processed as such.
528 /// This may still have done some work on the DAG, and will still populate
529 /// UpdatedNodes with any new nodes replacing those originally in the DAG.
530 bool LegalizeOp(SDNode
*N
, SmallSetVector
<SDNode
*, 16> &UpdatedNodes
);
532 /// This transforms the SelectionDAG into a SelectionDAG
533 /// that only uses vector math operations supported by the target. This is
534 /// necessary as a separate step from Legalize because unrolling a vector
535 /// operation can introduce illegal types, which requires running
536 /// LegalizeTypes again.
538 /// This returns true if it made any changes; in that case, LegalizeTypes
539 /// is called again before Legalize.
541 /// Note that this is an involved process that may invalidate pointers into
543 bool LegalizeVectors();
545 /// This method deletes all unreachable nodes in the SelectionDAG.
546 void RemoveDeadNodes();
548 /// Remove the specified node from the system. This node must
549 /// have no referrers.
550 void DeleteNode(SDNode
*N
);
552 /// Return an SDVTList that represents the list of values specified.
553 SDVTList
getVTList(EVT VT
);
554 SDVTList
getVTList(EVT VT1
, EVT VT2
);
555 SDVTList
getVTList(EVT VT1
, EVT VT2
, EVT VT3
);
556 SDVTList
getVTList(EVT VT1
, EVT VT2
, EVT VT3
, EVT VT4
);
557 SDVTList
getVTList(ArrayRef
<EVT
> VTs
);
559 //===--------------------------------------------------------------------===//
560 // Node creation methods.
562 /// Create a ConstantSDNode wrapping a constant value.
563 /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
565 /// If only legal types can be produced, this does the necessary
566 /// transformations (e.g., if the vector element type is illegal).
568 SDValue
getConstant(uint64_t Val
, const SDLoc
&DL
, EVT VT
,
569 bool isTarget
= false, bool isOpaque
= false);
570 SDValue
getConstant(const APInt
&Val
, const SDLoc
&DL
, EVT VT
,
571 bool isTarget
= false, bool isOpaque
= false);
573 SDValue
getAllOnesConstant(const SDLoc
&DL
, EVT VT
, bool IsTarget
= false,
574 bool IsOpaque
= false) {
575 return getConstant(APInt::getAllOnesValue(VT
.getScalarSizeInBits()), DL
,
576 VT
, IsTarget
, IsOpaque
);
579 SDValue
getConstant(const ConstantInt
&Val
, const SDLoc
&DL
, EVT VT
,
580 bool isTarget
= false, bool isOpaque
= false);
581 SDValue
getIntPtrConstant(uint64_t Val
, const SDLoc
&DL
,
582 bool isTarget
= false);
583 SDValue
getShiftAmountConstant(uint64_t Val
, EVT VT
, const SDLoc
&DL
,
584 bool LegalTypes
= true);
586 SDValue
getTargetConstant(uint64_t Val
, const SDLoc
&DL
, EVT VT
,
587 bool isOpaque
= false) {
588 return getConstant(Val
, DL
, VT
, true, isOpaque
);
590 SDValue
getTargetConstant(const APInt
&Val
, const SDLoc
&DL
, EVT VT
,
591 bool isOpaque
= false) {
592 return getConstant(Val
, DL
, VT
, true, isOpaque
);
594 SDValue
getTargetConstant(const ConstantInt
&Val
, const SDLoc
&DL
, EVT VT
,
595 bool isOpaque
= false) {
596 return getConstant(Val
, DL
, VT
, true, isOpaque
);
599 /// Create a true or false constant of type \p VT using the target's
600 /// BooleanContent for type \p OpVT.
601 SDValue
getBoolConstant(bool V
, const SDLoc
&DL
, EVT VT
, EVT OpVT
);
604 /// Create a ConstantFPSDNode wrapping a constant value.
605 /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
607 /// If only legal types can be produced, this does the necessary
608 /// transformations (e.g., if the vector element type is illegal).
609 /// The forms that take a double should only be used for simple constants
610 /// that can be exactly represented in VT. No checks are made.
612 SDValue
getConstantFP(double Val
, const SDLoc
&DL
, EVT VT
,
613 bool isTarget
= false);
614 SDValue
getConstantFP(const APFloat
&Val
, const SDLoc
&DL
, EVT VT
,
615 bool isTarget
= false);
616 SDValue
getConstantFP(const ConstantFP
&V
, const SDLoc
&DL
, EVT VT
,
617 bool isTarget
= false);
618 SDValue
getTargetConstantFP(double Val
, const SDLoc
&DL
, EVT VT
) {
619 return getConstantFP(Val
, DL
, VT
, true);
621 SDValue
getTargetConstantFP(const APFloat
&Val
, const SDLoc
&DL
, EVT VT
) {
622 return getConstantFP(Val
, DL
, VT
, true);
624 SDValue
getTargetConstantFP(const ConstantFP
&Val
, const SDLoc
&DL
, EVT VT
) {
625 return getConstantFP(Val
, DL
, VT
, true);
629 SDValue
getGlobalAddress(const GlobalValue
*GV
, const SDLoc
&DL
, EVT VT
,
630 int64_t offset
= 0, bool isTargetGA
= false,
631 unsigned char TargetFlags
= 0);
632 SDValue
getTargetGlobalAddress(const GlobalValue
*GV
, const SDLoc
&DL
, EVT VT
,
634 unsigned char TargetFlags
= 0) {
635 return getGlobalAddress(GV
, DL
, VT
, offset
, true, TargetFlags
);
637 SDValue
getFrameIndex(int FI
, EVT VT
, bool isTarget
= false);
638 SDValue
getTargetFrameIndex(int FI
, EVT VT
) {
639 return getFrameIndex(FI
, VT
, true);
641 SDValue
getJumpTable(int JTI
, EVT VT
, bool isTarget
= false,
642 unsigned char TargetFlags
= 0);
643 SDValue
getTargetJumpTable(int JTI
, EVT VT
, unsigned char TargetFlags
= 0) {
644 return getJumpTable(JTI
, VT
, true, TargetFlags
);
646 SDValue
getConstantPool(const Constant
*C
, EVT VT
,
647 unsigned Align
= 0, int Offs
= 0, bool isT
=false,
648 unsigned char TargetFlags
= 0);
649 SDValue
getTargetConstantPool(const Constant
*C
, EVT VT
,
650 unsigned Align
= 0, int Offset
= 0,
651 unsigned char TargetFlags
= 0) {
652 return getConstantPool(C
, VT
, Align
, Offset
, true, TargetFlags
);
654 SDValue
getConstantPool(MachineConstantPoolValue
*C
, EVT VT
,
655 unsigned Align
= 0, int Offs
= 0, bool isT
=false,
656 unsigned char TargetFlags
= 0);
657 SDValue
getTargetConstantPool(MachineConstantPoolValue
*C
,
658 EVT VT
, unsigned Align
= 0,
659 int Offset
= 0, unsigned char TargetFlags
=0) {
660 return getConstantPool(C
, VT
, Align
, Offset
, true, TargetFlags
);
662 SDValue
getTargetIndex(int Index
, EVT VT
, int64_t Offset
= 0,
663 unsigned char TargetFlags
= 0);
664 // When generating a branch to a BB, we don't in general know enough
665 // to provide debug info for the BB at that time, so keep this one around.
666 SDValue
getBasicBlock(MachineBasicBlock
*MBB
);
667 SDValue
getBasicBlock(MachineBasicBlock
*MBB
, SDLoc dl
);
668 SDValue
getExternalSymbol(const char *Sym
, EVT VT
);
669 SDValue
getExternalSymbol(const char *Sym
, const SDLoc
&dl
, EVT VT
);
670 SDValue
getTargetExternalSymbol(const char *Sym
, EVT VT
,
671 unsigned char TargetFlags
= 0);
672 SDValue
getMCSymbol(MCSymbol
*Sym
, EVT VT
);
674 SDValue
getValueType(EVT
);
675 SDValue
getRegister(unsigned Reg
, EVT VT
);
676 SDValue
getRegisterMask(const uint32_t *RegMask
);
677 SDValue
getEHLabel(const SDLoc
&dl
, SDValue Root
, MCSymbol
*Label
);
678 SDValue
getLabelNode(unsigned Opcode
, const SDLoc
&dl
, SDValue Root
,
680 SDValue
getBlockAddress(const BlockAddress
*BA
, EVT VT
,
681 int64_t Offset
= 0, bool isTarget
= false,
682 unsigned char TargetFlags
= 0);
683 SDValue
getTargetBlockAddress(const BlockAddress
*BA
, EVT VT
,
685 unsigned char TargetFlags
= 0) {
686 return getBlockAddress(BA
, VT
, Offset
, true, TargetFlags
);
689 SDValue
getCopyToReg(SDValue Chain
, const SDLoc
&dl
, unsigned Reg
,
691 return getNode(ISD::CopyToReg
, dl
, MVT::Other
, Chain
,
692 getRegister(Reg
, N
.getValueType()), N
);
695 // This version of the getCopyToReg method takes an extra operand, which
696 // indicates that there is potentially an incoming glue value (if Glue is not
697 // null) and that there should be a glue result.
698 SDValue
getCopyToReg(SDValue Chain
, const SDLoc
&dl
, unsigned Reg
, SDValue N
,
700 SDVTList VTs
= getVTList(MVT::Other
, MVT::Glue
);
701 SDValue Ops
[] = { Chain
, getRegister(Reg
, N
.getValueType()), N
, Glue
};
702 return getNode(ISD::CopyToReg
, dl
, VTs
,
703 makeArrayRef(Ops
, Glue
.getNode() ? 4 : 3));
706 // Similar to last getCopyToReg() except parameter Reg is a SDValue
707 SDValue
getCopyToReg(SDValue Chain
, const SDLoc
&dl
, SDValue Reg
, SDValue N
,
709 SDVTList VTs
= getVTList(MVT::Other
, MVT::Glue
);
710 SDValue Ops
[] = { Chain
, Reg
, N
, Glue
};
711 return getNode(ISD::CopyToReg
, dl
, VTs
,
712 makeArrayRef(Ops
, Glue
.getNode() ? 4 : 3));
715 SDValue
getCopyFromReg(SDValue Chain
, const SDLoc
&dl
, unsigned Reg
, EVT VT
) {
716 SDVTList VTs
= getVTList(VT
, MVT::Other
);
717 SDValue Ops
[] = { Chain
, getRegister(Reg
, VT
) };
718 return getNode(ISD::CopyFromReg
, dl
, VTs
, Ops
);
721 // This version of the getCopyFromReg method takes an extra operand, which
722 // indicates that there is potentially an incoming glue value (if Glue is not
723 // null) and that there should be a glue result.
724 SDValue
getCopyFromReg(SDValue Chain
, const SDLoc
&dl
, unsigned Reg
, EVT VT
,
726 SDVTList VTs
= getVTList(VT
, MVT::Other
, MVT::Glue
);
727 SDValue Ops
[] = { Chain
, getRegister(Reg
, VT
), Glue
};
728 return getNode(ISD::CopyFromReg
, dl
, VTs
,
729 makeArrayRef(Ops
, Glue
.getNode() ? 3 : 2));
732 SDValue
getCondCode(ISD::CondCode Cond
);
734 /// Return an ISD::VECTOR_SHUFFLE node. The number of elements in VT,
735 /// which must be a vector type, must match the number of mask elements
736 /// NumElts. An integer mask element equal to -1 is treated as undefined.
737 SDValue
getVectorShuffle(EVT VT
, const SDLoc
&dl
, SDValue N1
, SDValue N2
,
740 /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
741 /// which must be a vector type, must match the number of operands in Ops.
742 /// The operands must have the same type as (or, for integers, a type wider
743 /// than) VT's element type.
744 SDValue
getBuildVector(EVT VT
, const SDLoc
&DL
, ArrayRef
<SDValue
> Ops
) {
745 // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
746 return getNode(ISD::BUILD_VECTOR
, DL
, VT
, Ops
);
749 /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
750 /// which must be a vector type, must match the number of operands in Ops.
751 /// The operands must have the same type as (or, for integers, a type wider
752 /// than) VT's element type.
753 SDValue
getBuildVector(EVT VT
, const SDLoc
&DL
, ArrayRef
<SDUse
> Ops
) {
754 // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
755 return getNode(ISD::BUILD_VECTOR
, DL
, VT
, Ops
);
758 /// Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all
759 /// elements. VT must be a vector type. Op's type must be the same as (or,
760 /// for integers, a type wider than) VT's element type.
761 SDValue
getSplatBuildVector(EVT VT
, const SDLoc
&DL
, SDValue Op
) {
762 // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
763 if (Op
.getOpcode() == ISD::UNDEF
) {
764 assert((VT
.getVectorElementType() == Op
.getValueType() ||
766 VT
.getVectorElementType().bitsLE(Op
.getValueType()))) &&
767 "A splatted value must have a width equal or (for integers) "
768 "greater than the vector element type!");
769 return getNode(ISD::UNDEF
, SDLoc(), VT
);
772 SmallVector
<SDValue
, 16> Ops(VT
.getVectorNumElements(), Op
);
773 return getNode(ISD::BUILD_VECTOR
, DL
, VT
, Ops
);
776 /// Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to
777 /// the shuffle node in input but with swapped operands.
779 /// Example: shuffle A, B, <0,5,2,7> -> shuffle B, A, <4,1,6,3>
780 SDValue
getCommutedVectorShuffle(const ShuffleVectorSDNode
&SV
);
782 /// Convert Op, which must be of float type, to the
783 /// float type VT, by either extending or rounding (by truncation).
784 SDValue
getFPExtendOrRound(SDValue Op
, const SDLoc
&DL
, EVT VT
);
786 /// Convert Op, which must be of integer type, to the
787 /// integer type VT, by either any-extending or truncating it.
788 SDValue
getAnyExtOrTrunc(SDValue Op
, const SDLoc
&DL
, EVT VT
);
790 /// Convert Op, which must be of integer type, to the
791 /// integer type VT, by either sign-extending or truncating it.
792 SDValue
getSExtOrTrunc(SDValue Op
, const SDLoc
&DL
, EVT VT
);
794 /// Convert Op, which must be of integer type, to the
795 /// integer type VT, by either zero-extending or truncating it.
796 SDValue
getZExtOrTrunc(SDValue Op
, const SDLoc
&DL
, EVT VT
);
798 /// Return the expression required to zero extend the Op
799 /// value assuming it was the smaller SrcTy value.
800 SDValue
getZeroExtendInReg(SDValue Op
, const SDLoc
&DL
, EVT VT
);
802 /// Convert Op, which must be of integer type, to the integer type VT, by
803 /// either truncating it or performing either zero or sign extension as
804 /// appropriate extension for the pointer's semantics.
805 SDValue
getPtrExtOrTrunc(SDValue Op
, const SDLoc
&DL
, EVT VT
);
807 /// Return the expression required to extend the Op as a pointer value
808 /// assuming it was the smaller SrcTy value. This may be either a zero extend
809 /// or a sign extend.
810 SDValue
getPtrExtendInReg(SDValue Op
, const SDLoc
&DL
, EVT VT
);
812 /// Convert Op, which must be of integer type, to the integer type VT,
813 /// by using an extension appropriate for the target's
814 /// BooleanContent for type OpVT or truncating it.
815 SDValue
getBoolExtOrTrunc(SDValue Op
, const SDLoc
&SL
, EVT VT
, EVT OpVT
);
817 /// Create a bitwise NOT operation as (XOR Val, -1).
818 SDValue
getNOT(const SDLoc
&DL
, SDValue Val
, EVT VT
);
820 /// Create a logical NOT operation as (XOR Val, BooleanOne).
821 SDValue
getLogicalNOT(const SDLoc
&DL
, SDValue Val
, EVT VT
);
823 /// Create an add instruction with appropriate flags when used for
824 /// addressing some offset of an object. i.e. if a load is split into multiple
825 /// components, create an add nuw from the base pointer to the offset.
826 SDValue
getObjectPtrOffset(const SDLoc
&SL
, SDValue Op
, int64_t Offset
) {
827 EVT VT
= Op
.getValueType();
828 return getObjectPtrOffset(SL
, Op
, getConstant(Offset
, SL
, VT
));
831 SDValue
getObjectPtrOffset(const SDLoc
&SL
, SDValue Op
, SDValue Offset
) {
832 EVT VT
= Op
.getValueType();
834 // The object itself can't wrap around the address space, so it shouldn't be
835 // possible for the adds of the offsets to the split parts to overflow.
837 Flags
.setNoUnsignedWrap(true);
838 return getNode(ISD::ADD
, SL
, VT
, Op
, Offset
, Flags
);
841 /// Return a new CALLSEQ_START node, that starts new call frame, in which
842 /// InSize bytes are set up inside CALLSEQ_START..CALLSEQ_END sequence and
843 /// OutSize specifies part of the frame set up prior to the sequence.
844 SDValue
getCALLSEQ_START(SDValue Chain
, uint64_t InSize
, uint64_t OutSize
,
846 SDVTList VTs
= getVTList(MVT::Other
, MVT::Glue
);
847 SDValue Ops
[] = { Chain
,
848 getIntPtrConstant(InSize
, DL
, true),
849 getIntPtrConstant(OutSize
, DL
, true) };
850 return getNode(ISD::CALLSEQ_START
, DL
, VTs
, Ops
);
853 /// Return a new CALLSEQ_END node, which always must have a
854 /// glue result (to ensure it's not CSE'd).
855 /// CALLSEQ_END does not have a useful SDLoc.
856 SDValue
getCALLSEQ_END(SDValue Chain
, SDValue Op1
, SDValue Op2
,
857 SDValue InGlue
, const SDLoc
&DL
) {
858 SDVTList NodeTys
= getVTList(MVT::Other
, MVT::Glue
);
859 SmallVector
<SDValue
, 4> Ops
;
860 Ops
.push_back(Chain
);
863 if (InGlue
.getNode())
864 Ops
.push_back(InGlue
);
865 return getNode(ISD::CALLSEQ_END
, DL
, NodeTys
, Ops
);
868 /// Return true if the result of this operation is always undefined.
869 bool isUndef(unsigned Opcode
, ArrayRef
<SDValue
> Ops
);
871 /// Return an UNDEF node. UNDEF does not have a useful SDLoc.
872 SDValue
getUNDEF(EVT VT
) {
873 return getNode(ISD::UNDEF
, SDLoc(), VT
);
876 /// Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc.
877 SDValue
getGLOBAL_OFFSET_TABLE(EVT VT
) {
878 return getNode(ISD::GLOBAL_OFFSET_TABLE
, SDLoc(), VT
);
881 /// Gets or creates the specified node.
883 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
884 ArrayRef
<SDUse
> Ops
);
885 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
886 ArrayRef
<SDValue
> Ops
, const SDNodeFlags Flags
= SDNodeFlags());
887 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, ArrayRef
<EVT
> ResultTys
,
888 ArrayRef
<SDValue
> Ops
);
889 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
,
890 ArrayRef
<SDValue
> Ops
);
892 // Specialize based on number of operands.
893 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
);
894 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
, SDValue Operand
,
895 const SDNodeFlags Flags
= SDNodeFlags());
896 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
, SDValue N1
,
897 SDValue N2
, const SDNodeFlags Flags
= SDNodeFlags());
898 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
, SDValue N1
,
899 SDValue N2
, SDValue N3
,
900 const SDNodeFlags Flags
= SDNodeFlags());
901 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
, SDValue N1
,
902 SDValue N2
, SDValue N3
, SDValue N4
);
903 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
, SDValue N1
,
904 SDValue N2
, SDValue N3
, SDValue N4
, SDValue N5
);
906 // Specialize again based on number of operands for nodes with a VTList
907 // rather than a single VT.
908 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
);
909 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
, SDValue N
);
910 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
, SDValue N1
,
912 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
, SDValue N1
,
913 SDValue N2
, SDValue N3
);
914 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
, SDValue N1
,
915 SDValue N2
, SDValue N3
, SDValue N4
);
916 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
, SDValue N1
,
917 SDValue N2
, SDValue N3
, SDValue N4
, SDValue N5
);
919 /// Compute a TokenFactor to force all the incoming stack arguments to be
920 /// loaded from the stack. This is used in tail call lowering to protect
921 /// stack arguments from being clobbered.
922 SDValue
getStackArgumentTokenFactor(SDValue Chain
);
924 SDValue
getMemcpy(SDValue Chain
, const SDLoc
&dl
, SDValue Dst
, SDValue Src
,
925 SDValue Size
, unsigned Align
, bool isVol
, bool AlwaysInline
,
926 bool isTailCall
, MachinePointerInfo DstPtrInfo
,
927 MachinePointerInfo SrcPtrInfo
);
929 SDValue
getMemmove(SDValue Chain
, const SDLoc
&dl
, SDValue Dst
, SDValue Src
,
930 SDValue Size
, unsigned Align
, bool isVol
, bool isTailCall
,
931 MachinePointerInfo DstPtrInfo
,
932 MachinePointerInfo SrcPtrInfo
);
934 SDValue
getMemset(SDValue Chain
, const SDLoc
&dl
, SDValue Dst
, SDValue Src
,
935 SDValue Size
, unsigned Align
, bool isVol
, bool isTailCall
,
936 MachinePointerInfo DstPtrInfo
);
938 SDValue
getAtomicMemcpy(SDValue Chain
, const SDLoc
&dl
, SDValue Dst
,
939 unsigned DstAlign
, SDValue Src
, unsigned SrcAlign
,
940 SDValue Size
, Type
*SizeTy
, unsigned ElemSz
,
941 bool isTailCall
, MachinePointerInfo DstPtrInfo
,
942 MachinePointerInfo SrcPtrInfo
);
944 SDValue
getAtomicMemmove(SDValue Chain
, const SDLoc
&dl
, SDValue Dst
,
945 unsigned DstAlign
, SDValue Src
, unsigned SrcAlign
,
946 SDValue Size
, Type
*SizeTy
, unsigned ElemSz
,
947 bool isTailCall
, MachinePointerInfo DstPtrInfo
,
948 MachinePointerInfo SrcPtrInfo
);
950 SDValue
getAtomicMemset(SDValue Chain
, const SDLoc
&dl
, SDValue Dst
,
951 unsigned DstAlign
, SDValue Value
, SDValue Size
,
952 Type
*SizeTy
, unsigned ElemSz
, bool isTailCall
,
953 MachinePointerInfo DstPtrInfo
);
955 /// Helper function to make it easier to build SetCC's if you just have an
956 /// ISD::CondCode instead of an SDValue.
957 SDValue
getSetCC(const SDLoc
&DL
, EVT VT
, SDValue LHS
, SDValue RHS
,
958 ISD::CondCode Cond
) {
959 assert(LHS
.getValueType().isVector() == RHS
.getValueType().isVector() &&
960 "Cannot compare scalars to vectors");
961 assert(LHS
.getValueType().isVector() == VT
.isVector() &&
962 "Cannot compare scalars to vectors");
963 assert(Cond
!= ISD::SETCC_INVALID
&&
964 "Cannot create a setCC of an invalid node.");
965 return getNode(ISD::SETCC
, DL
, VT
, LHS
, RHS
, getCondCode(Cond
));
968 /// Helper function to make it easier to build Select's if you just have
969 /// operands and don't want to check for vector.
970 SDValue
getSelect(const SDLoc
&DL
, EVT VT
, SDValue Cond
, SDValue LHS
,
972 assert(LHS
.getValueType() == RHS
.getValueType() &&
973 "Cannot use select on differing types");
974 assert(VT
.isVector() == LHS
.getValueType().isVector() &&
975 "Cannot mix vectors and scalars");
976 auto Opcode
= Cond
.getValueType().isVector() ? ISD::VSELECT
: ISD::SELECT
;
977 return getNode(Opcode
, DL
, VT
, Cond
, LHS
, RHS
);
980 /// Helper function to make it easier to build SelectCC's if you just have an
981 /// ISD::CondCode instead of an SDValue.
982 SDValue
getSelectCC(const SDLoc
&DL
, SDValue LHS
, SDValue RHS
, SDValue True
,
983 SDValue False
, ISD::CondCode Cond
) {
984 return getNode(ISD::SELECT_CC
, DL
, True
.getValueType(), LHS
, RHS
, True
,
985 False
, getCondCode(Cond
));
988 /// Try to simplify a select/vselect into 1 of its operands or a constant.
989 SDValue
simplifySelect(SDValue Cond
, SDValue TVal
, SDValue FVal
);
991 /// Try to simplify a shift into 1 of its operands or a constant.
992 SDValue
simplifyShift(SDValue X
, SDValue Y
);
994 /// Try to simplify a floating-point binary operation into 1 of its operands
996 SDValue
simplifyFPBinop(unsigned Opcode
, SDValue X
, SDValue Y
);
998 /// VAArg produces a result and token chain, and takes a pointer
999 /// and a source value as input.
1000 SDValue
getVAArg(EVT VT
, const SDLoc
&dl
, SDValue Chain
, SDValue Ptr
,
1001 SDValue SV
, unsigned Align
);
1003 /// Gets a node for an atomic cmpxchg op. There are two
1004 /// valid Opcodes. ISD::ATOMIC_CMO_SWAP produces the value loaded and a
1005 /// chain result. ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS produces the value loaded,
1006 /// a success flag (initially i1), and a chain.
1007 SDValue
getAtomicCmpSwap(unsigned Opcode
, const SDLoc
&dl
, EVT MemVT
,
1008 SDVTList VTs
, SDValue Chain
, SDValue Ptr
,
1009 SDValue Cmp
, SDValue Swp
, MachineMemOperand
*MMO
);
1011 /// Gets a node for an atomic op, produces result (if relevant)
1012 /// and chain and takes 2 operands.
1013 SDValue
getAtomic(unsigned Opcode
, const SDLoc
&dl
, EVT MemVT
, SDValue Chain
,
1014 SDValue Ptr
, SDValue Val
, MachineMemOperand
*MMO
);
1016 /// Gets a node for an atomic op, produces result and chain and
1017 /// takes 1 operand.
1018 SDValue
getAtomic(unsigned Opcode
, const SDLoc
&dl
, EVT MemVT
, EVT VT
,
1019 SDValue Chain
, SDValue Ptr
, MachineMemOperand
*MMO
);
1021 /// Gets a node for an atomic op, produces result and chain and takes N
1023 SDValue
getAtomic(unsigned Opcode
, const SDLoc
&dl
, EVT MemVT
,
1024 SDVTList VTList
, ArrayRef
<SDValue
> Ops
,
1025 MachineMemOperand
*MMO
);
1027 /// Creates a MemIntrinsicNode that may produce a
1028 /// result and takes a list of operands. Opcode may be INTRINSIC_VOID,
1029 /// INTRINSIC_W_CHAIN, or a target-specific opcode with a value not
1030 /// less than FIRST_TARGET_MEMORY_OPCODE.
1031 SDValue
getMemIntrinsicNode(
1032 unsigned Opcode
, const SDLoc
&dl
, SDVTList VTList
,
1033 ArrayRef
<SDValue
> Ops
, EVT MemVT
,
1034 MachinePointerInfo PtrInfo
,
1036 MachineMemOperand::Flags Flags
1037 = MachineMemOperand::MOLoad
| MachineMemOperand::MOStore
,
1039 const AAMDNodes
&AAInfo
= AAMDNodes());
1041 SDValue
getMemIntrinsicNode(unsigned Opcode
, const SDLoc
&dl
, SDVTList VTList
,
1042 ArrayRef
<SDValue
> Ops
, EVT MemVT
,
1043 MachineMemOperand
*MMO
);
1045 /// Creates a LifetimeSDNode that starts (`IsStart==true`) or ends
1046 /// (`IsStart==false`) the lifetime of the portion of `FrameIndex` between
1047 /// offsets `Offset` and `Offset + Size`.
1048 SDValue
getLifetimeNode(bool IsStart
, const SDLoc
&dl
, SDValue Chain
,
1049 int FrameIndex
, int64_t Size
, int64_t Offset
= -1);
1051 /// Create a MERGE_VALUES node from the given operands.
1052 SDValue
getMergeValues(ArrayRef
<SDValue
> Ops
, const SDLoc
&dl
);
1054 /// Loads are not normal binary operators: their result type is not
1055 /// determined by their operands, and they produce a value AND a token chain.
1057 /// This function will set the MOLoad flag on MMOFlags, but you can set it if
1058 /// you want. The MOStore flag must not be set.
1059 SDValue
getLoad(EVT VT
, const SDLoc
&dl
, SDValue Chain
, SDValue Ptr
,
1060 MachinePointerInfo PtrInfo
, unsigned Alignment
= 0,
1061 MachineMemOperand::Flags MMOFlags
= MachineMemOperand::MONone
,
1062 const AAMDNodes
&AAInfo
= AAMDNodes(),
1063 const MDNode
*Ranges
= nullptr);
1064 SDValue
getLoad(EVT VT
, const SDLoc
&dl
, SDValue Chain
, SDValue Ptr
,
1065 MachineMemOperand
*MMO
);
1067 getExtLoad(ISD::LoadExtType ExtType
, const SDLoc
&dl
, EVT VT
, SDValue Chain
,
1068 SDValue Ptr
, MachinePointerInfo PtrInfo
, EVT MemVT
,
1069 unsigned Alignment
= 0,
1070 MachineMemOperand::Flags MMOFlags
= MachineMemOperand::MONone
,
1071 const AAMDNodes
&AAInfo
= AAMDNodes());
1072 SDValue
getExtLoad(ISD::LoadExtType ExtType
, const SDLoc
&dl
, EVT VT
,
1073 SDValue Chain
, SDValue Ptr
, EVT MemVT
,
1074 MachineMemOperand
*MMO
);
1075 SDValue
getIndexedLoad(SDValue OrigLoad
, const SDLoc
&dl
, SDValue Base
,
1076 SDValue Offset
, ISD::MemIndexedMode AM
);
1077 SDValue
getLoad(ISD::MemIndexedMode AM
, ISD::LoadExtType ExtType
, EVT VT
,
1078 const SDLoc
&dl
, SDValue Chain
, SDValue Ptr
, SDValue Offset
,
1079 MachinePointerInfo PtrInfo
, EVT MemVT
, unsigned Alignment
= 0,
1080 MachineMemOperand::Flags MMOFlags
= MachineMemOperand::MONone
,
1081 const AAMDNodes
&AAInfo
= AAMDNodes(),
1082 const MDNode
*Ranges
= nullptr);
1083 SDValue
getLoad(ISD::MemIndexedMode AM
, ISD::LoadExtType ExtType
, EVT VT
,
1084 const SDLoc
&dl
, SDValue Chain
, SDValue Ptr
, SDValue Offset
,
1085 EVT MemVT
, MachineMemOperand
*MMO
);
1087 /// Helper function to build ISD::STORE nodes.
1089 /// This function will set the MOStore flag on MMOFlags, but you can set it if
1090 /// you want. The MOLoad and MOInvariant flags must not be set.
1092 getStore(SDValue Chain
, const SDLoc
&dl
, SDValue Val
, SDValue Ptr
,
1093 MachinePointerInfo PtrInfo
, unsigned Alignment
= 0,
1094 MachineMemOperand::Flags MMOFlags
= MachineMemOperand::MONone
,
1095 const AAMDNodes
&AAInfo
= AAMDNodes());
1096 SDValue
getStore(SDValue Chain
, const SDLoc
&dl
, SDValue Val
, SDValue Ptr
,
1097 MachineMemOperand
*MMO
);
1099 getTruncStore(SDValue Chain
, const SDLoc
&dl
, SDValue Val
, SDValue Ptr
,
1100 MachinePointerInfo PtrInfo
, EVT SVT
, unsigned Alignment
= 0,
1101 MachineMemOperand::Flags MMOFlags
= MachineMemOperand::MONone
,
1102 const AAMDNodes
&AAInfo
= AAMDNodes());
1103 SDValue
getTruncStore(SDValue Chain
, const SDLoc
&dl
, SDValue Val
,
1104 SDValue Ptr
, EVT SVT
, MachineMemOperand
*MMO
);
1105 SDValue
getIndexedStore(SDValue OrigStore
, const SDLoc
&dl
, SDValue Base
,
1106 SDValue Offset
, ISD::MemIndexedMode AM
);
1108 /// Returns sum of the base pointer and offset.
1109 SDValue
getMemBasePlusOffset(SDValue Base
, unsigned Offset
, const SDLoc
&DL
);
1111 SDValue
getMaskedLoad(EVT VT
, const SDLoc
&dl
, SDValue Chain
, SDValue Ptr
,
1112 SDValue Mask
, SDValue Src0
, EVT MemVT
,
1113 MachineMemOperand
*MMO
, ISD::LoadExtType
,
1114 bool IsExpanding
= false);
1115 SDValue
getMaskedStore(SDValue Chain
, const SDLoc
&dl
, SDValue Val
,
1116 SDValue Ptr
, SDValue Mask
, EVT MemVT
,
1117 MachineMemOperand
*MMO
, bool IsTruncating
= false,
1118 bool IsCompressing
= false);
1119 SDValue
getMaskedGather(SDVTList VTs
, EVT VT
, const SDLoc
&dl
,
1120 ArrayRef
<SDValue
> Ops
, MachineMemOperand
*MMO
);
1121 SDValue
getMaskedScatter(SDVTList VTs
, EVT VT
, const SDLoc
&dl
,
1122 ArrayRef
<SDValue
> Ops
, MachineMemOperand
*MMO
);
1124 /// Return (create a new or find existing) a target-specific node.
1125 /// TargetMemSDNode should be derived class from MemSDNode.
1126 template <class TargetMemSDNode
>
1127 SDValue
getTargetMemSDNode(SDVTList VTs
, ArrayRef
<SDValue
> Ops
,
1128 const SDLoc
&dl
, EVT MemVT
,
1129 MachineMemOperand
*MMO
);
1131 /// Construct a node to track a Value* through the backend.
1132 SDValue
getSrcValue(const Value
*v
);
1134 /// Return an MDNodeSDNode which holds an MDNode.
1135 SDValue
getMDNode(const MDNode
*MD
);
1137 /// Return a bitcast using the SDLoc of the value operand, and casting to the
1138 /// provided type. Use getNode to set a custom SDLoc.
1139 SDValue
getBitcast(EVT VT
, SDValue V
);
1141 /// Return an AddrSpaceCastSDNode.
1142 SDValue
getAddrSpaceCast(const SDLoc
&dl
, EVT VT
, SDValue Ptr
, unsigned SrcAS
,
1145 /// Return the specified value casted to
1146 /// the target's desired shift amount type.
1147 SDValue
getShiftAmountOperand(EVT LHSTy
, SDValue Op
);
1149 /// Expand the specified \c ISD::VAARG node as the Legalize pass would.
1150 SDValue
expandVAArg(SDNode
*Node
);
1152 /// Expand the specified \c ISD::VACOPY node as the Legalize pass would.
1153 SDValue
expandVACopy(SDNode
*Node
);
1155 /// Returs an GlobalAddress of the function from the current module with
1156 /// name matching the given ExternalSymbol. Additionally can provide the
1157 /// matched function.
1158 /// Panics the function doesn't exists.
1159 SDValue
getSymbolFunctionGlobalAddress(SDValue Op
,
1160 Function
**TargetFunction
= nullptr);
1162 /// *Mutate* the specified node in-place to have the
1163 /// specified operands. If the resultant node already exists in the DAG,
1164 /// this does not modify the specified node, instead it returns the node that
1165 /// already exists. If the resultant node does not exist in the DAG, the
1166 /// input node is returned. As a degenerate case, if you specify the same
1167 /// input operands as the node already has, the input node is returned.
1168 SDNode
*UpdateNodeOperands(SDNode
*N
, SDValue Op
);
1169 SDNode
*UpdateNodeOperands(SDNode
*N
, SDValue Op1
, SDValue Op2
);
1170 SDNode
*UpdateNodeOperands(SDNode
*N
, SDValue Op1
, SDValue Op2
,
1172 SDNode
*UpdateNodeOperands(SDNode
*N
, SDValue Op1
, SDValue Op2
,
1173 SDValue Op3
, SDValue Op4
);
1174 SDNode
*UpdateNodeOperands(SDNode
*N
, SDValue Op1
, SDValue Op2
,
1175 SDValue Op3
, SDValue Op4
, SDValue Op5
);
1176 SDNode
*UpdateNodeOperands(SDNode
*N
, ArrayRef
<SDValue
> Ops
);
1178 /// Creates a new TokenFactor containing \p Vals. If \p Vals contains 64k
1179 /// values or more, move values into new TokenFactors in 64k-1 blocks, until
1180 /// the final TokenFactor has less than 64k operands.
1181 SDValue
getTokenFactor(const SDLoc
&DL
, SmallVectorImpl
<SDValue
> &Vals
);
1183 /// *Mutate* the specified machine node's memory references to the provided
1185 void setNodeMemRefs(MachineSDNode
*N
,
1186 ArrayRef
<MachineMemOperand
*> NewMemRefs
);
1188 // Propagates the change in divergence to users
1189 void updateDivergence(SDNode
* N
);
1191 /// These are used for target selectors to *mutate* the
1192 /// specified node to have the specified return type, Target opcode, and
1193 /// operands. Note that target opcodes are stored as
1194 /// ~TargetOpcode in the node opcode field. The resultant node is returned.
1195 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, EVT VT
);
1196 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, EVT VT
, SDValue Op1
);
1197 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, EVT VT
,
1198 SDValue Op1
, SDValue Op2
);
1199 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, EVT VT
,
1200 SDValue Op1
, SDValue Op2
, SDValue Op3
);
1201 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, EVT VT
,
1202 ArrayRef
<SDValue
> Ops
);
1203 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, EVT VT1
, EVT VT2
);
1204 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, EVT VT1
,
1205 EVT VT2
, ArrayRef
<SDValue
> Ops
);
1206 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, EVT VT1
,
1207 EVT VT2
, EVT VT3
, ArrayRef
<SDValue
> Ops
);
1208 SDNode
*SelectNodeTo(SDNode
*N
, unsigned TargetOpc
, EVT VT1
,
1209 EVT VT2
, SDValue Op1
);
1210 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, EVT VT1
,
1211 EVT VT2
, SDValue Op1
, SDValue Op2
);
1212 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, SDVTList VTs
,
1213 ArrayRef
<SDValue
> Ops
);
1215 /// This *mutates* the specified node to have the specified
1216 /// return type, opcode, and operands.
1217 SDNode
*MorphNodeTo(SDNode
*N
, unsigned Opc
, SDVTList VTs
,
1218 ArrayRef
<SDValue
> Ops
);
1220 /// Mutate the specified strict FP node to its non-strict equivalent,
1221 /// unlinking the node from its chain and dropping the metadata arguments.
1222 /// The node must be a strict FP node.
1223 SDNode
*mutateStrictFPToFP(SDNode
*Node
);
1225 /// These are used for target selectors to create a new node
1226 /// with specified return type(s), MachineInstr opcode, and operands.
1228 /// Note that getMachineNode returns the resultant node. If there is already
1229 /// a node of the specified opcode and operands, it returns that node instead
1230 /// of the current one.
1231 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT
);
1232 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT
,
1234 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT
,
1235 SDValue Op1
, SDValue Op2
);
1236 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT
,
1237 SDValue Op1
, SDValue Op2
, SDValue Op3
);
1238 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT
,
1239 ArrayRef
<SDValue
> Ops
);
1240 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT1
,
1241 EVT VT2
, SDValue Op1
, SDValue Op2
);
1242 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT1
,
1243 EVT VT2
, SDValue Op1
, SDValue Op2
, SDValue Op3
);
1244 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT1
,
1245 EVT VT2
, ArrayRef
<SDValue
> Ops
);
1246 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT1
,
1247 EVT VT2
, EVT VT3
, SDValue Op1
, SDValue Op2
);
1248 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT1
,
1249 EVT VT2
, EVT VT3
, SDValue Op1
, SDValue Op2
,
1251 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT1
,
1252 EVT VT2
, EVT VT3
, ArrayRef
<SDValue
> Ops
);
1253 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
1254 ArrayRef
<EVT
> ResultTys
, ArrayRef
<SDValue
> Ops
);
1255 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, SDVTList VTs
,
1256 ArrayRef
<SDValue
> Ops
);
1258 /// A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
1259 SDValue
getTargetExtractSubreg(int SRIdx
, const SDLoc
&DL
, EVT VT
,
1262 /// A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
1263 SDValue
getTargetInsertSubreg(int SRIdx
, const SDLoc
&DL
, EVT VT
,
1264 SDValue Operand
, SDValue Subreg
);
1266 /// Get the specified node if it's already available, or else return NULL.
1267 SDNode
*getNodeIfExists(unsigned Opcode
, SDVTList VTList
, ArrayRef
<SDValue
> Ops
,
1268 const SDNodeFlags Flags
= SDNodeFlags());
1270 /// Creates a SDDbgValue node.
1271 SDDbgValue
*getDbgValue(DIVariable
*Var
, DIExpression
*Expr
, SDNode
*N
,
1272 unsigned R
, bool IsIndirect
, const DebugLoc
&DL
,
1275 /// Creates a constant SDDbgValue node.
1276 SDDbgValue
*getConstantDbgValue(DIVariable
*Var
, DIExpression
*Expr
,
1277 const Value
*C
, const DebugLoc
&DL
,
1280 /// Creates a FrameIndex SDDbgValue node.
1281 SDDbgValue
*getFrameIndexDbgValue(DIVariable
*Var
, DIExpression
*Expr
,
1282 unsigned FI
, bool IsIndirect
,
1283 const DebugLoc
&DL
, unsigned O
);
1285 /// Creates a VReg SDDbgValue node.
1286 SDDbgValue
*getVRegDbgValue(DIVariable
*Var
, DIExpression
*Expr
,
1287 unsigned VReg
, bool IsIndirect
,
1288 const DebugLoc
&DL
, unsigned O
);
1290 /// Creates a SDDbgLabel node.
1291 SDDbgLabel
*getDbgLabel(DILabel
*Label
, const DebugLoc
&DL
, unsigned O
);
1293 /// Transfer debug values from one node to another, while optionally
1294 /// generating fragment expressions for split-up values. If \p InvalidateDbg
1295 /// is set, debug values are invalidated after they are transferred.
1296 void transferDbgValues(SDValue From
, SDValue To
, unsigned OffsetInBits
= 0,
1297 unsigned SizeInBits
= 0, bool InvalidateDbg
= true);
1299 /// Remove the specified node from the system. If any of its
1300 /// operands then becomes dead, remove them as well. Inform UpdateListener
1301 /// for each node deleted.
1302 void RemoveDeadNode(SDNode
*N
);
1304 /// This method deletes the unreachable nodes in the
1305 /// given list, and any nodes that become unreachable as a result.
1306 void RemoveDeadNodes(SmallVectorImpl
<SDNode
*> &DeadNodes
);
1308 /// Modify anything using 'From' to use 'To' instead.
1309 /// This can cause recursive merging of nodes in the DAG. Use the first
1310 /// version if 'From' is known to have a single result, use the second
1311 /// if you have two nodes with identical results (or if 'To' has a superset
1312 /// of the results of 'From'), use the third otherwise.
1314 /// These methods all take an optional UpdateListener, which (if not null) is
1315 /// informed about nodes that are deleted and modified due to recursive
1316 /// changes in the dag.
1318 /// These functions only replace all existing uses. It's possible that as
1319 /// these replacements are being performed, CSE may cause the From node
1320 /// to be given new uses. These new uses of From are left in place, and
1321 /// not automatically transferred to To.
1323 void ReplaceAllUsesWith(SDValue From
, SDValue To
);
1324 void ReplaceAllUsesWith(SDNode
*From
, SDNode
*To
);
1325 void ReplaceAllUsesWith(SDNode
*From
, const SDValue
*To
);
1327 /// Replace any uses of From with To, leaving
1328 /// uses of other values produced by From.getNode() alone.
1329 void ReplaceAllUsesOfValueWith(SDValue From
, SDValue To
);
1331 /// Like ReplaceAllUsesOfValueWith, but for multiple values at once.
1332 /// This correctly handles the case where
1333 /// there is an overlap between the From values and the To values.
1334 void ReplaceAllUsesOfValuesWith(const SDValue
*From
, const SDValue
*To
,
1337 /// If an existing load has uses of its chain, create a token factor node with
1338 /// that chain and the new memory node's chain and update users of the old
1339 /// chain to the token factor. This ensures that the new memory node will have
1340 /// the same relative memory dependency position as the old load. Returns the
1341 /// new merged load chain.
1342 SDValue
makeEquivalentMemoryOrdering(LoadSDNode
*Old
, SDValue New
);
1344 /// Topological-sort the AllNodes list and a
1345 /// assign a unique node id for each node in the DAG based on their
1346 /// topological order. Returns the number of nodes.
1347 unsigned AssignTopologicalOrder();
1349 /// Move node N in the AllNodes list to be immediately
1350 /// before the given iterator Position. This may be used to update the
1351 /// topological ordering when the list of nodes is modified.
1352 void RepositionNode(allnodes_iterator Position
, SDNode
*N
) {
1353 AllNodes
.insert(Position
, AllNodes
.remove(N
));
1356 /// Returns an APFloat semantics tag appropriate for the given type. If VT is
1357 /// a vector type, the element semantics are returned.
1358 static const fltSemantics
&EVTToAPFloatSemantics(EVT VT
) {
1359 switch (VT
.getScalarType().getSimpleVT().SimpleTy
) {
1360 default: llvm_unreachable("Unknown FP format");
1361 case MVT::f16
: return APFloat::IEEEhalf();
1362 case MVT::f32
: return APFloat::IEEEsingle();
1363 case MVT::f64
: return APFloat::IEEEdouble();
1364 case MVT::f80
: return APFloat::x87DoubleExtended();
1365 case MVT::f128
: return APFloat::IEEEquad();
1366 case MVT::ppcf128
: return APFloat::PPCDoubleDouble();
1370 /// Add a dbg_value SDNode. If SD is non-null that means the
1371 /// value is produced by SD.
1372 void AddDbgValue(SDDbgValue
*DB
, SDNode
*SD
, bool isParameter
);
1374 /// Add a dbg_label SDNode.
1375 void AddDbgLabel(SDDbgLabel
*DB
);
1377 /// Get the debug values which reference the given SDNode.
1378 ArrayRef
<SDDbgValue
*> GetDbgValues(const SDNode
* SD
) const {
1379 return DbgInfo
->getSDDbgValues(SD
);
1383 /// Return true if there are any SDDbgValue nodes associated
1384 /// with this SelectionDAG.
1385 bool hasDebugValues() const { return !DbgInfo
->empty(); }
1387 SDDbgInfo::DbgIterator
DbgBegin() const { return DbgInfo
->DbgBegin(); }
1388 SDDbgInfo::DbgIterator
DbgEnd() const { return DbgInfo
->DbgEnd(); }
1390 SDDbgInfo::DbgIterator
ByvalParmDbgBegin() const {
1391 return DbgInfo
->ByvalParmDbgBegin();
1393 SDDbgInfo::DbgIterator
ByvalParmDbgEnd() const {
1394 return DbgInfo
->ByvalParmDbgEnd();
1397 SDDbgInfo::DbgLabelIterator
DbgLabelBegin() const {
1398 return DbgInfo
->DbgLabelBegin();
1400 SDDbgInfo::DbgLabelIterator
DbgLabelEnd() const {
1401 return DbgInfo
->DbgLabelEnd();
1404 /// To be invoked on an SDNode that is slated to be erased. This
1405 /// function mirrors \c llvm::salvageDebugInfo.
1406 void salvageDebugInfo(SDNode
&N
);
1410 /// Create a stack temporary, suitable for holding the specified value type.
1411 /// If minAlign is specified, the slot size will have at least that alignment.
1412 SDValue
CreateStackTemporary(EVT VT
, unsigned minAlign
= 1);
1414 /// Create a stack temporary suitable for holding either of the specified
1416 SDValue
CreateStackTemporary(EVT VT1
, EVT VT2
);
1418 SDValue
FoldSymbolOffset(unsigned Opcode
, EVT VT
,
1419 const GlobalAddressSDNode
*GA
,
1422 SDValue
FoldConstantArithmetic(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
1423 SDNode
*N1
, SDNode
*N2
);
1425 SDValue
FoldConstantArithmetic(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
1426 const ConstantSDNode
*C1
,
1427 const ConstantSDNode
*C2
);
1429 SDValue
FoldConstantVectorArithmetic(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
1430 ArrayRef
<SDValue
> Ops
,
1431 const SDNodeFlags Flags
= SDNodeFlags());
1433 /// Fold floating-point operations with 2 operands when both operands are
1434 /// constants and/or undefined.
1435 SDValue
foldConstantFPMath(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
1436 SDValue N1
, SDValue N2
);
1438 /// Constant fold a setcc to true or false.
1439 SDValue
FoldSetCC(EVT VT
, SDValue N1
, SDValue N2
, ISD::CondCode Cond
,
1442 /// See if the specified operand can be simplified with the knowledge that
1443 /// only the bits specified by DemandedBits are used. If so, return the
1444 /// simpler operand, otherwise return a null SDValue.
1446 /// (This exists alongside SimplifyDemandedBits because GetDemandedBits can
1447 /// simplify nodes with multiple uses more aggressively.)
1448 SDValue
GetDemandedBits(SDValue V
, const APInt
&DemandedBits
);
1450 /// See if the specified operand can be simplified with the knowledge that
1451 /// only the bits specified by DemandedBits are used in the elements specified
1452 /// by DemandedElts. If so, return the simpler operand, otherwise return a
1455 /// (This exists alongside SimplifyDemandedBits because GetDemandedBits can
1456 /// simplify nodes with multiple uses more aggressively.)
1457 SDValue
GetDemandedBits(SDValue V
, const APInt
&DemandedBits
,
1458 const APInt
&DemandedElts
);
1460 /// Return true if the sign bit of Op is known to be zero.
1461 /// We use this predicate to simplify operations downstream.
1462 bool SignBitIsZero(SDValue Op
, unsigned Depth
= 0) const;
1464 /// Return true if 'Op & Mask' is known to be zero. We
1465 /// use this predicate to simplify operations downstream. Op and Mask are
1466 /// known to be the same type.
1467 bool MaskedValueIsZero(SDValue Op
, const APInt
&Mask
,
1468 unsigned Depth
= 0) const;
1470 /// Return true if 'Op & Mask' is known to be zero in DemandedElts. We
1471 /// use this predicate to simplify operations downstream. Op and Mask are
1472 /// known to be the same type.
1473 bool MaskedValueIsZero(SDValue Op
, const APInt
&Mask
,
1474 const APInt
&DemandedElts
, unsigned Depth
= 0) const;
1476 /// Return true if '(Op & Mask) == Mask'.
1477 /// Op and Mask are known to be the same type.
1478 bool MaskedValueIsAllOnes(SDValue Op
, const APInt
&Mask
,
1479 unsigned Depth
= 0) const;
1481 /// Determine which bits of Op are known to be either zero or one and return
1482 /// them in Known. For vectors, the known bits are those that are shared by
1483 /// every vector element.
1484 /// Targets can implement the computeKnownBitsForTargetNode method in the
1485 /// TargetLowering class to allow target nodes to be understood.
1486 KnownBits
computeKnownBits(SDValue Op
, unsigned Depth
= 0) const;
1488 /// Determine which bits of Op are known to be either zero or one and return
1489 /// them in Known. The DemandedElts argument allows us to only collect the
1490 /// known bits that are shared by the requested vector elements.
1491 /// Targets can implement the computeKnownBitsForTargetNode method in the
1492 /// TargetLowering class to allow target nodes to be understood.
1493 KnownBits
computeKnownBits(SDValue Op
, const APInt
&DemandedElts
,
1494 unsigned Depth
= 0) const;
1496 /// Used to represent the possible overflow behavior of an operation.
1497 /// Never: the operation cannot overflow.
1498 /// Always: the operation will always overflow.
1499 /// Sometime: the operation may or may not overflow.
1506 /// Determine if the result of the addition of 2 node can overflow.
1507 OverflowKind
computeOverflowKind(SDValue N0
, SDValue N1
) const;
1509 /// Test if the given value is known to have exactly one bit set. This differs
1510 /// from computeKnownBits in that it doesn't necessarily determine which bit
1512 bool isKnownToBeAPowerOfTwo(SDValue Val
) const;
1514 /// Return the number of times the sign bit of the register is replicated into
1515 /// the other bits. We know that at least 1 bit is always equal to the sign
1516 /// bit (itself), but other cases can give us information. For example,
1517 /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
1518 /// to each other, so we return 3. Targets can implement the
1519 /// ComputeNumSignBitsForTarget method in the TargetLowering class to allow
1520 /// target nodes to be understood.
1521 unsigned ComputeNumSignBits(SDValue Op
, unsigned Depth
= 0) const;
1523 /// Return the number of times the sign bit of the register is replicated into
1524 /// the other bits. We know that at least 1 bit is always equal to the sign
1525 /// bit (itself), but other cases can give us information. For example,
1526 /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
1527 /// to each other, so we return 3. The DemandedElts argument allows
1528 /// us to only collect the minimum sign bits of the requested vector elements.
1529 /// Targets can implement the ComputeNumSignBitsForTarget method in the
1530 /// TargetLowering class to allow target nodes to be understood.
1531 unsigned ComputeNumSignBits(SDValue Op
, const APInt
&DemandedElts
,
1532 unsigned Depth
= 0) const;
1534 /// Return true if the specified operand is an ISD::ADD with a ConstantSDNode
1535 /// on the right-hand side, or if it is an ISD::OR with a ConstantSDNode that
1536 /// is guaranteed to have the same semantics as an ADD. This handles the
1538 /// X|Cst == X+Cst iff X&Cst = 0.
1539 bool isBaseWithConstantOffset(SDValue Op
) const;
1541 /// Test whether the given SDValue is known to never be NaN. If \p SNaN is
1542 /// true, returns if \p Op is known to never be a signaling NaN (it may still
1544 bool isKnownNeverNaN(SDValue Op
, bool SNaN
= false, unsigned Depth
= 0) const;
1546 /// \returns true if \p Op is known to never be a signaling NaN.
1547 bool isKnownNeverSNaN(SDValue Op
, unsigned Depth
= 0) const {
1548 return isKnownNeverNaN(Op
, true, Depth
);
1551 /// Test whether the given floating point SDValue is known to never be
1552 /// positive or negative zero.
1553 bool isKnownNeverZeroFloat(SDValue Op
) const;
1555 /// Test whether the given SDValue is known to contain non-zero value(s).
1556 bool isKnownNeverZero(SDValue Op
) const;
1558 /// Test whether two SDValues are known to compare equal. This
1559 /// is true if they are the same value, or if one is negative zero and the
1560 /// other positive zero.
1561 bool isEqualTo(SDValue A
, SDValue B
) const;
1563 /// Return true if A and B have no common bits set. As an example, this can
1564 /// allow an 'add' to be transformed into an 'or'.
1565 bool haveNoCommonBitsSet(SDValue A
, SDValue B
) const;
1567 /// Test whether \p V has a splatted value for all the demanded elements.
1569 /// On success \p UndefElts will indicate the elements that have UNDEF
1570 /// values instead of the splat value, this is only guaranteed to be correct
1571 /// for \p DemandedElts.
1573 /// NOTE: The function will return true for a demanded splat of UNDEF values.
1574 bool isSplatValue(SDValue V
, const APInt
&DemandedElts
, APInt
&UndefElts
);
1576 /// Test whether \p V has a splatted value.
1577 bool isSplatValue(SDValue V
, bool AllowUndefs
= false);
1579 /// If V is a splatted value, return the source vector and its splat index.
1580 SDValue
getSplatSourceVector(SDValue V
, int &SplatIndex
);
1582 /// If V is a splat vector, return its scalar source operand by extracting
1583 /// that element from the source vector.
1584 SDValue
getSplatValue(SDValue V
);
1586 /// Match a binop + shuffle pyramid that represents a horizontal reduction
1587 /// over the elements of a vector starting from the EXTRACT_VECTOR_ELT node /p
1588 /// Extract. The reduction must use one of the opcodes listed in /p
1589 /// CandidateBinOps and on success /p BinOp will contain the matching opcode.
1590 /// Returns the vector that is being reduced on, or SDValue() if a reduction
1591 /// was not matched.
1592 SDValue
matchBinOpReduction(SDNode
*Extract
, ISD::NodeType
&BinOp
,
1593 ArrayRef
<ISD::NodeType
> CandidateBinOps
);
1595 /// Utility function used by legalize and lowering to
1596 /// "unroll" a vector operation by splitting out the scalars and operating
1597 /// on each element individually. If the ResNE is 0, fully unroll the vector
1598 /// op. If ResNE is less than the width of the vector op, unroll up to ResNE.
1599 /// If the ResNE is greater than the width of the vector op, unroll the
1600 /// vector op and fill the end of the resulting vector with UNDEFS.
1601 SDValue
UnrollVectorOp(SDNode
*N
, unsigned ResNE
= 0);
1603 /// Like UnrollVectorOp(), but for the [US](ADD|SUB|MUL)O family of opcodes.
1604 /// This is a separate function because those opcodes have two results.
1605 std::pair
<SDValue
, SDValue
> UnrollVectorOverflowOp(SDNode
*N
,
1606 unsigned ResNE
= 0);
1608 /// Return true if loads are next to each other and can be
1609 /// merged. Check that both are nonvolatile and if LD is loading
1610 /// 'Bytes' bytes from a location that is 'Dist' units away from the
1611 /// location that the 'Base' load is loading from.
1612 bool areNonVolatileConsecutiveLoads(LoadSDNode
*LD
, LoadSDNode
*Base
,
1613 unsigned Bytes
, int Dist
) const;
1615 /// Infer alignment of a load / store address. Return 0 if
1616 /// it cannot be inferred.
1617 unsigned InferPtrAlignment(SDValue Ptr
) const;
1619 /// Compute the VTs needed for the low/hi parts of a type
1620 /// which is split (or expanded) into two not necessarily identical pieces.
1621 std::pair
<EVT
, EVT
> GetSplitDestVTs(const EVT
&VT
) const;
1623 /// Split the vector with EXTRACT_SUBVECTOR using the provides
1624 /// VTs and return the low/high part.
1625 std::pair
<SDValue
, SDValue
> SplitVector(const SDValue
&N
, const SDLoc
&DL
,
1626 const EVT
&LoVT
, const EVT
&HiVT
);
1628 /// Split the vector with EXTRACT_SUBVECTOR and return the low/high part.
1629 std::pair
<SDValue
, SDValue
> SplitVector(const SDValue
&N
, const SDLoc
&DL
) {
1631 std::tie(LoVT
, HiVT
) = GetSplitDestVTs(N
.getValueType());
1632 return SplitVector(N
, DL
, LoVT
, HiVT
);
1635 /// Split the node's operand with EXTRACT_SUBVECTOR and
1636 /// return the low/high part.
1637 std::pair
<SDValue
, SDValue
> SplitVectorOperand(const SDNode
*N
, unsigned OpNo
)
1639 return SplitVector(N
->getOperand(OpNo
), SDLoc(N
));
1642 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
1643 SDValue
WidenVector(const SDValue
&N
, const SDLoc
&DL
);
1645 /// Append the extracted elements from Start to Count out of the vector Op
1646 /// in Args. If Count is 0, all of the elements will be extracted.
1647 void ExtractVectorElements(SDValue Op
, SmallVectorImpl
<SDValue
> &Args
,
1648 unsigned Start
= 0, unsigned Count
= 0);
1650 /// Compute the default alignment value for the given type.
1651 unsigned getEVTAlignment(EVT MemoryVT
) const;
1653 /// Test whether the given value is a constant int or similar node.
1654 SDNode
*isConstantIntBuildVectorOrConstantInt(SDValue N
);
1656 /// Test whether the given value is a constant FP or similar node.
1657 SDNode
*isConstantFPBuildVectorOrConstantFP(SDValue N
);
1659 /// \returns true if \p N is any kind of constant or build_vector of
1660 /// constants, int or float. If a vector, it may not necessarily be a splat.
1661 inline bool isConstantValueOfAnyType(SDValue N
) {
1662 return isConstantIntBuildVectorOrConstantInt(N
) ||
1663 isConstantFPBuildVectorOrConstantFP(N
);
1666 void addCallSiteInfo(const SDNode
*CallNode
, CallSiteInfoImpl
&&CallInfo
) {
1667 SDCallSiteInfo
[CallNode
] = std::move(CallInfo
);
1670 CallSiteInfo
getSDCallSiteInfo(const SDNode
*CallNode
) {
1671 auto I
= SDCallSiteInfo
.find(CallNode
);
1672 if (I
!= SDCallSiteInfo
.end())
1673 return std::move(I
->second
);
1674 return CallSiteInfo();
1678 void InsertNode(SDNode
*N
);
1679 bool RemoveNodeFromCSEMaps(SDNode
*N
);
1680 void AddModifiedNodeToCSEMaps(SDNode
*N
);
1681 SDNode
*FindModifiedNodeSlot(SDNode
*N
, SDValue Op
, void *&InsertPos
);
1682 SDNode
*FindModifiedNodeSlot(SDNode
*N
, SDValue Op1
, SDValue Op2
,
1684 SDNode
*FindModifiedNodeSlot(SDNode
*N
, ArrayRef
<SDValue
> Ops
,
1686 SDNode
*UpdateSDLocOnMergeSDNode(SDNode
*N
, const SDLoc
&loc
);
1688 void DeleteNodeNotInCSEMaps(SDNode
*N
);
1689 void DeallocateNode(SDNode
*N
);
1691 void allnodes_clear();
1693 /// Look up the node specified by ID in CSEMap. If it exists, return it. If
1694 /// not, return the insertion token that will make insertion faster. This
1695 /// overload is for nodes other than Constant or ConstantFP, use the other one
1697 SDNode
*FindNodeOrInsertPos(const FoldingSetNodeID
&ID
, void *&InsertPos
);
1699 /// Look up the node specified by ID in CSEMap. If it exists, return it. If
1700 /// not, return the insertion token that will make insertion faster. Performs
1701 /// additional processing for constant nodes.
1702 SDNode
*FindNodeOrInsertPos(const FoldingSetNodeID
&ID
, const SDLoc
&DL
,
1705 /// List of non-single value types.
1706 FoldingSet
<SDVTListNode
> VTListMap
;
1708 /// Maps to auto-CSE operations.
1709 std::vector
<CondCodeSDNode
*> CondCodeNodes
;
1711 std::vector
<SDNode
*> ValueTypeNodes
;
1712 std::map
<EVT
, SDNode
*, EVT::compareRawBits
> ExtendedValueTypeNodes
;
1713 StringMap
<SDNode
*> ExternalSymbols
;
1715 std::map
<std::pair
<std::string
, unsigned char>,SDNode
*> TargetExternalSymbols
;
1716 DenseMap
<MCSymbol
*, SDNode
*> MCSymbols
;
1719 template <> struct GraphTraits
<SelectionDAG
*> : public GraphTraits
<SDNode
*> {
1720 using nodes_iterator
= pointer_iterator
<SelectionDAG::allnodes_iterator
>;
1722 static nodes_iterator
nodes_begin(SelectionDAG
*G
) {
1723 return nodes_iterator(G
->allnodes_begin());
1726 static nodes_iterator
nodes_end(SelectionDAG
*G
) {
1727 return nodes_iterator(G
->allnodes_end());
1731 template <class TargetMemSDNode
>
1732 SDValue
SelectionDAG::getTargetMemSDNode(SDVTList VTs
,
1733 ArrayRef
<SDValue
> Ops
,
1734 const SDLoc
&dl
, EVT MemVT
,
1735 MachineMemOperand
*MMO
) {
1736 /// Compose node ID and try to find an existing node.
1737 FoldingSetNodeID ID
;
1739 TargetMemSDNode(dl
.getIROrder(), DebugLoc(), VTs
, MemVT
, MMO
).getOpcode();
1740 ID
.AddInteger(Opcode
);
1741 ID
.AddPointer(VTs
.VTs
);
1742 for (auto& Op
: Ops
) {
1743 ID
.AddPointer(Op
.getNode());
1744 ID
.AddInteger(Op
.getResNo());
1746 ID
.AddInteger(MemVT
.getRawBits());
1747 ID
.AddInteger(MMO
->getPointerInfo().getAddrSpace());
1748 ID
.AddInteger(getSyntheticNodeSubclassData
<TargetMemSDNode
>(
1749 dl
.getIROrder(), VTs
, MemVT
, MMO
));
1752 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
)) {
1753 cast
<TargetMemSDNode
>(E
)->refineAlignment(MMO
);
1754 return SDValue(E
, 0);
1757 /// Existing node was not found. Create a new one.
1758 auto *N
= newSDNode
<TargetMemSDNode
>(dl
.getIROrder(), dl
.getDebugLoc(), VTs
,
1760 createOperands(N
, Ops
);
1761 CSEMap
.InsertNode(N
, IP
);
1763 return SDValue(N
, 0);
1766 } // end namespace llvm
1768 #endif // LLVM_CODEGEN_SELECTIONDAG_H