[ARM] MVE integer min and max
[llvm-complete.git] / lib / Object / COFFObjectFile.cpp
blob854664e679df47946fddf252cdd582db7be21e82
1 //===- COFFObjectFile.cpp - COFF object file implementation ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the COFFObjectFile class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ADT/ArrayRef.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/Triple.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/BinaryFormat/COFF.h"
18 #include "llvm/Object/Binary.h"
19 #include "llvm/Object/COFF.h"
20 #include "llvm/Object/Error.h"
21 #include "llvm/Object/ObjectFile.h"
22 #include "llvm/Support/BinaryStreamReader.h"
23 #include "llvm/Support/Endian.h"
24 #include "llvm/Support/Error.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/MemoryBuffer.h"
28 #include <algorithm>
29 #include <cassert>
30 #include <cstddef>
31 #include <cstdint>
32 #include <cstring>
33 #include <limits>
34 #include <memory>
35 #include <system_error>
37 using namespace llvm;
38 using namespace object;
40 using support::ulittle16_t;
41 using support::ulittle32_t;
42 using support::ulittle64_t;
43 using support::little16_t;
45 // Returns false if size is greater than the buffer size. And sets ec.
46 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) {
47 if (M.getBufferSize() < Size) {
48 EC = object_error::unexpected_eof;
49 return false;
51 return true;
54 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m.
55 // Returns unexpected_eof if error.
56 template <typename T>
57 static std::error_code getObject(const T *&Obj, MemoryBufferRef M,
58 const void *Ptr,
59 const uint64_t Size = sizeof(T)) {
60 uintptr_t Addr = uintptr_t(Ptr);
61 if (std::error_code EC = Binary::checkOffset(M, Addr, Size))
62 return EC;
63 Obj = reinterpret_cast<const T *>(Addr);
64 return std::error_code();
67 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without
68 // prefixed slashes.
69 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) {
70 assert(Str.size() <= 6 && "String too long, possible overflow.");
71 if (Str.size() > 6)
72 return true;
74 uint64_t Value = 0;
75 while (!Str.empty()) {
76 unsigned CharVal;
77 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25
78 CharVal = Str[0] - 'A';
79 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51
80 CharVal = Str[0] - 'a' + 26;
81 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61
82 CharVal = Str[0] - '0' + 52;
83 else if (Str[0] == '+') // 62
84 CharVal = 62;
85 else if (Str[0] == '/') // 63
86 CharVal = 63;
87 else
88 return true;
90 Value = (Value * 64) + CharVal;
91 Str = Str.substr(1);
94 if (Value > std::numeric_limits<uint32_t>::max())
95 return true;
97 Result = static_cast<uint32_t>(Value);
98 return false;
101 template <typename coff_symbol_type>
102 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const {
103 const coff_symbol_type *Addr =
104 reinterpret_cast<const coff_symbol_type *>(Ref.p);
106 assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr)));
107 #ifndef NDEBUG
108 // Verify that the symbol points to a valid entry in the symbol table.
109 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base());
111 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 &&
112 "Symbol did not point to the beginning of a symbol");
113 #endif
115 return Addr;
118 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const {
119 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p);
121 #ifndef NDEBUG
122 // Verify that the section points to a valid entry in the section table.
123 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections()))
124 report_fatal_error("Section was outside of section table.");
126 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable);
127 assert(Offset % sizeof(coff_section) == 0 &&
128 "Section did not point to the beginning of a section");
129 #endif
131 return Addr;
134 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const {
135 auto End = reinterpret_cast<uintptr_t>(StringTable);
136 if (SymbolTable16) {
137 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref);
138 Symb += 1 + Symb->NumberOfAuxSymbols;
139 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
140 } else if (SymbolTable32) {
141 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref);
142 Symb += 1 + Symb->NumberOfAuxSymbols;
143 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
144 } else {
145 llvm_unreachable("no symbol table pointer!");
149 Expected<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const {
150 COFFSymbolRef Symb = getCOFFSymbol(Ref);
151 StringRef Result;
152 if (std::error_code EC = getSymbolName(Symb, Result))
153 return errorCodeToError(EC);
154 return Result;
157 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const {
158 return getCOFFSymbol(Ref).getValue();
161 uint32_t COFFObjectFile::getSymbolAlignment(DataRefImpl Ref) const {
162 // MSVC/link.exe seems to align symbols to the next-power-of-2
163 // up to 32 bytes.
164 COFFSymbolRef Symb = getCOFFSymbol(Ref);
165 return std::min(uint64_t(32), PowerOf2Ceil(Symb.getValue()));
168 Expected<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const {
169 uint64_t Result = getSymbolValue(Ref);
170 COFFSymbolRef Symb = getCOFFSymbol(Ref);
171 int32_t SectionNumber = Symb.getSectionNumber();
173 if (Symb.isAnyUndefined() || Symb.isCommon() ||
174 COFF::isReservedSectionNumber(SectionNumber))
175 return Result;
177 const coff_section *Section = nullptr;
178 if (std::error_code EC = getSection(SectionNumber, Section))
179 return errorCodeToError(EC);
180 Result += Section->VirtualAddress;
182 // The section VirtualAddress does not include ImageBase, and we want to
183 // return virtual addresses.
184 Result += getImageBase();
186 return Result;
189 Expected<SymbolRef::Type> COFFObjectFile::getSymbolType(DataRefImpl Ref) const {
190 COFFSymbolRef Symb = getCOFFSymbol(Ref);
191 int32_t SectionNumber = Symb.getSectionNumber();
193 if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION)
194 return SymbolRef::ST_Function;
195 if (Symb.isAnyUndefined())
196 return SymbolRef::ST_Unknown;
197 if (Symb.isCommon())
198 return SymbolRef::ST_Data;
199 if (Symb.isFileRecord())
200 return SymbolRef::ST_File;
202 // TODO: perhaps we need a new symbol type ST_Section.
203 if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition())
204 return SymbolRef::ST_Debug;
206 if (!COFF::isReservedSectionNumber(SectionNumber))
207 return SymbolRef::ST_Data;
209 return SymbolRef::ST_Other;
212 uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const {
213 COFFSymbolRef Symb = getCOFFSymbol(Ref);
214 uint32_t Result = SymbolRef::SF_None;
216 if (Symb.isExternal() || Symb.isWeakExternal())
217 Result |= SymbolRef::SF_Global;
219 if (const coff_aux_weak_external *AWE = Symb.getWeakExternal()) {
220 Result |= SymbolRef::SF_Weak;
221 if (AWE->Characteristics != COFF::IMAGE_WEAK_EXTERN_SEARCH_ALIAS)
222 Result |= SymbolRef::SF_Undefined;
225 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE)
226 Result |= SymbolRef::SF_Absolute;
228 if (Symb.isFileRecord())
229 Result |= SymbolRef::SF_FormatSpecific;
231 if (Symb.isSectionDefinition())
232 Result |= SymbolRef::SF_FormatSpecific;
234 if (Symb.isCommon())
235 Result |= SymbolRef::SF_Common;
237 if (Symb.isUndefined())
238 Result |= SymbolRef::SF_Undefined;
240 return Result;
243 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const {
244 COFFSymbolRef Symb = getCOFFSymbol(Ref);
245 return Symb.getValue();
248 Expected<section_iterator>
249 COFFObjectFile::getSymbolSection(DataRefImpl Ref) const {
250 COFFSymbolRef Symb = getCOFFSymbol(Ref);
251 if (COFF::isReservedSectionNumber(Symb.getSectionNumber()))
252 return section_end();
253 const coff_section *Sec = nullptr;
254 if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec))
255 return errorCodeToError(EC);
256 DataRefImpl Ret;
257 Ret.p = reinterpret_cast<uintptr_t>(Sec);
258 return section_iterator(SectionRef(Ret, this));
261 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const {
262 COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl());
263 return Symb.getSectionNumber();
266 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const {
267 const coff_section *Sec = toSec(Ref);
268 Sec += 1;
269 Ref.p = reinterpret_cast<uintptr_t>(Sec);
272 Expected<StringRef> COFFObjectFile::getSectionName(DataRefImpl Ref) const {
273 const coff_section *Sec = toSec(Ref);
274 return getSectionName(Sec);
277 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const {
278 const coff_section *Sec = toSec(Ref);
279 uint64_t Result = Sec->VirtualAddress;
281 // The section VirtualAddress does not include ImageBase, and we want to
282 // return virtual addresses.
283 Result += getImageBase();
284 return Result;
287 uint64_t COFFObjectFile::getSectionIndex(DataRefImpl Sec) const {
288 return toSec(Sec) - SectionTable;
291 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const {
292 return getSectionSize(toSec(Ref));
295 Expected<ArrayRef<uint8_t>>
296 COFFObjectFile::getSectionContents(DataRefImpl Ref) const {
297 const coff_section *Sec = toSec(Ref);
298 ArrayRef<uint8_t> Res;
299 if (Error E = getSectionContents(Sec, Res))
300 return std::move(E);
301 return Res;
304 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const {
305 const coff_section *Sec = toSec(Ref);
306 return Sec->getAlignment();
309 bool COFFObjectFile::isSectionCompressed(DataRefImpl Sec) const {
310 return false;
313 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const {
314 const coff_section *Sec = toSec(Ref);
315 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE;
318 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const {
319 const coff_section *Sec = toSec(Ref);
320 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA;
323 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const {
324 const coff_section *Sec = toSec(Ref);
325 const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA |
326 COFF::IMAGE_SCN_MEM_READ |
327 COFF::IMAGE_SCN_MEM_WRITE;
328 return (Sec->Characteristics & BssFlags) == BssFlags;
331 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const {
332 uintptr_t Offset =
333 uintptr_t(Sec.getRawDataRefImpl().p) - uintptr_t(SectionTable);
334 assert((Offset % sizeof(coff_section)) == 0);
335 return (Offset / sizeof(coff_section)) + 1;
338 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const {
339 const coff_section *Sec = toSec(Ref);
340 // In COFF, a virtual section won't have any in-file
341 // content, so the file pointer to the content will be zero.
342 return Sec->PointerToRawData == 0;
345 static uint32_t getNumberOfRelocations(const coff_section *Sec,
346 MemoryBufferRef M, const uint8_t *base) {
347 // The field for the number of relocations in COFF section table is only
348 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to
349 // NumberOfRelocations field, and the actual relocation count is stored in the
350 // VirtualAddress field in the first relocation entry.
351 if (Sec->hasExtendedRelocations()) {
352 const coff_relocation *FirstReloc;
353 if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>(
354 base + Sec->PointerToRelocations)))
355 return 0;
356 // -1 to exclude this first relocation entry.
357 return FirstReloc->VirtualAddress - 1;
359 return Sec->NumberOfRelocations;
362 static const coff_relocation *
363 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) {
364 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base);
365 if (!NumRelocs)
366 return nullptr;
367 auto begin = reinterpret_cast<const coff_relocation *>(
368 Base + Sec->PointerToRelocations);
369 if (Sec->hasExtendedRelocations()) {
370 // Skip the first relocation entry repurposed to store the number of
371 // relocations.
372 begin++;
374 if (Binary::checkOffset(M, uintptr_t(begin),
375 sizeof(coff_relocation) * NumRelocs))
376 return nullptr;
377 return begin;
380 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const {
381 const coff_section *Sec = toSec(Ref);
382 const coff_relocation *begin = getFirstReloc(Sec, Data, base());
383 if (begin && Sec->VirtualAddress != 0)
384 report_fatal_error("Sections with relocations should have an address of 0");
385 DataRefImpl Ret;
386 Ret.p = reinterpret_cast<uintptr_t>(begin);
387 return relocation_iterator(RelocationRef(Ret, this));
390 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const {
391 const coff_section *Sec = toSec(Ref);
392 const coff_relocation *I = getFirstReloc(Sec, Data, base());
393 if (I)
394 I += getNumberOfRelocations(Sec, Data, base());
395 DataRefImpl Ret;
396 Ret.p = reinterpret_cast<uintptr_t>(I);
397 return relocation_iterator(RelocationRef(Ret, this));
400 // Initialize the pointer to the symbol table.
401 std::error_code COFFObjectFile::initSymbolTablePtr() {
402 if (COFFHeader)
403 if (std::error_code EC = getObject(
404 SymbolTable16, Data, base() + getPointerToSymbolTable(),
405 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
406 return EC;
408 if (COFFBigObjHeader)
409 if (std::error_code EC = getObject(
410 SymbolTable32, Data, base() + getPointerToSymbolTable(),
411 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
412 return EC;
414 // Find string table. The first four byte of the string table contains the
415 // total size of the string table, including the size field itself. If the
416 // string table is empty, the value of the first four byte would be 4.
417 uint32_t StringTableOffset = getPointerToSymbolTable() +
418 getNumberOfSymbols() * getSymbolTableEntrySize();
419 const uint8_t *StringTableAddr = base() + StringTableOffset;
420 const ulittle32_t *StringTableSizePtr;
421 if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr))
422 return EC;
423 StringTableSize = *StringTableSizePtr;
424 if (std::error_code EC =
425 getObject(StringTable, Data, StringTableAddr, StringTableSize))
426 return EC;
428 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some
429 // tools like cvtres write a size of 0 for an empty table instead of 4.
430 if (StringTableSize < 4)
431 StringTableSize = 4;
433 // Check that the string table is null terminated if has any in it.
434 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0)
435 return object_error::parse_failed;
436 return std::error_code();
439 uint64_t COFFObjectFile::getImageBase() const {
440 if (PE32Header)
441 return PE32Header->ImageBase;
442 else if (PE32PlusHeader)
443 return PE32PlusHeader->ImageBase;
444 // This actually comes up in practice.
445 return 0;
448 // Returns the file offset for the given VA.
449 std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const {
450 uint64_t ImageBase = getImageBase();
451 uint64_t Rva = Addr - ImageBase;
452 assert(Rva <= UINT32_MAX);
453 return getRvaPtr((uint32_t)Rva, Res);
456 // Returns the file offset for the given RVA.
457 std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const {
458 for (const SectionRef &S : sections()) {
459 const coff_section *Section = getCOFFSection(S);
460 uint32_t SectionStart = Section->VirtualAddress;
461 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize;
462 if (SectionStart <= Addr && Addr < SectionEnd) {
463 uint32_t Offset = Addr - SectionStart;
464 Res = uintptr_t(base()) + Section->PointerToRawData + Offset;
465 return std::error_code();
468 return object_error::parse_failed;
471 std::error_code
472 COFFObjectFile::getRvaAndSizeAsBytes(uint32_t RVA, uint32_t Size,
473 ArrayRef<uint8_t> &Contents) const {
474 for (const SectionRef &S : sections()) {
475 const coff_section *Section = getCOFFSection(S);
476 uint32_t SectionStart = Section->VirtualAddress;
477 // Check if this RVA is within the section bounds. Be careful about integer
478 // overflow.
479 uint32_t OffsetIntoSection = RVA - SectionStart;
480 if (SectionStart <= RVA && OffsetIntoSection < Section->VirtualSize &&
481 Size <= Section->VirtualSize - OffsetIntoSection) {
482 uintptr_t Begin =
483 uintptr_t(base()) + Section->PointerToRawData + OffsetIntoSection;
484 Contents =
485 ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(Begin), Size);
486 return std::error_code();
489 return object_error::parse_failed;
492 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name
493 // table entry.
494 std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint,
495 StringRef &Name) const {
496 uintptr_t IntPtr = 0;
497 if (std::error_code EC = getRvaPtr(Rva, IntPtr))
498 return EC;
499 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr);
500 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr);
501 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2));
502 return std::error_code();
505 std::error_code
506 COFFObjectFile::getDebugPDBInfo(const debug_directory *DebugDir,
507 const codeview::DebugInfo *&PDBInfo,
508 StringRef &PDBFileName) const {
509 ArrayRef<uint8_t> InfoBytes;
510 if (std::error_code EC = getRvaAndSizeAsBytes(
511 DebugDir->AddressOfRawData, DebugDir->SizeOfData, InfoBytes))
512 return EC;
513 if (InfoBytes.size() < sizeof(*PDBInfo) + 1)
514 return object_error::parse_failed;
515 PDBInfo = reinterpret_cast<const codeview::DebugInfo *>(InfoBytes.data());
516 InfoBytes = InfoBytes.drop_front(sizeof(*PDBInfo));
517 PDBFileName = StringRef(reinterpret_cast<const char *>(InfoBytes.data()),
518 InfoBytes.size());
519 // Truncate the name at the first null byte. Ignore any padding.
520 PDBFileName = PDBFileName.split('\0').first;
521 return std::error_code();
524 std::error_code
525 COFFObjectFile::getDebugPDBInfo(const codeview::DebugInfo *&PDBInfo,
526 StringRef &PDBFileName) const {
527 for (const debug_directory &D : debug_directories())
528 if (D.Type == COFF::IMAGE_DEBUG_TYPE_CODEVIEW)
529 return getDebugPDBInfo(&D, PDBInfo, PDBFileName);
530 // If we get here, there is no PDB info to return.
531 PDBInfo = nullptr;
532 PDBFileName = StringRef();
533 return std::error_code();
536 // Find the import table.
537 std::error_code COFFObjectFile::initImportTablePtr() {
538 // First, we get the RVA of the import table. If the file lacks a pointer to
539 // the import table, do nothing.
540 const data_directory *DataEntry;
541 if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry))
542 return std::error_code();
544 // Do nothing if the pointer to import table is NULL.
545 if (DataEntry->RelativeVirtualAddress == 0)
546 return std::error_code();
548 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress;
550 // Find the section that contains the RVA. This is needed because the RVA is
551 // the import table's memory address which is different from its file offset.
552 uintptr_t IntPtr = 0;
553 if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr))
554 return EC;
555 if (std::error_code EC = checkOffset(Data, IntPtr, DataEntry->Size))
556 return EC;
557 ImportDirectory = reinterpret_cast<
558 const coff_import_directory_table_entry *>(IntPtr);
559 return std::error_code();
562 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory.
563 std::error_code COFFObjectFile::initDelayImportTablePtr() {
564 const data_directory *DataEntry;
565 if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry))
566 return std::error_code();
567 if (DataEntry->RelativeVirtualAddress == 0)
568 return std::error_code();
570 uint32_t RVA = DataEntry->RelativeVirtualAddress;
571 NumberOfDelayImportDirectory = DataEntry->Size /
572 sizeof(delay_import_directory_table_entry) - 1;
574 uintptr_t IntPtr = 0;
575 if (std::error_code EC = getRvaPtr(RVA, IntPtr))
576 return EC;
577 DelayImportDirectory = reinterpret_cast<
578 const delay_import_directory_table_entry *>(IntPtr);
579 return std::error_code();
582 // Find the export table.
583 std::error_code COFFObjectFile::initExportTablePtr() {
584 // First, we get the RVA of the export table. If the file lacks a pointer to
585 // the export table, do nothing.
586 const data_directory *DataEntry;
587 if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry))
588 return std::error_code();
590 // Do nothing if the pointer to export table is NULL.
591 if (DataEntry->RelativeVirtualAddress == 0)
592 return std::error_code();
594 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress;
595 uintptr_t IntPtr = 0;
596 if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr))
597 return EC;
598 ExportDirectory =
599 reinterpret_cast<const export_directory_table_entry *>(IntPtr);
600 return std::error_code();
603 std::error_code COFFObjectFile::initBaseRelocPtr() {
604 const data_directory *DataEntry;
605 if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry))
606 return std::error_code();
607 if (DataEntry->RelativeVirtualAddress == 0)
608 return std::error_code();
610 uintptr_t IntPtr = 0;
611 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr))
612 return EC;
613 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>(
614 IntPtr);
615 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>(
616 IntPtr + DataEntry->Size);
617 // FIXME: Verify the section containing BaseRelocHeader has at least
618 // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress.
619 return std::error_code();
622 std::error_code COFFObjectFile::initDebugDirectoryPtr() {
623 // Get the RVA of the debug directory. Do nothing if it does not exist.
624 const data_directory *DataEntry;
625 if (getDataDirectory(COFF::DEBUG_DIRECTORY, DataEntry))
626 return std::error_code();
628 // Do nothing if the RVA is NULL.
629 if (DataEntry->RelativeVirtualAddress == 0)
630 return std::error_code();
632 // Check that the size is a multiple of the entry size.
633 if (DataEntry->Size % sizeof(debug_directory) != 0)
634 return object_error::parse_failed;
636 uintptr_t IntPtr = 0;
637 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr))
638 return EC;
639 DebugDirectoryBegin = reinterpret_cast<const debug_directory *>(IntPtr);
640 DebugDirectoryEnd = reinterpret_cast<const debug_directory *>(
641 IntPtr + DataEntry->Size);
642 // FIXME: Verify the section containing DebugDirectoryBegin has at least
643 // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress.
644 return std::error_code();
647 std::error_code COFFObjectFile::initLoadConfigPtr() {
648 // Get the RVA of the debug directory. Do nothing if it does not exist.
649 const data_directory *DataEntry;
650 if (getDataDirectory(COFF::LOAD_CONFIG_TABLE, DataEntry))
651 return std::error_code();
653 // Do nothing if the RVA is NULL.
654 if (DataEntry->RelativeVirtualAddress == 0)
655 return std::error_code();
656 uintptr_t IntPtr = 0;
657 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr))
658 return EC;
660 LoadConfig = (const void *)IntPtr;
661 return std::error_code();
664 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC)
665 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr),
666 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr),
667 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr),
668 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0),
669 ImportDirectory(nullptr),
670 DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0),
671 ExportDirectory(nullptr), BaseRelocHeader(nullptr), BaseRelocEnd(nullptr),
672 DebugDirectoryBegin(nullptr), DebugDirectoryEnd(nullptr) {
673 // Check that we at least have enough room for a header.
674 if (!checkSize(Data, EC, sizeof(coff_file_header)))
675 return;
677 // The current location in the file where we are looking at.
678 uint64_t CurPtr = 0;
680 // PE header is optional and is present only in executables. If it exists,
681 // it is placed right after COFF header.
682 bool HasPEHeader = false;
684 // Check if this is a PE/COFF file.
685 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) {
686 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte
687 // PE signature to find 'normal' COFF header.
688 const auto *DH = reinterpret_cast<const dos_header *>(base());
689 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') {
690 CurPtr = DH->AddressOfNewExeHeader;
691 // Check the PE magic bytes. ("PE\0\0")
692 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) {
693 EC = object_error::parse_failed;
694 return;
696 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes.
697 HasPEHeader = true;
701 if ((EC = getObject(COFFHeader, Data, base() + CurPtr)))
702 return;
704 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF
705 // import libraries share a common prefix but bigobj is more restrictive.
706 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN &&
707 COFFHeader->NumberOfSections == uint16_t(0xffff) &&
708 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) {
709 if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr)))
710 return;
712 // Verify that we are dealing with bigobj.
713 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion &&
714 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic,
715 sizeof(COFF::BigObjMagic)) == 0) {
716 COFFHeader = nullptr;
717 CurPtr += sizeof(coff_bigobj_file_header);
718 } else {
719 // It's not a bigobj.
720 COFFBigObjHeader = nullptr;
723 if (COFFHeader) {
724 // The prior checkSize call may have failed. This isn't a hard error
725 // because we were just trying to sniff out bigobj.
726 EC = std::error_code();
727 CurPtr += sizeof(coff_file_header);
729 if (COFFHeader->isImportLibrary())
730 return;
733 if (HasPEHeader) {
734 const pe32_header *Header;
735 if ((EC = getObject(Header, Data, base() + CurPtr)))
736 return;
738 const uint8_t *DataDirAddr;
739 uint64_t DataDirSize;
740 if (Header->Magic == COFF::PE32Header::PE32) {
741 PE32Header = Header;
742 DataDirAddr = base() + CurPtr + sizeof(pe32_header);
743 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize;
744 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) {
745 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header);
746 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header);
747 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize;
748 } else {
749 // It's neither PE32 nor PE32+.
750 EC = object_error::parse_failed;
751 return;
753 if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize)))
754 return;
757 if (COFFHeader)
758 CurPtr += COFFHeader->SizeOfOptionalHeader;
760 if ((EC = getObject(SectionTable, Data, base() + CurPtr,
761 (uint64_t)getNumberOfSections() * sizeof(coff_section))))
762 return;
764 // Initialize the pointer to the symbol table.
765 if (getPointerToSymbolTable() != 0) {
766 if ((EC = initSymbolTablePtr())) {
767 SymbolTable16 = nullptr;
768 SymbolTable32 = nullptr;
769 StringTable = nullptr;
770 StringTableSize = 0;
772 } else {
773 // We had better not have any symbols if we don't have a symbol table.
774 if (getNumberOfSymbols() != 0) {
775 EC = object_error::parse_failed;
776 return;
780 // Initialize the pointer to the beginning of the import table.
781 if ((EC = initImportTablePtr()))
782 return;
783 if ((EC = initDelayImportTablePtr()))
784 return;
786 // Initialize the pointer to the export table.
787 if ((EC = initExportTablePtr()))
788 return;
790 // Initialize the pointer to the base relocation table.
791 if ((EC = initBaseRelocPtr()))
792 return;
794 // Initialize the pointer to the export table.
795 if ((EC = initDebugDirectoryPtr()))
796 return;
798 if ((EC = initLoadConfigPtr()))
799 return;
801 EC = std::error_code();
804 basic_symbol_iterator COFFObjectFile::symbol_begin() const {
805 DataRefImpl Ret;
806 Ret.p = getSymbolTable();
807 return basic_symbol_iterator(SymbolRef(Ret, this));
810 basic_symbol_iterator COFFObjectFile::symbol_end() const {
811 // The symbol table ends where the string table begins.
812 DataRefImpl Ret;
813 Ret.p = reinterpret_cast<uintptr_t>(StringTable);
814 return basic_symbol_iterator(SymbolRef(Ret, this));
817 import_directory_iterator COFFObjectFile::import_directory_begin() const {
818 if (!ImportDirectory)
819 return import_directory_end();
820 if (ImportDirectory->isNull())
821 return import_directory_end();
822 return import_directory_iterator(
823 ImportDirectoryEntryRef(ImportDirectory, 0, this));
826 import_directory_iterator COFFObjectFile::import_directory_end() const {
827 return import_directory_iterator(
828 ImportDirectoryEntryRef(nullptr, -1, this));
831 delay_import_directory_iterator
832 COFFObjectFile::delay_import_directory_begin() const {
833 return delay_import_directory_iterator(
834 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this));
837 delay_import_directory_iterator
838 COFFObjectFile::delay_import_directory_end() const {
839 return delay_import_directory_iterator(
840 DelayImportDirectoryEntryRef(
841 DelayImportDirectory, NumberOfDelayImportDirectory, this));
844 export_directory_iterator COFFObjectFile::export_directory_begin() const {
845 return export_directory_iterator(
846 ExportDirectoryEntryRef(ExportDirectory, 0, this));
849 export_directory_iterator COFFObjectFile::export_directory_end() const {
850 if (!ExportDirectory)
851 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this));
852 ExportDirectoryEntryRef Ref(ExportDirectory,
853 ExportDirectory->AddressTableEntries, this);
854 return export_directory_iterator(Ref);
857 section_iterator COFFObjectFile::section_begin() const {
858 DataRefImpl Ret;
859 Ret.p = reinterpret_cast<uintptr_t>(SectionTable);
860 return section_iterator(SectionRef(Ret, this));
863 section_iterator COFFObjectFile::section_end() const {
864 DataRefImpl Ret;
865 int NumSections =
866 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections();
867 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections);
868 return section_iterator(SectionRef(Ret, this));
871 base_reloc_iterator COFFObjectFile::base_reloc_begin() const {
872 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this));
875 base_reloc_iterator COFFObjectFile::base_reloc_end() const {
876 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this));
879 uint8_t COFFObjectFile::getBytesInAddress() const {
880 return getArch() == Triple::x86_64 || getArch() == Triple::aarch64 ? 8 : 4;
883 StringRef COFFObjectFile::getFileFormatName() const {
884 switch(getMachine()) {
885 case COFF::IMAGE_FILE_MACHINE_I386:
886 return "COFF-i386";
887 case COFF::IMAGE_FILE_MACHINE_AMD64:
888 return "COFF-x86-64";
889 case COFF::IMAGE_FILE_MACHINE_ARMNT:
890 return "COFF-ARM";
891 case COFF::IMAGE_FILE_MACHINE_ARM64:
892 return "COFF-ARM64";
893 default:
894 return "COFF-<unknown arch>";
898 Triple::ArchType COFFObjectFile::getArch() const {
899 switch (getMachine()) {
900 case COFF::IMAGE_FILE_MACHINE_I386:
901 return Triple::x86;
902 case COFF::IMAGE_FILE_MACHINE_AMD64:
903 return Triple::x86_64;
904 case COFF::IMAGE_FILE_MACHINE_ARMNT:
905 return Triple::thumb;
906 case COFF::IMAGE_FILE_MACHINE_ARM64:
907 return Triple::aarch64;
908 default:
909 return Triple::UnknownArch;
913 Expected<uint64_t> COFFObjectFile::getStartAddress() const {
914 if (PE32Header)
915 return PE32Header->AddressOfEntryPoint;
916 return 0;
919 iterator_range<import_directory_iterator>
920 COFFObjectFile::import_directories() const {
921 return make_range(import_directory_begin(), import_directory_end());
924 iterator_range<delay_import_directory_iterator>
925 COFFObjectFile::delay_import_directories() const {
926 return make_range(delay_import_directory_begin(),
927 delay_import_directory_end());
930 iterator_range<export_directory_iterator>
931 COFFObjectFile::export_directories() const {
932 return make_range(export_directory_begin(), export_directory_end());
935 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const {
936 return make_range(base_reloc_begin(), base_reloc_end());
939 std::error_code
940 COFFObjectFile::getCOFFHeader(const coff_file_header *&Res) const {
941 Res = COFFHeader;
942 return std::error_code();
945 std::error_code
946 COFFObjectFile::getCOFFBigObjHeader(const coff_bigobj_file_header *&Res) const {
947 Res = COFFBigObjHeader;
948 return std::error_code();
951 std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const {
952 Res = PE32Header;
953 return std::error_code();
956 std::error_code
957 COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const {
958 Res = PE32PlusHeader;
959 return std::error_code();
962 std::error_code
963 COFFObjectFile::getDataDirectory(uint32_t Index,
964 const data_directory *&Res) const {
965 // Error if there's no data directory or the index is out of range.
966 if (!DataDirectory) {
967 Res = nullptr;
968 return object_error::parse_failed;
970 assert(PE32Header || PE32PlusHeader);
971 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize
972 : PE32PlusHeader->NumberOfRvaAndSize;
973 if (Index >= NumEnt) {
974 Res = nullptr;
975 return object_error::parse_failed;
977 Res = &DataDirectory[Index];
978 return std::error_code();
981 std::error_code COFFObjectFile::getSection(int32_t Index,
982 const coff_section *&Result) const {
983 Result = nullptr;
984 if (COFF::isReservedSectionNumber(Index))
985 return std::error_code();
986 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) {
987 // We already verified the section table data, so no need to check again.
988 Result = SectionTable + (Index - 1);
989 return std::error_code();
991 return object_error::parse_failed;
994 std::error_code COFFObjectFile::getSection(StringRef SectionName,
995 const coff_section *&Result) const {
996 Result = nullptr;
997 StringRef SecName;
998 for (const SectionRef &Section : sections()) {
999 if (std::error_code E = Section.getName(SecName))
1000 return E;
1001 if (SecName == SectionName) {
1002 Result = getCOFFSection(Section);
1003 return std::error_code();
1006 return object_error::parse_failed;
1009 std::error_code COFFObjectFile::getString(uint32_t Offset,
1010 StringRef &Result) const {
1011 if (StringTableSize <= 4)
1012 // Tried to get a string from an empty string table.
1013 return object_error::parse_failed;
1014 if (Offset >= StringTableSize)
1015 return object_error::unexpected_eof;
1016 Result = StringRef(StringTable + Offset);
1017 return std::error_code();
1020 std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol,
1021 StringRef &Res) const {
1022 return getSymbolName(Symbol.getGeneric(), Res);
1025 std::error_code COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol,
1026 StringRef &Res) const {
1027 // Check for string table entry. First 4 bytes are 0.
1028 if (Symbol->Name.Offset.Zeroes == 0) {
1029 if (std::error_code EC = getString(Symbol->Name.Offset.Offset, Res))
1030 return EC;
1031 return std::error_code();
1034 if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0)
1035 // Null terminated, let ::strlen figure out the length.
1036 Res = StringRef(Symbol->Name.ShortName);
1037 else
1038 // Not null terminated, use all 8 bytes.
1039 Res = StringRef(Symbol->Name.ShortName, COFF::NameSize);
1040 return std::error_code();
1043 ArrayRef<uint8_t>
1044 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const {
1045 const uint8_t *Aux = nullptr;
1047 size_t SymbolSize = getSymbolTableEntrySize();
1048 if (Symbol.getNumberOfAuxSymbols() > 0) {
1049 // AUX data comes immediately after the symbol in COFF
1050 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize;
1051 #ifndef NDEBUG
1052 // Verify that the Aux symbol points to a valid entry in the symbol table.
1053 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base());
1054 if (Offset < getPointerToSymbolTable() ||
1055 Offset >=
1056 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize))
1057 report_fatal_error("Aux Symbol data was outside of symbol table.");
1059 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 &&
1060 "Aux Symbol data did not point to the beginning of a symbol");
1061 #endif
1063 return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize);
1066 uint32_t COFFObjectFile::getSymbolIndex(COFFSymbolRef Symbol) const {
1067 uintptr_t Offset =
1068 reinterpret_cast<uintptr_t>(Symbol.getRawPtr()) - getSymbolTable();
1069 assert(Offset % getSymbolTableEntrySize() == 0 &&
1070 "Symbol did not point to the beginning of a symbol");
1071 size_t Index = Offset / getSymbolTableEntrySize();
1072 assert(Index < getNumberOfSymbols());
1073 return Index;
1076 Expected<StringRef>
1077 COFFObjectFile::getSectionName(const coff_section *Sec) const {
1078 StringRef Name;
1079 if (Sec->Name[COFF::NameSize - 1] == 0)
1080 // Null terminated, let ::strlen figure out the length.
1081 Name = Sec->Name;
1082 else
1083 // Not null terminated, use all 8 bytes.
1084 Name = StringRef(Sec->Name, COFF::NameSize);
1086 // Check for string table entry. First byte is '/'.
1087 if (Name.startswith("/")) {
1088 uint32_t Offset;
1089 if (Name.startswith("//")) {
1090 if (decodeBase64StringEntry(Name.substr(2), Offset))
1091 return createStringError(object_error::parse_failed,
1092 "inalid section name");
1093 } else {
1094 if (Name.substr(1).getAsInteger(10, Offset))
1095 return createStringError(object_error::parse_failed,
1096 "invalid section name");
1098 if (std::error_code EC = getString(Offset, Name))
1099 return errorCodeToError(EC);
1102 return Name;
1105 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const {
1106 // SizeOfRawData and VirtualSize change what they represent depending on
1107 // whether or not we have an executable image.
1109 // For object files, SizeOfRawData contains the size of section's data;
1110 // VirtualSize should be zero but isn't due to buggy COFF writers.
1112 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the
1113 // actual section size is in VirtualSize. It is possible for VirtualSize to
1114 // be greater than SizeOfRawData; the contents past that point should be
1115 // considered to be zero.
1116 if (getDOSHeader())
1117 return std::min(Sec->VirtualSize, Sec->SizeOfRawData);
1118 return Sec->SizeOfRawData;
1121 Error COFFObjectFile::getSectionContents(const coff_section *Sec,
1122 ArrayRef<uint8_t> &Res) const {
1123 // In COFF, a virtual section won't have any in-file
1124 // content, so the file pointer to the content will be zero.
1125 if (Sec->PointerToRawData == 0)
1126 return Error::success();
1127 // The only thing that we need to verify is that the contents is contained
1128 // within the file bounds. We don't need to make sure it doesn't cover other
1129 // data, as there's nothing that says that is not allowed.
1130 uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData;
1131 uint32_t SectionSize = getSectionSize(Sec);
1132 if (checkOffset(Data, ConStart, SectionSize))
1133 return make_error<BinaryError>();
1134 Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize);
1135 return Error::success();
1138 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const {
1139 return reinterpret_cast<const coff_relocation*>(Rel.p);
1142 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const {
1143 Rel.p = reinterpret_cast<uintptr_t>(
1144 reinterpret_cast<const coff_relocation*>(Rel.p) + 1);
1147 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const {
1148 const coff_relocation *R = toRel(Rel);
1149 return R->VirtualAddress;
1152 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const {
1153 const coff_relocation *R = toRel(Rel);
1154 DataRefImpl Ref;
1155 if (R->SymbolTableIndex >= getNumberOfSymbols())
1156 return symbol_end();
1157 if (SymbolTable16)
1158 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex);
1159 else if (SymbolTable32)
1160 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex);
1161 else
1162 llvm_unreachable("no symbol table pointer!");
1163 return symbol_iterator(SymbolRef(Ref, this));
1166 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const {
1167 const coff_relocation* R = toRel(Rel);
1168 return R->Type;
1171 const coff_section *
1172 COFFObjectFile::getCOFFSection(const SectionRef &Section) const {
1173 return toSec(Section.getRawDataRefImpl());
1176 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const {
1177 if (SymbolTable16)
1178 return toSymb<coff_symbol16>(Ref);
1179 if (SymbolTable32)
1180 return toSymb<coff_symbol32>(Ref);
1181 llvm_unreachable("no symbol table pointer!");
1184 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const {
1185 return getCOFFSymbol(Symbol.getRawDataRefImpl());
1188 const coff_relocation *
1189 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const {
1190 return toRel(Reloc.getRawDataRefImpl());
1193 ArrayRef<coff_relocation>
1194 COFFObjectFile::getRelocations(const coff_section *Sec) const {
1195 return {getFirstReloc(Sec, Data, base()),
1196 getNumberOfRelocations(Sec, Data, base())};
1199 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \
1200 case COFF::reloc_type: \
1201 return #reloc_type;
1203 StringRef COFFObjectFile::getRelocationTypeName(uint16_t Type) const {
1204 switch (getMachine()) {
1205 case COFF::IMAGE_FILE_MACHINE_AMD64:
1206 switch (Type) {
1207 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE);
1208 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64);
1209 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32);
1210 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB);
1211 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32);
1212 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1);
1213 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2);
1214 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3);
1215 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4);
1216 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5);
1217 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION);
1218 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL);
1219 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7);
1220 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN);
1221 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32);
1222 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR);
1223 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32);
1224 default:
1225 return "Unknown";
1227 break;
1228 case COFF::IMAGE_FILE_MACHINE_ARMNT:
1229 switch (Type) {
1230 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE);
1231 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32);
1232 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB);
1233 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24);
1234 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11);
1235 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN);
1236 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24);
1237 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11);
1238 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_REL32);
1239 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION);
1240 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL);
1241 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A);
1242 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T);
1243 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T);
1244 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T);
1245 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T);
1246 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_PAIR);
1247 default:
1248 return "Unknown";
1250 break;
1251 case COFF::IMAGE_FILE_MACHINE_ARM64:
1252 switch (Type) {
1253 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ABSOLUTE);
1254 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32);
1255 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32NB);
1256 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH26);
1257 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEBASE_REL21);
1258 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL21);
1259 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12A);
1260 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12L);
1261 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL);
1262 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12A);
1263 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_HIGH12A);
1264 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12L);
1265 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_TOKEN);
1266 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECTION);
1267 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR64);
1268 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH19);
1269 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH14);
1270 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL32);
1271 default:
1272 return "Unknown";
1274 break;
1275 case COFF::IMAGE_FILE_MACHINE_I386:
1276 switch (Type) {
1277 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE);
1278 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16);
1279 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16);
1280 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32);
1281 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB);
1282 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12);
1283 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION);
1284 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL);
1285 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN);
1286 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7);
1287 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32);
1288 default:
1289 return "Unknown";
1291 break;
1292 default:
1293 return "Unknown";
1297 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME
1299 void COFFObjectFile::getRelocationTypeName(
1300 DataRefImpl Rel, SmallVectorImpl<char> &Result) const {
1301 const coff_relocation *Reloc = toRel(Rel);
1302 StringRef Res = getRelocationTypeName(Reloc->Type);
1303 Result.append(Res.begin(), Res.end());
1306 bool COFFObjectFile::isRelocatableObject() const {
1307 return !DataDirectory;
1310 StringRef COFFObjectFile::mapDebugSectionName(StringRef Name) const {
1311 return StringSwitch<StringRef>(Name)
1312 .Case("eh_fram", "eh_frame")
1313 .Default(Name);
1316 bool ImportDirectoryEntryRef::
1317 operator==(const ImportDirectoryEntryRef &Other) const {
1318 return ImportTable == Other.ImportTable && Index == Other.Index;
1321 void ImportDirectoryEntryRef::moveNext() {
1322 ++Index;
1323 if (ImportTable[Index].isNull()) {
1324 Index = -1;
1325 ImportTable = nullptr;
1329 std::error_code ImportDirectoryEntryRef::getImportTableEntry(
1330 const coff_import_directory_table_entry *&Result) const {
1331 return getObject(Result, OwningObject->Data, ImportTable + Index);
1334 static imported_symbol_iterator
1335 makeImportedSymbolIterator(const COFFObjectFile *Object,
1336 uintptr_t Ptr, int Index) {
1337 if (Object->getBytesInAddress() == 4) {
1338 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr);
1339 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
1341 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr);
1342 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
1345 static imported_symbol_iterator
1346 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) {
1347 uintptr_t IntPtr = 0;
1348 Object->getRvaPtr(RVA, IntPtr);
1349 return makeImportedSymbolIterator(Object, IntPtr, 0);
1352 static imported_symbol_iterator
1353 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) {
1354 uintptr_t IntPtr = 0;
1355 Object->getRvaPtr(RVA, IntPtr);
1356 // Forward the pointer to the last entry which is null.
1357 int Index = 0;
1358 if (Object->getBytesInAddress() == 4) {
1359 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr);
1360 while (*Entry++)
1361 ++Index;
1362 } else {
1363 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr);
1364 while (*Entry++)
1365 ++Index;
1367 return makeImportedSymbolIterator(Object, IntPtr, Index);
1370 imported_symbol_iterator
1371 ImportDirectoryEntryRef::imported_symbol_begin() const {
1372 return importedSymbolBegin(ImportTable[Index].ImportAddressTableRVA,
1373 OwningObject);
1376 imported_symbol_iterator
1377 ImportDirectoryEntryRef::imported_symbol_end() const {
1378 return importedSymbolEnd(ImportTable[Index].ImportAddressTableRVA,
1379 OwningObject);
1382 iterator_range<imported_symbol_iterator>
1383 ImportDirectoryEntryRef::imported_symbols() const {
1384 return make_range(imported_symbol_begin(), imported_symbol_end());
1387 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_begin() const {
1388 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA,
1389 OwningObject);
1392 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_end() const {
1393 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA,
1394 OwningObject);
1397 iterator_range<imported_symbol_iterator>
1398 ImportDirectoryEntryRef::lookup_table_symbols() const {
1399 return make_range(lookup_table_begin(), lookup_table_end());
1402 std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const {
1403 uintptr_t IntPtr = 0;
1404 if (std::error_code EC =
1405 OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr))
1406 return EC;
1407 Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1408 return std::error_code();
1411 std::error_code
1412 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const {
1413 Result = ImportTable[Index].ImportLookupTableRVA;
1414 return std::error_code();
1417 std::error_code
1418 ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const {
1419 Result = ImportTable[Index].ImportAddressTableRVA;
1420 return std::error_code();
1423 bool DelayImportDirectoryEntryRef::
1424 operator==(const DelayImportDirectoryEntryRef &Other) const {
1425 return Table == Other.Table && Index == Other.Index;
1428 void DelayImportDirectoryEntryRef::moveNext() {
1429 ++Index;
1432 imported_symbol_iterator
1433 DelayImportDirectoryEntryRef::imported_symbol_begin() const {
1434 return importedSymbolBegin(Table[Index].DelayImportNameTable,
1435 OwningObject);
1438 imported_symbol_iterator
1439 DelayImportDirectoryEntryRef::imported_symbol_end() const {
1440 return importedSymbolEnd(Table[Index].DelayImportNameTable,
1441 OwningObject);
1444 iterator_range<imported_symbol_iterator>
1445 DelayImportDirectoryEntryRef::imported_symbols() const {
1446 return make_range(imported_symbol_begin(), imported_symbol_end());
1449 std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const {
1450 uintptr_t IntPtr = 0;
1451 if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr))
1452 return EC;
1453 Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1454 return std::error_code();
1457 std::error_code DelayImportDirectoryEntryRef::
1458 getDelayImportTable(const delay_import_directory_table_entry *&Result) const {
1459 Result = &Table[Index];
1460 return std::error_code();
1463 std::error_code DelayImportDirectoryEntryRef::
1464 getImportAddress(int AddrIndex, uint64_t &Result) const {
1465 uint32_t RVA = Table[Index].DelayImportAddressTable +
1466 AddrIndex * (OwningObject->is64() ? 8 : 4);
1467 uintptr_t IntPtr = 0;
1468 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
1469 return EC;
1470 if (OwningObject->is64())
1471 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr);
1472 else
1473 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr);
1474 return std::error_code();
1477 bool ExportDirectoryEntryRef::
1478 operator==(const ExportDirectoryEntryRef &Other) const {
1479 return ExportTable == Other.ExportTable && Index == Other.Index;
1482 void ExportDirectoryEntryRef::moveNext() {
1483 ++Index;
1486 // Returns the name of the current export symbol. If the symbol is exported only
1487 // by ordinal, the empty string is set as a result.
1488 std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const {
1489 uintptr_t IntPtr = 0;
1490 if (std::error_code EC =
1491 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr))
1492 return EC;
1493 Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1494 return std::error_code();
1497 // Returns the starting ordinal number.
1498 std::error_code
1499 ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const {
1500 Result = ExportTable->OrdinalBase;
1501 return std::error_code();
1504 // Returns the export ordinal of the current export symbol.
1505 std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const {
1506 Result = ExportTable->OrdinalBase + Index;
1507 return std::error_code();
1510 // Returns the address of the current export symbol.
1511 std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const {
1512 uintptr_t IntPtr = 0;
1513 if (std::error_code EC =
1514 OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr))
1515 return EC;
1516 const export_address_table_entry *entry =
1517 reinterpret_cast<const export_address_table_entry *>(IntPtr);
1518 Result = entry[Index].ExportRVA;
1519 return std::error_code();
1522 // Returns the name of the current export symbol. If the symbol is exported only
1523 // by ordinal, the empty string is set as a result.
1524 std::error_code
1525 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const {
1526 uintptr_t IntPtr = 0;
1527 if (std::error_code EC =
1528 OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr))
1529 return EC;
1530 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr);
1532 uint32_t NumEntries = ExportTable->NumberOfNamePointers;
1533 int Offset = 0;
1534 for (const ulittle16_t *I = Start, *E = Start + NumEntries;
1535 I < E; ++I, ++Offset) {
1536 if (*I != Index)
1537 continue;
1538 if (std::error_code EC =
1539 OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr))
1540 return EC;
1541 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr);
1542 if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr))
1543 return EC;
1544 Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1545 return std::error_code();
1547 Result = "";
1548 return std::error_code();
1551 std::error_code ExportDirectoryEntryRef::isForwarder(bool &Result) const {
1552 const data_directory *DataEntry;
1553 if (auto EC = OwningObject->getDataDirectory(COFF::EXPORT_TABLE, DataEntry))
1554 return EC;
1555 uint32_t RVA;
1556 if (auto EC = getExportRVA(RVA))
1557 return EC;
1558 uint32_t Begin = DataEntry->RelativeVirtualAddress;
1559 uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size;
1560 Result = (Begin <= RVA && RVA < End);
1561 return std::error_code();
1564 std::error_code ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const {
1565 uint32_t RVA;
1566 if (auto EC = getExportRVA(RVA))
1567 return EC;
1568 uintptr_t IntPtr = 0;
1569 if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr))
1570 return EC;
1571 Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1572 return std::error_code();
1575 bool ImportedSymbolRef::
1576 operator==(const ImportedSymbolRef &Other) const {
1577 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64
1578 && Index == Other.Index;
1581 void ImportedSymbolRef::moveNext() {
1582 ++Index;
1585 std::error_code
1586 ImportedSymbolRef::getSymbolName(StringRef &Result) const {
1587 uint32_t RVA;
1588 if (Entry32) {
1589 // If a symbol is imported only by ordinal, it has no name.
1590 if (Entry32[Index].isOrdinal())
1591 return std::error_code();
1592 RVA = Entry32[Index].getHintNameRVA();
1593 } else {
1594 if (Entry64[Index].isOrdinal())
1595 return std::error_code();
1596 RVA = Entry64[Index].getHintNameRVA();
1598 uintptr_t IntPtr = 0;
1599 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
1600 return EC;
1601 // +2 because the first two bytes is hint.
1602 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2));
1603 return std::error_code();
1606 std::error_code ImportedSymbolRef::isOrdinal(bool &Result) const {
1607 if (Entry32)
1608 Result = Entry32[Index].isOrdinal();
1609 else
1610 Result = Entry64[Index].isOrdinal();
1611 return std::error_code();
1614 std::error_code ImportedSymbolRef::getHintNameRVA(uint32_t &Result) const {
1615 if (Entry32)
1616 Result = Entry32[Index].getHintNameRVA();
1617 else
1618 Result = Entry64[Index].getHintNameRVA();
1619 return std::error_code();
1622 std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const {
1623 uint32_t RVA;
1624 if (Entry32) {
1625 if (Entry32[Index].isOrdinal()) {
1626 Result = Entry32[Index].getOrdinal();
1627 return std::error_code();
1629 RVA = Entry32[Index].getHintNameRVA();
1630 } else {
1631 if (Entry64[Index].isOrdinal()) {
1632 Result = Entry64[Index].getOrdinal();
1633 return std::error_code();
1635 RVA = Entry64[Index].getHintNameRVA();
1637 uintptr_t IntPtr = 0;
1638 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
1639 return EC;
1640 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr);
1641 return std::error_code();
1644 Expected<std::unique_ptr<COFFObjectFile>>
1645 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) {
1646 std::error_code EC;
1647 std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC));
1648 if (EC)
1649 return errorCodeToError(EC);
1650 return std::move(Ret);
1653 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const {
1654 return Header == Other.Header && Index == Other.Index;
1657 void BaseRelocRef::moveNext() {
1658 // Header->BlockSize is the size of the current block, including the
1659 // size of the header itself.
1660 uint32_t Size = sizeof(*Header) +
1661 sizeof(coff_base_reloc_block_entry) * (Index + 1);
1662 if (Size == Header->BlockSize) {
1663 // .reloc contains a list of base relocation blocks. Each block
1664 // consists of the header followed by entries. The header contains
1665 // how many entories will follow. When we reach the end of the
1666 // current block, proceed to the next block.
1667 Header = reinterpret_cast<const coff_base_reloc_block_header *>(
1668 reinterpret_cast<const uint8_t *>(Header) + Size);
1669 Index = 0;
1670 } else {
1671 ++Index;
1675 std::error_code BaseRelocRef::getType(uint8_t &Type) const {
1676 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
1677 Type = Entry[Index].getType();
1678 return std::error_code();
1681 std::error_code BaseRelocRef::getRVA(uint32_t &Result) const {
1682 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
1683 Result = Header->PageRVA + Entry[Index].getOffset();
1684 return std::error_code();
1687 #define RETURN_IF_ERROR(E) \
1688 if (E) \
1689 return E;
1691 Expected<ArrayRef<UTF16>>
1692 ResourceSectionRef::getDirStringAtOffset(uint32_t Offset) {
1693 BinaryStreamReader Reader = BinaryStreamReader(BBS);
1694 Reader.setOffset(Offset);
1695 uint16_t Length;
1696 RETURN_IF_ERROR(Reader.readInteger(Length));
1697 ArrayRef<UTF16> RawDirString;
1698 RETURN_IF_ERROR(Reader.readArray(RawDirString, Length));
1699 return RawDirString;
1702 Expected<ArrayRef<UTF16>>
1703 ResourceSectionRef::getEntryNameString(const coff_resource_dir_entry &Entry) {
1704 return getDirStringAtOffset(Entry.Identifier.getNameOffset());
1707 Expected<const coff_resource_dir_table &>
1708 ResourceSectionRef::getTableAtOffset(uint32_t Offset) {
1709 const coff_resource_dir_table *Table = nullptr;
1711 BinaryStreamReader Reader(BBS);
1712 Reader.setOffset(Offset);
1713 RETURN_IF_ERROR(Reader.readObject(Table));
1714 assert(Table != nullptr);
1715 return *Table;
1718 Expected<const coff_resource_dir_table &>
1719 ResourceSectionRef::getEntrySubDir(const coff_resource_dir_entry &Entry) {
1720 return getTableAtOffset(Entry.Offset.value());
1723 Expected<const coff_resource_dir_table &> ResourceSectionRef::getBaseTable() {
1724 return getTableAtOffset(0);