[llvm-exegesis][NFC] Pass Instruction instead of bare Opcode
[llvm-core.git] / lib / Target / AMDGPU / AMDGPUPromoteAlloca.cpp
blobfe9e4ca0ca4c7727253ad21ed0c55081c1063dd8
1 //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass eliminates allocas by either converting them into vectors or
11 // by migrating them to local address space.
13 //===----------------------------------------------------------------------===//
15 #include "AMDGPU.h"
16 #include "AMDGPUSubtarget.h"
17 #include "Utils/AMDGPUBaseInfo.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/CodeGen/TargetPassConfig.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constant.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/GlobalValue.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/IR/User.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include <algorithm>
55 #include <cassert>
56 #include <cstdint>
57 #include <map>
58 #include <tuple>
59 #include <utility>
60 #include <vector>
62 #define DEBUG_TYPE "amdgpu-promote-alloca"
64 using namespace llvm;
66 namespace {
68 static cl::opt<bool> DisablePromoteAllocaToVector(
69 "disable-promote-alloca-to-vector",
70 cl::desc("Disable promote alloca to vector"),
71 cl::init(false));
73 // FIXME: This can create globals so should be a module pass.
74 class AMDGPUPromoteAlloca : public FunctionPass {
75 private:
76 const TargetMachine *TM;
77 Module *Mod = nullptr;
78 const DataLayout *DL = nullptr;
80 // FIXME: This should be per-kernel.
81 uint32_t LocalMemLimit = 0;
82 uint32_t CurrentLocalMemUsage = 0;
84 bool IsAMDGCN = false;
85 bool IsAMDHSA = false;
87 std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder);
88 Value *getWorkitemID(IRBuilder<> &Builder, unsigned N);
90 /// BaseAlloca is the alloca root the search started from.
91 /// Val may be that alloca or a recursive user of it.
92 bool collectUsesWithPtrTypes(Value *BaseAlloca,
93 Value *Val,
94 std::vector<Value*> &WorkList) const;
96 /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand
97 /// indices to an instruction with 2 pointer inputs (e.g. select, icmp).
98 /// Returns true if both operands are derived from the same alloca. Val should
99 /// be the same value as one of the input operands of UseInst.
100 bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val,
101 Instruction *UseInst,
102 int OpIdx0, int OpIdx1) const;
104 /// Check whether we have enough local memory for promotion.
105 bool hasSufficientLocalMem(const Function &F);
107 public:
108 static char ID;
110 AMDGPUPromoteAlloca() : FunctionPass(ID) {}
112 bool doInitialization(Module &M) override;
113 bool runOnFunction(Function &F) override;
115 StringRef getPassName() const override { return "AMDGPU Promote Alloca"; }
117 bool handleAlloca(AllocaInst &I, bool SufficientLDS);
119 void getAnalysisUsage(AnalysisUsage &AU) const override {
120 AU.setPreservesCFG();
121 FunctionPass::getAnalysisUsage(AU);
125 } // end anonymous namespace
127 char AMDGPUPromoteAlloca::ID = 0;
129 INITIALIZE_PASS(AMDGPUPromoteAlloca, DEBUG_TYPE,
130 "AMDGPU promote alloca to vector or LDS", false, false)
132 char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID;
134 bool AMDGPUPromoteAlloca::doInitialization(Module &M) {
135 Mod = &M;
136 DL = &Mod->getDataLayout();
138 return false;
141 bool AMDGPUPromoteAlloca::runOnFunction(Function &F) {
142 if (skipFunction(F))
143 return false;
145 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>())
146 TM = &TPC->getTM<TargetMachine>();
147 else
148 return false;
150 const Triple &TT = TM->getTargetTriple();
151 IsAMDGCN = TT.getArch() == Triple::amdgcn;
152 IsAMDHSA = TT.getOS() == Triple::AMDHSA;
154 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F);
155 if (!ST.isPromoteAllocaEnabled())
156 return false;
158 bool SufficientLDS = hasSufficientLocalMem(F);
159 bool Changed = false;
160 BasicBlock &EntryBB = *F.begin();
161 for (auto I = EntryBB.begin(), E = EntryBB.end(); I != E; ) {
162 AllocaInst *AI = dyn_cast<AllocaInst>(I);
164 ++I;
165 if (AI)
166 Changed |= handleAlloca(*AI, SufficientLDS);
169 return Changed;
172 std::pair<Value *, Value *>
173 AMDGPUPromoteAlloca::getLocalSizeYZ(IRBuilder<> &Builder) {
174 const Function &F = *Builder.GetInsertBlock()->getParent();
175 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F);
177 if (!IsAMDHSA) {
178 Function *LocalSizeYFn
179 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y);
180 Function *LocalSizeZFn
181 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z);
183 CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {});
184 CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {});
186 ST.makeLIDRangeMetadata(LocalSizeY);
187 ST.makeLIDRangeMetadata(LocalSizeZ);
189 return std::make_pair(LocalSizeY, LocalSizeZ);
192 // We must read the size out of the dispatch pointer.
193 assert(IsAMDGCN);
195 // We are indexing into this struct, and want to extract the workgroup_size_*
196 // fields.
198 // typedef struct hsa_kernel_dispatch_packet_s {
199 // uint16_t header;
200 // uint16_t setup;
201 // uint16_t workgroup_size_x ;
202 // uint16_t workgroup_size_y;
203 // uint16_t workgroup_size_z;
204 // uint16_t reserved0;
205 // uint32_t grid_size_x ;
206 // uint32_t grid_size_y ;
207 // uint32_t grid_size_z;
209 // uint32_t private_segment_size;
210 // uint32_t group_segment_size;
211 // uint64_t kernel_object;
213 // #ifdef HSA_LARGE_MODEL
214 // void *kernarg_address;
215 // #elif defined HSA_LITTLE_ENDIAN
216 // void *kernarg_address;
217 // uint32_t reserved1;
218 // #else
219 // uint32_t reserved1;
220 // void *kernarg_address;
221 // #endif
222 // uint64_t reserved2;
223 // hsa_signal_t completion_signal; // uint64_t wrapper
224 // } hsa_kernel_dispatch_packet_t
226 Function *DispatchPtrFn
227 = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr);
229 CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {});
230 DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NoAlias);
231 DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
233 // Size of the dispatch packet struct.
234 DispatchPtr->addDereferenceableAttr(AttributeList::ReturnIndex, 64);
236 Type *I32Ty = Type::getInt32Ty(Mod->getContext());
237 Value *CastDispatchPtr = Builder.CreateBitCast(
238 DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS));
240 // We could do a single 64-bit load here, but it's likely that the basic
241 // 32-bit and extract sequence is already present, and it is probably easier
242 // to CSE this. The loads should be mergable later anyway.
243 Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 1);
244 LoadInst *LoadXY = Builder.CreateAlignedLoad(GEPXY, 4);
246 Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 2);
247 LoadInst *LoadZU = Builder.CreateAlignedLoad(GEPZU, 4);
249 MDNode *MD = MDNode::get(Mod->getContext(), None);
250 LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD);
251 LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD);
252 ST.makeLIDRangeMetadata(LoadZU);
254 // Extract y component. Upper half of LoadZU should be zero already.
255 Value *Y = Builder.CreateLShr(LoadXY, 16);
257 return std::make_pair(Y, LoadZU);
260 Value *AMDGPUPromoteAlloca::getWorkitemID(IRBuilder<> &Builder, unsigned N) {
261 const AMDGPUSubtarget &ST =
262 AMDGPUSubtarget::get(*TM, *Builder.GetInsertBlock()->getParent());
263 Intrinsic::ID IntrID = Intrinsic::ID::not_intrinsic;
265 switch (N) {
266 case 0:
267 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_x
268 : Intrinsic::r600_read_tidig_x;
269 break;
270 case 1:
271 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_y
272 : Intrinsic::r600_read_tidig_y;
273 break;
275 case 2:
276 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_z
277 : Intrinsic::r600_read_tidig_z;
278 break;
279 default:
280 llvm_unreachable("invalid dimension");
283 Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID);
284 CallInst *CI = Builder.CreateCall(WorkitemIdFn);
285 ST.makeLIDRangeMetadata(CI);
287 return CI;
290 static VectorType *arrayTypeToVecType(ArrayType *ArrayTy) {
291 return VectorType::get(ArrayTy->getElementType(),
292 ArrayTy->getNumElements());
295 static Value *
296 calculateVectorIndex(Value *Ptr,
297 const std::map<GetElementPtrInst *, Value *> &GEPIdx) {
298 GetElementPtrInst *GEP = cast<GetElementPtrInst>(Ptr);
300 auto I = GEPIdx.find(GEP);
301 return I == GEPIdx.end() ? nullptr : I->second;
304 static Value* GEPToVectorIndex(GetElementPtrInst *GEP) {
305 // FIXME we only support simple cases
306 if (GEP->getNumOperands() != 3)
307 return nullptr;
309 ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1));
310 if (!I0 || !I0->isZero())
311 return nullptr;
313 return GEP->getOperand(2);
316 // Not an instruction handled below to turn into a vector.
318 // TODO: Check isTriviallyVectorizable for calls and handle other
319 // instructions.
320 static bool canVectorizeInst(Instruction *Inst, User *User) {
321 switch (Inst->getOpcode()) {
322 case Instruction::Load: {
323 // Currently only handle the case where the Pointer Operand is a GEP.
324 // Also we could not vectorize volatile or atomic loads.
325 LoadInst *LI = cast<LoadInst>(Inst);
326 return isa<GetElementPtrInst>(LI->getPointerOperand()) && LI->isSimple();
328 case Instruction::BitCast:
329 return true;
330 case Instruction::Store: {
331 // Must be the stored pointer operand, not a stored value, plus
332 // since it should be canonical form, the User should be a GEP.
333 // Also we could not vectorize volatile or atomic stores.
334 StoreInst *SI = cast<StoreInst>(Inst);
335 return (SI->getPointerOperand() == User) && isa<GetElementPtrInst>(User) && SI->isSimple();
337 default:
338 return false;
342 static bool tryPromoteAllocaToVector(AllocaInst *Alloca) {
344 if (DisablePromoteAllocaToVector) {
345 LLVM_DEBUG(dbgs() << " Promotion alloca to vector is disabled\n");
346 return false;
349 ArrayType *AllocaTy = dyn_cast<ArrayType>(Alloca->getAllocatedType());
351 LLVM_DEBUG(dbgs() << "Alloca candidate for vectorization\n");
353 // FIXME: There is no reason why we can't support larger arrays, we
354 // are just being conservative for now.
355 // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or equivalent. Potentially these
356 // could also be promoted but we don't currently handle this case
357 if (!AllocaTy ||
358 AllocaTy->getNumElements() > 16 ||
359 AllocaTy->getNumElements() < 2 ||
360 !VectorType::isValidElementType(AllocaTy->getElementType())) {
361 LLVM_DEBUG(dbgs() << " Cannot convert type to vector\n");
362 return false;
365 std::map<GetElementPtrInst*, Value*> GEPVectorIdx;
366 std::vector<Value*> WorkList;
367 for (User *AllocaUser : Alloca->users()) {
368 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser);
369 if (!GEP) {
370 if (!canVectorizeInst(cast<Instruction>(AllocaUser), Alloca))
371 return false;
373 WorkList.push_back(AllocaUser);
374 continue;
377 Value *Index = GEPToVectorIndex(GEP);
379 // If we can't compute a vector index from this GEP, then we can't
380 // promote this alloca to vector.
381 if (!Index) {
382 LLVM_DEBUG(dbgs() << " Cannot compute vector index for GEP " << *GEP
383 << '\n');
384 return false;
387 GEPVectorIdx[GEP] = Index;
388 for (User *GEPUser : AllocaUser->users()) {
389 if (!canVectorizeInst(cast<Instruction>(GEPUser), AllocaUser))
390 return false;
392 WorkList.push_back(GEPUser);
396 VectorType *VectorTy = arrayTypeToVecType(AllocaTy);
398 LLVM_DEBUG(dbgs() << " Converting alloca to vector " << *AllocaTy << " -> "
399 << *VectorTy << '\n');
401 for (Value *V : WorkList) {
402 Instruction *Inst = cast<Instruction>(V);
403 IRBuilder<> Builder(Inst);
404 switch (Inst->getOpcode()) {
405 case Instruction::Load: {
406 Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS);
407 Value *Ptr = cast<LoadInst>(Inst)->getPointerOperand();
408 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
410 Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
411 Value *VecValue = Builder.CreateLoad(BitCast);
412 Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index);
413 Inst->replaceAllUsesWith(ExtractElement);
414 Inst->eraseFromParent();
415 break;
417 case Instruction::Store: {
418 Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS);
420 StoreInst *SI = cast<StoreInst>(Inst);
421 Value *Ptr = SI->getPointerOperand();
422 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
423 Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
424 Value *VecValue = Builder.CreateLoad(BitCast);
425 Value *NewVecValue = Builder.CreateInsertElement(VecValue,
426 SI->getValueOperand(),
427 Index);
428 Builder.CreateStore(NewVecValue, BitCast);
429 Inst->eraseFromParent();
430 break;
432 case Instruction::BitCast:
433 case Instruction::AddrSpaceCast:
434 break;
436 default:
437 llvm_unreachable("Inconsistency in instructions promotable to vector");
440 return true;
443 static bool isCallPromotable(CallInst *CI) {
444 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
445 if (!II)
446 return false;
448 switch (II->getIntrinsicID()) {
449 case Intrinsic::memcpy:
450 case Intrinsic::memmove:
451 case Intrinsic::memset:
452 case Intrinsic::lifetime_start:
453 case Intrinsic::lifetime_end:
454 case Intrinsic::invariant_start:
455 case Intrinsic::invariant_end:
456 case Intrinsic::launder_invariant_group:
457 case Intrinsic::strip_invariant_group:
458 case Intrinsic::objectsize:
459 return true;
460 default:
461 return false;
465 bool AMDGPUPromoteAlloca::binaryOpIsDerivedFromSameAlloca(Value *BaseAlloca,
466 Value *Val,
467 Instruction *Inst,
468 int OpIdx0,
469 int OpIdx1) const {
470 // Figure out which operand is the one we might not be promoting.
471 Value *OtherOp = Inst->getOperand(OpIdx0);
472 if (Val == OtherOp)
473 OtherOp = Inst->getOperand(OpIdx1);
475 if (isa<ConstantPointerNull>(OtherOp))
476 return true;
478 Value *OtherObj = GetUnderlyingObject(OtherOp, *DL);
479 if (!isa<AllocaInst>(OtherObj))
480 return false;
482 // TODO: We should be able to replace undefs with the right pointer type.
484 // TODO: If we know the other base object is another promotable
485 // alloca, not necessarily this alloca, we can do this. The
486 // important part is both must have the same address space at
487 // the end.
488 if (OtherObj != BaseAlloca) {
489 LLVM_DEBUG(
490 dbgs() << "Found a binary instruction with another alloca object\n");
491 return false;
494 return true;
497 bool AMDGPUPromoteAlloca::collectUsesWithPtrTypes(
498 Value *BaseAlloca,
499 Value *Val,
500 std::vector<Value*> &WorkList) const {
502 for (User *User : Val->users()) {
503 if (is_contained(WorkList, User))
504 continue;
506 if (CallInst *CI = dyn_cast<CallInst>(User)) {
507 if (!isCallPromotable(CI))
508 return false;
510 WorkList.push_back(User);
511 continue;
514 Instruction *UseInst = cast<Instruction>(User);
515 if (UseInst->getOpcode() == Instruction::PtrToInt)
516 return false;
518 if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) {
519 if (LI->isVolatile())
520 return false;
522 continue;
525 if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) {
526 if (SI->isVolatile())
527 return false;
529 // Reject if the stored value is not the pointer operand.
530 if (SI->getPointerOperand() != Val)
531 return false;
532 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) {
533 if (RMW->isVolatile())
534 return false;
535 } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) {
536 if (CAS->isVolatile())
537 return false;
540 // Only promote a select if we know that the other select operand
541 // is from another pointer that will also be promoted.
542 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
543 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1))
544 return false;
546 // May need to rewrite constant operands.
547 WorkList.push_back(ICmp);
550 if (UseInst->getOpcode() == Instruction::AddrSpaceCast) {
551 // Give up if the pointer may be captured.
552 if (PointerMayBeCaptured(UseInst, true, true))
553 return false;
554 // Don't collect the users of this.
555 WorkList.push_back(User);
556 continue;
559 if (!User->getType()->isPointerTy())
560 continue;
562 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) {
563 // Be conservative if an address could be computed outside the bounds of
564 // the alloca.
565 if (!GEP->isInBounds())
566 return false;
569 // Only promote a select if we know that the other select operand is from
570 // another pointer that will also be promoted.
571 if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) {
572 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2))
573 return false;
576 // Repeat for phis.
577 if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) {
578 // TODO: Handle more complex cases. We should be able to replace loops
579 // over arrays.
580 switch (Phi->getNumIncomingValues()) {
581 case 1:
582 break;
583 case 2:
584 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1))
585 return false;
586 break;
587 default:
588 return false;
592 WorkList.push_back(User);
593 if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList))
594 return false;
597 return true;
600 bool AMDGPUPromoteAlloca::hasSufficientLocalMem(const Function &F) {
602 FunctionType *FTy = F.getFunctionType();
603 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F);
605 // If the function has any arguments in the local address space, then it's
606 // possible these arguments require the entire local memory space, so
607 // we cannot use local memory in the pass.
608 for (Type *ParamTy : FTy->params()) {
609 PointerType *PtrTy = dyn_cast<PointerType>(ParamTy);
610 if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
611 LocalMemLimit = 0;
612 LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to "
613 "local memory disabled.\n");
614 return false;
618 LocalMemLimit = ST.getLocalMemorySize();
619 if (LocalMemLimit == 0)
620 return false;
622 const DataLayout &DL = Mod->getDataLayout();
624 // Check how much local memory is being used by global objects
625 CurrentLocalMemUsage = 0;
626 for (GlobalVariable &GV : Mod->globals()) {
627 if (GV.getType()->getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS)
628 continue;
630 for (const User *U : GV.users()) {
631 const Instruction *Use = dyn_cast<Instruction>(U);
632 if (!Use)
633 continue;
635 if (Use->getParent()->getParent() == &F) {
636 unsigned Align = GV.getAlignment();
637 if (Align == 0)
638 Align = DL.getABITypeAlignment(GV.getValueType());
640 // FIXME: Try to account for padding here. The padding is currently
641 // determined from the inverse order of uses in the function. I'm not
642 // sure if the use list order is in any way connected to this, so the
643 // total reported size is likely incorrect.
644 uint64_t AllocSize = DL.getTypeAllocSize(GV.getValueType());
645 CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Align);
646 CurrentLocalMemUsage += AllocSize;
647 break;
652 unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage,
655 // Restrict local memory usage so that we don't drastically reduce occupancy,
656 // unless it is already significantly reduced.
658 // TODO: Have some sort of hint or other heuristics to guess occupancy based
659 // on other factors..
660 unsigned OccupancyHint = ST.getWavesPerEU(F).second;
661 if (OccupancyHint == 0)
662 OccupancyHint = 7;
664 // Clamp to max value.
665 OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU());
667 // Check the hint but ignore it if it's obviously wrong from the existing LDS
668 // usage.
669 MaxOccupancy = std::min(OccupancyHint, MaxOccupancy);
672 // Round up to the next tier of usage.
673 unsigned MaxSizeWithWaveCount
674 = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F);
676 // Program is possibly broken by using more local mem than available.
677 if (CurrentLocalMemUsage > MaxSizeWithWaveCount)
678 return false;
680 LocalMemLimit = MaxSizeWithWaveCount;
682 LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage
683 << " bytes of LDS\n"
684 << " Rounding size to " << MaxSizeWithWaveCount
685 << " with a maximum occupancy of " << MaxOccupancy << '\n'
686 << " and " << (LocalMemLimit - CurrentLocalMemUsage)
687 << " available for promotion\n");
689 return true;
692 // FIXME: Should try to pick the most likely to be profitable allocas first.
693 bool AMDGPUPromoteAlloca::handleAlloca(AllocaInst &I, bool SufficientLDS) {
694 // Array allocations are probably not worth handling, since an allocation of
695 // the array type is the canonical form.
696 if (!I.isStaticAlloca() || I.isArrayAllocation())
697 return false;
699 IRBuilder<> Builder(&I);
701 // First try to replace the alloca with a vector
702 Type *AllocaTy = I.getAllocatedType();
704 LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n');
706 if (tryPromoteAllocaToVector(&I))
707 return true; // Promoted to vector.
709 const Function &ContainingFunction = *I.getParent()->getParent();
710 CallingConv::ID CC = ContainingFunction.getCallingConv();
712 // Don't promote the alloca to LDS for shader calling conventions as the work
713 // item ID intrinsics are not supported for these calling conventions.
714 // Furthermore not all LDS is available for some of the stages.
715 switch (CC) {
716 case CallingConv::AMDGPU_KERNEL:
717 case CallingConv::SPIR_KERNEL:
718 break;
719 default:
720 LLVM_DEBUG(
721 dbgs()
722 << " promote alloca to LDS not supported with calling convention.\n");
723 return false;
726 // Not likely to have sufficient local memory for promotion.
727 if (!SufficientLDS)
728 return false;
730 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, ContainingFunction);
731 unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second;
733 const DataLayout &DL = Mod->getDataLayout();
735 unsigned Align = I.getAlignment();
736 if (Align == 0)
737 Align = DL.getABITypeAlignment(I.getAllocatedType());
739 // FIXME: This computed padding is likely wrong since it depends on inverse
740 // usage order.
742 // FIXME: It is also possible that if we're allowed to use all of the memory
743 // could could end up using more than the maximum due to alignment padding.
745 uint32_t NewSize = alignTo(CurrentLocalMemUsage, Align);
746 uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy);
747 NewSize += AllocSize;
749 if (NewSize > LocalMemLimit) {
750 LLVM_DEBUG(dbgs() << " " << AllocSize
751 << " bytes of local memory not available to promote\n");
752 return false;
755 CurrentLocalMemUsage = NewSize;
757 std::vector<Value*> WorkList;
759 if (!collectUsesWithPtrTypes(&I, &I, WorkList)) {
760 LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n");
761 return false;
764 LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n");
766 Function *F = I.getParent()->getParent();
768 Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize);
769 GlobalVariable *GV = new GlobalVariable(
770 *Mod, GVTy, false, GlobalValue::InternalLinkage,
771 UndefValue::get(GVTy),
772 Twine(F->getName()) + Twine('.') + I.getName(),
773 nullptr,
774 GlobalVariable::NotThreadLocal,
775 AMDGPUAS::LOCAL_ADDRESS);
776 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
777 GV->setAlignment(I.getAlignment());
779 Value *TCntY, *TCntZ;
781 std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder);
782 Value *TIdX = getWorkitemID(Builder, 0);
783 Value *TIdY = getWorkitemID(Builder, 1);
784 Value *TIdZ = getWorkitemID(Builder, 2);
786 Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true);
787 Tmp0 = Builder.CreateMul(Tmp0, TIdX);
788 Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true);
789 Value *TID = Builder.CreateAdd(Tmp0, Tmp1);
790 TID = Builder.CreateAdd(TID, TIdZ);
792 Value *Indices[] = {
793 Constant::getNullValue(Type::getInt32Ty(Mod->getContext())),
797 Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices);
798 I.mutateType(Offset->getType());
799 I.replaceAllUsesWith(Offset);
800 I.eraseFromParent();
802 for (Value *V : WorkList) {
803 CallInst *Call = dyn_cast<CallInst>(V);
804 if (!Call) {
805 if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) {
806 Value *Src0 = CI->getOperand(0);
807 Type *EltTy = Src0->getType()->getPointerElementType();
808 PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS);
810 if (isa<ConstantPointerNull>(CI->getOperand(0)))
811 CI->setOperand(0, ConstantPointerNull::get(NewTy));
813 if (isa<ConstantPointerNull>(CI->getOperand(1)))
814 CI->setOperand(1, ConstantPointerNull::get(NewTy));
816 continue;
819 // The operand's value should be corrected on its own and we don't want to
820 // touch the users.
821 if (isa<AddrSpaceCastInst>(V))
822 continue;
824 Type *EltTy = V->getType()->getPointerElementType();
825 PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS);
827 // FIXME: It doesn't really make sense to try to do this for all
828 // instructions.
829 V->mutateType(NewTy);
831 // Adjust the types of any constant operands.
832 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
833 if (isa<ConstantPointerNull>(SI->getOperand(1)))
834 SI->setOperand(1, ConstantPointerNull::get(NewTy));
836 if (isa<ConstantPointerNull>(SI->getOperand(2)))
837 SI->setOperand(2, ConstantPointerNull::get(NewTy));
838 } else if (PHINode *Phi = dyn_cast<PHINode>(V)) {
839 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
840 if (isa<ConstantPointerNull>(Phi->getIncomingValue(I)))
841 Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy));
845 continue;
848 IntrinsicInst *Intr = cast<IntrinsicInst>(Call);
849 Builder.SetInsertPoint(Intr);
850 switch (Intr->getIntrinsicID()) {
851 case Intrinsic::lifetime_start:
852 case Intrinsic::lifetime_end:
853 // These intrinsics are for address space 0 only
854 Intr->eraseFromParent();
855 continue;
856 case Intrinsic::memcpy: {
857 MemCpyInst *MemCpy = cast<MemCpyInst>(Intr);
858 Builder.CreateMemCpy(MemCpy->getRawDest(), MemCpy->getDestAlignment(),
859 MemCpy->getRawSource(), MemCpy->getSourceAlignment(),
860 MemCpy->getLength(), MemCpy->isVolatile());
861 Intr->eraseFromParent();
862 continue;
864 case Intrinsic::memmove: {
865 MemMoveInst *MemMove = cast<MemMoveInst>(Intr);
866 Builder.CreateMemMove(MemMove->getRawDest(), MemMove->getDestAlignment(),
867 MemMove->getRawSource(), MemMove->getSourceAlignment(),
868 MemMove->getLength(), MemMove->isVolatile());
869 Intr->eraseFromParent();
870 continue;
872 case Intrinsic::memset: {
873 MemSetInst *MemSet = cast<MemSetInst>(Intr);
874 Builder.CreateMemSet(MemSet->getRawDest(), MemSet->getValue(),
875 MemSet->getLength(), MemSet->getDestAlignment(),
876 MemSet->isVolatile());
877 Intr->eraseFromParent();
878 continue;
880 case Intrinsic::invariant_start:
881 case Intrinsic::invariant_end:
882 case Intrinsic::launder_invariant_group:
883 case Intrinsic::strip_invariant_group:
884 Intr->eraseFromParent();
885 // FIXME: I think the invariant marker should still theoretically apply,
886 // but the intrinsics need to be changed to accept pointers with any
887 // address space.
888 continue;
889 case Intrinsic::objectsize: {
890 Value *Src = Intr->getOperand(0);
891 Type *SrcTy = Src->getType()->getPointerElementType();
892 Function *ObjectSize = Intrinsic::getDeclaration(Mod,
893 Intrinsic::objectsize,
894 { Intr->getType(), PointerType::get(SrcTy, AMDGPUAS::LOCAL_ADDRESS) }
897 CallInst *NewCall = Builder.CreateCall(
898 ObjectSize, {Src, Intr->getOperand(1), Intr->getOperand(2)});
899 Intr->replaceAllUsesWith(NewCall);
900 Intr->eraseFromParent();
901 continue;
903 default:
904 Intr->print(errs());
905 llvm_unreachable("Don't know how to promote alloca intrinsic use.");
908 return true;
911 FunctionPass *llvm::createAMDGPUPromoteAlloca() {
912 return new AMDGPUPromoteAlloca();