[llvm-exegesis][NFC] Pass Instruction instead of bare Opcode
[llvm-core.git] / lib / Target / AMDGPU / GCNHazardRecognizer.cpp
blobc6396de89c4f6e6dbbd456b390ceecc6cab589c2
1 //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements hazard recognizers for scheduling on GCN processors.
12 //===----------------------------------------------------------------------===//
14 #include "GCNHazardRecognizer.h"
15 #include "AMDGPUSubtarget.h"
16 #include "SIDefines.h"
17 #include "SIInstrInfo.h"
18 #include "SIRegisterInfo.h"
19 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
20 #include "Utils/AMDGPUBaseInfo.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineOperand.h"
25 #include "llvm/CodeGen/ScheduleDAG.h"
26 #include "llvm/MC/MCInstrDesc.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include <algorithm>
29 #include <cassert>
30 #include <limits>
31 #include <set>
32 #include <vector>
34 using namespace llvm;
36 //===----------------------------------------------------------------------===//
37 // Hazard Recoginizer Implementation
38 //===----------------------------------------------------------------------===//
40 GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) :
41 CurrCycleInstr(nullptr),
42 MF(MF),
43 ST(MF.getSubtarget<GCNSubtarget>()),
44 TII(*ST.getInstrInfo()),
45 TRI(TII.getRegisterInfo()),
46 ClauseUses(TRI.getNumRegUnits()),
47 ClauseDefs(TRI.getNumRegUnits()) {
48 MaxLookAhead = 5;
51 void GCNHazardRecognizer::EmitInstruction(SUnit *SU) {
52 EmitInstruction(SU->getInstr());
55 void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) {
56 CurrCycleInstr = MI;
59 static bool isDivFMas(unsigned Opcode) {
60 return Opcode == AMDGPU::V_DIV_FMAS_F32 || Opcode == AMDGPU::V_DIV_FMAS_F64;
63 static bool isSGetReg(unsigned Opcode) {
64 return Opcode == AMDGPU::S_GETREG_B32;
67 static bool isSSetReg(unsigned Opcode) {
68 return Opcode == AMDGPU::S_SETREG_B32 || Opcode == AMDGPU::S_SETREG_IMM32_B32;
71 static bool isRWLane(unsigned Opcode) {
72 return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32;
75 static bool isRFE(unsigned Opcode) {
76 return Opcode == AMDGPU::S_RFE_B64;
79 static bool isSMovRel(unsigned Opcode) {
80 switch (Opcode) {
81 case AMDGPU::S_MOVRELS_B32:
82 case AMDGPU::S_MOVRELS_B64:
83 case AMDGPU::S_MOVRELD_B32:
84 case AMDGPU::S_MOVRELD_B64:
85 return true;
86 default:
87 return false;
91 static bool isSendMsgTraceDataOrGDS(const MachineInstr &MI) {
92 switch (MI.getOpcode()) {
93 case AMDGPU::S_SENDMSG:
94 case AMDGPU::S_SENDMSGHALT:
95 case AMDGPU::S_TTRACEDATA:
96 return true;
97 default:
98 // TODO: GDS
99 return false;
103 static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) {
104 const MachineOperand *RegOp = TII->getNamedOperand(RegInstr,
105 AMDGPU::OpName::simm16);
106 return RegOp->getImm() & AMDGPU::Hwreg::ID_MASK_;
109 ScheduleHazardRecognizer::HazardType
110 GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) {
111 MachineInstr *MI = SU->getInstr();
113 if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0)
114 return NoopHazard;
116 // FIXME: Should flat be considered vmem?
117 if ((SIInstrInfo::isVMEM(*MI) ||
118 SIInstrInfo::isFLAT(*MI))
119 && checkVMEMHazards(MI) > 0)
120 return NoopHazard;
122 if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0)
123 return NoopHazard;
125 if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0)
126 return NoopHazard;
128 if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0)
129 return NoopHazard;
131 if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0)
132 return NoopHazard;
134 if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0)
135 return NoopHazard;
137 if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0)
138 return NoopHazard;
140 if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0)
141 return NoopHazard;
143 if (ST.hasReadM0MovRelInterpHazard() &&
144 (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode())) &&
145 checkReadM0Hazards(MI) > 0)
146 return NoopHazard;
148 if (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(*MI) &&
149 checkReadM0Hazards(MI) > 0)
150 return NoopHazard;
152 if (MI->isInlineAsm() && checkInlineAsmHazards(MI) > 0)
153 return NoopHazard;
155 if (checkAnyInstHazards(MI) > 0)
156 return NoopHazard;
158 return NoHazard;
161 unsigned GCNHazardRecognizer::PreEmitNoops(SUnit *SU) {
162 return PreEmitNoops(SU->getInstr());
165 unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) {
166 int WaitStates = std::max(0, checkAnyInstHazards(MI));
168 if (SIInstrInfo::isSMRD(*MI))
169 return std::max(WaitStates, checkSMRDHazards(MI));
171 if (SIInstrInfo::isVALU(*MI))
172 WaitStates = std::max(WaitStates, checkVALUHazards(MI));
174 if (SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isFLAT(*MI))
175 WaitStates = std::max(WaitStates, checkVMEMHazards(MI));
177 if (SIInstrInfo::isDPP(*MI))
178 WaitStates = std::max(WaitStates, checkDPPHazards(MI));
180 if (isDivFMas(MI->getOpcode()))
181 WaitStates = std::max(WaitStates, checkDivFMasHazards(MI));
183 if (isRWLane(MI->getOpcode()))
184 WaitStates = std::max(WaitStates, checkRWLaneHazards(MI));
186 if (MI->isInlineAsm())
187 return std::max(WaitStates, checkInlineAsmHazards(MI));
189 if (isSGetReg(MI->getOpcode()))
190 return std::max(WaitStates, checkGetRegHazards(MI));
192 if (isSSetReg(MI->getOpcode()))
193 return std::max(WaitStates, checkSetRegHazards(MI));
195 if (isRFE(MI->getOpcode()))
196 return std::max(WaitStates, checkRFEHazards(MI));
198 if (ST.hasReadM0MovRelInterpHazard() && (TII.isVINTRP(*MI) ||
199 isSMovRel(MI->getOpcode())))
200 return std::max(WaitStates, checkReadM0Hazards(MI));
202 if (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(*MI))
203 return std::max(WaitStates, checkReadM0Hazards(MI));
205 return WaitStates;
208 void GCNHazardRecognizer::EmitNoop() {
209 EmittedInstrs.push_front(nullptr);
212 void GCNHazardRecognizer::AdvanceCycle() {
213 // When the scheduler detects a stall, it will call AdvanceCycle() without
214 // emitting any instructions.
215 if (!CurrCycleInstr)
216 return;
218 // Do not track non-instructions which do not affect the wait states.
219 // If included, these instructions can lead to buffer overflow such that
220 // detectable hazards are missed.
221 if (CurrCycleInstr->getOpcode() == AMDGPU::IMPLICIT_DEF)
222 return;
223 else if (CurrCycleInstr->isDebugInstr())
224 return;
226 unsigned NumWaitStates = TII.getNumWaitStates(*CurrCycleInstr);
228 // Keep track of emitted instructions
229 EmittedInstrs.push_front(CurrCycleInstr);
231 // Add a nullptr for each additional wait state after the first. Make sure
232 // not to add more than getMaxLookAhead() items to the list, since we
233 // truncate the list to that size right after this loop.
234 for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead());
235 i < e; ++i) {
236 EmittedInstrs.push_front(nullptr);
239 // getMaxLookahead() is the largest number of wait states we will ever need
240 // to insert, so there is no point in keeping track of more than that many
241 // wait states.
242 EmittedInstrs.resize(getMaxLookAhead());
244 CurrCycleInstr = nullptr;
247 void GCNHazardRecognizer::RecedeCycle() {
248 llvm_unreachable("hazard recognizer does not support bottom-up scheduling.");
251 //===----------------------------------------------------------------------===//
252 // Helper Functions
253 //===----------------------------------------------------------------------===//
255 int GCNHazardRecognizer::getWaitStatesSince(
256 function_ref<bool(MachineInstr *)> IsHazard) {
257 int WaitStates = 0;
258 for (MachineInstr *MI : EmittedInstrs) {
259 if (MI) {
260 if (IsHazard(MI))
261 return WaitStates;
263 unsigned Opcode = MI->getOpcode();
264 if (Opcode == AMDGPU::INLINEASM)
265 continue;
267 ++WaitStates;
269 return std::numeric_limits<int>::max();
272 int GCNHazardRecognizer::getWaitStatesSinceDef(
273 unsigned Reg, function_ref<bool(MachineInstr *)> IsHazardDef) {
274 const SIRegisterInfo *TRI = ST.getRegisterInfo();
276 auto IsHazardFn = [IsHazardDef, TRI, Reg] (MachineInstr *MI) {
277 return IsHazardDef(MI) && MI->modifiesRegister(Reg, TRI);
280 return getWaitStatesSince(IsHazardFn);
283 int GCNHazardRecognizer::getWaitStatesSinceSetReg(
284 function_ref<bool(MachineInstr *)> IsHazard) {
285 auto IsHazardFn = [IsHazard] (MachineInstr *MI) {
286 return isSSetReg(MI->getOpcode()) && IsHazard(MI);
289 return getWaitStatesSince(IsHazardFn);
292 //===----------------------------------------------------------------------===//
293 // No-op Hazard Detection
294 //===----------------------------------------------------------------------===//
296 static void addRegUnits(const SIRegisterInfo &TRI,
297 BitVector &BV, unsigned Reg) {
298 for (MCRegUnitIterator RUI(Reg, &TRI); RUI.isValid(); ++RUI)
299 BV.set(*RUI);
302 static void addRegsToSet(const SIRegisterInfo &TRI,
303 iterator_range<MachineInstr::const_mop_iterator> Ops,
304 BitVector &Set) {
305 for (const MachineOperand &Op : Ops) {
306 if (Op.isReg())
307 addRegUnits(TRI, Set, Op.getReg());
311 void GCNHazardRecognizer::addClauseInst(const MachineInstr &MI) {
312 // XXX: Do we need to worry about implicit operands
313 addRegsToSet(TRI, MI.defs(), ClauseDefs);
314 addRegsToSet(TRI, MI.uses(), ClauseUses);
317 int GCNHazardRecognizer::checkSoftClauseHazards(MachineInstr *MEM) {
318 // SMEM soft clause are only present on VI+, and only matter if xnack is
319 // enabled.
320 if (!ST.isXNACKEnabled())
321 return 0;
323 bool IsSMRD = TII.isSMRD(*MEM);
325 resetClause();
327 // A soft-clause is any group of consecutive SMEM instructions. The
328 // instructions in this group may return out of order and/or may be
329 // replayed (i.e. the same instruction issued more than once).
331 // In order to handle these situations correctly we need to make sure
332 // that when a clause has more than one instruction, no instruction in the
333 // clause writes to a register that is read another instruction in the clause
334 // (including itself). If we encounter this situaion, we need to break the
335 // clause by inserting a non SMEM instruction.
337 for (MachineInstr *MI : EmittedInstrs) {
338 // When we hit a non-SMEM instruction then we have passed the start of the
339 // clause and we can stop.
340 if (!MI)
341 break;
343 if (IsSMRD != SIInstrInfo::isSMRD(*MI))
344 break;
346 addClauseInst(*MI);
349 if (ClauseDefs.none())
350 return 0;
352 // We need to make sure not to put loads and stores in the same clause if they
353 // use the same address. For now, just start a new clause whenever we see a
354 // store.
355 if (MEM->mayStore())
356 return 1;
358 addClauseInst(*MEM);
360 // If the set of defs and uses intersect then we cannot add this instruction
361 // to the clause, so we have a hazard.
362 return ClauseDefs.anyCommon(ClauseUses) ? 1 : 0;
365 int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) {
366 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
367 int WaitStatesNeeded = 0;
369 WaitStatesNeeded = checkSoftClauseHazards(SMRD);
371 // This SMRD hazard only affects SI.
372 if (ST.getGeneration() != AMDGPUSubtarget::SOUTHERN_ISLANDS)
373 return WaitStatesNeeded;
375 // A read of an SGPR by SMRD instruction requires 4 wait states when the
376 // SGPR was written by a VALU instruction.
377 int SmrdSgprWaitStates = 4;
378 auto IsHazardDefFn = [this] (MachineInstr *MI) { return TII.isVALU(*MI); };
379 auto IsBufferHazardDefFn = [this] (MachineInstr *MI) { return TII.isSALU(*MI); };
381 bool IsBufferSMRD = TII.isBufferSMRD(*SMRD);
383 for (const MachineOperand &Use : SMRD->uses()) {
384 if (!Use.isReg())
385 continue;
386 int WaitStatesNeededForUse =
387 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn);
388 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
390 // This fixes what appears to be undocumented hardware behavior in SI where
391 // s_mov writing a descriptor and s_buffer_load_dword reading the descriptor
392 // needs some number of nops in between. We don't know how many we need, but
393 // let's use 4. This wasn't discovered before probably because the only
394 // case when this happens is when we expand a 64-bit pointer into a full
395 // descriptor and use s_buffer_load_dword instead of s_load_dword, which was
396 // probably never encountered in the closed-source land.
397 if (IsBufferSMRD) {
398 int WaitStatesNeededForUse =
399 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(),
400 IsBufferHazardDefFn);
401 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
405 return WaitStatesNeeded;
408 int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) {
409 if (ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
410 return 0;
412 int WaitStatesNeeded = checkSoftClauseHazards(VMEM);
414 // A read of an SGPR by a VMEM instruction requires 5 wait states when the
415 // SGPR was written by a VALU Instruction.
416 const int VmemSgprWaitStates = 5;
417 auto IsHazardDefFn = [this] (MachineInstr *MI) { return TII.isVALU(*MI); };
419 for (const MachineOperand &Use : VMEM->uses()) {
420 if (!Use.isReg() || TRI.isVGPR(MF.getRegInfo(), Use.getReg()))
421 continue;
423 int WaitStatesNeededForUse =
424 VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn);
425 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
427 return WaitStatesNeeded;
430 int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) {
431 const SIRegisterInfo *TRI = ST.getRegisterInfo();
432 const SIInstrInfo *TII = ST.getInstrInfo();
434 // Check for DPP VGPR read after VALU VGPR write and EXEC write.
435 int DppVgprWaitStates = 2;
436 int DppExecWaitStates = 5;
437 int WaitStatesNeeded = 0;
438 auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); };
440 for (const MachineOperand &Use : DPP->uses()) {
441 if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg()))
442 continue;
443 int WaitStatesNeededForUse =
444 DppVgprWaitStates - getWaitStatesSinceDef(Use.getReg());
445 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
448 WaitStatesNeeded = std::max(
449 WaitStatesNeeded,
450 DppExecWaitStates - getWaitStatesSinceDef(AMDGPU::EXEC, IsHazardDefFn));
452 return WaitStatesNeeded;
455 int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) {
456 const SIInstrInfo *TII = ST.getInstrInfo();
458 // v_div_fmas requires 4 wait states after a write to vcc from a VALU
459 // instruction.
460 const int DivFMasWaitStates = 4;
461 auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); };
462 int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn);
464 return DivFMasWaitStates - WaitStatesNeeded;
467 int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) {
468 const SIInstrInfo *TII = ST.getInstrInfo();
469 unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr);
471 const int GetRegWaitStates = 2;
472 auto IsHazardFn = [TII, GetRegHWReg] (MachineInstr *MI) {
473 return GetRegHWReg == getHWReg(TII, *MI);
475 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn);
477 return GetRegWaitStates - WaitStatesNeeded;
480 int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) {
481 const SIInstrInfo *TII = ST.getInstrInfo();
482 unsigned HWReg = getHWReg(TII, *SetRegInstr);
484 const int SetRegWaitStates =
485 ST.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS ? 1 : 2;
486 auto IsHazardFn = [TII, HWReg] (MachineInstr *MI) {
487 return HWReg == getHWReg(TII, *MI);
489 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn);
490 return SetRegWaitStates - WaitStatesNeeded;
493 int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) {
494 if (!MI.mayStore())
495 return -1;
497 const SIInstrInfo *TII = ST.getInstrInfo();
498 unsigned Opcode = MI.getOpcode();
499 const MCInstrDesc &Desc = MI.getDesc();
501 int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata);
502 int VDataRCID = -1;
503 if (VDataIdx != -1)
504 VDataRCID = Desc.OpInfo[VDataIdx].RegClass;
506 if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) {
507 // There is no hazard if the instruction does not use vector regs
508 // (like wbinvl1)
509 if (VDataIdx == -1)
510 return -1;
511 // For MUBUF/MTBUF instructions this hazard only exists if the
512 // instruction is not using a register in the soffset field.
513 const MachineOperand *SOffset =
514 TII->getNamedOperand(MI, AMDGPU::OpName::soffset);
515 // If we have no soffset operand, then assume this field has been
516 // hardcoded to zero.
517 if (AMDGPU::getRegBitWidth(VDataRCID) > 64 &&
518 (!SOffset || !SOffset->isReg()))
519 return VDataIdx;
522 // MIMG instructions create a hazard if they don't use a 256-bit T# and
523 // the store size is greater than 8 bytes and they have more than two bits
524 // of their dmask set.
525 // All our MIMG definitions use a 256-bit T#, so we can skip checking for them.
526 if (TII->isMIMG(MI)) {
527 int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc);
528 assert(SRsrcIdx != -1 &&
529 AMDGPU::getRegBitWidth(Desc.OpInfo[SRsrcIdx].RegClass) == 256);
530 (void)SRsrcIdx;
533 if (TII->isFLAT(MI)) {
534 int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata);
535 if (AMDGPU::getRegBitWidth(Desc.OpInfo[DataIdx].RegClass) > 64)
536 return DataIdx;
539 return -1;
542 int GCNHazardRecognizer::checkVALUHazardsHelper(const MachineOperand &Def,
543 const MachineRegisterInfo &MRI) {
544 // Helper to check for the hazard where VMEM instructions that store more than
545 // 8 bytes can have there store data over written by the next instruction.
546 const SIRegisterInfo *TRI = ST.getRegisterInfo();
548 const int VALUWaitStates = 1;
549 int WaitStatesNeeded = 0;
551 if (!TRI->isVGPR(MRI, Def.getReg()))
552 return WaitStatesNeeded;
553 unsigned Reg = Def.getReg();
554 auto IsHazardFn = [this, Reg, TRI] (MachineInstr *MI) {
555 int DataIdx = createsVALUHazard(*MI);
556 return DataIdx >= 0 &&
557 TRI->regsOverlap(MI->getOperand(DataIdx).getReg(), Reg);
559 int WaitStatesNeededForDef =
560 VALUWaitStates - getWaitStatesSince(IsHazardFn);
561 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
563 return WaitStatesNeeded;
566 int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) {
567 // This checks for the hazard where VMEM instructions that store more than
568 // 8 bytes can have there store data over written by the next instruction.
569 if (!ST.has12DWordStoreHazard())
570 return 0;
572 const MachineRegisterInfo &MRI = MF.getRegInfo();
573 int WaitStatesNeeded = 0;
575 for (const MachineOperand &Def : VALU->defs()) {
576 WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Def, MRI));
579 return WaitStatesNeeded;
582 int GCNHazardRecognizer::checkInlineAsmHazards(MachineInstr *IA) {
583 // This checks for hazards associated with inline asm statements.
584 // Since inline asms can contain just about anything, we use this
585 // to call/leverage other check*Hazard routines. Note that
586 // this function doesn't attempt to address all possible inline asm
587 // hazards (good luck), but is a collection of what has been
588 // problematic thus far.
590 // see checkVALUHazards()
591 if (!ST.has12DWordStoreHazard())
592 return 0;
594 const MachineRegisterInfo &MRI = MF.getRegInfo();
595 int WaitStatesNeeded = 0;
597 for (unsigned I = InlineAsm::MIOp_FirstOperand, E = IA->getNumOperands();
598 I != E; ++I) {
599 const MachineOperand &Op = IA->getOperand(I);
600 if (Op.isReg() && Op.isDef()) {
601 WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Op, MRI));
605 return WaitStatesNeeded;
608 int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) {
609 const SIInstrInfo *TII = ST.getInstrInfo();
610 const SIRegisterInfo *TRI = ST.getRegisterInfo();
611 const MachineRegisterInfo &MRI = MF.getRegInfo();
613 const MachineOperand *LaneSelectOp =
614 TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1);
616 if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg()))
617 return 0;
619 unsigned LaneSelectReg = LaneSelectOp->getReg();
620 auto IsHazardFn = [TII] (MachineInstr *MI) {
621 return TII->isVALU(*MI);
624 const int RWLaneWaitStates = 4;
625 int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn);
626 return RWLaneWaitStates - WaitStatesSince;
629 int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) {
630 if (ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
631 return 0;
633 const SIInstrInfo *TII = ST.getInstrInfo();
635 const int RFEWaitStates = 1;
637 auto IsHazardFn = [TII] (MachineInstr *MI) {
638 return getHWReg(TII, *MI) == AMDGPU::Hwreg::ID_TRAPSTS;
640 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn);
641 return RFEWaitStates - WaitStatesNeeded;
644 int GCNHazardRecognizer::checkAnyInstHazards(MachineInstr *MI) {
645 if (MI->isDebugInstr())
646 return 0;
648 const SIRegisterInfo *TRI = ST.getRegisterInfo();
649 if (!ST.hasSMovFedHazard())
650 return 0;
652 // Check for any instruction reading an SGPR after a write from
653 // s_mov_fed_b32.
654 int MovFedWaitStates = 1;
655 int WaitStatesNeeded = 0;
657 for (const MachineOperand &Use : MI->uses()) {
658 if (!Use.isReg() || TRI->isVGPR(MF.getRegInfo(), Use.getReg()))
659 continue;
660 auto IsHazardFn = [] (MachineInstr *MI) {
661 return MI->getOpcode() == AMDGPU::S_MOV_FED_B32;
663 int WaitStatesNeededForUse =
664 MovFedWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardFn);
665 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
668 return WaitStatesNeeded;
671 int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) {
672 const SIInstrInfo *TII = ST.getInstrInfo();
673 const int SMovRelWaitStates = 1;
674 auto IsHazardFn = [TII] (MachineInstr *MI) {
675 return TII->isSALU(*MI);
677 return SMovRelWaitStates - getWaitStatesSinceDef(AMDGPU::M0, IsHazardFn);