1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Implementation of ELF support for the MC-JIT runtime dynamic linker.
11 //===----------------------------------------------------------------------===//
13 #include "RuntimeDyldELF.h"
14 #include "RuntimeDyldCheckerImpl.h"
15 #include "Targets/RuntimeDyldELFMips.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/BinaryFormat/ELF.h"
20 #include "llvm/Object/ELFObjectFile.h"
21 #include "llvm/Object/ObjectFile.h"
22 #include "llvm/Support/Endian.h"
23 #include "llvm/Support/MemoryBuffer.h"
26 using namespace llvm::object
;
27 using namespace llvm::support::endian
;
29 #define DEBUG_TYPE "dyld"
31 static void or32le(void *P
, int32_t V
) { write32le(P
, read32le(P
) | V
); }
33 static void or32AArch64Imm(void *L
, uint64_t Imm
) {
34 or32le(L
, (Imm
& 0xFFF) << 10);
37 template <class T
> static void write(bool isBE
, void *P
, T V
) {
38 isBE
? write
<T
, support::big
>(P
, V
) : write
<T
, support::little
>(P
, V
);
41 static void write32AArch64Addr(void *L
, uint64_t Imm
) {
42 uint32_t ImmLo
= (Imm
& 0x3) << 29;
43 uint32_t ImmHi
= (Imm
& 0x1FFFFC) << 3;
44 uint64_t Mask
= (0x3 << 29) | (0x1FFFFC << 3);
45 write32le(L
, (read32le(L
) & ~Mask
) | ImmLo
| ImmHi
);
48 // Return the bits [Start, End] from Val shifted Start bits.
49 // For instance, getBits(0xF0, 4, 8) returns 0xF.
50 static uint64_t getBits(uint64_t Val
, int Start
, int End
) {
51 uint64_t Mask
= ((uint64_t)1 << (End
+ 1 - Start
)) - 1;
52 return (Val
>> Start
) & Mask
;
57 template <class ELFT
> class DyldELFObject
: public ELFObjectFile
<ELFT
> {
58 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT
)
60 typedef Elf_Shdr_Impl
<ELFT
> Elf_Shdr
;
61 typedef Elf_Sym_Impl
<ELFT
> Elf_Sym
;
62 typedef Elf_Rel_Impl
<ELFT
, false> Elf_Rel
;
63 typedef Elf_Rel_Impl
<ELFT
, true> Elf_Rela
;
65 typedef Elf_Ehdr_Impl
<ELFT
> Elf_Ehdr
;
67 typedef typename
ELFT::uint addr_type
;
69 DyldELFObject(ELFObjectFile
<ELFT
> &&Obj
);
72 static Expected
<std::unique_ptr
<DyldELFObject
>>
73 create(MemoryBufferRef Wrapper
);
75 void updateSectionAddress(const SectionRef
&Sec
, uint64_t Addr
);
77 void updateSymbolAddress(const SymbolRef
&SymRef
, uint64_t Addr
);
79 // Methods for type inquiry through isa, cast and dyn_cast
80 static bool classof(const Binary
*v
) {
81 return (isa
<ELFObjectFile
<ELFT
>>(v
) &&
82 classof(cast
<ELFObjectFile
<ELFT
>>(v
)));
84 static bool classof(const ELFObjectFile
<ELFT
> *v
) {
85 return v
->isDyldType();
91 // The MemoryBuffer passed into this constructor is just a wrapper around the
92 // actual memory. Ultimately, the Binary parent class will take ownership of
93 // this MemoryBuffer object but not the underlying memory.
95 DyldELFObject
<ELFT
>::DyldELFObject(ELFObjectFile
<ELFT
> &&Obj
)
96 : ELFObjectFile
<ELFT
>(std::move(Obj
)) {
97 this->isDyldELFObject
= true;
100 template <class ELFT
>
101 Expected
<std::unique_ptr
<DyldELFObject
<ELFT
>>>
102 DyldELFObject
<ELFT
>::create(MemoryBufferRef Wrapper
) {
103 auto Obj
= ELFObjectFile
<ELFT
>::create(Wrapper
);
104 if (auto E
= Obj
.takeError())
106 std::unique_ptr
<DyldELFObject
<ELFT
>> Ret(
107 new DyldELFObject
<ELFT
>(std::move(*Obj
)));
108 return std::move(Ret
);
111 template <class ELFT
>
112 void DyldELFObject
<ELFT
>::updateSectionAddress(const SectionRef
&Sec
,
114 DataRefImpl ShdrRef
= Sec
.getRawDataRefImpl();
116 const_cast<Elf_Shdr
*>(reinterpret_cast<const Elf_Shdr
*>(ShdrRef
.p
));
118 // This assumes the address passed in matches the target address bitness
119 // The template-based type cast handles everything else.
120 shdr
->sh_addr
= static_cast<addr_type
>(Addr
);
123 template <class ELFT
>
124 void DyldELFObject
<ELFT
>::updateSymbolAddress(const SymbolRef
&SymRef
,
127 Elf_Sym
*sym
= const_cast<Elf_Sym
*>(
128 ELFObjectFile
<ELFT
>::getSymbol(SymRef
.getRawDataRefImpl()));
130 // This assumes the address passed in matches the target address bitness
131 // The template-based type cast handles everything else.
132 sym
->st_value
= static_cast<addr_type
>(Addr
);
135 class LoadedELFObjectInfo final
136 : public LoadedObjectInfoHelper
<LoadedELFObjectInfo
,
137 RuntimeDyld::LoadedObjectInfo
> {
139 LoadedELFObjectInfo(RuntimeDyldImpl
&RTDyld
, ObjSectionToIDMap ObjSecToIDMap
)
140 : LoadedObjectInfoHelper(RTDyld
, std::move(ObjSecToIDMap
)) {}
142 OwningBinary
<ObjectFile
>
143 getObjectForDebug(const ObjectFile
&Obj
) const override
;
146 template <typename ELFT
>
147 static Expected
<std::unique_ptr
<DyldELFObject
<ELFT
>>>
148 createRTDyldELFObject(MemoryBufferRef Buffer
, const ObjectFile
&SourceObject
,
149 const LoadedELFObjectInfo
&L
) {
150 typedef typename
ELFT::Shdr Elf_Shdr
;
151 typedef typename
ELFT::uint addr_type
;
153 Expected
<std::unique_ptr
<DyldELFObject
<ELFT
>>> ObjOrErr
=
154 DyldELFObject
<ELFT
>::create(Buffer
);
155 if (Error E
= ObjOrErr
.takeError())
158 std::unique_ptr
<DyldELFObject
<ELFT
>> Obj
= std::move(*ObjOrErr
);
160 // Iterate over all sections in the object.
161 auto SI
= SourceObject
.section_begin();
162 for (const auto &Sec
: Obj
->sections()) {
163 StringRef SectionName
;
164 Sec
.getName(SectionName
);
165 if (SectionName
!= "") {
166 DataRefImpl ShdrRef
= Sec
.getRawDataRefImpl();
167 Elf_Shdr
*shdr
= const_cast<Elf_Shdr
*>(
168 reinterpret_cast<const Elf_Shdr
*>(ShdrRef
.p
));
170 if (uint64_t SecLoadAddr
= L
.getSectionLoadAddress(*SI
)) {
171 // This assumes that the address passed in matches the target address
172 // bitness. The template-based type cast handles everything else.
173 shdr
->sh_addr
= static_cast<addr_type
>(SecLoadAddr
);
179 return std::move(Obj
);
182 static OwningBinary
<ObjectFile
>
183 createELFDebugObject(const ObjectFile
&Obj
, const LoadedELFObjectInfo
&L
) {
184 assert(Obj
.isELF() && "Not an ELF object file.");
186 std::unique_ptr
<MemoryBuffer
> Buffer
=
187 MemoryBuffer::getMemBufferCopy(Obj
.getData(), Obj
.getFileName());
189 Expected
<std::unique_ptr
<ObjectFile
>> DebugObj(nullptr);
190 handleAllErrors(DebugObj
.takeError());
191 if (Obj
.getBytesInAddress() == 4 && Obj
.isLittleEndian())
193 createRTDyldELFObject
<ELF32LE
>(Buffer
->getMemBufferRef(), Obj
, L
);
194 else if (Obj
.getBytesInAddress() == 4 && !Obj
.isLittleEndian())
196 createRTDyldELFObject
<ELF32BE
>(Buffer
->getMemBufferRef(), Obj
, L
);
197 else if (Obj
.getBytesInAddress() == 8 && !Obj
.isLittleEndian())
199 createRTDyldELFObject
<ELF64BE
>(Buffer
->getMemBufferRef(), Obj
, L
);
200 else if (Obj
.getBytesInAddress() == 8 && Obj
.isLittleEndian())
202 createRTDyldELFObject
<ELF64LE
>(Buffer
->getMemBufferRef(), Obj
, L
);
204 llvm_unreachable("Unexpected ELF format");
206 handleAllErrors(DebugObj
.takeError());
207 return OwningBinary
<ObjectFile
>(std::move(*DebugObj
), std::move(Buffer
));
210 OwningBinary
<ObjectFile
>
211 LoadedELFObjectInfo::getObjectForDebug(const ObjectFile
&Obj
) const {
212 return createELFDebugObject(Obj
, *this);
215 } // anonymous namespace
219 RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager
&MemMgr
,
220 JITSymbolResolver
&Resolver
)
221 : RuntimeDyldImpl(MemMgr
, Resolver
), GOTSectionID(0), CurrentGOTIndex(0) {}
222 RuntimeDyldELF::~RuntimeDyldELF() {}
224 void RuntimeDyldELF::registerEHFrames() {
225 for (int i
= 0, e
= UnregisteredEHFrameSections
.size(); i
!= e
; ++i
) {
226 SID EHFrameSID
= UnregisteredEHFrameSections
[i
];
227 uint8_t *EHFrameAddr
= Sections
[EHFrameSID
].getAddress();
228 uint64_t EHFrameLoadAddr
= Sections
[EHFrameSID
].getLoadAddress();
229 size_t EHFrameSize
= Sections
[EHFrameSID
].getSize();
230 MemMgr
.registerEHFrames(EHFrameAddr
, EHFrameLoadAddr
, EHFrameSize
);
232 UnregisteredEHFrameSections
.clear();
235 std::unique_ptr
<RuntimeDyldELF
>
236 llvm::RuntimeDyldELF::create(Triple::ArchType Arch
,
237 RuntimeDyld::MemoryManager
&MemMgr
,
238 JITSymbolResolver
&Resolver
) {
241 return make_unique
<RuntimeDyldELF
>(MemMgr
, Resolver
);
245 case Triple::mips64el
:
246 return make_unique
<RuntimeDyldELFMips
>(MemMgr
, Resolver
);
250 std::unique_ptr
<RuntimeDyld::LoadedObjectInfo
>
251 RuntimeDyldELF::loadObject(const object::ObjectFile
&O
) {
252 if (auto ObjSectionToIDOrErr
= loadObjectImpl(O
))
253 return llvm::make_unique
<LoadedELFObjectInfo
>(*this, *ObjSectionToIDOrErr
);
256 raw_string_ostream
ErrStream(ErrorStr
);
257 logAllUnhandledErrors(ObjSectionToIDOrErr
.takeError(), ErrStream
);
262 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry
&Section
,
263 uint64_t Offset
, uint64_t Value
,
264 uint32_t Type
, int64_t Addend
,
265 uint64_t SymOffset
) {
268 llvm_unreachable("Relocation type not implemented yet!");
270 case ELF::R_X86_64_NONE
:
272 case ELF::R_X86_64_64
: {
273 support::ulittle64_t::ref(Section
.getAddressWithOffset(Offset
)) =
275 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value
+ Addend
)) << " at "
276 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
279 case ELF::R_X86_64_32
:
280 case ELF::R_X86_64_32S
: {
282 assert((Type
== ELF::R_X86_64_32
&& (Value
<= UINT32_MAX
)) ||
283 (Type
== ELF::R_X86_64_32S
&&
284 ((int64_t)Value
<= INT32_MAX
&& (int64_t)Value
>= INT32_MIN
)));
285 uint32_t TruncatedAddr
= (Value
& 0xFFFFFFFF);
286 support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
)) =
288 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr
) << " at "
289 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
292 case ELF::R_X86_64_PC8
: {
293 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
294 int64_t RealOffset
= Value
+ Addend
- FinalAddress
;
295 assert(isInt
<8>(RealOffset
));
296 int8_t TruncOffset
= (RealOffset
& 0xFF);
297 Section
.getAddress()[Offset
] = TruncOffset
;
300 case ELF::R_X86_64_PC32
: {
301 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
302 int64_t RealOffset
= Value
+ Addend
- FinalAddress
;
303 assert(isInt
<32>(RealOffset
));
304 int32_t TruncOffset
= (RealOffset
& 0xFFFFFFFF);
305 support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
)) =
309 case ELF::R_X86_64_PC64
: {
310 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
311 int64_t RealOffset
= Value
+ Addend
- FinalAddress
;
312 support::ulittle64_t::ref(Section
.getAddressWithOffset(Offset
)) =
314 LLVM_DEBUG(dbgs() << "Writing " << format("%p", RealOffset
) << " at "
315 << format("%p\n", FinalAddress
));
318 case ELF::R_X86_64_GOTOFF64
: {
319 // Compute Value - GOTBase.
320 uint64_t GOTBase
= 0;
321 for (const auto &Section
: Sections
) {
322 if (Section
.getName() == ".got") {
323 GOTBase
= Section
.getLoadAddressWithOffset(0);
327 assert(GOTBase
!= 0 && "missing GOT");
328 int64_t GOTOffset
= Value
- GOTBase
+ Addend
;
329 support::ulittle64_t::ref(Section
.getAddressWithOffset(Offset
)) = GOTOffset
;
335 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry
&Section
,
336 uint64_t Offset
, uint32_t Value
,
337 uint32_t Type
, int32_t Addend
) {
339 case ELF::R_386_32
: {
340 support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
)) =
344 // Handle R_386_PLT32 like R_386_PC32 since it should be able to
345 // reach any 32 bit address.
346 case ELF::R_386_PLT32
:
347 case ELF::R_386_PC32
: {
348 uint32_t FinalAddress
=
349 Section
.getLoadAddressWithOffset(Offset
) & 0xFFFFFFFF;
350 uint32_t RealOffset
= Value
+ Addend
- FinalAddress
;
351 support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
)) =
356 // There are other relocation types, but it appears these are the
357 // only ones currently used by the LLVM ELF object writer
358 llvm_unreachable("Relocation type not implemented yet!");
363 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry
&Section
,
364 uint64_t Offset
, uint64_t Value
,
365 uint32_t Type
, int64_t Addend
) {
366 uint32_t *TargetPtr
=
367 reinterpret_cast<uint32_t *>(Section
.getAddressWithOffset(Offset
));
368 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
369 // Data should use target endian. Code should always use little endian.
370 bool isBE
= Arch
== Triple::aarch64_be
;
372 LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
373 << format("%llx", Section
.getAddressWithOffset(Offset
))
374 << " FinalAddress: 0x" << format("%llx", FinalAddress
)
375 << " Value: 0x" << format("%llx", Value
) << " Type: 0x"
376 << format("%x", Type
) << " Addend: 0x"
377 << format("%llx", Addend
) << "\n");
381 llvm_unreachable("Relocation type not implemented yet!");
383 case ELF::R_AARCH64_ABS16
: {
384 uint64_t Result
= Value
+ Addend
;
385 assert(static_cast<int64_t>(Result
) >= INT16_MIN
&& Result
< UINT16_MAX
);
386 write(isBE
, TargetPtr
, static_cast<uint16_t>(Result
& 0xffffU
));
389 case ELF::R_AARCH64_ABS32
: {
390 uint64_t Result
= Value
+ Addend
;
391 assert(static_cast<int64_t>(Result
) >= INT32_MIN
&& Result
< UINT32_MAX
);
392 write(isBE
, TargetPtr
, static_cast<uint32_t>(Result
& 0xffffffffU
));
395 case ELF::R_AARCH64_ABS64
:
396 write(isBE
, TargetPtr
, Value
+ Addend
);
398 case ELF::R_AARCH64_PREL32
: {
399 uint64_t Result
= Value
+ Addend
- FinalAddress
;
400 assert(static_cast<int64_t>(Result
) >= INT32_MIN
&&
401 static_cast<int64_t>(Result
) <= UINT32_MAX
);
402 write(isBE
, TargetPtr
, static_cast<uint32_t>(Result
& 0xffffffffU
));
405 case ELF::R_AARCH64_PREL64
:
406 write(isBE
, TargetPtr
, Value
+ Addend
- FinalAddress
);
408 case ELF::R_AARCH64_CALL26
: // fallthrough
409 case ELF::R_AARCH64_JUMP26
: {
410 // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
412 uint64_t BranchImm
= Value
+ Addend
- FinalAddress
;
414 // "Check that -2^27 <= result < 2^27".
415 assert(isInt
<28>(BranchImm
));
416 or32le(TargetPtr
, (BranchImm
& 0x0FFFFFFC) >> 2);
419 case ELF::R_AARCH64_MOVW_UABS_G3
:
420 or32le(TargetPtr
, ((Value
+ Addend
) & 0xFFFF000000000000) >> 43);
422 case ELF::R_AARCH64_MOVW_UABS_G2_NC
:
423 or32le(TargetPtr
, ((Value
+ Addend
) & 0xFFFF00000000) >> 27);
425 case ELF::R_AARCH64_MOVW_UABS_G1_NC
:
426 or32le(TargetPtr
, ((Value
+ Addend
) & 0xFFFF0000) >> 11);
428 case ELF::R_AARCH64_MOVW_UABS_G0_NC
:
429 or32le(TargetPtr
, ((Value
+ Addend
) & 0xFFFF) << 5);
431 case ELF::R_AARCH64_ADR_PREL_PG_HI21
: {
432 // Operation: Page(S+A) - Page(P)
434 ((Value
+ Addend
) & ~0xfffULL
) - (FinalAddress
& ~0xfffULL
);
436 // Check that -2^32 <= X < 2^32
437 assert(isInt
<33>(Result
) && "overflow check failed for relocation");
439 // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
440 // from bits 32:12 of X.
441 write32AArch64Addr(TargetPtr
, Result
>> 12);
444 case ELF::R_AARCH64_ADD_ABS_LO12_NC
:
446 // Immediate goes in bits 21:10 of LD/ST instruction, taken
447 // from bits 11:0 of X
448 or32AArch64Imm(TargetPtr
, Value
+ Addend
);
450 case ELF::R_AARCH64_LDST8_ABS_LO12_NC
:
452 // Immediate goes in bits 21:10 of LD/ST instruction, taken
453 // from bits 11:0 of X
454 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 0, 11));
456 case ELF::R_AARCH64_LDST16_ABS_LO12_NC
:
458 // Immediate goes in bits 21:10 of LD/ST instruction, taken
459 // from bits 11:1 of X
460 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 1, 11));
462 case ELF::R_AARCH64_LDST32_ABS_LO12_NC
:
464 // Immediate goes in bits 21:10 of LD/ST instruction, taken
465 // from bits 11:2 of X
466 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 2, 11));
468 case ELF::R_AARCH64_LDST64_ABS_LO12_NC
:
470 // Immediate goes in bits 21:10 of LD/ST instruction, taken
471 // from bits 11:3 of X
472 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 3, 11));
474 case ELF::R_AARCH64_LDST128_ABS_LO12_NC
:
476 // Immediate goes in bits 21:10 of LD/ST instruction, taken
477 // from bits 11:4 of X
478 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 4, 11));
483 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry
&Section
,
484 uint64_t Offset
, uint32_t Value
,
485 uint32_t Type
, int32_t Addend
) {
486 // TODO: Add Thumb relocations.
487 uint32_t *TargetPtr
=
488 reinterpret_cast<uint32_t *>(Section
.getAddressWithOffset(Offset
));
489 uint32_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
) & 0xFFFFFFFF;
492 LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
493 << Section
.getAddressWithOffset(Offset
)
494 << " FinalAddress: " << format("%p", FinalAddress
)
495 << " Value: " << format("%x", Value
)
496 << " Type: " << format("%x", Type
)
497 << " Addend: " << format("%x", Addend
) << "\n");
501 llvm_unreachable("Not implemented relocation type!");
503 case ELF::R_ARM_NONE
:
505 // Write a 31bit signed offset
506 case ELF::R_ARM_PREL31
:
507 support::ulittle32_t::ref
{TargetPtr
} =
508 (support::ulittle32_t::ref
{TargetPtr
} & 0x80000000) |
509 ((Value
- FinalAddress
) & ~0x80000000);
511 case ELF::R_ARM_TARGET1
:
512 case ELF::R_ARM_ABS32
:
513 support::ulittle32_t::ref
{TargetPtr
} = Value
;
515 // Write first 16 bit of 32 bit value to the mov instruction.
516 // Last 4 bit should be shifted.
517 case ELF::R_ARM_MOVW_ABS_NC
:
518 case ELF::R_ARM_MOVT_ABS
:
519 if (Type
== ELF::R_ARM_MOVW_ABS_NC
)
520 Value
= Value
& 0xFFFF;
521 else if (Type
== ELF::R_ARM_MOVT_ABS
)
522 Value
= (Value
>> 16) & 0xFFFF;
523 support::ulittle32_t::ref
{TargetPtr
} =
524 (support::ulittle32_t::ref
{TargetPtr
} & ~0x000F0FFF) | (Value
& 0xFFF) |
525 (((Value
>> 12) & 0xF) << 16);
527 // Write 24 bit relative value to the branch instruction.
528 case ELF::R_ARM_PC24
: // Fall through.
529 case ELF::R_ARM_CALL
: // Fall through.
530 case ELF::R_ARM_JUMP24
:
531 int32_t RelValue
= static_cast<int32_t>(Value
- FinalAddress
- 8);
532 RelValue
= (RelValue
& 0x03FFFFFC) >> 2;
533 assert((support::ulittle32_t::ref
{TargetPtr
} & 0xFFFFFF) == 0xFFFFFE);
534 support::ulittle32_t::ref
{TargetPtr
} =
535 (support::ulittle32_t::ref
{TargetPtr
} & 0xFF000000) | RelValue
;
540 void RuntimeDyldELF::setMipsABI(const ObjectFile
&Obj
) {
541 if (Arch
== Triple::UnknownArch
||
542 !StringRef(Triple::getArchTypePrefix(Arch
)).equals("mips")) {
543 IsMipsO32ABI
= false;
544 IsMipsN32ABI
= false;
545 IsMipsN64ABI
= false;
548 if (auto *E
= dyn_cast
<ELFObjectFileBase
>(&Obj
)) {
549 unsigned AbiVariant
= E
->getPlatformFlags();
550 IsMipsO32ABI
= AbiVariant
& ELF::EF_MIPS_ABI_O32
;
551 IsMipsN32ABI
= AbiVariant
& ELF::EF_MIPS_ABI2
;
553 IsMipsN64ABI
= Obj
.getFileFormatName().equals("ELF64-mips");
556 // Return the .TOC. section and offset.
557 Error
RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase
&Obj
,
558 ObjSectionToIDMap
&LocalSections
,
559 RelocationValueRef
&Rel
) {
560 // Set a default SectionID in case we do not find a TOC section below.
561 // This may happen for references to TOC base base (sym@toc, .odp
562 // relocation) without a .toc directive. In this case just use the
563 // first section (which is usually the .odp) since the code won't
564 // reference the .toc base directly.
565 Rel
.SymbolName
= nullptr;
568 // The TOC consists of sections .got, .toc, .tocbss, .plt in that
569 // order. The TOC starts where the first of these sections starts.
570 for (auto &Section
: Obj
.sections()) {
571 StringRef SectionName
;
572 if (auto EC
= Section
.getName(SectionName
))
573 return errorCodeToError(EC
);
575 if (SectionName
== ".got"
576 || SectionName
== ".toc"
577 || SectionName
== ".tocbss"
578 || SectionName
== ".plt") {
579 if (auto SectionIDOrErr
=
580 findOrEmitSection(Obj
, Section
, false, LocalSections
))
581 Rel
.SectionID
= *SectionIDOrErr
;
583 return SectionIDOrErr
.takeError();
588 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
589 // thus permitting a full 64 Kbytes segment.
592 return Error::success();
595 // Returns the sections and offset associated with the ODP entry referenced
597 Error
RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase
&Obj
,
598 ObjSectionToIDMap
&LocalSections
,
599 RelocationValueRef
&Rel
) {
600 // Get the ELF symbol value (st_value) to compare with Relocation offset in
602 for (section_iterator si
= Obj
.section_begin(), se
= Obj
.section_end();
604 section_iterator RelSecI
= si
->getRelocatedSection();
605 if (RelSecI
== Obj
.section_end())
608 StringRef RelSectionName
;
609 if (auto EC
= RelSecI
->getName(RelSectionName
))
610 return errorCodeToError(EC
);
612 if (RelSectionName
!= ".opd")
615 for (elf_relocation_iterator i
= si
->relocation_begin(),
616 e
= si
->relocation_end();
618 // The R_PPC64_ADDR64 relocation indicates the first field
620 uint64_t TypeFunc
= i
->getType();
621 if (TypeFunc
!= ELF::R_PPC64_ADDR64
) {
626 uint64_t TargetSymbolOffset
= i
->getOffset();
627 symbol_iterator TargetSymbol
= i
->getSymbol();
629 if (auto AddendOrErr
= i
->getAddend())
630 Addend
= *AddendOrErr
;
632 return AddendOrErr
.takeError();
638 // Just check if following relocation is a R_PPC64_TOC
639 uint64_t TypeTOC
= i
->getType();
640 if (TypeTOC
!= ELF::R_PPC64_TOC
)
643 // Finally compares the Symbol value and the target symbol offset
644 // to check if this .opd entry refers to the symbol the relocation
646 if (Rel
.Addend
!= (int64_t)TargetSymbolOffset
)
649 section_iterator TSI
= Obj
.section_end();
650 if (auto TSIOrErr
= TargetSymbol
->getSection())
653 return TSIOrErr
.takeError();
654 assert(TSI
!= Obj
.section_end() && "TSI should refer to a valid section");
656 bool IsCode
= TSI
->isText();
657 if (auto SectionIDOrErr
= findOrEmitSection(Obj
, *TSI
, IsCode
,
659 Rel
.SectionID
= *SectionIDOrErr
;
661 return SectionIDOrErr
.takeError();
662 Rel
.Addend
= (intptr_t)Addend
;
663 return Error::success();
666 llvm_unreachable("Attempting to get address of ODP entry!");
669 // Relocation masks following the #lo(value), #hi(value), #ha(value),
670 // #higher(value), #highera(value), #highest(value), and #highesta(value)
671 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
674 static inline uint16_t applyPPClo(uint64_t value
) { return value
& 0xffff; }
676 static inline uint16_t applyPPChi(uint64_t value
) {
677 return (value
>> 16) & 0xffff;
680 static inline uint16_t applyPPCha (uint64_t value
) {
681 return ((value
+ 0x8000) >> 16) & 0xffff;
684 static inline uint16_t applyPPChigher(uint64_t value
) {
685 return (value
>> 32) & 0xffff;
688 static inline uint16_t applyPPChighera (uint64_t value
) {
689 return ((value
+ 0x8000) >> 32) & 0xffff;
692 static inline uint16_t applyPPChighest(uint64_t value
) {
693 return (value
>> 48) & 0xffff;
696 static inline uint16_t applyPPChighesta (uint64_t value
) {
697 return ((value
+ 0x8000) >> 48) & 0xffff;
700 void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry
&Section
,
701 uint64_t Offset
, uint64_t Value
,
702 uint32_t Type
, int64_t Addend
) {
703 uint8_t *LocalAddress
= Section
.getAddressWithOffset(Offset
);
706 llvm_unreachable("Relocation type not implemented yet!");
708 case ELF::R_PPC_ADDR16_LO
:
709 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
));
711 case ELF::R_PPC_ADDR16_HI
:
712 writeInt16BE(LocalAddress
, applyPPChi(Value
+ Addend
));
714 case ELF::R_PPC_ADDR16_HA
:
715 writeInt16BE(LocalAddress
, applyPPCha(Value
+ Addend
));
720 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry
&Section
,
721 uint64_t Offset
, uint64_t Value
,
722 uint32_t Type
, int64_t Addend
) {
723 uint8_t *LocalAddress
= Section
.getAddressWithOffset(Offset
);
726 llvm_unreachable("Relocation type not implemented yet!");
728 case ELF::R_PPC64_ADDR16
:
729 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
));
731 case ELF::R_PPC64_ADDR16_DS
:
732 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
) & ~3);
734 case ELF::R_PPC64_ADDR16_LO
:
735 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
));
737 case ELF::R_PPC64_ADDR16_LO_DS
:
738 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
) & ~3);
740 case ELF::R_PPC64_ADDR16_HI
:
741 case ELF::R_PPC64_ADDR16_HIGH
:
742 writeInt16BE(LocalAddress
, applyPPChi(Value
+ Addend
));
744 case ELF::R_PPC64_ADDR16_HA
:
745 case ELF::R_PPC64_ADDR16_HIGHA
:
746 writeInt16BE(LocalAddress
, applyPPCha(Value
+ Addend
));
748 case ELF::R_PPC64_ADDR16_HIGHER
:
749 writeInt16BE(LocalAddress
, applyPPChigher(Value
+ Addend
));
751 case ELF::R_PPC64_ADDR16_HIGHERA
:
752 writeInt16BE(LocalAddress
, applyPPChighera(Value
+ Addend
));
754 case ELF::R_PPC64_ADDR16_HIGHEST
:
755 writeInt16BE(LocalAddress
, applyPPChighest(Value
+ Addend
));
757 case ELF::R_PPC64_ADDR16_HIGHESTA
:
758 writeInt16BE(LocalAddress
, applyPPChighesta(Value
+ Addend
));
760 case ELF::R_PPC64_ADDR14
: {
761 assert(((Value
+ Addend
) & 3) == 0);
762 // Preserve the AA/LK bits in the branch instruction
763 uint8_t aalk
= *(LocalAddress
+ 3);
764 writeInt16BE(LocalAddress
+ 2, (aalk
& 3) | ((Value
+ Addend
) & 0xfffc));
766 case ELF::R_PPC64_REL16_LO
: {
767 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
768 uint64_t Delta
= Value
- FinalAddress
+ Addend
;
769 writeInt16BE(LocalAddress
, applyPPClo(Delta
));
771 case ELF::R_PPC64_REL16_HI
: {
772 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
773 uint64_t Delta
= Value
- FinalAddress
+ Addend
;
774 writeInt16BE(LocalAddress
, applyPPChi(Delta
));
776 case ELF::R_PPC64_REL16_HA
: {
777 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
778 uint64_t Delta
= Value
- FinalAddress
+ Addend
;
779 writeInt16BE(LocalAddress
, applyPPCha(Delta
));
781 case ELF::R_PPC64_ADDR32
: {
782 int64_t Result
= static_cast<int64_t>(Value
+ Addend
);
783 if (SignExtend64
<32>(Result
) != Result
)
784 llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
785 writeInt32BE(LocalAddress
, Result
);
787 case ELF::R_PPC64_REL24
: {
788 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
789 int64_t delta
= static_cast<int64_t>(Value
- FinalAddress
+ Addend
);
790 if (SignExtend64
<26>(delta
) != delta
)
791 llvm_unreachable("Relocation R_PPC64_REL24 overflow");
792 // We preserve bits other than LI field, i.e. PO and AA/LK fields.
793 uint32_t Inst
= readBytesUnaligned(LocalAddress
, 4);
794 writeInt32BE(LocalAddress
, (Inst
& 0xFC000003) | (delta
& 0x03FFFFFC));
796 case ELF::R_PPC64_REL32
: {
797 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
798 int64_t delta
= static_cast<int64_t>(Value
- FinalAddress
+ Addend
);
799 if (SignExtend64
<32>(delta
) != delta
)
800 llvm_unreachable("Relocation R_PPC64_REL32 overflow");
801 writeInt32BE(LocalAddress
, delta
);
803 case ELF::R_PPC64_REL64
: {
804 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
805 uint64_t Delta
= Value
- FinalAddress
+ Addend
;
806 writeInt64BE(LocalAddress
, Delta
);
808 case ELF::R_PPC64_ADDR64
:
809 writeInt64BE(LocalAddress
, Value
+ Addend
);
814 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry
&Section
,
815 uint64_t Offset
, uint64_t Value
,
816 uint32_t Type
, int64_t Addend
) {
817 uint8_t *LocalAddress
= Section
.getAddressWithOffset(Offset
);
820 llvm_unreachable("Relocation type not implemented yet!");
822 case ELF::R_390_PC16DBL
:
823 case ELF::R_390_PLT16DBL
: {
824 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
825 assert(int16_t(Delta
/ 2) * 2 == Delta
&& "R_390_PC16DBL overflow");
826 writeInt16BE(LocalAddress
, Delta
/ 2);
829 case ELF::R_390_PC32DBL
:
830 case ELF::R_390_PLT32DBL
: {
831 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
832 assert(int32_t(Delta
/ 2) * 2 == Delta
&& "R_390_PC32DBL overflow");
833 writeInt32BE(LocalAddress
, Delta
/ 2);
836 case ELF::R_390_PC16
: {
837 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
838 assert(int16_t(Delta
) == Delta
&& "R_390_PC16 overflow");
839 writeInt16BE(LocalAddress
, Delta
);
842 case ELF::R_390_PC32
: {
843 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
844 assert(int32_t(Delta
) == Delta
&& "R_390_PC32 overflow");
845 writeInt32BE(LocalAddress
, Delta
);
848 case ELF::R_390_PC64
: {
849 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
850 writeInt64BE(LocalAddress
, Delta
);
854 *LocalAddress
= (uint8_t)(Value
+ Addend
);
857 writeInt16BE(LocalAddress
, Value
+ Addend
);
860 writeInt32BE(LocalAddress
, Value
+ Addend
);
863 writeInt64BE(LocalAddress
, Value
+ Addend
);
868 void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry
&Section
,
869 uint64_t Offset
, uint64_t Value
,
870 uint32_t Type
, int64_t Addend
) {
871 bool isBE
= Arch
== Triple::bpfeb
;
875 llvm_unreachable("Relocation type not implemented yet!");
877 case ELF::R_BPF_NONE
:
879 case ELF::R_BPF_64_64
: {
880 write(isBE
, Section
.getAddressWithOffset(Offset
), Value
+ Addend
);
881 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value
+ Addend
)) << " at "
882 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
885 case ELF::R_BPF_64_32
: {
887 assert(Value
<= UINT32_MAX
);
888 write(isBE
, Section
.getAddressWithOffset(Offset
), static_cast<uint32_t>(Value
));
889 LLVM_DEBUG(dbgs() << "Writing " << format("%p", Value
) << " at "
890 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
896 // The target location for the relocation is described by RE.SectionID and
897 // RE.Offset. RE.SectionID can be used to find the SectionEntry. Each
898 // SectionEntry has three members describing its location.
899 // SectionEntry::Address is the address at which the section has been loaded
900 // into memory in the current (host) process. SectionEntry::LoadAddress is the
901 // address that the section will have in the target process.
902 // SectionEntry::ObjAddress is the address of the bits for this section in the
903 // original emitted object image (also in the current address space).
905 // Relocations will be applied as if the section were loaded at
906 // SectionEntry::LoadAddress, but they will be applied at an address based
907 // on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to
908 // Target memory contents if they are required for value calculations.
910 // The Value parameter here is the load address of the symbol for the
911 // relocation to be applied. For relocations which refer to symbols in the
912 // current object Value will be the LoadAddress of the section in which
913 // the symbol resides (RE.Addend provides additional information about the
914 // symbol location). For external symbols, Value will be the address of the
915 // symbol in the target address space.
916 void RuntimeDyldELF::resolveRelocation(const RelocationEntry
&RE
,
918 const SectionEntry
&Section
= Sections
[RE
.SectionID
];
919 return resolveRelocation(Section
, RE
.Offset
, Value
, RE
.RelType
, RE
.Addend
,
920 RE
.SymOffset
, RE
.SectionID
);
923 void RuntimeDyldELF::resolveRelocation(const SectionEntry
&Section
,
924 uint64_t Offset
, uint64_t Value
,
925 uint32_t Type
, int64_t Addend
,
926 uint64_t SymOffset
, SID SectionID
) {
929 resolveX86_64Relocation(Section
, Offset
, Value
, Type
, Addend
, SymOffset
);
932 resolveX86Relocation(Section
, Offset
, (uint32_t)(Value
& 0xffffffffL
), Type
,
933 (uint32_t)(Addend
& 0xffffffffL
));
935 case Triple::aarch64
:
936 case Triple::aarch64_be
:
937 resolveAArch64Relocation(Section
, Offset
, Value
, Type
, Addend
);
939 case Triple::arm
: // Fall through.
942 case Triple::thumbeb
:
943 resolveARMRelocation(Section
, Offset
, (uint32_t)(Value
& 0xffffffffL
), Type
,
944 (uint32_t)(Addend
& 0xffffffffL
));
947 resolvePPC32Relocation(Section
, Offset
, Value
, Type
, Addend
);
949 case Triple::ppc64
: // Fall through.
950 case Triple::ppc64le
:
951 resolvePPC64Relocation(Section
, Offset
, Value
, Type
, Addend
);
953 case Triple::systemz
:
954 resolveSystemZRelocation(Section
, Offset
, Value
, Type
, Addend
);
958 resolveBPFRelocation(Section
, Offset
, Value
, Type
, Addend
);
961 llvm_unreachable("Unsupported CPU type!");
965 void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID
, uint64_t Offset
) const {
966 return (void *)(Sections
[SectionID
].getObjAddress() + Offset
);
969 void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID
, uint64_t Offset
, unsigned RelType
, RelocationValueRef Value
) {
970 RelocationEntry
RE(SectionID
, Offset
, RelType
, Value
.Addend
, Value
.Offset
);
971 if (Value
.SymbolName
)
972 addRelocationForSymbol(RE
, Value
.SymbolName
);
974 addRelocationForSection(RE
, Value
.SectionID
);
977 uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType
,
978 bool IsLocal
) const {
980 case ELF::R_MICROMIPS_GOT16
:
982 return ELF::R_MICROMIPS_LO16
;
984 case ELF::R_MICROMIPS_HI16
:
985 return ELF::R_MICROMIPS_LO16
;
986 case ELF::R_MIPS_GOT16
:
988 return ELF::R_MIPS_LO16
;
990 case ELF::R_MIPS_HI16
:
991 return ELF::R_MIPS_LO16
;
992 case ELF::R_MIPS_PCHI16
:
993 return ELF::R_MIPS_PCLO16
;
997 return ELF::R_MIPS_NONE
;
1000 // Sometimes we don't need to create thunk for a branch.
1001 // This typically happens when branch target is located
1002 // in the same object file. In such case target is either
1003 // a weak symbol or symbol in a different executable section.
1004 // This function checks if branch target is located in the
1005 // same object file and if distance between source and target
1006 // fits R_AARCH64_CALL26 relocation. If both conditions are
1007 // met, it emits direct jump to the target and returns true.
1008 // Otherwise false is returned and thunk is created.
1009 bool RuntimeDyldELF::resolveAArch64ShortBranch(
1010 unsigned SectionID
, relocation_iterator RelI
,
1011 const RelocationValueRef
&Value
) {
1013 if (Value
.SymbolName
) {
1014 auto Loc
= GlobalSymbolTable
.find(Value
.SymbolName
);
1016 // Don't create direct branch for external symbols.
1017 if (Loc
== GlobalSymbolTable
.end())
1020 const auto &SymInfo
= Loc
->second
;
1022 uint64_t(Sections
[SymInfo
.getSectionID()].getLoadAddressWithOffset(
1023 SymInfo
.getOffset()));
1025 Address
= uint64_t(Sections
[Value
.SectionID
].getLoadAddress());
1027 uint64_t Offset
= RelI
->getOffset();
1028 uint64_t SourceAddress
= Sections
[SectionID
].getLoadAddressWithOffset(Offset
);
1030 // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
1031 // If distance between source and target is out of range then we should
1033 if (!isInt
<28>(Address
+ Value
.Addend
- SourceAddress
))
1036 resolveRelocation(Sections
[SectionID
], Offset
, Address
, RelI
->getType(),
1042 void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID
,
1043 const RelocationValueRef
&Value
,
1044 relocation_iterator RelI
,
1047 LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
1048 SectionEntry
&Section
= Sections
[SectionID
];
1050 uint64_t Offset
= RelI
->getOffset();
1051 unsigned RelType
= RelI
->getType();
1052 // Look for an existing stub.
1053 StubMap::const_iterator i
= Stubs
.find(Value
);
1054 if (i
!= Stubs
.end()) {
1055 resolveRelocation(Section
, Offset
,
1056 (uint64_t)Section
.getAddressWithOffset(i
->second
),
1058 LLVM_DEBUG(dbgs() << " Stub function found\n");
1059 } else if (!resolveAArch64ShortBranch(SectionID
, RelI
, Value
)) {
1060 // Create a new stub function.
1061 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1062 Stubs
[Value
] = Section
.getStubOffset();
1063 uint8_t *StubTargetAddr
= createStubFunction(
1064 Section
.getAddressWithOffset(Section
.getStubOffset()));
1066 RelocationEntry
REmovz_g3(SectionID
, StubTargetAddr
- Section
.getAddress(),
1067 ELF::R_AARCH64_MOVW_UABS_G3
, Value
.Addend
);
1068 RelocationEntry
REmovk_g2(SectionID
,
1069 StubTargetAddr
- Section
.getAddress() + 4,
1070 ELF::R_AARCH64_MOVW_UABS_G2_NC
, Value
.Addend
);
1071 RelocationEntry
REmovk_g1(SectionID
,
1072 StubTargetAddr
- Section
.getAddress() + 8,
1073 ELF::R_AARCH64_MOVW_UABS_G1_NC
, Value
.Addend
);
1074 RelocationEntry
REmovk_g0(SectionID
,
1075 StubTargetAddr
- Section
.getAddress() + 12,
1076 ELF::R_AARCH64_MOVW_UABS_G0_NC
, Value
.Addend
);
1078 if (Value
.SymbolName
) {
1079 addRelocationForSymbol(REmovz_g3
, Value
.SymbolName
);
1080 addRelocationForSymbol(REmovk_g2
, Value
.SymbolName
);
1081 addRelocationForSymbol(REmovk_g1
, Value
.SymbolName
);
1082 addRelocationForSymbol(REmovk_g0
, Value
.SymbolName
);
1084 addRelocationForSection(REmovz_g3
, Value
.SectionID
);
1085 addRelocationForSection(REmovk_g2
, Value
.SectionID
);
1086 addRelocationForSection(REmovk_g1
, Value
.SectionID
);
1087 addRelocationForSection(REmovk_g0
, Value
.SectionID
);
1089 resolveRelocation(Section
, Offset
,
1090 reinterpret_cast<uint64_t>(Section
.getAddressWithOffset(
1091 Section
.getStubOffset())),
1093 Section
.advanceStubOffset(getMaxStubSize());
1097 Expected
<relocation_iterator
>
1098 RuntimeDyldELF::processRelocationRef(
1099 unsigned SectionID
, relocation_iterator RelI
, const ObjectFile
&O
,
1100 ObjSectionToIDMap
&ObjSectionToID
, StubMap
&Stubs
) {
1101 const auto &Obj
= cast
<ELFObjectFileBase
>(O
);
1102 uint64_t RelType
= RelI
->getType();
1104 if (Expected
<int64_t> AddendOrErr
= ELFRelocationRef(*RelI
).getAddend())
1105 Addend
= *AddendOrErr
;
1107 consumeError(AddendOrErr
.takeError());
1108 elf_symbol_iterator Symbol
= RelI
->getSymbol();
1110 // Obtain the symbol name which is referenced in the relocation
1111 StringRef TargetName
;
1112 if (Symbol
!= Obj
.symbol_end()) {
1113 if (auto TargetNameOrErr
= Symbol
->getName())
1114 TargetName
= *TargetNameOrErr
;
1116 return TargetNameOrErr
.takeError();
1118 LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType
<< " Addend: " << Addend
1119 << " TargetName: " << TargetName
<< "\n");
1120 RelocationValueRef Value
;
1121 // First search for the symbol in the local symbol table
1122 SymbolRef::Type SymType
= SymbolRef::ST_Unknown
;
1124 // Search for the symbol in the global symbol table
1125 RTDyldSymbolTable::const_iterator gsi
= GlobalSymbolTable
.end();
1126 if (Symbol
!= Obj
.symbol_end()) {
1127 gsi
= GlobalSymbolTable
.find(TargetName
.data());
1128 Expected
<SymbolRef::Type
> SymTypeOrErr
= Symbol
->getType();
1129 if (!SymTypeOrErr
) {
1131 raw_string_ostream
OS(Buf
);
1132 logAllUnhandledErrors(SymTypeOrErr
.takeError(), OS
);
1134 report_fatal_error(Buf
);
1136 SymType
= *SymTypeOrErr
;
1138 if (gsi
!= GlobalSymbolTable
.end()) {
1139 const auto &SymInfo
= gsi
->second
;
1140 Value
.SectionID
= SymInfo
.getSectionID();
1141 Value
.Offset
= SymInfo
.getOffset();
1142 Value
.Addend
= SymInfo
.getOffset() + Addend
;
1145 case SymbolRef::ST_Debug
: {
1146 // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
1147 // and can be changed by another developers. Maybe best way is add
1148 // a new symbol type ST_Section to SymbolRef and use it.
1149 auto SectionOrErr
= Symbol
->getSection();
1150 if (!SectionOrErr
) {
1152 raw_string_ostream
OS(Buf
);
1153 logAllUnhandledErrors(SectionOrErr
.takeError(), OS
);
1155 report_fatal_error(Buf
);
1157 section_iterator si
= *SectionOrErr
;
1158 if (si
== Obj
.section_end())
1159 llvm_unreachable("Symbol section not found, bad object file format!");
1160 LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n");
1161 bool isCode
= si
->isText();
1162 if (auto SectionIDOrErr
= findOrEmitSection(Obj
, (*si
), isCode
,
1164 Value
.SectionID
= *SectionIDOrErr
;
1166 return SectionIDOrErr
.takeError();
1167 Value
.Addend
= Addend
;
1170 case SymbolRef::ST_Data
:
1171 case SymbolRef::ST_Function
:
1172 case SymbolRef::ST_Unknown
: {
1173 Value
.SymbolName
= TargetName
.data();
1174 Value
.Addend
= Addend
;
1176 // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
1177 // will manifest here as a NULL symbol name.
1178 // We can set this as a valid (but empty) symbol name, and rely
1179 // on addRelocationForSymbol to handle this.
1180 if (!Value
.SymbolName
)
1181 Value
.SymbolName
= "";
1185 llvm_unreachable("Unresolved symbol type!");
1190 uint64_t Offset
= RelI
->getOffset();
1192 LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID
<< " Offset: " << Offset
1194 if ((Arch
== Triple::aarch64
|| Arch
== Triple::aarch64_be
)) {
1195 if (RelType
== ELF::R_AARCH64_CALL26
|| RelType
== ELF::R_AARCH64_JUMP26
) {
1196 resolveAArch64Branch(SectionID
, Value
, RelI
, Stubs
);
1197 } else if (RelType
== ELF::R_AARCH64_ADR_GOT_PAGE
) {
1198 // Craete new GOT entry or find existing one. If GOT entry is
1199 // to be created, then we also emit ABS64 relocation for it.
1200 uint64_t GOTOffset
= findOrAllocGOTEntry(Value
, ELF::R_AARCH64_ABS64
);
1201 resolveGOTOffsetRelocation(SectionID
, Offset
, GOTOffset
+ Addend
,
1202 ELF::R_AARCH64_ADR_PREL_PG_HI21
);
1204 } else if (RelType
== ELF::R_AARCH64_LD64_GOT_LO12_NC
) {
1205 uint64_t GOTOffset
= findOrAllocGOTEntry(Value
, ELF::R_AARCH64_ABS64
);
1206 resolveGOTOffsetRelocation(SectionID
, Offset
, GOTOffset
+ Addend
,
1207 ELF::R_AARCH64_LDST64_ABS_LO12_NC
);
1209 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1211 } else if (Arch
== Triple::arm
) {
1212 if (RelType
== ELF::R_ARM_PC24
|| RelType
== ELF::R_ARM_CALL
||
1213 RelType
== ELF::R_ARM_JUMP24
) {
1214 // This is an ARM branch relocation, need to use a stub function.
1215 LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
1216 SectionEntry
&Section
= Sections
[SectionID
];
1218 // Look for an existing stub.
1219 StubMap::const_iterator i
= Stubs
.find(Value
);
1220 if (i
!= Stubs
.end()) {
1223 reinterpret_cast<uint64_t>(Section
.getAddressWithOffset(i
->second
)),
1225 LLVM_DEBUG(dbgs() << " Stub function found\n");
1227 // Create a new stub function.
1228 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1229 Stubs
[Value
] = Section
.getStubOffset();
1230 uint8_t *StubTargetAddr
= createStubFunction(
1231 Section
.getAddressWithOffset(Section
.getStubOffset()));
1232 RelocationEntry
RE(SectionID
, StubTargetAddr
- Section
.getAddress(),
1233 ELF::R_ARM_ABS32
, Value
.Addend
);
1234 if (Value
.SymbolName
)
1235 addRelocationForSymbol(RE
, Value
.SymbolName
);
1237 addRelocationForSection(RE
, Value
.SectionID
);
1239 resolveRelocation(Section
, Offset
, reinterpret_cast<uint64_t>(
1240 Section
.getAddressWithOffset(
1241 Section
.getStubOffset())),
1243 Section
.advanceStubOffset(getMaxStubSize());
1246 uint32_t *Placeholder
=
1247 reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID
, Offset
));
1248 if (RelType
== ELF::R_ARM_PREL31
|| RelType
== ELF::R_ARM_TARGET1
||
1249 RelType
== ELF::R_ARM_ABS32
) {
1250 Value
.Addend
+= *Placeholder
;
1251 } else if (RelType
== ELF::R_ARM_MOVW_ABS_NC
|| RelType
== ELF::R_ARM_MOVT_ABS
) {
1252 // See ELF for ARM documentation
1253 Value
.Addend
+= (int16_t)((*Placeholder
& 0xFFF) | (((*Placeholder
>> 16) & 0xF) << 12));
1255 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1257 } else if (IsMipsO32ABI
) {
1258 uint8_t *Placeholder
= reinterpret_cast<uint8_t *>(
1259 computePlaceholderAddress(SectionID
, Offset
));
1260 uint32_t Opcode
= readBytesUnaligned(Placeholder
, 4);
1261 if (RelType
== ELF::R_MIPS_26
) {
1262 // This is an Mips branch relocation, need to use a stub function.
1263 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1264 SectionEntry
&Section
= Sections
[SectionID
];
1266 // Extract the addend from the instruction.
1267 // We shift up by two since the Value will be down shifted again
1268 // when applying the relocation.
1269 uint32_t Addend
= (Opcode
& 0x03ffffff) << 2;
1271 Value
.Addend
+= Addend
;
1273 // Look up for existing stub.
1274 StubMap::const_iterator i
= Stubs
.find(Value
);
1275 if (i
!= Stubs
.end()) {
1276 RelocationEntry
RE(SectionID
, Offset
, RelType
, i
->second
);
1277 addRelocationForSection(RE
, SectionID
);
1278 LLVM_DEBUG(dbgs() << " Stub function found\n");
1280 // Create a new stub function.
1281 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1282 Stubs
[Value
] = Section
.getStubOffset();
1284 unsigned AbiVariant
= Obj
.getPlatformFlags();
1286 uint8_t *StubTargetAddr
= createStubFunction(
1287 Section
.getAddressWithOffset(Section
.getStubOffset()), AbiVariant
);
1289 // Creating Hi and Lo relocations for the filled stub instructions.
1290 RelocationEntry
REHi(SectionID
, StubTargetAddr
- Section
.getAddress(),
1291 ELF::R_MIPS_HI16
, Value
.Addend
);
1292 RelocationEntry
RELo(SectionID
,
1293 StubTargetAddr
- Section
.getAddress() + 4,
1294 ELF::R_MIPS_LO16
, Value
.Addend
);
1296 if (Value
.SymbolName
) {
1297 addRelocationForSymbol(REHi
, Value
.SymbolName
);
1298 addRelocationForSymbol(RELo
, Value
.SymbolName
);
1300 addRelocationForSection(REHi
, Value
.SectionID
);
1301 addRelocationForSection(RELo
, Value
.SectionID
);
1304 RelocationEntry
RE(SectionID
, Offset
, RelType
, Section
.getStubOffset());
1305 addRelocationForSection(RE
, SectionID
);
1306 Section
.advanceStubOffset(getMaxStubSize());
1308 } else if (RelType
== ELF::R_MIPS_HI16
|| RelType
== ELF::R_MIPS_PCHI16
) {
1309 int64_t Addend
= (Opcode
& 0x0000ffff) << 16;
1310 RelocationEntry
RE(SectionID
, Offset
, RelType
, Addend
);
1311 PendingRelocs
.push_back(std::make_pair(Value
, RE
));
1312 } else if (RelType
== ELF::R_MIPS_LO16
|| RelType
== ELF::R_MIPS_PCLO16
) {
1313 int64_t Addend
= Value
.Addend
+ SignExtend32
<16>(Opcode
& 0x0000ffff);
1314 for (auto I
= PendingRelocs
.begin(); I
!= PendingRelocs
.end();) {
1315 const RelocationValueRef
&MatchingValue
= I
->first
;
1316 RelocationEntry
&Reloc
= I
->second
;
1317 if (MatchingValue
== Value
&&
1318 RelType
== getMatchingLoRelocation(Reloc
.RelType
) &&
1319 SectionID
== Reloc
.SectionID
) {
1320 Reloc
.Addend
+= Addend
;
1321 if (Value
.SymbolName
)
1322 addRelocationForSymbol(Reloc
, Value
.SymbolName
);
1324 addRelocationForSection(Reloc
, Value
.SectionID
);
1325 I
= PendingRelocs
.erase(I
);
1329 RelocationEntry
RE(SectionID
, Offset
, RelType
, Addend
);
1330 if (Value
.SymbolName
)
1331 addRelocationForSymbol(RE
, Value
.SymbolName
);
1333 addRelocationForSection(RE
, Value
.SectionID
);
1335 if (RelType
== ELF::R_MIPS_32
)
1336 Value
.Addend
+= Opcode
;
1337 else if (RelType
== ELF::R_MIPS_PC16
)
1338 Value
.Addend
+= SignExtend32
<18>((Opcode
& 0x0000ffff) << 2);
1339 else if (RelType
== ELF::R_MIPS_PC19_S2
)
1340 Value
.Addend
+= SignExtend32
<21>((Opcode
& 0x0007ffff) << 2);
1341 else if (RelType
== ELF::R_MIPS_PC21_S2
)
1342 Value
.Addend
+= SignExtend32
<23>((Opcode
& 0x001fffff) << 2);
1343 else if (RelType
== ELF::R_MIPS_PC26_S2
)
1344 Value
.Addend
+= SignExtend32
<28>((Opcode
& 0x03ffffff) << 2);
1345 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1347 } else if (IsMipsN32ABI
|| IsMipsN64ABI
) {
1348 uint32_t r_type
= RelType
& 0xff;
1349 RelocationEntry
RE(SectionID
, Offset
, RelType
, Value
.Addend
);
1350 if (r_type
== ELF::R_MIPS_CALL16
|| r_type
== ELF::R_MIPS_GOT_PAGE
1351 || r_type
== ELF::R_MIPS_GOT_DISP
) {
1352 StringMap
<uint64_t>::iterator i
= GOTSymbolOffsets
.find(TargetName
);
1353 if (i
!= GOTSymbolOffsets
.end())
1354 RE
.SymOffset
= i
->second
;
1356 RE
.SymOffset
= allocateGOTEntries(1);
1357 GOTSymbolOffsets
[TargetName
] = RE
.SymOffset
;
1359 if (Value
.SymbolName
)
1360 addRelocationForSymbol(RE
, Value
.SymbolName
);
1362 addRelocationForSection(RE
, Value
.SectionID
);
1363 } else if (RelType
== ELF::R_MIPS_26
) {
1364 // This is an Mips branch relocation, need to use a stub function.
1365 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1366 SectionEntry
&Section
= Sections
[SectionID
];
1368 // Look up for existing stub.
1369 StubMap::const_iterator i
= Stubs
.find(Value
);
1370 if (i
!= Stubs
.end()) {
1371 RelocationEntry
RE(SectionID
, Offset
, RelType
, i
->second
);
1372 addRelocationForSection(RE
, SectionID
);
1373 LLVM_DEBUG(dbgs() << " Stub function found\n");
1375 // Create a new stub function.
1376 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1377 Stubs
[Value
] = Section
.getStubOffset();
1379 unsigned AbiVariant
= Obj
.getPlatformFlags();
1381 uint8_t *StubTargetAddr
= createStubFunction(
1382 Section
.getAddressWithOffset(Section
.getStubOffset()), AbiVariant
);
1385 // Creating Hi and Lo relocations for the filled stub instructions.
1386 RelocationEntry
REHi(SectionID
, StubTargetAddr
- Section
.getAddress(),
1387 ELF::R_MIPS_HI16
, Value
.Addend
);
1388 RelocationEntry
RELo(SectionID
,
1389 StubTargetAddr
- Section
.getAddress() + 4,
1390 ELF::R_MIPS_LO16
, Value
.Addend
);
1391 if (Value
.SymbolName
) {
1392 addRelocationForSymbol(REHi
, Value
.SymbolName
);
1393 addRelocationForSymbol(RELo
, Value
.SymbolName
);
1395 addRelocationForSection(REHi
, Value
.SectionID
);
1396 addRelocationForSection(RELo
, Value
.SectionID
);
1399 // Creating Highest, Higher, Hi and Lo relocations for the filled stub
1401 RelocationEntry
REHighest(SectionID
,
1402 StubTargetAddr
- Section
.getAddress(),
1403 ELF::R_MIPS_HIGHEST
, Value
.Addend
);
1404 RelocationEntry
REHigher(SectionID
,
1405 StubTargetAddr
- Section
.getAddress() + 4,
1406 ELF::R_MIPS_HIGHER
, Value
.Addend
);
1407 RelocationEntry
REHi(SectionID
,
1408 StubTargetAddr
- Section
.getAddress() + 12,
1409 ELF::R_MIPS_HI16
, Value
.Addend
);
1410 RelocationEntry
RELo(SectionID
,
1411 StubTargetAddr
- Section
.getAddress() + 20,
1412 ELF::R_MIPS_LO16
, Value
.Addend
);
1413 if (Value
.SymbolName
) {
1414 addRelocationForSymbol(REHighest
, Value
.SymbolName
);
1415 addRelocationForSymbol(REHigher
, Value
.SymbolName
);
1416 addRelocationForSymbol(REHi
, Value
.SymbolName
);
1417 addRelocationForSymbol(RELo
, Value
.SymbolName
);
1419 addRelocationForSection(REHighest
, Value
.SectionID
);
1420 addRelocationForSection(REHigher
, Value
.SectionID
);
1421 addRelocationForSection(REHi
, Value
.SectionID
);
1422 addRelocationForSection(RELo
, Value
.SectionID
);
1425 RelocationEntry
RE(SectionID
, Offset
, RelType
, Section
.getStubOffset());
1426 addRelocationForSection(RE
, SectionID
);
1427 Section
.advanceStubOffset(getMaxStubSize());
1430 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1433 } else if (Arch
== Triple::ppc64
|| Arch
== Triple::ppc64le
) {
1434 if (RelType
== ELF::R_PPC64_REL24
) {
1435 // Determine ABI variant in use for this object.
1436 unsigned AbiVariant
= Obj
.getPlatformFlags();
1437 AbiVariant
&= ELF::EF_PPC64_ABI
;
1438 // A PPC branch relocation will need a stub function if the target is
1439 // an external symbol (either Value.SymbolName is set, or SymType is
1440 // Symbol::ST_Unknown) or if the target address is not within the
1441 // signed 24-bits branch address.
1442 SectionEntry
&Section
= Sections
[SectionID
];
1443 uint8_t *Target
= Section
.getAddressWithOffset(Offset
);
1444 bool RangeOverflow
= false;
1445 bool IsExtern
= Value
.SymbolName
|| SymType
== SymbolRef::ST_Unknown
;
1447 if (AbiVariant
!= 2) {
1448 // In the ELFv1 ABI, a function call may point to the .opd entry,
1449 // so the final symbol value is calculated based on the relocation
1450 // values in the .opd section.
1451 if (auto Err
= findOPDEntrySection(Obj
, ObjSectionToID
, Value
))
1452 return std::move(Err
);
1454 // In the ELFv2 ABI, a function symbol may provide a local entry
1455 // point, which must be used for direct calls.
1456 if (Value
.SectionID
== SectionID
){
1457 uint8_t SymOther
= Symbol
->getOther();
1458 Value
.Addend
+= ELF::decodePPC64LocalEntryOffset(SymOther
);
1461 uint8_t *RelocTarget
=
1462 Sections
[Value
.SectionID
].getAddressWithOffset(Value
.Addend
);
1463 int64_t delta
= static_cast<int64_t>(Target
- RelocTarget
);
1464 // If it is within 26-bits branch range, just set the branch target
1465 if (SignExtend64
<26>(delta
) != delta
) {
1466 RangeOverflow
= true;
1467 } else if ((AbiVariant
!= 2) ||
1468 (AbiVariant
== 2 && Value
.SectionID
== SectionID
)) {
1469 RelocationEntry
RE(SectionID
, Offset
, RelType
, Value
.Addend
);
1470 addRelocationForSection(RE
, Value
.SectionID
);
1473 if (IsExtern
|| (AbiVariant
== 2 && Value
.SectionID
!= SectionID
) ||
1475 // It is an external symbol (either Value.SymbolName is set, or
1476 // SymType is SymbolRef::ST_Unknown) or out of range.
1477 StubMap::const_iterator i
= Stubs
.find(Value
);
1478 if (i
!= Stubs
.end()) {
1479 // Symbol function stub already created, just relocate to it
1480 resolveRelocation(Section
, Offset
,
1481 reinterpret_cast<uint64_t>(
1482 Section
.getAddressWithOffset(i
->second
)),
1484 LLVM_DEBUG(dbgs() << " Stub function found\n");
1486 // Create a new stub function.
1487 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1488 Stubs
[Value
] = Section
.getStubOffset();
1489 uint8_t *StubTargetAddr
= createStubFunction(
1490 Section
.getAddressWithOffset(Section
.getStubOffset()),
1492 RelocationEntry
RE(SectionID
, StubTargetAddr
- Section
.getAddress(),
1493 ELF::R_PPC64_ADDR64
, Value
.Addend
);
1495 // Generates the 64-bits address loads as exemplified in section
1496 // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to
1497 // apply to the low part of the instructions, so we have to update
1498 // the offset according to the target endianness.
1499 uint64_t StubRelocOffset
= StubTargetAddr
- Section
.getAddress();
1500 if (!IsTargetLittleEndian
)
1501 StubRelocOffset
+= 2;
1503 RelocationEntry
REhst(SectionID
, StubRelocOffset
+ 0,
1504 ELF::R_PPC64_ADDR16_HIGHEST
, Value
.Addend
);
1505 RelocationEntry
REhr(SectionID
, StubRelocOffset
+ 4,
1506 ELF::R_PPC64_ADDR16_HIGHER
, Value
.Addend
);
1507 RelocationEntry
REh(SectionID
, StubRelocOffset
+ 12,
1508 ELF::R_PPC64_ADDR16_HI
, Value
.Addend
);
1509 RelocationEntry
REl(SectionID
, StubRelocOffset
+ 16,
1510 ELF::R_PPC64_ADDR16_LO
, Value
.Addend
);
1512 if (Value
.SymbolName
) {
1513 addRelocationForSymbol(REhst
, Value
.SymbolName
);
1514 addRelocationForSymbol(REhr
, Value
.SymbolName
);
1515 addRelocationForSymbol(REh
, Value
.SymbolName
);
1516 addRelocationForSymbol(REl
, Value
.SymbolName
);
1518 addRelocationForSection(REhst
, Value
.SectionID
);
1519 addRelocationForSection(REhr
, Value
.SectionID
);
1520 addRelocationForSection(REh
, Value
.SectionID
);
1521 addRelocationForSection(REl
, Value
.SectionID
);
1524 resolveRelocation(Section
, Offset
, reinterpret_cast<uint64_t>(
1525 Section
.getAddressWithOffset(
1526 Section
.getStubOffset())),
1528 Section
.advanceStubOffset(getMaxStubSize());
1530 if (IsExtern
|| (AbiVariant
== 2 && Value
.SectionID
!= SectionID
)) {
1531 // Restore the TOC for external calls
1532 if (AbiVariant
== 2)
1533 writeInt32BE(Target
+ 4, 0xE8410018); // ld r2,24(r1)
1535 writeInt32BE(Target
+ 4, 0xE8410028); // ld r2,40(r1)
1538 } else if (RelType
== ELF::R_PPC64_TOC16
||
1539 RelType
== ELF::R_PPC64_TOC16_DS
||
1540 RelType
== ELF::R_PPC64_TOC16_LO
||
1541 RelType
== ELF::R_PPC64_TOC16_LO_DS
||
1542 RelType
== ELF::R_PPC64_TOC16_HI
||
1543 RelType
== ELF::R_PPC64_TOC16_HA
) {
1544 // These relocations are supposed to subtract the TOC address from
1545 // the final value. This does not fit cleanly into the RuntimeDyld
1546 // scheme, since there may be *two* sections involved in determining
1547 // the relocation value (the section of the symbol referred to by the
1548 // relocation, and the TOC section associated with the current module).
1550 // Fortunately, these relocations are currently only ever generated
1551 // referring to symbols that themselves reside in the TOC, which means
1552 // that the two sections are actually the same. Thus they cancel out
1553 // and we can immediately resolve the relocation right now.
1555 case ELF::R_PPC64_TOC16
: RelType
= ELF::R_PPC64_ADDR16
; break;
1556 case ELF::R_PPC64_TOC16_DS
: RelType
= ELF::R_PPC64_ADDR16_DS
; break;
1557 case ELF::R_PPC64_TOC16_LO
: RelType
= ELF::R_PPC64_ADDR16_LO
; break;
1558 case ELF::R_PPC64_TOC16_LO_DS
: RelType
= ELF::R_PPC64_ADDR16_LO_DS
; break;
1559 case ELF::R_PPC64_TOC16_HI
: RelType
= ELF::R_PPC64_ADDR16_HI
; break;
1560 case ELF::R_PPC64_TOC16_HA
: RelType
= ELF::R_PPC64_ADDR16_HA
; break;
1561 default: llvm_unreachable("Wrong relocation type.");
1564 RelocationValueRef TOCValue
;
1565 if (auto Err
= findPPC64TOCSection(Obj
, ObjSectionToID
, TOCValue
))
1566 return std::move(Err
);
1567 if (Value
.SymbolName
|| Value
.SectionID
!= TOCValue
.SectionID
)
1568 llvm_unreachable("Unsupported TOC relocation.");
1569 Value
.Addend
-= TOCValue
.Addend
;
1570 resolveRelocation(Sections
[SectionID
], Offset
, Value
.Addend
, RelType
, 0);
1572 // There are two ways to refer to the TOC address directly: either
1573 // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
1574 // ignored), or via any relocation that refers to the magic ".TOC."
1575 // symbols (in which case the addend is respected).
1576 if (RelType
== ELF::R_PPC64_TOC
) {
1577 RelType
= ELF::R_PPC64_ADDR64
;
1578 if (auto Err
= findPPC64TOCSection(Obj
, ObjSectionToID
, Value
))
1579 return std::move(Err
);
1580 } else if (TargetName
== ".TOC.") {
1581 if (auto Err
= findPPC64TOCSection(Obj
, ObjSectionToID
, Value
))
1582 return std::move(Err
);
1583 Value
.Addend
+= Addend
;
1586 RelocationEntry
RE(SectionID
, Offset
, RelType
, Value
.Addend
);
1588 if (Value
.SymbolName
)
1589 addRelocationForSymbol(RE
, Value
.SymbolName
);
1591 addRelocationForSection(RE
, Value
.SectionID
);
1593 } else if (Arch
== Triple::systemz
&&
1594 (RelType
== ELF::R_390_PLT32DBL
|| RelType
== ELF::R_390_GOTENT
)) {
1595 // Create function stubs for both PLT and GOT references, regardless of
1596 // whether the GOT reference is to data or code. The stub contains the
1597 // full address of the symbol, as needed by GOT references, and the
1598 // executable part only adds an overhead of 8 bytes.
1600 // We could try to conserve space by allocating the code and data
1601 // parts of the stub separately. However, as things stand, we allocate
1602 // a stub for every relocation, so using a GOT in JIT code should be
1603 // no less space efficient than using an explicit constant pool.
1604 LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
1605 SectionEntry
&Section
= Sections
[SectionID
];
1607 // Look for an existing stub.
1608 StubMap::const_iterator i
= Stubs
.find(Value
);
1609 uintptr_t StubAddress
;
1610 if (i
!= Stubs
.end()) {
1611 StubAddress
= uintptr_t(Section
.getAddressWithOffset(i
->second
));
1612 LLVM_DEBUG(dbgs() << " Stub function found\n");
1614 // Create a new stub function.
1615 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1617 uintptr_t BaseAddress
= uintptr_t(Section
.getAddress());
1618 uintptr_t StubAlignment
= getStubAlignment();
1620 (BaseAddress
+ Section
.getStubOffset() + StubAlignment
- 1) &
1622 unsigned StubOffset
= StubAddress
- BaseAddress
;
1624 Stubs
[Value
] = StubOffset
;
1625 createStubFunction((uint8_t *)StubAddress
);
1626 RelocationEntry
RE(SectionID
, StubOffset
+ 8, ELF::R_390_64
,
1628 if (Value
.SymbolName
)
1629 addRelocationForSymbol(RE
, Value
.SymbolName
);
1631 addRelocationForSection(RE
, Value
.SectionID
);
1632 Section
.advanceStubOffset(getMaxStubSize());
1635 if (RelType
== ELF::R_390_GOTENT
)
1636 resolveRelocation(Section
, Offset
, StubAddress
+ 8, ELF::R_390_PC32DBL
,
1639 resolveRelocation(Section
, Offset
, StubAddress
, RelType
, Addend
);
1640 } else if (Arch
== Triple::x86_64
) {
1641 if (RelType
== ELF::R_X86_64_PLT32
) {
1642 // The way the PLT relocations normally work is that the linker allocates
1644 // PLT and this relocation makes a PC-relative call into the PLT. The PLT
1645 // entry will then jump to an address provided by the GOT. On first call,
1647 // GOT address will point back into PLT code that resolves the symbol. After
1648 // the first call, the GOT entry points to the actual function.
1650 // For local functions we're ignoring all of that here and just replacing
1651 // the PLT32 relocation type with PC32, which will translate the relocation
1652 // into a PC-relative call directly to the function. For external symbols we
1653 // can't be sure the function will be within 2^32 bytes of the call site, so
1654 // we need to create a stub, which calls into the GOT. This case is
1655 // equivalent to the usual PLT implementation except that we use the stub
1656 // mechanism in RuntimeDyld (which puts stubs at the end of the section)
1657 // rather than allocating a PLT section.
1658 if (Value
.SymbolName
) {
1659 // This is a call to an external function.
1660 // Look for an existing stub.
1661 SectionEntry
&Section
= Sections
[SectionID
];
1662 StubMap::const_iterator i
= Stubs
.find(Value
);
1663 uintptr_t StubAddress
;
1664 if (i
!= Stubs
.end()) {
1665 StubAddress
= uintptr_t(Section
.getAddress()) + i
->second
;
1666 LLVM_DEBUG(dbgs() << " Stub function found\n");
1668 // Create a new stub function (equivalent to a PLT entry).
1669 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1671 uintptr_t BaseAddress
= uintptr_t(Section
.getAddress());
1672 uintptr_t StubAlignment
= getStubAlignment();
1674 (BaseAddress
+ Section
.getStubOffset() + StubAlignment
- 1) &
1676 unsigned StubOffset
= StubAddress
- BaseAddress
;
1677 Stubs
[Value
] = StubOffset
;
1678 createStubFunction((uint8_t *)StubAddress
);
1680 // Bump our stub offset counter
1681 Section
.advanceStubOffset(getMaxStubSize());
1683 // Allocate a GOT Entry
1684 uint64_t GOTOffset
= allocateGOTEntries(1);
1686 // The load of the GOT address has an addend of -4
1687 resolveGOTOffsetRelocation(SectionID
, StubOffset
+ 2, GOTOffset
- 4,
1688 ELF::R_X86_64_PC32
);
1690 // Fill in the value of the symbol we're targeting into the GOT
1691 addRelocationForSymbol(
1692 computeGOTOffsetRE(GOTOffset
, 0, ELF::R_X86_64_64
),
1696 // Make the target call a call into the stub table.
1697 resolveRelocation(Section
, Offset
, StubAddress
, ELF::R_X86_64_PC32
,
1700 RelocationEntry
RE(SectionID
, Offset
, ELF::R_X86_64_PC32
, Value
.Addend
,
1702 addRelocationForSection(RE
, Value
.SectionID
);
1704 } else if (RelType
== ELF::R_X86_64_GOTPCREL
||
1705 RelType
== ELF::R_X86_64_GOTPCRELX
||
1706 RelType
== ELF::R_X86_64_REX_GOTPCRELX
) {
1707 uint64_t GOTOffset
= allocateGOTEntries(1);
1708 resolveGOTOffsetRelocation(SectionID
, Offset
, GOTOffset
+ Addend
,
1709 ELF::R_X86_64_PC32
);
1711 // Fill in the value of the symbol we're targeting into the GOT
1712 RelocationEntry RE
=
1713 computeGOTOffsetRE(GOTOffset
, Value
.Offset
, ELF::R_X86_64_64
);
1714 if (Value
.SymbolName
)
1715 addRelocationForSymbol(RE
, Value
.SymbolName
);
1717 addRelocationForSection(RE
, Value
.SectionID
);
1718 } else if (RelType
== ELF::R_X86_64_GOT64
) {
1719 // Fill in a 64-bit GOT offset.
1720 uint64_t GOTOffset
= allocateGOTEntries(1);
1721 resolveRelocation(Sections
[SectionID
], Offset
, GOTOffset
,
1722 ELF::R_X86_64_64
, 0);
1724 // Fill in the value of the symbol we're targeting into the GOT
1725 RelocationEntry RE
=
1726 computeGOTOffsetRE(GOTOffset
, Value
.Offset
, ELF::R_X86_64_64
);
1727 if (Value
.SymbolName
)
1728 addRelocationForSymbol(RE
, Value
.SymbolName
);
1730 addRelocationForSection(RE
, Value
.SectionID
);
1731 } else if (RelType
== ELF::R_X86_64_GOTPC64
) {
1732 // Materialize the address of the base of the GOT relative to the PC.
1733 // This doesn't create a GOT entry, but it does mean we need a GOT
1735 (void)allocateGOTEntries(0);
1736 resolveGOTOffsetRelocation(SectionID
, Offset
, Addend
, ELF::R_X86_64_PC64
);
1737 } else if (RelType
== ELF::R_X86_64_GOTOFF64
) {
1738 // GOTOFF relocations ultimately require a section difference relocation.
1739 (void)allocateGOTEntries(0);
1740 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1741 } else if (RelType
== ELF::R_X86_64_PC32
) {
1742 Value
.Addend
+= support::ulittle32_t::ref(computePlaceholderAddress(SectionID
, Offset
));
1743 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1744 } else if (RelType
== ELF::R_X86_64_PC64
) {
1745 Value
.Addend
+= support::ulittle64_t::ref(computePlaceholderAddress(SectionID
, Offset
));
1746 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1748 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1751 if (Arch
== Triple::x86
) {
1752 Value
.Addend
+= support::ulittle32_t::ref(computePlaceholderAddress(SectionID
, Offset
));
1754 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1759 size_t RuntimeDyldELF::getGOTEntrySize() {
1760 // We don't use the GOT in all of these cases, but it's essentially free
1761 // to put them all here.
1764 case Triple::x86_64
:
1765 case Triple::aarch64
:
1766 case Triple::aarch64_be
:
1768 case Triple::ppc64le
:
1769 case Triple::systemz
:
1770 Result
= sizeof(uint64_t);
1775 Result
= sizeof(uint32_t);
1778 case Triple::mipsel
:
1779 case Triple::mips64
:
1780 case Triple::mips64el
:
1781 if (IsMipsO32ABI
|| IsMipsN32ABI
)
1782 Result
= sizeof(uint32_t);
1783 else if (IsMipsN64ABI
)
1784 Result
= sizeof(uint64_t);
1786 llvm_unreachable("Mips ABI not handled");
1789 llvm_unreachable("Unsupported CPU type!");
1794 uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no
) {
1795 if (GOTSectionID
== 0) {
1796 GOTSectionID
= Sections
.size();
1797 // Reserve a section id. We'll allocate the section later
1798 // once we know the total size
1799 Sections
.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
1801 uint64_t StartOffset
= CurrentGOTIndex
* getGOTEntrySize();
1802 CurrentGOTIndex
+= no
;
1806 uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef
&Value
,
1807 unsigned GOTRelType
) {
1808 auto E
= GOTOffsetMap
.insert({Value
, 0});
1810 uint64_t GOTOffset
= allocateGOTEntries(1);
1812 // Create relocation for newly created GOT entry
1813 RelocationEntry RE
=
1814 computeGOTOffsetRE(GOTOffset
, Value
.Offset
, GOTRelType
);
1815 if (Value
.SymbolName
)
1816 addRelocationForSymbol(RE
, Value
.SymbolName
);
1818 addRelocationForSection(RE
, Value
.SectionID
);
1820 E
.first
->second
= GOTOffset
;
1823 return E
.first
->second
;
1826 void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID
,
1830 // Fill in the relative address of the GOT Entry into the stub
1831 RelocationEntry
GOTRE(SectionID
, Offset
, Type
, GOTOffset
);
1832 addRelocationForSection(GOTRE
, GOTSectionID
);
1835 RelocationEntry
RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset
,
1836 uint64_t SymbolOffset
,
1838 return RelocationEntry(GOTSectionID
, GOTOffset
, Type
, SymbolOffset
);
1841 Error
RuntimeDyldELF::finalizeLoad(const ObjectFile
&Obj
,
1842 ObjSectionToIDMap
&SectionMap
) {
1844 if (!PendingRelocs
.empty())
1845 return make_error
<RuntimeDyldError
>("Can't find matching LO16 reloc");
1847 // If necessary, allocate the global offset table
1848 if (GOTSectionID
!= 0) {
1849 // Allocate memory for the section
1850 size_t TotalSize
= CurrentGOTIndex
* getGOTEntrySize();
1851 uint8_t *Addr
= MemMgr
.allocateDataSection(TotalSize
, getGOTEntrySize(),
1852 GOTSectionID
, ".got", false);
1854 return make_error
<RuntimeDyldError
>("Unable to allocate memory for GOT!");
1856 Sections
[GOTSectionID
] =
1857 SectionEntry(".got", Addr
, TotalSize
, TotalSize
, 0);
1859 // For now, initialize all GOT entries to zero. We'll fill them in as
1860 // needed when GOT-based relocations are applied.
1861 memset(Addr
, 0, TotalSize
);
1862 if (IsMipsN32ABI
|| IsMipsN64ABI
) {
1863 // To correctly resolve Mips GOT relocations, we need a mapping from
1864 // object's sections to GOTs.
1865 for (section_iterator SI
= Obj
.section_begin(), SE
= Obj
.section_end();
1867 if (SI
->relocation_begin() != SI
->relocation_end()) {
1868 section_iterator RelocatedSection
= SI
->getRelocatedSection();
1869 ObjSectionToIDMap::iterator i
= SectionMap
.find(*RelocatedSection
);
1870 assert (i
!= SectionMap
.end());
1871 SectionToGOTMap
[i
->second
] = GOTSectionID
;
1874 GOTSymbolOffsets
.clear();
1878 // Look for and record the EH frame section.
1879 ObjSectionToIDMap::iterator i
, e
;
1880 for (i
= SectionMap
.begin(), e
= SectionMap
.end(); i
!= e
; ++i
) {
1881 const SectionRef
&Section
= i
->first
;
1883 Section
.getName(Name
);
1884 if (Name
== ".eh_frame") {
1885 UnregisteredEHFrameSections
.push_back(i
->second
);
1891 CurrentGOTIndex
= 0;
1893 return Error::success();
1896 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile
&Obj
) const {
1900 bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef
&R
) const {
1901 unsigned RelTy
= R
.getType();
1902 if (Arch
== Triple::aarch64
|| Arch
== Triple::aarch64_be
)
1903 return RelTy
== ELF::R_AARCH64_ADR_GOT_PAGE
||
1904 RelTy
== ELF::R_AARCH64_LD64_GOT_LO12_NC
;
1906 if (Arch
== Triple::x86_64
)
1907 return RelTy
== ELF::R_X86_64_GOTPCREL
||
1908 RelTy
== ELF::R_X86_64_GOTPCRELX
||
1909 RelTy
== ELF::R_X86_64_GOT64
||
1910 RelTy
== ELF::R_X86_64_REX_GOTPCRELX
;
1914 bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef
&R
) const {
1915 if (Arch
!= Triple::x86_64
)
1916 return true; // Conservative answer
1918 switch (R
.getType()) {
1920 return true; // Conservative answer
1923 case ELF::R_X86_64_GOTPCREL
:
1924 case ELF::R_X86_64_GOTPCRELX
:
1925 case ELF::R_X86_64_REX_GOTPCRELX
:
1926 case ELF::R_X86_64_GOTPC64
:
1927 case ELF::R_X86_64_GOT64
:
1928 case ELF::R_X86_64_GOTOFF64
:
1929 case ELF::R_X86_64_PC32
:
1930 case ELF::R_X86_64_PC64
:
1931 case ELF::R_X86_64_64
:
1932 // We know that these reloation types won't need a stub function. This list
1933 // can be extended as needed.