[ARM] MVE integer min and max
[llvm-complete.git] / include / llvm / CodeGen / TargetLowering.h
blobd5cca60bb1b27843b5b38c734d3ca983aeda1883
1 //===- llvm/CodeGen/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file describes how to lower LLVM code to machine code. This has two
11 /// main components:
12 ///
13 /// 1. Which ValueTypes are natively supported by the target.
14 /// 2. Which operations are supported for supported ValueTypes.
15 /// 3. Cost thresholds for alternative implementations of certain operations.
16 ///
17 /// In addition it has a few other components, like information about FP
18 /// immediates.
19 ///
20 //===----------------------------------------------------------------------===//
22 #ifndef LLVM_CODEGEN_TARGETLOWERING_H
23 #define LLVM_CODEGEN_TARGETLOWERING_H
25 #include "llvm/ADT/APInt.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
32 #include "llvm/CodeGen/DAGCombine.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/RuntimeLibcalls.h"
35 #include "llvm/CodeGen/SelectionDAG.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/TargetCallingConv.h"
38 #include "llvm/CodeGen/ValueTypes.h"
39 #include "llvm/IR/Attributes.h"
40 #include "llvm/IR/CallSite.h"
41 #include "llvm/IR/CallingConv.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/MC/MCRegisterInfo.h"
51 #include "llvm/Support/AtomicOrdering.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/MachineValueType.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include <algorithm>
57 #include <cassert>
58 #include <climits>
59 #include <cstdint>
60 #include <iterator>
61 #include <map>
62 #include <string>
63 #include <utility>
64 #include <vector>
66 namespace llvm {
68 class BranchProbability;
69 class CCState;
70 class CCValAssign;
71 class Constant;
72 class FastISel;
73 class FunctionLoweringInfo;
74 class GlobalValue;
75 class IntrinsicInst;
76 struct KnownBits;
77 class LLVMContext;
78 class MachineBasicBlock;
79 class MachineFunction;
80 class MachineInstr;
81 class MachineJumpTableInfo;
82 class MachineLoop;
83 class MachineRegisterInfo;
84 class MCContext;
85 class MCExpr;
86 class Module;
87 class TargetRegisterClass;
88 class TargetLibraryInfo;
89 class TargetRegisterInfo;
90 class Value;
92 namespace Sched {
94 enum Preference {
95 None, // No preference
96 Source, // Follow source order.
97 RegPressure, // Scheduling for lowest register pressure.
98 Hybrid, // Scheduling for both latency and register pressure.
99 ILP, // Scheduling for ILP in low register pressure mode.
100 VLIW // Scheduling for VLIW targets.
103 } // end namespace Sched
105 /// This base class for TargetLowering contains the SelectionDAG-independent
106 /// parts that can be used from the rest of CodeGen.
107 class TargetLoweringBase {
108 public:
109 /// This enum indicates whether operations are valid for a target, and if not,
110 /// what action should be used to make them valid.
111 enum LegalizeAction : uint8_t {
112 Legal, // The target natively supports this operation.
113 Promote, // This operation should be executed in a larger type.
114 Expand, // Try to expand this to other ops, otherwise use a libcall.
115 LibCall, // Don't try to expand this to other ops, always use a libcall.
116 Custom // Use the LowerOperation hook to implement custom lowering.
119 /// This enum indicates whether a types are legal for a target, and if not,
120 /// what action should be used to make them valid.
121 enum LegalizeTypeAction : uint8_t {
122 TypeLegal, // The target natively supports this type.
123 TypePromoteInteger, // Replace this integer with a larger one.
124 TypeExpandInteger, // Split this integer into two of half the size.
125 TypeSoftenFloat, // Convert this float to a same size integer type,
126 // if an operation is not supported in target HW.
127 TypeExpandFloat, // Split this float into two of half the size.
128 TypeScalarizeVector, // Replace this one-element vector with its element.
129 TypeSplitVector, // Split this vector into two of half the size.
130 TypeWidenVector, // This vector should be widened into a larger vector.
131 TypePromoteFloat // Replace this float with a larger one.
134 /// LegalizeKind holds the legalization kind that needs to happen to EVT
135 /// in order to type-legalize it.
136 using LegalizeKind = std::pair<LegalizeTypeAction, EVT>;
138 /// Enum that describes how the target represents true/false values.
139 enum BooleanContent {
140 UndefinedBooleanContent, // Only bit 0 counts, the rest can hold garbage.
141 ZeroOrOneBooleanContent, // All bits zero except for bit 0.
142 ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
145 /// Enum that describes what type of support for selects the target has.
146 enum SelectSupportKind {
147 ScalarValSelect, // The target supports scalar selects (ex: cmov).
148 ScalarCondVectorVal, // The target supports selects with a scalar condition
149 // and vector values (ex: cmov).
150 VectorMaskSelect // The target supports vector selects with a vector
151 // mask (ex: x86 blends).
154 /// Enum that specifies what an atomic load/AtomicRMWInst is expanded
155 /// to, if at all. Exists because different targets have different levels of
156 /// support for these atomic instructions, and also have different options
157 /// w.r.t. what they should expand to.
158 enum class AtomicExpansionKind {
159 None, // Don't expand the instruction.
160 LLSC, // Expand the instruction into loadlinked/storeconditional; used
161 // by ARM/AArch64.
162 LLOnly, // Expand the (load) instruction into just a load-linked, which has
163 // greater atomic guarantees than a normal load.
164 CmpXChg, // Expand the instruction into cmpxchg; used by at least X86.
165 MaskedIntrinsic, // Use a target-specific intrinsic for the LL/SC loop.
168 /// Enum that specifies when a multiplication should be expanded.
169 enum class MulExpansionKind {
170 Always, // Always expand the instruction.
171 OnlyLegalOrCustom, // Only expand when the resulting instructions are legal
172 // or custom.
175 class ArgListEntry {
176 public:
177 Value *Val = nullptr;
178 SDValue Node = SDValue();
179 Type *Ty = nullptr;
180 bool IsSExt : 1;
181 bool IsZExt : 1;
182 bool IsInReg : 1;
183 bool IsSRet : 1;
184 bool IsNest : 1;
185 bool IsByVal : 1;
186 bool IsInAlloca : 1;
187 bool IsReturned : 1;
188 bool IsSwiftSelf : 1;
189 bool IsSwiftError : 1;
190 uint16_t Alignment = 0;
191 Type *ByValType = nullptr;
193 ArgListEntry()
194 : IsSExt(false), IsZExt(false), IsInReg(false), IsSRet(false),
195 IsNest(false), IsByVal(false), IsInAlloca(false), IsReturned(false),
196 IsSwiftSelf(false), IsSwiftError(false) {}
198 void setAttributes(const CallBase *Call, unsigned ArgIdx);
200 void setAttributes(ImmutableCallSite *CS, unsigned ArgIdx) {
201 return setAttributes(cast<CallBase>(CS->getInstruction()), ArgIdx);
204 using ArgListTy = std::vector<ArgListEntry>;
206 virtual void markLibCallAttributes(MachineFunction *MF, unsigned CC,
207 ArgListTy &Args) const {};
209 static ISD::NodeType getExtendForContent(BooleanContent Content) {
210 switch (Content) {
211 case UndefinedBooleanContent:
212 // Extend by adding rubbish bits.
213 return ISD::ANY_EXTEND;
214 case ZeroOrOneBooleanContent:
215 // Extend by adding zero bits.
216 return ISD::ZERO_EXTEND;
217 case ZeroOrNegativeOneBooleanContent:
218 // Extend by copying the sign bit.
219 return ISD::SIGN_EXTEND;
221 llvm_unreachable("Invalid content kind");
224 /// NOTE: The TargetMachine owns TLOF.
225 explicit TargetLoweringBase(const TargetMachine &TM);
226 TargetLoweringBase(const TargetLoweringBase &) = delete;
227 TargetLoweringBase &operator=(const TargetLoweringBase &) = delete;
228 virtual ~TargetLoweringBase() = default;
230 protected:
231 /// Initialize all of the actions to default values.
232 void initActions();
234 public:
235 const TargetMachine &getTargetMachine() const { return TM; }
237 virtual bool useSoftFloat() const { return false; }
239 /// Return the pointer type for the given address space, defaults to
240 /// the pointer type from the data layout.
241 /// FIXME: The default needs to be removed once all the code is updated.
242 virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS = 0) const {
243 return MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
246 /// Return the in-memory pointer type for the given address space, defaults to
247 /// the pointer type from the data layout. FIXME: The default needs to be
248 /// removed once all the code is updated.
249 MVT getPointerMemTy(const DataLayout &DL, uint32_t AS = 0) const {
250 return MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
253 /// Return the type for frame index, which is determined by
254 /// the alloca address space specified through the data layout.
255 MVT getFrameIndexTy(const DataLayout &DL) const {
256 return getPointerTy(DL, DL.getAllocaAddrSpace());
259 /// Return the type for operands of fence.
260 /// TODO: Let fence operands be of i32 type and remove this.
261 virtual MVT getFenceOperandTy(const DataLayout &DL) const {
262 return getPointerTy(DL);
265 /// EVT is not used in-tree, but is used by out-of-tree target.
266 /// A documentation for this function would be nice...
267 virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const;
269 EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
270 bool LegalTypes = true) const;
272 /// Returns the type to be used for the index operand of:
273 /// ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
274 /// ISD::INSERT_SUBVECTOR, and ISD::EXTRACT_SUBVECTOR
275 virtual MVT getVectorIdxTy(const DataLayout &DL) const {
276 return getPointerTy(DL);
279 virtual bool isSelectSupported(SelectSupportKind /*kind*/) const {
280 return true;
283 /// Return true if it is profitable to convert a select of FP constants into
284 /// a constant pool load whose address depends on the select condition. The
285 /// parameter may be used to differentiate a select with FP compare from
286 /// integer compare.
287 virtual bool reduceSelectOfFPConstantLoads(bool IsFPSetCC) const {
288 return true;
291 /// Return true if multiple condition registers are available.
292 bool hasMultipleConditionRegisters() const {
293 return HasMultipleConditionRegisters;
296 /// Return true if the target has BitExtract instructions.
297 bool hasExtractBitsInsn() const { return HasExtractBitsInsn; }
299 /// Return the preferred vector type legalization action.
300 virtual TargetLoweringBase::LegalizeTypeAction
301 getPreferredVectorAction(MVT VT) const {
302 // The default action for one element vectors is to scalarize
303 if (VT.getVectorNumElements() == 1)
304 return TypeScalarizeVector;
305 // The default action for an odd-width vector is to widen.
306 if (!VT.isPow2VectorType())
307 return TypeWidenVector;
308 // The default action for other vectors is to promote
309 return TypePromoteInteger;
312 // There are two general methods for expanding a BUILD_VECTOR node:
313 // 1. Use SCALAR_TO_VECTOR on the defined scalar values and then shuffle
314 // them together.
315 // 2. Build the vector on the stack and then load it.
316 // If this function returns true, then method (1) will be used, subject to
317 // the constraint that all of the necessary shuffles are legal (as determined
318 // by isShuffleMaskLegal). If this function returns false, then method (2) is
319 // always used. The vector type, and the number of defined values, are
320 // provided.
321 virtual bool
322 shouldExpandBuildVectorWithShuffles(EVT /* VT */,
323 unsigned DefinedValues) const {
324 return DefinedValues < 3;
327 /// Return true if integer divide is usually cheaper than a sequence of
328 /// several shifts, adds, and multiplies for this target.
329 /// The definition of "cheaper" may depend on whether we're optimizing
330 /// for speed or for size.
331 virtual bool isIntDivCheap(EVT VT, AttributeList Attr) const { return false; }
333 /// Return true if the target can handle a standalone remainder operation.
334 virtual bool hasStandaloneRem(EVT VT) const {
335 return true;
338 /// Return true if SQRT(X) shouldn't be replaced with X*RSQRT(X).
339 virtual bool isFsqrtCheap(SDValue X, SelectionDAG &DAG) const {
340 // Default behavior is to replace SQRT(X) with X*RSQRT(X).
341 return false;
344 /// Reciprocal estimate status values used by the functions below.
345 enum ReciprocalEstimate : int {
346 Unspecified = -1,
347 Disabled = 0,
348 Enabled = 1
351 /// Return a ReciprocalEstimate enum value for a square root of the given type
352 /// based on the function's attributes. If the operation is not overridden by
353 /// the function's attributes, "Unspecified" is returned and target defaults
354 /// are expected to be used for instruction selection.
355 int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const;
357 /// Return a ReciprocalEstimate enum value for a division of the given type
358 /// based on the function's attributes. If the operation is not overridden by
359 /// the function's attributes, "Unspecified" is returned and target defaults
360 /// are expected to be used for instruction selection.
361 int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const;
363 /// Return the refinement step count for a square root of the given type based
364 /// on the function's attributes. If the operation is not overridden by
365 /// the function's attributes, "Unspecified" is returned and target defaults
366 /// are expected to be used for instruction selection.
367 int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const;
369 /// Return the refinement step count for a division of the given type based
370 /// on the function's attributes. If the operation is not overridden by
371 /// the function's attributes, "Unspecified" is returned and target defaults
372 /// are expected to be used for instruction selection.
373 int getDivRefinementSteps(EVT VT, MachineFunction &MF) const;
375 /// Returns true if target has indicated at least one type should be bypassed.
376 bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
378 /// Returns map of slow types for division or remainder with corresponding
379 /// fast types
380 const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
381 return BypassSlowDivWidths;
384 /// Return true if Flow Control is an expensive operation that should be
385 /// avoided.
386 bool isJumpExpensive() const { return JumpIsExpensive; }
388 /// Return true if selects are only cheaper than branches if the branch is
389 /// unlikely to be predicted right.
390 bool isPredictableSelectExpensive() const {
391 return PredictableSelectIsExpensive;
394 /// If a branch or a select condition is skewed in one direction by more than
395 /// this factor, it is very likely to be predicted correctly.
396 virtual BranchProbability getPredictableBranchThreshold() const;
398 /// Return true if the following transform is beneficial:
399 /// fold (conv (load x)) -> (load (conv*)x)
400 /// On architectures that don't natively support some vector loads
401 /// efficiently, casting the load to a smaller vector of larger types and
402 /// loading is more efficient, however, this can be undone by optimizations in
403 /// dag combiner.
404 virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT,
405 const SelectionDAG &DAG,
406 const MachineMemOperand &MMO) const {
407 // Don't do if we could do an indexed load on the original type, but not on
408 // the new one.
409 if (!LoadVT.isSimple() || !BitcastVT.isSimple())
410 return true;
412 MVT LoadMVT = LoadVT.getSimpleVT();
414 // Don't bother doing this if it's just going to be promoted again later, as
415 // doing so might interfere with other combines.
416 if (getOperationAction(ISD::LOAD, LoadMVT) == Promote &&
417 getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT())
418 return false;
420 bool Fast = false;
421 return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), BitcastVT,
422 MMO, &Fast) && Fast;
425 /// Return true if the following transform is beneficial:
426 /// (store (y (conv x)), y*)) -> (store x, (x*))
427 virtual bool isStoreBitCastBeneficial(EVT StoreVT, EVT BitcastVT,
428 const SelectionDAG &DAG,
429 const MachineMemOperand &MMO) const {
430 // Default to the same logic as loads.
431 return isLoadBitCastBeneficial(StoreVT, BitcastVT, DAG, MMO);
434 /// Return true if it is expected to be cheaper to do a store of a non-zero
435 /// vector constant with the given size and type for the address space than to
436 /// store the individual scalar element constants.
437 virtual bool storeOfVectorConstantIsCheap(EVT MemVT,
438 unsigned NumElem,
439 unsigned AddrSpace) const {
440 return false;
443 /// Allow store merging for the specified type after legalization in addition
444 /// to before legalization. This may transform stores that do not exist
445 /// earlier (for example, stores created from intrinsics).
446 virtual bool mergeStoresAfterLegalization(EVT MemVT) const {
447 return true;
450 /// Returns if it's reasonable to merge stores to MemVT size.
451 virtual bool canMergeStoresTo(unsigned AS, EVT MemVT,
452 const SelectionDAG &DAG) const {
453 return true;
456 /// Return true if it is cheap to speculate a call to intrinsic cttz.
457 virtual bool isCheapToSpeculateCttz() const {
458 return false;
461 /// Return true if it is cheap to speculate a call to intrinsic ctlz.
462 virtual bool isCheapToSpeculateCtlz() const {
463 return false;
466 /// Return true if ctlz instruction is fast.
467 virtual bool isCtlzFast() const {
468 return false;
471 /// Return true if it is safe to transform an integer-domain bitwise operation
472 /// into the equivalent floating-point operation. This should be set to true
473 /// if the target has IEEE-754-compliant fabs/fneg operations for the input
474 /// type.
475 virtual bool hasBitPreservingFPLogic(EVT VT) const {
476 return false;
479 /// Return true if it is cheaper to split the store of a merged int val
480 /// from a pair of smaller values into multiple stores.
481 virtual bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const {
482 return false;
485 /// Return if the target supports combining a
486 /// chain like:
487 /// \code
488 /// %andResult = and %val1, #mask
489 /// %icmpResult = icmp %andResult, 0
490 /// \endcode
491 /// into a single machine instruction of a form like:
492 /// \code
493 /// cc = test %register, #mask
494 /// \endcode
495 virtual bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
496 return false;
499 /// Use bitwise logic to make pairs of compares more efficient. For example:
500 /// and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
501 /// This should be true when it takes more than one instruction to lower
502 /// setcc (cmp+set on x86 scalar), when bitwise ops are faster than logic on
503 /// condition bits (crand on PowerPC), and/or when reducing cmp+br is a win.
504 virtual bool convertSetCCLogicToBitwiseLogic(EVT VT) const {
505 return false;
508 /// Return the preferred operand type if the target has a quick way to compare
509 /// integer values of the given size. Assume that any legal integer type can
510 /// be compared efficiently. Targets may override this to allow illegal wide
511 /// types to return a vector type if there is support to compare that type.
512 virtual MVT hasFastEqualityCompare(unsigned NumBits) const {
513 MVT VT = MVT::getIntegerVT(NumBits);
514 return isTypeLegal(VT) ? VT : MVT::INVALID_SIMPLE_VALUE_TYPE;
517 /// Return true if the target should transform:
518 /// (X & Y) == Y ---> (~X & Y) == 0
519 /// (X & Y) != Y ---> (~X & Y) != 0
521 /// This may be profitable if the target has a bitwise and-not operation that
522 /// sets comparison flags. A target may want to limit the transformation based
523 /// on the type of Y or if Y is a constant.
525 /// Note that the transform will not occur if Y is known to be a power-of-2
526 /// because a mask and compare of a single bit can be handled by inverting the
527 /// predicate, for example:
528 /// (X & 8) == 8 ---> (X & 8) != 0
529 virtual bool hasAndNotCompare(SDValue Y) const {
530 return false;
533 /// Return true if the target has a bitwise and-not operation:
534 /// X = ~A & B
535 /// This can be used to simplify select or other instructions.
536 virtual bool hasAndNot(SDValue X) const {
537 // If the target has the more complex version of this operation, assume that
538 // it has this operation too.
539 return hasAndNotCompare(X);
542 /// There are two ways to clear extreme bits (either low or high):
543 /// Mask: x & (-1 << y) (the instcombine canonical form)
544 /// Shifts: x >> y << y
545 /// Return true if the variant with 2 variable shifts is preferred.
546 /// Return false if there is no preference.
547 virtual bool shouldFoldMaskToVariableShiftPair(SDValue X) const {
548 // By default, let's assume that no one prefers shifts.
549 return false;
552 /// Return true if it is profitable to fold a pair of shifts into a mask.
553 /// This is usually true on most targets. But some targets, like Thumb1,
554 /// have immediate shift instructions, but no immediate "and" instruction;
555 /// this makes the fold unprofitable.
556 virtual bool shouldFoldConstantShiftPairToMask(const SDNode *N,
557 CombineLevel Level) const {
558 return true;
561 /// Should we tranform the IR-optimal check for whether given truncation
562 /// down into KeptBits would be truncating or not:
563 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
564 /// Into it's more traditional form:
565 /// ((%x << C) a>> C) dstcond %x
566 /// Return true if we should transform.
567 /// Return false if there is no preference.
568 virtual bool shouldTransformSignedTruncationCheck(EVT XVT,
569 unsigned KeptBits) const {
570 // By default, let's assume that no one prefers shifts.
571 return false;
574 /// These two forms are equivalent:
575 /// sub %y, (xor %x, -1)
576 /// add (add %x, 1), %y
577 /// The variant with two add's is IR-canonical.
578 /// Some targets may prefer one to the other.
579 virtual bool preferIncOfAddToSubOfNot(EVT VT) const {
580 // By default, let's assume that everyone prefers the form with two add's.
581 return true;
584 /// Return true if the target wants to use the optimization that
585 /// turns ext(promotableInst1(...(promotableInstN(load)))) into
586 /// promotedInst1(...(promotedInstN(ext(load)))).
587 bool enableExtLdPromotion() const { return EnableExtLdPromotion; }
589 /// Return true if the target can combine store(extractelement VectorTy,
590 /// Idx).
591 /// \p Cost[out] gives the cost of that transformation when this is true.
592 virtual bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
593 unsigned &Cost) const {
594 return false;
597 /// Return true if inserting a scalar into a variable element of an undef
598 /// vector is more efficiently handled by splatting the scalar instead.
599 virtual bool shouldSplatInsEltVarIndex(EVT) const {
600 return false;
603 /// Return true if target always beneficiates from combining into FMA for a
604 /// given value type. This must typically return false on targets where FMA
605 /// takes more cycles to execute than FADD.
606 virtual bool enableAggressiveFMAFusion(EVT VT) const {
607 return false;
610 /// Return the ValueType of the result of SETCC operations.
611 virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
612 EVT VT) const;
614 /// Return the ValueType for comparison libcalls. Comparions libcalls include
615 /// floating point comparion calls, and Ordered/Unordered check calls on
616 /// floating point numbers.
617 virtual
618 MVT::SimpleValueType getCmpLibcallReturnType() const;
620 /// For targets without i1 registers, this gives the nature of the high-bits
621 /// of boolean values held in types wider than i1.
623 /// "Boolean values" are special true/false values produced by nodes like
624 /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
625 /// Not to be confused with general values promoted from i1. Some cpus
626 /// distinguish between vectors of boolean and scalars; the isVec parameter
627 /// selects between the two kinds. For example on X86 a scalar boolean should
628 /// be zero extended from i1, while the elements of a vector of booleans
629 /// should be sign extended from i1.
631 /// Some cpus also treat floating point types the same way as they treat
632 /// vectors instead of the way they treat scalars.
633 BooleanContent getBooleanContents(bool isVec, bool isFloat) const {
634 if (isVec)
635 return BooleanVectorContents;
636 return isFloat ? BooleanFloatContents : BooleanContents;
639 BooleanContent getBooleanContents(EVT Type) const {
640 return getBooleanContents(Type.isVector(), Type.isFloatingPoint());
643 /// Return target scheduling preference.
644 Sched::Preference getSchedulingPreference() const {
645 return SchedPreferenceInfo;
648 /// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics
649 /// for different nodes. This function returns the preference (or none) for
650 /// the given node.
651 virtual Sched::Preference getSchedulingPreference(SDNode *) const {
652 return Sched::None;
655 /// Return the register class that should be used for the specified value
656 /// type.
657 virtual const TargetRegisterClass *getRegClassFor(MVT VT, bool isDivergent = false) const {
658 (void)isDivergent;
659 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
660 assert(RC && "This value type is not natively supported!");
661 return RC;
664 /// Allows target to decide about the register class of the
665 /// specific value that is live outside the defining block.
666 /// Returns true if the value needs uniform register class.
667 virtual bool requiresUniformRegister(MachineFunction &MF,
668 const Value *) const {
669 return false;
672 /// Return the 'representative' register class for the specified value
673 /// type.
675 /// The 'representative' register class is the largest legal super-reg
676 /// register class for the register class of the value type. For example, on
677 /// i386 the rep register class for i8, i16, and i32 are GR32; while the rep
678 /// register class is GR64 on x86_64.
679 virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
680 const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
681 return RC;
684 /// Return the cost of the 'representative' register class for the specified
685 /// value type.
686 virtual uint8_t getRepRegClassCostFor(MVT VT) const {
687 return RepRegClassCostForVT[VT.SimpleTy];
690 /// Return true if SHIFT instructions should be expanded to SHIFT_PARTS
691 /// instructions, and false if a library call is preferred (e.g for code-size
692 /// reasons).
693 virtual bool shouldExpandShift(SelectionDAG &DAG, SDNode *N) const {
694 return true;
697 /// Return true if the target has native support for the specified value type.
698 /// This means that it has a register that directly holds it without
699 /// promotions or expansions.
700 bool isTypeLegal(EVT VT) const {
701 assert(!VT.isSimple() ||
702 (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
703 return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != nullptr;
706 class ValueTypeActionImpl {
707 /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
708 /// that indicates how instruction selection should deal with the type.
709 LegalizeTypeAction ValueTypeActions[MVT::LAST_VALUETYPE];
711 public:
712 ValueTypeActionImpl() {
713 std::fill(std::begin(ValueTypeActions), std::end(ValueTypeActions),
714 TypeLegal);
717 LegalizeTypeAction getTypeAction(MVT VT) const {
718 return ValueTypeActions[VT.SimpleTy];
721 void setTypeAction(MVT VT, LegalizeTypeAction Action) {
722 ValueTypeActions[VT.SimpleTy] = Action;
726 const ValueTypeActionImpl &getValueTypeActions() const {
727 return ValueTypeActions;
730 /// Return how we should legalize values of this type, either it is already
731 /// legal (return 'Legal') or we need to promote it to a larger type (return
732 /// 'Promote'), or we need to expand it into multiple registers of smaller
733 /// integer type (return 'Expand'). 'Custom' is not an option.
734 LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
735 return getTypeConversion(Context, VT).first;
737 LegalizeTypeAction getTypeAction(MVT VT) const {
738 return ValueTypeActions.getTypeAction(VT);
741 /// For types supported by the target, this is an identity function. For
742 /// types that must be promoted to larger types, this returns the larger type
743 /// to promote to. For integer types that are larger than the largest integer
744 /// register, this contains one step in the expansion to get to the smaller
745 /// register. For illegal floating point types, this returns the integer type
746 /// to transform to.
747 EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
748 return getTypeConversion(Context, VT).second;
751 /// For types supported by the target, this is an identity function. For
752 /// types that must be expanded (i.e. integer types that are larger than the
753 /// largest integer register or illegal floating point types), this returns
754 /// the largest legal type it will be expanded to.
755 EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
756 assert(!VT.isVector());
757 while (true) {
758 switch (getTypeAction(Context, VT)) {
759 case TypeLegal:
760 return VT;
761 case TypeExpandInteger:
762 VT = getTypeToTransformTo(Context, VT);
763 break;
764 default:
765 llvm_unreachable("Type is not legal nor is it to be expanded!");
770 /// Vector types are broken down into some number of legal first class types.
771 /// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8
772 /// promoted EVT::f64 values with the X86 FP stack. Similarly, EVT::v2i64
773 /// turns into 4 EVT::i32 values with both PPC and X86.
775 /// This method returns the number of registers needed, and the VT for each
776 /// register. It also returns the VT and quantity of the intermediate values
777 /// before they are promoted/expanded.
778 unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
779 EVT &IntermediateVT,
780 unsigned &NumIntermediates,
781 MVT &RegisterVT) const;
783 /// Certain targets such as MIPS require that some types such as vectors are
784 /// always broken down into scalars in some contexts. This occurs even if the
785 /// vector type is legal.
786 virtual unsigned getVectorTypeBreakdownForCallingConv(
787 LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
788 unsigned &NumIntermediates, MVT &RegisterVT) const {
789 return getVectorTypeBreakdown(Context, VT, IntermediateVT, NumIntermediates,
790 RegisterVT);
793 struct IntrinsicInfo {
794 unsigned opc = 0; // target opcode
795 EVT memVT; // memory VT
797 // value representing memory location
798 PointerUnion<const Value *, const PseudoSourceValue *> ptrVal;
800 int offset = 0; // offset off of ptrVal
801 unsigned size = 0; // the size of the memory location
802 // (taken from memVT if zero)
803 unsigned align = 1; // alignment
805 MachineMemOperand::Flags flags = MachineMemOperand::MONone;
806 IntrinsicInfo() = default;
809 /// Given an intrinsic, checks if on the target the intrinsic will need to map
810 /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
811 /// true and store the intrinsic information into the IntrinsicInfo that was
812 /// passed to the function.
813 virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
814 MachineFunction &,
815 unsigned /*Intrinsic*/) const {
816 return false;
819 /// Returns true if the target can instruction select the specified FP
820 /// immediate natively. If false, the legalizer will materialize the FP
821 /// immediate as a load from a constant pool.
822 virtual bool isFPImmLegal(const APFloat & /*Imm*/, EVT /*VT*/,
823 bool ForCodeSize = false) const {
824 return false;
827 /// Targets can use this to indicate that they only support *some*
828 /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a
829 /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be
830 /// legal.
831 virtual bool isShuffleMaskLegal(ArrayRef<int> /*Mask*/, EVT /*VT*/) const {
832 return true;
835 /// Returns true if the operation can trap for the value type.
837 /// VT must be a legal type. By default, we optimistically assume most
838 /// operations don't trap except for integer divide and remainder.
839 virtual bool canOpTrap(unsigned Op, EVT VT) const;
841 /// Similar to isShuffleMaskLegal. Targets can use this to indicate if there
842 /// is a suitable VECTOR_SHUFFLE that can be used to replace a VAND with a
843 /// constant pool entry.
844 virtual bool isVectorClearMaskLegal(ArrayRef<int> /*Mask*/,
845 EVT /*VT*/) const {
846 return false;
849 /// Return how this operation should be treated: either it is legal, needs to
850 /// be promoted to a larger size, needs to be expanded to some other code
851 /// sequence, or the target has a custom expander for it.
852 LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
853 if (VT.isExtended()) return Expand;
854 // If a target-specific SDNode requires legalization, require the target
855 // to provide custom legalization for it.
856 if (Op >= array_lengthof(OpActions[0])) return Custom;
857 return OpActions[(unsigned)VT.getSimpleVT().SimpleTy][Op];
860 /// Custom method defined by each target to indicate if an operation which
861 /// may require a scale is supported natively by the target.
862 /// If not, the operation is illegal.
863 virtual bool isSupportedFixedPointOperation(unsigned Op, EVT VT,
864 unsigned Scale) const {
865 return false;
868 /// Some fixed point operations may be natively supported by the target but
869 /// only for specific scales. This method allows for checking
870 /// if the width is supported by the target for a given operation that may
871 /// depend on scale.
872 LegalizeAction getFixedPointOperationAction(unsigned Op, EVT VT,
873 unsigned Scale) const {
874 auto Action = getOperationAction(Op, VT);
875 if (Action != Legal)
876 return Action;
878 // This operation is supported in this type but may only work on specific
879 // scales.
880 bool Supported;
881 switch (Op) {
882 default:
883 llvm_unreachable("Unexpected fixed point operation.");
884 case ISD::SMULFIX:
885 case ISD::SMULFIXSAT:
886 case ISD::UMULFIX:
887 Supported = isSupportedFixedPointOperation(Op, VT, Scale);
888 break;
891 return Supported ? Action : Expand;
894 LegalizeAction getStrictFPOperationAction(unsigned Op, EVT VT) const {
895 unsigned EqOpc;
896 switch (Op) {
897 default: llvm_unreachable("Unexpected FP pseudo-opcode");
898 case ISD::STRICT_FADD: EqOpc = ISD::FADD; break;
899 case ISD::STRICT_FSUB: EqOpc = ISD::FSUB; break;
900 case ISD::STRICT_FMUL: EqOpc = ISD::FMUL; break;
901 case ISD::STRICT_FDIV: EqOpc = ISD::FDIV; break;
902 case ISD::STRICT_FREM: EqOpc = ISD::FREM; break;
903 case ISD::STRICT_FSQRT: EqOpc = ISD::FSQRT; break;
904 case ISD::STRICT_FPOW: EqOpc = ISD::FPOW; break;
905 case ISD::STRICT_FPOWI: EqOpc = ISD::FPOWI; break;
906 case ISD::STRICT_FMA: EqOpc = ISD::FMA; break;
907 case ISD::STRICT_FSIN: EqOpc = ISD::FSIN; break;
908 case ISD::STRICT_FCOS: EqOpc = ISD::FCOS; break;
909 case ISD::STRICT_FEXP: EqOpc = ISD::FEXP; break;
910 case ISD::STRICT_FEXP2: EqOpc = ISD::FEXP2; break;
911 case ISD::STRICT_FLOG: EqOpc = ISD::FLOG; break;
912 case ISD::STRICT_FLOG10: EqOpc = ISD::FLOG10; break;
913 case ISD::STRICT_FLOG2: EqOpc = ISD::FLOG2; break;
914 case ISD::STRICT_FRINT: EqOpc = ISD::FRINT; break;
915 case ISD::STRICT_FNEARBYINT: EqOpc = ISD::FNEARBYINT; break;
916 case ISD::STRICT_FMAXNUM: EqOpc = ISD::FMAXNUM; break;
917 case ISD::STRICT_FMINNUM: EqOpc = ISD::FMINNUM; break;
918 case ISD::STRICT_FCEIL: EqOpc = ISD::FCEIL; break;
919 case ISD::STRICT_FFLOOR: EqOpc = ISD::FFLOOR; break;
920 case ISD::STRICT_FROUND: EqOpc = ISD::FROUND; break;
921 case ISD::STRICT_FTRUNC: EqOpc = ISD::FTRUNC; break;
922 case ISD::STRICT_FP_ROUND: EqOpc = ISD::FP_ROUND; break;
923 case ISD::STRICT_FP_EXTEND: EqOpc = ISD::FP_EXTEND; break;
926 auto Action = getOperationAction(EqOpc, VT);
928 // We don't currently handle Custom or Promote for strict FP pseudo-ops.
929 // For now, we just expand for those cases.
930 if (Action != Legal)
931 Action = Expand;
933 return Action;
936 /// Return true if the specified operation is legal on this target or can be
937 /// made legal with custom lowering. This is used to help guide high-level
938 /// lowering decisions.
939 bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
940 return (VT == MVT::Other || isTypeLegal(VT)) &&
941 (getOperationAction(Op, VT) == Legal ||
942 getOperationAction(Op, VT) == Custom);
945 /// Return true if the specified operation is legal on this target or can be
946 /// made legal using promotion. This is used to help guide high-level lowering
947 /// decisions.
948 bool isOperationLegalOrPromote(unsigned Op, EVT VT) const {
949 return (VT == MVT::Other || isTypeLegal(VT)) &&
950 (getOperationAction(Op, VT) == Legal ||
951 getOperationAction(Op, VT) == Promote);
954 /// Return true if the specified operation is legal on this target or can be
955 /// made legal with custom lowering or using promotion. This is used to help
956 /// guide high-level lowering decisions.
957 bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT) const {
958 return (VT == MVT::Other || isTypeLegal(VT)) &&
959 (getOperationAction(Op, VT) == Legal ||
960 getOperationAction(Op, VT) == Custom ||
961 getOperationAction(Op, VT) == Promote);
964 /// Return true if the operation uses custom lowering, regardless of whether
965 /// the type is legal or not.
966 bool isOperationCustom(unsigned Op, EVT VT) const {
967 return getOperationAction(Op, VT) == Custom;
970 /// Return true if lowering to a jump table is allowed.
971 virtual bool areJTsAllowed(const Function *Fn) const {
972 if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
973 return false;
975 return isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
976 isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
979 /// Check whether the range [Low,High] fits in a machine word.
980 bool rangeFitsInWord(const APInt &Low, const APInt &High,
981 const DataLayout &DL) const {
982 // FIXME: Using the pointer type doesn't seem ideal.
983 uint64_t BW = DL.getIndexSizeInBits(0u);
984 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
985 return Range <= BW;
988 /// Return true if lowering to a jump table is suitable for a set of case
989 /// clusters which may contain \p NumCases cases, \p Range range of values.
990 virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases,
991 uint64_t Range) const {
992 // FIXME: This function check the maximum table size and density, but the
993 // minimum size is not checked. It would be nice if the minimum size is
994 // also combined within this function. Currently, the minimum size check is
995 // performed in findJumpTable() in SelectionDAGBuiler and
996 // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
997 const bool OptForSize = SI->getParent()->getParent()->hasOptSize();
998 const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
999 const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1001 // Check whether the number of cases is small enough and
1002 // the range is dense enough for a jump table.
1003 if ((OptForSize || Range <= MaxJumpTableSize) &&
1004 (NumCases * 100 >= Range * MinDensity)) {
1005 return true;
1007 return false;
1010 /// Return true if lowering to a bit test is suitable for a set of case
1011 /// clusters which contains \p NumDests unique destinations, \p Low and
1012 /// \p High as its lowest and highest case values, and expects \p NumCmps
1013 /// case value comparisons. Check if the number of destinations, comparison
1014 /// metric, and range are all suitable.
1015 bool isSuitableForBitTests(unsigned NumDests, unsigned NumCmps,
1016 const APInt &Low, const APInt &High,
1017 const DataLayout &DL) const {
1018 // FIXME: I don't think NumCmps is the correct metric: a single case and a
1019 // range of cases both require only one branch to lower. Just looking at the
1020 // number of clusters and destinations should be enough to decide whether to
1021 // build bit tests.
1023 // To lower a range with bit tests, the range must fit the bitwidth of a
1024 // machine word.
1025 if (!rangeFitsInWord(Low, High, DL))
1026 return false;
1028 // Decide whether it's profitable to lower this range with bit tests. Each
1029 // destination requires a bit test and branch, and there is an overall range
1030 // check branch. For a small number of clusters, separate comparisons might
1031 // be cheaper, and for many destinations, splitting the range might be
1032 // better.
1033 return (NumDests == 1 && NumCmps >= 3) || (NumDests == 2 && NumCmps >= 5) ||
1034 (NumDests == 3 && NumCmps >= 6);
1037 /// Return true if the specified operation is illegal on this target or
1038 /// unlikely to be made legal with custom lowering. This is used to help guide
1039 /// high-level lowering decisions.
1040 bool isOperationExpand(unsigned Op, EVT VT) const {
1041 return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
1044 /// Return true if the specified operation is legal on this target.
1045 bool isOperationLegal(unsigned Op, EVT VT) const {
1046 return (VT == MVT::Other || isTypeLegal(VT)) &&
1047 getOperationAction(Op, VT) == Legal;
1050 /// Return how this load with extension should be treated: either it is legal,
1051 /// needs to be promoted to a larger size, needs to be expanded to some other
1052 /// code sequence, or the target has a custom expander for it.
1053 LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT,
1054 EVT MemVT) const {
1055 if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
1056 unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
1057 unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
1058 assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValI < MVT::LAST_VALUETYPE &&
1059 MemI < MVT::LAST_VALUETYPE && "Table isn't big enough!");
1060 unsigned Shift = 4 * ExtType;
1061 return (LegalizeAction)((LoadExtActions[ValI][MemI] >> Shift) & 0xf);
1064 /// Return true if the specified load with extension is legal on this target.
1065 bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const {
1066 return getLoadExtAction(ExtType, ValVT, MemVT) == Legal;
1069 /// Return true if the specified load with extension is legal or custom
1070 /// on this target.
1071 bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const {
1072 return getLoadExtAction(ExtType, ValVT, MemVT) == Legal ||
1073 getLoadExtAction(ExtType, ValVT, MemVT) == Custom;
1076 /// Return how this store with truncation should be treated: either it is
1077 /// legal, needs to be promoted to a larger size, needs to be expanded to some
1078 /// other code sequence, or the target has a custom expander for it.
1079 LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
1080 if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
1081 unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
1082 unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
1083 assert(ValI < MVT::LAST_VALUETYPE && MemI < MVT::LAST_VALUETYPE &&
1084 "Table isn't big enough!");
1085 return TruncStoreActions[ValI][MemI];
1088 /// Return true if the specified store with truncation is legal on this
1089 /// target.
1090 bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
1091 return isTypeLegal(ValVT) && getTruncStoreAction(ValVT, MemVT) == Legal;
1094 /// Return true if the specified store with truncation has solution on this
1095 /// target.
1096 bool isTruncStoreLegalOrCustom(EVT ValVT, EVT MemVT) const {
1097 return isTypeLegal(ValVT) &&
1098 (getTruncStoreAction(ValVT, MemVT) == Legal ||
1099 getTruncStoreAction(ValVT, MemVT) == Custom);
1102 /// Return how the indexed load should be treated: either it is legal, needs
1103 /// to be promoted to a larger size, needs to be expanded to some other code
1104 /// sequence, or the target has a custom expander for it.
1105 LegalizeAction
1106 getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
1107 assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
1108 "Table isn't big enough!");
1109 unsigned Ty = (unsigned)VT.SimpleTy;
1110 return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
1113 /// Return true if the specified indexed load is legal on this target.
1114 bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
1115 return VT.isSimple() &&
1116 (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
1117 getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
1120 /// Return how the indexed store should be treated: either it is legal, needs
1121 /// to be promoted to a larger size, needs to be expanded to some other code
1122 /// sequence, or the target has a custom expander for it.
1123 LegalizeAction
1124 getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
1125 assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
1126 "Table isn't big enough!");
1127 unsigned Ty = (unsigned)VT.SimpleTy;
1128 return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
1131 /// Return true if the specified indexed load is legal on this target.
1132 bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
1133 return VT.isSimple() &&
1134 (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
1135 getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
1138 /// Return how the condition code should be treated: either it is legal, needs
1139 /// to be expanded to some other code sequence, or the target has a custom
1140 /// expander for it.
1141 LegalizeAction
1142 getCondCodeAction(ISD::CondCode CC, MVT VT) const {
1143 assert((unsigned)CC < array_lengthof(CondCodeActions) &&
1144 ((unsigned)VT.SimpleTy >> 3) < array_lengthof(CondCodeActions[0]) &&
1145 "Table isn't big enough!");
1146 // See setCondCodeAction for how this is encoded.
1147 uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
1148 uint32_t Value = CondCodeActions[CC][VT.SimpleTy >> 3];
1149 LegalizeAction Action = (LegalizeAction) ((Value >> Shift) & 0xF);
1150 assert(Action != Promote && "Can't promote condition code!");
1151 return Action;
1154 /// Return true if the specified condition code is legal on this target.
1155 bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
1156 return getCondCodeAction(CC, VT) == Legal;
1159 /// Return true if the specified condition code is legal or custom on this
1160 /// target.
1161 bool isCondCodeLegalOrCustom(ISD::CondCode CC, MVT VT) const {
1162 return getCondCodeAction(CC, VT) == Legal ||
1163 getCondCodeAction(CC, VT) == Custom;
1166 /// If the action for this operation is to promote, this method returns the
1167 /// ValueType to promote to.
1168 MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
1169 assert(getOperationAction(Op, VT) == Promote &&
1170 "This operation isn't promoted!");
1172 // See if this has an explicit type specified.
1173 std::map<std::pair<unsigned, MVT::SimpleValueType>,
1174 MVT::SimpleValueType>::const_iterator PTTI =
1175 PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
1176 if (PTTI != PromoteToType.end()) return PTTI->second;
1178 assert((VT.isInteger() || VT.isFloatingPoint()) &&
1179 "Cannot autopromote this type, add it with AddPromotedToType.");
1181 MVT NVT = VT;
1182 do {
1183 NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
1184 assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
1185 "Didn't find type to promote to!");
1186 } while (!isTypeLegal(NVT) ||
1187 getOperationAction(Op, NVT) == Promote);
1188 return NVT;
1191 /// Return the EVT corresponding to this LLVM type. This is fixed by the LLVM
1192 /// operations except for the pointer size. If AllowUnknown is true, this
1193 /// will return MVT::Other for types with no EVT counterpart (e.g. structs),
1194 /// otherwise it will assert.
1195 EVT getValueType(const DataLayout &DL, Type *Ty,
1196 bool AllowUnknown = false) const {
1197 // Lower scalar pointers to native pointer types.
1198 if (auto *PTy = dyn_cast<PointerType>(Ty))
1199 return getPointerTy(DL, PTy->getAddressSpace());
1201 if (auto *VTy = dyn_cast<VectorType>(Ty)) {
1202 Type *EltTy = VTy->getElementType();
1203 // Lower vectors of pointers to native pointer types.
1204 if (auto *PTy = dyn_cast<PointerType>(EltTy)) {
1205 EVT PointerTy(getPointerTy(DL, PTy->getAddressSpace()));
1206 EltTy = PointerTy.getTypeForEVT(Ty->getContext());
1208 return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(EltTy, false),
1209 VTy->getNumElements());
1212 return EVT::getEVT(Ty, AllowUnknown);
1215 EVT getMemValueType(const DataLayout &DL, Type *Ty,
1216 bool AllowUnknown = false) const {
1217 // Lower scalar pointers to native pointer types.
1218 if (PointerType *PTy = dyn_cast<PointerType>(Ty))
1219 return getPointerMemTy(DL, PTy->getAddressSpace());
1220 else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1221 Type *Elm = VTy->getElementType();
1222 if (PointerType *PT = dyn_cast<PointerType>(Elm)) {
1223 EVT PointerTy(getPointerMemTy(DL, PT->getAddressSpace()));
1224 Elm = PointerTy.getTypeForEVT(Ty->getContext());
1226 return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
1227 VTy->getNumElements());
1230 return getValueType(DL, Ty, AllowUnknown);
1234 /// Return the MVT corresponding to this LLVM type. See getValueType.
1235 MVT getSimpleValueType(const DataLayout &DL, Type *Ty,
1236 bool AllowUnknown = false) const {
1237 return getValueType(DL, Ty, AllowUnknown).getSimpleVT();
1240 /// Return the desired alignment for ByVal or InAlloca aggregate function
1241 /// arguments in the caller parameter area. This is the actual alignment, not
1242 /// its logarithm.
1243 virtual unsigned getByValTypeAlignment(Type *Ty, const DataLayout &DL) const;
1245 /// Return the type of registers that this ValueType will eventually require.
1246 MVT getRegisterType(MVT VT) const {
1247 assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
1248 return RegisterTypeForVT[VT.SimpleTy];
1251 /// Return the type of registers that this ValueType will eventually require.
1252 MVT getRegisterType(LLVMContext &Context, EVT VT) const {
1253 if (VT.isSimple()) {
1254 assert((unsigned)VT.getSimpleVT().SimpleTy <
1255 array_lengthof(RegisterTypeForVT));
1256 return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
1258 if (VT.isVector()) {
1259 EVT VT1;
1260 MVT RegisterVT;
1261 unsigned NumIntermediates;
1262 (void)getVectorTypeBreakdown(Context, VT, VT1,
1263 NumIntermediates, RegisterVT);
1264 return RegisterVT;
1266 if (VT.isInteger()) {
1267 return getRegisterType(Context, getTypeToTransformTo(Context, VT));
1269 llvm_unreachable("Unsupported extended type!");
1272 /// Return the number of registers that this ValueType will eventually
1273 /// require.
1275 /// This is one for any types promoted to live in larger registers, but may be
1276 /// more than one for types (like i64) that are split into pieces. For types
1277 /// like i140, which are first promoted then expanded, it is the number of
1278 /// registers needed to hold all the bits of the original type. For an i140
1279 /// on a 32 bit machine this means 5 registers.
1280 unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
1281 if (VT.isSimple()) {
1282 assert((unsigned)VT.getSimpleVT().SimpleTy <
1283 array_lengthof(NumRegistersForVT));
1284 return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
1286 if (VT.isVector()) {
1287 EVT VT1;
1288 MVT VT2;
1289 unsigned NumIntermediates;
1290 return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
1292 if (VT.isInteger()) {
1293 unsigned BitWidth = VT.getSizeInBits();
1294 unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
1295 return (BitWidth + RegWidth - 1) / RegWidth;
1297 llvm_unreachable("Unsupported extended type!");
1300 /// Certain combinations of ABIs, Targets and features require that types
1301 /// are legal for some operations and not for other operations.
1302 /// For MIPS all vector types must be passed through the integer register set.
1303 virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context,
1304 CallingConv::ID CC, EVT VT) const {
1305 return getRegisterType(Context, VT);
1308 /// Certain targets require unusual breakdowns of certain types. For MIPS,
1309 /// this occurs when a vector type is used, as vector are passed through the
1310 /// integer register set.
1311 virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context,
1312 CallingConv::ID CC,
1313 EVT VT) const {
1314 return getNumRegisters(Context, VT);
1317 /// Certain targets have context senstive alignment requirements, where one
1318 /// type has the alignment requirement of another type.
1319 virtual unsigned getABIAlignmentForCallingConv(Type *ArgTy,
1320 DataLayout DL) const {
1321 return DL.getABITypeAlignment(ArgTy);
1324 /// If true, then instruction selection should seek to shrink the FP constant
1325 /// of the specified type to a smaller type in order to save space and / or
1326 /// reduce runtime.
1327 virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
1329 /// Return true if it is profitable to reduce a load to a smaller type.
1330 /// Example: (i16 (trunc (i32 (load x))) -> i16 load x
1331 virtual bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy,
1332 EVT NewVT) const {
1333 // By default, assume that it is cheaper to extract a subvector from a wide
1334 // vector load rather than creating multiple narrow vector loads.
1335 if (NewVT.isVector() && !Load->hasOneUse())
1336 return false;
1338 return true;
1341 /// When splitting a value of the specified type into parts, does the Lo
1342 /// or Hi part come first? This usually follows the endianness, except
1343 /// for ppcf128, where the Hi part always comes first.
1344 bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const {
1345 return DL.isBigEndian() || VT == MVT::ppcf128;
1348 /// If true, the target has custom DAG combine transformations that it can
1349 /// perform for the specified node.
1350 bool hasTargetDAGCombine(ISD::NodeType NT) const {
1351 assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1352 return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
1355 unsigned getGatherAllAliasesMaxDepth() const {
1356 return GatherAllAliasesMaxDepth;
1359 /// Returns the size of the platform's va_list object.
1360 virtual unsigned getVaListSizeInBits(const DataLayout &DL) const {
1361 return getPointerTy(DL).getSizeInBits();
1364 /// Get maximum # of store operations permitted for llvm.memset
1366 /// This function returns the maximum number of store operations permitted
1367 /// to replace a call to llvm.memset. The value is set by the target at the
1368 /// performance threshold for such a replacement. If OptSize is true,
1369 /// return the limit for functions that have OptSize attribute.
1370 unsigned getMaxStoresPerMemset(bool OptSize) const {
1371 return OptSize ? MaxStoresPerMemsetOptSize : MaxStoresPerMemset;
1374 /// Get maximum # of store operations permitted for llvm.memcpy
1376 /// This function returns the maximum number of store operations permitted
1377 /// to replace a call to llvm.memcpy. The value is set by the target at the
1378 /// performance threshold for such a replacement. If OptSize is true,
1379 /// return the limit for functions that have OptSize attribute.
1380 unsigned getMaxStoresPerMemcpy(bool OptSize) const {
1381 return OptSize ? MaxStoresPerMemcpyOptSize : MaxStoresPerMemcpy;
1384 /// \brief Get maximum # of store operations to be glued together
1386 /// This function returns the maximum number of store operations permitted
1387 /// to glue together during lowering of llvm.memcpy. The value is set by
1388 // the target at the performance threshold for such a replacement.
1389 virtual unsigned getMaxGluedStoresPerMemcpy() const {
1390 return MaxGluedStoresPerMemcpy;
1393 /// Get maximum # of load operations permitted for memcmp
1395 /// This function returns the maximum number of load operations permitted
1396 /// to replace a call to memcmp. The value is set by the target at the
1397 /// performance threshold for such a replacement. If OptSize is true,
1398 /// return the limit for functions that have OptSize attribute.
1399 unsigned getMaxExpandSizeMemcmp(bool OptSize) const {
1400 return OptSize ? MaxLoadsPerMemcmpOptSize : MaxLoadsPerMemcmp;
1403 /// Get maximum # of store operations permitted for llvm.memmove
1405 /// This function returns the maximum number of store operations permitted
1406 /// to replace a call to llvm.memmove. The value is set by the target at the
1407 /// performance threshold for such a replacement. If OptSize is true,
1408 /// return the limit for functions that have OptSize attribute.
1409 unsigned getMaxStoresPerMemmove(bool OptSize) const {
1410 return OptSize ? MaxStoresPerMemmoveOptSize : MaxStoresPerMemmove;
1413 /// Determine if the target supports unaligned memory accesses.
1415 /// This function returns true if the target allows unaligned memory accesses
1416 /// of the specified type in the given address space. If true, it also returns
1417 /// whether the unaligned memory access is "fast" in the last argument by
1418 /// reference. This is used, for example, in situations where an array
1419 /// copy/move/set is converted to a sequence of store operations. Its use
1420 /// helps to ensure that such replacements don't generate code that causes an
1421 /// alignment error (trap) on the target machine.
1422 virtual bool allowsMisalignedMemoryAccesses(
1423 EVT, unsigned AddrSpace = 0, unsigned Align = 1,
1424 MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
1425 bool * /*Fast*/ = nullptr) const {
1426 return false;
1429 /// Return true if the target supports a memory access of this type for the
1430 /// given address space and alignment. If the access is allowed, the optional
1431 /// final parameter returns if the access is also fast (as defined by the
1432 /// target).
1433 bool
1434 allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
1435 unsigned AddrSpace = 0, unsigned Alignment = 1,
1436 MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
1437 bool *Fast = nullptr) const;
1439 /// Return true if the target supports a memory access of this type for the
1440 /// given MachineMemOperand. If the access is allowed, the optional
1441 /// final parameter returns if the access is also fast (as defined by the
1442 /// target).
1443 bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
1444 const MachineMemOperand &MMO,
1445 bool *Fast = nullptr) const;
1447 /// Returns the target specific optimal type for load and store operations as
1448 /// a result of memset, memcpy, and memmove lowering.
1450 /// If DstAlign is zero that means it's safe to destination alignment can
1451 /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
1452 /// a need to check it against alignment requirement, probably because the
1453 /// source does not need to be loaded. If 'IsMemset' is true, that means it's
1454 /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
1455 /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
1456 /// does not need to be loaded. It returns EVT::Other if the type should be
1457 /// determined using generic target-independent logic.
1458 virtual EVT
1459 getOptimalMemOpType(uint64_t /*Size*/, unsigned /*DstAlign*/,
1460 unsigned /*SrcAlign*/, bool /*IsMemset*/,
1461 bool /*ZeroMemset*/, bool /*MemcpyStrSrc*/,
1462 const AttributeList & /*FuncAttributes*/) const {
1463 return MVT::Other;
1466 /// Returns true if it's safe to use load / store of the specified type to
1467 /// expand memcpy / memset inline.
1469 /// This is mostly true for all types except for some special cases. For
1470 /// example, on X86 targets without SSE2 f64 load / store are done with fldl /
1471 /// fstpl which also does type conversion. Note the specified type doesn't
1472 /// have to be legal as the hook is used before type legalization.
1473 virtual bool isSafeMemOpType(MVT /*VT*/) const { return true; }
1475 /// Determine if we should use _setjmp or setjmp to implement llvm.setjmp.
1476 bool usesUnderscoreSetJmp() const {
1477 return UseUnderscoreSetJmp;
1480 /// Determine if we should use _longjmp or longjmp to implement llvm.longjmp.
1481 bool usesUnderscoreLongJmp() const {
1482 return UseUnderscoreLongJmp;
1485 /// Return lower limit for number of blocks in a jump table.
1486 virtual unsigned getMinimumJumpTableEntries() const;
1488 /// Return lower limit of the density in a jump table.
1489 unsigned getMinimumJumpTableDensity(bool OptForSize) const;
1491 /// Return upper limit for number of entries in a jump table.
1492 /// Zero if no limit.
1493 unsigned getMaximumJumpTableSize() const;
1495 virtual bool isJumpTableRelative() const {
1496 return TM.isPositionIndependent();
1499 /// If a physical register, this specifies the register that
1500 /// llvm.savestack/llvm.restorestack should save and restore.
1501 unsigned getStackPointerRegisterToSaveRestore() const {
1502 return StackPointerRegisterToSaveRestore;
1505 /// If a physical register, this returns the register that receives the
1506 /// exception address on entry to an EH pad.
1507 virtual unsigned
1508 getExceptionPointerRegister(const Constant *PersonalityFn) const {
1509 // 0 is guaranteed to be the NoRegister value on all targets
1510 return 0;
1513 /// If a physical register, this returns the register that receives the
1514 /// exception typeid on entry to a landing pad.
1515 virtual unsigned
1516 getExceptionSelectorRegister(const Constant *PersonalityFn) const {
1517 // 0 is guaranteed to be the NoRegister value on all targets
1518 return 0;
1521 virtual bool needsFixedCatchObjects() const {
1522 report_fatal_error("Funclet EH is not implemented for this target");
1525 /// Returns the target's jmp_buf size in bytes (if never set, the default is
1526 /// 200)
1527 unsigned getJumpBufSize() const {
1528 return JumpBufSize;
1531 /// Returns the target's jmp_buf alignment in bytes (if never set, the default
1532 /// is 0)
1533 unsigned getJumpBufAlignment() const {
1534 return JumpBufAlignment;
1537 /// Return the minimum stack alignment of an argument.
1538 unsigned getMinStackArgumentAlignment() const {
1539 return MinStackArgumentAlignment;
1542 /// Return the minimum function alignment.
1543 unsigned getMinFunctionAlignment() const {
1544 return MinFunctionAlignment;
1547 /// Return the preferred function alignment.
1548 unsigned getPrefFunctionAlignment() const {
1549 return PrefFunctionAlignment;
1552 /// Return the preferred loop alignment.
1553 virtual unsigned getPrefLoopAlignment(MachineLoop *ML = nullptr) const {
1554 return PrefLoopAlignment;
1557 /// Should loops be aligned even when the function is marked OptSize (but not
1558 /// MinSize).
1559 virtual bool alignLoopsWithOptSize() const {
1560 return false;
1563 /// If the target has a standard location for the stack protector guard,
1564 /// returns the address of that location. Otherwise, returns nullptr.
1565 /// DEPRECATED: please override useLoadStackGuardNode and customize
1566 /// LOAD_STACK_GUARD, or customize \@llvm.stackguard().
1567 virtual Value *getIRStackGuard(IRBuilder<> &IRB) const;
1569 /// Inserts necessary declarations for SSP (stack protection) purpose.
1570 /// Should be used only when getIRStackGuard returns nullptr.
1571 virtual void insertSSPDeclarations(Module &M) const;
1573 /// Return the variable that's previously inserted by insertSSPDeclarations,
1574 /// if any, otherwise return nullptr. Should be used only when
1575 /// getIRStackGuard returns nullptr.
1576 virtual Value *getSDagStackGuard(const Module &M) const;
1578 /// If this function returns true, stack protection checks should XOR the
1579 /// frame pointer (or whichever pointer is used to address locals) into the
1580 /// stack guard value before checking it. getIRStackGuard must return nullptr
1581 /// if this returns true.
1582 virtual bool useStackGuardXorFP() const { return false; }
1584 /// If the target has a standard stack protection check function that
1585 /// performs validation and error handling, returns the function. Otherwise,
1586 /// returns nullptr. Must be previously inserted by insertSSPDeclarations.
1587 /// Should be used only when getIRStackGuard returns nullptr.
1588 virtual Function *getSSPStackGuardCheck(const Module &M) const;
1590 protected:
1591 Value *getDefaultSafeStackPointerLocation(IRBuilder<> &IRB,
1592 bool UseTLS) const;
1594 public:
1595 /// Returns the target-specific address of the unsafe stack pointer.
1596 virtual Value *getSafeStackPointerLocation(IRBuilder<> &IRB) const;
1598 /// Returns the name of the symbol used to emit stack probes or the empty
1599 /// string if not applicable.
1600 virtual StringRef getStackProbeSymbolName(MachineFunction &MF) const {
1601 return "";
1604 /// Returns true if a cast between SrcAS and DestAS is a noop.
1605 virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const {
1606 return false;
1609 /// Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g. we
1610 /// are happy to sink it into basic blocks. A cast may be free, but not
1611 /// necessarily a no-op. e.g. a free truncate from a 64-bit to 32-bit pointer.
1612 virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const {
1613 return isNoopAddrSpaceCast(SrcAS, DestAS);
1616 /// Return true if the pointer arguments to CI should be aligned by aligning
1617 /// the object whose address is being passed. If so then MinSize is set to the
1618 /// minimum size the object must be to be aligned and PrefAlign is set to the
1619 /// preferred alignment.
1620 virtual bool shouldAlignPointerArgs(CallInst * /*CI*/, unsigned & /*MinSize*/,
1621 unsigned & /*PrefAlign*/) const {
1622 return false;
1625 //===--------------------------------------------------------------------===//
1626 /// \name Helpers for TargetTransformInfo implementations
1627 /// @{
1629 /// Get the ISD node that corresponds to the Instruction class opcode.
1630 int InstructionOpcodeToISD(unsigned Opcode) const;
1632 /// Estimate the cost of type-legalization and the legalized type.
1633 std::pair<int, MVT> getTypeLegalizationCost(const DataLayout &DL,
1634 Type *Ty) const;
1636 /// @}
1638 //===--------------------------------------------------------------------===//
1639 /// \name Helpers for atomic expansion.
1640 /// @{
1642 /// Returns the maximum atomic operation size (in bits) supported by
1643 /// the backend. Atomic operations greater than this size (as well
1644 /// as ones that are not naturally aligned), will be expanded by
1645 /// AtomicExpandPass into an __atomic_* library call.
1646 unsigned getMaxAtomicSizeInBitsSupported() const {
1647 return MaxAtomicSizeInBitsSupported;
1650 /// Returns the size of the smallest cmpxchg or ll/sc instruction
1651 /// the backend supports. Any smaller operations are widened in
1652 /// AtomicExpandPass.
1654 /// Note that *unlike* operations above the maximum size, atomic ops
1655 /// are still natively supported below the minimum; they just
1656 /// require a more complex expansion.
1657 unsigned getMinCmpXchgSizeInBits() const { return MinCmpXchgSizeInBits; }
1659 /// Whether the target supports unaligned atomic operations.
1660 bool supportsUnalignedAtomics() const { return SupportsUnalignedAtomics; }
1662 /// Whether AtomicExpandPass should automatically insert fences and reduce
1663 /// ordering for this atomic. This should be true for most architectures with
1664 /// weak memory ordering. Defaults to false.
1665 virtual bool shouldInsertFencesForAtomic(const Instruction *I) const {
1666 return false;
1669 /// Perform a load-linked operation on Addr, returning a "Value *" with the
1670 /// corresponding pointee type. This may entail some non-trivial operations to
1671 /// truncate or reconstruct types that will be illegal in the backend. See
1672 /// ARMISelLowering for an example implementation.
1673 virtual Value *emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
1674 AtomicOrdering Ord) const {
1675 llvm_unreachable("Load linked unimplemented on this target");
1678 /// Perform a store-conditional operation to Addr. Return the status of the
1679 /// store. This should be 0 if the store succeeded, non-zero otherwise.
1680 virtual Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val,
1681 Value *Addr, AtomicOrdering Ord) const {
1682 llvm_unreachable("Store conditional unimplemented on this target");
1685 /// Perform a masked atomicrmw using a target-specific intrinsic. This
1686 /// represents the core LL/SC loop which will be lowered at a late stage by
1687 /// the backend.
1688 virtual Value *emitMaskedAtomicRMWIntrinsic(IRBuilder<> &Builder,
1689 AtomicRMWInst *AI,
1690 Value *AlignedAddr, Value *Incr,
1691 Value *Mask, Value *ShiftAmt,
1692 AtomicOrdering Ord) const {
1693 llvm_unreachable("Masked atomicrmw expansion unimplemented on this target");
1696 /// Perform a masked cmpxchg using a target-specific intrinsic. This
1697 /// represents the core LL/SC loop which will be lowered at a late stage by
1698 /// the backend.
1699 virtual Value *emitMaskedAtomicCmpXchgIntrinsic(
1700 IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
1701 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
1702 llvm_unreachable("Masked cmpxchg expansion unimplemented on this target");
1705 /// Inserts in the IR a target-specific intrinsic specifying a fence.
1706 /// It is called by AtomicExpandPass before expanding an
1707 /// AtomicRMW/AtomicCmpXchg/AtomicStore/AtomicLoad
1708 /// if shouldInsertFencesForAtomic returns true.
1710 /// Inst is the original atomic instruction, prior to other expansions that
1711 /// may be performed.
1713 /// This function should either return a nullptr, or a pointer to an IR-level
1714 /// Instruction*. Even complex fence sequences can be represented by a
1715 /// single Instruction* through an intrinsic to be lowered later.
1716 /// Backends should override this method to produce target-specific intrinsic
1717 /// for their fences.
1718 /// FIXME: Please note that the default implementation here in terms of
1719 /// IR-level fences exists for historical/compatibility reasons and is
1720 /// *unsound* ! Fences cannot, in general, be used to restore sequential
1721 /// consistency. For example, consider the following example:
1722 /// atomic<int> x = y = 0;
1723 /// int r1, r2, r3, r4;
1724 /// Thread 0:
1725 /// x.store(1);
1726 /// Thread 1:
1727 /// y.store(1);
1728 /// Thread 2:
1729 /// r1 = x.load();
1730 /// r2 = y.load();
1731 /// Thread 3:
1732 /// r3 = y.load();
1733 /// r4 = x.load();
1734 /// r1 = r3 = 1 and r2 = r4 = 0 is impossible as long as the accesses are all
1735 /// seq_cst. But if they are lowered to monotonic accesses, no amount of
1736 /// IR-level fences can prevent it.
1737 /// @{
1738 virtual Instruction *emitLeadingFence(IRBuilder<> &Builder, Instruction *Inst,
1739 AtomicOrdering Ord) const {
1740 if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore())
1741 return Builder.CreateFence(Ord);
1742 else
1743 return nullptr;
1746 virtual Instruction *emitTrailingFence(IRBuilder<> &Builder,
1747 Instruction *Inst,
1748 AtomicOrdering Ord) const {
1749 if (isAcquireOrStronger(Ord))
1750 return Builder.CreateFence(Ord);
1751 else
1752 return nullptr;
1754 /// @}
1756 // Emits code that executes when the comparison result in the ll/sc
1757 // expansion of a cmpxchg instruction is such that the store-conditional will
1758 // not execute. This makes it possible to balance out the load-linked with
1759 // a dedicated instruction, if desired.
1760 // E.g., on ARM, if ldrex isn't followed by strex, the exclusive monitor would
1761 // be unnecessarily held, except if clrex, inserted by this hook, is executed.
1762 virtual void emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> &Builder) const {}
1764 /// Returns true if the given (atomic) store should be expanded by the
1765 /// IR-level AtomicExpand pass into an "atomic xchg" which ignores its input.
1766 virtual bool shouldExpandAtomicStoreInIR(StoreInst *SI) const {
1767 return false;
1770 /// Returns true if arguments should be sign-extended in lib calls.
1771 virtual bool shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
1772 return IsSigned;
1775 /// Returns how the given (atomic) load should be expanded by the
1776 /// IR-level AtomicExpand pass.
1777 virtual AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const {
1778 return AtomicExpansionKind::None;
1781 /// Returns how the given atomic cmpxchg should be expanded by the IR-level
1782 /// AtomicExpand pass.
1783 virtual AtomicExpansionKind
1784 shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
1785 return AtomicExpansionKind::None;
1788 /// Returns how the IR-level AtomicExpand pass should expand the given
1789 /// AtomicRMW, if at all. Default is to never expand.
1790 virtual AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
1791 return RMW->isFloatingPointOperation() ?
1792 AtomicExpansionKind::CmpXChg : AtomicExpansionKind::None;
1795 /// On some platforms, an AtomicRMW that never actually modifies the value
1796 /// (such as fetch_add of 0) can be turned into a fence followed by an
1797 /// atomic load. This may sound useless, but it makes it possible for the
1798 /// processor to keep the cacheline shared, dramatically improving
1799 /// performance. And such idempotent RMWs are useful for implementing some
1800 /// kinds of locks, see for example (justification + benchmarks):
1801 /// http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf
1802 /// This method tries doing that transformation, returning the atomic load if
1803 /// it succeeds, and nullptr otherwise.
1804 /// If shouldExpandAtomicLoadInIR returns true on that load, it will undergo
1805 /// another round of expansion.
1806 virtual LoadInst *
1807 lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *RMWI) const {
1808 return nullptr;
1811 /// Returns how the platform's atomic operations are extended (ZERO_EXTEND,
1812 /// SIGN_EXTEND, or ANY_EXTEND).
1813 virtual ISD::NodeType getExtendForAtomicOps() const {
1814 return ISD::ZERO_EXTEND;
1817 /// @}
1819 /// Returns true if we should normalize
1820 /// select(N0&N1, X, Y) => select(N0, select(N1, X, Y), Y) and
1821 /// select(N0|N1, X, Y) => select(N0, select(N1, X, Y, Y)) if it is likely
1822 /// that it saves us from materializing N0 and N1 in an integer register.
1823 /// Targets that are able to perform and/or on flags should return false here.
1824 virtual bool shouldNormalizeToSelectSequence(LLVMContext &Context,
1825 EVT VT) const {
1826 // If a target has multiple condition registers, then it likely has logical
1827 // operations on those registers.
1828 if (hasMultipleConditionRegisters())
1829 return false;
1830 // Only do the transform if the value won't be split into multiple
1831 // registers.
1832 LegalizeTypeAction Action = getTypeAction(Context, VT);
1833 return Action != TypeExpandInteger && Action != TypeExpandFloat &&
1834 Action != TypeSplitVector;
1837 virtual bool isProfitableToCombineMinNumMaxNum(EVT VT) const { return true; }
1839 /// Return true if a select of constants (select Cond, C1, C2) should be
1840 /// transformed into simple math ops with the condition value. For example:
1841 /// select Cond, C1, C1-1 --> add (zext Cond), C1-1
1842 virtual bool convertSelectOfConstantsToMath(EVT VT) const {
1843 return false;
1846 /// Return true if it is profitable to transform an integer
1847 /// multiplication-by-constant into simpler operations like shifts and adds.
1848 /// This may be true if the target does not directly support the
1849 /// multiplication operation for the specified type or the sequence of simpler
1850 /// ops is faster than the multiply.
1851 virtual bool decomposeMulByConstant(EVT VT, SDValue C) const {
1852 return false;
1855 /// Return true if it is more correct/profitable to use strict FP_TO_INT
1856 /// conversion operations - canonicalizing the FP source value instead of
1857 /// converting all cases and then selecting based on value.
1858 /// This may be true if the target throws exceptions for out of bounds
1859 /// conversions or has fast FP CMOV.
1860 virtual bool shouldUseStrictFP_TO_INT(EVT FpVT, EVT IntVT,
1861 bool IsSigned) const {
1862 return false;
1865 //===--------------------------------------------------------------------===//
1866 // TargetLowering Configuration Methods - These methods should be invoked by
1867 // the derived class constructor to configure this object for the target.
1869 protected:
1870 /// Specify how the target extends the result of integer and floating point
1871 /// boolean values from i1 to a wider type. See getBooleanContents.
1872 void setBooleanContents(BooleanContent Ty) {
1873 BooleanContents = Ty;
1874 BooleanFloatContents = Ty;
1877 /// Specify how the target extends the result of integer and floating point
1878 /// boolean values from i1 to a wider type. See getBooleanContents.
1879 void setBooleanContents(BooleanContent IntTy, BooleanContent FloatTy) {
1880 BooleanContents = IntTy;
1881 BooleanFloatContents = FloatTy;
1884 /// Specify how the target extends the result of a vector boolean value from a
1885 /// vector of i1 to a wider type. See getBooleanContents.
1886 void setBooleanVectorContents(BooleanContent Ty) {
1887 BooleanVectorContents = Ty;
1890 /// Specify the target scheduling preference.
1891 void setSchedulingPreference(Sched::Preference Pref) {
1892 SchedPreferenceInfo = Pref;
1895 /// Indicate whether this target prefers to use _setjmp to implement
1896 /// llvm.setjmp or the version without _. Defaults to false.
1897 void setUseUnderscoreSetJmp(bool Val) {
1898 UseUnderscoreSetJmp = Val;
1901 /// Indicate whether this target prefers to use _longjmp to implement
1902 /// llvm.longjmp or the version without _. Defaults to false.
1903 void setUseUnderscoreLongJmp(bool Val) {
1904 UseUnderscoreLongJmp = Val;
1907 /// Indicate the minimum number of blocks to generate jump tables.
1908 void setMinimumJumpTableEntries(unsigned Val);
1910 /// Indicate the maximum number of entries in jump tables.
1911 /// Set to zero to generate unlimited jump tables.
1912 void setMaximumJumpTableSize(unsigned);
1914 /// If set to a physical register, this specifies the register that
1915 /// llvm.savestack/llvm.restorestack should save and restore.
1916 void setStackPointerRegisterToSaveRestore(unsigned R) {
1917 StackPointerRegisterToSaveRestore = R;
1920 /// Tells the code generator that the target has multiple (allocatable)
1921 /// condition registers that can be used to store the results of comparisons
1922 /// for use by selects and conditional branches. With multiple condition
1923 /// registers, the code generator will not aggressively sink comparisons into
1924 /// the blocks of their users.
1925 void setHasMultipleConditionRegisters(bool hasManyRegs = true) {
1926 HasMultipleConditionRegisters = hasManyRegs;
1929 /// Tells the code generator that the target has BitExtract instructions.
1930 /// The code generator will aggressively sink "shift"s into the blocks of
1931 /// their users if the users will generate "and" instructions which can be
1932 /// combined with "shift" to BitExtract instructions.
1933 void setHasExtractBitsInsn(bool hasExtractInsn = true) {
1934 HasExtractBitsInsn = hasExtractInsn;
1937 /// Tells the code generator not to expand logic operations on comparison
1938 /// predicates into separate sequences that increase the amount of flow
1939 /// control.
1940 void setJumpIsExpensive(bool isExpensive = true);
1942 /// Tells the code generator which bitwidths to bypass.
1943 void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
1944 BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
1947 /// Add the specified register class as an available regclass for the
1948 /// specified value type. This indicates the selector can handle values of
1949 /// that class natively.
1950 void addRegisterClass(MVT VT, const TargetRegisterClass *RC) {
1951 assert((unsigned)VT.SimpleTy < array_lengthof(RegClassForVT));
1952 RegClassForVT[VT.SimpleTy] = RC;
1955 /// Return the largest legal super-reg register class of the register class
1956 /// for the specified type and its associated "cost".
1957 virtual std::pair<const TargetRegisterClass *, uint8_t>
1958 findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const;
1960 /// Once all of the register classes are added, this allows us to compute
1961 /// derived properties we expose.
1962 void computeRegisterProperties(const TargetRegisterInfo *TRI);
1964 /// Indicate that the specified operation does not work with the specified
1965 /// type and indicate what to do about it. Note that VT may refer to either
1966 /// the type of a result or that of an operand of Op.
1967 void setOperationAction(unsigned Op, MVT VT,
1968 LegalizeAction Action) {
1969 assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
1970 OpActions[(unsigned)VT.SimpleTy][Op] = Action;
1973 /// Indicate that the specified load with extension does not work with the
1974 /// specified type and indicate what to do about it.
1975 void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT,
1976 LegalizeAction Action) {
1977 assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValVT.isValid() &&
1978 MemVT.isValid() && "Table isn't big enough!");
1979 assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
1980 unsigned Shift = 4 * ExtType;
1981 LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] &= ~((uint16_t)0xF << Shift);
1982 LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] |= (uint16_t)Action << Shift;
1985 /// Indicate that the specified truncating store does not work with the
1986 /// specified type and indicate what to do about it.
1987 void setTruncStoreAction(MVT ValVT, MVT MemVT,
1988 LegalizeAction Action) {
1989 assert(ValVT.isValid() && MemVT.isValid() && "Table isn't big enough!");
1990 TruncStoreActions[(unsigned)ValVT.SimpleTy][MemVT.SimpleTy] = Action;
1993 /// Indicate that the specified indexed load does or does not work with the
1994 /// specified type and indicate what to do abort it.
1996 /// NOTE: All indexed mode loads are initialized to Expand in
1997 /// TargetLowering.cpp
1998 void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1999 LegalizeAction Action) {
2000 assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
2001 (unsigned)Action < 0xf && "Table isn't big enough!");
2002 // Load action are kept in the upper half.
2003 IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
2004 IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
2007 /// Indicate that the specified indexed store does or does not work with the
2008 /// specified type and indicate what to do about it.
2010 /// NOTE: All indexed mode stores are initialized to Expand in
2011 /// TargetLowering.cpp
2012 void setIndexedStoreAction(unsigned IdxMode, MVT VT,
2013 LegalizeAction Action) {
2014 assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
2015 (unsigned)Action < 0xf && "Table isn't big enough!");
2016 // Store action are kept in the lower half.
2017 IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
2018 IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
2021 /// Indicate that the specified condition code is or isn't supported on the
2022 /// target and indicate what to do about it.
2023 void setCondCodeAction(ISD::CondCode CC, MVT VT,
2024 LegalizeAction Action) {
2025 assert(VT.isValid() && (unsigned)CC < array_lengthof(CondCodeActions) &&
2026 "Table isn't big enough!");
2027 assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
2028 /// The lower 3 bits of the SimpleTy index into Nth 4bit set from the 32-bit
2029 /// value and the upper 29 bits index into the second dimension of the array
2030 /// to select what 32-bit value to use.
2031 uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
2032 CondCodeActions[CC][VT.SimpleTy >> 3] &= ~((uint32_t)0xF << Shift);
2033 CondCodeActions[CC][VT.SimpleTy >> 3] |= (uint32_t)Action << Shift;
2036 /// If Opc/OrigVT is specified as being promoted, the promotion code defaults
2037 /// to trying a larger integer/fp until it can find one that works. If that
2038 /// default is insufficient, this method can be used by the target to override
2039 /// the default.
2040 void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
2041 PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
2044 /// Convenience method to set an operation to Promote and specify the type
2045 /// in a single call.
2046 void setOperationPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
2047 setOperationAction(Opc, OrigVT, Promote);
2048 AddPromotedToType(Opc, OrigVT, DestVT);
2051 /// Targets should invoke this method for each target independent node that
2052 /// they want to provide a custom DAG combiner for by implementing the
2053 /// PerformDAGCombine virtual method.
2054 void setTargetDAGCombine(ISD::NodeType NT) {
2055 assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
2056 TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
2059 /// Set the target's required jmp_buf buffer size (in bytes); default is 200
2060 void setJumpBufSize(unsigned Size) {
2061 JumpBufSize = Size;
2064 /// Set the target's required jmp_buf buffer alignment (in bytes); default is
2065 /// 0
2066 void setJumpBufAlignment(unsigned Align) {
2067 JumpBufAlignment = Align;
2070 /// Set the target's minimum function alignment (in log2(bytes))
2071 void setMinFunctionAlignment(unsigned Align) {
2072 MinFunctionAlignment = Align;
2075 /// Set the target's preferred function alignment. This should be set if
2076 /// there is a performance benefit to higher-than-minimum alignment (in
2077 /// log2(bytes))
2078 void setPrefFunctionAlignment(unsigned Align) {
2079 PrefFunctionAlignment = Align;
2082 /// Set the target's preferred loop alignment. Default alignment is zero, it
2083 /// means the target does not care about loop alignment. The alignment is
2084 /// specified in log2(bytes). The target may also override
2085 /// getPrefLoopAlignment to provide per-loop values.
2086 void setPrefLoopAlignment(unsigned Align) {
2087 PrefLoopAlignment = Align;
2090 /// Set the minimum stack alignment of an argument (in log2(bytes)).
2091 void setMinStackArgumentAlignment(unsigned Align) {
2092 MinStackArgumentAlignment = Align;
2095 /// Set the maximum atomic operation size supported by the
2096 /// backend. Atomic operations greater than this size (as well as
2097 /// ones that are not naturally aligned), will be expanded by
2098 /// AtomicExpandPass into an __atomic_* library call.
2099 void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits) {
2100 MaxAtomicSizeInBitsSupported = SizeInBits;
2103 /// Sets the minimum cmpxchg or ll/sc size supported by the backend.
2104 void setMinCmpXchgSizeInBits(unsigned SizeInBits) {
2105 MinCmpXchgSizeInBits = SizeInBits;
2108 /// Sets whether unaligned atomic operations are supported.
2109 void setSupportsUnalignedAtomics(bool UnalignedSupported) {
2110 SupportsUnalignedAtomics = UnalignedSupported;
2113 public:
2114 //===--------------------------------------------------------------------===//
2115 // Addressing mode description hooks (used by LSR etc).
2118 /// CodeGenPrepare sinks address calculations into the same BB as Load/Store
2119 /// instructions reading the address. This allows as much computation as
2120 /// possible to be done in the address mode for that operand. This hook lets
2121 /// targets also pass back when this should be done on intrinsics which
2122 /// load/store.
2123 virtual bool getAddrModeArguments(IntrinsicInst * /*I*/,
2124 SmallVectorImpl<Value*> &/*Ops*/,
2125 Type *&/*AccessTy*/) const {
2126 return false;
2129 /// This represents an addressing mode of:
2130 /// BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
2131 /// If BaseGV is null, there is no BaseGV.
2132 /// If BaseOffs is zero, there is no base offset.
2133 /// If HasBaseReg is false, there is no base register.
2134 /// If Scale is zero, there is no ScaleReg. Scale of 1 indicates a reg with
2135 /// no scale.
2136 struct AddrMode {
2137 GlobalValue *BaseGV = nullptr;
2138 int64_t BaseOffs = 0;
2139 bool HasBaseReg = false;
2140 int64_t Scale = 0;
2141 AddrMode() = default;
2144 /// Return true if the addressing mode represented by AM is legal for this
2145 /// target, for a load/store of the specified type.
2147 /// The type may be VoidTy, in which case only return true if the addressing
2148 /// mode is legal for a load/store of any legal type. TODO: Handle
2149 /// pre/postinc as well.
2151 /// If the address space cannot be determined, it will be -1.
2153 /// TODO: Remove default argument
2154 virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
2155 Type *Ty, unsigned AddrSpace,
2156 Instruction *I = nullptr) const;
2158 /// Return the cost of the scaling factor used in the addressing mode
2159 /// represented by AM for this target, for a load/store of the specified type.
2161 /// If the AM is supported, the return value must be >= 0.
2162 /// If the AM is not supported, it returns a negative value.
2163 /// TODO: Handle pre/postinc as well.
2164 /// TODO: Remove default argument
2165 virtual int getScalingFactorCost(const DataLayout &DL, const AddrMode &AM,
2166 Type *Ty, unsigned AS = 0) const {
2167 // Default: assume that any scaling factor used in a legal AM is free.
2168 if (isLegalAddressingMode(DL, AM, Ty, AS))
2169 return 0;
2170 return -1;
2173 /// Return true if the specified immediate is legal icmp immediate, that is
2174 /// the target has icmp instructions which can compare a register against the
2175 /// immediate without having to materialize the immediate into a register.
2176 virtual bool isLegalICmpImmediate(int64_t) const {
2177 return true;
2180 /// Return true if the specified immediate is legal add immediate, that is the
2181 /// target has add instructions which can add a register with the immediate
2182 /// without having to materialize the immediate into a register.
2183 virtual bool isLegalAddImmediate(int64_t) const {
2184 return true;
2187 /// Return true if the specified immediate is legal for the value input of a
2188 /// store instruction.
2189 virtual bool isLegalStoreImmediate(int64_t Value) const {
2190 // Default implementation assumes that at least 0 works since it is likely
2191 // that a zero register exists or a zero immediate is allowed.
2192 return Value == 0;
2195 /// Return true if it's significantly cheaper to shift a vector by a uniform
2196 /// scalar than by an amount which will vary across each lane. On x86, for
2197 /// example, there is a "psllw" instruction for the former case, but no simple
2198 /// instruction for a general "a << b" operation on vectors.
2199 virtual bool isVectorShiftByScalarCheap(Type *Ty) const {
2200 return false;
2203 /// Returns true if the opcode is a commutative binary operation.
2204 virtual bool isCommutativeBinOp(unsigned Opcode) const {
2205 // FIXME: This should get its info from the td file.
2206 switch (Opcode) {
2207 case ISD::ADD:
2208 case ISD::SMIN:
2209 case ISD::SMAX:
2210 case ISD::UMIN:
2211 case ISD::UMAX:
2212 case ISD::MUL:
2213 case ISD::MULHU:
2214 case ISD::MULHS:
2215 case ISD::SMUL_LOHI:
2216 case ISD::UMUL_LOHI:
2217 case ISD::FADD:
2218 case ISD::FMUL:
2219 case ISD::AND:
2220 case ISD::OR:
2221 case ISD::XOR:
2222 case ISD::SADDO:
2223 case ISD::UADDO:
2224 case ISD::ADDC:
2225 case ISD::ADDE:
2226 case ISD::SADDSAT:
2227 case ISD::UADDSAT:
2228 case ISD::FMINNUM:
2229 case ISD::FMAXNUM:
2230 case ISD::FMINNUM_IEEE:
2231 case ISD::FMAXNUM_IEEE:
2232 case ISD::FMINIMUM:
2233 case ISD::FMAXIMUM:
2234 return true;
2235 default: return false;
2239 /// Return true if the node is a math/logic binary operator.
2240 virtual bool isBinOp(unsigned Opcode) const {
2241 // A commutative binop must be a binop.
2242 if (isCommutativeBinOp(Opcode))
2243 return true;
2244 // These are non-commutative binops.
2245 switch (Opcode) {
2246 case ISD::SUB:
2247 case ISD::SHL:
2248 case ISD::SRL:
2249 case ISD::SRA:
2250 case ISD::SDIV:
2251 case ISD::UDIV:
2252 case ISD::SREM:
2253 case ISD::UREM:
2254 case ISD::FSUB:
2255 case ISD::FDIV:
2256 case ISD::FREM:
2257 return true;
2258 default:
2259 return false;
2263 /// Return true if it's free to truncate a value of type FromTy to type
2264 /// ToTy. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
2265 /// by referencing its sub-register AX.
2266 /// Targets must return false when FromTy <= ToTy.
2267 virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const {
2268 return false;
2271 /// Return true if a truncation from FromTy to ToTy is permitted when deciding
2272 /// whether a call is in tail position. Typically this means that both results
2273 /// would be assigned to the same register or stack slot, but it could mean
2274 /// the target performs adequate checks of its own before proceeding with the
2275 /// tail call. Targets must return false when FromTy <= ToTy.
2276 virtual bool allowTruncateForTailCall(Type *FromTy, Type *ToTy) const {
2277 return false;
2280 virtual bool isTruncateFree(EVT FromVT, EVT ToVT) const {
2281 return false;
2284 virtual bool isProfitableToHoist(Instruction *I) const { return true; }
2286 /// Return true if the extension represented by \p I is free.
2287 /// Unlikely the is[Z|FP]ExtFree family which is based on types,
2288 /// this method can use the context provided by \p I to decide
2289 /// whether or not \p I is free.
2290 /// This method extends the behavior of the is[Z|FP]ExtFree family.
2291 /// In other words, if is[Z|FP]Free returns true, then this method
2292 /// returns true as well. The converse is not true.
2293 /// The target can perform the adequate checks by overriding isExtFreeImpl.
2294 /// \pre \p I must be a sign, zero, or fp extension.
2295 bool isExtFree(const Instruction *I) const {
2296 switch (I->getOpcode()) {
2297 case Instruction::FPExt:
2298 if (isFPExtFree(EVT::getEVT(I->getType()),
2299 EVT::getEVT(I->getOperand(0)->getType())))
2300 return true;
2301 break;
2302 case Instruction::ZExt:
2303 if (isZExtFree(I->getOperand(0)->getType(), I->getType()))
2304 return true;
2305 break;
2306 case Instruction::SExt:
2307 break;
2308 default:
2309 llvm_unreachable("Instruction is not an extension");
2311 return isExtFreeImpl(I);
2314 /// Return true if \p Load and \p Ext can form an ExtLoad.
2315 /// For example, in AArch64
2316 /// %L = load i8, i8* %ptr
2317 /// %E = zext i8 %L to i32
2318 /// can be lowered into one load instruction
2319 /// ldrb w0, [x0]
2320 bool isExtLoad(const LoadInst *Load, const Instruction *Ext,
2321 const DataLayout &DL) const {
2322 EVT VT = getValueType(DL, Ext->getType());
2323 EVT LoadVT = getValueType(DL, Load->getType());
2325 // If the load has other users and the truncate is not free, the ext
2326 // probably isn't free.
2327 if (!Load->hasOneUse() && (isTypeLegal(LoadVT) || !isTypeLegal(VT)) &&
2328 !isTruncateFree(Ext->getType(), Load->getType()))
2329 return false;
2331 // Check whether the target supports casts folded into loads.
2332 unsigned LType;
2333 if (isa<ZExtInst>(Ext))
2334 LType = ISD::ZEXTLOAD;
2335 else {
2336 assert(isa<SExtInst>(Ext) && "Unexpected ext type!");
2337 LType = ISD::SEXTLOAD;
2340 return isLoadExtLegal(LType, VT, LoadVT);
2343 /// Return true if any actual instruction that defines a value of type FromTy
2344 /// implicitly zero-extends the value to ToTy in the result register.
2346 /// The function should return true when it is likely that the truncate can
2347 /// be freely folded with an instruction defining a value of FromTy. If
2348 /// the defining instruction is unknown (because you're looking at a
2349 /// function argument, PHI, etc.) then the target may require an
2350 /// explicit truncate, which is not necessarily free, but this function
2351 /// does not deal with those cases.
2352 /// Targets must return false when FromTy >= ToTy.
2353 virtual bool isZExtFree(Type *FromTy, Type *ToTy) const {
2354 return false;
2357 virtual bool isZExtFree(EVT FromTy, EVT ToTy) const {
2358 return false;
2361 /// Return true if sign-extension from FromTy to ToTy is cheaper than
2362 /// zero-extension.
2363 virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const {
2364 return false;
2367 /// Return true if sinking I's operands to the same basic block as I is
2368 /// profitable, e.g. because the operands can be folded into a target
2369 /// instruction during instruction selection. After calling the function
2370 /// \p Ops contains the Uses to sink ordered by dominance (dominating users
2371 /// come first).
2372 virtual bool shouldSinkOperands(Instruction *I,
2373 SmallVectorImpl<Use *> &Ops) const {
2374 return false;
2377 /// Return true if the target supplies and combines to a paired load
2378 /// two loaded values of type LoadedType next to each other in memory.
2379 /// RequiredAlignment gives the minimal alignment constraints that must be met
2380 /// to be able to select this paired load.
2382 /// This information is *not* used to generate actual paired loads, but it is
2383 /// used to generate a sequence of loads that is easier to combine into a
2384 /// paired load.
2385 /// For instance, something like this:
2386 /// a = load i64* addr
2387 /// b = trunc i64 a to i32
2388 /// c = lshr i64 a, 32
2389 /// d = trunc i64 c to i32
2390 /// will be optimized into:
2391 /// b = load i32* addr1
2392 /// d = load i32* addr2
2393 /// Where addr1 = addr2 +/- sizeof(i32).
2395 /// In other words, unless the target performs a post-isel load combining,
2396 /// this information should not be provided because it will generate more
2397 /// loads.
2398 virtual bool hasPairedLoad(EVT /*LoadedType*/,
2399 unsigned & /*RequiredAlignment*/) const {
2400 return false;
2403 /// Return true if the target has a vector blend instruction.
2404 virtual bool hasVectorBlend() const { return false; }
2406 /// Get the maximum supported factor for interleaved memory accesses.
2407 /// Default to be the minimum interleave factor: 2.
2408 virtual unsigned getMaxSupportedInterleaveFactor() const { return 2; }
2410 /// Lower an interleaved load to target specific intrinsics. Return
2411 /// true on success.
2413 /// \p LI is the vector load instruction.
2414 /// \p Shuffles is the shufflevector list to DE-interleave the loaded vector.
2415 /// \p Indices is the corresponding indices for each shufflevector.
2416 /// \p Factor is the interleave factor.
2417 virtual bool lowerInterleavedLoad(LoadInst *LI,
2418 ArrayRef<ShuffleVectorInst *> Shuffles,
2419 ArrayRef<unsigned> Indices,
2420 unsigned Factor) const {
2421 return false;
2424 /// Lower an interleaved store to target specific intrinsics. Return
2425 /// true on success.
2427 /// \p SI is the vector store instruction.
2428 /// \p SVI is the shufflevector to RE-interleave the stored vector.
2429 /// \p Factor is the interleave factor.
2430 virtual bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI,
2431 unsigned Factor) const {
2432 return false;
2435 /// Return true if zero-extending the specific node Val to type VT2 is free
2436 /// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or
2437 /// because it's folded such as X86 zero-extending loads).
2438 virtual bool isZExtFree(SDValue Val, EVT VT2) const {
2439 return isZExtFree(Val.getValueType(), VT2);
2442 /// Return true if an fpext operation is free (for instance, because
2443 /// single-precision floating-point numbers are implicitly extended to
2444 /// double-precision).
2445 virtual bool isFPExtFree(EVT DestVT, EVT SrcVT) const {
2446 assert(SrcVT.isFloatingPoint() && DestVT.isFloatingPoint() &&
2447 "invalid fpext types");
2448 return false;
2451 /// Return true if an fpext operation input to an \p Opcode operation is free
2452 /// (for instance, because half-precision floating-point numbers are
2453 /// implicitly extended to float-precision) for an FMA instruction.
2454 virtual bool isFPExtFoldable(unsigned Opcode, EVT DestVT, EVT SrcVT) const {
2455 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
2456 "invalid fpext types");
2457 return isFPExtFree(DestVT, SrcVT);
2460 /// Return true if folding a vector load into ExtVal (a sign, zero, or any
2461 /// extend node) is profitable.
2462 virtual bool isVectorLoadExtDesirable(SDValue ExtVal) const { return false; }
2464 /// Return true if an fneg operation is free to the point where it is never
2465 /// worthwhile to replace it with a bitwise operation.
2466 virtual bool isFNegFree(EVT VT) const {
2467 assert(VT.isFloatingPoint());
2468 return false;
2471 /// Return true if an fabs operation is free to the point where it is never
2472 /// worthwhile to replace it with a bitwise operation.
2473 virtual bool isFAbsFree(EVT VT) const {
2474 assert(VT.isFloatingPoint());
2475 return false;
2478 /// Return true if an FMA operation is faster than a pair of fmul and fadd
2479 /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
2480 /// returns true, otherwise fmuladd is expanded to fmul + fadd.
2482 /// NOTE: This may be called before legalization on types for which FMAs are
2483 /// not legal, but should return true if those types will eventually legalize
2484 /// to types that support FMAs. After legalization, it will only be called on
2485 /// types that support FMAs (via Legal or Custom actions)
2486 virtual bool isFMAFasterThanFMulAndFAdd(EVT) const {
2487 return false;
2490 /// Return true if it's profitable to narrow operations of type VT1 to
2491 /// VT2. e.g. on x86, it's profitable to narrow from i32 to i8 but not from
2492 /// i32 to i16.
2493 virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
2494 return false;
2497 /// Return true if it is beneficial to convert a load of a constant to
2498 /// just the constant itself.
2499 /// On some targets it might be more efficient to use a combination of
2500 /// arithmetic instructions to materialize the constant instead of loading it
2501 /// from a constant pool.
2502 virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
2503 Type *Ty) const {
2504 return false;
2507 /// Return true if EXTRACT_SUBVECTOR is cheap for extracting this result type
2508 /// from this source type with this index. This is needed because
2509 /// EXTRACT_SUBVECTOR usually has custom lowering that depends on the index of
2510 /// the first element, and only the target knows which lowering is cheap.
2511 virtual bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
2512 unsigned Index) const {
2513 return false;
2516 /// Try to convert an extract element of a vector binary operation into an
2517 /// extract element followed by a scalar operation.
2518 virtual bool shouldScalarizeBinop(SDValue VecOp) const {
2519 return false;
2522 /// Return true if extraction of a scalar element from the given vector type
2523 /// at the given index is cheap. For example, if scalar operations occur on
2524 /// the same register file as vector operations, then an extract element may
2525 /// be a sub-register rename rather than an actual instruction.
2526 virtual bool isExtractVecEltCheap(EVT VT, unsigned Index) const {
2527 return false;
2530 /// Try to convert math with an overflow comparison into the corresponding DAG
2531 /// node operation. Targets may want to override this independently of whether
2532 /// the operation is legal/custom for the given type because it may obscure
2533 /// matching of other patterns.
2534 virtual bool shouldFormOverflowOp(unsigned Opcode, EVT VT) const {
2535 // TODO: The default logic is inherited from code in CodeGenPrepare.
2536 // The opcode should not make a difference by default?
2537 if (Opcode != ISD::UADDO)
2538 return false;
2540 // Allow the transform as long as we have an integer type that is not
2541 // obviously illegal and unsupported.
2542 if (VT.isVector())
2543 return false;
2544 return VT.isSimple() || !isOperationExpand(Opcode, VT);
2547 // Return true if it is profitable to use a scalar input to a BUILD_VECTOR
2548 // even if the vector itself has multiple uses.
2549 virtual bool aggressivelyPreferBuildVectorSources(EVT VecVT) const {
2550 return false;
2553 // Return true if CodeGenPrepare should consider splitting large offset of a
2554 // GEP to make the GEP fit into the addressing mode and can be sunk into the
2555 // same blocks of its users.
2556 virtual bool shouldConsiderGEPOffsetSplit() const { return false; }
2558 //===--------------------------------------------------------------------===//
2559 // Runtime Library hooks
2562 /// Rename the default libcall routine name for the specified libcall.
2563 void setLibcallName(RTLIB::Libcall Call, const char *Name) {
2564 LibcallRoutineNames[Call] = Name;
2567 /// Get the libcall routine name for the specified libcall.
2568 const char *getLibcallName(RTLIB::Libcall Call) const {
2569 return LibcallRoutineNames[Call];
2572 /// Override the default CondCode to be used to test the result of the
2573 /// comparison libcall against zero.
2574 void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
2575 CmpLibcallCCs[Call] = CC;
2578 /// Get the CondCode that's to be used to test the result of the comparison
2579 /// libcall against zero.
2580 ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
2581 return CmpLibcallCCs[Call];
2584 /// Set the CallingConv that should be used for the specified libcall.
2585 void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
2586 LibcallCallingConvs[Call] = CC;
2589 /// Get the CallingConv that should be used for the specified libcall.
2590 CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
2591 return LibcallCallingConvs[Call];
2594 /// Execute target specific actions to finalize target lowering.
2595 /// This is used to set extra flags in MachineFrameInformation and freezing
2596 /// the set of reserved registers.
2597 /// The default implementation just freezes the set of reserved registers.
2598 virtual void finalizeLowering(MachineFunction &MF) const;
2600 private:
2601 const TargetMachine &TM;
2603 /// Tells the code generator that the target has multiple (allocatable)
2604 /// condition registers that can be used to store the results of comparisons
2605 /// for use by selects and conditional branches. With multiple condition
2606 /// registers, the code generator will not aggressively sink comparisons into
2607 /// the blocks of their users.
2608 bool HasMultipleConditionRegisters;
2610 /// Tells the code generator that the target has BitExtract instructions.
2611 /// The code generator will aggressively sink "shift"s into the blocks of
2612 /// their users if the users will generate "and" instructions which can be
2613 /// combined with "shift" to BitExtract instructions.
2614 bool HasExtractBitsInsn;
2616 /// Tells the code generator to bypass slow divide or remainder
2617 /// instructions. For example, BypassSlowDivWidths[32,8] tells the code
2618 /// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer
2619 /// div/rem when the operands are positive and less than 256.
2620 DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
2622 /// Tells the code generator that it shouldn't generate extra flow control
2623 /// instructions and should attempt to combine flow control instructions via
2624 /// predication.
2625 bool JumpIsExpensive;
2627 /// This target prefers to use _setjmp to implement llvm.setjmp.
2629 /// Defaults to false.
2630 bool UseUnderscoreSetJmp;
2632 /// This target prefers to use _longjmp to implement llvm.longjmp.
2634 /// Defaults to false.
2635 bool UseUnderscoreLongJmp;
2637 /// Information about the contents of the high-bits in boolean values held in
2638 /// a type wider than i1. See getBooleanContents.
2639 BooleanContent BooleanContents;
2641 /// Information about the contents of the high-bits in boolean values held in
2642 /// a type wider than i1. See getBooleanContents.
2643 BooleanContent BooleanFloatContents;
2645 /// Information about the contents of the high-bits in boolean vector values
2646 /// when the element type is wider than i1. See getBooleanContents.
2647 BooleanContent BooleanVectorContents;
2649 /// The target scheduling preference: shortest possible total cycles or lowest
2650 /// register usage.
2651 Sched::Preference SchedPreferenceInfo;
2653 /// The size, in bytes, of the target's jmp_buf buffers
2654 unsigned JumpBufSize;
2656 /// The alignment, in bytes, of the target's jmp_buf buffers
2657 unsigned JumpBufAlignment;
2659 /// The minimum alignment that any argument on the stack needs to have.
2660 unsigned MinStackArgumentAlignment;
2662 /// The minimum function alignment (used when optimizing for size, and to
2663 /// prevent explicitly provided alignment from leading to incorrect code).
2664 unsigned MinFunctionAlignment;
2666 /// The preferred function alignment (used when alignment unspecified and
2667 /// optimizing for speed).
2668 unsigned PrefFunctionAlignment;
2670 /// The preferred loop alignment.
2671 unsigned PrefLoopAlignment;
2673 /// Size in bits of the maximum atomics size the backend supports.
2674 /// Accesses larger than this will be expanded by AtomicExpandPass.
2675 unsigned MaxAtomicSizeInBitsSupported;
2677 /// Size in bits of the minimum cmpxchg or ll/sc operation the
2678 /// backend supports.
2679 unsigned MinCmpXchgSizeInBits;
2681 /// This indicates if the target supports unaligned atomic operations.
2682 bool SupportsUnalignedAtomics;
2684 /// If set to a physical register, this specifies the register that
2685 /// llvm.savestack/llvm.restorestack should save and restore.
2686 unsigned StackPointerRegisterToSaveRestore;
2688 /// This indicates the default register class to use for each ValueType the
2689 /// target supports natively.
2690 const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
2691 unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
2692 MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
2694 /// This indicates the "representative" register class to use for each
2695 /// ValueType the target supports natively. This information is used by the
2696 /// scheduler to track register pressure. By default, the representative
2697 /// register class is the largest legal super-reg register class of the
2698 /// register class of the specified type. e.g. On x86, i8, i16, and i32's
2699 /// representative class would be GR32.
2700 const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
2702 /// This indicates the "cost" of the "representative" register class for each
2703 /// ValueType. The cost is used by the scheduler to approximate register
2704 /// pressure.
2705 uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
2707 /// For any value types we are promoting or expanding, this contains the value
2708 /// type that we are changing to. For Expanded types, this contains one step
2709 /// of the expand (e.g. i64 -> i32), even if there are multiple steps required
2710 /// (e.g. i64 -> i16). For types natively supported by the system, this holds
2711 /// the same type (e.g. i32 -> i32).
2712 MVT TransformToType[MVT::LAST_VALUETYPE];
2714 /// For each operation and each value type, keep a LegalizeAction that
2715 /// indicates how instruction selection should deal with the operation. Most
2716 /// operations are Legal (aka, supported natively by the target), but
2717 /// operations that are not should be described. Note that operations on
2718 /// non-legal value types are not described here.
2719 LegalizeAction OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
2721 /// For each load extension type and each value type, keep a LegalizeAction
2722 /// that indicates how instruction selection should deal with a load of a
2723 /// specific value type and extension type. Uses 4-bits to store the action
2724 /// for each of the 4 load ext types.
2725 uint16_t LoadExtActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
2727 /// For each value type pair keep a LegalizeAction that indicates whether a
2728 /// truncating store of a specific value type and truncating type is legal.
2729 LegalizeAction TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
2731 /// For each indexed mode and each value type, keep a pair of LegalizeAction
2732 /// that indicates how instruction selection should deal with the load /
2733 /// store.
2735 /// The first dimension is the value_type for the reference. The second
2736 /// dimension represents the various modes for load store.
2737 uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
2739 /// For each condition code (ISD::CondCode) keep a LegalizeAction that
2740 /// indicates how instruction selection should deal with the condition code.
2742 /// Because each CC action takes up 4 bits, we need to have the array size be
2743 /// large enough to fit all of the value types. This can be done by rounding
2744 /// up the MVT::LAST_VALUETYPE value to the next multiple of 8.
2745 uint32_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE + 7) / 8];
2747 protected:
2748 ValueTypeActionImpl ValueTypeActions;
2750 private:
2751 LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const;
2753 /// Targets can specify ISD nodes that they would like PerformDAGCombine
2754 /// callbacks for by calling setTargetDAGCombine(), which sets a bit in this
2755 /// array.
2756 unsigned char
2757 TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
2759 /// For operations that must be promoted to a specific type, this holds the
2760 /// destination type. This map should be sparse, so don't hold it as an
2761 /// array.
2763 /// Targets add entries to this map with AddPromotedToType(..), clients access
2764 /// this with getTypeToPromoteTo(..).
2765 std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
2766 PromoteToType;
2768 /// Stores the name each libcall.
2769 const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL + 1];
2771 /// The ISD::CondCode that should be used to test the result of each of the
2772 /// comparison libcall against zero.
2773 ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
2775 /// Stores the CallingConv that should be used for each libcall.
2776 CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
2778 /// Set default libcall names and calling conventions.
2779 void InitLibcalls(const Triple &TT);
2781 protected:
2782 /// Return true if the extension represented by \p I is free.
2783 /// \pre \p I is a sign, zero, or fp extension and
2784 /// is[Z|FP]ExtFree of the related types is not true.
2785 virtual bool isExtFreeImpl(const Instruction *I) const { return false; }
2787 /// Depth that GatherAllAliases should should continue looking for chain
2788 /// dependencies when trying to find a more preferable chain. As an
2789 /// approximation, this should be more than the number of consecutive stores
2790 /// expected to be merged.
2791 unsigned GatherAllAliasesMaxDepth;
2793 /// Specify maximum number of store instructions per memset call.
2795 /// When lowering \@llvm.memset this field specifies the maximum number of
2796 /// store operations that may be substituted for the call to memset. Targets
2797 /// must set this value based on the cost threshold for that target. Targets
2798 /// should assume that the memset will be done using as many of the largest
2799 /// store operations first, followed by smaller ones, if necessary, per
2800 /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
2801 /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
2802 /// store. This only applies to setting a constant array of a constant size.
2803 unsigned MaxStoresPerMemset;
2805 /// Maximum number of stores operations that may be substituted for the call
2806 /// to memset, used for functions with OptSize attribute.
2807 unsigned MaxStoresPerMemsetOptSize;
2809 /// Specify maximum bytes of store instructions per memcpy call.
2811 /// When lowering \@llvm.memcpy this field specifies the maximum number of
2812 /// store operations that may be substituted for a call to memcpy. Targets
2813 /// must set this value based on the cost threshold for that target. Targets
2814 /// should assume that the memcpy will be done using as many of the largest
2815 /// store operations first, followed by smaller ones, if necessary, per
2816 /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
2817 /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
2818 /// and one 1-byte store. This only applies to copying a constant array of
2819 /// constant size.
2820 unsigned MaxStoresPerMemcpy;
2823 /// \brief Specify max number of store instructions to glue in inlined memcpy.
2825 /// When memcpy is inlined based on MaxStoresPerMemcpy, specify maximum number
2826 /// of store instructions to keep together. This helps in pairing and
2827 // vectorization later on.
2828 unsigned MaxGluedStoresPerMemcpy = 0;
2830 /// Maximum number of store operations that may be substituted for a call to
2831 /// memcpy, used for functions with OptSize attribute.
2832 unsigned MaxStoresPerMemcpyOptSize;
2833 unsigned MaxLoadsPerMemcmp;
2834 unsigned MaxLoadsPerMemcmpOptSize;
2836 /// Specify maximum bytes of store instructions per memmove call.
2838 /// When lowering \@llvm.memmove this field specifies the maximum number of
2839 /// store instructions that may be substituted for a call to memmove. Targets
2840 /// must set this value based on the cost threshold for that target. Targets
2841 /// should assume that the memmove will be done using as many of the largest
2842 /// store operations first, followed by smaller ones, if necessary, per
2843 /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
2844 /// with 8-bit alignment would result in nine 1-byte stores. This only
2845 /// applies to copying a constant array of constant size.
2846 unsigned MaxStoresPerMemmove;
2848 /// Maximum number of store instructions that may be substituted for a call to
2849 /// memmove, used for functions with OptSize attribute.
2850 unsigned MaxStoresPerMemmoveOptSize;
2852 /// Tells the code generator that select is more expensive than a branch if
2853 /// the branch is usually predicted right.
2854 bool PredictableSelectIsExpensive;
2856 /// \see enableExtLdPromotion.
2857 bool EnableExtLdPromotion;
2859 /// Return true if the value types that can be represented by the specified
2860 /// register class are all legal.
2861 bool isLegalRC(const TargetRegisterInfo &TRI,
2862 const TargetRegisterClass &RC) const;
2864 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
2865 /// sequence of memory operands that is recognized by PrologEpilogInserter.
2866 MachineBasicBlock *emitPatchPoint(MachineInstr &MI,
2867 MachineBasicBlock *MBB) const;
2869 /// Replace/modify the XRay custom event operands with target-dependent
2870 /// details.
2871 MachineBasicBlock *emitXRayCustomEvent(MachineInstr &MI,
2872 MachineBasicBlock *MBB) const;
2874 /// Replace/modify the XRay typed event operands with target-dependent
2875 /// details.
2876 MachineBasicBlock *emitXRayTypedEvent(MachineInstr &MI,
2877 MachineBasicBlock *MBB) const;
2880 /// This class defines information used to lower LLVM code to legal SelectionDAG
2881 /// operators that the target instruction selector can accept natively.
2883 /// This class also defines callbacks that targets must implement to lower
2884 /// target-specific constructs to SelectionDAG operators.
2885 class TargetLowering : public TargetLoweringBase {
2886 public:
2887 struct DAGCombinerInfo;
2889 TargetLowering(const TargetLowering &) = delete;
2890 TargetLowering &operator=(const TargetLowering &) = delete;
2892 /// NOTE: The TargetMachine owns TLOF.
2893 explicit TargetLowering(const TargetMachine &TM);
2895 bool isPositionIndependent() const;
2897 virtual bool isSDNodeSourceOfDivergence(const SDNode *N,
2898 FunctionLoweringInfo *FLI,
2899 LegacyDivergenceAnalysis *DA) const {
2900 return false;
2903 virtual bool isSDNodeAlwaysUniform(const SDNode * N) const {
2904 return false;
2907 /// Returns true by value, base pointer and offset pointer and addressing mode
2908 /// by reference if the node's address can be legally represented as
2909 /// pre-indexed load / store address.
2910 virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
2911 SDValue &/*Offset*/,
2912 ISD::MemIndexedMode &/*AM*/,
2913 SelectionDAG &/*DAG*/) const {
2914 return false;
2917 /// Returns true by value, base pointer and offset pointer and addressing mode
2918 /// by reference if this node can be combined with a load / store to form a
2919 /// post-indexed load / store.
2920 virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
2921 SDValue &/*Base*/,
2922 SDValue &/*Offset*/,
2923 ISD::MemIndexedMode &/*AM*/,
2924 SelectionDAG &/*DAG*/) const {
2925 return false;
2928 /// Return the entry encoding for a jump table in the current function. The
2929 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
2930 virtual unsigned getJumpTableEncoding() const;
2932 virtual const MCExpr *
2933 LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
2934 const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
2935 MCContext &/*Ctx*/) const {
2936 llvm_unreachable("Need to implement this hook if target has custom JTIs");
2939 /// Returns relocation base for the given PIC jumptable.
2940 virtual SDValue getPICJumpTableRelocBase(SDValue Table,
2941 SelectionDAG &DAG) const;
2943 /// This returns the relocation base for the given PIC jumptable, the same as
2944 /// getPICJumpTableRelocBase, but as an MCExpr.
2945 virtual const MCExpr *
2946 getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2947 unsigned JTI, MCContext &Ctx) const;
2949 /// Return true if folding a constant offset with the given GlobalAddress is
2950 /// legal. It is frequently not legal in PIC relocation models.
2951 virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
2953 bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
2954 SDValue &Chain) const;
2956 void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS,
2957 SDValue &NewRHS, ISD::CondCode &CCCode,
2958 const SDLoc &DL) const;
2960 /// Returns a pair of (return value, chain).
2961 /// It is an error to pass RTLIB::UNKNOWN_LIBCALL as \p LC.
2962 std::pair<SDValue, SDValue> makeLibCall(
2963 SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, ArrayRef<SDValue> Ops,
2964 bool isSigned, const SDLoc &dl, bool doesNotReturn = false,
2965 bool isReturnValueUsed = true, bool isPostTypeLegalization = false) const;
2967 /// Check whether parameters to a call that are passed in callee saved
2968 /// registers are the same as from the calling function. This needs to be
2969 /// checked for tail call eligibility.
2970 bool parametersInCSRMatch(const MachineRegisterInfo &MRI,
2971 const uint32_t *CallerPreservedMask,
2972 const SmallVectorImpl<CCValAssign> &ArgLocs,
2973 const SmallVectorImpl<SDValue> &OutVals) const;
2975 //===--------------------------------------------------------------------===//
2976 // TargetLowering Optimization Methods
2979 /// A convenience struct that encapsulates a DAG, and two SDValues for
2980 /// returning information from TargetLowering to its clients that want to
2981 /// combine.
2982 struct TargetLoweringOpt {
2983 SelectionDAG &DAG;
2984 bool LegalTys;
2985 bool LegalOps;
2986 SDValue Old;
2987 SDValue New;
2989 explicit TargetLoweringOpt(SelectionDAG &InDAG,
2990 bool LT, bool LO) :
2991 DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
2993 bool LegalTypes() const { return LegalTys; }
2994 bool LegalOperations() const { return LegalOps; }
2996 bool CombineTo(SDValue O, SDValue N) {
2997 Old = O;
2998 New = N;
2999 return true;
3003 /// Determines the optimal series of memory ops to replace the memset / memcpy.
3004 /// Return true if the number of memory ops is below the threshold (Limit).
3005 /// It returns the types of the sequence of memory ops to perform
3006 /// memset / memcpy by reference.
3007 bool findOptimalMemOpLowering(std::vector<EVT> &MemOps,
3008 unsigned Limit, uint64_t Size,
3009 unsigned DstAlign, unsigned SrcAlign,
3010 bool IsMemset,
3011 bool ZeroMemset,
3012 bool MemcpyStrSrc,
3013 bool AllowOverlap,
3014 unsigned DstAS, unsigned SrcAS,
3015 const AttributeList &FuncAttributes) const;
3017 /// Check to see if the specified operand of the specified instruction is a
3018 /// constant integer. If so, check to see if there are any bits set in the
3019 /// constant that are not demanded. If so, shrink the constant and return
3020 /// true.
3021 bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
3022 TargetLoweringOpt &TLO) const;
3024 // Target hook to do target-specific const optimization, which is called by
3025 // ShrinkDemandedConstant. This function should return true if the target
3026 // doesn't want ShrinkDemandedConstant to further optimize the constant.
3027 virtual bool targetShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
3028 TargetLoweringOpt &TLO) const {
3029 return false;
3032 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. This
3033 /// uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
3034 /// generalized for targets with other types of implicit widening casts.
3035 bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
3036 TargetLoweringOpt &TLO) const;
3038 /// Look at Op. At this point, we know that only the DemandedBits bits of the
3039 /// result of Op are ever used downstream. If we can use this information to
3040 /// simplify Op, create a new simplified DAG node and return true, returning
3041 /// the original and new nodes in Old and New. Otherwise, analyze the
3042 /// expression and return a mask of KnownOne and KnownZero bits for the
3043 /// expression (used to simplify the caller). The KnownZero/One bits may only
3044 /// be accurate for those bits in the Demanded masks.
3045 /// \p AssumeSingleUse When this parameter is true, this function will
3046 /// attempt to simplify \p Op even if there are multiple uses.
3047 /// Callers are responsible for correctly updating the DAG based on the
3048 /// results of this function, because simply replacing replacing TLO.Old
3049 /// with TLO.New will be incorrect when this parameter is true and TLO.Old
3050 /// has multiple uses.
3051 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
3052 const APInt &DemandedElts, KnownBits &Known,
3053 TargetLoweringOpt &TLO, unsigned Depth = 0,
3054 bool AssumeSingleUse = false) const;
3056 /// Helper wrapper around SimplifyDemandedBits, demanding all elements.
3057 /// Adds Op back to the worklist upon success.
3058 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
3059 KnownBits &Known, TargetLoweringOpt &TLO,
3060 unsigned Depth = 0,
3061 bool AssumeSingleUse = false) const;
3063 /// Helper wrapper around SimplifyDemandedBits.
3064 /// Adds Op back to the worklist upon success.
3065 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
3066 DAGCombinerInfo &DCI) const;
3068 /// Look at Vector Op. At this point, we know that only the DemandedElts
3069 /// elements of the result of Op are ever used downstream. If we can use
3070 /// this information to simplify Op, create a new simplified DAG node and
3071 /// return true, storing the original and new nodes in TLO.
3072 /// Otherwise, analyze the expression and return a mask of KnownUndef and
3073 /// KnownZero elements for the expression (used to simplify the caller).
3074 /// The KnownUndef/Zero elements may only be accurate for those bits
3075 /// in the DemandedMask.
3076 /// \p AssumeSingleUse When this parameter is true, this function will
3077 /// attempt to simplify \p Op even if there are multiple uses.
3078 /// Callers are responsible for correctly updating the DAG based on the
3079 /// results of this function, because simply replacing replacing TLO.Old
3080 /// with TLO.New will be incorrect when this parameter is true and TLO.Old
3081 /// has multiple uses.
3082 bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedEltMask,
3083 APInt &KnownUndef, APInt &KnownZero,
3084 TargetLoweringOpt &TLO, unsigned Depth = 0,
3085 bool AssumeSingleUse = false) const;
3087 /// Helper wrapper around SimplifyDemandedVectorElts.
3088 /// Adds Op back to the worklist upon success.
3089 bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts,
3090 APInt &KnownUndef, APInt &KnownZero,
3091 DAGCombinerInfo &DCI) const;
3093 /// Determine which of the bits specified in Mask are known to be either zero
3094 /// or one and return them in the KnownZero/KnownOne bitsets. The DemandedElts
3095 /// argument allows us to only collect the known bits that are shared by the
3096 /// requested vector elements.
3097 virtual void computeKnownBitsForTargetNode(const SDValue Op,
3098 KnownBits &Known,
3099 const APInt &DemandedElts,
3100 const SelectionDAG &DAG,
3101 unsigned Depth = 0) const;
3103 /// Determine which of the bits of FrameIndex \p FIOp are known to be 0.
3104 /// Default implementation computes low bits based on alignment
3105 /// information. This should preserve known bits passed into it.
3106 virtual void computeKnownBitsForFrameIndex(const SDValue FIOp,
3107 KnownBits &Known,
3108 const APInt &DemandedElts,
3109 const SelectionDAG &DAG,
3110 unsigned Depth = 0) const;
3112 /// This method can be implemented by targets that want to expose additional
3113 /// information about sign bits to the DAG Combiner. The DemandedElts
3114 /// argument allows us to only collect the minimum sign bits that are shared
3115 /// by the requested vector elements.
3116 virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
3117 const APInt &DemandedElts,
3118 const SelectionDAG &DAG,
3119 unsigned Depth = 0) const;
3121 /// Attempt to simplify any target nodes based on the demanded vector
3122 /// elements, returning true on success. Otherwise, analyze the expression and
3123 /// return a mask of KnownUndef and KnownZero elements for the expression
3124 /// (used to simplify the caller). The KnownUndef/Zero elements may only be
3125 /// accurate for those bits in the DemandedMask.
3126 virtual bool SimplifyDemandedVectorEltsForTargetNode(
3127 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef,
3128 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth = 0) const;
3130 /// Attempt to simplify any target nodes based on the demanded bits/elts,
3131 /// returning true on success. Otherwise, analyze the
3132 /// expression and return a mask of KnownOne and KnownZero bits for the
3133 /// expression (used to simplify the caller). The KnownZero/One bits may only
3134 /// be accurate for those bits in the Demanded masks.
3135 virtual bool SimplifyDemandedBitsForTargetNode(SDValue Op,
3136 const APInt &DemandedBits,
3137 const APInt &DemandedElts,
3138 KnownBits &Known,
3139 TargetLoweringOpt &TLO,
3140 unsigned Depth = 0) const;
3142 /// This method returns the constant pool value that will be loaded by LD.
3143 /// NOTE: You must check for implicit extensions of the constant by LD.
3144 virtual const Constant *getTargetConstantFromLoad(LoadSDNode *LD) const;
3146 /// If \p SNaN is false, \returns true if \p Op is known to never be any
3147 /// NaN. If \p sNaN is true, returns if \p Op is known to never be a signaling
3148 /// NaN.
3149 virtual bool isKnownNeverNaNForTargetNode(SDValue Op,
3150 const SelectionDAG &DAG,
3151 bool SNaN = false,
3152 unsigned Depth = 0) const;
3153 struct DAGCombinerInfo {
3154 void *DC; // The DAG Combiner object.
3155 CombineLevel Level;
3156 bool CalledByLegalizer;
3158 public:
3159 SelectionDAG &DAG;
3161 DAGCombinerInfo(SelectionDAG &dag, CombineLevel level, bool cl, void *dc)
3162 : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {}
3164 bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; }
3165 bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; }
3166 bool isAfterLegalizeDAG() const {
3167 return Level == AfterLegalizeDAG;
3169 CombineLevel getDAGCombineLevel() { return Level; }
3170 bool isCalledByLegalizer() const { return CalledByLegalizer; }
3172 void AddToWorklist(SDNode *N);
3173 SDValue CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo = true);
3174 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
3175 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
3177 void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
3180 /// Return if the N is a constant or constant vector equal to the true value
3181 /// from getBooleanContents().
3182 bool isConstTrueVal(const SDNode *N) const;
3184 /// Return if the N is a constant or constant vector equal to the false value
3185 /// from getBooleanContents().
3186 bool isConstFalseVal(const SDNode *N) const;
3188 /// Return if \p N is a True value when extended to \p VT.
3189 bool isExtendedTrueVal(const ConstantSDNode *N, EVT VT, bool SExt) const;
3191 /// Try to simplify a setcc built with the specified operands and cc. If it is
3192 /// unable to simplify it, return a null SDValue.
3193 SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
3194 bool foldBooleans, DAGCombinerInfo &DCI,
3195 const SDLoc &dl) const;
3197 // For targets which wrap address, unwrap for analysis.
3198 virtual SDValue unwrapAddress(SDValue N) const { return N; }
3200 /// Returns true (and the GlobalValue and the offset) if the node is a
3201 /// GlobalAddress + offset.
3202 virtual bool
3203 isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
3205 /// This method will be invoked for all target nodes and for any
3206 /// target-independent nodes that the target has registered with invoke it
3207 /// for.
3209 /// The semantics are as follows:
3210 /// Return Value:
3211 /// SDValue.Val == 0 - No change was made
3212 /// SDValue.Val == N - N was replaced, is dead, and is already handled.
3213 /// otherwise - N should be replaced by the returned Operand.
3215 /// In addition, methods provided by DAGCombinerInfo may be used to perform
3216 /// more complex transformations.
3218 virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
3220 /// Return true if it is profitable to move this shift by a constant amount
3221 /// though its operand, adjusting any immediate operands as necessary to
3222 /// preserve semantics. This transformation may not be desirable if it
3223 /// disrupts a particularly auspicious target-specific tree (e.g. bitfield
3224 /// extraction in AArch64). By default, it returns true.
3226 /// @param N the shift node
3227 /// @param Level the current DAGCombine legalization level.
3228 virtual bool isDesirableToCommuteWithShift(const SDNode *N,
3229 CombineLevel Level) const {
3230 return true;
3233 // Return true if it is profitable to combine a BUILD_VECTOR with a stride-pattern
3234 // to a shuffle and a truncate.
3235 // Example of such a combine:
3236 // v4i32 build_vector((extract_elt V, 1),
3237 // (extract_elt V, 3),
3238 // (extract_elt V, 5),
3239 // (extract_elt V, 7))
3240 // -->
3241 // v4i32 truncate (bitcast (shuffle<1,u,3,u,5,u,7,u> V, u) to v4i64)
3242 virtual bool isDesirableToCombineBuildVectorToShuffleTruncate(
3243 ArrayRef<int> ShuffleMask, EVT SrcVT, EVT TruncVT) const {
3244 return false;
3247 /// Return true if the target has native support for the specified value type
3248 /// and it is 'desirable' to use the type for the given node type. e.g. On x86
3249 /// i16 is legal, but undesirable since i16 instruction encodings are longer
3250 /// and some i16 instructions are slow.
3251 virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
3252 // By default, assume all legal types are desirable.
3253 return isTypeLegal(VT);
3256 /// Return true if it is profitable for dag combiner to transform a floating
3257 /// point op of specified opcode to a equivalent op of an integer
3258 /// type. e.g. f32 load -> i32 load can be profitable on ARM.
3259 virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
3260 EVT /*VT*/) const {
3261 return false;
3264 /// This method query the target whether it is beneficial for dag combiner to
3265 /// promote the specified node. If true, it should return the desired
3266 /// promotion type by reference.
3267 virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
3268 return false;
3271 /// Return true if the target supports swifterror attribute. It optimizes
3272 /// loads and stores to reading and writing a specific register.
3273 virtual bool supportSwiftError() const {
3274 return false;
3277 /// Return true if the target supports that a subset of CSRs for the given
3278 /// machine function is handled explicitly via copies.
3279 virtual bool supportSplitCSR(MachineFunction *MF) const {
3280 return false;
3283 /// Perform necessary initialization to handle a subset of CSRs explicitly
3284 /// via copies. This function is called at the beginning of instruction
3285 /// selection.
3286 virtual void initializeSplitCSR(MachineBasicBlock *Entry) const {
3287 llvm_unreachable("Not Implemented");
3290 /// Insert explicit copies in entry and exit blocks. We copy a subset of
3291 /// CSRs to virtual registers in the entry block, and copy them back to
3292 /// physical registers in the exit blocks. This function is called at the end
3293 /// of instruction selection.
3294 virtual void insertCopiesSplitCSR(
3295 MachineBasicBlock *Entry,
3296 const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
3297 llvm_unreachable("Not Implemented");
3300 //===--------------------------------------------------------------------===//
3301 // Lowering methods - These methods must be implemented by targets so that
3302 // the SelectionDAGBuilder code knows how to lower these.
3305 /// This hook must be implemented to lower the incoming (formal) arguments,
3306 /// described by the Ins array, into the specified DAG. The implementation
3307 /// should fill in the InVals array with legal-type argument values, and
3308 /// return the resulting token chain value.
3309 virtual SDValue LowerFormalArguments(
3310 SDValue /*Chain*/, CallingConv::ID /*CallConv*/, bool /*isVarArg*/,
3311 const SmallVectorImpl<ISD::InputArg> & /*Ins*/, const SDLoc & /*dl*/,
3312 SelectionDAG & /*DAG*/, SmallVectorImpl<SDValue> & /*InVals*/) const {
3313 llvm_unreachable("Not Implemented");
3316 /// This structure contains all information that is necessary for lowering
3317 /// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder
3318 /// needs to lower a call, and targets will see this struct in their LowerCall
3319 /// implementation.
3320 struct CallLoweringInfo {
3321 SDValue Chain;
3322 Type *RetTy = nullptr;
3323 bool RetSExt : 1;
3324 bool RetZExt : 1;
3325 bool IsVarArg : 1;
3326 bool IsInReg : 1;
3327 bool DoesNotReturn : 1;
3328 bool IsReturnValueUsed : 1;
3329 bool IsConvergent : 1;
3330 bool IsPatchPoint : 1;
3332 // IsTailCall should be modified by implementations of
3333 // TargetLowering::LowerCall that perform tail call conversions.
3334 bool IsTailCall = false;
3336 // Is Call lowering done post SelectionDAG type legalization.
3337 bool IsPostTypeLegalization = false;
3339 unsigned NumFixedArgs = -1;
3340 CallingConv::ID CallConv = CallingConv::C;
3341 SDValue Callee;
3342 ArgListTy Args;
3343 SelectionDAG &DAG;
3344 SDLoc DL;
3345 ImmutableCallSite CS;
3346 SmallVector<ISD::OutputArg, 32> Outs;
3347 SmallVector<SDValue, 32> OutVals;
3348 SmallVector<ISD::InputArg, 32> Ins;
3349 SmallVector<SDValue, 4> InVals;
3351 CallLoweringInfo(SelectionDAG &DAG)
3352 : RetSExt(false), RetZExt(false), IsVarArg(false), IsInReg(false),
3353 DoesNotReturn(false), IsReturnValueUsed(true), IsConvergent(false),
3354 IsPatchPoint(false), DAG(DAG) {}
3356 CallLoweringInfo &setDebugLoc(const SDLoc &dl) {
3357 DL = dl;
3358 return *this;
3361 CallLoweringInfo &setChain(SDValue InChain) {
3362 Chain = InChain;
3363 return *this;
3366 // setCallee with target/module-specific attributes
3367 CallLoweringInfo &setLibCallee(CallingConv::ID CC, Type *ResultType,
3368 SDValue Target, ArgListTy &&ArgsList) {
3369 RetTy = ResultType;
3370 Callee = Target;
3371 CallConv = CC;
3372 NumFixedArgs = ArgsList.size();
3373 Args = std::move(ArgsList);
3375 DAG.getTargetLoweringInfo().markLibCallAttributes(
3376 &(DAG.getMachineFunction()), CC, Args);
3377 return *this;
3380 CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultType,
3381 SDValue Target, ArgListTy &&ArgsList) {
3382 RetTy = ResultType;
3383 Callee = Target;
3384 CallConv = CC;
3385 NumFixedArgs = ArgsList.size();
3386 Args = std::move(ArgsList);
3387 return *this;
3390 CallLoweringInfo &setCallee(Type *ResultType, FunctionType *FTy,
3391 SDValue Target, ArgListTy &&ArgsList,
3392 ImmutableCallSite Call) {
3393 RetTy = ResultType;
3395 IsInReg = Call.hasRetAttr(Attribute::InReg);
3396 DoesNotReturn =
3397 Call.doesNotReturn() ||
3398 (!Call.isInvoke() &&
3399 isa<UnreachableInst>(Call.getInstruction()->getNextNode()));
3400 IsVarArg = FTy->isVarArg();
3401 IsReturnValueUsed = !Call.getInstruction()->use_empty();
3402 RetSExt = Call.hasRetAttr(Attribute::SExt);
3403 RetZExt = Call.hasRetAttr(Attribute::ZExt);
3405 Callee = Target;
3407 CallConv = Call.getCallingConv();
3408 NumFixedArgs = FTy->getNumParams();
3409 Args = std::move(ArgsList);
3411 CS = Call;
3413 return *this;
3416 CallLoweringInfo &setInRegister(bool Value = true) {
3417 IsInReg = Value;
3418 return *this;
3421 CallLoweringInfo &setNoReturn(bool Value = true) {
3422 DoesNotReturn = Value;
3423 return *this;
3426 CallLoweringInfo &setVarArg(bool Value = true) {
3427 IsVarArg = Value;
3428 return *this;
3431 CallLoweringInfo &setTailCall(bool Value = true) {
3432 IsTailCall = Value;
3433 return *this;
3436 CallLoweringInfo &setDiscardResult(bool Value = true) {
3437 IsReturnValueUsed = !Value;
3438 return *this;
3441 CallLoweringInfo &setConvergent(bool Value = true) {
3442 IsConvergent = Value;
3443 return *this;
3446 CallLoweringInfo &setSExtResult(bool Value = true) {
3447 RetSExt = Value;
3448 return *this;
3451 CallLoweringInfo &setZExtResult(bool Value = true) {
3452 RetZExt = Value;
3453 return *this;
3456 CallLoweringInfo &setIsPatchPoint(bool Value = true) {
3457 IsPatchPoint = Value;
3458 return *this;
3461 CallLoweringInfo &setIsPostTypeLegalization(bool Value=true) {
3462 IsPostTypeLegalization = Value;
3463 return *this;
3466 ArgListTy &getArgs() {
3467 return Args;
3471 /// This function lowers an abstract call to a function into an actual call.
3472 /// This returns a pair of operands. The first element is the return value
3473 /// for the function (if RetTy is not VoidTy). The second element is the
3474 /// outgoing token chain. It calls LowerCall to do the actual lowering.
3475 std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
3477 /// This hook must be implemented to lower calls into the specified
3478 /// DAG. The outgoing arguments to the call are described by the Outs array,
3479 /// and the values to be returned by the call are described by the Ins
3480 /// array. The implementation should fill in the InVals array with legal-type
3481 /// return values from the call, and return the resulting token chain value.
3482 virtual SDValue
3483 LowerCall(CallLoweringInfo &/*CLI*/,
3484 SmallVectorImpl<SDValue> &/*InVals*/) const {
3485 llvm_unreachable("Not Implemented");
3488 /// Target-specific cleanup for formal ByVal parameters.
3489 virtual void HandleByVal(CCState *, unsigned &, unsigned) const {}
3491 /// This hook should be implemented to check whether the return values
3492 /// described by the Outs array can fit into the return registers. If false
3493 /// is returned, an sret-demotion is performed.
3494 virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
3495 MachineFunction &/*MF*/, bool /*isVarArg*/,
3496 const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
3497 LLVMContext &/*Context*/) const
3499 // Return true by default to get preexisting behavior.
3500 return true;
3503 /// This hook must be implemented to lower outgoing return values, described
3504 /// by the Outs array, into the specified DAG. The implementation should
3505 /// return the resulting token chain value.
3506 virtual SDValue LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
3507 bool /*isVarArg*/,
3508 const SmallVectorImpl<ISD::OutputArg> & /*Outs*/,
3509 const SmallVectorImpl<SDValue> & /*OutVals*/,
3510 const SDLoc & /*dl*/,
3511 SelectionDAG & /*DAG*/) const {
3512 llvm_unreachable("Not Implemented");
3515 /// Return true if result of the specified node is used by a return node
3516 /// only. It also compute and return the input chain for the tail call.
3518 /// This is used to determine whether it is possible to codegen a libcall as
3519 /// tail call at legalization time.
3520 virtual bool isUsedByReturnOnly(SDNode *, SDValue &/*Chain*/) const {
3521 return false;
3524 /// Return true if the target may be able emit the call instruction as a tail
3525 /// call. This is used by optimization passes to determine if it's profitable
3526 /// to duplicate return instructions to enable tailcall optimization.
3527 virtual bool mayBeEmittedAsTailCall(const CallInst *) const {
3528 return false;
3531 /// Return the builtin name for the __builtin___clear_cache intrinsic
3532 /// Default is to invoke the clear cache library call
3533 virtual const char * getClearCacheBuiltinName() const {
3534 return "__clear_cache";
3537 /// Return the register ID of the name passed in. Used by named register
3538 /// global variables extension. There is no target-independent behaviour
3539 /// so the default action is to bail.
3540 virtual unsigned getRegisterByName(const char* RegName, EVT VT,
3541 SelectionDAG &DAG) const {
3542 report_fatal_error("Named registers not implemented for this target");
3545 /// Return the type that should be used to zero or sign extend a
3546 /// zeroext/signext integer return value. FIXME: Some C calling conventions
3547 /// require the return type to be promoted, but this is not true all the time,
3548 /// e.g. i1/i8/i16 on x86/x86_64. It is also not necessary for non-C calling
3549 /// conventions. The frontend should handle this and include all of the
3550 /// necessary information.
3551 virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT,
3552 ISD::NodeType /*ExtendKind*/) const {
3553 EVT MinVT = getRegisterType(Context, MVT::i32);
3554 return VT.bitsLT(MinVT) ? MinVT : VT;
3557 /// For some targets, an LLVM struct type must be broken down into multiple
3558 /// simple types, but the calling convention specifies that the entire struct
3559 /// must be passed in a block of consecutive registers.
3560 virtual bool
3561 functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv,
3562 bool isVarArg) const {
3563 return false;
3566 /// For most targets, an LLVM type must be broken down into multiple
3567 /// smaller types. Usually the halves are ordered according to the endianness
3568 /// but for some platform that would break. So this method will default to
3569 /// matching the endianness but can be overridden.
3570 virtual bool
3571 shouldSplitFunctionArgumentsAsLittleEndian(const DataLayout &DL) const {
3572 return DL.isLittleEndian();
3575 /// Returns a 0 terminated array of registers that can be safely used as
3576 /// scratch registers.
3577 virtual const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const {
3578 return nullptr;
3581 /// This callback is used to prepare for a volatile or atomic load.
3582 /// It takes a chain node as input and returns the chain for the load itself.
3584 /// Having a callback like this is necessary for targets like SystemZ,
3585 /// which allows a CPU to reuse the result of a previous load indefinitely,
3586 /// even if a cache-coherent store is performed by another CPU. The default
3587 /// implementation does nothing.
3588 virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, const SDLoc &DL,
3589 SelectionDAG &DAG) const {
3590 return Chain;
3593 /// This callback is used to inspect load/store instructions and add
3594 /// target-specific MachineMemOperand flags to them. The default
3595 /// implementation does nothing.
3596 virtual MachineMemOperand::Flags getMMOFlags(const Instruction &I) const {
3597 return MachineMemOperand::MONone;
3600 /// This callback is invoked by the type legalizer to legalize nodes with an
3601 /// illegal operand type but legal result types. It replaces the
3602 /// LowerOperation callback in the type Legalizer. The reason we can not do
3603 /// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to
3604 /// use this callback.
3606 /// TODO: Consider merging with ReplaceNodeResults.
3608 /// The target places new result values for the node in Results (their number
3609 /// and types must exactly match those of the original return values of
3610 /// the node), or leaves Results empty, which indicates that the node is not
3611 /// to be custom lowered after all.
3612 /// The default implementation calls LowerOperation.
3613 virtual void LowerOperationWrapper(SDNode *N,
3614 SmallVectorImpl<SDValue> &Results,
3615 SelectionDAG &DAG) const;
3617 /// This callback is invoked for operations that are unsupported by the
3618 /// target, which are registered to use 'custom' lowering, and whose defined
3619 /// values are all legal. If the target has no operations that require custom
3620 /// lowering, it need not implement this. The default implementation of this
3621 /// aborts.
3622 virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
3624 /// This callback is invoked when a node result type is illegal for the
3625 /// target, and the operation was registered to use 'custom' lowering for that
3626 /// result type. The target places new result values for the node in Results
3627 /// (their number and types must exactly match those of the original return
3628 /// values of the node), or leaves Results empty, which indicates that the
3629 /// node is not to be custom lowered after all.
3631 /// If the target has no operations that require custom lowering, it need not
3632 /// implement this. The default implementation aborts.
3633 virtual void ReplaceNodeResults(SDNode * /*N*/,
3634 SmallVectorImpl<SDValue> &/*Results*/,
3635 SelectionDAG &/*DAG*/) const {
3636 llvm_unreachable("ReplaceNodeResults not implemented for this target!");
3639 /// This method returns the name of a target specific DAG node.
3640 virtual const char *getTargetNodeName(unsigned Opcode) const;
3642 /// This method returns a target specific FastISel object, or null if the
3643 /// target does not support "fast" ISel.
3644 virtual FastISel *createFastISel(FunctionLoweringInfo &,
3645 const TargetLibraryInfo *) const {
3646 return nullptr;
3649 bool verifyReturnAddressArgumentIsConstant(SDValue Op,
3650 SelectionDAG &DAG) const;
3652 //===--------------------------------------------------------------------===//
3653 // Inline Asm Support hooks
3656 /// This hook allows the target to expand an inline asm call to be explicit
3657 /// llvm code if it wants to. This is useful for turning simple inline asms
3658 /// into LLVM intrinsics, which gives the compiler more information about the
3659 /// behavior of the code.
3660 virtual bool ExpandInlineAsm(CallInst *) const {
3661 return false;
3664 enum ConstraintType {
3665 C_Register, // Constraint represents specific register(s).
3666 C_RegisterClass, // Constraint represents any of register(s) in class.
3667 C_Memory, // Memory constraint.
3668 C_Other, // Something else.
3669 C_Unknown // Unsupported constraint.
3672 enum ConstraintWeight {
3673 // Generic weights.
3674 CW_Invalid = -1, // No match.
3675 CW_Okay = 0, // Acceptable.
3676 CW_Good = 1, // Good weight.
3677 CW_Better = 2, // Better weight.
3678 CW_Best = 3, // Best weight.
3680 // Well-known weights.
3681 CW_SpecificReg = CW_Okay, // Specific register operands.
3682 CW_Register = CW_Good, // Register operands.
3683 CW_Memory = CW_Better, // Memory operands.
3684 CW_Constant = CW_Best, // Constant operand.
3685 CW_Default = CW_Okay // Default or don't know type.
3688 /// This contains information for each constraint that we are lowering.
3689 struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
3690 /// This contains the actual string for the code, like "m". TargetLowering
3691 /// picks the 'best' code from ConstraintInfo::Codes that most closely
3692 /// matches the operand.
3693 std::string ConstraintCode;
3695 /// Information about the constraint code, e.g. Register, RegisterClass,
3696 /// Memory, Other, Unknown.
3697 TargetLowering::ConstraintType ConstraintType = TargetLowering::C_Unknown;
3699 /// If this is the result output operand or a clobber, this is null,
3700 /// otherwise it is the incoming operand to the CallInst. This gets
3701 /// modified as the asm is processed.
3702 Value *CallOperandVal = nullptr;
3704 /// The ValueType for the operand value.
3705 MVT ConstraintVT = MVT::Other;
3707 /// Copy constructor for copying from a ConstraintInfo.
3708 AsmOperandInfo(InlineAsm::ConstraintInfo Info)
3709 : InlineAsm::ConstraintInfo(std::move(Info)) {}
3711 /// Return true of this is an input operand that is a matching constraint
3712 /// like "4".
3713 bool isMatchingInputConstraint() const;
3715 /// If this is an input matching constraint, this method returns the output
3716 /// operand it matches.
3717 unsigned getMatchedOperand() const;
3720 using AsmOperandInfoVector = std::vector<AsmOperandInfo>;
3722 /// Split up the constraint string from the inline assembly value into the
3723 /// specific constraints and their prefixes, and also tie in the associated
3724 /// operand values. If this returns an empty vector, and if the constraint
3725 /// string itself isn't empty, there was an error parsing.
3726 virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL,
3727 const TargetRegisterInfo *TRI,
3728 ImmutableCallSite CS) const;
3730 /// Examine constraint type and operand type and determine a weight value.
3731 /// The operand object must already have been set up with the operand type.
3732 virtual ConstraintWeight getMultipleConstraintMatchWeight(
3733 AsmOperandInfo &info, int maIndex) const;
3735 /// Examine constraint string and operand type and determine a weight value.
3736 /// The operand object must already have been set up with the operand type.
3737 virtual ConstraintWeight getSingleConstraintMatchWeight(
3738 AsmOperandInfo &info, const char *constraint) const;
3740 /// Determines the constraint code and constraint type to use for the specific
3741 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
3742 /// If the actual operand being passed in is available, it can be passed in as
3743 /// Op, otherwise an empty SDValue can be passed.
3744 virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
3745 SDValue Op,
3746 SelectionDAG *DAG = nullptr) const;
3748 /// Given a constraint, return the type of constraint it is for this target.
3749 virtual ConstraintType getConstraintType(StringRef Constraint) const;
3751 /// Given a physical register constraint (e.g. {edx}), return the register
3752 /// number and the register class for the register.
3754 /// Given a register class constraint, like 'r', if this corresponds directly
3755 /// to an LLVM register class, return a register of 0 and the register class
3756 /// pointer.
3758 /// This should only be used for C_Register constraints. On error, this
3759 /// returns a register number of 0 and a null register class pointer.
3760 virtual std::pair<unsigned, const TargetRegisterClass *>
3761 getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
3762 StringRef Constraint, MVT VT) const;
3764 virtual unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const {
3765 if (ConstraintCode == "i")
3766 return InlineAsm::Constraint_i;
3767 else if (ConstraintCode == "m")
3768 return InlineAsm::Constraint_m;
3769 return InlineAsm::Constraint_Unknown;
3772 /// Try to replace an X constraint, which matches anything, with another that
3773 /// has more specific requirements based on the type of the corresponding
3774 /// operand. This returns null if there is no replacement to make.
3775 virtual const char *LowerXConstraint(EVT ConstraintVT) const;
3777 /// Lower the specified operand into the Ops vector. If it is invalid, don't
3778 /// add anything to Ops.
3779 virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
3780 std::vector<SDValue> &Ops,
3781 SelectionDAG &DAG) const;
3783 // Lower custom output constraints. If invalid, return SDValue().
3784 virtual SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Flag,
3785 SDLoc DL,
3786 const AsmOperandInfo &OpInfo,
3787 SelectionDAG &DAG) const;
3789 //===--------------------------------------------------------------------===//
3790 // Div utility functions
3792 SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
3793 SmallVectorImpl<SDNode *> &Created) const;
3794 SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
3795 SmallVectorImpl<SDNode *> &Created) const;
3797 /// Targets may override this function to provide custom SDIV lowering for
3798 /// power-of-2 denominators. If the target returns an empty SDValue, LLVM
3799 /// assumes SDIV is expensive and replaces it with a series of other integer
3800 /// operations.
3801 virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor,
3802 SelectionDAG &DAG,
3803 SmallVectorImpl<SDNode *> &Created) const;
3805 /// Indicate whether this target prefers to combine FDIVs with the same
3806 /// divisor. If the transform should never be done, return zero. If the
3807 /// transform should be done, return the minimum number of divisor uses
3808 /// that must exist.
3809 virtual unsigned combineRepeatedFPDivisors() const {
3810 return 0;
3813 /// Hooks for building estimates in place of slower divisions and square
3814 /// roots.
3816 /// Return either a square root or its reciprocal estimate value for the input
3817 /// operand.
3818 /// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or
3819 /// 'Enabled' as set by a potential default override attribute.
3820 /// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson
3821 /// refinement iterations required to generate a sufficient (though not
3822 /// necessarily IEEE-754 compliant) estimate is returned in that parameter.
3823 /// The boolean UseOneConstNR output is used to select a Newton-Raphson
3824 /// algorithm implementation that uses either one or two constants.
3825 /// The boolean Reciprocal is used to select whether the estimate is for the
3826 /// square root of the input operand or the reciprocal of its square root.
3827 /// A target may choose to implement its own refinement within this function.
3828 /// If that's true, then return '0' as the number of RefinementSteps to avoid
3829 /// any further refinement of the estimate.
3830 /// An empty SDValue return means no estimate sequence can be created.
3831 virtual SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
3832 int Enabled, int &RefinementSteps,
3833 bool &UseOneConstNR, bool Reciprocal) const {
3834 return SDValue();
3837 /// Return a reciprocal estimate value for the input operand.
3838 /// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or
3839 /// 'Enabled' as set by a potential default override attribute.
3840 /// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson
3841 /// refinement iterations required to generate a sufficient (though not
3842 /// necessarily IEEE-754 compliant) estimate is returned in that parameter.
3843 /// A target may choose to implement its own refinement within this function.
3844 /// If that's true, then return '0' as the number of RefinementSteps to avoid
3845 /// any further refinement of the estimate.
3846 /// An empty SDValue return means no estimate sequence can be created.
3847 virtual SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
3848 int Enabled, int &RefinementSteps) const {
3849 return SDValue();
3852 //===--------------------------------------------------------------------===//
3853 // Legalization utility functions
3856 /// Expand a MUL or [US]MUL_LOHI of n-bit values into two or four nodes,
3857 /// respectively, each computing an n/2-bit part of the result.
3858 /// \param Result A vector that will be filled with the parts of the result
3859 /// in little-endian order.
3860 /// \param LL Low bits of the LHS of the MUL. You can use this parameter
3861 /// if you want to control how low bits are extracted from the LHS.
3862 /// \param LH High bits of the LHS of the MUL. See LL for meaning.
3863 /// \param RL Low bits of the RHS of the MUL. See LL for meaning
3864 /// \param RH High bits of the RHS of the MUL. See LL for meaning.
3865 /// \returns true if the node has been expanded, false if it has not
3866 bool expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, SDValue LHS,
3867 SDValue RHS, SmallVectorImpl<SDValue> &Result, EVT HiLoVT,
3868 SelectionDAG &DAG, MulExpansionKind Kind,
3869 SDValue LL = SDValue(), SDValue LH = SDValue(),
3870 SDValue RL = SDValue(), SDValue RH = SDValue()) const;
3872 /// Expand a MUL into two nodes. One that computes the high bits of
3873 /// the result and one that computes the low bits.
3874 /// \param HiLoVT The value type to use for the Lo and Hi nodes.
3875 /// \param LL Low bits of the LHS of the MUL. You can use this parameter
3876 /// if you want to control how low bits are extracted from the LHS.
3877 /// \param LH High bits of the LHS of the MUL. See LL for meaning.
3878 /// \param RL Low bits of the RHS of the MUL. See LL for meaning
3879 /// \param RH High bits of the RHS of the MUL. See LL for meaning.
3880 /// \returns true if the node has been expanded. false if it has not
3881 bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
3882 SelectionDAG &DAG, MulExpansionKind Kind,
3883 SDValue LL = SDValue(), SDValue LH = SDValue(),
3884 SDValue RL = SDValue(), SDValue RH = SDValue()) const;
3886 /// Expand funnel shift.
3887 /// \param N Node to expand
3888 /// \param Result output after conversion
3889 /// \returns True, if the expansion was successful, false otherwise
3890 bool expandFunnelShift(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
3892 /// Expand rotations.
3893 /// \param N Node to expand
3894 /// \param Result output after conversion
3895 /// \returns True, if the expansion was successful, false otherwise
3896 bool expandROT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
3898 /// Expand float(f32) to SINT(i64) conversion
3899 /// \param N Node to expand
3900 /// \param Result output after conversion
3901 /// \returns True, if the expansion was successful, false otherwise
3902 bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
3904 /// Expand float to UINT conversion
3905 /// \param N Node to expand
3906 /// \param Result output after conversion
3907 /// \returns True, if the expansion was successful, false otherwise
3908 bool expandFP_TO_UINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
3910 /// Expand UINT(i64) to double(f64) conversion
3911 /// \param N Node to expand
3912 /// \param Result output after conversion
3913 /// \returns True, if the expansion was successful, false otherwise
3914 bool expandUINT_TO_FP(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
3916 /// Expand fminnum/fmaxnum into fminnum_ieee/fmaxnum_ieee with quieted inputs.
3917 SDValue expandFMINNUM_FMAXNUM(SDNode *N, SelectionDAG &DAG) const;
3919 /// Expand CTPOP nodes. Expands vector/scalar CTPOP nodes,
3920 /// vector nodes can only succeed if all operations are legal/custom.
3921 /// \param N Node to expand
3922 /// \param Result output after conversion
3923 /// \returns True, if the expansion was successful, false otherwise
3924 bool expandCTPOP(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
3926 /// Expand CTLZ/CTLZ_ZERO_UNDEF nodes. Expands vector/scalar CTLZ nodes,
3927 /// vector nodes can only succeed if all operations are legal/custom.
3928 /// \param N Node to expand
3929 /// \param Result output after conversion
3930 /// \returns True, if the expansion was successful, false otherwise
3931 bool expandCTLZ(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
3933 /// Expand CTTZ/CTTZ_ZERO_UNDEF nodes. Expands vector/scalar CTTZ nodes,
3934 /// vector nodes can only succeed if all operations are legal/custom.
3935 /// \param N Node to expand
3936 /// \param Result output after conversion
3937 /// \returns True, if the expansion was successful, false otherwise
3938 bool expandCTTZ(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
3940 /// Expand ABS nodes. Expands vector/scalar ABS nodes,
3941 /// vector nodes can only succeed if all operations are legal/custom.
3942 /// (ABS x) -> (XOR (ADD x, (SRA x, type_size)), (SRA x, type_size))
3943 /// \param N Node to expand
3944 /// \param Result output after conversion
3945 /// \returns True, if the expansion was successful, false otherwise
3946 bool expandABS(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
3948 /// Turn load of vector type into a load of the individual elements.
3949 /// \param LD load to expand
3950 /// \returns MERGE_VALUEs of the scalar loads with their chains.
3951 SDValue scalarizeVectorLoad(LoadSDNode *LD, SelectionDAG &DAG) const;
3953 // Turn a store of a vector type into stores of the individual elements.
3954 /// \param ST Store with a vector value type
3955 /// \returns MERGE_VALUs of the individual store chains.
3956 SDValue scalarizeVectorStore(StoreSDNode *ST, SelectionDAG &DAG) const;
3958 /// Expands an unaligned load to 2 half-size loads for an integer, and
3959 /// possibly more for vectors.
3960 std::pair<SDValue, SDValue> expandUnalignedLoad(LoadSDNode *LD,
3961 SelectionDAG &DAG) const;
3963 /// Expands an unaligned store to 2 half-size stores for integer values, and
3964 /// possibly more for vectors.
3965 SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const;
3967 /// Increments memory address \p Addr according to the type of the value
3968 /// \p DataVT that should be stored. If the data is stored in compressed
3969 /// form, the memory address should be incremented according to the number of
3970 /// the stored elements. This number is equal to the number of '1's bits
3971 /// in the \p Mask.
3972 /// \p DataVT is a vector type. \p Mask is a vector value.
3973 /// \p DataVT and \p Mask have the same number of vector elements.
3974 SDValue IncrementMemoryAddress(SDValue Addr, SDValue Mask, const SDLoc &DL,
3975 EVT DataVT, SelectionDAG &DAG,
3976 bool IsCompressedMemory) const;
3978 /// Get a pointer to vector element \p Idx located in memory for a vector of
3979 /// type \p VecVT starting at a base address of \p VecPtr. If \p Idx is out of
3980 /// bounds the returned pointer is unspecified, but will be within the vector
3981 /// bounds.
3982 SDValue getVectorElementPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT,
3983 SDValue Index) const;
3985 /// Method for building the DAG expansion of ISD::[US][ADD|SUB]SAT. This
3986 /// method accepts integers as its arguments.
3987 SDValue expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const;
3989 /// Method for building the DAG expansion of ISD::SMULFIX. This method accepts
3990 /// integers as its arguments.
3991 SDValue expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const;
3993 /// Method for building the DAG expansion of ISD::U(ADD|SUB)O. Expansion
3994 /// always suceeds and populates the Result and Overflow arguments.
3995 void expandUADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow,
3996 SelectionDAG &DAG) const;
3998 /// Method for building the DAG expansion of ISD::S(ADD|SUB)O. Expansion
3999 /// always suceeds and populates the Result and Overflow arguments.
4000 void expandSADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow,
4001 SelectionDAG &DAG) const;
4003 /// Method for building the DAG expansion of ISD::[US]MULO. Returns whether
4004 /// expansion was successful and populates the Result and Overflow arguments.
4005 bool expandMULO(SDNode *Node, SDValue &Result, SDValue &Overflow,
4006 SelectionDAG &DAG) const;
4008 /// Expand a VECREDUCE_* into an explicit calculation. If Count is specified,
4009 /// only the first Count elements of the vector are used.
4010 SDValue expandVecReduce(SDNode *Node, SelectionDAG &DAG) const;
4012 //===--------------------------------------------------------------------===//
4013 // Instruction Emitting Hooks
4016 /// This method should be implemented by targets that mark instructions with
4017 /// the 'usesCustomInserter' flag. These instructions are special in various
4018 /// ways, which require special support to insert. The specified MachineInstr
4019 /// is created but not inserted into any basic blocks, and this method is
4020 /// called to expand it into a sequence of instructions, potentially also
4021 /// creating new basic blocks and control flow.
4022 /// As long as the returned basic block is different (i.e., we created a new
4023 /// one), the custom inserter is free to modify the rest of \p MBB.
4024 virtual MachineBasicBlock *
4025 EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const;
4027 /// This method should be implemented by targets that mark instructions with
4028 /// the 'hasPostISelHook' flag. These instructions must be adjusted after
4029 /// instruction selection by target hooks. e.g. To fill in optional defs for
4030 /// ARM 's' setting instructions.
4031 virtual void AdjustInstrPostInstrSelection(MachineInstr &MI,
4032 SDNode *Node) const;
4034 /// If this function returns true, SelectionDAGBuilder emits a
4035 /// LOAD_STACK_GUARD node when it is lowering Intrinsic::stackprotector.
4036 virtual bool useLoadStackGuardNode() const {
4037 return false;
4040 virtual SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val,
4041 const SDLoc &DL) const {
4042 llvm_unreachable("not implemented for this target");
4045 /// Lower TLS global address SDNode for target independent emulated TLS model.
4046 virtual SDValue LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
4047 SelectionDAG &DAG) const;
4049 /// Expands target specific indirect branch for the case of JumpTable
4050 /// expanasion.
4051 virtual SDValue expandIndirectJTBranch(const SDLoc& dl, SDValue Value, SDValue Addr,
4052 SelectionDAG &DAG) const {
4053 return DAG.getNode(ISD::BRIND, dl, MVT::Other, Value, Addr);
4056 // seteq(x, 0) -> truncate(srl(ctlz(zext(x)), log2(#bits)))
4057 // If we're comparing for equality to zero and isCtlzFast is true, expose the
4058 // fact that this can be implemented as a ctlz/srl pair, so that the dag
4059 // combiner can fold the new nodes.
4060 SDValue lowerCmpEqZeroToCtlzSrl(SDValue Op, SelectionDAG &DAG) const;
4062 private:
4063 SDValue foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
4064 const SDLoc &DL, DAGCombinerInfo &DCI) const;
4065 SDValue foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
4066 const SDLoc &DL, DAGCombinerInfo &DCI) const;
4068 SDValue optimizeSetCCOfSignedTruncationCheck(EVT SCCVT, SDValue N0,
4069 SDValue N1, ISD::CondCode Cond,
4070 DAGCombinerInfo &DCI,
4071 const SDLoc &DL) const;
4073 SDValue prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
4074 SDValue CompTargetNode, ISD::CondCode Cond,
4075 DAGCombinerInfo &DCI, const SDLoc &DL,
4076 SmallVectorImpl<SDNode *> &Created) const;
4077 SDValue buildUREMEqFold(EVT SETCCVT, SDValue REMNode, SDValue CompTargetNode,
4078 ISD::CondCode Cond, DAGCombinerInfo &DCI,
4079 const SDLoc &DL) const;
4082 /// Given an LLVM IR type and return type attributes, compute the return value
4083 /// EVTs and flags, and optionally also the offsets, if the return value is
4084 /// being lowered to memory.
4085 void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr,
4086 SmallVectorImpl<ISD::OutputArg> &Outs,
4087 const TargetLowering &TLI, const DataLayout &DL);
4089 } // end namespace llvm
4091 #endif // LLVM_CODEGEN_TARGETLOWERING_H