[ARM] MVE integer min and max
[llvm-complete.git] / include / llvm / CodeGen / SelectionDAG.h
blob12a970847021c81b6975a0b14c8814d46ce0bb7f
1 //===- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the SelectionDAG class, and transitively defines the
10 // SDNode class and subclasses.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_CODEGEN_SELECTIONDAG_H
15 #define LLVM_CODEGEN_SELECTIONDAG_H
17 #include "llvm/ADT/APFloat.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/FoldingSet.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringMap.h"
26 #include "llvm/ADT/ilist.h"
27 #include "llvm/ADT/iterator.h"
28 #include "llvm/ADT/iterator_range.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
31 #include "llvm/CodeGen/DAGCombine.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/Metadata.h"
41 #include "llvm/Support/Allocator.h"
42 #include "llvm/Support/ArrayRecycler.h"
43 #include "llvm/Support/AtomicOrdering.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/CodeGen.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/MachineValueType.h"
48 #include "llvm/Support/RecyclingAllocator.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstdint>
52 #include <functional>
53 #include <map>
54 #include <string>
55 #include <tuple>
56 #include <utility>
57 #include <vector>
59 namespace llvm {
61 class BlockAddress;
62 class Constant;
63 class ConstantFP;
64 class ConstantInt;
65 class DataLayout;
66 struct fltSemantics;
67 class GlobalValue;
68 struct KnownBits;
69 class LLVMContext;
70 class MachineBasicBlock;
71 class MachineConstantPoolValue;
72 class MCSymbol;
73 class OptimizationRemarkEmitter;
74 class SDDbgValue;
75 class SDDbgLabel;
76 class SelectionDAG;
77 class SelectionDAGTargetInfo;
78 class TargetLibraryInfo;
79 class TargetLowering;
80 class TargetMachine;
81 class TargetSubtargetInfo;
82 class Value;
84 class SDVTListNode : public FoldingSetNode {
85 friend struct FoldingSetTrait<SDVTListNode>;
87 /// A reference to an Interned FoldingSetNodeID for this node.
88 /// The Allocator in SelectionDAG holds the data.
89 /// SDVTList contains all types which are frequently accessed in SelectionDAG.
90 /// The size of this list is not expected to be big so it won't introduce
91 /// a memory penalty.
92 FoldingSetNodeIDRef FastID;
93 const EVT *VTs;
94 unsigned int NumVTs;
95 /// The hash value for SDVTList is fixed, so cache it to avoid
96 /// hash calculation.
97 unsigned HashValue;
99 public:
100 SDVTListNode(const FoldingSetNodeIDRef ID, const EVT *VT, unsigned int Num) :
101 FastID(ID), VTs(VT), NumVTs(Num) {
102 HashValue = ID.ComputeHash();
105 SDVTList getSDVTList() {
106 SDVTList result = {VTs, NumVTs};
107 return result;
111 /// Specialize FoldingSetTrait for SDVTListNode
112 /// to avoid computing temp FoldingSetNodeID and hash value.
113 template<> struct FoldingSetTrait<SDVTListNode> : DefaultFoldingSetTrait<SDVTListNode> {
114 static void Profile(const SDVTListNode &X, FoldingSetNodeID& ID) {
115 ID = X.FastID;
118 static bool Equals(const SDVTListNode &X, const FoldingSetNodeID &ID,
119 unsigned IDHash, FoldingSetNodeID &TempID) {
120 if (X.HashValue != IDHash)
121 return false;
122 return ID == X.FastID;
125 static unsigned ComputeHash(const SDVTListNode &X, FoldingSetNodeID &TempID) {
126 return X.HashValue;
130 template <> struct ilist_alloc_traits<SDNode> {
131 static void deleteNode(SDNode *) {
132 llvm_unreachable("ilist_traits<SDNode> shouldn't see a deleteNode call!");
136 /// Keeps track of dbg_value information through SDISel. We do
137 /// not build SDNodes for these so as not to perturb the generated code;
138 /// instead the info is kept off to the side in this structure. Each SDNode may
139 /// have one or more associated dbg_value entries. This information is kept in
140 /// DbgValMap.
141 /// Byval parameters are handled separately because they don't use alloca's,
142 /// which busts the normal mechanism. There is good reason for handling all
143 /// parameters separately: they may not have code generated for them, they
144 /// should always go at the beginning of the function regardless of other code
145 /// motion, and debug info for them is potentially useful even if the parameter
146 /// is unused. Right now only byval parameters are handled separately.
147 class SDDbgInfo {
148 BumpPtrAllocator Alloc;
149 SmallVector<SDDbgValue*, 32> DbgValues;
150 SmallVector<SDDbgValue*, 32> ByvalParmDbgValues;
151 SmallVector<SDDbgLabel*, 4> DbgLabels;
152 using DbgValMapType = DenseMap<const SDNode *, SmallVector<SDDbgValue *, 2>>;
153 DbgValMapType DbgValMap;
155 public:
156 SDDbgInfo() = default;
157 SDDbgInfo(const SDDbgInfo &) = delete;
158 SDDbgInfo &operator=(const SDDbgInfo &) = delete;
160 void add(SDDbgValue *V, const SDNode *Node, bool isParameter) {
161 if (isParameter) {
162 ByvalParmDbgValues.push_back(V);
163 } else DbgValues.push_back(V);
164 if (Node)
165 DbgValMap[Node].push_back(V);
168 void add(SDDbgLabel *L) {
169 DbgLabels.push_back(L);
172 /// Invalidate all DbgValues attached to the node and remove
173 /// it from the Node-to-DbgValues map.
174 void erase(const SDNode *Node);
176 void clear() {
177 DbgValMap.clear();
178 DbgValues.clear();
179 ByvalParmDbgValues.clear();
180 DbgLabels.clear();
181 Alloc.Reset();
184 BumpPtrAllocator &getAlloc() { return Alloc; }
186 bool empty() const {
187 return DbgValues.empty() && ByvalParmDbgValues.empty() && DbgLabels.empty();
190 ArrayRef<SDDbgValue*> getSDDbgValues(const SDNode *Node) const {
191 auto I = DbgValMap.find(Node);
192 if (I != DbgValMap.end())
193 return I->second;
194 return ArrayRef<SDDbgValue*>();
197 using DbgIterator = SmallVectorImpl<SDDbgValue*>::iterator;
198 using DbgLabelIterator = SmallVectorImpl<SDDbgLabel*>::iterator;
200 DbgIterator DbgBegin() { return DbgValues.begin(); }
201 DbgIterator DbgEnd() { return DbgValues.end(); }
202 DbgIterator ByvalParmDbgBegin() { return ByvalParmDbgValues.begin(); }
203 DbgIterator ByvalParmDbgEnd() { return ByvalParmDbgValues.end(); }
204 DbgLabelIterator DbgLabelBegin() { return DbgLabels.begin(); }
205 DbgLabelIterator DbgLabelEnd() { return DbgLabels.end(); }
208 void checkForCycles(const SelectionDAG *DAG, bool force = false);
210 /// This is used to represent a portion of an LLVM function in a low-level
211 /// Data Dependence DAG representation suitable for instruction selection.
212 /// This DAG is constructed as the first step of instruction selection in order
213 /// to allow implementation of machine specific optimizations
214 /// and code simplifications.
216 /// The representation used by the SelectionDAG is a target-independent
217 /// representation, which has some similarities to the GCC RTL representation,
218 /// but is significantly more simple, powerful, and is a graph form instead of a
219 /// linear form.
221 class SelectionDAG {
222 const TargetMachine &TM;
223 const SelectionDAGTargetInfo *TSI = nullptr;
224 const TargetLowering *TLI = nullptr;
225 const TargetLibraryInfo *LibInfo = nullptr;
226 MachineFunction *MF;
227 Pass *SDAGISelPass = nullptr;
228 LLVMContext *Context;
229 CodeGenOpt::Level OptLevel;
231 LegacyDivergenceAnalysis * DA = nullptr;
232 FunctionLoweringInfo * FLI = nullptr;
234 /// The function-level optimization remark emitter. Used to emit remarks
235 /// whenever manipulating the DAG.
236 OptimizationRemarkEmitter *ORE;
238 /// The starting token.
239 SDNode EntryNode;
241 /// The root of the entire DAG.
242 SDValue Root;
244 /// A linked list of nodes in the current DAG.
245 ilist<SDNode> AllNodes;
247 /// The AllocatorType for allocating SDNodes. We use
248 /// pool allocation with recycling.
249 using NodeAllocatorType = RecyclingAllocator<BumpPtrAllocator, SDNode,
250 sizeof(LargestSDNode),
251 alignof(MostAlignedSDNode)>;
253 /// Pool allocation for nodes.
254 NodeAllocatorType NodeAllocator;
256 /// This structure is used to memoize nodes, automatically performing
257 /// CSE with existing nodes when a duplicate is requested.
258 FoldingSet<SDNode> CSEMap;
260 /// Pool allocation for machine-opcode SDNode operands.
261 BumpPtrAllocator OperandAllocator;
262 ArrayRecycler<SDUse> OperandRecycler;
264 /// Pool allocation for misc. objects that are created once per SelectionDAG.
265 BumpPtrAllocator Allocator;
267 /// Tracks dbg_value and dbg_label information through SDISel.
268 SDDbgInfo *DbgInfo;
270 using CallSiteInfo = MachineFunction::CallSiteInfo;
271 using CallSiteInfoImpl = MachineFunction::CallSiteInfoImpl;
272 DenseMap<const SDNode *, CallSiteInfo> SDCallSiteInfo;
274 uint16_t NextPersistentId = 0;
276 public:
277 /// Clients of various APIs that cause global effects on
278 /// the DAG can optionally implement this interface. This allows the clients
279 /// to handle the various sorts of updates that happen.
281 /// A DAGUpdateListener automatically registers itself with DAG when it is
282 /// constructed, and removes itself when destroyed in RAII fashion.
283 struct DAGUpdateListener {
284 DAGUpdateListener *const Next;
285 SelectionDAG &DAG;
287 explicit DAGUpdateListener(SelectionDAG &D)
288 : Next(D.UpdateListeners), DAG(D) {
289 DAG.UpdateListeners = this;
292 virtual ~DAGUpdateListener() {
293 assert(DAG.UpdateListeners == this &&
294 "DAGUpdateListeners must be destroyed in LIFO order");
295 DAG.UpdateListeners = Next;
298 /// The node N that was deleted and, if E is not null, an
299 /// equivalent node E that replaced it.
300 virtual void NodeDeleted(SDNode *N, SDNode *E);
302 /// The node N that was updated.
303 virtual void NodeUpdated(SDNode *N);
305 /// The node N that was inserted.
306 virtual void NodeInserted(SDNode *N);
309 struct DAGNodeDeletedListener : public DAGUpdateListener {
310 std::function<void(SDNode *, SDNode *)> Callback;
312 DAGNodeDeletedListener(SelectionDAG &DAG,
313 std::function<void(SDNode *, SDNode *)> Callback)
314 : DAGUpdateListener(DAG), Callback(std::move(Callback)) {}
316 void NodeDeleted(SDNode *N, SDNode *E) override { Callback(N, E); }
318 private:
319 virtual void anchor();
322 /// When true, additional steps are taken to
323 /// ensure that getConstant() and similar functions return DAG nodes that
324 /// have legal types. This is important after type legalization since
325 /// any illegally typed nodes generated after this point will not experience
326 /// type legalization.
327 bool NewNodesMustHaveLegalTypes = false;
329 private:
330 /// DAGUpdateListener is a friend so it can manipulate the listener stack.
331 friend struct DAGUpdateListener;
333 /// Linked list of registered DAGUpdateListener instances.
334 /// This stack is maintained by DAGUpdateListener RAII.
335 DAGUpdateListener *UpdateListeners = nullptr;
337 /// Implementation of setSubgraphColor.
338 /// Return whether we had to truncate the search.
339 bool setSubgraphColorHelper(SDNode *N, const char *Color,
340 DenseSet<SDNode *> &visited,
341 int level, bool &printed);
343 template <typename SDNodeT, typename... ArgTypes>
344 SDNodeT *newSDNode(ArgTypes &&... Args) {
345 return new (NodeAllocator.template Allocate<SDNodeT>())
346 SDNodeT(std::forward<ArgTypes>(Args)...);
349 /// Build a synthetic SDNodeT with the given args and extract its subclass
350 /// data as an integer (e.g. for use in a folding set).
352 /// The args to this function are the same as the args to SDNodeT's
353 /// constructor, except the second arg (assumed to be a const DebugLoc&) is
354 /// omitted.
355 template <typename SDNodeT, typename... ArgTypes>
356 static uint16_t getSyntheticNodeSubclassData(unsigned IROrder,
357 ArgTypes &&... Args) {
358 // The compiler can reduce this expression to a constant iff we pass an
359 // empty DebugLoc. Thankfully, the debug location doesn't have any bearing
360 // on the subclass data.
361 return SDNodeT(IROrder, DebugLoc(), std::forward<ArgTypes>(Args)...)
362 .getRawSubclassData();
365 template <typename SDNodeTy>
366 static uint16_t getSyntheticNodeSubclassData(unsigned Opc, unsigned Order,
367 SDVTList VTs, EVT MemoryVT,
368 MachineMemOperand *MMO) {
369 return SDNodeTy(Opc, Order, DebugLoc(), VTs, MemoryVT, MMO)
370 .getRawSubclassData();
373 void createOperands(SDNode *Node, ArrayRef<SDValue> Vals);
375 void removeOperands(SDNode *Node) {
376 if (!Node->OperandList)
377 return;
378 OperandRecycler.deallocate(
379 ArrayRecycler<SDUse>::Capacity::get(Node->NumOperands),
380 Node->OperandList);
381 Node->NumOperands = 0;
382 Node->OperandList = nullptr;
384 void CreateTopologicalOrder(std::vector<SDNode*>& Order);
385 public:
386 explicit SelectionDAG(const TargetMachine &TM, CodeGenOpt::Level);
387 SelectionDAG(const SelectionDAG &) = delete;
388 SelectionDAG &operator=(const SelectionDAG &) = delete;
389 ~SelectionDAG();
391 /// Prepare this SelectionDAG to process code in the given MachineFunction.
392 void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE,
393 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
394 LegacyDivergenceAnalysis * Divergence);
396 void setFunctionLoweringInfo(FunctionLoweringInfo * FuncInfo) {
397 FLI = FuncInfo;
400 /// Clear state and free memory necessary to make this
401 /// SelectionDAG ready to process a new block.
402 void clear();
404 MachineFunction &getMachineFunction() const { return *MF; }
405 const Pass *getPass() const { return SDAGISelPass; }
407 const DataLayout &getDataLayout() const { return MF->getDataLayout(); }
408 const TargetMachine &getTarget() const { return TM; }
409 const TargetSubtargetInfo &getSubtarget() const { return MF->getSubtarget(); }
410 const TargetLowering &getTargetLoweringInfo() const { return *TLI; }
411 const TargetLibraryInfo &getLibInfo() const { return *LibInfo; }
412 const SelectionDAGTargetInfo &getSelectionDAGInfo() const { return *TSI; }
413 const LegacyDivergenceAnalysis *getDivergenceAnalysis() const { return DA; }
414 LLVMContext *getContext() const {return Context; }
415 OptimizationRemarkEmitter &getORE() const { return *ORE; }
417 /// Pop up a GraphViz/gv window with the DAG rendered using 'dot'.
418 void viewGraph(const std::string &Title);
419 void viewGraph();
421 #ifndef NDEBUG
422 std::map<const SDNode *, std::string> NodeGraphAttrs;
423 #endif
425 /// Clear all previously defined node graph attributes.
426 /// Intended to be used from a debugging tool (eg. gdb).
427 void clearGraphAttrs();
429 /// Set graph attributes for a node. (eg. "color=red".)
430 void setGraphAttrs(const SDNode *N, const char *Attrs);
432 /// Get graph attributes for a node. (eg. "color=red".)
433 /// Used from getNodeAttributes.
434 const std::string getGraphAttrs(const SDNode *N) const;
436 /// Convenience for setting node color attribute.
437 void setGraphColor(const SDNode *N, const char *Color);
439 /// Convenience for setting subgraph color attribute.
440 void setSubgraphColor(SDNode *N, const char *Color);
442 using allnodes_const_iterator = ilist<SDNode>::const_iterator;
444 allnodes_const_iterator allnodes_begin() const { return AllNodes.begin(); }
445 allnodes_const_iterator allnodes_end() const { return AllNodes.end(); }
447 using allnodes_iterator = ilist<SDNode>::iterator;
449 allnodes_iterator allnodes_begin() { return AllNodes.begin(); }
450 allnodes_iterator allnodes_end() { return AllNodes.end(); }
452 ilist<SDNode>::size_type allnodes_size() const {
453 return AllNodes.size();
456 iterator_range<allnodes_iterator> allnodes() {
457 return make_range(allnodes_begin(), allnodes_end());
459 iterator_range<allnodes_const_iterator> allnodes() const {
460 return make_range(allnodes_begin(), allnodes_end());
463 /// Return the root tag of the SelectionDAG.
464 const SDValue &getRoot() const { return Root; }
466 /// Return the token chain corresponding to the entry of the function.
467 SDValue getEntryNode() const {
468 return SDValue(const_cast<SDNode *>(&EntryNode), 0);
471 /// Set the current root tag of the SelectionDAG.
473 const SDValue &setRoot(SDValue N) {
474 assert((!N.getNode() || N.getValueType() == MVT::Other) &&
475 "DAG root value is not a chain!");
476 if (N.getNode())
477 checkForCycles(N.getNode(), this);
478 Root = N;
479 if (N.getNode())
480 checkForCycles(this);
481 return Root;
484 #ifndef NDEBUG
485 void VerifyDAGDiverence();
486 #endif
488 /// This iterates over the nodes in the SelectionDAG, folding
489 /// certain types of nodes together, or eliminating superfluous nodes. The
490 /// Level argument controls whether Combine is allowed to produce nodes and
491 /// types that are illegal on the target.
492 void Combine(CombineLevel Level, AliasAnalysis *AA,
493 CodeGenOpt::Level OptLevel);
495 /// This transforms the SelectionDAG into a SelectionDAG that
496 /// only uses types natively supported by the target.
497 /// Returns "true" if it made any changes.
499 /// Note that this is an involved process that may invalidate pointers into
500 /// the graph.
501 bool LegalizeTypes();
503 /// This transforms the SelectionDAG into a SelectionDAG that is
504 /// compatible with the target instruction selector, as indicated by the
505 /// TargetLowering object.
507 /// Note that this is an involved process that may invalidate pointers into
508 /// the graph.
509 void Legalize();
511 /// Transforms a SelectionDAG node and any operands to it into a node
512 /// that is compatible with the target instruction selector, as indicated by
513 /// the TargetLowering object.
515 /// \returns true if \c N is a valid, legal node after calling this.
517 /// This essentially runs a single recursive walk of the \c Legalize process
518 /// over the given node (and its operands). This can be used to incrementally
519 /// legalize the DAG. All of the nodes which are directly replaced,
520 /// potentially including N, are added to the output parameter \c
521 /// UpdatedNodes so that the delta to the DAG can be understood by the
522 /// caller.
524 /// When this returns false, N has been legalized in a way that make the
525 /// pointer passed in no longer valid. It may have even been deleted from the
526 /// DAG, and so it shouldn't be used further. When this returns true, the
527 /// N passed in is a legal node, and can be immediately processed as such.
528 /// This may still have done some work on the DAG, and will still populate
529 /// UpdatedNodes with any new nodes replacing those originally in the DAG.
530 bool LegalizeOp(SDNode *N, SmallSetVector<SDNode *, 16> &UpdatedNodes);
532 /// This transforms the SelectionDAG into a SelectionDAG
533 /// that only uses vector math operations supported by the target. This is
534 /// necessary as a separate step from Legalize because unrolling a vector
535 /// operation can introduce illegal types, which requires running
536 /// LegalizeTypes again.
538 /// This returns true if it made any changes; in that case, LegalizeTypes
539 /// is called again before Legalize.
541 /// Note that this is an involved process that may invalidate pointers into
542 /// the graph.
543 bool LegalizeVectors();
545 /// This method deletes all unreachable nodes in the SelectionDAG.
546 void RemoveDeadNodes();
548 /// Remove the specified node from the system. This node must
549 /// have no referrers.
550 void DeleteNode(SDNode *N);
552 /// Return an SDVTList that represents the list of values specified.
553 SDVTList getVTList(EVT VT);
554 SDVTList getVTList(EVT VT1, EVT VT2);
555 SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3);
556 SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4);
557 SDVTList getVTList(ArrayRef<EVT> VTs);
559 //===--------------------------------------------------------------------===//
560 // Node creation methods.
562 /// Create a ConstantSDNode wrapping a constant value.
563 /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
565 /// If only legal types can be produced, this does the necessary
566 /// transformations (e.g., if the vector element type is illegal).
567 /// @{
568 SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
569 bool isTarget = false, bool isOpaque = false);
570 SDValue getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
571 bool isTarget = false, bool isOpaque = false);
573 SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget = false,
574 bool IsOpaque = false) {
575 return getConstant(APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL,
576 VT, IsTarget, IsOpaque);
579 SDValue getConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
580 bool isTarget = false, bool isOpaque = false);
581 SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL,
582 bool isTarget = false);
583 SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL,
584 bool LegalTypes = true);
586 SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT,
587 bool isOpaque = false) {
588 return getConstant(Val, DL, VT, true, isOpaque);
590 SDValue getTargetConstant(const APInt &Val, const SDLoc &DL, EVT VT,
591 bool isOpaque = false) {
592 return getConstant(Val, DL, VT, true, isOpaque);
594 SDValue getTargetConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
595 bool isOpaque = false) {
596 return getConstant(Val, DL, VT, true, isOpaque);
599 /// Create a true or false constant of type \p VT using the target's
600 /// BooleanContent for type \p OpVT.
601 SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT);
602 /// @}
604 /// Create a ConstantFPSDNode wrapping a constant value.
605 /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
607 /// If only legal types can be produced, this does the necessary
608 /// transformations (e.g., if the vector element type is illegal).
609 /// The forms that take a double should only be used for simple constants
610 /// that can be exactly represented in VT. No checks are made.
611 /// @{
612 SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT,
613 bool isTarget = false);
614 SDValue getConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT,
615 bool isTarget = false);
616 SDValue getConstantFP(const ConstantFP &V, const SDLoc &DL, EVT VT,
617 bool isTarget = false);
618 SDValue getTargetConstantFP(double Val, const SDLoc &DL, EVT VT) {
619 return getConstantFP(Val, DL, VT, true);
621 SDValue getTargetConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT) {
622 return getConstantFP(Val, DL, VT, true);
624 SDValue getTargetConstantFP(const ConstantFP &Val, const SDLoc &DL, EVT VT) {
625 return getConstantFP(Val, DL, VT, true);
627 /// @}
629 SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
630 int64_t offset = 0, bool isTargetGA = false,
631 unsigned char TargetFlags = 0);
632 SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
633 int64_t offset = 0,
634 unsigned char TargetFlags = 0) {
635 return getGlobalAddress(GV, DL, VT, offset, true, TargetFlags);
637 SDValue getFrameIndex(int FI, EVT VT, bool isTarget = false);
638 SDValue getTargetFrameIndex(int FI, EVT VT) {
639 return getFrameIndex(FI, VT, true);
641 SDValue getJumpTable(int JTI, EVT VT, bool isTarget = false,
642 unsigned char TargetFlags = 0);
643 SDValue getTargetJumpTable(int JTI, EVT VT, unsigned char TargetFlags = 0) {
644 return getJumpTable(JTI, VT, true, TargetFlags);
646 SDValue getConstantPool(const Constant *C, EVT VT,
647 unsigned Align = 0, int Offs = 0, bool isT=false,
648 unsigned char TargetFlags = 0);
649 SDValue getTargetConstantPool(const Constant *C, EVT VT,
650 unsigned Align = 0, int Offset = 0,
651 unsigned char TargetFlags = 0) {
652 return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
654 SDValue getConstantPool(MachineConstantPoolValue *C, EVT VT,
655 unsigned Align = 0, int Offs = 0, bool isT=false,
656 unsigned char TargetFlags = 0);
657 SDValue getTargetConstantPool(MachineConstantPoolValue *C,
658 EVT VT, unsigned Align = 0,
659 int Offset = 0, unsigned char TargetFlags=0) {
660 return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
662 SDValue getTargetIndex(int Index, EVT VT, int64_t Offset = 0,
663 unsigned char TargetFlags = 0);
664 // When generating a branch to a BB, we don't in general know enough
665 // to provide debug info for the BB at that time, so keep this one around.
666 SDValue getBasicBlock(MachineBasicBlock *MBB);
667 SDValue getBasicBlock(MachineBasicBlock *MBB, SDLoc dl);
668 SDValue getExternalSymbol(const char *Sym, EVT VT);
669 SDValue getExternalSymbol(const char *Sym, const SDLoc &dl, EVT VT);
670 SDValue getTargetExternalSymbol(const char *Sym, EVT VT,
671 unsigned char TargetFlags = 0);
672 SDValue getMCSymbol(MCSymbol *Sym, EVT VT);
674 SDValue getValueType(EVT);
675 SDValue getRegister(unsigned Reg, EVT VT);
676 SDValue getRegisterMask(const uint32_t *RegMask);
677 SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label);
678 SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root,
679 MCSymbol *Label);
680 SDValue getBlockAddress(const BlockAddress *BA, EVT VT,
681 int64_t Offset = 0, bool isTarget = false,
682 unsigned char TargetFlags = 0);
683 SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT,
684 int64_t Offset = 0,
685 unsigned char TargetFlags = 0) {
686 return getBlockAddress(BA, VT, Offset, true, TargetFlags);
689 SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg,
690 SDValue N) {
691 return getNode(ISD::CopyToReg, dl, MVT::Other, Chain,
692 getRegister(Reg, N.getValueType()), N);
695 // This version of the getCopyToReg method takes an extra operand, which
696 // indicates that there is potentially an incoming glue value (if Glue is not
697 // null) and that there should be a glue result.
698 SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg, SDValue N,
699 SDValue Glue) {
700 SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
701 SDValue Ops[] = { Chain, getRegister(Reg, N.getValueType()), N, Glue };
702 return getNode(ISD::CopyToReg, dl, VTs,
703 makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
706 // Similar to last getCopyToReg() except parameter Reg is a SDValue
707 SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, SDValue Reg, SDValue N,
708 SDValue Glue) {
709 SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
710 SDValue Ops[] = { Chain, Reg, N, Glue };
711 return getNode(ISD::CopyToReg, dl, VTs,
712 makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
715 SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT) {
716 SDVTList VTs = getVTList(VT, MVT::Other);
717 SDValue Ops[] = { Chain, getRegister(Reg, VT) };
718 return getNode(ISD::CopyFromReg, dl, VTs, Ops);
721 // This version of the getCopyFromReg method takes an extra operand, which
722 // indicates that there is potentially an incoming glue value (if Glue is not
723 // null) and that there should be a glue result.
724 SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT,
725 SDValue Glue) {
726 SDVTList VTs = getVTList(VT, MVT::Other, MVT::Glue);
727 SDValue Ops[] = { Chain, getRegister(Reg, VT), Glue };
728 return getNode(ISD::CopyFromReg, dl, VTs,
729 makeArrayRef(Ops, Glue.getNode() ? 3 : 2));
732 SDValue getCondCode(ISD::CondCode Cond);
734 /// Return an ISD::VECTOR_SHUFFLE node. The number of elements in VT,
735 /// which must be a vector type, must match the number of mask elements
736 /// NumElts. An integer mask element equal to -1 is treated as undefined.
737 SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
738 ArrayRef<int> Mask);
740 /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
741 /// which must be a vector type, must match the number of operands in Ops.
742 /// The operands must have the same type as (or, for integers, a type wider
743 /// than) VT's element type.
744 SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDValue> Ops) {
745 // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
746 return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
749 /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
750 /// which must be a vector type, must match the number of operands in Ops.
751 /// The operands must have the same type as (or, for integers, a type wider
752 /// than) VT's element type.
753 SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDUse> Ops) {
754 // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
755 return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
758 /// Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all
759 /// elements. VT must be a vector type. Op's type must be the same as (or,
760 /// for integers, a type wider than) VT's element type.
761 SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op) {
762 // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
763 if (Op.getOpcode() == ISD::UNDEF) {
764 assert((VT.getVectorElementType() == Op.getValueType() ||
765 (VT.isInteger() &&
766 VT.getVectorElementType().bitsLE(Op.getValueType()))) &&
767 "A splatted value must have a width equal or (for integers) "
768 "greater than the vector element type!");
769 return getNode(ISD::UNDEF, SDLoc(), VT);
772 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Op);
773 return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
776 /// Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to
777 /// the shuffle node in input but with swapped operands.
779 /// Example: shuffle A, B, <0,5,2,7> -> shuffle B, A, <4,1,6,3>
780 SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV);
782 /// Convert Op, which must be of float type, to the
783 /// float type VT, by either extending or rounding (by truncation).
784 SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT);
786 /// Convert Op, which must be of integer type, to the
787 /// integer type VT, by either any-extending or truncating it.
788 SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
790 /// Convert Op, which must be of integer type, to the
791 /// integer type VT, by either sign-extending or truncating it.
792 SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
794 /// Convert Op, which must be of integer type, to the
795 /// integer type VT, by either zero-extending or truncating it.
796 SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
798 /// Return the expression required to zero extend the Op
799 /// value assuming it was the smaller SrcTy value.
800 SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT);
802 /// Convert Op, which must be of integer type, to the integer type VT, by
803 /// either truncating it or performing either zero or sign extension as
804 /// appropriate extension for the pointer's semantics.
805 SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
807 /// Return the expression required to extend the Op as a pointer value
808 /// assuming it was the smaller SrcTy value. This may be either a zero extend
809 /// or a sign extend.
810 SDValue getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT);
812 /// Convert Op, which must be of integer type, to the integer type VT,
813 /// by using an extension appropriate for the target's
814 /// BooleanContent for type OpVT or truncating it.
815 SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT);
817 /// Create a bitwise NOT operation as (XOR Val, -1).
818 SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT);
820 /// Create a logical NOT operation as (XOR Val, BooleanOne).
821 SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT);
823 /// Create an add instruction with appropriate flags when used for
824 /// addressing some offset of an object. i.e. if a load is split into multiple
825 /// components, create an add nuw from the base pointer to the offset.
826 SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Op, int64_t Offset) {
827 EVT VT = Op.getValueType();
828 return getObjectPtrOffset(SL, Op, getConstant(Offset, SL, VT));
831 SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Op, SDValue Offset) {
832 EVT VT = Op.getValueType();
834 // The object itself can't wrap around the address space, so it shouldn't be
835 // possible for the adds of the offsets to the split parts to overflow.
836 SDNodeFlags Flags;
837 Flags.setNoUnsignedWrap(true);
838 return getNode(ISD::ADD, SL, VT, Op, Offset, Flags);
841 /// Return a new CALLSEQ_START node, that starts new call frame, in which
842 /// InSize bytes are set up inside CALLSEQ_START..CALLSEQ_END sequence and
843 /// OutSize specifies part of the frame set up prior to the sequence.
844 SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize,
845 const SDLoc &DL) {
846 SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
847 SDValue Ops[] = { Chain,
848 getIntPtrConstant(InSize, DL, true),
849 getIntPtrConstant(OutSize, DL, true) };
850 return getNode(ISD::CALLSEQ_START, DL, VTs, Ops);
853 /// Return a new CALLSEQ_END node, which always must have a
854 /// glue result (to ensure it's not CSE'd).
855 /// CALLSEQ_END does not have a useful SDLoc.
856 SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2,
857 SDValue InGlue, const SDLoc &DL) {
858 SDVTList NodeTys = getVTList(MVT::Other, MVT::Glue);
859 SmallVector<SDValue, 4> Ops;
860 Ops.push_back(Chain);
861 Ops.push_back(Op1);
862 Ops.push_back(Op2);
863 if (InGlue.getNode())
864 Ops.push_back(InGlue);
865 return getNode(ISD::CALLSEQ_END, DL, NodeTys, Ops);
868 /// Return true if the result of this operation is always undefined.
869 bool isUndef(unsigned Opcode, ArrayRef<SDValue> Ops);
871 /// Return an UNDEF node. UNDEF does not have a useful SDLoc.
872 SDValue getUNDEF(EVT VT) {
873 return getNode(ISD::UNDEF, SDLoc(), VT);
876 /// Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc.
877 SDValue getGLOBAL_OFFSET_TABLE(EVT VT) {
878 return getNode(ISD::GLOBAL_OFFSET_TABLE, SDLoc(), VT);
881 /// Gets or creates the specified node.
883 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
884 ArrayRef<SDUse> Ops);
885 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
886 ArrayRef<SDValue> Ops, const SDNodeFlags Flags = SDNodeFlags());
887 SDValue getNode(unsigned Opcode, const SDLoc &DL, ArrayRef<EVT> ResultTys,
888 ArrayRef<SDValue> Ops);
889 SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
890 ArrayRef<SDValue> Ops);
892 // Specialize based on number of operands.
893 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT);
894 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue Operand,
895 const SDNodeFlags Flags = SDNodeFlags());
896 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
897 SDValue N2, const SDNodeFlags Flags = SDNodeFlags());
898 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
899 SDValue N2, SDValue N3,
900 const SDNodeFlags Flags = SDNodeFlags());
901 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
902 SDValue N2, SDValue N3, SDValue N4);
903 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
904 SDValue N2, SDValue N3, SDValue N4, SDValue N5);
906 // Specialize again based on number of operands for nodes with a VTList
907 // rather than a single VT.
908 SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList);
909 SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N);
910 SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
911 SDValue N2);
912 SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
913 SDValue N2, SDValue N3);
914 SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
915 SDValue N2, SDValue N3, SDValue N4);
916 SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
917 SDValue N2, SDValue N3, SDValue N4, SDValue N5);
919 /// Compute a TokenFactor to force all the incoming stack arguments to be
920 /// loaded from the stack. This is used in tail call lowering to protect
921 /// stack arguments from being clobbered.
922 SDValue getStackArgumentTokenFactor(SDValue Chain);
924 SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
925 SDValue Size, unsigned Align, bool isVol, bool AlwaysInline,
926 bool isTailCall, MachinePointerInfo DstPtrInfo,
927 MachinePointerInfo SrcPtrInfo);
929 SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
930 SDValue Size, unsigned Align, bool isVol, bool isTailCall,
931 MachinePointerInfo DstPtrInfo,
932 MachinePointerInfo SrcPtrInfo);
934 SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
935 SDValue Size, unsigned Align, bool isVol, bool isTailCall,
936 MachinePointerInfo DstPtrInfo);
938 SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
939 unsigned DstAlign, SDValue Src, unsigned SrcAlign,
940 SDValue Size, Type *SizeTy, unsigned ElemSz,
941 bool isTailCall, MachinePointerInfo DstPtrInfo,
942 MachinePointerInfo SrcPtrInfo);
944 SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
945 unsigned DstAlign, SDValue Src, unsigned SrcAlign,
946 SDValue Size, Type *SizeTy, unsigned ElemSz,
947 bool isTailCall, MachinePointerInfo DstPtrInfo,
948 MachinePointerInfo SrcPtrInfo);
950 SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
951 unsigned DstAlign, SDValue Value, SDValue Size,
952 Type *SizeTy, unsigned ElemSz, bool isTailCall,
953 MachinePointerInfo DstPtrInfo);
955 /// Helper function to make it easier to build SetCC's if you just have an
956 /// ISD::CondCode instead of an SDValue.
957 SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS,
958 ISD::CondCode Cond) {
959 assert(LHS.getValueType().isVector() == RHS.getValueType().isVector() &&
960 "Cannot compare scalars to vectors");
961 assert(LHS.getValueType().isVector() == VT.isVector() &&
962 "Cannot compare scalars to vectors");
963 assert(Cond != ISD::SETCC_INVALID &&
964 "Cannot create a setCC of an invalid node.");
965 return getNode(ISD::SETCC, DL, VT, LHS, RHS, getCondCode(Cond));
968 /// Helper function to make it easier to build Select's if you just have
969 /// operands and don't want to check for vector.
970 SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS,
971 SDValue RHS) {
972 assert(LHS.getValueType() == RHS.getValueType() &&
973 "Cannot use select on differing types");
974 assert(VT.isVector() == LHS.getValueType().isVector() &&
975 "Cannot mix vectors and scalars");
976 auto Opcode = Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
977 return getNode(Opcode, DL, VT, Cond, LHS, RHS);
980 /// Helper function to make it easier to build SelectCC's if you just have an
981 /// ISD::CondCode instead of an SDValue.
982 SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True,
983 SDValue False, ISD::CondCode Cond) {
984 return getNode(ISD::SELECT_CC, DL, True.getValueType(), LHS, RHS, True,
985 False, getCondCode(Cond));
988 /// Try to simplify a select/vselect into 1 of its operands or a constant.
989 SDValue simplifySelect(SDValue Cond, SDValue TVal, SDValue FVal);
991 /// Try to simplify a shift into 1 of its operands or a constant.
992 SDValue simplifyShift(SDValue X, SDValue Y);
994 /// Try to simplify a floating-point binary operation into 1 of its operands
995 /// or a constant.
996 SDValue simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y);
998 /// VAArg produces a result and token chain, and takes a pointer
999 /// and a source value as input.
1000 SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1001 SDValue SV, unsigned Align);
1003 /// Gets a node for an atomic cmpxchg op. There are two
1004 /// valid Opcodes. ISD::ATOMIC_CMO_SWAP produces the value loaded and a
1005 /// chain result. ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS produces the value loaded,
1006 /// a success flag (initially i1), and a chain.
1007 SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT,
1008 SDVTList VTs, SDValue Chain, SDValue Ptr,
1009 SDValue Cmp, SDValue Swp, MachineMemOperand *MMO);
1011 /// Gets a node for an atomic op, produces result (if relevant)
1012 /// and chain and takes 2 operands.
1013 SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain,
1014 SDValue Ptr, SDValue Val, MachineMemOperand *MMO);
1016 /// Gets a node for an atomic op, produces result and chain and
1017 /// takes 1 operand.
1018 SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, EVT VT,
1019 SDValue Chain, SDValue Ptr, MachineMemOperand *MMO);
1021 /// Gets a node for an atomic op, produces result and chain and takes N
1022 /// operands.
1023 SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
1024 SDVTList VTList, ArrayRef<SDValue> Ops,
1025 MachineMemOperand *MMO);
1027 /// Creates a MemIntrinsicNode that may produce a
1028 /// result and takes a list of operands. Opcode may be INTRINSIC_VOID,
1029 /// INTRINSIC_W_CHAIN, or a target-specific opcode with a value not
1030 /// less than FIRST_TARGET_MEMORY_OPCODE.
1031 SDValue getMemIntrinsicNode(
1032 unsigned Opcode, const SDLoc &dl, SDVTList VTList,
1033 ArrayRef<SDValue> Ops, EVT MemVT,
1034 MachinePointerInfo PtrInfo,
1035 unsigned Align = 0,
1036 MachineMemOperand::Flags Flags
1037 = MachineMemOperand::MOLoad | MachineMemOperand::MOStore,
1038 unsigned Size = 0,
1039 const AAMDNodes &AAInfo = AAMDNodes());
1041 SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList,
1042 ArrayRef<SDValue> Ops, EVT MemVT,
1043 MachineMemOperand *MMO);
1045 /// Creates a LifetimeSDNode that starts (`IsStart==true`) or ends
1046 /// (`IsStart==false`) the lifetime of the portion of `FrameIndex` between
1047 /// offsets `Offset` and `Offset + Size`.
1048 SDValue getLifetimeNode(bool IsStart, const SDLoc &dl, SDValue Chain,
1049 int FrameIndex, int64_t Size, int64_t Offset = -1);
1051 /// Create a MERGE_VALUES node from the given operands.
1052 SDValue getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl);
1054 /// Loads are not normal binary operators: their result type is not
1055 /// determined by their operands, and they produce a value AND a token chain.
1057 /// This function will set the MOLoad flag on MMOFlags, but you can set it if
1058 /// you want. The MOStore flag must not be set.
1059 SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1060 MachinePointerInfo PtrInfo, unsigned Alignment = 0,
1061 MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1062 const AAMDNodes &AAInfo = AAMDNodes(),
1063 const MDNode *Ranges = nullptr);
1064 SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1065 MachineMemOperand *MMO);
1066 SDValue
1067 getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain,
1068 SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT,
1069 unsigned Alignment = 0,
1070 MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1071 const AAMDNodes &AAInfo = AAMDNodes());
1072 SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT,
1073 SDValue Chain, SDValue Ptr, EVT MemVT,
1074 MachineMemOperand *MMO);
1075 SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base,
1076 SDValue Offset, ISD::MemIndexedMode AM);
1077 SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
1078 const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
1079 MachinePointerInfo PtrInfo, EVT MemVT, unsigned Alignment = 0,
1080 MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1081 const AAMDNodes &AAInfo = AAMDNodes(),
1082 const MDNode *Ranges = nullptr);
1083 SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
1084 const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
1085 EVT MemVT, MachineMemOperand *MMO);
1087 /// Helper function to build ISD::STORE nodes.
1089 /// This function will set the MOStore flag on MMOFlags, but you can set it if
1090 /// you want. The MOLoad and MOInvariant flags must not be set.
1091 SDValue
1092 getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1093 MachinePointerInfo PtrInfo, unsigned Alignment = 0,
1094 MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1095 const AAMDNodes &AAInfo = AAMDNodes());
1096 SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1097 MachineMemOperand *MMO);
1098 SDValue
1099 getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1100 MachinePointerInfo PtrInfo, EVT SVT, unsigned Alignment = 0,
1101 MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1102 const AAMDNodes &AAInfo = AAMDNodes());
1103 SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
1104 SDValue Ptr, EVT SVT, MachineMemOperand *MMO);
1105 SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base,
1106 SDValue Offset, ISD::MemIndexedMode AM);
1108 /// Returns sum of the base pointer and offset.
1109 SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset, const SDLoc &DL);
1111 SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1112 SDValue Mask, SDValue Src0, EVT MemVT,
1113 MachineMemOperand *MMO, ISD::LoadExtType,
1114 bool IsExpanding = false);
1115 SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val,
1116 SDValue Ptr, SDValue Mask, EVT MemVT,
1117 MachineMemOperand *MMO, bool IsTruncating = false,
1118 bool IsCompressing = false);
1119 SDValue getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
1120 ArrayRef<SDValue> Ops, MachineMemOperand *MMO);
1121 SDValue getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
1122 ArrayRef<SDValue> Ops, MachineMemOperand *MMO);
1124 /// Return (create a new or find existing) a target-specific node.
1125 /// TargetMemSDNode should be derived class from MemSDNode.
1126 template <class TargetMemSDNode>
1127 SDValue getTargetMemSDNode(SDVTList VTs, ArrayRef<SDValue> Ops,
1128 const SDLoc &dl, EVT MemVT,
1129 MachineMemOperand *MMO);
1131 /// Construct a node to track a Value* through the backend.
1132 SDValue getSrcValue(const Value *v);
1134 /// Return an MDNodeSDNode which holds an MDNode.
1135 SDValue getMDNode(const MDNode *MD);
1137 /// Return a bitcast using the SDLoc of the value operand, and casting to the
1138 /// provided type. Use getNode to set a custom SDLoc.
1139 SDValue getBitcast(EVT VT, SDValue V);
1141 /// Return an AddrSpaceCastSDNode.
1142 SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS,
1143 unsigned DestAS);
1145 /// Return the specified value casted to
1146 /// the target's desired shift amount type.
1147 SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op);
1149 /// Expand the specified \c ISD::VAARG node as the Legalize pass would.
1150 SDValue expandVAArg(SDNode *Node);
1152 /// Expand the specified \c ISD::VACOPY node as the Legalize pass would.
1153 SDValue expandVACopy(SDNode *Node);
1155 /// Returs an GlobalAddress of the function from the current module with
1156 /// name matching the given ExternalSymbol. Additionally can provide the
1157 /// matched function.
1158 /// Panics the function doesn't exists.
1159 SDValue getSymbolFunctionGlobalAddress(SDValue Op,
1160 Function **TargetFunction = nullptr);
1162 /// *Mutate* the specified node in-place to have the
1163 /// specified operands. If the resultant node already exists in the DAG,
1164 /// this does not modify the specified node, instead it returns the node that
1165 /// already exists. If the resultant node does not exist in the DAG, the
1166 /// input node is returned. As a degenerate case, if you specify the same
1167 /// input operands as the node already has, the input node is returned.
1168 SDNode *UpdateNodeOperands(SDNode *N, SDValue Op);
1169 SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2);
1170 SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1171 SDValue Op3);
1172 SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1173 SDValue Op3, SDValue Op4);
1174 SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1175 SDValue Op3, SDValue Op4, SDValue Op5);
1176 SDNode *UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops);
1178 /// Creates a new TokenFactor containing \p Vals. If \p Vals contains 64k
1179 /// values or more, move values into new TokenFactors in 64k-1 blocks, until
1180 /// the final TokenFactor has less than 64k operands.
1181 SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl<SDValue> &Vals);
1183 /// *Mutate* the specified machine node's memory references to the provided
1184 /// list.
1185 void setNodeMemRefs(MachineSDNode *N,
1186 ArrayRef<MachineMemOperand *> NewMemRefs);
1188 // Propagates the change in divergence to users
1189 void updateDivergence(SDNode * N);
1191 /// These are used for target selectors to *mutate* the
1192 /// specified node to have the specified return type, Target opcode, and
1193 /// operands. Note that target opcodes are stored as
1194 /// ~TargetOpcode in the node opcode field. The resultant node is returned.
1195 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT);
1196 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT, SDValue Op1);
1197 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
1198 SDValue Op1, SDValue Op2);
1199 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
1200 SDValue Op1, SDValue Op2, SDValue Op3);
1201 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
1202 ArrayRef<SDValue> Ops);
1203 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1, EVT VT2);
1204 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
1205 EVT VT2, ArrayRef<SDValue> Ops);
1206 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
1207 EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
1208 SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
1209 EVT VT2, SDValue Op1);
1210 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
1211 EVT VT2, SDValue Op1, SDValue Op2);
1212 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, SDVTList VTs,
1213 ArrayRef<SDValue> Ops);
1215 /// This *mutates* the specified node to have the specified
1216 /// return type, opcode, and operands.
1217 SDNode *MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs,
1218 ArrayRef<SDValue> Ops);
1220 /// Mutate the specified strict FP node to its non-strict equivalent,
1221 /// unlinking the node from its chain and dropping the metadata arguments.
1222 /// The node must be a strict FP node.
1223 SDNode *mutateStrictFPToFP(SDNode *Node);
1225 /// These are used for target selectors to create a new node
1226 /// with specified return type(s), MachineInstr opcode, and operands.
1228 /// Note that getMachineNode returns the resultant node. If there is already
1229 /// a node of the specified opcode and operands, it returns that node instead
1230 /// of the current one.
1231 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT);
1232 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1233 SDValue Op1);
1234 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1235 SDValue Op1, SDValue Op2);
1236 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1237 SDValue Op1, SDValue Op2, SDValue Op3);
1238 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1239 ArrayRef<SDValue> Ops);
1240 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1241 EVT VT2, SDValue Op1, SDValue Op2);
1242 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1243 EVT VT2, SDValue Op1, SDValue Op2, SDValue Op3);
1244 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1245 EVT VT2, ArrayRef<SDValue> Ops);
1246 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1247 EVT VT2, EVT VT3, SDValue Op1, SDValue Op2);
1248 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1249 EVT VT2, EVT VT3, SDValue Op1, SDValue Op2,
1250 SDValue Op3);
1251 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1252 EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
1253 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl,
1254 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops);
1255 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, SDVTList VTs,
1256 ArrayRef<SDValue> Ops);
1258 /// A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
1259 SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
1260 SDValue Operand);
1262 /// A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
1263 SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
1264 SDValue Operand, SDValue Subreg);
1266 /// Get the specified node if it's already available, or else return NULL.
1267 SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTList, ArrayRef<SDValue> Ops,
1268 const SDNodeFlags Flags = SDNodeFlags());
1270 /// Creates a SDDbgValue node.
1271 SDDbgValue *getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N,
1272 unsigned R, bool IsIndirect, const DebugLoc &DL,
1273 unsigned O);
1275 /// Creates a constant SDDbgValue node.
1276 SDDbgValue *getConstantDbgValue(DIVariable *Var, DIExpression *Expr,
1277 const Value *C, const DebugLoc &DL,
1278 unsigned O);
1280 /// Creates a FrameIndex SDDbgValue node.
1281 SDDbgValue *getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr,
1282 unsigned FI, bool IsIndirect,
1283 const DebugLoc &DL, unsigned O);
1285 /// Creates a VReg SDDbgValue node.
1286 SDDbgValue *getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
1287 unsigned VReg, bool IsIndirect,
1288 const DebugLoc &DL, unsigned O);
1290 /// Creates a SDDbgLabel node.
1291 SDDbgLabel *getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O);
1293 /// Transfer debug values from one node to another, while optionally
1294 /// generating fragment expressions for split-up values. If \p InvalidateDbg
1295 /// is set, debug values are invalidated after they are transferred.
1296 void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits = 0,
1297 unsigned SizeInBits = 0, bool InvalidateDbg = true);
1299 /// Remove the specified node from the system. If any of its
1300 /// operands then becomes dead, remove them as well. Inform UpdateListener
1301 /// for each node deleted.
1302 void RemoveDeadNode(SDNode *N);
1304 /// This method deletes the unreachable nodes in the
1305 /// given list, and any nodes that become unreachable as a result.
1306 void RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes);
1308 /// Modify anything using 'From' to use 'To' instead.
1309 /// This can cause recursive merging of nodes in the DAG. Use the first
1310 /// version if 'From' is known to have a single result, use the second
1311 /// if you have two nodes with identical results (or if 'To' has a superset
1312 /// of the results of 'From'), use the third otherwise.
1314 /// These methods all take an optional UpdateListener, which (if not null) is
1315 /// informed about nodes that are deleted and modified due to recursive
1316 /// changes in the dag.
1318 /// These functions only replace all existing uses. It's possible that as
1319 /// these replacements are being performed, CSE may cause the From node
1320 /// to be given new uses. These new uses of From are left in place, and
1321 /// not automatically transferred to To.
1323 void ReplaceAllUsesWith(SDValue From, SDValue To);
1324 void ReplaceAllUsesWith(SDNode *From, SDNode *To);
1325 void ReplaceAllUsesWith(SDNode *From, const SDValue *To);
1327 /// Replace any uses of From with To, leaving
1328 /// uses of other values produced by From.getNode() alone.
1329 void ReplaceAllUsesOfValueWith(SDValue From, SDValue To);
1331 /// Like ReplaceAllUsesOfValueWith, but for multiple values at once.
1332 /// This correctly handles the case where
1333 /// there is an overlap between the From values and the To values.
1334 void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To,
1335 unsigned Num);
1337 /// If an existing load has uses of its chain, create a token factor node with
1338 /// that chain and the new memory node's chain and update users of the old
1339 /// chain to the token factor. This ensures that the new memory node will have
1340 /// the same relative memory dependency position as the old load. Returns the
1341 /// new merged load chain.
1342 SDValue makeEquivalentMemoryOrdering(LoadSDNode *Old, SDValue New);
1344 /// Topological-sort the AllNodes list and a
1345 /// assign a unique node id for each node in the DAG based on their
1346 /// topological order. Returns the number of nodes.
1347 unsigned AssignTopologicalOrder();
1349 /// Move node N in the AllNodes list to be immediately
1350 /// before the given iterator Position. This may be used to update the
1351 /// topological ordering when the list of nodes is modified.
1352 void RepositionNode(allnodes_iterator Position, SDNode *N) {
1353 AllNodes.insert(Position, AllNodes.remove(N));
1356 /// Returns an APFloat semantics tag appropriate for the given type. If VT is
1357 /// a vector type, the element semantics are returned.
1358 static const fltSemantics &EVTToAPFloatSemantics(EVT VT) {
1359 switch (VT.getScalarType().getSimpleVT().SimpleTy) {
1360 default: llvm_unreachable("Unknown FP format");
1361 case MVT::f16: return APFloat::IEEEhalf();
1362 case MVT::f32: return APFloat::IEEEsingle();
1363 case MVT::f64: return APFloat::IEEEdouble();
1364 case MVT::f80: return APFloat::x87DoubleExtended();
1365 case MVT::f128: return APFloat::IEEEquad();
1366 case MVT::ppcf128: return APFloat::PPCDoubleDouble();
1370 /// Add a dbg_value SDNode. If SD is non-null that means the
1371 /// value is produced by SD.
1372 void AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter);
1374 /// Add a dbg_label SDNode.
1375 void AddDbgLabel(SDDbgLabel *DB);
1377 /// Get the debug values which reference the given SDNode.
1378 ArrayRef<SDDbgValue*> GetDbgValues(const SDNode* SD) const {
1379 return DbgInfo->getSDDbgValues(SD);
1382 public:
1383 /// Return true if there are any SDDbgValue nodes associated
1384 /// with this SelectionDAG.
1385 bool hasDebugValues() const { return !DbgInfo->empty(); }
1387 SDDbgInfo::DbgIterator DbgBegin() const { return DbgInfo->DbgBegin(); }
1388 SDDbgInfo::DbgIterator DbgEnd() const { return DbgInfo->DbgEnd(); }
1390 SDDbgInfo::DbgIterator ByvalParmDbgBegin() const {
1391 return DbgInfo->ByvalParmDbgBegin();
1393 SDDbgInfo::DbgIterator ByvalParmDbgEnd() const {
1394 return DbgInfo->ByvalParmDbgEnd();
1397 SDDbgInfo::DbgLabelIterator DbgLabelBegin() const {
1398 return DbgInfo->DbgLabelBegin();
1400 SDDbgInfo::DbgLabelIterator DbgLabelEnd() const {
1401 return DbgInfo->DbgLabelEnd();
1404 /// To be invoked on an SDNode that is slated to be erased. This
1405 /// function mirrors \c llvm::salvageDebugInfo.
1406 void salvageDebugInfo(SDNode &N);
1408 void dump() const;
1410 /// Create a stack temporary, suitable for holding the specified value type.
1411 /// If minAlign is specified, the slot size will have at least that alignment.
1412 SDValue CreateStackTemporary(EVT VT, unsigned minAlign = 1);
1414 /// Create a stack temporary suitable for holding either of the specified
1415 /// value types.
1416 SDValue CreateStackTemporary(EVT VT1, EVT VT2);
1418 SDValue FoldSymbolOffset(unsigned Opcode, EVT VT,
1419 const GlobalAddressSDNode *GA,
1420 const SDNode *N2);
1422 SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
1423 SDNode *N1, SDNode *N2);
1425 SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
1426 const ConstantSDNode *C1,
1427 const ConstantSDNode *C2);
1429 SDValue FoldConstantVectorArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
1430 ArrayRef<SDValue> Ops,
1431 const SDNodeFlags Flags = SDNodeFlags());
1433 /// Fold floating-point operations with 2 operands when both operands are
1434 /// constants and/or undefined.
1435 SDValue foldConstantFPMath(unsigned Opcode, const SDLoc &DL, EVT VT,
1436 SDValue N1, SDValue N2);
1438 /// Constant fold a setcc to true or false.
1439 SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond,
1440 const SDLoc &dl);
1442 /// See if the specified operand can be simplified with the knowledge that
1443 /// only the bits specified by DemandedBits are used. If so, return the
1444 /// simpler operand, otherwise return a null SDValue.
1446 /// (This exists alongside SimplifyDemandedBits because GetDemandedBits can
1447 /// simplify nodes with multiple uses more aggressively.)
1448 SDValue GetDemandedBits(SDValue V, const APInt &DemandedBits);
1450 /// See if the specified operand can be simplified with the knowledge that
1451 /// only the bits specified by DemandedBits are used in the elements specified
1452 /// by DemandedElts. If so, return the simpler operand, otherwise return a
1453 /// null SDValue.
1455 /// (This exists alongside SimplifyDemandedBits because GetDemandedBits can
1456 /// simplify nodes with multiple uses more aggressively.)
1457 SDValue GetDemandedBits(SDValue V, const APInt &DemandedBits,
1458 const APInt &DemandedElts);
1460 /// Return true if the sign bit of Op is known to be zero.
1461 /// We use this predicate to simplify operations downstream.
1462 bool SignBitIsZero(SDValue Op, unsigned Depth = 0) const;
1464 /// Return true if 'Op & Mask' is known to be zero. We
1465 /// use this predicate to simplify operations downstream. Op and Mask are
1466 /// known to be the same type.
1467 bool MaskedValueIsZero(SDValue Op, const APInt &Mask,
1468 unsigned Depth = 0) const;
1470 /// Return true if 'Op & Mask' is known to be zero in DemandedElts. We
1471 /// use this predicate to simplify operations downstream. Op and Mask are
1472 /// known to be the same type.
1473 bool MaskedValueIsZero(SDValue Op, const APInt &Mask,
1474 const APInt &DemandedElts, unsigned Depth = 0) const;
1476 /// Return true if '(Op & Mask) == Mask'.
1477 /// Op and Mask are known to be the same type.
1478 bool MaskedValueIsAllOnes(SDValue Op, const APInt &Mask,
1479 unsigned Depth = 0) const;
1481 /// Determine which bits of Op are known to be either zero or one and return
1482 /// them in Known. For vectors, the known bits are those that are shared by
1483 /// every vector element.
1484 /// Targets can implement the computeKnownBitsForTargetNode method in the
1485 /// TargetLowering class to allow target nodes to be understood.
1486 KnownBits computeKnownBits(SDValue Op, unsigned Depth = 0) const;
1488 /// Determine which bits of Op are known to be either zero or one and return
1489 /// them in Known. The DemandedElts argument allows us to only collect the
1490 /// known bits that are shared by the requested vector elements.
1491 /// Targets can implement the computeKnownBitsForTargetNode method in the
1492 /// TargetLowering class to allow target nodes to be understood.
1493 KnownBits computeKnownBits(SDValue Op, const APInt &DemandedElts,
1494 unsigned Depth = 0) const;
1496 /// Used to represent the possible overflow behavior of an operation.
1497 /// Never: the operation cannot overflow.
1498 /// Always: the operation will always overflow.
1499 /// Sometime: the operation may or may not overflow.
1500 enum OverflowKind {
1501 OFK_Never,
1502 OFK_Sometime,
1503 OFK_Always,
1506 /// Determine if the result of the addition of 2 node can overflow.
1507 OverflowKind computeOverflowKind(SDValue N0, SDValue N1) const;
1509 /// Test if the given value is known to have exactly one bit set. This differs
1510 /// from computeKnownBits in that it doesn't necessarily determine which bit
1511 /// is set.
1512 bool isKnownToBeAPowerOfTwo(SDValue Val) const;
1514 /// Return the number of times the sign bit of the register is replicated into
1515 /// the other bits. We know that at least 1 bit is always equal to the sign
1516 /// bit (itself), but other cases can give us information. For example,
1517 /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
1518 /// to each other, so we return 3. Targets can implement the
1519 /// ComputeNumSignBitsForTarget method in the TargetLowering class to allow
1520 /// target nodes to be understood.
1521 unsigned ComputeNumSignBits(SDValue Op, unsigned Depth = 0) const;
1523 /// Return the number of times the sign bit of the register is replicated into
1524 /// the other bits. We know that at least 1 bit is always equal to the sign
1525 /// bit (itself), but other cases can give us information. For example,
1526 /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
1527 /// to each other, so we return 3. The DemandedElts argument allows
1528 /// us to only collect the minimum sign bits of the requested vector elements.
1529 /// Targets can implement the ComputeNumSignBitsForTarget method in the
1530 /// TargetLowering class to allow target nodes to be understood.
1531 unsigned ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
1532 unsigned Depth = 0) const;
1534 /// Return true if the specified operand is an ISD::ADD with a ConstantSDNode
1535 /// on the right-hand side, or if it is an ISD::OR with a ConstantSDNode that
1536 /// is guaranteed to have the same semantics as an ADD. This handles the
1537 /// equivalence:
1538 /// X|Cst == X+Cst iff X&Cst = 0.
1539 bool isBaseWithConstantOffset(SDValue Op) const;
1541 /// Test whether the given SDValue is known to never be NaN. If \p SNaN is
1542 /// true, returns if \p Op is known to never be a signaling NaN (it may still
1543 /// be a qNaN).
1544 bool isKnownNeverNaN(SDValue Op, bool SNaN = false, unsigned Depth = 0) const;
1546 /// \returns true if \p Op is known to never be a signaling NaN.
1547 bool isKnownNeverSNaN(SDValue Op, unsigned Depth = 0) const {
1548 return isKnownNeverNaN(Op, true, Depth);
1551 /// Test whether the given floating point SDValue is known to never be
1552 /// positive or negative zero.
1553 bool isKnownNeverZeroFloat(SDValue Op) const;
1555 /// Test whether the given SDValue is known to contain non-zero value(s).
1556 bool isKnownNeverZero(SDValue Op) const;
1558 /// Test whether two SDValues are known to compare equal. This
1559 /// is true if they are the same value, or if one is negative zero and the
1560 /// other positive zero.
1561 bool isEqualTo(SDValue A, SDValue B) const;
1563 /// Return true if A and B have no common bits set. As an example, this can
1564 /// allow an 'add' to be transformed into an 'or'.
1565 bool haveNoCommonBitsSet(SDValue A, SDValue B) const;
1567 /// Test whether \p V has a splatted value for all the demanded elements.
1569 /// On success \p UndefElts will indicate the elements that have UNDEF
1570 /// values instead of the splat value, this is only guaranteed to be correct
1571 /// for \p DemandedElts.
1573 /// NOTE: The function will return true for a demanded splat of UNDEF values.
1574 bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts);
1576 /// Test whether \p V has a splatted value.
1577 bool isSplatValue(SDValue V, bool AllowUndefs = false);
1579 /// If V is a splatted value, return the source vector and its splat index.
1580 SDValue getSplatSourceVector(SDValue V, int &SplatIndex);
1582 /// If V is a splat vector, return its scalar source operand by extracting
1583 /// that element from the source vector.
1584 SDValue getSplatValue(SDValue V);
1586 /// Match a binop + shuffle pyramid that represents a horizontal reduction
1587 /// over the elements of a vector starting from the EXTRACT_VECTOR_ELT node /p
1588 /// Extract. The reduction must use one of the opcodes listed in /p
1589 /// CandidateBinOps and on success /p BinOp will contain the matching opcode.
1590 /// Returns the vector that is being reduced on, or SDValue() if a reduction
1591 /// was not matched.
1592 SDValue matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
1593 ArrayRef<ISD::NodeType> CandidateBinOps);
1595 /// Utility function used by legalize and lowering to
1596 /// "unroll" a vector operation by splitting out the scalars and operating
1597 /// on each element individually. If the ResNE is 0, fully unroll the vector
1598 /// op. If ResNE is less than the width of the vector op, unroll up to ResNE.
1599 /// If the ResNE is greater than the width of the vector op, unroll the
1600 /// vector op and fill the end of the resulting vector with UNDEFS.
1601 SDValue UnrollVectorOp(SDNode *N, unsigned ResNE = 0);
1603 /// Like UnrollVectorOp(), but for the [US](ADD|SUB|MUL)O family of opcodes.
1604 /// This is a separate function because those opcodes have two results.
1605 std::pair<SDValue, SDValue> UnrollVectorOverflowOp(SDNode *N,
1606 unsigned ResNE = 0);
1608 /// Return true if loads are next to each other and can be
1609 /// merged. Check that both are nonvolatile and if LD is loading
1610 /// 'Bytes' bytes from a location that is 'Dist' units away from the
1611 /// location that the 'Base' load is loading from.
1612 bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base,
1613 unsigned Bytes, int Dist) const;
1615 /// Infer alignment of a load / store address. Return 0 if
1616 /// it cannot be inferred.
1617 unsigned InferPtrAlignment(SDValue Ptr) const;
1619 /// Compute the VTs needed for the low/hi parts of a type
1620 /// which is split (or expanded) into two not necessarily identical pieces.
1621 std::pair<EVT, EVT> GetSplitDestVTs(const EVT &VT) const;
1623 /// Split the vector with EXTRACT_SUBVECTOR using the provides
1624 /// VTs and return the low/high part.
1625 std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL,
1626 const EVT &LoVT, const EVT &HiVT);
1628 /// Split the vector with EXTRACT_SUBVECTOR and return the low/high part.
1629 std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL) {
1630 EVT LoVT, HiVT;
1631 std::tie(LoVT, HiVT) = GetSplitDestVTs(N.getValueType());
1632 return SplitVector(N, DL, LoVT, HiVT);
1635 /// Split the node's operand with EXTRACT_SUBVECTOR and
1636 /// return the low/high part.
1637 std::pair<SDValue, SDValue> SplitVectorOperand(const SDNode *N, unsigned OpNo)
1639 return SplitVector(N->getOperand(OpNo), SDLoc(N));
1642 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
1643 SDValue WidenVector(const SDValue &N, const SDLoc &DL);
1645 /// Append the extracted elements from Start to Count out of the vector Op
1646 /// in Args. If Count is 0, all of the elements will be extracted.
1647 void ExtractVectorElements(SDValue Op, SmallVectorImpl<SDValue> &Args,
1648 unsigned Start = 0, unsigned Count = 0);
1650 /// Compute the default alignment value for the given type.
1651 unsigned getEVTAlignment(EVT MemoryVT) const;
1653 /// Test whether the given value is a constant int or similar node.
1654 SDNode *isConstantIntBuildVectorOrConstantInt(SDValue N);
1656 /// Test whether the given value is a constant FP or similar node.
1657 SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N);
1659 /// \returns true if \p N is any kind of constant or build_vector of
1660 /// constants, int or float. If a vector, it may not necessarily be a splat.
1661 inline bool isConstantValueOfAnyType(SDValue N) {
1662 return isConstantIntBuildVectorOrConstantInt(N) ||
1663 isConstantFPBuildVectorOrConstantFP(N);
1666 void addCallSiteInfo(const SDNode *CallNode, CallSiteInfoImpl &&CallInfo) {
1667 SDCallSiteInfo[CallNode] = std::move(CallInfo);
1670 CallSiteInfo getSDCallSiteInfo(const SDNode *CallNode) {
1671 auto I = SDCallSiteInfo.find(CallNode);
1672 if (I != SDCallSiteInfo.end())
1673 return std::move(I->second);
1674 return CallSiteInfo();
1677 private:
1678 void InsertNode(SDNode *N);
1679 bool RemoveNodeFromCSEMaps(SDNode *N);
1680 void AddModifiedNodeToCSEMaps(SDNode *N);
1681 SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op, void *&InsertPos);
1682 SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op1, SDValue Op2,
1683 void *&InsertPos);
1684 SDNode *FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1685 void *&InsertPos);
1686 SDNode *UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &loc);
1688 void DeleteNodeNotInCSEMaps(SDNode *N);
1689 void DeallocateNode(SDNode *N);
1691 void allnodes_clear();
1693 /// Look up the node specified by ID in CSEMap. If it exists, return it. If
1694 /// not, return the insertion token that will make insertion faster. This
1695 /// overload is for nodes other than Constant or ConstantFP, use the other one
1696 /// for those.
1697 SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
1699 /// Look up the node specified by ID in CSEMap. If it exists, return it. If
1700 /// not, return the insertion token that will make insertion faster. Performs
1701 /// additional processing for constant nodes.
1702 SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, const SDLoc &DL,
1703 void *&InsertPos);
1705 /// List of non-single value types.
1706 FoldingSet<SDVTListNode> VTListMap;
1708 /// Maps to auto-CSE operations.
1709 std::vector<CondCodeSDNode*> CondCodeNodes;
1711 std::vector<SDNode*> ValueTypeNodes;
1712 std::map<EVT, SDNode*, EVT::compareRawBits> ExtendedValueTypeNodes;
1713 StringMap<SDNode*> ExternalSymbols;
1715 std::map<std::pair<std::string, unsigned char>,SDNode*> TargetExternalSymbols;
1716 DenseMap<MCSymbol *, SDNode *> MCSymbols;
1719 template <> struct GraphTraits<SelectionDAG*> : public GraphTraits<SDNode*> {
1720 using nodes_iterator = pointer_iterator<SelectionDAG::allnodes_iterator>;
1722 static nodes_iterator nodes_begin(SelectionDAG *G) {
1723 return nodes_iterator(G->allnodes_begin());
1726 static nodes_iterator nodes_end(SelectionDAG *G) {
1727 return nodes_iterator(G->allnodes_end());
1731 template <class TargetMemSDNode>
1732 SDValue SelectionDAG::getTargetMemSDNode(SDVTList VTs,
1733 ArrayRef<SDValue> Ops,
1734 const SDLoc &dl, EVT MemVT,
1735 MachineMemOperand *MMO) {
1736 /// Compose node ID and try to find an existing node.
1737 FoldingSetNodeID ID;
1738 unsigned Opcode =
1739 TargetMemSDNode(dl.getIROrder(), DebugLoc(), VTs, MemVT, MMO).getOpcode();
1740 ID.AddInteger(Opcode);
1741 ID.AddPointer(VTs.VTs);
1742 for (auto& Op : Ops) {
1743 ID.AddPointer(Op.getNode());
1744 ID.AddInteger(Op.getResNo());
1746 ID.AddInteger(MemVT.getRawBits());
1747 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
1748 ID.AddInteger(getSyntheticNodeSubclassData<TargetMemSDNode>(
1749 dl.getIROrder(), VTs, MemVT, MMO));
1751 void *IP = nullptr;
1752 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
1753 cast<TargetMemSDNode>(E)->refineAlignment(MMO);
1754 return SDValue(E, 0);
1757 /// Existing node was not found. Create a new one.
1758 auto *N = newSDNode<TargetMemSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
1759 MemVT, MMO);
1760 createOperands(N, Ops);
1761 CSEMap.InsertNode(N, IP);
1762 InsertNode(N);
1763 return SDValue(N, 0);
1766 } // end namespace llvm
1768 #endif // LLVM_CODEGEN_SELECTIONDAG_H