[llvm-exegesis][NFC] Pass Instruction instead of bare Opcode
[llvm-core.git] / lib / Target / AMDGPU / AMDGPUTargetMachine.cpp
blobef54100a9c42a7461ba252856f01336feb35a1d2
1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// The AMDGPU target machine contains all of the hardware specific
12 /// information needed to emit code for R600 and SI GPUs.
14 //===----------------------------------------------------------------------===//
16 #include "AMDGPUTargetMachine.h"
17 #include "AMDGPU.h"
18 #include "AMDGPUAliasAnalysis.h"
19 #include "AMDGPUCallLowering.h"
20 #include "AMDGPUInstructionSelector.h"
21 #include "AMDGPULegalizerInfo.h"
22 #include "AMDGPUMacroFusion.h"
23 #include "AMDGPUTargetObjectFile.h"
24 #include "AMDGPUTargetTransformInfo.h"
25 #include "GCNIterativeScheduler.h"
26 #include "GCNSchedStrategy.h"
27 #include "R600MachineScheduler.h"
28 #include "SIMachineScheduler.h"
29 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
30 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
31 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
32 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
33 #include "llvm/CodeGen/Passes.h"
34 #include "llvm/CodeGen/TargetPassConfig.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/LegacyPassManager.h"
38 #include "llvm/Pass.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/TargetRegistry.h"
42 #include "llvm/Target/TargetLoweringObjectFile.h"
43 #include "llvm/Transforms/IPO.h"
44 #include "llvm/Transforms/IPO/AlwaysInliner.h"
45 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
46 #include "llvm/Transforms/Scalar.h"
47 #include "llvm/Transforms/Scalar/GVN.h"
48 #include "llvm/Transforms/Utils.h"
49 #include "llvm/Transforms/Vectorize.h"
50 #include <memory>
52 using namespace llvm;
54 static cl::opt<bool> EnableR600StructurizeCFG(
55 "r600-ir-structurize",
56 cl::desc("Use StructurizeCFG IR pass"),
57 cl::init(true));
59 static cl::opt<bool> EnableSROA(
60 "amdgpu-sroa",
61 cl::desc("Run SROA after promote alloca pass"),
62 cl::ReallyHidden,
63 cl::init(true));
65 static cl::opt<bool>
66 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden,
67 cl::desc("Run early if-conversion"),
68 cl::init(false));
70 static cl::opt<bool> EnableR600IfConvert(
71 "r600-if-convert",
72 cl::desc("Use if conversion pass"),
73 cl::ReallyHidden,
74 cl::init(true));
76 // Option to disable vectorizer for tests.
77 static cl::opt<bool> EnableLoadStoreVectorizer(
78 "amdgpu-load-store-vectorizer",
79 cl::desc("Enable load store vectorizer"),
80 cl::init(true),
81 cl::Hidden);
83 // Option to control global loads scalarization
84 static cl::opt<bool> ScalarizeGlobal(
85 "amdgpu-scalarize-global-loads",
86 cl::desc("Enable global load scalarization"),
87 cl::init(true),
88 cl::Hidden);
90 // Option to run internalize pass.
91 static cl::opt<bool> InternalizeSymbols(
92 "amdgpu-internalize-symbols",
93 cl::desc("Enable elimination of non-kernel functions and unused globals"),
94 cl::init(false),
95 cl::Hidden);
97 // Option to inline all early.
98 static cl::opt<bool> EarlyInlineAll(
99 "amdgpu-early-inline-all",
100 cl::desc("Inline all functions early"),
101 cl::init(false),
102 cl::Hidden);
104 static cl::opt<bool> EnableSDWAPeephole(
105 "amdgpu-sdwa-peephole",
106 cl::desc("Enable SDWA peepholer"),
107 cl::init(true));
109 // Enable address space based alias analysis
110 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden,
111 cl::desc("Enable AMDGPU Alias Analysis"),
112 cl::init(true));
114 // Option to run late CFG structurizer
115 static cl::opt<bool, true> LateCFGStructurize(
116 "amdgpu-late-structurize",
117 cl::desc("Enable late CFG structurization"),
118 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG),
119 cl::Hidden);
121 static cl::opt<bool, true> EnableAMDGPUFunctionCalls(
122 "amdgpu-function-calls",
123 cl::desc("Enable AMDGPU function call support"),
124 cl::location(AMDGPUTargetMachine::EnableFunctionCalls),
125 cl::init(false),
126 cl::Hidden);
128 // Enable lib calls simplifications
129 static cl::opt<bool> EnableLibCallSimplify(
130 "amdgpu-simplify-libcall",
131 cl::desc("Enable amdgpu library simplifications"),
132 cl::init(true),
133 cl::Hidden);
135 static cl::opt<bool> EnableLowerKernelArguments(
136 "amdgpu-ir-lower-kernel-arguments",
137 cl::desc("Lower kernel argument loads in IR pass"),
138 cl::init(true),
139 cl::Hidden);
141 // Enable atomic optimization
142 static cl::opt<bool> EnableAtomicOptimizations(
143 "amdgpu-atomic-optimizations",
144 cl::desc("Enable atomic optimizations"),
145 cl::init(false),
146 cl::Hidden);
148 extern "C" void LLVMInitializeAMDGPUTarget() {
149 // Register the target
150 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget());
151 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget());
153 PassRegistry *PR = PassRegistry::getPassRegistry();
154 initializeR600ClauseMergePassPass(*PR);
155 initializeR600ControlFlowFinalizerPass(*PR);
156 initializeR600PacketizerPass(*PR);
157 initializeR600ExpandSpecialInstrsPassPass(*PR);
158 initializeR600VectorRegMergerPass(*PR);
159 initializeGlobalISel(*PR);
160 initializeAMDGPUDAGToDAGISelPass(*PR);
161 initializeSILowerI1CopiesPass(*PR);
162 initializeSIFixSGPRCopiesPass(*PR);
163 initializeSIFixVGPRCopiesPass(*PR);
164 initializeSIFoldOperandsPass(*PR);
165 initializeSIPeepholeSDWAPass(*PR);
166 initializeSIShrinkInstructionsPass(*PR);
167 initializeSIOptimizeExecMaskingPreRAPass(*PR);
168 initializeSILoadStoreOptimizerPass(*PR);
169 initializeAMDGPUAlwaysInlinePass(*PR);
170 initializeAMDGPUAnnotateKernelFeaturesPass(*PR);
171 initializeAMDGPUAnnotateUniformValuesPass(*PR);
172 initializeAMDGPUArgumentUsageInfoPass(*PR);
173 initializeAMDGPUAtomicOptimizerPass(*PR);
174 initializeAMDGPULowerKernelArgumentsPass(*PR);
175 initializeAMDGPULowerKernelAttributesPass(*PR);
176 initializeAMDGPULowerIntrinsicsPass(*PR);
177 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR);
178 initializeAMDGPUPromoteAllocaPass(*PR);
179 initializeAMDGPUCodeGenPreparePass(*PR);
180 initializeAMDGPURewriteOutArgumentsPass(*PR);
181 initializeAMDGPUUnifyMetadataPass(*PR);
182 initializeSIAnnotateControlFlowPass(*PR);
183 initializeSIInsertWaitcntsPass(*PR);
184 initializeSIWholeQuadModePass(*PR);
185 initializeSILowerControlFlowPass(*PR);
186 initializeSIInsertSkipsPass(*PR);
187 initializeSIMemoryLegalizerPass(*PR);
188 initializeSIDebuggerInsertNopsPass(*PR);
189 initializeSIOptimizeExecMaskingPass(*PR);
190 initializeSIFixWWMLivenessPass(*PR);
191 initializeSIFormMemoryClausesPass(*PR);
192 initializeAMDGPUUnifyDivergentExitNodesPass(*PR);
193 initializeAMDGPUAAWrapperPassPass(*PR);
194 initializeAMDGPUUseNativeCallsPass(*PR);
195 initializeAMDGPUSimplifyLibCallsPass(*PR);
196 initializeAMDGPUInlinerPass(*PR);
199 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
200 return llvm::make_unique<AMDGPUTargetObjectFile>();
203 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) {
204 return new ScheduleDAGMILive(C, llvm::make_unique<R600SchedStrategy>());
207 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) {
208 return new SIScheduleDAGMI(C);
211 static ScheduleDAGInstrs *
212 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
213 ScheduleDAGMILive *DAG =
214 new GCNScheduleDAGMILive(C, make_unique<GCNMaxOccupancySchedStrategy>(C));
215 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
216 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
217 DAG->addMutation(createAMDGPUMacroFusionDAGMutation());
218 return DAG;
221 static ScheduleDAGInstrs *
222 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
223 auto DAG = new GCNIterativeScheduler(C,
224 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY);
225 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
226 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
227 return DAG;
230 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) {
231 return new GCNIterativeScheduler(C,
232 GCNIterativeScheduler::SCHEDULE_MINREGFORCED);
235 static ScheduleDAGInstrs *
236 createIterativeILPMachineScheduler(MachineSchedContext *C) {
237 auto DAG = new GCNIterativeScheduler(C,
238 GCNIterativeScheduler::SCHEDULE_ILP);
239 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
240 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
241 DAG->addMutation(createAMDGPUMacroFusionDAGMutation());
242 return DAG;
245 static MachineSchedRegistry
246 R600SchedRegistry("r600", "Run R600's custom scheduler",
247 createR600MachineScheduler);
249 static MachineSchedRegistry
250 SISchedRegistry("si", "Run SI's custom scheduler",
251 createSIMachineScheduler);
253 static MachineSchedRegistry
254 GCNMaxOccupancySchedRegistry("gcn-max-occupancy",
255 "Run GCN scheduler to maximize occupancy",
256 createGCNMaxOccupancyMachineScheduler);
258 static MachineSchedRegistry
259 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental",
260 "Run GCN scheduler to maximize occupancy (experimental)",
261 createIterativeGCNMaxOccupancyMachineScheduler);
263 static MachineSchedRegistry
264 GCNMinRegSchedRegistry("gcn-minreg",
265 "Run GCN iterative scheduler for minimal register usage (experimental)",
266 createMinRegScheduler);
268 static MachineSchedRegistry
269 GCNILPSchedRegistry("gcn-ilp",
270 "Run GCN iterative scheduler for ILP scheduling (experimental)",
271 createIterativeILPMachineScheduler);
273 static StringRef computeDataLayout(const Triple &TT) {
274 if (TT.getArch() == Triple::r600) {
275 // 32-bit pointers.
276 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
277 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5";
280 // 32-bit private, local, and region pointers. 64-bit global, constant and
281 // flat.
282 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32"
283 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
284 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5";
287 LLVM_READNONE
288 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) {
289 if (!GPU.empty())
290 return GPU;
292 if (TT.getArch() == Triple::amdgcn)
293 return "generic";
295 return "r600";
298 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) {
299 // The AMDGPU toolchain only supports generating shared objects, so we
300 // must always use PIC.
301 return Reloc::PIC_;
304 static CodeModel::Model getEffectiveCodeModel(Optional<CodeModel::Model> CM) {
305 if (CM)
306 return *CM;
307 return CodeModel::Small;
310 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT,
311 StringRef CPU, StringRef FS,
312 TargetOptions Options,
313 Optional<Reloc::Model> RM,
314 Optional<CodeModel::Model> CM,
315 CodeGenOpt::Level OptLevel)
316 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU),
317 FS, Options, getEffectiveRelocModel(RM),
318 getEffectiveCodeModel(CM), OptLevel),
319 TLOF(createTLOF(getTargetTriple())) {
320 initAsmInfo();
323 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false;
324 bool AMDGPUTargetMachine::EnableFunctionCalls = false;
326 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default;
328 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const {
329 Attribute GPUAttr = F.getFnAttribute("target-cpu");
330 return GPUAttr.hasAttribute(Attribute::None) ?
331 getTargetCPU() : GPUAttr.getValueAsString();
334 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const {
335 Attribute FSAttr = F.getFnAttribute("target-features");
337 return FSAttr.hasAttribute(Attribute::None) ?
338 getTargetFeatureString() :
339 FSAttr.getValueAsString();
342 static ImmutablePass *createAMDGPUExternalAAWrapperPass() {
343 return createExternalAAWrapperPass([](Pass &P, Function &, AAResults &AAR) {
344 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>())
345 AAR.addAAResult(WrapperPass->getResult());
349 /// Predicate for Internalize pass.
350 static bool mustPreserveGV(const GlobalValue &GV) {
351 if (const Function *F = dyn_cast<Function>(&GV))
352 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv());
354 return !GV.use_empty();
357 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) {
358 Builder.DivergentTarget = true;
360 bool EnableOpt = getOptLevel() > CodeGenOpt::None;
361 bool Internalize = InternalizeSymbols;
362 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableAMDGPUFunctionCalls;
363 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt;
364 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt;
366 if (EnableAMDGPUFunctionCalls) {
367 delete Builder.Inliner;
368 Builder.Inliner = createAMDGPUFunctionInliningPass();
371 Builder.addExtension(
372 PassManagerBuilder::EP_ModuleOptimizerEarly,
373 [Internalize, EarlyInline, AMDGPUAA](const PassManagerBuilder &,
374 legacy::PassManagerBase &PM) {
375 if (AMDGPUAA) {
376 PM.add(createAMDGPUAAWrapperPass());
377 PM.add(createAMDGPUExternalAAWrapperPass());
379 PM.add(createAMDGPUUnifyMetadataPass());
380 if (Internalize) {
381 PM.add(createInternalizePass(mustPreserveGV));
382 PM.add(createGlobalDCEPass());
384 if (EarlyInline)
385 PM.add(createAMDGPUAlwaysInlinePass(false));
388 const auto &Opt = Options;
389 Builder.addExtension(
390 PassManagerBuilder::EP_EarlyAsPossible,
391 [AMDGPUAA, LibCallSimplify, &Opt](const PassManagerBuilder &,
392 legacy::PassManagerBase &PM) {
393 if (AMDGPUAA) {
394 PM.add(createAMDGPUAAWrapperPass());
395 PM.add(createAMDGPUExternalAAWrapperPass());
397 PM.add(llvm::createAMDGPUUseNativeCallsPass());
398 if (LibCallSimplify)
399 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(Opt));
402 Builder.addExtension(
403 PassManagerBuilder::EP_CGSCCOptimizerLate,
404 [](const PassManagerBuilder &, legacy::PassManagerBase &PM) {
405 // Add infer address spaces pass to the opt pipeline after inlining
406 // but before SROA to increase SROA opportunities.
407 PM.add(createInferAddressSpacesPass());
409 // This should run after inlining to have any chance of doing anything,
410 // and before other cleanup optimizations.
411 PM.add(createAMDGPULowerKernelAttributesPass());
415 //===----------------------------------------------------------------------===//
416 // R600 Target Machine (R600 -> Cayman)
417 //===----------------------------------------------------------------------===//
419 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT,
420 StringRef CPU, StringRef FS,
421 TargetOptions Options,
422 Optional<Reloc::Model> RM,
423 Optional<CodeModel::Model> CM,
424 CodeGenOpt::Level OL, bool JIT)
425 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {
426 setRequiresStructuredCFG(true);
429 const R600Subtarget *R600TargetMachine::getSubtargetImpl(
430 const Function &F) const {
431 StringRef GPU = getGPUName(F);
432 StringRef FS = getFeatureString(F);
434 SmallString<128> SubtargetKey(GPU);
435 SubtargetKey.append(FS);
437 auto &I = SubtargetMap[SubtargetKey];
438 if (!I) {
439 // This needs to be done before we create a new subtarget since any
440 // creation will depend on the TM and the code generation flags on the
441 // function that reside in TargetOptions.
442 resetTargetOptions(F);
443 I = llvm::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this);
446 return I.get();
449 TargetTransformInfo
450 R600TargetMachine::getTargetTransformInfo(const Function &F) {
451 return TargetTransformInfo(R600TTIImpl(this, F));
454 //===----------------------------------------------------------------------===//
455 // GCN Target Machine (SI+)
456 //===----------------------------------------------------------------------===//
458 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT,
459 StringRef CPU, StringRef FS,
460 TargetOptions Options,
461 Optional<Reloc::Model> RM,
462 Optional<CodeModel::Model> CM,
463 CodeGenOpt::Level OL, bool JIT)
464 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {}
466 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const {
467 StringRef GPU = getGPUName(F);
468 StringRef FS = getFeatureString(F);
470 SmallString<128> SubtargetKey(GPU);
471 SubtargetKey.append(FS);
473 auto &I = SubtargetMap[SubtargetKey];
474 if (!I) {
475 // This needs to be done before we create a new subtarget since any
476 // creation will depend on the TM and the code generation flags on the
477 // function that reside in TargetOptions.
478 resetTargetOptions(F);
479 I = llvm::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this);
482 I->setScalarizeGlobalBehavior(ScalarizeGlobal);
484 return I.get();
487 TargetTransformInfo
488 GCNTargetMachine::getTargetTransformInfo(const Function &F) {
489 return TargetTransformInfo(GCNTTIImpl(this, F));
492 //===----------------------------------------------------------------------===//
493 // AMDGPU Pass Setup
494 //===----------------------------------------------------------------------===//
496 namespace {
498 class AMDGPUPassConfig : public TargetPassConfig {
499 public:
500 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
501 : TargetPassConfig(TM, PM) {
502 // Exceptions and StackMaps are not supported, so these passes will never do
503 // anything.
504 disablePass(&StackMapLivenessID);
505 disablePass(&FuncletLayoutID);
508 AMDGPUTargetMachine &getAMDGPUTargetMachine() const {
509 return getTM<AMDGPUTargetMachine>();
512 ScheduleDAGInstrs *
513 createMachineScheduler(MachineSchedContext *C) const override {
514 ScheduleDAGMILive *DAG = createGenericSchedLive(C);
515 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
516 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
517 return DAG;
520 void addEarlyCSEOrGVNPass();
521 void addStraightLineScalarOptimizationPasses();
522 void addIRPasses() override;
523 void addCodeGenPrepare() override;
524 bool addPreISel() override;
525 bool addInstSelector() override;
526 bool addGCPasses() override;
529 class R600PassConfig final : public AMDGPUPassConfig {
530 public:
531 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
532 : AMDGPUPassConfig(TM, PM) {}
534 ScheduleDAGInstrs *createMachineScheduler(
535 MachineSchedContext *C) const override {
536 return createR600MachineScheduler(C);
539 bool addPreISel() override;
540 bool addInstSelector() override;
541 void addPreRegAlloc() override;
542 void addPreSched2() override;
543 void addPreEmitPass() override;
546 class GCNPassConfig final : public AMDGPUPassConfig {
547 public:
548 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
549 : AMDGPUPassConfig(TM, PM) {
550 // It is necessary to know the register usage of the entire call graph. We
551 // allow calls without EnableAMDGPUFunctionCalls if they are marked
552 // noinline, so this is always required.
553 setRequiresCodeGenSCCOrder(true);
556 GCNTargetMachine &getGCNTargetMachine() const {
557 return getTM<GCNTargetMachine>();
560 ScheduleDAGInstrs *
561 createMachineScheduler(MachineSchedContext *C) const override;
563 bool addPreISel() override;
564 void addMachineSSAOptimization() override;
565 bool addILPOpts() override;
566 bool addInstSelector() override;
567 bool addIRTranslator() override;
568 bool addLegalizeMachineIR() override;
569 bool addRegBankSelect() override;
570 bool addGlobalInstructionSelect() override;
571 void addFastRegAlloc(FunctionPass *RegAllocPass) override;
572 void addOptimizedRegAlloc(FunctionPass *RegAllocPass) override;
573 void addPreRegAlloc() override;
574 void addPostRegAlloc() override;
575 void addPreSched2() override;
576 void addPreEmitPass() override;
579 } // end anonymous namespace
581 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() {
582 if (getOptLevel() == CodeGenOpt::Aggressive)
583 addPass(createGVNPass());
584 else
585 addPass(createEarlyCSEPass());
588 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() {
589 addPass(createLICMPass());
590 addPass(createSeparateConstOffsetFromGEPPass());
591 addPass(createSpeculativeExecutionPass());
592 // ReassociateGEPs exposes more opportunites for SLSR. See
593 // the example in reassociate-geps-and-slsr.ll.
594 addPass(createStraightLineStrengthReducePass());
595 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or
596 // EarlyCSE can reuse.
597 addEarlyCSEOrGVNPass();
598 // Run NaryReassociate after EarlyCSE/GVN to be more effective.
599 addPass(createNaryReassociatePass());
600 // NaryReassociate on GEPs creates redundant common expressions, so run
601 // EarlyCSE after it.
602 addPass(createEarlyCSEPass());
605 void AMDGPUPassConfig::addIRPasses() {
606 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine();
608 // There is no reason to run these.
609 disablePass(&StackMapLivenessID);
610 disablePass(&FuncletLayoutID);
611 disablePass(&PatchableFunctionID);
613 addPass(createAtomicExpandPass());
614 addPass(createAMDGPULowerIntrinsicsPass());
616 // Function calls are not supported, so make sure we inline everything.
617 addPass(createAMDGPUAlwaysInlinePass());
618 addPass(createAlwaysInlinerLegacyPass());
619 // We need to add the barrier noop pass, otherwise adding the function
620 // inlining pass will cause all of the PassConfigs passes to be run
621 // one function at a time, which means if we have a nodule with two
622 // functions, then we will generate code for the first function
623 // without ever running any passes on the second.
624 addPass(createBarrierNoopPass());
626 if (TM.getTargetTriple().getArch() == Triple::amdgcn) {
627 // TODO: May want to move later or split into an early and late one.
629 addPass(createAMDGPUCodeGenPreparePass());
632 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments.
633 if (TM.getTargetTriple().getArch() == Triple::r600)
634 addPass(createR600OpenCLImageTypeLoweringPass());
636 // Replace OpenCL enqueued block function pointers with global variables.
637 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass());
639 if (TM.getOptLevel() > CodeGenOpt::None) {
640 addPass(createInferAddressSpacesPass());
641 addPass(createAMDGPUPromoteAlloca());
643 if (EnableSROA)
644 addPass(createSROAPass());
646 addStraightLineScalarOptimizationPasses();
648 if (EnableAMDGPUAliasAnalysis) {
649 addPass(createAMDGPUAAWrapperPass());
650 addPass(createExternalAAWrapperPass([](Pass &P, Function &,
651 AAResults &AAR) {
652 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>())
653 AAR.addAAResult(WrapperPass->getResult());
654 }));
658 TargetPassConfig::addIRPasses();
660 // EarlyCSE is not always strong enough to clean up what LSR produces. For
661 // example, GVN can combine
663 // %0 = add %a, %b
664 // %1 = add %b, %a
666 // and
668 // %0 = shl nsw %a, 2
669 // %1 = shl %a, 2
671 // but EarlyCSE can do neither of them.
672 if (getOptLevel() != CodeGenOpt::None)
673 addEarlyCSEOrGVNPass();
676 void AMDGPUPassConfig::addCodeGenPrepare() {
677 if (TM->getTargetTriple().getArch() == Triple::amdgcn &&
678 EnableLowerKernelArguments)
679 addPass(createAMDGPULowerKernelArgumentsPass());
681 TargetPassConfig::addCodeGenPrepare();
683 if (EnableLoadStoreVectorizer)
684 addPass(createLoadStoreVectorizerPass());
687 bool AMDGPUPassConfig::addPreISel() {
688 addPass(createLowerSwitchPass());
689 addPass(createFlattenCFGPass());
690 return false;
693 bool AMDGPUPassConfig::addInstSelector() {
694 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()));
695 return false;
698 bool AMDGPUPassConfig::addGCPasses() {
699 // Do nothing. GC is not supported.
700 return false;
703 //===----------------------------------------------------------------------===//
704 // R600 Pass Setup
705 //===----------------------------------------------------------------------===//
707 bool R600PassConfig::addPreISel() {
708 AMDGPUPassConfig::addPreISel();
710 if (EnableR600StructurizeCFG)
711 addPass(createStructurizeCFGPass());
712 return false;
715 bool R600PassConfig::addInstSelector() {
716 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel()));
717 return false;
720 void R600PassConfig::addPreRegAlloc() {
721 addPass(createR600VectorRegMerger());
724 void R600PassConfig::addPreSched2() {
725 addPass(createR600EmitClauseMarkers(), false);
726 if (EnableR600IfConvert)
727 addPass(&IfConverterID, false);
728 addPass(createR600ClauseMergePass(), false);
731 void R600PassConfig::addPreEmitPass() {
732 addPass(createAMDGPUCFGStructurizerPass(), false);
733 addPass(createR600ExpandSpecialInstrsPass(), false);
734 addPass(&FinalizeMachineBundlesID, false);
735 addPass(createR600Packetizer(), false);
736 addPass(createR600ControlFlowFinalizer(), false);
739 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) {
740 return new R600PassConfig(*this, PM);
743 //===----------------------------------------------------------------------===//
744 // GCN Pass Setup
745 //===----------------------------------------------------------------------===//
747 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler(
748 MachineSchedContext *C) const {
749 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
750 if (ST.enableSIScheduler())
751 return createSIMachineScheduler(C);
752 return createGCNMaxOccupancyMachineScheduler(C);
755 bool GCNPassConfig::addPreISel() {
756 AMDGPUPassConfig::addPreISel();
758 if (EnableAtomicOptimizations) {
759 addPass(createAMDGPUAtomicOptimizerPass());
762 // FIXME: We need to run a pass to propagate the attributes when calls are
763 // supported.
764 addPass(createAMDGPUAnnotateKernelFeaturesPass());
766 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit
767 // regions formed by them.
768 addPass(&AMDGPUUnifyDivergentExitNodesID);
769 if (!LateCFGStructurize) {
770 addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions
772 addPass(createSinkingPass());
773 addPass(createAMDGPUAnnotateUniformValues());
774 if (!LateCFGStructurize) {
775 addPass(createSIAnnotateControlFlowPass());
778 return false;
781 void GCNPassConfig::addMachineSSAOptimization() {
782 TargetPassConfig::addMachineSSAOptimization();
784 // We want to fold operands after PeepholeOptimizer has run (or as part of
785 // it), because it will eliminate extra copies making it easier to fold the
786 // real source operand. We want to eliminate dead instructions after, so that
787 // we see fewer uses of the copies. We then need to clean up the dead
788 // instructions leftover after the operands are folded as well.
790 // XXX - Can we get away without running DeadMachineInstructionElim again?
791 addPass(&SIFoldOperandsID);
792 addPass(&DeadMachineInstructionElimID);
793 addPass(&SILoadStoreOptimizerID);
794 if (EnableSDWAPeephole) {
795 addPass(&SIPeepholeSDWAID);
796 addPass(&EarlyMachineLICMID);
797 addPass(&MachineCSEID);
798 addPass(&SIFoldOperandsID);
799 addPass(&DeadMachineInstructionElimID);
801 addPass(createSIShrinkInstructionsPass());
804 bool GCNPassConfig::addILPOpts() {
805 if (EnableEarlyIfConversion)
806 addPass(&EarlyIfConverterID);
808 TargetPassConfig::addILPOpts();
809 return false;
812 bool GCNPassConfig::addInstSelector() {
813 AMDGPUPassConfig::addInstSelector();
814 addPass(createSILowerI1CopiesPass());
815 addPass(&SIFixSGPRCopiesID);
816 return false;
819 bool GCNPassConfig::addIRTranslator() {
820 addPass(new IRTranslator());
821 return false;
824 bool GCNPassConfig::addLegalizeMachineIR() {
825 addPass(new Legalizer());
826 return false;
829 bool GCNPassConfig::addRegBankSelect() {
830 addPass(new RegBankSelect());
831 return false;
834 bool GCNPassConfig::addGlobalInstructionSelect() {
835 addPass(new InstructionSelect());
836 return false;
839 void GCNPassConfig::addPreRegAlloc() {
840 if (LateCFGStructurize) {
841 addPass(createAMDGPUMachineCFGStructurizerPass());
843 addPass(createSIWholeQuadModePass());
846 void GCNPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) {
847 // FIXME: We have to disable the verifier here because of PHIElimination +
848 // TwoAddressInstructions disabling it.
850 // This must be run immediately after phi elimination and before
851 // TwoAddressInstructions, otherwise the processing of the tied operand of
852 // SI_ELSE will introduce a copy of the tied operand source after the else.
853 insertPass(&PHIEliminationID, &SILowerControlFlowID, false);
855 // This must be run after SILowerControlFlow, since it needs to use the
856 // machine-level CFG, but before register allocation.
857 insertPass(&SILowerControlFlowID, &SIFixWWMLivenessID, false);
859 TargetPassConfig::addFastRegAlloc(RegAllocPass);
862 void GCNPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) {
863 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID);
865 insertPass(&SIOptimizeExecMaskingPreRAID, &SIFormMemoryClausesID);
867 // This must be run immediately after phi elimination and before
868 // TwoAddressInstructions, otherwise the processing of the tied operand of
869 // SI_ELSE will introduce a copy of the tied operand source after the else.
870 insertPass(&PHIEliminationID, &SILowerControlFlowID, false);
872 // This must be run after SILowerControlFlow, since it needs to use the
873 // machine-level CFG, but before register allocation.
874 insertPass(&SILowerControlFlowID, &SIFixWWMLivenessID, false);
876 TargetPassConfig::addOptimizedRegAlloc(RegAllocPass);
879 void GCNPassConfig::addPostRegAlloc() {
880 addPass(&SIFixVGPRCopiesID);
881 addPass(&SIOptimizeExecMaskingID);
882 TargetPassConfig::addPostRegAlloc();
885 void GCNPassConfig::addPreSched2() {
888 void GCNPassConfig::addPreEmitPass() {
889 addPass(createSIMemoryLegalizerPass());
890 addPass(createSIInsertWaitcntsPass());
891 addPass(createSIShrinkInstructionsPass());
893 // The hazard recognizer that runs as part of the post-ra scheduler does not
894 // guarantee to be able handle all hazards correctly. This is because if there
895 // are multiple scheduling regions in a basic block, the regions are scheduled
896 // bottom up, so when we begin to schedule a region we don't know what
897 // instructions were emitted directly before it.
899 // Here we add a stand-alone hazard recognizer pass which can handle all
900 // cases.
902 // FIXME: This stand-alone pass will emit indiv. S_NOP 0, as needed. It would
903 // be better for it to emit S_NOP <N> when possible.
904 addPass(&PostRAHazardRecognizerID);
906 addPass(&SIInsertSkipsPassID);
907 addPass(createSIDebuggerInsertNopsPass());
908 addPass(&BranchRelaxationPassID);
911 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) {
912 return new GCNPassConfig(*this, PM);