[ARM] Basic And/Or/Xor handling for MVE predicates
[llvm-complete.git] / lib / ExecutionEngine / RuntimeDyld / RuntimeDyldELF.cpp
blob60041a45e2b8e1966a380a172ab5307b856dc0b0
1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of ELF support for the MC-JIT runtime dynamic linker.
11 //===----------------------------------------------------------------------===//
13 #include "RuntimeDyldELF.h"
14 #include "RuntimeDyldCheckerImpl.h"
15 #include "Targets/RuntimeDyldELFMips.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/BinaryFormat/ELF.h"
20 #include "llvm/Object/ELFObjectFile.h"
21 #include "llvm/Object/ObjectFile.h"
22 #include "llvm/Support/Endian.h"
23 #include "llvm/Support/MemoryBuffer.h"
25 using namespace llvm;
26 using namespace llvm::object;
27 using namespace llvm::support::endian;
29 #define DEBUG_TYPE "dyld"
31 static void or32le(void *P, int32_t V) { write32le(P, read32le(P) | V); }
33 static void or32AArch64Imm(void *L, uint64_t Imm) {
34 or32le(L, (Imm & 0xFFF) << 10);
37 template <class T> static void write(bool isBE, void *P, T V) {
38 isBE ? write<T, support::big>(P, V) : write<T, support::little>(P, V);
41 static void write32AArch64Addr(void *L, uint64_t Imm) {
42 uint32_t ImmLo = (Imm & 0x3) << 29;
43 uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
44 uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
45 write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
48 // Return the bits [Start, End] from Val shifted Start bits.
49 // For instance, getBits(0xF0, 4, 8) returns 0xF.
50 static uint64_t getBits(uint64_t Val, int Start, int End) {
51 uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1;
52 return (Val >> Start) & Mask;
55 namespace {
57 template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
58 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
60 typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
61 typedef Elf_Sym_Impl<ELFT> Elf_Sym;
62 typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
63 typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
65 typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
67 typedef typename ELFT::uint addr_type;
69 DyldELFObject(ELFObjectFile<ELFT> &&Obj);
71 public:
72 static Expected<std::unique_ptr<DyldELFObject>>
73 create(MemoryBufferRef Wrapper);
75 void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
77 void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
79 // Methods for type inquiry through isa, cast and dyn_cast
80 static bool classof(const Binary *v) {
81 return (isa<ELFObjectFile<ELFT>>(v) &&
82 classof(cast<ELFObjectFile<ELFT>>(v)));
84 static bool classof(const ELFObjectFile<ELFT> *v) {
85 return v->isDyldType();
91 // The MemoryBuffer passed into this constructor is just a wrapper around the
92 // actual memory. Ultimately, the Binary parent class will take ownership of
93 // this MemoryBuffer object but not the underlying memory.
94 template <class ELFT>
95 DyldELFObject<ELFT>::DyldELFObject(ELFObjectFile<ELFT> &&Obj)
96 : ELFObjectFile<ELFT>(std::move(Obj)) {
97 this->isDyldELFObject = true;
100 template <class ELFT>
101 Expected<std::unique_ptr<DyldELFObject<ELFT>>>
102 DyldELFObject<ELFT>::create(MemoryBufferRef Wrapper) {
103 auto Obj = ELFObjectFile<ELFT>::create(Wrapper);
104 if (auto E = Obj.takeError())
105 return std::move(E);
106 std::unique_ptr<DyldELFObject<ELFT>> Ret(
107 new DyldELFObject<ELFT>(std::move(*Obj)));
108 return std::move(Ret);
111 template <class ELFT>
112 void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
113 uint64_t Addr) {
114 DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
115 Elf_Shdr *shdr =
116 const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
118 // This assumes the address passed in matches the target address bitness
119 // The template-based type cast handles everything else.
120 shdr->sh_addr = static_cast<addr_type>(Addr);
123 template <class ELFT>
124 void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
125 uint64_t Addr) {
127 Elf_Sym *sym = const_cast<Elf_Sym *>(
128 ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
130 // This assumes the address passed in matches the target address bitness
131 // The template-based type cast handles everything else.
132 sym->st_value = static_cast<addr_type>(Addr);
135 class LoadedELFObjectInfo final
136 : public LoadedObjectInfoHelper<LoadedELFObjectInfo,
137 RuntimeDyld::LoadedObjectInfo> {
138 public:
139 LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
140 : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {}
142 OwningBinary<ObjectFile>
143 getObjectForDebug(const ObjectFile &Obj) const override;
146 template <typename ELFT>
147 static Expected<std::unique_ptr<DyldELFObject<ELFT>>>
148 createRTDyldELFObject(MemoryBufferRef Buffer, const ObjectFile &SourceObject,
149 const LoadedELFObjectInfo &L) {
150 typedef typename ELFT::Shdr Elf_Shdr;
151 typedef typename ELFT::uint addr_type;
153 Expected<std::unique_ptr<DyldELFObject<ELFT>>> ObjOrErr =
154 DyldELFObject<ELFT>::create(Buffer);
155 if (Error E = ObjOrErr.takeError())
156 return std::move(E);
158 std::unique_ptr<DyldELFObject<ELFT>> Obj = std::move(*ObjOrErr);
160 // Iterate over all sections in the object.
161 auto SI = SourceObject.section_begin();
162 for (const auto &Sec : Obj->sections()) {
163 StringRef SectionName;
164 Sec.getName(SectionName);
165 if (SectionName != "") {
166 DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
167 Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
168 reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
170 if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) {
171 // This assumes that the address passed in matches the target address
172 // bitness. The template-based type cast handles everything else.
173 shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
176 ++SI;
179 return std::move(Obj);
182 static OwningBinary<ObjectFile>
183 createELFDebugObject(const ObjectFile &Obj, const LoadedELFObjectInfo &L) {
184 assert(Obj.isELF() && "Not an ELF object file.");
186 std::unique_ptr<MemoryBuffer> Buffer =
187 MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
189 Expected<std::unique_ptr<ObjectFile>> DebugObj(nullptr);
190 handleAllErrors(DebugObj.takeError());
191 if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian())
192 DebugObj =
193 createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L);
194 else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian())
195 DebugObj =
196 createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L);
197 else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian())
198 DebugObj =
199 createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L);
200 else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian())
201 DebugObj =
202 createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L);
203 else
204 llvm_unreachable("Unexpected ELF format");
206 handleAllErrors(DebugObj.takeError());
207 return OwningBinary<ObjectFile>(std::move(*DebugObj), std::move(Buffer));
210 OwningBinary<ObjectFile>
211 LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
212 return createELFDebugObject(Obj, *this);
215 } // anonymous namespace
217 namespace llvm {
219 RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
220 JITSymbolResolver &Resolver)
221 : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
222 RuntimeDyldELF::~RuntimeDyldELF() {}
224 void RuntimeDyldELF::registerEHFrames() {
225 for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
226 SID EHFrameSID = UnregisteredEHFrameSections[i];
227 uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
228 uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
229 size_t EHFrameSize = Sections[EHFrameSID].getSize();
230 MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
232 UnregisteredEHFrameSections.clear();
235 std::unique_ptr<RuntimeDyldELF>
236 llvm::RuntimeDyldELF::create(Triple::ArchType Arch,
237 RuntimeDyld::MemoryManager &MemMgr,
238 JITSymbolResolver &Resolver) {
239 switch (Arch) {
240 default:
241 return make_unique<RuntimeDyldELF>(MemMgr, Resolver);
242 case Triple::mips:
243 case Triple::mipsel:
244 case Triple::mips64:
245 case Triple::mips64el:
246 return make_unique<RuntimeDyldELFMips>(MemMgr, Resolver);
250 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
251 RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
252 if (auto ObjSectionToIDOrErr = loadObjectImpl(O))
253 return llvm::make_unique<LoadedELFObjectInfo>(*this, *ObjSectionToIDOrErr);
254 else {
255 HasError = true;
256 raw_string_ostream ErrStream(ErrorStr);
257 logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream);
258 return nullptr;
262 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
263 uint64_t Offset, uint64_t Value,
264 uint32_t Type, int64_t Addend,
265 uint64_t SymOffset) {
266 switch (Type) {
267 default:
268 llvm_unreachable("Relocation type not implemented yet!");
269 break;
270 case ELF::R_X86_64_NONE:
271 break;
272 case ELF::R_X86_64_64: {
273 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
274 Value + Addend;
275 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
276 << format("%p\n", Section.getAddressWithOffset(Offset)));
277 break;
279 case ELF::R_X86_64_32:
280 case ELF::R_X86_64_32S: {
281 Value += Addend;
282 assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
283 (Type == ELF::R_X86_64_32S &&
284 ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
285 uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
286 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
287 TruncatedAddr;
288 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
289 << format("%p\n", Section.getAddressWithOffset(Offset)));
290 break;
292 case ELF::R_X86_64_PC8: {
293 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
294 int64_t RealOffset = Value + Addend - FinalAddress;
295 assert(isInt<8>(RealOffset));
296 int8_t TruncOffset = (RealOffset & 0xFF);
297 Section.getAddress()[Offset] = TruncOffset;
298 break;
300 case ELF::R_X86_64_PC32: {
301 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
302 int64_t RealOffset = Value + Addend - FinalAddress;
303 assert(isInt<32>(RealOffset));
304 int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
305 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
306 TruncOffset;
307 break;
309 case ELF::R_X86_64_PC64: {
310 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
311 int64_t RealOffset = Value + Addend - FinalAddress;
312 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
313 RealOffset;
314 LLVM_DEBUG(dbgs() << "Writing " << format("%p", RealOffset) << " at "
315 << format("%p\n", FinalAddress));
316 break;
318 case ELF::R_X86_64_GOTOFF64: {
319 // Compute Value - GOTBase.
320 uint64_t GOTBase = 0;
321 for (const auto &Section : Sections) {
322 if (Section.getName() == ".got") {
323 GOTBase = Section.getLoadAddressWithOffset(0);
324 break;
327 assert(GOTBase != 0 && "missing GOT");
328 int64_t GOTOffset = Value - GOTBase + Addend;
329 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = GOTOffset;
330 break;
335 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
336 uint64_t Offset, uint32_t Value,
337 uint32_t Type, int32_t Addend) {
338 switch (Type) {
339 case ELF::R_386_32: {
340 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
341 Value + Addend;
342 break;
344 // Handle R_386_PLT32 like R_386_PC32 since it should be able to
345 // reach any 32 bit address.
346 case ELF::R_386_PLT32:
347 case ELF::R_386_PC32: {
348 uint32_t FinalAddress =
349 Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
350 uint32_t RealOffset = Value + Addend - FinalAddress;
351 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
352 RealOffset;
353 break;
355 default:
356 // There are other relocation types, but it appears these are the
357 // only ones currently used by the LLVM ELF object writer
358 llvm_unreachable("Relocation type not implemented yet!");
359 break;
363 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
364 uint64_t Offset, uint64_t Value,
365 uint32_t Type, int64_t Addend) {
366 uint32_t *TargetPtr =
367 reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
368 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
369 // Data should use target endian. Code should always use little endian.
370 bool isBE = Arch == Triple::aarch64_be;
372 LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
373 << format("%llx", Section.getAddressWithOffset(Offset))
374 << " FinalAddress: 0x" << format("%llx", FinalAddress)
375 << " Value: 0x" << format("%llx", Value) << " Type: 0x"
376 << format("%x", Type) << " Addend: 0x"
377 << format("%llx", Addend) << "\n");
379 switch (Type) {
380 default:
381 llvm_unreachable("Relocation type not implemented yet!");
382 break;
383 case ELF::R_AARCH64_ABS16: {
384 uint64_t Result = Value + Addend;
385 assert(static_cast<int64_t>(Result) >= INT16_MIN && Result < UINT16_MAX);
386 write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU));
387 break;
389 case ELF::R_AARCH64_ABS32: {
390 uint64_t Result = Value + Addend;
391 assert(static_cast<int64_t>(Result) >= INT32_MIN && Result < UINT32_MAX);
392 write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
393 break;
395 case ELF::R_AARCH64_ABS64:
396 write(isBE, TargetPtr, Value + Addend);
397 break;
398 case ELF::R_AARCH64_PREL32: {
399 uint64_t Result = Value + Addend - FinalAddress;
400 assert(static_cast<int64_t>(Result) >= INT32_MIN &&
401 static_cast<int64_t>(Result) <= UINT32_MAX);
402 write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
403 break;
405 case ELF::R_AARCH64_PREL64:
406 write(isBE, TargetPtr, Value + Addend - FinalAddress);
407 break;
408 case ELF::R_AARCH64_CALL26: // fallthrough
409 case ELF::R_AARCH64_JUMP26: {
410 // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
411 // calculation.
412 uint64_t BranchImm = Value + Addend - FinalAddress;
414 // "Check that -2^27 <= result < 2^27".
415 assert(isInt<28>(BranchImm));
416 or32le(TargetPtr, (BranchImm & 0x0FFFFFFC) >> 2);
417 break;
419 case ELF::R_AARCH64_MOVW_UABS_G3:
420 or32le(TargetPtr, ((Value + Addend) & 0xFFFF000000000000) >> 43);
421 break;
422 case ELF::R_AARCH64_MOVW_UABS_G2_NC:
423 or32le(TargetPtr, ((Value + Addend) & 0xFFFF00000000) >> 27);
424 break;
425 case ELF::R_AARCH64_MOVW_UABS_G1_NC:
426 or32le(TargetPtr, ((Value + Addend) & 0xFFFF0000) >> 11);
427 break;
428 case ELF::R_AARCH64_MOVW_UABS_G0_NC:
429 or32le(TargetPtr, ((Value + Addend) & 0xFFFF) << 5);
430 break;
431 case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
432 // Operation: Page(S+A) - Page(P)
433 uint64_t Result =
434 ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
436 // Check that -2^32 <= X < 2^32
437 assert(isInt<33>(Result) && "overflow check failed for relocation");
439 // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
440 // from bits 32:12 of X.
441 write32AArch64Addr(TargetPtr, Result >> 12);
442 break;
444 case ELF::R_AARCH64_ADD_ABS_LO12_NC:
445 // Operation: S + A
446 // Immediate goes in bits 21:10 of LD/ST instruction, taken
447 // from bits 11:0 of X
448 or32AArch64Imm(TargetPtr, Value + Addend);
449 break;
450 case ELF::R_AARCH64_LDST8_ABS_LO12_NC:
451 // Operation: S + A
452 // Immediate goes in bits 21:10 of LD/ST instruction, taken
453 // from bits 11:0 of X
454 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 0, 11));
455 break;
456 case ELF::R_AARCH64_LDST16_ABS_LO12_NC:
457 // Operation: S + A
458 // Immediate goes in bits 21:10 of LD/ST instruction, taken
459 // from bits 11:1 of X
460 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 1, 11));
461 break;
462 case ELF::R_AARCH64_LDST32_ABS_LO12_NC:
463 // Operation: S + A
464 // Immediate goes in bits 21:10 of LD/ST instruction, taken
465 // from bits 11:2 of X
466 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 2, 11));
467 break;
468 case ELF::R_AARCH64_LDST64_ABS_LO12_NC:
469 // Operation: S + A
470 // Immediate goes in bits 21:10 of LD/ST instruction, taken
471 // from bits 11:3 of X
472 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 3, 11));
473 break;
474 case ELF::R_AARCH64_LDST128_ABS_LO12_NC:
475 // Operation: S + A
476 // Immediate goes in bits 21:10 of LD/ST instruction, taken
477 // from bits 11:4 of X
478 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 4, 11));
479 break;
483 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
484 uint64_t Offset, uint32_t Value,
485 uint32_t Type, int32_t Addend) {
486 // TODO: Add Thumb relocations.
487 uint32_t *TargetPtr =
488 reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
489 uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
490 Value += Addend;
492 LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
493 << Section.getAddressWithOffset(Offset)
494 << " FinalAddress: " << format("%p", FinalAddress)
495 << " Value: " << format("%x", Value)
496 << " Type: " << format("%x", Type)
497 << " Addend: " << format("%x", Addend) << "\n");
499 switch (Type) {
500 default:
501 llvm_unreachable("Not implemented relocation type!");
503 case ELF::R_ARM_NONE:
504 break;
505 // Write a 31bit signed offset
506 case ELF::R_ARM_PREL31:
507 support::ulittle32_t::ref{TargetPtr} =
508 (support::ulittle32_t::ref{TargetPtr} & 0x80000000) |
509 ((Value - FinalAddress) & ~0x80000000);
510 break;
511 case ELF::R_ARM_TARGET1:
512 case ELF::R_ARM_ABS32:
513 support::ulittle32_t::ref{TargetPtr} = Value;
514 break;
515 // Write first 16 bit of 32 bit value to the mov instruction.
516 // Last 4 bit should be shifted.
517 case ELF::R_ARM_MOVW_ABS_NC:
518 case ELF::R_ARM_MOVT_ABS:
519 if (Type == ELF::R_ARM_MOVW_ABS_NC)
520 Value = Value & 0xFFFF;
521 else if (Type == ELF::R_ARM_MOVT_ABS)
522 Value = (Value >> 16) & 0xFFFF;
523 support::ulittle32_t::ref{TargetPtr} =
524 (support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (Value & 0xFFF) |
525 (((Value >> 12) & 0xF) << 16);
526 break;
527 // Write 24 bit relative value to the branch instruction.
528 case ELF::R_ARM_PC24: // Fall through.
529 case ELF::R_ARM_CALL: // Fall through.
530 case ELF::R_ARM_JUMP24:
531 int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
532 RelValue = (RelValue & 0x03FFFFFC) >> 2;
533 assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE);
534 support::ulittle32_t::ref{TargetPtr} =
535 (support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue;
536 break;
540 void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) {
541 if (Arch == Triple::UnknownArch ||
542 !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) {
543 IsMipsO32ABI = false;
544 IsMipsN32ABI = false;
545 IsMipsN64ABI = false;
546 return;
548 if (auto *E = dyn_cast<ELFObjectFileBase>(&Obj)) {
549 unsigned AbiVariant = E->getPlatformFlags();
550 IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32;
551 IsMipsN32ABI = AbiVariant & ELF::EF_MIPS_ABI2;
553 IsMipsN64ABI = Obj.getFileFormatName().equals("ELF64-mips");
556 // Return the .TOC. section and offset.
557 Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj,
558 ObjSectionToIDMap &LocalSections,
559 RelocationValueRef &Rel) {
560 // Set a default SectionID in case we do not find a TOC section below.
561 // This may happen for references to TOC base base (sym@toc, .odp
562 // relocation) without a .toc directive. In this case just use the
563 // first section (which is usually the .odp) since the code won't
564 // reference the .toc base directly.
565 Rel.SymbolName = nullptr;
566 Rel.SectionID = 0;
568 // The TOC consists of sections .got, .toc, .tocbss, .plt in that
569 // order. The TOC starts where the first of these sections starts.
570 for (auto &Section: Obj.sections()) {
571 StringRef SectionName;
572 if (auto EC = Section.getName(SectionName))
573 return errorCodeToError(EC);
575 if (SectionName == ".got"
576 || SectionName == ".toc"
577 || SectionName == ".tocbss"
578 || SectionName == ".plt") {
579 if (auto SectionIDOrErr =
580 findOrEmitSection(Obj, Section, false, LocalSections))
581 Rel.SectionID = *SectionIDOrErr;
582 else
583 return SectionIDOrErr.takeError();
584 break;
588 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
589 // thus permitting a full 64 Kbytes segment.
590 Rel.Addend = 0x8000;
592 return Error::success();
595 // Returns the sections and offset associated with the ODP entry referenced
596 // by Symbol.
597 Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj,
598 ObjSectionToIDMap &LocalSections,
599 RelocationValueRef &Rel) {
600 // Get the ELF symbol value (st_value) to compare with Relocation offset in
601 // .opd entries
602 for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
603 si != se; ++si) {
604 section_iterator RelSecI = si->getRelocatedSection();
605 if (RelSecI == Obj.section_end())
606 continue;
608 StringRef RelSectionName;
609 if (auto EC = RelSecI->getName(RelSectionName))
610 return errorCodeToError(EC);
612 if (RelSectionName != ".opd")
613 continue;
615 for (elf_relocation_iterator i = si->relocation_begin(),
616 e = si->relocation_end();
617 i != e;) {
618 // The R_PPC64_ADDR64 relocation indicates the first field
619 // of a .opd entry
620 uint64_t TypeFunc = i->getType();
621 if (TypeFunc != ELF::R_PPC64_ADDR64) {
622 ++i;
623 continue;
626 uint64_t TargetSymbolOffset = i->getOffset();
627 symbol_iterator TargetSymbol = i->getSymbol();
628 int64_t Addend;
629 if (auto AddendOrErr = i->getAddend())
630 Addend = *AddendOrErr;
631 else
632 return AddendOrErr.takeError();
634 ++i;
635 if (i == e)
636 break;
638 // Just check if following relocation is a R_PPC64_TOC
639 uint64_t TypeTOC = i->getType();
640 if (TypeTOC != ELF::R_PPC64_TOC)
641 continue;
643 // Finally compares the Symbol value and the target symbol offset
644 // to check if this .opd entry refers to the symbol the relocation
645 // points to.
646 if (Rel.Addend != (int64_t)TargetSymbolOffset)
647 continue;
649 section_iterator TSI = Obj.section_end();
650 if (auto TSIOrErr = TargetSymbol->getSection())
651 TSI = *TSIOrErr;
652 else
653 return TSIOrErr.takeError();
654 assert(TSI != Obj.section_end() && "TSI should refer to a valid section");
656 bool IsCode = TSI->isText();
657 if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode,
658 LocalSections))
659 Rel.SectionID = *SectionIDOrErr;
660 else
661 return SectionIDOrErr.takeError();
662 Rel.Addend = (intptr_t)Addend;
663 return Error::success();
666 llvm_unreachable("Attempting to get address of ODP entry!");
669 // Relocation masks following the #lo(value), #hi(value), #ha(value),
670 // #higher(value), #highera(value), #highest(value), and #highesta(value)
671 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
672 // document.
674 static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
676 static inline uint16_t applyPPChi(uint64_t value) {
677 return (value >> 16) & 0xffff;
680 static inline uint16_t applyPPCha (uint64_t value) {
681 return ((value + 0x8000) >> 16) & 0xffff;
684 static inline uint16_t applyPPChigher(uint64_t value) {
685 return (value >> 32) & 0xffff;
688 static inline uint16_t applyPPChighera (uint64_t value) {
689 return ((value + 0x8000) >> 32) & 0xffff;
692 static inline uint16_t applyPPChighest(uint64_t value) {
693 return (value >> 48) & 0xffff;
696 static inline uint16_t applyPPChighesta (uint64_t value) {
697 return ((value + 0x8000) >> 48) & 0xffff;
700 void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section,
701 uint64_t Offset, uint64_t Value,
702 uint32_t Type, int64_t Addend) {
703 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
704 switch (Type) {
705 default:
706 llvm_unreachable("Relocation type not implemented yet!");
707 break;
708 case ELF::R_PPC_ADDR16_LO:
709 writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
710 break;
711 case ELF::R_PPC_ADDR16_HI:
712 writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
713 break;
714 case ELF::R_PPC_ADDR16_HA:
715 writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
716 break;
720 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
721 uint64_t Offset, uint64_t Value,
722 uint32_t Type, int64_t Addend) {
723 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
724 switch (Type) {
725 default:
726 llvm_unreachable("Relocation type not implemented yet!");
727 break;
728 case ELF::R_PPC64_ADDR16:
729 writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
730 break;
731 case ELF::R_PPC64_ADDR16_DS:
732 writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
733 break;
734 case ELF::R_PPC64_ADDR16_LO:
735 writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
736 break;
737 case ELF::R_PPC64_ADDR16_LO_DS:
738 writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
739 break;
740 case ELF::R_PPC64_ADDR16_HI:
741 case ELF::R_PPC64_ADDR16_HIGH:
742 writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
743 break;
744 case ELF::R_PPC64_ADDR16_HA:
745 case ELF::R_PPC64_ADDR16_HIGHA:
746 writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
747 break;
748 case ELF::R_PPC64_ADDR16_HIGHER:
749 writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
750 break;
751 case ELF::R_PPC64_ADDR16_HIGHERA:
752 writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
753 break;
754 case ELF::R_PPC64_ADDR16_HIGHEST:
755 writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
756 break;
757 case ELF::R_PPC64_ADDR16_HIGHESTA:
758 writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
759 break;
760 case ELF::R_PPC64_ADDR14: {
761 assert(((Value + Addend) & 3) == 0);
762 // Preserve the AA/LK bits in the branch instruction
763 uint8_t aalk = *(LocalAddress + 3);
764 writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
765 } break;
766 case ELF::R_PPC64_REL16_LO: {
767 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
768 uint64_t Delta = Value - FinalAddress + Addend;
769 writeInt16BE(LocalAddress, applyPPClo(Delta));
770 } break;
771 case ELF::R_PPC64_REL16_HI: {
772 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
773 uint64_t Delta = Value - FinalAddress + Addend;
774 writeInt16BE(LocalAddress, applyPPChi(Delta));
775 } break;
776 case ELF::R_PPC64_REL16_HA: {
777 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
778 uint64_t Delta = Value - FinalAddress + Addend;
779 writeInt16BE(LocalAddress, applyPPCha(Delta));
780 } break;
781 case ELF::R_PPC64_ADDR32: {
782 int64_t Result = static_cast<int64_t>(Value + Addend);
783 if (SignExtend64<32>(Result) != Result)
784 llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
785 writeInt32BE(LocalAddress, Result);
786 } break;
787 case ELF::R_PPC64_REL24: {
788 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
789 int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
790 if (SignExtend64<26>(delta) != delta)
791 llvm_unreachable("Relocation R_PPC64_REL24 overflow");
792 // We preserve bits other than LI field, i.e. PO and AA/LK fields.
793 uint32_t Inst = readBytesUnaligned(LocalAddress, 4);
794 writeInt32BE(LocalAddress, (Inst & 0xFC000003) | (delta & 0x03FFFFFC));
795 } break;
796 case ELF::R_PPC64_REL32: {
797 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
798 int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
799 if (SignExtend64<32>(delta) != delta)
800 llvm_unreachable("Relocation R_PPC64_REL32 overflow");
801 writeInt32BE(LocalAddress, delta);
802 } break;
803 case ELF::R_PPC64_REL64: {
804 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
805 uint64_t Delta = Value - FinalAddress + Addend;
806 writeInt64BE(LocalAddress, Delta);
807 } break;
808 case ELF::R_PPC64_ADDR64:
809 writeInt64BE(LocalAddress, Value + Addend);
810 break;
814 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
815 uint64_t Offset, uint64_t Value,
816 uint32_t Type, int64_t Addend) {
817 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
818 switch (Type) {
819 default:
820 llvm_unreachable("Relocation type not implemented yet!");
821 break;
822 case ELF::R_390_PC16DBL:
823 case ELF::R_390_PLT16DBL: {
824 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
825 assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
826 writeInt16BE(LocalAddress, Delta / 2);
827 break;
829 case ELF::R_390_PC32DBL:
830 case ELF::R_390_PLT32DBL: {
831 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
832 assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
833 writeInt32BE(LocalAddress, Delta / 2);
834 break;
836 case ELF::R_390_PC16: {
837 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
838 assert(int16_t(Delta) == Delta && "R_390_PC16 overflow");
839 writeInt16BE(LocalAddress, Delta);
840 break;
842 case ELF::R_390_PC32: {
843 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
844 assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
845 writeInt32BE(LocalAddress, Delta);
846 break;
848 case ELF::R_390_PC64: {
849 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
850 writeInt64BE(LocalAddress, Delta);
851 break;
853 case ELF::R_390_8:
854 *LocalAddress = (uint8_t)(Value + Addend);
855 break;
856 case ELF::R_390_16:
857 writeInt16BE(LocalAddress, Value + Addend);
858 break;
859 case ELF::R_390_32:
860 writeInt32BE(LocalAddress, Value + Addend);
861 break;
862 case ELF::R_390_64:
863 writeInt64BE(LocalAddress, Value + Addend);
864 break;
868 void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry &Section,
869 uint64_t Offset, uint64_t Value,
870 uint32_t Type, int64_t Addend) {
871 bool isBE = Arch == Triple::bpfeb;
873 switch (Type) {
874 default:
875 llvm_unreachable("Relocation type not implemented yet!");
876 break;
877 case ELF::R_BPF_NONE:
878 break;
879 case ELF::R_BPF_64_64: {
880 write(isBE, Section.getAddressWithOffset(Offset), Value + Addend);
881 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
882 << format("%p\n", Section.getAddressWithOffset(Offset)));
883 break;
885 case ELF::R_BPF_64_32: {
886 Value += Addend;
887 assert(Value <= UINT32_MAX);
888 write(isBE, Section.getAddressWithOffset(Offset), static_cast<uint32_t>(Value));
889 LLVM_DEBUG(dbgs() << "Writing " << format("%p", Value) << " at "
890 << format("%p\n", Section.getAddressWithOffset(Offset)));
891 break;
896 // The target location for the relocation is described by RE.SectionID and
897 // RE.Offset. RE.SectionID can be used to find the SectionEntry. Each
898 // SectionEntry has three members describing its location.
899 // SectionEntry::Address is the address at which the section has been loaded
900 // into memory in the current (host) process. SectionEntry::LoadAddress is the
901 // address that the section will have in the target process.
902 // SectionEntry::ObjAddress is the address of the bits for this section in the
903 // original emitted object image (also in the current address space).
905 // Relocations will be applied as if the section were loaded at
906 // SectionEntry::LoadAddress, but they will be applied at an address based
907 // on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to
908 // Target memory contents if they are required for value calculations.
910 // The Value parameter here is the load address of the symbol for the
911 // relocation to be applied. For relocations which refer to symbols in the
912 // current object Value will be the LoadAddress of the section in which
913 // the symbol resides (RE.Addend provides additional information about the
914 // symbol location). For external symbols, Value will be the address of the
915 // symbol in the target address space.
916 void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
917 uint64_t Value) {
918 const SectionEntry &Section = Sections[RE.SectionID];
919 return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
920 RE.SymOffset, RE.SectionID);
923 void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
924 uint64_t Offset, uint64_t Value,
925 uint32_t Type, int64_t Addend,
926 uint64_t SymOffset, SID SectionID) {
927 switch (Arch) {
928 case Triple::x86_64:
929 resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
930 break;
931 case Triple::x86:
932 resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
933 (uint32_t)(Addend & 0xffffffffL));
934 break;
935 case Triple::aarch64:
936 case Triple::aarch64_be:
937 resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
938 break;
939 case Triple::arm: // Fall through.
940 case Triple::armeb:
941 case Triple::thumb:
942 case Triple::thumbeb:
943 resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
944 (uint32_t)(Addend & 0xffffffffL));
945 break;
946 case Triple::ppc:
947 resolvePPC32Relocation(Section, Offset, Value, Type, Addend);
948 break;
949 case Triple::ppc64: // Fall through.
950 case Triple::ppc64le:
951 resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
952 break;
953 case Triple::systemz:
954 resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
955 break;
956 case Triple::bpfel:
957 case Triple::bpfeb:
958 resolveBPFRelocation(Section, Offset, Value, Type, Addend);
959 break;
960 default:
961 llvm_unreachable("Unsupported CPU type!");
965 void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const {
966 return (void *)(Sections[SectionID].getObjAddress() + Offset);
969 void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
970 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
971 if (Value.SymbolName)
972 addRelocationForSymbol(RE, Value.SymbolName);
973 else
974 addRelocationForSection(RE, Value.SectionID);
977 uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType,
978 bool IsLocal) const {
979 switch (RelType) {
980 case ELF::R_MICROMIPS_GOT16:
981 if (IsLocal)
982 return ELF::R_MICROMIPS_LO16;
983 break;
984 case ELF::R_MICROMIPS_HI16:
985 return ELF::R_MICROMIPS_LO16;
986 case ELF::R_MIPS_GOT16:
987 if (IsLocal)
988 return ELF::R_MIPS_LO16;
989 break;
990 case ELF::R_MIPS_HI16:
991 return ELF::R_MIPS_LO16;
992 case ELF::R_MIPS_PCHI16:
993 return ELF::R_MIPS_PCLO16;
994 default:
995 break;
997 return ELF::R_MIPS_NONE;
1000 // Sometimes we don't need to create thunk for a branch.
1001 // This typically happens when branch target is located
1002 // in the same object file. In such case target is either
1003 // a weak symbol or symbol in a different executable section.
1004 // This function checks if branch target is located in the
1005 // same object file and if distance between source and target
1006 // fits R_AARCH64_CALL26 relocation. If both conditions are
1007 // met, it emits direct jump to the target and returns true.
1008 // Otherwise false is returned and thunk is created.
1009 bool RuntimeDyldELF::resolveAArch64ShortBranch(
1010 unsigned SectionID, relocation_iterator RelI,
1011 const RelocationValueRef &Value) {
1012 uint64_t Address;
1013 if (Value.SymbolName) {
1014 auto Loc = GlobalSymbolTable.find(Value.SymbolName);
1016 // Don't create direct branch for external symbols.
1017 if (Loc == GlobalSymbolTable.end())
1018 return false;
1020 const auto &SymInfo = Loc->second;
1021 Address =
1022 uint64_t(Sections[SymInfo.getSectionID()].getLoadAddressWithOffset(
1023 SymInfo.getOffset()));
1024 } else {
1025 Address = uint64_t(Sections[Value.SectionID].getLoadAddress());
1027 uint64_t Offset = RelI->getOffset();
1028 uint64_t SourceAddress = Sections[SectionID].getLoadAddressWithOffset(Offset);
1030 // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
1031 // If distance between source and target is out of range then we should
1032 // create thunk.
1033 if (!isInt<28>(Address + Value.Addend - SourceAddress))
1034 return false;
1036 resolveRelocation(Sections[SectionID], Offset, Address, RelI->getType(),
1037 Value.Addend);
1039 return true;
1042 void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID,
1043 const RelocationValueRef &Value,
1044 relocation_iterator RelI,
1045 StubMap &Stubs) {
1047 LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
1048 SectionEntry &Section = Sections[SectionID];
1050 uint64_t Offset = RelI->getOffset();
1051 unsigned RelType = RelI->getType();
1052 // Look for an existing stub.
1053 StubMap::const_iterator i = Stubs.find(Value);
1054 if (i != Stubs.end()) {
1055 resolveRelocation(Section, Offset,
1056 (uint64_t)Section.getAddressWithOffset(i->second),
1057 RelType, 0);
1058 LLVM_DEBUG(dbgs() << " Stub function found\n");
1059 } else if (!resolveAArch64ShortBranch(SectionID, RelI, Value)) {
1060 // Create a new stub function.
1061 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1062 Stubs[Value] = Section.getStubOffset();
1063 uint8_t *StubTargetAddr = createStubFunction(
1064 Section.getAddressWithOffset(Section.getStubOffset()));
1066 RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.getAddress(),
1067 ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
1068 RelocationEntry REmovk_g2(SectionID,
1069 StubTargetAddr - Section.getAddress() + 4,
1070 ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
1071 RelocationEntry REmovk_g1(SectionID,
1072 StubTargetAddr - Section.getAddress() + 8,
1073 ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
1074 RelocationEntry REmovk_g0(SectionID,
1075 StubTargetAddr - Section.getAddress() + 12,
1076 ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
1078 if (Value.SymbolName) {
1079 addRelocationForSymbol(REmovz_g3, Value.SymbolName);
1080 addRelocationForSymbol(REmovk_g2, Value.SymbolName);
1081 addRelocationForSymbol(REmovk_g1, Value.SymbolName);
1082 addRelocationForSymbol(REmovk_g0, Value.SymbolName);
1083 } else {
1084 addRelocationForSection(REmovz_g3, Value.SectionID);
1085 addRelocationForSection(REmovk_g2, Value.SectionID);
1086 addRelocationForSection(REmovk_g1, Value.SectionID);
1087 addRelocationForSection(REmovk_g0, Value.SectionID);
1089 resolveRelocation(Section, Offset,
1090 reinterpret_cast<uint64_t>(Section.getAddressWithOffset(
1091 Section.getStubOffset())),
1092 RelType, 0);
1093 Section.advanceStubOffset(getMaxStubSize());
1097 Expected<relocation_iterator>
1098 RuntimeDyldELF::processRelocationRef(
1099 unsigned SectionID, relocation_iterator RelI, const ObjectFile &O,
1100 ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
1101 const auto &Obj = cast<ELFObjectFileBase>(O);
1102 uint64_t RelType = RelI->getType();
1103 int64_t Addend = 0;
1104 if (Expected<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend())
1105 Addend = *AddendOrErr;
1106 else
1107 consumeError(AddendOrErr.takeError());
1108 elf_symbol_iterator Symbol = RelI->getSymbol();
1110 // Obtain the symbol name which is referenced in the relocation
1111 StringRef TargetName;
1112 if (Symbol != Obj.symbol_end()) {
1113 if (auto TargetNameOrErr = Symbol->getName())
1114 TargetName = *TargetNameOrErr;
1115 else
1116 return TargetNameOrErr.takeError();
1118 LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
1119 << " TargetName: " << TargetName << "\n");
1120 RelocationValueRef Value;
1121 // First search for the symbol in the local symbol table
1122 SymbolRef::Type SymType = SymbolRef::ST_Unknown;
1124 // Search for the symbol in the global symbol table
1125 RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
1126 if (Symbol != Obj.symbol_end()) {
1127 gsi = GlobalSymbolTable.find(TargetName.data());
1128 Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType();
1129 if (!SymTypeOrErr) {
1130 std::string Buf;
1131 raw_string_ostream OS(Buf);
1132 logAllUnhandledErrors(SymTypeOrErr.takeError(), OS);
1133 OS.flush();
1134 report_fatal_error(Buf);
1136 SymType = *SymTypeOrErr;
1138 if (gsi != GlobalSymbolTable.end()) {
1139 const auto &SymInfo = gsi->second;
1140 Value.SectionID = SymInfo.getSectionID();
1141 Value.Offset = SymInfo.getOffset();
1142 Value.Addend = SymInfo.getOffset() + Addend;
1143 } else {
1144 switch (SymType) {
1145 case SymbolRef::ST_Debug: {
1146 // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
1147 // and can be changed by another developers. Maybe best way is add
1148 // a new symbol type ST_Section to SymbolRef and use it.
1149 auto SectionOrErr = Symbol->getSection();
1150 if (!SectionOrErr) {
1151 std::string Buf;
1152 raw_string_ostream OS(Buf);
1153 logAllUnhandledErrors(SectionOrErr.takeError(), OS);
1154 OS.flush();
1155 report_fatal_error(Buf);
1157 section_iterator si = *SectionOrErr;
1158 if (si == Obj.section_end())
1159 llvm_unreachable("Symbol section not found, bad object file format!");
1160 LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n");
1161 bool isCode = si->isText();
1162 if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode,
1163 ObjSectionToID))
1164 Value.SectionID = *SectionIDOrErr;
1165 else
1166 return SectionIDOrErr.takeError();
1167 Value.Addend = Addend;
1168 break;
1170 case SymbolRef::ST_Data:
1171 case SymbolRef::ST_Function:
1172 case SymbolRef::ST_Unknown: {
1173 Value.SymbolName = TargetName.data();
1174 Value.Addend = Addend;
1176 // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
1177 // will manifest here as a NULL symbol name.
1178 // We can set this as a valid (but empty) symbol name, and rely
1179 // on addRelocationForSymbol to handle this.
1180 if (!Value.SymbolName)
1181 Value.SymbolName = "";
1182 break;
1184 default:
1185 llvm_unreachable("Unresolved symbol type!");
1186 break;
1190 uint64_t Offset = RelI->getOffset();
1192 LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
1193 << "\n");
1194 if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be)) {
1195 if (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26) {
1196 resolveAArch64Branch(SectionID, Value, RelI, Stubs);
1197 } else if (RelType == ELF::R_AARCH64_ADR_GOT_PAGE) {
1198 // Craete new GOT entry or find existing one. If GOT entry is
1199 // to be created, then we also emit ABS64 relocation for it.
1200 uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1201 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1202 ELF::R_AARCH64_ADR_PREL_PG_HI21);
1204 } else if (RelType == ELF::R_AARCH64_LD64_GOT_LO12_NC) {
1205 uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1206 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1207 ELF::R_AARCH64_LDST64_ABS_LO12_NC);
1208 } else {
1209 processSimpleRelocation(SectionID, Offset, RelType, Value);
1211 } else if (Arch == Triple::arm) {
1212 if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
1213 RelType == ELF::R_ARM_JUMP24) {
1214 // This is an ARM branch relocation, need to use a stub function.
1215 LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
1216 SectionEntry &Section = Sections[SectionID];
1218 // Look for an existing stub.
1219 StubMap::const_iterator i = Stubs.find(Value);
1220 if (i != Stubs.end()) {
1221 resolveRelocation(
1222 Section, Offset,
1223 reinterpret_cast<uint64_t>(Section.getAddressWithOffset(i->second)),
1224 RelType, 0);
1225 LLVM_DEBUG(dbgs() << " Stub function found\n");
1226 } else {
1227 // Create a new stub function.
1228 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1229 Stubs[Value] = Section.getStubOffset();
1230 uint8_t *StubTargetAddr = createStubFunction(
1231 Section.getAddressWithOffset(Section.getStubOffset()));
1232 RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1233 ELF::R_ARM_ABS32, Value.Addend);
1234 if (Value.SymbolName)
1235 addRelocationForSymbol(RE, Value.SymbolName);
1236 else
1237 addRelocationForSection(RE, Value.SectionID);
1239 resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1240 Section.getAddressWithOffset(
1241 Section.getStubOffset())),
1242 RelType, 0);
1243 Section.advanceStubOffset(getMaxStubSize());
1245 } else {
1246 uint32_t *Placeholder =
1247 reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
1248 if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
1249 RelType == ELF::R_ARM_ABS32) {
1250 Value.Addend += *Placeholder;
1251 } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
1252 // See ELF for ARM documentation
1253 Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
1255 processSimpleRelocation(SectionID, Offset, RelType, Value);
1257 } else if (IsMipsO32ABI) {
1258 uint8_t *Placeholder = reinterpret_cast<uint8_t *>(
1259 computePlaceholderAddress(SectionID, Offset));
1260 uint32_t Opcode = readBytesUnaligned(Placeholder, 4);
1261 if (RelType == ELF::R_MIPS_26) {
1262 // This is an Mips branch relocation, need to use a stub function.
1263 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1264 SectionEntry &Section = Sections[SectionID];
1266 // Extract the addend from the instruction.
1267 // We shift up by two since the Value will be down shifted again
1268 // when applying the relocation.
1269 uint32_t Addend = (Opcode & 0x03ffffff) << 2;
1271 Value.Addend += Addend;
1273 // Look up for existing stub.
1274 StubMap::const_iterator i = Stubs.find(Value);
1275 if (i != Stubs.end()) {
1276 RelocationEntry RE(SectionID, Offset, RelType, i->second);
1277 addRelocationForSection(RE, SectionID);
1278 LLVM_DEBUG(dbgs() << " Stub function found\n");
1279 } else {
1280 // Create a new stub function.
1281 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1282 Stubs[Value] = Section.getStubOffset();
1284 unsigned AbiVariant = Obj.getPlatformFlags();
1286 uint8_t *StubTargetAddr = createStubFunction(
1287 Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1289 // Creating Hi and Lo relocations for the filled stub instructions.
1290 RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1291 ELF::R_MIPS_HI16, Value.Addend);
1292 RelocationEntry RELo(SectionID,
1293 StubTargetAddr - Section.getAddress() + 4,
1294 ELF::R_MIPS_LO16, Value.Addend);
1296 if (Value.SymbolName) {
1297 addRelocationForSymbol(REHi, Value.SymbolName);
1298 addRelocationForSymbol(RELo, Value.SymbolName);
1299 } else {
1300 addRelocationForSection(REHi, Value.SectionID);
1301 addRelocationForSection(RELo, Value.SectionID);
1304 RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1305 addRelocationForSection(RE, SectionID);
1306 Section.advanceStubOffset(getMaxStubSize());
1308 } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) {
1309 int64_t Addend = (Opcode & 0x0000ffff) << 16;
1310 RelocationEntry RE(SectionID, Offset, RelType, Addend);
1311 PendingRelocs.push_back(std::make_pair(Value, RE));
1312 } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) {
1313 int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff);
1314 for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) {
1315 const RelocationValueRef &MatchingValue = I->first;
1316 RelocationEntry &Reloc = I->second;
1317 if (MatchingValue == Value &&
1318 RelType == getMatchingLoRelocation(Reloc.RelType) &&
1319 SectionID == Reloc.SectionID) {
1320 Reloc.Addend += Addend;
1321 if (Value.SymbolName)
1322 addRelocationForSymbol(Reloc, Value.SymbolName);
1323 else
1324 addRelocationForSection(Reloc, Value.SectionID);
1325 I = PendingRelocs.erase(I);
1326 } else
1327 ++I;
1329 RelocationEntry RE(SectionID, Offset, RelType, Addend);
1330 if (Value.SymbolName)
1331 addRelocationForSymbol(RE, Value.SymbolName);
1332 else
1333 addRelocationForSection(RE, Value.SectionID);
1334 } else {
1335 if (RelType == ELF::R_MIPS_32)
1336 Value.Addend += Opcode;
1337 else if (RelType == ELF::R_MIPS_PC16)
1338 Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2);
1339 else if (RelType == ELF::R_MIPS_PC19_S2)
1340 Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2);
1341 else if (RelType == ELF::R_MIPS_PC21_S2)
1342 Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2);
1343 else if (RelType == ELF::R_MIPS_PC26_S2)
1344 Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2);
1345 processSimpleRelocation(SectionID, Offset, RelType, Value);
1347 } else if (IsMipsN32ABI || IsMipsN64ABI) {
1348 uint32_t r_type = RelType & 0xff;
1349 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1350 if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
1351 || r_type == ELF::R_MIPS_GOT_DISP) {
1352 StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName);
1353 if (i != GOTSymbolOffsets.end())
1354 RE.SymOffset = i->second;
1355 else {
1356 RE.SymOffset = allocateGOTEntries(1);
1357 GOTSymbolOffsets[TargetName] = RE.SymOffset;
1359 if (Value.SymbolName)
1360 addRelocationForSymbol(RE, Value.SymbolName);
1361 else
1362 addRelocationForSection(RE, Value.SectionID);
1363 } else if (RelType == ELF::R_MIPS_26) {
1364 // This is an Mips branch relocation, need to use a stub function.
1365 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1366 SectionEntry &Section = Sections[SectionID];
1368 // Look up for existing stub.
1369 StubMap::const_iterator i = Stubs.find(Value);
1370 if (i != Stubs.end()) {
1371 RelocationEntry RE(SectionID, Offset, RelType, i->second);
1372 addRelocationForSection(RE, SectionID);
1373 LLVM_DEBUG(dbgs() << " Stub function found\n");
1374 } else {
1375 // Create a new stub function.
1376 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1377 Stubs[Value] = Section.getStubOffset();
1379 unsigned AbiVariant = Obj.getPlatformFlags();
1381 uint8_t *StubTargetAddr = createStubFunction(
1382 Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1384 if (IsMipsN32ABI) {
1385 // Creating Hi and Lo relocations for the filled stub instructions.
1386 RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1387 ELF::R_MIPS_HI16, Value.Addend);
1388 RelocationEntry RELo(SectionID,
1389 StubTargetAddr - Section.getAddress() + 4,
1390 ELF::R_MIPS_LO16, Value.Addend);
1391 if (Value.SymbolName) {
1392 addRelocationForSymbol(REHi, Value.SymbolName);
1393 addRelocationForSymbol(RELo, Value.SymbolName);
1394 } else {
1395 addRelocationForSection(REHi, Value.SectionID);
1396 addRelocationForSection(RELo, Value.SectionID);
1398 } else {
1399 // Creating Highest, Higher, Hi and Lo relocations for the filled stub
1400 // instructions.
1401 RelocationEntry REHighest(SectionID,
1402 StubTargetAddr - Section.getAddress(),
1403 ELF::R_MIPS_HIGHEST, Value.Addend);
1404 RelocationEntry REHigher(SectionID,
1405 StubTargetAddr - Section.getAddress() + 4,
1406 ELF::R_MIPS_HIGHER, Value.Addend);
1407 RelocationEntry REHi(SectionID,
1408 StubTargetAddr - Section.getAddress() + 12,
1409 ELF::R_MIPS_HI16, Value.Addend);
1410 RelocationEntry RELo(SectionID,
1411 StubTargetAddr - Section.getAddress() + 20,
1412 ELF::R_MIPS_LO16, Value.Addend);
1413 if (Value.SymbolName) {
1414 addRelocationForSymbol(REHighest, Value.SymbolName);
1415 addRelocationForSymbol(REHigher, Value.SymbolName);
1416 addRelocationForSymbol(REHi, Value.SymbolName);
1417 addRelocationForSymbol(RELo, Value.SymbolName);
1418 } else {
1419 addRelocationForSection(REHighest, Value.SectionID);
1420 addRelocationForSection(REHigher, Value.SectionID);
1421 addRelocationForSection(REHi, Value.SectionID);
1422 addRelocationForSection(RELo, Value.SectionID);
1425 RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1426 addRelocationForSection(RE, SectionID);
1427 Section.advanceStubOffset(getMaxStubSize());
1429 } else {
1430 processSimpleRelocation(SectionID, Offset, RelType, Value);
1433 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1434 if (RelType == ELF::R_PPC64_REL24) {
1435 // Determine ABI variant in use for this object.
1436 unsigned AbiVariant = Obj.getPlatformFlags();
1437 AbiVariant &= ELF::EF_PPC64_ABI;
1438 // A PPC branch relocation will need a stub function if the target is
1439 // an external symbol (either Value.SymbolName is set, or SymType is
1440 // Symbol::ST_Unknown) or if the target address is not within the
1441 // signed 24-bits branch address.
1442 SectionEntry &Section = Sections[SectionID];
1443 uint8_t *Target = Section.getAddressWithOffset(Offset);
1444 bool RangeOverflow = false;
1445 bool IsExtern = Value.SymbolName || SymType == SymbolRef::ST_Unknown;
1446 if (!IsExtern) {
1447 if (AbiVariant != 2) {
1448 // In the ELFv1 ABI, a function call may point to the .opd entry,
1449 // so the final symbol value is calculated based on the relocation
1450 // values in the .opd section.
1451 if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value))
1452 return std::move(Err);
1453 } else {
1454 // In the ELFv2 ABI, a function symbol may provide a local entry
1455 // point, which must be used for direct calls.
1456 if (Value.SectionID == SectionID){
1457 uint8_t SymOther = Symbol->getOther();
1458 Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
1461 uint8_t *RelocTarget =
1462 Sections[Value.SectionID].getAddressWithOffset(Value.Addend);
1463 int64_t delta = static_cast<int64_t>(Target - RelocTarget);
1464 // If it is within 26-bits branch range, just set the branch target
1465 if (SignExtend64<26>(delta) != delta) {
1466 RangeOverflow = true;
1467 } else if ((AbiVariant != 2) ||
1468 (AbiVariant == 2 && Value.SectionID == SectionID)) {
1469 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1470 addRelocationForSection(RE, Value.SectionID);
1473 if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID) ||
1474 RangeOverflow) {
1475 // It is an external symbol (either Value.SymbolName is set, or
1476 // SymType is SymbolRef::ST_Unknown) or out of range.
1477 StubMap::const_iterator i = Stubs.find(Value);
1478 if (i != Stubs.end()) {
1479 // Symbol function stub already created, just relocate to it
1480 resolveRelocation(Section, Offset,
1481 reinterpret_cast<uint64_t>(
1482 Section.getAddressWithOffset(i->second)),
1483 RelType, 0);
1484 LLVM_DEBUG(dbgs() << " Stub function found\n");
1485 } else {
1486 // Create a new stub function.
1487 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1488 Stubs[Value] = Section.getStubOffset();
1489 uint8_t *StubTargetAddr = createStubFunction(
1490 Section.getAddressWithOffset(Section.getStubOffset()),
1491 AbiVariant);
1492 RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1493 ELF::R_PPC64_ADDR64, Value.Addend);
1495 // Generates the 64-bits address loads as exemplified in section
1496 // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to
1497 // apply to the low part of the instructions, so we have to update
1498 // the offset according to the target endianness.
1499 uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress();
1500 if (!IsTargetLittleEndian)
1501 StubRelocOffset += 2;
1503 RelocationEntry REhst(SectionID, StubRelocOffset + 0,
1504 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
1505 RelocationEntry REhr(SectionID, StubRelocOffset + 4,
1506 ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
1507 RelocationEntry REh(SectionID, StubRelocOffset + 12,
1508 ELF::R_PPC64_ADDR16_HI, Value.Addend);
1509 RelocationEntry REl(SectionID, StubRelocOffset + 16,
1510 ELF::R_PPC64_ADDR16_LO, Value.Addend);
1512 if (Value.SymbolName) {
1513 addRelocationForSymbol(REhst, Value.SymbolName);
1514 addRelocationForSymbol(REhr, Value.SymbolName);
1515 addRelocationForSymbol(REh, Value.SymbolName);
1516 addRelocationForSymbol(REl, Value.SymbolName);
1517 } else {
1518 addRelocationForSection(REhst, Value.SectionID);
1519 addRelocationForSection(REhr, Value.SectionID);
1520 addRelocationForSection(REh, Value.SectionID);
1521 addRelocationForSection(REl, Value.SectionID);
1524 resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1525 Section.getAddressWithOffset(
1526 Section.getStubOffset())),
1527 RelType, 0);
1528 Section.advanceStubOffset(getMaxStubSize());
1530 if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID)) {
1531 // Restore the TOC for external calls
1532 if (AbiVariant == 2)
1533 writeInt32BE(Target + 4, 0xE8410018); // ld r2,24(r1)
1534 else
1535 writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
1538 } else if (RelType == ELF::R_PPC64_TOC16 ||
1539 RelType == ELF::R_PPC64_TOC16_DS ||
1540 RelType == ELF::R_PPC64_TOC16_LO ||
1541 RelType == ELF::R_PPC64_TOC16_LO_DS ||
1542 RelType == ELF::R_PPC64_TOC16_HI ||
1543 RelType == ELF::R_PPC64_TOC16_HA) {
1544 // These relocations are supposed to subtract the TOC address from
1545 // the final value. This does not fit cleanly into the RuntimeDyld
1546 // scheme, since there may be *two* sections involved in determining
1547 // the relocation value (the section of the symbol referred to by the
1548 // relocation, and the TOC section associated with the current module).
1550 // Fortunately, these relocations are currently only ever generated
1551 // referring to symbols that themselves reside in the TOC, which means
1552 // that the two sections are actually the same. Thus they cancel out
1553 // and we can immediately resolve the relocation right now.
1554 switch (RelType) {
1555 case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
1556 case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
1557 case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
1558 case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
1559 case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
1560 case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
1561 default: llvm_unreachable("Wrong relocation type.");
1564 RelocationValueRef TOCValue;
1565 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue))
1566 return std::move(Err);
1567 if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
1568 llvm_unreachable("Unsupported TOC relocation.");
1569 Value.Addend -= TOCValue.Addend;
1570 resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
1571 } else {
1572 // There are two ways to refer to the TOC address directly: either
1573 // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
1574 // ignored), or via any relocation that refers to the magic ".TOC."
1575 // symbols (in which case the addend is respected).
1576 if (RelType == ELF::R_PPC64_TOC) {
1577 RelType = ELF::R_PPC64_ADDR64;
1578 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1579 return std::move(Err);
1580 } else if (TargetName == ".TOC.") {
1581 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1582 return std::move(Err);
1583 Value.Addend += Addend;
1586 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1588 if (Value.SymbolName)
1589 addRelocationForSymbol(RE, Value.SymbolName);
1590 else
1591 addRelocationForSection(RE, Value.SectionID);
1593 } else if (Arch == Triple::systemz &&
1594 (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
1595 // Create function stubs for both PLT and GOT references, regardless of
1596 // whether the GOT reference is to data or code. The stub contains the
1597 // full address of the symbol, as needed by GOT references, and the
1598 // executable part only adds an overhead of 8 bytes.
1600 // We could try to conserve space by allocating the code and data
1601 // parts of the stub separately. However, as things stand, we allocate
1602 // a stub for every relocation, so using a GOT in JIT code should be
1603 // no less space efficient than using an explicit constant pool.
1604 LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
1605 SectionEntry &Section = Sections[SectionID];
1607 // Look for an existing stub.
1608 StubMap::const_iterator i = Stubs.find(Value);
1609 uintptr_t StubAddress;
1610 if (i != Stubs.end()) {
1611 StubAddress = uintptr_t(Section.getAddressWithOffset(i->second));
1612 LLVM_DEBUG(dbgs() << " Stub function found\n");
1613 } else {
1614 // Create a new stub function.
1615 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1617 uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1618 uintptr_t StubAlignment = getStubAlignment();
1619 StubAddress =
1620 (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
1621 -StubAlignment;
1622 unsigned StubOffset = StubAddress - BaseAddress;
1624 Stubs[Value] = StubOffset;
1625 createStubFunction((uint8_t *)StubAddress);
1626 RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
1627 Value.Offset);
1628 if (Value.SymbolName)
1629 addRelocationForSymbol(RE, Value.SymbolName);
1630 else
1631 addRelocationForSection(RE, Value.SectionID);
1632 Section.advanceStubOffset(getMaxStubSize());
1635 if (RelType == ELF::R_390_GOTENT)
1636 resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
1637 Addend);
1638 else
1639 resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
1640 } else if (Arch == Triple::x86_64) {
1641 if (RelType == ELF::R_X86_64_PLT32) {
1642 // The way the PLT relocations normally work is that the linker allocates
1643 // the
1644 // PLT and this relocation makes a PC-relative call into the PLT. The PLT
1645 // entry will then jump to an address provided by the GOT. On first call,
1646 // the
1647 // GOT address will point back into PLT code that resolves the symbol. After
1648 // the first call, the GOT entry points to the actual function.
1650 // For local functions we're ignoring all of that here and just replacing
1651 // the PLT32 relocation type with PC32, which will translate the relocation
1652 // into a PC-relative call directly to the function. For external symbols we
1653 // can't be sure the function will be within 2^32 bytes of the call site, so
1654 // we need to create a stub, which calls into the GOT. This case is
1655 // equivalent to the usual PLT implementation except that we use the stub
1656 // mechanism in RuntimeDyld (which puts stubs at the end of the section)
1657 // rather than allocating a PLT section.
1658 if (Value.SymbolName) {
1659 // This is a call to an external function.
1660 // Look for an existing stub.
1661 SectionEntry &Section = Sections[SectionID];
1662 StubMap::const_iterator i = Stubs.find(Value);
1663 uintptr_t StubAddress;
1664 if (i != Stubs.end()) {
1665 StubAddress = uintptr_t(Section.getAddress()) + i->second;
1666 LLVM_DEBUG(dbgs() << " Stub function found\n");
1667 } else {
1668 // Create a new stub function (equivalent to a PLT entry).
1669 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1671 uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1672 uintptr_t StubAlignment = getStubAlignment();
1673 StubAddress =
1674 (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
1675 -StubAlignment;
1676 unsigned StubOffset = StubAddress - BaseAddress;
1677 Stubs[Value] = StubOffset;
1678 createStubFunction((uint8_t *)StubAddress);
1680 // Bump our stub offset counter
1681 Section.advanceStubOffset(getMaxStubSize());
1683 // Allocate a GOT Entry
1684 uint64_t GOTOffset = allocateGOTEntries(1);
1686 // The load of the GOT address has an addend of -4
1687 resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4,
1688 ELF::R_X86_64_PC32);
1690 // Fill in the value of the symbol we're targeting into the GOT
1691 addRelocationForSymbol(
1692 computeGOTOffsetRE(GOTOffset, 0, ELF::R_X86_64_64),
1693 Value.SymbolName);
1696 // Make the target call a call into the stub table.
1697 resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32,
1698 Addend);
1699 } else {
1700 RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend,
1701 Value.Offset);
1702 addRelocationForSection(RE, Value.SectionID);
1704 } else if (RelType == ELF::R_X86_64_GOTPCREL ||
1705 RelType == ELF::R_X86_64_GOTPCRELX ||
1706 RelType == ELF::R_X86_64_REX_GOTPCRELX) {
1707 uint64_t GOTOffset = allocateGOTEntries(1);
1708 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1709 ELF::R_X86_64_PC32);
1711 // Fill in the value of the symbol we're targeting into the GOT
1712 RelocationEntry RE =
1713 computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
1714 if (Value.SymbolName)
1715 addRelocationForSymbol(RE, Value.SymbolName);
1716 else
1717 addRelocationForSection(RE, Value.SectionID);
1718 } else if (RelType == ELF::R_X86_64_GOT64) {
1719 // Fill in a 64-bit GOT offset.
1720 uint64_t GOTOffset = allocateGOTEntries(1);
1721 resolveRelocation(Sections[SectionID], Offset, GOTOffset,
1722 ELF::R_X86_64_64, 0);
1724 // Fill in the value of the symbol we're targeting into the GOT
1725 RelocationEntry RE =
1726 computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
1727 if (Value.SymbolName)
1728 addRelocationForSymbol(RE, Value.SymbolName);
1729 else
1730 addRelocationForSection(RE, Value.SectionID);
1731 } else if (RelType == ELF::R_X86_64_GOTPC64) {
1732 // Materialize the address of the base of the GOT relative to the PC.
1733 // This doesn't create a GOT entry, but it does mean we need a GOT
1734 // section.
1735 (void)allocateGOTEntries(0);
1736 resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC64);
1737 } else if (RelType == ELF::R_X86_64_GOTOFF64) {
1738 // GOTOFF relocations ultimately require a section difference relocation.
1739 (void)allocateGOTEntries(0);
1740 processSimpleRelocation(SectionID, Offset, RelType, Value);
1741 } else if (RelType == ELF::R_X86_64_PC32) {
1742 Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1743 processSimpleRelocation(SectionID, Offset, RelType, Value);
1744 } else if (RelType == ELF::R_X86_64_PC64) {
1745 Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset));
1746 processSimpleRelocation(SectionID, Offset, RelType, Value);
1747 } else {
1748 processSimpleRelocation(SectionID, Offset, RelType, Value);
1750 } else {
1751 if (Arch == Triple::x86) {
1752 Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1754 processSimpleRelocation(SectionID, Offset, RelType, Value);
1756 return ++RelI;
1759 size_t RuntimeDyldELF::getGOTEntrySize() {
1760 // We don't use the GOT in all of these cases, but it's essentially free
1761 // to put them all here.
1762 size_t Result = 0;
1763 switch (Arch) {
1764 case Triple::x86_64:
1765 case Triple::aarch64:
1766 case Triple::aarch64_be:
1767 case Triple::ppc64:
1768 case Triple::ppc64le:
1769 case Triple::systemz:
1770 Result = sizeof(uint64_t);
1771 break;
1772 case Triple::x86:
1773 case Triple::arm:
1774 case Triple::thumb:
1775 Result = sizeof(uint32_t);
1776 break;
1777 case Triple::mips:
1778 case Triple::mipsel:
1779 case Triple::mips64:
1780 case Triple::mips64el:
1781 if (IsMipsO32ABI || IsMipsN32ABI)
1782 Result = sizeof(uint32_t);
1783 else if (IsMipsN64ABI)
1784 Result = sizeof(uint64_t);
1785 else
1786 llvm_unreachable("Mips ABI not handled");
1787 break;
1788 default:
1789 llvm_unreachable("Unsupported CPU type!");
1791 return Result;
1794 uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no) {
1795 if (GOTSectionID == 0) {
1796 GOTSectionID = Sections.size();
1797 // Reserve a section id. We'll allocate the section later
1798 // once we know the total size
1799 Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
1801 uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
1802 CurrentGOTIndex += no;
1803 return StartOffset;
1806 uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef &Value,
1807 unsigned GOTRelType) {
1808 auto E = GOTOffsetMap.insert({Value, 0});
1809 if (E.second) {
1810 uint64_t GOTOffset = allocateGOTEntries(1);
1812 // Create relocation for newly created GOT entry
1813 RelocationEntry RE =
1814 computeGOTOffsetRE(GOTOffset, Value.Offset, GOTRelType);
1815 if (Value.SymbolName)
1816 addRelocationForSymbol(RE, Value.SymbolName);
1817 else
1818 addRelocationForSection(RE, Value.SectionID);
1820 E.first->second = GOTOffset;
1823 return E.first->second;
1826 void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID,
1827 uint64_t Offset,
1828 uint64_t GOTOffset,
1829 uint32_t Type) {
1830 // Fill in the relative address of the GOT Entry into the stub
1831 RelocationEntry GOTRE(SectionID, Offset, Type, GOTOffset);
1832 addRelocationForSection(GOTRE, GOTSectionID);
1835 RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset,
1836 uint64_t SymbolOffset,
1837 uint32_t Type) {
1838 return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
1841 Error RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
1842 ObjSectionToIDMap &SectionMap) {
1843 if (IsMipsO32ABI)
1844 if (!PendingRelocs.empty())
1845 return make_error<RuntimeDyldError>("Can't find matching LO16 reloc");
1847 // If necessary, allocate the global offset table
1848 if (GOTSectionID != 0) {
1849 // Allocate memory for the section
1850 size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
1851 uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
1852 GOTSectionID, ".got", false);
1853 if (!Addr)
1854 return make_error<RuntimeDyldError>("Unable to allocate memory for GOT!");
1856 Sections[GOTSectionID] =
1857 SectionEntry(".got", Addr, TotalSize, TotalSize, 0);
1859 // For now, initialize all GOT entries to zero. We'll fill them in as
1860 // needed when GOT-based relocations are applied.
1861 memset(Addr, 0, TotalSize);
1862 if (IsMipsN32ABI || IsMipsN64ABI) {
1863 // To correctly resolve Mips GOT relocations, we need a mapping from
1864 // object's sections to GOTs.
1865 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
1866 SI != SE; ++SI) {
1867 if (SI->relocation_begin() != SI->relocation_end()) {
1868 section_iterator RelocatedSection = SI->getRelocatedSection();
1869 ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
1870 assert (i != SectionMap.end());
1871 SectionToGOTMap[i->second] = GOTSectionID;
1874 GOTSymbolOffsets.clear();
1878 // Look for and record the EH frame section.
1879 ObjSectionToIDMap::iterator i, e;
1880 for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
1881 const SectionRef &Section = i->first;
1882 StringRef Name;
1883 Section.getName(Name);
1884 if (Name == ".eh_frame") {
1885 UnregisteredEHFrameSections.push_back(i->second);
1886 break;
1890 GOTSectionID = 0;
1891 CurrentGOTIndex = 0;
1893 return Error::success();
1896 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
1897 return Obj.isELF();
1900 bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef &R) const {
1901 unsigned RelTy = R.getType();
1902 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be)
1903 return RelTy == ELF::R_AARCH64_ADR_GOT_PAGE ||
1904 RelTy == ELF::R_AARCH64_LD64_GOT_LO12_NC;
1906 if (Arch == Triple::x86_64)
1907 return RelTy == ELF::R_X86_64_GOTPCREL ||
1908 RelTy == ELF::R_X86_64_GOTPCRELX ||
1909 RelTy == ELF::R_X86_64_GOT64 ||
1910 RelTy == ELF::R_X86_64_REX_GOTPCRELX;
1911 return false;
1914 bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const {
1915 if (Arch != Triple::x86_64)
1916 return true; // Conservative answer
1918 switch (R.getType()) {
1919 default:
1920 return true; // Conservative answer
1923 case ELF::R_X86_64_GOTPCREL:
1924 case ELF::R_X86_64_GOTPCRELX:
1925 case ELF::R_X86_64_REX_GOTPCRELX:
1926 case ELF::R_X86_64_GOTPC64:
1927 case ELF::R_X86_64_GOT64:
1928 case ELF::R_X86_64_GOTOFF64:
1929 case ELF::R_X86_64_PC32:
1930 case ELF::R_X86_64_PC64:
1931 case ELF::R_X86_64_64:
1932 // We know that these reloation types won't need a stub function. This list
1933 // can be extended as needed.
1934 return false;
1938 } // namespace llvm