[ARM] MVE integer min and max
[llvm-complete.git] / include / llvm / IR / Value.h
blobb2d8e7ac474149aafd8c7aee092c09c003c5f3b8
1 //===- llvm/Value.h - Definition of the Value class -------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the Value class.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_IR_VALUE_H
14 #define LLVM_IR_VALUE_H
16 #include "llvm-c/Types.h"
17 #include "llvm/ADT/iterator_range.h"
18 #include "llvm/IR/Use.h"
19 #include "llvm/Support/CBindingWrapping.h"
20 #include "llvm/Support/Casting.h"
21 #include <cassert>
22 #include <iterator>
23 #include <memory>
25 namespace llvm {
27 class APInt;
28 class Argument;
29 class BasicBlock;
30 class Constant;
31 class ConstantData;
32 class ConstantAggregate;
33 class DataLayout;
34 class Function;
35 class GlobalAlias;
36 class GlobalIFunc;
37 class GlobalIndirectSymbol;
38 class GlobalObject;
39 class GlobalValue;
40 class GlobalVariable;
41 class InlineAsm;
42 class Instruction;
43 class LLVMContext;
44 class Module;
45 class ModuleSlotTracker;
46 class raw_ostream;
47 template<typename ValueTy> class StringMapEntry;
48 class StringRef;
49 class Twine;
50 class Type;
51 class User;
53 using ValueName = StringMapEntry<Value *>;
55 //===----------------------------------------------------------------------===//
56 // Value Class
57 //===----------------------------------------------------------------------===//
59 /// LLVM Value Representation
60 ///
61 /// This is a very important LLVM class. It is the base class of all values
62 /// computed by a program that may be used as operands to other values. Value is
63 /// the super class of other important classes such as Instruction and Function.
64 /// All Values have a Type. Type is not a subclass of Value. Some values can
65 /// have a name and they belong to some Module. Setting the name on the Value
66 /// automatically updates the module's symbol table.
67 ///
68 /// Every value has a "use list" that keeps track of which other Values are
69 /// using this Value. A Value can also have an arbitrary number of ValueHandle
70 /// objects that watch it and listen to RAUW and Destroy events. See
71 /// llvm/IR/ValueHandle.h for details.
72 class Value {
73 // The least-significant bit of the first word of Value *must* be zero:
74 // http://www.llvm.org/docs/ProgrammersManual.html#the-waymarking-algorithm
75 Type *VTy;
76 Use *UseList;
78 friend class ValueAsMetadata; // Allow access to IsUsedByMD.
79 friend class ValueHandleBase;
81 const unsigned char SubclassID; // Subclass identifier (for isa/dyn_cast)
82 unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
84 protected:
85 /// Hold subclass data that can be dropped.
86 ///
87 /// This member is similar to SubclassData, however it is for holding
88 /// information which may be used to aid optimization, but which may be
89 /// cleared to zero without affecting conservative interpretation.
90 unsigned char SubclassOptionalData : 7;
92 private:
93 /// Hold arbitrary subclass data.
94 ///
95 /// This member is defined by this class, but is not used for anything.
96 /// Subclasses can use it to hold whatever state they find useful. This
97 /// field is initialized to zero by the ctor.
98 unsigned short SubclassData;
100 protected:
101 /// The number of operands in the subclass.
103 /// This member is defined by this class, but not used for anything.
104 /// Subclasses can use it to store their number of operands, if they have
105 /// any.
107 /// This is stored here to save space in User on 64-bit hosts. Since most
108 /// instances of Value have operands, 32-bit hosts aren't significantly
109 /// affected.
111 /// Note, this should *NOT* be used directly by any class other than User.
112 /// User uses this value to find the Use list.
113 enum : unsigned { NumUserOperandsBits = 28 };
114 unsigned NumUserOperands : NumUserOperandsBits;
116 // Use the same type as the bitfield above so that MSVC will pack them.
117 unsigned IsUsedByMD : 1;
118 unsigned HasName : 1;
119 unsigned HasHungOffUses : 1;
120 unsigned HasDescriptor : 1;
122 private:
123 template <typename UseT> // UseT == 'Use' or 'const Use'
124 class use_iterator_impl
125 : public std::iterator<std::forward_iterator_tag, UseT *> {
126 friend class Value;
128 UseT *U;
130 explicit use_iterator_impl(UseT *u) : U(u) {}
132 public:
133 use_iterator_impl() : U() {}
135 bool operator==(const use_iterator_impl &x) const { return U == x.U; }
136 bool operator!=(const use_iterator_impl &x) const { return !operator==(x); }
138 use_iterator_impl &operator++() { // Preincrement
139 assert(U && "Cannot increment end iterator!");
140 U = U->getNext();
141 return *this;
144 use_iterator_impl operator++(int) { // Postincrement
145 auto tmp = *this;
146 ++*this;
147 return tmp;
150 UseT &operator*() const {
151 assert(U && "Cannot dereference end iterator!");
152 return *U;
155 UseT *operator->() const { return &operator*(); }
157 operator use_iterator_impl<const UseT>() const {
158 return use_iterator_impl<const UseT>(U);
162 template <typename UserTy> // UserTy == 'User' or 'const User'
163 class user_iterator_impl
164 : public std::iterator<std::forward_iterator_tag, UserTy *> {
165 use_iterator_impl<Use> UI;
166 explicit user_iterator_impl(Use *U) : UI(U) {}
167 friend class Value;
169 public:
170 user_iterator_impl() = default;
172 bool operator==(const user_iterator_impl &x) const { return UI == x.UI; }
173 bool operator!=(const user_iterator_impl &x) const { return !operator==(x); }
175 /// Returns true if this iterator is equal to user_end() on the value.
176 bool atEnd() const { return *this == user_iterator_impl(); }
178 user_iterator_impl &operator++() { // Preincrement
179 ++UI;
180 return *this;
183 user_iterator_impl operator++(int) { // Postincrement
184 auto tmp = *this;
185 ++*this;
186 return tmp;
189 // Retrieve a pointer to the current User.
190 UserTy *operator*() const {
191 return UI->getUser();
194 UserTy *operator->() const { return operator*(); }
196 operator user_iterator_impl<const UserTy>() const {
197 return user_iterator_impl<const UserTy>(*UI);
200 Use &getUse() const { return *UI; }
203 protected:
204 Value(Type *Ty, unsigned scid);
206 /// Value's destructor should be virtual by design, but that would require
207 /// that Value and all of its subclasses have a vtable that effectively
208 /// duplicates the information in the value ID. As a size optimization, the
209 /// destructor has been protected, and the caller should manually call
210 /// deleteValue.
211 ~Value(); // Use deleteValue() to delete a generic Value.
213 public:
214 Value(const Value &) = delete;
215 Value &operator=(const Value &) = delete;
217 /// Delete a pointer to a generic Value.
218 void deleteValue();
220 /// Support for debugging, callable in GDB: V->dump()
221 void dump() const;
223 /// Implement operator<< on Value.
224 /// @{
225 void print(raw_ostream &O, bool IsForDebug = false) const;
226 void print(raw_ostream &O, ModuleSlotTracker &MST,
227 bool IsForDebug = false) const;
228 /// @}
230 /// Print the name of this Value out to the specified raw_ostream.
232 /// This is useful when you just want to print 'int %reg126', not the
233 /// instruction that generated it. If you specify a Module for context, then
234 /// even constanst get pretty-printed; for example, the type of a null
235 /// pointer is printed symbolically.
236 /// @{
237 void printAsOperand(raw_ostream &O, bool PrintType = true,
238 const Module *M = nullptr) const;
239 void printAsOperand(raw_ostream &O, bool PrintType,
240 ModuleSlotTracker &MST) const;
241 /// @}
243 /// All values are typed, get the type of this value.
244 Type *getType() const { return VTy; }
246 /// All values hold a context through their type.
247 LLVMContext &getContext() const;
249 // All values can potentially be named.
250 bool hasName() const { return HasName; }
251 ValueName *getValueName() const;
252 void setValueName(ValueName *VN);
254 private:
255 void destroyValueName();
256 enum class ReplaceMetadataUses { No, Yes };
257 void doRAUW(Value *New, ReplaceMetadataUses);
258 void setNameImpl(const Twine &Name);
260 public:
261 /// Return a constant reference to the value's name.
263 /// This guaranteed to return the same reference as long as the value is not
264 /// modified. If the value has a name, this does a hashtable lookup, so it's
265 /// not free.
266 StringRef getName() const;
268 /// Change the name of the value.
270 /// Choose a new unique name if the provided name is taken.
272 /// \param Name The new name; or "" if the value's name should be removed.
273 void setName(const Twine &Name);
275 /// Transfer the name from V to this value.
277 /// After taking V's name, sets V's name to empty.
279 /// \note It is an error to call V->takeName(V).
280 void takeName(Value *V);
282 /// Change all uses of this to point to a new Value.
284 /// Go through the uses list for this definition and make each use point to
285 /// "V" instead of "this". After this completes, 'this's use list is
286 /// guaranteed to be empty.
287 void replaceAllUsesWith(Value *V);
289 /// Change non-metadata uses of this to point to a new Value.
291 /// Go through the uses list for this definition and make each use point to
292 /// "V" instead of "this". This function skips metadata entries in the list.
293 void replaceNonMetadataUsesWith(Value *V);
295 /// replaceUsesOutsideBlock - Go through the uses list for this definition and
296 /// make each use point to "V" instead of "this" when the use is outside the
297 /// block. 'This's use list is expected to have at least one element.
298 /// Unlike replaceAllUsesWith this function does not support basic block
299 /// values or constant users.
300 void replaceUsesOutsideBlock(Value *V, BasicBlock *BB);
302 //----------------------------------------------------------------------
303 // Methods for handling the chain of uses of this Value.
305 // Materializing a function can introduce new uses, so these methods come in
306 // two variants:
307 // The methods that start with materialized_ check the uses that are
308 // currently known given which functions are materialized. Be very careful
309 // when using them since you might not get all uses.
310 // The methods that don't start with materialized_ assert that modules is
311 // fully materialized.
312 void assertModuleIsMaterializedImpl() const;
313 // This indirection exists so we can keep assertModuleIsMaterializedImpl()
314 // around in release builds of Value.cpp to be linked with other code built
315 // in debug mode. But this avoids calling it in any of the release built code.
316 void assertModuleIsMaterialized() const {
317 #ifndef NDEBUG
318 assertModuleIsMaterializedImpl();
319 #endif
322 bool use_empty() const {
323 assertModuleIsMaterialized();
324 return UseList == nullptr;
327 bool materialized_use_empty() const {
328 return UseList == nullptr;
331 using use_iterator = use_iterator_impl<Use>;
332 using const_use_iterator = use_iterator_impl<const Use>;
334 use_iterator materialized_use_begin() { return use_iterator(UseList); }
335 const_use_iterator materialized_use_begin() const {
336 return const_use_iterator(UseList);
338 use_iterator use_begin() {
339 assertModuleIsMaterialized();
340 return materialized_use_begin();
342 const_use_iterator use_begin() const {
343 assertModuleIsMaterialized();
344 return materialized_use_begin();
346 use_iterator use_end() { return use_iterator(); }
347 const_use_iterator use_end() const { return const_use_iterator(); }
348 iterator_range<use_iterator> materialized_uses() {
349 return make_range(materialized_use_begin(), use_end());
351 iterator_range<const_use_iterator> materialized_uses() const {
352 return make_range(materialized_use_begin(), use_end());
354 iterator_range<use_iterator> uses() {
355 assertModuleIsMaterialized();
356 return materialized_uses();
358 iterator_range<const_use_iterator> uses() const {
359 assertModuleIsMaterialized();
360 return materialized_uses();
363 bool user_empty() const {
364 assertModuleIsMaterialized();
365 return UseList == nullptr;
368 using user_iterator = user_iterator_impl<User>;
369 using const_user_iterator = user_iterator_impl<const User>;
371 user_iterator materialized_user_begin() { return user_iterator(UseList); }
372 const_user_iterator materialized_user_begin() const {
373 return const_user_iterator(UseList);
375 user_iterator user_begin() {
376 assertModuleIsMaterialized();
377 return materialized_user_begin();
379 const_user_iterator user_begin() const {
380 assertModuleIsMaterialized();
381 return materialized_user_begin();
383 user_iterator user_end() { return user_iterator(); }
384 const_user_iterator user_end() const { return const_user_iterator(); }
385 User *user_back() {
386 assertModuleIsMaterialized();
387 return *materialized_user_begin();
389 const User *user_back() const {
390 assertModuleIsMaterialized();
391 return *materialized_user_begin();
393 iterator_range<user_iterator> materialized_users() {
394 return make_range(materialized_user_begin(), user_end());
396 iterator_range<const_user_iterator> materialized_users() const {
397 return make_range(materialized_user_begin(), user_end());
399 iterator_range<user_iterator> users() {
400 assertModuleIsMaterialized();
401 return materialized_users();
403 iterator_range<const_user_iterator> users() const {
404 assertModuleIsMaterialized();
405 return materialized_users();
408 /// Return true if there is exactly one user of this value.
410 /// This is specialized because it is a common request and does not require
411 /// traversing the whole use list.
412 bool hasOneUse() const {
413 const_use_iterator I = use_begin(), E = use_end();
414 if (I == E) return false;
415 return ++I == E;
418 /// Return true if this Value has exactly N users.
419 bool hasNUses(unsigned N) const;
421 /// Return true if this value has N users or more.
423 /// This is logically equivalent to getNumUses() >= N.
424 bool hasNUsesOrMore(unsigned N) const;
426 /// Check if this value is used in the specified basic block.
427 bool isUsedInBasicBlock(const BasicBlock *BB) const;
429 /// This method computes the number of uses of this Value.
431 /// This is a linear time operation. Use hasOneUse, hasNUses, or
432 /// hasNUsesOrMore to check for specific values.
433 unsigned getNumUses() const;
435 /// This method should only be used by the Use class.
436 void addUse(Use &U) { U.addToList(&UseList); }
438 /// Concrete subclass of this.
440 /// An enumeration for keeping track of the concrete subclass of Value that
441 /// is actually instantiated. Values of this enumeration are kept in the
442 /// Value classes SubclassID field. They are used for concrete type
443 /// identification.
444 enum ValueTy {
445 #define HANDLE_VALUE(Name) Name##Val,
446 #include "llvm/IR/Value.def"
448 // Markers:
449 #define HANDLE_CONSTANT_MARKER(Marker, Constant) Marker = Constant##Val,
450 #include "llvm/IR/Value.def"
453 /// Return an ID for the concrete type of this object.
455 /// This is used to implement the classof checks. This should not be used
456 /// for any other purpose, as the values may change as LLVM evolves. Also,
457 /// note that for instructions, the Instruction's opcode is added to
458 /// InstructionVal. So this means three things:
459 /// # there is no value with code InstructionVal (no opcode==0).
460 /// # there are more possible values for the value type than in ValueTy enum.
461 /// # the InstructionVal enumerator must be the highest valued enumerator in
462 /// the ValueTy enum.
463 unsigned getValueID() const {
464 return SubclassID;
467 /// Return the raw optional flags value contained in this value.
469 /// This should only be used when testing two Values for equivalence.
470 unsigned getRawSubclassOptionalData() const {
471 return SubclassOptionalData;
474 /// Clear the optional flags contained in this value.
475 void clearSubclassOptionalData() {
476 SubclassOptionalData = 0;
479 /// Check the optional flags for equality.
480 bool hasSameSubclassOptionalData(const Value *V) const {
481 return SubclassOptionalData == V->SubclassOptionalData;
484 /// Return true if there is a value handle associated with this value.
485 bool hasValueHandle() const { return HasValueHandle; }
487 /// Return true if there is metadata referencing this value.
488 bool isUsedByMetadata() const { return IsUsedByMD; }
490 /// Return true if this value is a swifterror value.
492 /// swifterror values can be either a function argument or an alloca with a
493 /// swifterror attribute.
494 bool isSwiftError() const;
496 /// Strip off pointer casts, all-zero GEPs, address space casts, and aliases.
498 /// Returns the original uncasted value. If this is called on a non-pointer
499 /// value, it returns 'this'.
500 const Value *stripPointerCasts() const;
501 Value *stripPointerCasts() {
502 return const_cast<Value *>(
503 static_cast<const Value *>(this)->stripPointerCasts());
506 /// Strip off pointer casts, all-zero GEPs, address space casts, and aliases
507 /// but ensures the representation of the result stays the same.
509 /// Returns the original uncasted value with the same representation. If this
510 /// is called on a non-pointer value, it returns 'this'.
511 const Value *stripPointerCastsSameRepresentation() const;
512 Value *stripPointerCastsSameRepresentation() {
513 return const_cast<Value *>(static_cast<const Value *>(this)
514 ->stripPointerCastsSameRepresentation());
517 /// Strip off pointer casts, all-zero GEPs, aliases and invariant group
518 /// info.
520 /// Returns the original uncasted value. If this is called on a non-pointer
521 /// value, it returns 'this'. This function should be used only in
522 /// Alias analysis.
523 const Value *stripPointerCastsAndInvariantGroups() const;
524 Value *stripPointerCastsAndInvariantGroups() {
525 return const_cast<Value *>(
526 static_cast<const Value *>(this)->stripPointerCastsAndInvariantGroups());
529 /// Strip off pointer casts and all-zero GEPs.
531 /// Returns the original uncasted value. If this is called on a non-pointer
532 /// value, it returns 'this'.
533 const Value *stripPointerCastsNoFollowAliases() const;
534 Value *stripPointerCastsNoFollowAliases() {
535 return const_cast<Value *>(
536 static_cast<const Value *>(this)->stripPointerCastsNoFollowAliases());
539 /// Strip off pointer casts and all-constant inbounds GEPs.
541 /// Returns the original pointer value. If this is called on a non-pointer
542 /// value, it returns 'this'.
543 const Value *stripInBoundsConstantOffsets() const;
544 Value *stripInBoundsConstantOffsets() {
545 return const_cast<Value *>(
546 static_cast<const Value *>(this)->stripInBoundsConstantOffsets());
549 /// Accumulate the constant offset this value has compared to a base pointer.
550 /// Only 'getelementptr' instructions (GEPs) with constant indices are
551 /// accumulated but other instructions, e.g., casts, are stripped away as
552 /// well. The accumulated constant offset is added to \p Offset and the base
553 /// pointer is returned.
555 /// The APInt \p Offset has to have a bit-width equal to the IntPtr type for
556 /// the address space of 'this' pointer value, e.g., use
557 /// DataLayout::getIndexTypeSizeInBits(Ty).
559 /// If \p AllowNonInbounds is true, constant offsets in GEPs are stripped and
560 /// accumulated even if the GEP is not "inbounds".
562 /// If this is called on a non-pointer value, it returns 'this' and the
563 /// \p Offset is not modified.
565 /// Note that this function will never return a nullptr. It will also never
566 /// manipulate the \p Offset in a way that would not match the difference
567 /// between the underlying value and the returned one. Thus, if no constant
568 /// offset was found, the returned value is the underlying one and \p Offset
569 /// is unchanged.
570 const Value *stripAndAccumulateConstantOffsets(const DataLayout &DL,
571 APInt &Offset,
572 bool AllowNonInbounds) const;
573 Value *stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset,
574 bool AllowNonInbounds) {
575 return const_cast<Value *>(
576 static_cast<const Value *>(this)->stripAndAccumulateConstantOffsets(
577 DL, Offset, AllowNonInbounds));
580 /// This is a wrapper around stripAndAccumulateConstantOffsets with the
581 /// in-bounds requirement set to false.
582 const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
583 APInt &Offset) const {
584 return stripAndAccumulateConstantOffsets(DL, Offset,
585 /* AllowNonInbounds */ false);
587 Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
588 APInt &Offset) {
589 return stripAndAccumulateConstantOffsets(DL, Offset,
590 /* AllowNonInbounds */ false);
593 /// Strip off pointer casts and inbounds GEPs.
595 /// Returns the original pointer value. If this is called on a non-pointer
596 /// value, it returns 'this'.
597 const Value *stripInBoundsOffsets() const;
598 Value *stripInBoundsOffsets() {
599 return const_cast<Value *>(
600 static_cast<const Value *>(this)->stripInBoundsOffsets());
603 /// Returns the number of bytes known to be dereferenceable for the
604 /// pointer value.
606 /// If CanBeNull is set by this function the pointer can either be null or be
607 /// dereferenceable up to the returned number of bytes.
608 uint64_t getPointerDereferenceableBytes(const DataLayout &DL,
609 bool &CanBeNull) const;
611 /// Returns an alignment of the pointer value.
613 /// Returns an alignment which is either specified explicitly, e.g. via
614 /// align attribute of a function argument, or guaranteed by DataLayout.
615 unsigned getPointerAlignment(const DataLayout &DL) const;
617 /// Translate PHI node to its predecessor from the given basic block.
619 /// If this value is a PHI node with CurBB as its parent, return the value in
620 /// the PHI node corresponding to PredBB. If not, return ourself. This is
621 /// useful if you want to know the value something has in a predecessor
622 /// block.
623 const Value *DoPHITranslation(const BasicBlock *CurBB,
624 const BasicBlock *PredBB) const;
625 Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) {
626 return const_cast<Value *>(
627 static_cast<const Value *>(this)->DoPHITranslation(CurBB, PredBB));
630 /// The maximum alignment for instructions.
632 /// This is the greatest alignment value supported by load, store, and alloca
633 /// instructions, and global values.
634 static const unsigned MaxAlignmentExponent = 29;
635 static const unsigned MaximumAlignment = 1u << MaxAlignmentExponent;
637 /// Mutate the type of this Value to be of the specified type.
639 /// Note that this is an extremely dangerous operation which can create
640 /// completely invalid IR very easily. It is strongly recommended that you
641 /// recreate IR objects with the right types instead of mutating them in
642 /// place.
643 void mutateType(Type *Ty) {
644 VTy = Ty;
647 /// Sort the use-list.
649 /// Sorts the Value's use-list by Cmp using a stable mergesort. Cmp is
650 /// expected to compare two \a Use references.
651 template <class Compare> void sortUseList(Compare Cmp);
653 /// Reverse the use-list.
654 void reverseUseList();
656 private:
657 /// Merge two lists together.
659 /// Merges \c L and \c R using \c Cmp. To enable stable sorts, always pushes
660 /// "equal" items from L before items from R.
662 /// \return the first element in the list.
664 /// \note Completely ignores \a Use::Prev (doesn't read, doesn't update).
665 template <class Compare>
666 static Use *mergeUseLists(Use *L, Use *R, Compare Cmp) {
667 Use *Merged;
668 Use **Next = &Merged;
670 while (true) {
671 if (!L) {
672 *Next = R;
673 break;
675 if (!R) {
676 *Next = L;
677 break;
679 if (Cmp(*R, *L)) {
680 *Next = R;
681 Next = &R->Next;
682 R = R->Next;
683 } else {
684 *Next = L;
685 Next = &L->Next;
686 L = L->Next;
690 return Merged;
693 protected:
694 unsigned short getSubclassDataFromValue() const { return SubclassData; }
695 void setValueSubclassData(unsigned short D) { SubclassData = D; }
698 struct ValueDeleter { void operator()(Value *V) { V->deleteValue(); } };
700 /// Use this instead of std::unique_ptr<Value> or std::unique_ptr<Instruction>.
701 /// Those don't work because Value and Instruction's destructors are protected,
702 /// aren't virtual, and won't destroy the complete object.
703 using unique_value = std::unique_ptr<Value, ValueDeleter>;
705 inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
706 V.print(OS);
707 return OS;
710 void Use::set(Value *V) {
711 if (Val) removeFromList();
712 Val = V;
713 if (V) V->addUse(*this);
716 Value *Use::operator=(Value *RHS) {
717 set(RHS);
718 return RHS;
721 const Use &Use::operator=(const Use &RHS) {
722 set(RHS.Val);
723 return *this;
726 template <class Compare> void Value::sortUseList(Compare Cmp) {
727 if (!UseList || !UseList->Next)
728 // No need to sort 0 or 1 uses.
729 return;
731 // Note: this function completely ignores Prev pointers until the end when
732 // they're fixed en masse.
734 // Create a binomial vector of sorted lists, visiting uses one at a time and
735 // merging lists as necessary.
736 const unsigned MaxSlots = 32;
737 Use *Slots[MaxSlots];
739 // Collect the first use, turning it into a single-item list.
740 Use *Next = UseList->Next;
741 UseList->Next = nullptr;
742 unsigned NumSlots = 1;
743 Slots[0] = UseList;
745 // Collect all but the last use.
746 while (Next->Next) {
747 Use *Current = Next;
748 Next = Current->Next;
750 // Turn Current into a single-item list.
751 Current->Next = nullptr;
753 // Save Current in the first available slot, merging on collisions.
754 unsigned I;
755 for (I = 0; I < NumSlots; ++I) {
756 if (!Slots[I])
757 break;
759 // Merge two lists, doubling the size of Current and emptying slot I.
761 // Since the uses in Slots[I] originally preceded those in Current, send
762 // Slots[I] in as the left parameter to maintain a stable sort.
763 Current = mergeUseLists(Slots[I], Current, Cmp);
764 Slots[I] = nullptr;
766 // Check if this is a new slot.
767 if (I == NumSlots) {
768 ++NumSlots;
769 assert(NumSlots <= MaxSlots && "Use list bigger than 2^32");
772 // Found an open slot.
773 Slots[I] = Current;
776 // Merge all the lists together.
777 assert(Next && "Expected one more Use");
778 assert(!Next->Next && "Expected only one Use");
779 UseList = Next;
780 for (unsigned I = 0; I < NumSlots; ++I)
781 if (Slots[I])
782 // Since the uses in Slots[I] originally preceded those in UseList, send
783 // Slots[I] in as the left parameter to maintain a stable sort.
784 UseList = mergeUseLists(Slots[I], UseList, Cmp);
786 // Fix the Prev pointers.
787 for (Use *I = UseList, **Prev = &UseList; I; I = I->Next) {
788 I->setPrev(Prev);
789 Prev = &I->Next;
793 // isa - Provide some specializations of isa so that we don't have to include
794 // the subtype header files to test to see if the value is a subclass...
796 template <> struct isa_impl<Constant, Value> {
797 static inline bool doit(const Value &Val) {
798 static_assert(Value::ConstantFirstVal == 0, "Val.getValueID() >= Value::ConstantFirstVal");
799 return Val.getValueID() <= Value::ConstantLastVal;
803 template <> struct isa_impl<ConstantData, Value> {
804 static inline bool doit(const Value &Val) {
805 return Val.getValueID() >= Value::ConstantDataFirstVal &&
806 Val.getValueID() <= Value::ConstantDataLastVal;
810 template <> struct isa_impl<ConstantAggregate, Value> {
811 static inline bool doit(const Value &Val) {
812 return Val.getValueID() >= Value::ConstantAggregateFirstVal &&
813 Val.getValueID() <= Value::ConstantAggregateLastVal;
817 template <> struct isa_impl<Argument, Value> {
818 static inline bool doit (const Value &Val) {
819 return Val.getValueID() == Value::ArgumentVal;
823 template <> struct isa_impl<InlineAsm, Value> {
824 static inline bool doit(const Value &Val) {
825 return Val.getValueID() == Value::InlineAsmVal;
829 template <> struct isa_impl<Instruction, Value> {
830 static inline bool doit(const Value &Val) {
831 return Val.getValueID() >= Value::InstructionVal;
835 template <> struct isa_impl<BasicBlock, Value> {
836 static inline bool doit(const Value &Val) {
837 return Val.getValueID() == Value::BasicBlockVal;
841 template <> struct isa_impl<Function, Value> {
842 static inline bool doit(const Value &Val) {
843 return Val.getValueID() == Value::FunctionVal;
847 template <> struct isa_impl<GlobalVariable, Value> {
848 static inline bool doit(const Value &Val) {
849 return Val.getValueID() == Value::GlobalVariableVal;
853 template <> struct isa_impl<GlobalAlias, Value> {
854 static inline bool doit(const Value &Val) {
855 return Val.getValueID() == Value::GlobalAliasVal;
859 template <> struct isa_impl<GlobalIFunc, Value> {
860 static inline bool doit(const Value &Val) {
861 return Val.getValueID() == Value::GlobalIFuncVal;
865 template <> struct isa_impl<GlobalIndirectSymbol, Value> {
866 static inline bool doit(const Value &Val) {
867 return isa<GlobalAlias>(Val) || isa<GlobalIFunc>(Val);
871 template <> struct isa_impl<GlobalValue, Value> {
872 static inline bool doit(const Value &Val) {
873 return isa<GlobalObject>(Val) || isa<GlobalIndirectSymbol>(Val);
877 template <> struct isa_impl<GlobalObject, Value> {
878 static inline bool doit(const Value &Val) {
879 return isa<GlobalVariable>(Val) || isa<Function>(Val);
883 // Create wrappers for C Binding types (see CBindingWrapping.h).
884 DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef)
886 // Specialized opaque value conversions.
887 inline Value **unwrap(LLVMValueRef *Vals) {
888 return reinterpret_cast<Value**>(Vals);
891 template<typename T>
892 inline T **unwrap(LLVMValueRef *Vals, unsigned Length) {
893 #ifndef NDEBUG
894 for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I)
895 unwrap<T>(*I); // For side effect of calling assert on invalid usage.
896 #endif
897 (void)Length;
898 return reinterpret_cast<T**>(Vals);
901 inline LLVMValueRef *wrap(const Value **Vals) {
902 return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals));
905 } // end namespace llvm
907 #endif // LLVM_IR_VALUE_H