[ARM] MVE integer min and max
[llvm-complete.git] / lib / LTO / LTO.cpp
blob64506890956a9c9bd25a3d1026d2be320521fe06
1 //===-LTO.cpp - LLVM Link Time Optimizer ----------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements functions and classes used to support LTO.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/LTO/LTO.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/TargetLibraryInfo.h"
16 #include "llvm/Analysis/TargetTransformInfo.h"
17 #include "llvm/Bitcode/BitcodeReader.h"
18 #include "llvm/Bitcode/BitcodeWriter.h"
19 #include "llvm/CodeGen/Analysis.h"
20 #include "llvm/Config/llvm-config.h"
21 #include "llvm/IR/AutoUpgrade.h"
22 #include "llvm/IR/DiagnosticPrinter.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/LegacyPassManager.h"
25 #include "llvm/IR/Mangler.h"
26 #include "llvm/IR/Metadata.h"
27 #include "llvm/IR/RemarkStreamer.h"
28 #include "llvm/LTO/LTOBackend.h"
29 #include "llvm/LTO/SummaryBasedOptimizations.h"
30 #include "llvm/Linker/IRMover.h"
31 #include "llvm/Object/IRObjectFile.h"
32 #include "llvm/Support/Error.h"
33 #include "llvm/Support/ManagedStatic.h"
34 #include "llvm/Support/MemoryBuffer.h"
35 #include "llvm/Support/Path.h"
36 #include "llvm/Support/SHA1.h"
37 #include "llvm/Support/SourceMgr.h"
38 #include "llvm/Support/TargetRegistry.h"
39 #include "llvm/Support/ThreadPool.h"
40 #include "llvm/Support/Threading.h"
41 #include "llvm/Support/VCSRevision.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Target/TargetMachine.h"
44 #include "llvm/Target/TargetOptions.h"
45 #include "llvm/Transforms/IPO.h"
46 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
47 #include "llvm/Transforms/Utils/FunctionImportUtils.h"
48 #include "llvm/Transforms/Utils/SplitModule.h"
50 #include <set>
52 using namespace llvm;
53 using namespace lto;
54 using namespace object;
56 #define DEBUG_TYPE "lto"
58 static cl::opt<bool>
59 DumpThinCGSCCs("dump-thin-cg-sccs", cl::init(false), cl::Hidden,
60 cl::desc("Dump the SCCs in the ThinLTO index's callgraph"));
62 /// Enable global value internalization in LTO.
63 cl::opt<bool> EnableLTOInternalization(
64 "enable-lto-internalization", cl::init(true), cl::Hidden,
65 cl::desc("Enable global value internalization in LTO"));
67 // Computes a unique hash for the Module considering the current list of
68 // export/import and other global analysis results.
69 // The hash is produced in \p Key.
70 void llvm::computeLTOCacheKey(
71 SmallString<40> &Key, const Config &Conf, const ModuleSummaryIndex &Index,
72 StringRef ModuleID, const FunctionImporter::ImportMapTy &ImportList,
73 const FunctionImporter::ExportSetTy &ExportList,
74 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
75 const GVSummaryMapTy &DefinedGlobals,
76 const std::set<GlobalValue::GUID> &CfiFunctionDefs,
77 const std::set<GlobalValue::GUID> &CfiFunctionDecls) {
78 // Compute the unique hash for this entry.
79 // This is based on the current compiler version, the module itself, the
80 // export list, the hash for every single module in the import list, the
81 // list of ResolvedODR for the module, and the list of preserved symbols.
82 SHA1 Hasher;
84 // Start with the compiler revision
85 Hasher.update(LLVM_VERSION_STRING);
86 #ifdef LLVM_REVISION
87 Hasher.update(LLVM_REVISION);
88 #endif
90 // Include the parts of the LTO configuration that affect code generation.
91 auto AddString = [&](StringRef Str) {
92 Hasher.update(Str);
93 Hasher.update(ArrayRef<uint8_t>{0});
95 auto AddUnsigned = [&](unsigned I) {
96 uint8_t Data[4];
97 Data[0] = I;
98 Data[1] = I >> 8;
99 Data[2] = I >> 16;
100 Data[3] = I >> 24;
101 Hasher.update(ArrayRef<uint8_t>{Data, 4});
103 auto AddUint64 = [&](uint64_t I) {
104 uint8_t Data[8];
105 Data[0] = I;
106 Data[1] = I >> 8;
107 Data[2] = I >> 16;
108 Data[3] = I >> 24;
109 Data[4] = I >> 32;
110 Data[5] = I >> 40;
111 Data[6] = I >> 48;
112 Data[7] = I >> 56;
113 Hasher.update(ArrayRef<uint8_t>{Data, 8});
115 AddString(Conf.CPU);
116 // FIXME: Hash more of Options. For now all clients initialize Options from
117 // command-line flags (which is unsupported in production), but may set
118 // RelaxELFRelocations. The clang driver can also pass FunctionSections,
119 // DataSections and DebuggerTuning via command line flags.
120 AddUnsigned(Conf.Options.RelaxELFRelocations);
121 AddUnsigned(Conf.Options.FunctionSections);
122 AddUnsigned(Conf.Options.DataSections);
123 AddUnsigned((unsigned)Conf.Options.DebuggerTuning);
124 for (auto &A : Conf.MAttrs)
125 AddString(A);
126 if (Conf.RelocModel)
127 AddUnsigned(*Conf.RelocModel);
128 else
129 AddUnsigned(-1);
130 if (Conf.CodeModel)
131 AddUnsigned(*Conf.CodeModel);
132 else
133 AddUnsigned(-1);
134 AddUnsigned(Conf.CGOptLevel);
135 AddUnsigned(Conf.CGFileType);
136 AddUnsigned(Conf.OptLevel);
137 AddUnsigned(Conf.UseNewPM);
138 AddUnsigned(Conf.Freestanding);
139 AddString(Conf.OptPipeline);
140 AddString(Conf.AAPipeline);
141 AddString(Conf.OverrideTriple);
142 AddString(Conf.DefaultTriple);
143 AddString(Conf.DwoDir);
145 // Include the hash for the current module
146 auto ModHash = Index.getModuleHash(ModuleID);
147 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash)));
148 for (auto F : ExportList)
149 // The export list can impact the internalization, be conservative here
150 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&F, sizeof(F)));
152 // Include the hash for every module we import functions from. The set of
153 // imported symbols for each module may affect code generation and is
154 // sensitive to link order, so include that as well.
155 for (auto &Entry : ImportList) {
156 auto ModHash = Index.getModuleHash(Entry.first());
157 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash)));
159 AddUint64(Entry.second.size());
160 for (auto &Fn : Entry.second)
161 AddUint64(Fn);
164 // Include the hash for the resolved ODR.
165 for (auto &Entry : ResolvedODR) {
166 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.first,
167 sizeof(GlobalValue::GUID)));
168 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.second,
169 sizeof(GlobalValue::LinkageTypes)));
172 // Members of CfiFunctionDefs and CfiFunctionDecls that are referenced or
173 // defined in this module.
174 std::set<GlobalValue::GUID> UsedCfiDefs;
175 std::set<GlobalValue::GUID> UsedCfiDecls;
177 // Typeids used in this module.
178 std::set<GlobalValue::GUID> UsedTypeIds;
180 auto AddUsedCfiGlobal = [&](GlobalValue::GUID ValueGUID) {
181 if (CfiFunctionDefs.count(ValueGUID))
182 UsedCfiDefs.insert(ValueGUID);
183 if (CfiFunctionDecls.count(ValueGUID))
184 UsedCfiDecls.insert(ValueGUID);
187 auto AddUsedThings = [&](GlobalValueSummary *GS) {
188 if (!GS) return;
189 AddUnsigned(GS->isLive());
190 AddUnsigned(GS->canAutoHide());
191 for (const ValueInfo &VI : GS->refs()) {
192 AddUnsigned(VI.isDSOLocal());
193 AddUsedCfiGlobal(VI.getGUID());
195 if (auto *GVS = dyn_cast<GlobalVarSummary>(GS)) {
196 AddUnsigned(GVS->maybeReadOnly());
197 AddUnsigned(GVS->maybeWriteOnly());
199 if (auto *FS = dyn_cast<FunctionSummary>(GS)) {
200 for (auto &TT : FS->type_tests())
201 UsedTypeIds.insert(TT);
202 for (auto &TT : FS->type_test_assume_vcalls())
203 UsedTypeIds.insert(TT.GUID);
204 for (auto &TT : FS->type_checked_load_vcalls())
205 UsedTypeIds.insert(TT.GUID);
206 for (auto &TT : FS->type_test_assume_const_vcalls())
207 UsedTypeIds.insert(TT.VFunc.GUID);
208 for (auto &TT : FS->type_checked_load_const_vcalls())
209 UsedTypeIds.insert(TT.VFunc.GUID);
210 for (auto &ET : FS->calls()) {
211 AddUnsigned(ET.first.isDSOLocal());
212 AddUsedCfiGlobal(ET.first.getGUID());
217 // Include the hash for the linkage type to reflect internalization and weak
218 // resolution, and collect any used type identifier resolutions.
219 for (auto &GS : DefinedGlobals) {
220 GlobalValue::LinkageTypes Linkage = GS.second->linkage();
221 Hasher.update(
222 ArrayRef<uint8_t>((const uint8_t *)&Linkage, sizeof(Linkage)));
223 AddUsedCfiGlobal(GS.first);
224 AddUsedThings(GS.second);
227 // Imported functions may introduce new uses of type identifier resolutions,
228 // so we need to collect their used resolutions as well.
229 for (auto &ImpM : ImportList)
230 for (auto &ImpF : ImpM.second) {
231 GlobalValueSummary *S = Index.findSummaryInModule(ImpF, ImpM.first());
232 AddUsedThings(S);
233 // If this is an alias, we also care about any types/etc. that the aliasee
234 // may reference.
235 if (auto *AS = dyn_cast_or_null<AliasSummary>(S))
236 AddUsedThings(AS->getBaseObject());
239 auto AddTypeIdSummary = [&](StringRef TId, const TypeIdSummary &S) {
240 AddString(TId);
242 AddUnsigned(S.TTRes.TheKind);
243 AddUnsigned(S.TTRes.SizeM1BitWidth);
245 AddUint64(S.TTRes.AlignLog2);
246 AddUint64(S.TTRes.SizeM1);
247 AddUint64(S.TTRes.BitMask);
248 AddUint64(S.TTRes.InlineBits);
250 AddUint64(S.WPDRes.size());
251 for (auto &WPD : S.WPDRes) {
252 AddUnsigned(WPD.first);
253 AddUnsigned(WPD.second.TheKind);
254 AddString(WPD.second.SingleImplName);
256 AddUint64(WPD.second.ResByArg.size());
257 for (auto &ByArg : WPD.second.ResByArg) {
258 AddUint64(ByArg.first.size());
259 for (uint64_t Arg : ByArg.first)
260 AddUint64(Arg);
261 AddUnsigned(ByArg.second.TheKind);
262 AddUint64(ByArg.second.Info);
263 AddUnsigned(ByArg.second.Byte);
264 AddUnsigned(ByArg.second.Bit);
269 // Include the hash for all type identifiers used by this module.
270 for (GlobalValue::GUID TId : UsedTypeIds) {
271 auto TidIter = Index.typeIds().equal_range(TId);
272 for (auto It = TidIter.first; It != TidIter.second; ++It)
273 AddTypeIdSummary(It->second.first, It->second.second);
276 AddUnsigned(UsedCfiDefs.size());
277 for (auto &V : UsedCfiDefs)
278 AddUint64(V);
280 AddUnsigned(UsedCfiDecls.size());
281 for (auto &V : UsedCfiDecls)
282 AddUint64(V);
284 if (!Conf.SampleProfile.empty()) {
285 auto FileOrErr = MemoryBuffer::getFile(Conf.SampleProfile);
286 if (FileOrErr) {
287 Hasher.update(FileOrErr.get()->getBuffer());
289 if (!Conf.ProfileRemapping.empty()) {
290 FileOrErr = MemoryBuffer::getFile(Conf.ProfileRemapping);
291 if (FileOrErr)
292 Hasher.update(FileOrErr.get()->getBuffer());
297 Key = toHex(Hasher.result());
300 static void thinLTOResolvePrevailingGUID(
301 ValueInfo VI, DenseSet<GlobalValueSummary *> &GlobalInvolvedWithAlias,
302 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
303 isPrevailing,
304 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)>
305 recordNewLinkage,
306 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) {
307 for (auto &S : VI.getSummaryList()) {
308 GlobalValue::LinkageTypes OriginalLinkage = S->linkage();
309 // Ignore local and appending linkage values since the linker
310 // doesn't resolve them.
311 if (GlobalValue::isLocalLinkage(OriginalLinkage) ||
312 GlobalValue::isAppendingLinkage(S->linkage()))
313 continue;
314 // We need to emit only one of these. The prevailing module will keep it,
315 // but turned into a weak, while the others will drop it when possible.
316 // This is both a compile-time optimization and a correctness
317 // transformation. This is necessary for correctness when we have exported
318 // a reference - we need to convert the linkonce to weak to
319 // ensure a copy is kept to satisfy the exported reference.
320 // FIXME: We may want to split the compile time and correctness
321 // aspects into separate routines.
322 if (isPrevailing(VI.getGUID(), S.get())) {
323 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) {
324 S->setLinkage(GlobalValue::getWeakLinkage(
325 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage)));
326 // The kept copy is eligible for auto-hiding (hidden visibility) if all
327 // copies were (i.e. they were all linkonce_odr global unnamed addr).
328 // If any copy is not (e.g. it was originally weak_odr), then the symbol
329 // must remain externally available (e.g. a weak_odr from an explicitly
330 // instantiated template). Additionally, if it is in the
331 // GUIDPreservedSymbols set, that means that it is visibile outside
332 // the summary (e.g. in a native object or a bitcode file without
333 // summary), and in that case we cannot hide it as it isn't possible to
334 // check all copies.
335 S->setCanAutoHide(VI.canAutoHide() &&
336 !GUIDPreservedSymbols.count(VI.getGUID()));
339 // Alias and aliasee can't be turned into available_externally.
340 else if (!isa<AliasSummary>(S.get()) &&
341 !GlobalInvolvedWithAlias.count(S.get()))
342 S->setLinkage(GlobalValue::AvailableExternallyLinkage);
343 if (S->linkage() != OriginalLinkage)
344 recordNewLinkage(S->modulePath(), VI.getGUID(), S->linkage());
348 /// Resolve linkage for prevailing symbols in the \p Index.
350 // We'd like to drop these functions if they are no longer referenced in the
351 // current module. However there is a chance that another module is still
352 // referencing them because of the import. We make sure we always emit at least
353 // one copy.
354 void llvm::thinLTOResolvePrevailingInIndex(
355 ModuleSummaryIndex &Index,
356 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
357 isPrevailing,
358 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)>
359 recordNewLinkage,
360 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) {
361 // We won't optimize the globals that are referenced by an alias for now
362 // Ideally we should turn the alias into a global and duplicate the definition
363 // when needed.
364 DenseSet<GlobalValueSummary *> GlobalInvolvedWithAlias;
365 for (auto &I : Index)
366 for (auto &S : I.second.SummaryList)
367 if (auto AS = dyn_cast<AliasSummary>(S.get()))
368 GlobalInvolvedWithAlias.insert(&AS->getAliasee());
370 for (auto &I : Index)
371 thinLTOResolvePrevailingGUID(Index.getValueInfo(I), GlobalInvolvedWithAlias,
372 isPrevailing, recordNewLinkage,
373 GUIDPreservedSymbols);
376 static bool isWeakObjectWithRWAccess(GlobalValueSummary *GVS) {
377 if (auto *VarSummary = dyn_cast<GlobalVarSummary>(GVS->getBaseObject()))
378 return !VarSummary->maybeReadOnly() && !VarSummary->maybeWriteOnly() &&
379 (VarSummary->linkage() == GlobalValue::WeakODRLinkage ||
380 VarSummary->linkage() == GlobalValue::LinkOnceODRLinkage);
381 return false;
384 static void thinLTOInternalizeAndPromoteGUID(
385 GlobalValueSummaryList &GVSummaryList, GlobalValue::GUID GUID,
386 function_ref<bool(StringRef, GlobalValue::GUID)> isExported) {
387 for (auto &S : GVSummaryList) {
388 if (isExported(S->modulePath(), GUID)) {
389 if (GlobalValue::isLocalLinkage(S->linkage()))
390 S->setLinkage(GlobalValue::ExternalLinkage);
391 } else if (EnableLTOInternalization &&
392 // Ignore local and appending linkage values since the linker
393 // doesn't resolve them.
394 !GlobalValue::isLocalLinkage(S->linkage()) &&
395 S->linkage() != GlobalValue::AppendingLinkage &&
396 // We can't internalize available_externally globals because this
397 // can break function pointer equality.
398 S->linkage() != GlobalValue::AvailableExternallyLinkage &&
399 // Functions and read-only variables with linkonce_odr and
400 // weak_odr linkage can be internalized. We can't internalize
401 // linkonce_odr and weak_odr variables which are both modified
402 // and read somewhere in the program because reads and writes
403 // will become inconsistent.
404 !isWeakObjectWithRWAccess(S.get()))
405 S->setLinkage(GlobalValue::InternalLinkage);
409 // Update the linkages in the given \p Index to mark exported values
410 // as external and non-exported values as internal.
411 void llvm::thinLTOInternalizeAndPromoteInIndex(
412 ModuleSummaryIndex &Index,
413 function_ref<bool(StringRef, GlobalValue::GUID)> isExported) {
414 for (auto &I : Index)
415 thinLTOInternalizeAndPromoteGUID(I.second.SummaryList, I.first, isExported);
418 // Requires a destructor for std::vector<InputModule>.
419 InputFile::~InputFile() = default;
421 Expected<std::unique_ptr<InputFile>> InputFile::create(MemoryBufferRef Object) {
422 std::unique_ptr<InputFile> File(new InputFile);
424 Expected<IRSymtabFile> FOrErr = readIRSymtab(Object);
425 if (!FOrErr)
426 return FOrErr.takeError();
428 File->TargetTriple = FOrErr->TheReader.getTargetTriple();
429 File->SourceFileName = FOrErr->TheReader.getSourceFileName();
430 File->COFFLinkerOpts = FOrErr->TheReader.getCOFFLinkerOpts();
431 File->DependentLibraries = FOrErr->TheReader.getDependentLibraries();
432 File->ComdatTable = FOrErr->TheReader.getComdatTable();
434 for (unsigned I = 0; I != FOrErr->Mods.size(); ++I) {
435 size_t Begin = File->Symbols.size();
436 for (const irsymtab::Reader::SymbolRef &Sym :
437 FOrErr->TheReader.module_symbols(I))
438 // Skip symbols that are irrelevant to LTO. Note that this condition needs
439 // to match the one in Skip() in LTO::addRegularLTO().
440 if (Sym.isGlobal() && !Sym.isFormatSpecific())
441 File->Symbols.push_back(Sym);
442 File->ModuleSymIndices.push_back({Begin, File->Symbols.size()});
445 File->Mods = FOrErr->Mods;
446 File->Strtab = std::move(FOrErr->Strtab);
447 return std::move(File);
450 StringRef InputFile::getName() const {
451 return Mods[0].getModuleIdentifier();
454 BitcodeModule &InputFile::getSingleBitcodeModule() {
455 assert(Mods.size() == 1 && "Expect only one bitcode module");
456 return Mods[0];
459 LTO::RegularLTOState::RegularLTOState(unsigned ParallelCodeGenParallelismLevel,
460 Config &Conf)
461 : ParallelCodeGenParallelismLevel(ParallelCodeGenParallelismLevel),
462 Ctx(Conf), CombinedModule(llvm::make_unique<Module>("ld-temp.o", Ctx)),
463 Mover(llvm::make_unique<IRMover>(*CombinedModule)) {}
465 LTO::ThinLTOState::ThinLTOState(ThinBackend Backend)
466 : Backend(Backend), CombinedIndex(/*HaveGVs*/ false) {
467 if (!Backend)
468 this->Backend =
469 createInProcessThinBackend(llvm::heavyweight_hardware_concurrency());
472 LTO::LTO(Config Conf, ThinBackend Backend,
473 unsigned ParallelCodeGenParallelismLevel)
474 : Conf(std::move(Conf)),
475 RegularLTO(ParallelCodeGenParallelismLevel, this->Conf),
476 ThinLTO(std::move(Backend)) {}
478 // Requires a destructor for MapVector<BitcodeModule>.
479 LTO::~LTO() = default;
481 // Add the symbols in the given module to the GlobalResolutions map, and resolve
482 // their partitions.
483 void LTO::addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms,
484 ArrayRef<SymbolResolution> Res,
485 unsigned Partition, bool InSummary) {
486 auto *ResI = Res.begin();
487 auto *ResE = Res.end();
488 (void)ResE;
489 for (const InputFile::Symbol &Sym : Syms) {
490 assert(ResI != ResE);
491 SymbolResolution Res = *ResI++;
493 StringRef Name = Sym.getName();
494 Triple TT(RegularLTO.CombinedModule->getTargetTriple());
495 // Strip the __imp_ prefix from COFF dllimport symbols (similar to the
496 // way they are handled by lld), otherwise we can end up with two
497 // global resolutions (one with and one for a copy of the symbol without).
498 if (TT.isOSBinFormatCOFF() && Name.startswith("__imp_"))
499 Name = Name.substr(strlen("__imp_"));
500 auto &GlobalRes = GlobalResolutions[Name];
501 GlobalRes.UnnamedAddr &= Sym.isUnnamedAddr();
502 if (Res.Prevailing) {
503 assert(!GlobalRes.Prevailing &&
504 "Multiple prevailing defs are not allowed");
505 GlobalRes.Prevailing = true;
506 GlobalRes.IRName = Sym.getIRName();
507 } else if (!GlobalRes.Prevailing && GlobalRes.IRName.empty()) {
508 // Sometimes it can be two copies of symbol in a module and prevailing
509 // symbol can have no IR name. That might happen if symbol is defined in
510 // module level inline asm block. In case we have multiple modules with
511 // the same symbol we want to use IR name of the prevailing symbol.
512 // Otherwise, if we haven't seen a prevailing symbol, set the name so that
513 // we can later use it to check if there is any prevailing copy in IR.
514 GlobalRes.IRName = Sym.getIRName();
517 // Set the partition to external if we know it is re-defined by the linker
518 // with -defsym or -wrap options, used elsewhere, e.g. it is visible to a
519 // regular object, is referenced from llvm.compiler_used, or was already
520 // recorded as being referenced from a different partition.
521 if (Res.LinkerRedefined || Res.VisibleToRegularObj || Sym.isUsed() ||
522 (GlobalRes.Partition != GlobalResolution::Unknown &&
523 GlobalRes.Partition != Partition)) {
524 GlobalRes.Partition = GlobalResolution::External;
525 } else
526 // First recorded reference, save the current partition.
527 GlobalRes.Partition = Partition;
529 // Flag as visible outside of summary if visible from a regular object or
530 // from a module that does not have a summary.
531 GlobalRes.VisibleOutsideSummary |=
532 (Res.VisibleToRegularObj || Sym.isUsed() || !InSummary);
536 static void writeToResolutionFile(raw_ostream &OS, InputFile *Input,
537 ArrayRef<SymbolResolution> Res) {
538 StringRef Path = Input->getName();
539 OS << Path << '\n';
540 auto ResI = Res.begin();
541 for (const InputFile::Symbol &Sym : Input->symbols()) {
542 assert(ResI != Res.end());
543 SymbolResolution Res = *ResI++;
545 OS << "-r=" << Path << ',' << Sym.getName() << ',';
546 if (Res.Prevailing)
547 OS << 'p';
548 if (Res.FinalDefinitionInLinkageUnit)
549 OS << 'l';
550 if (Res.VisibleToRegularObj)
551 OS << 'x';
552 if (Res.LinkerRedefined)
553 OS << 'r';
554 OS << '\n';
556 OS.flush();
557 assert(ResI == Res.end());
560 Error LTO::add(std::unique_ptr<InputFile> Input,
561 ArrayRef<SymbolResolution> Res) {
562 assert(!CalledGetMaxTasks);
564 if (Conf.ResolutionFile)
565 writeToResolutionFile(*Conf.ResolutionFile, Input.get(), Res);
567 if (RegularLTO.CombinedModule->getTargetTriple().empty())
568 RegularLTO.CombinedModule->setTargetTriple(Input->getTargetTriple());
570 const SymbolResolution *ResI = Res.begin();
571 for (unsigned I = 0; I != Input->Mods.size(); ++I)
572 if (Error Err = addModule(*Input, I, ResI, Res.end()))
573 return Err;
575 assert(ResI == Res.end());
576 return Error::success();
579 Error LTO::addModule(InputFile &Input, unsigned ModI,
580 const SymbolResolution *&ResI,
581 const SymbolResolution *ResE) {
582 Expected<BitcodeLTOInfo> LTOInfo = Input.Mods[ModI].getLTOInfo();
583 if (!LTOInfo)
584 return LTOInfo.takeError();
586 if (EnableSplitLTOUnit.hasValue()) {
587 // If only some modules were split, flag this in the index so that
588 // we can skip or error on optimizations that need consistently split
589 // modules (whole program devirt and lower type tests).
590 if (EnableSplitLTOUnit.getValue() != LTOInfo->EnableSplitLTOUnit)
591 ThinLTO.CombinedIndex.setPartiallySplitLTOUnits();
592 } else
593 EnableSplitLTOUnit = LTOInfo->EnableSplitLTOUnit;
595 BitcodeModule BM = Input.Mods[ModI];
596 auto ModSyms = Input.module_symbols(ModI);
597 addModuleToGlobalRes(ModSyms, {ResI, ResE},
598 LTOInfo->IsThinLTO ? ThinLTO.ModuleMap.size() + 1 : 0,
599 LTOInfo->HasSummary);
601 if (LTOInfo->IsThinLTO)
602 return addThinLTO(BM, ModSyms, ResI, ResE);
604 Expected<RegularLTOState::AddedModule> ModOrErr =
605 addRegularLTO(BM, ModSyms, ResI, ResE);
606 if (!ModOrErr)
607 return ModOrErr.takeError();
609 if (!LTOInfo->HasSummary)
610 return linkRegularLTO(std::move(*ModOrErr), /*LivenessFromIndex=*/false);
612 // Regular LTO module summaries are added to a dummy module that represents
613 // the combined regular LTO module.
614 if (Error Err = BM.readSummary(ThinLTO.CombinedIndex, "", -1ull))
615 return Err;
616 RegularLTO.ModsWithSummaries.push_back(std::move(*ModOrErr));
617 return Error::success();
620 // Checks whether the given global value is in a non-prevailing comdat
621 // (comdat containing values the linker indicated were not prevailing,
622 // which we then dropped to available_externally), and if so, removes
623 // it from the comdat. This is called for all global values to ensure the
624 // comdat is empty rather than leaving an incomplete comdat. It is needed for
625 // regular LTO modules, in case we are in a mixed-LTO mode (both regular
626 // and thin LTO modules) compilation. Since the regular LTO module will be
627 // linked first in the final native link, we want to make sure the linker
628 // doesn't select any of these incomplete comdats that would be left
629 // in the regular LTO module without this cleanup.
630 static void
631 handleNonPrevailingComdat(GlobalValue &GV,
632 std::set<const Comdat *> &NonPrevailingComdats) {
633 Comdat *C = GV.getComdat();
634 if (!C)
635 return;
637 if (!NonPrevailingComdats.count(C))
638 return;
640 // Additionally need to drop externally visible global values from the comdat
641 // to available_externally, so that there aren't multiply defined linker
642 // errors.
643 if (!GV.hasLocalLinkage())
644 GV.setLinkage(GlobalValue::AvailableExternallyLinkage);
646 if (auto GO = dyn_cast<GlobalObject>(&GV))
647 GO->setComdat(nullptr);
650 // Add a regular LTO object to the link.
651 // The resulting module needs to be linked into the combined LTO module with
652 // linkRegularLTO.
653 Expected<LTO::RegularLTOState::AddedModule>
654 LTO::addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms,
655 const SymbolResolution *&ResI,
656 const SymbolResolution *ResE) {
657 RegularLTOState::AddedModule Mod;
658 Expected<std::unique_ptr<Module>> MOrErr =
659 BM.getLazyModule(RegularLTO.Ctx, /*ShouldLazyLoadMetadata*/ true,
660 /*IsImporting*/ false);
661 if (!MOrErr)
662 return MOrErr.takeError();
663 Module &M = **MOrErr;
664 Mod.M = std::move(*MOrErr);
666 if (Error Err = M.materializeMetadata())
667 return std::move(Err);
668 UpgradeDebugInfo(M);
670 ModuleSymbolTable SymTab;
671 SymTab.addModule(&M);
673 for (GlobalVariable &GV : M.globals())
674 if (GV.hasAppendingLinkage())
675 Mod.Keep.push_back(&GV);
677 DenseSet<GlobalObject *> AliasedGlobals;
678 for (auto &GA : M.aliases())
679 if (GlobalObject *GO = GA.getBaseObject())
680 AliasedGlobals.insert(GO);
682 // In this function we need IR GlobalValues matching the symbols in Syms
683 // (which is not backed by a module), so we need to enumerate them in the same
684 // order. The symbol enumeration order of a ModuleSymbolTable intentionally
685 // matches the order of an irsymtab, but when we read the irsymtab in
686 // InputFile::create we omit some symbols that are irrelevant to LTO. The
687 // Skip() function skips the same symbols from the module as InputFile does
688 // from the symbol table.
689 auto MsymI = SymTab.symbols().begin(), MsymE = SymTab.symbols().end();
690 auto Skip = [&]() {
691 while (MsymI != MsymE) {
692 auto Flags = SymTab.getSymbolFlags(*MsymI);
693 if ((Flags & object::BasicSymbolRef::SF_Global) &&
694 !(Flags & object::BasicSymbolRef::SF_FormatSpecific))
695 return;
696 ++MsymI;
699 Skip();
701 std::set<const Comdat *> NonPrevailingComdats;
702 for (const InputFile::Symbol &Sym : Syms) {
703 assert(ResI != ResE);
704 SymbolResolution Res = *ResI++;
706 assert(MsymI != MsymE);
707 ModuleSymbolTable::Symbol Msym = *MsymI++;
708 Skip();
710 if (GlobalValue *GV = Msym.dyn_cast<GlobalValue *>()) {
711 if (Res.Prevailing) {
712 if (Sym.isUndefined())
713 continue;
714 Mod.Keep.push_back(GV);
715 // For symbols re-defined with linker -wrap and -defsym options,
716 // set the linkage to weak to inhibit IPO. The linkage will be
717 // restored by the linker.
718 if (Res.LinkerRedefined)
719 GV->setLinkage(GlobalValue::WeakAnyLinkage);
721 GlobalValue::LinkageTypes OriginalLinkage = GV->getLinkage();
722 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage))
723 GV->setLinkage(GlobalValue::getWeakLinkage(
724 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage)));
725 } else if (isa<GlobalObject>(GV) &&
726 (GV->hasLinkOnceODRLinkage() || GV->hasWeakODRLinkage() ||
727 GV->hasAvailableExternallyLinkage()) &&
728 !AliasedGlobals.count(cast<GlobalObject>(GV))) {
729 // Any of the above three types of linkage indicates that the
730 // chosen prevailing symbol will have the same semantics as this copy of
731 // the symbol, so we may be able to link it with available_externally
732 // linkage. We will decide later whether to do that when we link this
733 // module (in linkRegularLTO), based on whether it is undefined.
734 Mod.Keep.push_back(GV);
735 GV->setLinkage(GlobalValue::AvailableExternallyLinkage);
736 if (GV->hasComdat())
737 NonPrevailingComdats.insert(GV->getComdat());
738 cast<GlobalObject>(GV)->setComdat(nullptr);
741 // Set the 'local' flag based on the linker resolution for this symbol.
742 if (Res.FinalDefinitionInLinkageUnit) {
743 GV->setDSOLocal(true);
744 if (GV->hasDLLImportStorageClass())
745 GV->setDLLStorageClass(GlobalValue::DLLStorageClassTypes::
746 DefaultStorageClass);
749 // Common resolution: collect the maximum size/alignment over all commons.
750 // We also record if we see an instance of a common as prevailing, so that
751 // if none is prevailing we can ignore it later.
752 if (Sym.isCommon()) {
753 // FIXME: We should figure out what to do about commons defined by asm.
754 // For now they aren't reported correctly by ModuleSymbolTable.
755 auto &CommonRes = RegularLTO.Commons[Sym.getIRName()];
756 CommonRes.Size = std::max(CommonRes.Size, Sym.getCommonSize());
757 CommonRes.Align = std::max(CommonRes.Align, Sym.getCommonAlignment());
758 CommonRes.Prevailing |= Res.Prevailing;
762 if (!M.getComdatSymbolTable().empty())
763 for (GlobalValue &GV : M.global_values())
764 handleNonPrevailingComdat(GV, NonPrevailingComdats);
765 assert(MsymI == MsymE);
766 return std::move(Mod);
769 Error LTO::linkRegularLTO(RegularLTOState::AddedModule Mod,
770 bool LivenessFromIndex) {
771 std::vector<GlobalValue *> Keep;
772 for (GlobalValue *GV : Mod.Keep) {
773 if (LivenessFromIndex && !ThinLTO.CombinedIndex.isGUIDLive(GV->getGUID()))
774 continue;
776 if (!GV->hasAvailableExternallyLinkage()) {
777 Keep.push_back(GV);
778 continue;
781 // Only link available_externally definitions if we don't already have a
782 // definition.
783 GlobalValue *CombinedGV =
784 RegularLTO.CombinedModule->getNamedValue(GV->getName());
785 if (CombinedGV && !CombinedGV->isDeclaration())
786 continue;
788 Keep.push_back(GV);
791 return RegularLTO.Mover->move(std::move(Mod.M), Keep,
792 [](GlobalValue &, IRMover::ValueAdder) {},
793 /* IsPerformingImport */ false);
796 // Add a ThinLTO module to the link.
797 Error LTO::addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms,
798 const SymbolResolution *&ResI,
799 const SymbolResolution *ResE) {
800 if (Error Err =
801 BM.readSummary(ThinLTO.CombinedIndex, BM.getModuleIdentifier(),
802 ThinLTO.ModuleMap.size()))
803 return Err;
805 for (const InputFile::Symbol &Sym : Syms) {
806 assert(ResI != ResE);
807 SymbolResolution Res = *ResI++;
809 if (!Sym.getIRName().empty()) {
810 auto GUID = GlobalValue::getGUID(GlobalValue::getGlobalIdentifier(
811 Sym.getIRName(), GlobalValue::ExternalLinkage, ""));
812 if (Res.Prevailing) {
813 ThinLTO.PrevailingModuleForGUID[GUID] = BM.getModuleIdentifier();
815 // For linker redefined symbols (via --wrap or --defsym) we want to
816 // switch the linkage to `weak` to prevent IPOs from happening.
817 // Find the summary in the module for this very GV and record the new
818 // linkage so that we can switch it when we import the GV.
819 if (Res.LinkerRedefined)
820 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule(
821 GUID, BM.getModuleIdentifier()))
822 S->setLinkage(GlobalValue::WeakAnyLinkage);
825 // If the linker resolved the symbol to a local definition then mark it
826 // as local in the summary for the module we are adding.
827 if (Res.FinalDefinitionInLinkageUnit) {
828 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule(
829 GUID, BM.getModuleIdentifier())) {
830 S->setDSOLocal(true);
836 if (!ThinLTO.ModuleMap.insert({BM.getModuleIdentifier(), BM}).second)
837 return make_error<StringError>(
838 "Expected at most one ThinLTO module per bitcode file",
839 inconvertibleErrorCode());
841 return Error::success();
844 unsigned LTO::getMaxTasks() const {
845 CalledGetMaxTasks = true;
846 return RegularLTO.ParallelCodeGenParallelismLevel + ThinLTO.ModuleMap.size();
849 // If only some of the modules were split, we cannot correctly handle
850 // code that contains type tests or type checked loads.
851 Error LTO::checkPartiallySplit() {
852 if (!ThinLTO.CombinedIndex.partiallySplitLTOUnits())
853 return Error::success();
855 Function *TypeTestFunc = RegularLTO.CombinedModule->getFunction(
856 Intrinsic::getName(Intrinsic::type_test));
857 Function *TypeCheckedLoadFunc = RegularLTO.CombinedModule->getFunction(
858 Intrinsic::getName(Intrinsic::type_checked_load));
860 // First check if there are type tests / type checked loads in the
861 // merged regular LTO module IR.
862 if ((TypeTestFunc && !TypeTestFunc->use_empty()) ||
863 (TypeCheckedLoadFunc && !TypeCheckedLoadFunc->use_empty()))
864 return make_error<StringError>(
865 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)",
866 inconvertibleErrorCode());
868 // Otherwise check if there are any recorded in the combined summary from the
869 // ThinLTO modules.
870 for (auto &P : ThinLTO.CombinedIndex) {
871 for (auto &S : P.second.SummaryList) {
872 auto *FS = dyn_cast<FunctionSummary>(S.get());
873 if (!FS)
874 continue;
875 if (!FS->type_test_assume_vcalls().empty() ||
876 !FS->type_checked_load_vcalls().empty() ||
877 !FS->type_test_assume_const_vcalls().empty() ||
878 !FS->type_checked_load_const_vcalls().empty() ||
879 !FS->type_tests().empty())
880 return make_error<StringError>(
881 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)",
882 inconvertibleErrorCode());
885 return Error::success();
888 Error LTO::run(AddStreamFn AddStream, NativeObjectCache Cache) {
889 // Compute "dead" symbols, we don't want to import/export these!
890 DenseSet<GlobalValue::GUID> GUIDPreservedSymbols;
891 DenseMap<GlobalValue::GUID, PrevailingType> GUIDPrevailingResolutions;
892 for (auto &Res : GlobalResolutions) {
893 // Normally resolution have IR name of symbol. We can do nothing here
894 // otherwise. See comments in GlobalResolution struct for more details.
895 if (Res.second.IRName.empty())
896 continue;
898 GlobalValue::GUID GUID = GlobalValue::getGUID(
899 GlobalValue::dropLLVMManglingEscape(Res.second.IRName));
901 if (Res.second.VisibleOutsideSummary && Res.second.Prevailing)
902 GUIDPreservedSymbols.insert(GlobalValue::getGUID(
903 GlobalValue::dropLLVMManglingEscape(Res.second.IRName)));
905 GUIDPrevailingResolutions[GUID] =
906 Res.second.Prevailing ? PrevailingType::Yes : PrevailingType::No;
909 auto isPrevailing = [&](GlobalValue::GUID G) {
910 auto It = GUIDPrevailingResolutions.find(G);
911 if (It == GUIDPrevailingResolutions.end())
912 return PrevailingType::Unknown;
913 return It->second;
915 computeDeadSymbolsWithConstProp(ThinLTO.CombinedIndex, GUIDPreservedSymbols,
916 isPrevailing, Conf.OptLevel > 0);
918 // Setup output file to emit statistics.
919 auto StatsFileOrErr = setupStatsFile(Conf.StatsFile);
920 if (!StatsFileOrErr)
921 return StatsFileOrErr.takeError();
922 std::unique_ptr<ToolOutputFile> StatsFile = std::move(StatsFileOrErr.get());
924 // Finalize linking of regular LTO modules containing summaries now that
925 // we have computed liveness information.
926 for (auto &M : RegularLTO.ModsWithSummaries)
927 if (Error Err = linkRegularLTO(std::move(M),
928 /*LivenessFromIndex=*/true))
929 return Err;
931 // Ensure we don't have inconsistently split LTO units with type tests.
932 if (Error Err = checkPartiallySplit())
933 return Err;
935 Error Result = runRegularLTO(AddStream);
936 if (!Result)
937 Result = runThinLTO(AddStream, Cache, GUIDPreservedSymbols);
939 if (StatsFile)
940 PrintStatisticsJSON(StatsFile->os());
942 return Result;
945 Error LTO::runRegularLTO(AddStreamFn AddStream) {
946 // Make sure commons have the right size/alignment: we kept the largest from
947 // all the prevailing when adding the inputs, and we apply it here.
948 const DataLayout &DL = RegularLTO.CombinedModule->getDataLayout();
949 for (auto &I : RegularLTO.Commons) {
950 if (!I.second.Prevailing)
951 // Don't do anything if no instance of this common was prevailing.
952 continue;
953 GlobalVariable *OldGV = RegularLTO.CombinedModule->getNamedGlobal(I.first);
954 if (OldGV && DL.getTypeAllocSize(OldGV->getValueType()) == I.second.Size) {
955 // Don't create a new global if the type is already correct, just make
956 // sure the alignment is correct.
957 OldGV->setAlignment(I.second.Align);
958 continue;
960 ArrayType *Ty =
961 ArrayType::get(Type::getInt8Ty(RegularLTO.Ctx), I.second.Size);
962 auto *GV = new GlobalVariable(*RegularLTO.CombinedModule, Ty, false,
963 GlobalValue::CommonLinkage,
964 ConstantAggregateZero::get(Ty), "");
965 GV->setAlignment(I.second.Align);
966 if (OldGV) {
967 OldGV->replaceAllUsesWith(ConstantExpr::getBitCast(GV, OldGV->getType()));
968 GV->takeName(OldGV);
969 OldGV->eraseFromParent();
970 } else {
971 GV->setName(I.first);
975 if (Conf.PreOptModuleHook &&
976 !Conf.PreOptModuleHook(0, *RegularLTO.CombinedModule))
977 return Error::success();
979 if (!Conf.CodeGenOnly) {
980 for (const auto &R : GlobalResolutions) {
981 if (!R.second.isPrevailingIRSymbol())
982 continue;
983 if (R.second.Partition != 0 &&
984 R.second.Partition != GlobalResolution::External)
985 continue;
987 GlobalValue *GV =
988 RegularLTO.CombinedModule->getNamedValue(R.second.IRName);
989 // Ignore symbols defined in other partitions.
990 // Also skip declarations, which are not allowed to have internal linkage.
991 if (!GV || GV->hasLocalLinkage() || GV->isDeclaration())
992 continue;
993 GV->setUnnamedAddr(R.second.UnnamedAddr ? GlobalValue::UnnamedAddr::Global
994 : GlobalValue::UnnamedAddr::None);
995 if (EnableLTOInternalization && R.second.Partition == 0)
996 GV->setLinkage(GlobalValue::InternalLinkage);
999 if (Conf.PostInternalizeModuleHook &&
1000 !Conf.PostInternalizeModuleHook(0, *RegularLTO.CombinedModule))
1001 return Error::success();
1003 return backend(Conf, AddStream, RegularLTO.ParallelCodeGenParallelismLevel,
1004 std::move(RegularLTO.CombinedModule), ThinLTO.CombinedIndex);
1007 /// This class defines the interface to the ThinLTO backend.
1008 class lto::ThinBackendProc {
1009 protected:
1010 Config &Conf;
1011 ModuleSummaryIndex &CombinedIndex;
1012 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries;
1014 public:
1015 ThinBackendProc(Config &Conf, ModuleSummaryIndex &CombinedIndex,
1016 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries)
1017 : Conf(Conf), CombinedIndex(CombinedIndex),
1018 ModuleToDefinedGVSummaries(ModuleToDefinedGVSummaries) {}
1020 virtual ~ThinBackendProc() {}
1021 virtual Error start(
1022 unsigned Task, BitcodeModule BM,
1023 const FunctionImporter::ImportMapTy &ImportList,
1024 const FunctionImporter::ExportSetTy &ExportList,
1025 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
1026 MapVector<StringRef, BitcodeModule> &ModuleMap) = 0;
1027 virtual Error wait() = 0;
1030 namespace {
1031 class InProcessThinBackend : public ThinBackendProc {
1032 ThreadPool BackendThreadPool;
1033 AddStreamFn AddStream;
1034 NativeObjectCache Cache;
1035 std::set<GlobalValue::GUID> CfiFunctionDefs;
1036 std::set<GlobalValue::GUID> CfiFunctionDecls;
1038 Optional<Error> Err;
1039 std::mutex ErrMu;
1041 public:
1042 InProcessThinBackend(
1043 Config &Conf, ModuleSummaryIndex &CombinedIndex,
1044 unsigned ThinLTOParallelismLevel,
1045 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries,
1046 AddStreamFn AddStream, NativeObjectCache Cache)
1047 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries),
1048 BackendThreadPool(ThinLTOParallelismLevel),
1049 AddStream(std::move(AddStream)), Cache(std::move(Cache)) {
1050 for (auto &Name : CombinedIndex.cfiFunctionDefs())
1051 CfiFunctionDefs.insert(
1052 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name)));
1053 for (auto &Name : CombinedIndex.cfiFunctionDecls())
1054 CfiFunctionDecls.insert(
1055 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name)));
1058 Error runThinLTOBackendThread(
1059 AddStreamFn AddStream, NativeObjectCache Cache, unsigned Task,
1060 BitcodeModule BM, ModuleSummaryIndex &CombinedIndex,
1061 const FunctionImporter::ImportMapTy &ImportList,
1062 const FunctionImporter::ExportSetTy &ExportList,
1063 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
1064 const GVSummaryMapTy &DefinedGlobals,
1065 MapVector<StringRef, BitcodeModule> &ModuleMap) {
1066 auto RunThinBackend = [&](AddStreamFn AddStream) {
1067 LTOLLVMContext BackendContext(Conf);
1068 Expected<std::unique_ptr<Module>> MOrErr = BM.parseModule(BackendContext);
1069 if (!MOrErr)
1070 return MOrErr.takeError();
1072 return thinBackend(Conf, Task, AddStream, **MOrErr, CombinedIndex,
1073 ImportList, DefinedGlobals, ModuleMap);
1076 auto ModuleID = BM.getModuleIdentifier();
1078 if (!Cache || !CombinedIndex.modulePaths().count(ModuleID) ||
1079 all_of(CombinedIndex.getModuleHash(ModuleID),
1080 [](uint32_t V) { return V == 0; }))
1081 // Cache disabled or no entry for this module in the combined index or
1082 // no module hash.
1083 return RunThinBackend(AddStream);
1085 SmallString<40> Key;
1086 // The module may be cached, this helps handling it.
1087 computeLTOCacheKey(Key, Conf, CombinedIndex, ModuleID, ImportList,
1088 ExportList, ResolvedODR, DefinedGlobals, CfiFunctionDefs,
1089 CfiFunctionDecls);
1090 if (AddStreamFn CacheAddStream = Cache(Task, Key))
1091 return RunThinBackend(CacheAddStream);
1093 return Error::success();
1096 Error start(
1097 unsigned Task, BitcodeModule BM,
1098 const FunctionImporter::ImportMapTy &ImportList,
1099 const FunctionImporter::ExportSetTy &ExportList,
1100 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
1101 MapVector<StringRef, BitcodeModule> &ModuleMap) override {
1102 StringRef ModulePath = BM.getModuleIdentifier();
1103 assert(ModuleToDefinedGVSummaries.count(ModulePath));
1104 const GVSummaryMapTy &DefinedGlobals =
1105 ModuleToDefinedGVSummaries.find(ModulePath)->second;
1106 BackendThreadPool.async(
1107 [=](BitcodeModule BM, ModuleSummaryIndex &CombinedIndex,
1108 const FunctionImporter::ImportMapTy &ImportList,
1109 const FunctionImporter::ExportSetTy &ExportList,
1110 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>
1111 &ResolvedODR,
1112 const GVSummaryMapTy &DefinedGlobals,
1113 MapVector<StringRef, BitcodeModule> &ModuleMap) {
1114 Error E = runThinLTOBackendThread(
1115 AddStream, Cache, Task, BM, CombinedIndex, ImportList, ExportList,
1116 ResolvedODR, DefinedGlobals, ModuleMap);
1117 if (E) {
1118 std::unique_lock<std::mutex> L(ErrMu);
1119 if (Err)
1120 Err = joinErrors(std::move(*Err), std::move(E));
1121 else
1122 Err = std::move(E);
1125 BM, std::ref(CombinedIndex), std::ref(ImportList), std::ref(ExportList),
1126 std::ref(ResolvedODR), std::ref(DefinedGlobals), std::ref(ModuleMap));
1127 return Error::success();
1130 Error wait() override {
1131 BackendThreadPool.wait();
1132 if (Err)
1133 return std::move(*Err);
1134 else
1135 return Error::success();
1138 } // end anonymous namespace
1140 ThinBackend lto::createInProcessThinBackend(unsigned ParallelismLevel) {
1141 return [=](Config &Conf, ModuleSummaryIndex &CombinedIndex,
1142 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries,
1143 AddStreamFn AddStream, NativeObjectCache Cache) {
1144 return llvm::make_unique<InProcessThinBackend>(
1145 Conf, CombinedIndex, ParallelismLevel, ModuleToDefinedGVSummaries,
1146 AddStream, Cache);
1150 // Given the original \p Path to an output file, replace any path
1151 // prefix matching \p OldPrefix with \p NewPrefix. Also, create the
1152 // resulting directory if it does not yet exist.
1153 std::string lto::getThinLTOOutputFile(const std::string &Path,
1154 const std::string &OldPrefix,
1155 const std::string &NewPrefix) {
1156 if (OldPrefix.empty() && NewPrefix.empty())
1157 return Path;
1158 SmallString<128> NewPath(Path);
1159 llvm::sys::path::replace_path_prefix(NewPath, OldPrefix, NewPrefix);
1160 StringRef ParentPath = llvm::sys::path::parent_path(NewPath.str());
1161 if (!ParentPath.empty()) {
1162 // Make sure the new directory exists, creating it if necessary.
1163 if (std::error_code EC = llvm::sys::fs::create_directories(ParentPath))
1164 llvm::errs() << "warning: could not create directory '" << ParentPath
1165 << "': " << EC.message() << '\n';
1167 return NewPath.str();
1170 namespace {
1171 class WriteIndexesThinBackend : public ThinBackendProc {
1172 std::string OldPrefix, NewPrefix;
1173 bool ShouldEmitImportsFiles;
1174 raw_fd_ostream *LinkedObjectsFile;
1175 lto::IndexWriteCallback OnWrite;
1177 public:
1178 WriteIndexesThinBackend(
1179 Config &Conf, ModuleSummaryIndex &CombinedIndex,
1180 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries,
1181 std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles,
1182 raw_fd_ostream *LinkedObjectsFile, lto::IndexWriteCallback OnWrite)
1183 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries),
1184 OldPrefix(OldPrefix), NewPrefix(NewPrefix),
1185 ShouldEmitImportsFiles(ShouldEmitImportsFiles),
1186 LinkedObjectsFile(LinkedObjectsFile), OnWrite(OnWrite) {}
1188 Error start(
1189 unsigned Task, BitcodeModule BM,
1190 const FunctionImporter::ImportMapTy &ImportList,
1191 const FunctionImporter::ExportSetTy &ExportList,
1192 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
1193 MapVector<StringRef, BitcodeModule> &ModuleMap) override {
1194 StringRef ModulePath = BM.getModuleIdentifier();
1195 std::string NewModulePath =
1196 getThinLTOOutputFile(ModulePath, OldPrefix, NewPrefix);
1198 if (LinkedObjectsFile)
1199 *LinkedObjectsFile << NewModulePath << '\n';
1201 std::map<std::string, GVSummaryMapTy> ModuleToSummariesForIndex;
1202 gatherImportedSummariesForModule(ModulePath, ModuleToDefinedGVSummaries,
1203 ImportList, ModuleToSummariesForIndex);
1205 std::error_code EC;
1206 raw_fd_ostream OS(NewModulePath + ".thinlto.bc", EC,
1207 sys::fs::OpenFlags::F_None);
1208 if (EC)
1209 return errorCodeToError(EC);
1210 WriteIndexToFile(CombinedIndex, OS, &ModuleToSummariesForIndex);
1212 if (ShouldEmitImportsFiles) {
1213 EC = EmitImportsFiles(ModulePath, NewModulePath + ".imports",
1214 ModuleToSummariesForIndex);
1215 if (EC)
1216 return errorCodeToError(EC);
1219 if (OnWrite)
1220 OnWrite(ModulePath);
1221 return Error::success();
1224 Error wait() override { return Error::success(); }
1226 } // end anonymous namespace
1228 ThinBackend lto::createWriteIndexesThinBackend(
1229 std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles,
1230 raw_fd_ostream *LinkedObjectsFile, IndexWriteCallback OnWrite) {
1231 return [=](Config &Conf, ModuleSummaryIndex &CombinedIndex,
1232 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries,
1233 AddStreamFn AddStream, NativeObjectCache Cache) {
1234 return llvm::make_unique<WriteIndexesThinBackend>(
1235 Conf, CombinedIndex, ModuleToDefinedGVSummaries, OldPrefix, NewPrefix,
1236 ShouldEmitImportsFiles, LinkedObjectsFile, OnWrite);
1240 Error LTO::runThinLTO(AddStreamFn AddStream, NativeObjectCache Cache,
1241 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) {
1242 if (ThinLTO.ModuleMap.empty())
1243 return Error::success();
1245 if (Conf.CombinedIndexHook && !Conf.CombinedIndexHook(ThinLTO.CombinedIndex))
1246 return Error::success();
1248 // Collect for each module the list of function it defines (GUID ->
1249 // Summary).
1250 StringMap<GVSummaryMapTy>
1251 ModuleToDefinedGVSummaries(ThinLTO.ModuleMap.size());
1252 ThinLTO.CombinedIndex.collectDefinedGVSummariesPerModule(
1253 ModuleToDefinedGVSummaries);
1254 // Create entries for any modules that didn't have any GV summaries
1255 // (either they didn't have any GVs to start with, or we suppressed
1256 // generation of the summaries because they e.g. had inline assembly
1257 // uses that couldn't be promoted/renamed on export). This is so
1258 // InProcessThinBackend::start can still launch a backend thread, which
1259 // is passed the map of summaries for the module, without any special
1260 // handling for this case.
1261 for (auto &Mod : ThinLTO.ModuleMap)
1262 if (!ModuleToDefinedGVSummaries.count(Mod.first))
1263 ModuleToDefinedGVSummaries.try_emplace(Mod.first);
1265 // Synthesize entry counts for functions in the CombinedIndex.
1266 computeSyntheticCounts(ThinLTO.CombinedIndex);
1268 StringMap<FunctionImporter::ImportMapTy> ImportLists(
1269 ThinLTO.ModuleMap.size());
1270 StringMap<FunctionImporter::ExportSetTy> ExportLists(
1271 ThinLTO.ModuleMap.size());
1272 StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR;
1274 if (DumpThinCGSCCs)
1275 ThinLTO.CombinedIndex.dumpSCCs(outs());
1277 if (Conf.OptLevel > 0)
1278 ComputeCrossModuleImport(ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries,
1279 ImportLists, ExportLists);
1281 // Figure out which symbols need to be internalized. This also needs to happen
1282 // at -O0 because summary-based DCE is implemented using internalization, and
1283 // we must apply DCE consistently with the full LTO module in order to avoid
1284 // undefined references during the final link.
1285 std::set<GlobalValue::GUID> ExportedGUIDs;
1286 for (auto &Res : GlobalResolutions) {
1287 // If the symbol does not have external references or it is not prevailing,
1288 // then not need to mark it as exported from a ThinLTO partition.
1289 if (Res.second.Partition != GlobalResolution::External ||
1290 !Res.second.isPrevailingIRSymbol())
1291 continue;
1292 auto GUID = GlobalValue::getGUID(
1293 GlobalValue::dropLLVMManglingEscape(Res.second.IRName));
1294 // Mark exported unless index-based analysis determined it to be dead.
1295 if (ThinLTO.CombinedIndex.isGUIDLive(GUID))
1296 ExportedGUIDs.insert(GUID);
1299 // Any functions referenced by the jump table in the regular LTO object must
1300 // be exported.
1301 for (auto &Def : ThinLTO.CombinedIndex.cfiFunctionDefs())
1302 ExportedGUIDs.insert(
1303 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Def)));
1305 auto isExported = [&](StringRef ModuleIdentifier, GlobalValue::GUID GUID) {
1306 const auto &ExportList = ExportLists.find(ModuleIdentifier);
1307 return (ExportList != ExportLists.end() &&
1308 ExportList->second.count(GUID)) ||
1309 ExportedGUIDs.count(GUID);
1311 thinLTOInternalizeAndPromoteInIndex(ThinLTO.CombinedIndex, isExported);
1313 auto isPrevailing = [&](GlobalValue::GUID GUID,
1314 const GlobalValueSummary *S) {
1315 return ThinLTO.PrevailingModuleForGUID[GUID] == S->modulePath();
1317 auto recordNewLinkage = [&](StringRef ModuleIdentifier,
1318 GlobalValue::GUID GUID,
1319 GlobalValue::LinkageTypes NewLinkage) {
1320 ResolvedODR[ModuleIdentifier][GUID] = NewLinkage;
1322 thinLTOResolvePrevailingInIndex(ThinLTO.CombinedIndex, isPrevailing,
1323 recordNewLinkage, GUIDPreservedSymbols);
1325 std::unique_ptr<ThinBackendProc> BackendProc =
1326 ThinLTO.Backend(Conf, ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries,
1327 AddStream, Cache);
1329 // Tasks 0 through ParallelCodeGenParallelismLevel-1 are reserved for combined
1330 // module and parallel code generation partitions.
1331 unsigned Task = RegularLTO.ParallelCodeGenParallelismLevel;
1332 for (auto &Mod : ThinLTO.ModuleMap) {
1333 if (Error E = BackendProc->start(Task, Mod.second, ImportLists[Mod.first],
1334 ExportLists[Mod.first],
1335 ResolvedODR[Mod.first], ThinLTO.ModuleMap))
1336 return E;
1337 ++Task;
1340 return BackendProc->wait();
1343 Expected<std::unique_ptr<ToolOutputFile>>
1344 lto::setupOptimizationRemarks(LLVMContext &Context, StringRef RemarksFilename,
1345 StringRef RemarksPasses, StringRef RemarksFormat,
1346 bool RemarksWithHotness, int Count) {
1347 std::string Filename = RemarksFilename;
1348 if (!Filename.empty() && Count != -1)
1349 Filename += ".thin." + llvm::utostr(Count) + ".yaml";
1351 auto ResultOrErr = llvm::setupOptimizationRemarks(
1352 Context, Filename, RemarksPasses, RemarksFormat, RemarksWithHotness);
1353 if (Error E = ResultOrErr.takeError())
1354 return std::move(E);
1356 if (*ResultOrErr)
1357 (*ResultOrErr)->keep();
1359 return ResultOrErr;
1362 Expected<std::unique_ptr<ToolOutputFile>>
1363 lto::setupStatsFile(StringRef StatsFilename) {
1364 // Setup output file to emit statistics.
1365 if (StatsFilename.empty())
1366 return nullptr;
1368 llvm::EnableStatistics(false);
1369 std::error_code EC;
1370 auto StatsFile =
1371 llvm::make_unique<ToolOutputFile>(StatsFilename, EC, sys::fs::F_None);
1372 if (EC)
1373 return errorCodeToError(EC);
1375 StatsFile->keep();
1376 return std::move(StatsFile);