[llvm-exegesis][NFC] Pass Instruction instead of bare Opcode
[llvm-core.git] / lib / Target / X86 / X86TargetMachine.cpp
blob812b8b28ebdce189c8b542fc6871ba911cfab82a
1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the X86 specific subclass of TargetMachine.
12 //===----------------------------------------------------------------------===//
14 #include "X86TargetMachine.h"
15 #include "MCTargetDesc/X86MCTargetDesc.h"
16 #include "X86.h"
17 #include "X86CallLowering.h"
18 #include "X86LegalizerInfo.h"
19 #include "X86MacroFusion.h"
20 #include "X86Subtarget.h"
21 #include "X86TargetObjectFile.h"
22 #include "X86TargetTransformInfo.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/CodeGen/ExecutionDomainFix.h"
30 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
31 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
32 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
33 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
34 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
35 #include "llvm/CodeGen/MachineScheduler.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/CodeGen/TargetPassConfig.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/CodeGen.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/TargetRegistry.h"
46 #include "llvm/Target/TargetLoweringObjectFile.h"
47 #include "llvm/Target/TargetOptions.h"
48 #include <memory>
49 #include <string>
51 using namespace llvm;
53 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner",
54 cl::desc("Enable the machine combiner pass"),
55 cl::init(true), cl::Hidden);
57 static cl::opt<bool> EnableCondBrFoldingPass("x86-condbr-folding",
58 cl::desc("Enable the conditional branch "
59 "folding pass"),
60 cl::init(true), cl::Hidden);
62 namespace llvm {
64 void initializeWinEHStatePassPass(PassRegistry &);
65 void initializeFixupLEAPassPass(PassRegistry &);
66 void initializeShadowCallStackPass(PassRegistry &);
67 void initializeX86CallFrameOptimizationPass(PassRegistry &);
68 void initializeX86CmovConverterPassPass(PassRegistry &);
69 void initializeX86ExecutionDomainFixPass(PassRegistry &);
70 void initializeX86DomainReassignmentPass(PassRegistry &);
71 void initializeX86AvoidSFBPassPass(PassRegistry &);
72 void initializeX86SpeculativeLoadHardeningPassPass(PassRegistry &);
73 void initializeX86FlagsCopyLoweringPassPass(PassRegistry &);
75 } // end namespace llvm
77 extern "C" void LLVMInitializeX86Target() {
78 // Register the target.
79 RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target());
80 RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target());
82 PassRegistry &PR = *PassRegistry::getPassRegistry();
83 initializeGlobalISel(PR);
84 initializeWinEHStatePassPass(PR);
85 initializeFixupBWInstPassPass(PR);
86 initializeEvexToVexInstPassPass(PR);
87 initializeFixupLEAPassPass(PR);
88 initializeShadowCallStackPass(PR);
89 initializeX86CallFrameOptimizationPass(PR);
90 initializeX86CmovConverterPassPass(PR);
91 initializeX86ExecutionDomainFixPass(PR);
92 initializeX86DomainReassignmentPass(PR);
93 initializeX86AvoidSFBPassPass(PR);
94 initializeX86SpeculativeLoadHardeningPassPass(PR);
95 initializeX86FlagsCopyLoweringPassPass(PR);
98 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
99 if (TT.isOSBinFormatMachO()) {
100 if (TT.getArch() == Triple::x86_64)
101 return llvm::make_unique<X86_64MachoTargetObjectFile>();
102 return llvm::make_unique<TargetLoweringObjectFileMachO>();
105 if (TT.isOSFreeBSD())
106 return llvm::make_unique<X86FreeBSDTargetObjectFile>();
107 if (TT.isOSLinux() || TT.isOSNaCl() || TT.isOSIAMCU())
108 return llvm::make_unique<X86LinuxNaClTargetObjectFile>();
109 if (TT.isOSSolaris())
110 return llvm::make_unique<X86SolarisTargetObjectFile>();
111 if (TT.isOSFuchsia())
112 return llvm::make_unique<X86FuchsiaTargetObjectFile>();
113 if (TT.isOSBinFormatELF())
114 return llvm::make_unique<X86ELFTargetObjectFile>();
115 if (TT.isOSBinFormatCOFF())
116 return llvm::make_unique<TargetLoweringObjectFileCOFF>();
117 llvm_unreachable("unknown subtarget type");
120 static std::string computeDataLayout(const Triple &TT) {
121 // X86 is little endian
122 std::string Ret = "e";
124 Ret += DataLayout::getManglingComponent(TT);
125 // X86 and x32 have 32 bit pointers.
126 if ((TT.isArch64Bit() &&
127 (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) ||
128 !TT.isArch64Bit())
129 Ret += "-p:32:32";
131 // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
132 if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl())
133 Ret += "-i64:64";
134 else if (TT.isOSIAMCU())
135 Ret += "-i64:32-f64:32";
136 else
137 Ret += "-f64:32:64";
139 // Some ABIs align long double to 128 bits, others to 32.
140 if (TT.isOSNaCl() || TT.isOSIAMCU())
141 ; // No f80
142 else if (TT.isArch64Bit() || TT.isOSDarwin())
143 Ret += "-f80:128";
144 else
145 Ret += "-f80:32";
147 if (TT.isOSIAMCU())
148 Ret += "-f128:32";
150 // The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
151 if (TT.isArch64Bit())
152 Ret += "-n8:16:32:64";
153 else
154 Ret += "-n8:16:32";
156 // The stack is aligned to 32 bits on some ABIs and 128 bits on others.
157 if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU())
158 Ret += "-a:0:32-S32";
159 else
160 Ret += "-S128";
162 return Ret;
165 static Reloc::Model getEffectiveRelocModel(const Triple &TT,
166 bool JIT,
167 Optional<Reloc::Model> RM) {
168 bool is64Bit = TT.getArch() == Triple::x86_64;
169 if (!RM.hasValue()) {
170 // JIT codegen should use static relocations by default, since it's
171 // typically executed in process and not relocatable.
172 if (JIT)
173 return Reloc::Static;
175 // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
176 // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
177 // use static relocation model by default.
178 if (TT.isOSDarwin()) {
179 if (is64Bit)
180 return Reloc::PIC_;
181 return Reloc::DynamicNoPIC;
183 if (TT.isOSWindows() && is64Bit)
184 return Reloc::PIC_;
185 return Reloc::Static;
188 // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC
189 // is defined as a model for code which may be used in static or dynamic
190 // executables but not necessarily a shared library. On X86-32 we just
191 // compile in -static mode, in x86-64 we use PIC.
192 if (*RM == Reloc::DynamicNoPIC) {
193 if (is64Bit)
194 return Reloc::PIC_;
195 if (!TT.isOSDarwin())
196 return Reloc::Static;
199 // If we are on Darwin, disallow static relocation model in X86-64 mode, since
200 // the Mach-O file format doesn't support it.
201 if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit)
202 return Reloc::PIC_;
204 return *RM;
207 static CodeModel::Model getEffectiveCodeModel(Optional<CodeModel::Model> CM,
208 bool JIT, bool Is64Bit) {
209 if (CM)
210 return *CM;
211 if (JIT)
212 return Is64Bit ? CodeModel::Large : CodeModel::Small;
213 return CodeModel::Small;
216 /// Create an X86 target.
218 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT,
219 StringRef CPU, StringRef FS,
220 const TargetOptions &Options,
221 Optional<Reloc::Model> RM,
222 Optional<CodeModel::Model> CM,
223 CodeGenOpt::Level OL, bool JIT)
224 : LLVMTargetMachine(
225 T, computeDataLayout(TT), TT, CPU, FS, Options,
226 getEffectiveRelocModel(TT, JIT, RM),
227 getEffectiveCodeModel(CM, JIT, TT.getArch() == Triple::x86_64), OL),
228 TLOF(createTLOF(getTargetTriple())) {
229 // Windows stack unwinder gets confused when execution flow "falls through"
230 // after a call to 'noreturn' function.
231 // To prevent that, we emit a trap for 'unreachable' IR instructions.
232 // (which on X86, happens to be the 'ud2' instruction)
233 // On PS4, the "return address" of a 'noreturn' call must still be within
234 // the calling function, and TrapUnreachable is an easy way to get that.
235 // The check here for 64-bit windows is a bit icky, but as we're unlikely
236 // to ever want to mix 32 and 64-bit windows code in a single module
237 // this should be fine.
238 if ((TT.isOSWindows() && TT.getArch() == Triple::x86_64) || TT.isPS4() ||
239 TT.isOSBinFormatMachO()) {
240 this->Options.TrapUnreachable = true;
241 this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO();
244 // Outlining is available for x86-64.
245 if (TT.getArch() == Triple::x86_64)
246 setMachineOutliner(true);
248 initAsmInfo();
251 X86TargetMachine::~X86TargetMachine() = default;
253 const X86Subtarget *
254 X86TargetMachine::getSubtargetImpl(const Function &F) const {
255 Attribute CPUAttr = F.getFnAttribute("target-cpu");
256 Attribute FSAttr = F.getFnAttribute("target-features");
258 StringRef CPU = !CPUAttr.hasAttribute(Attribute::None)
259 ? CPUAttr.getValueAsString()
260 : (StringRef)TargetCPU;
261 StringRef FS = !FSAttr.hasAttribute(Attribute::None)
262 ? FSAttr.getValueAsString()
263 : (StringRef)TargetFS;
265 SmallString<512> Key;
266 Key.reserve(CPU.size() + FS.size());
267 Key += CPU;
268 Key += FS;
270 // FIXME: This is related to the code below to reset the target options,
271 // we need to know whether or not the soft float flag is set on the
272 // function before we can generate a subtarget. We also need to use
273 // it as a key for the subtarget since that can be the only difference
274 // between two functions.
275 bool SoftFloat =
276 F.getFnAttribute("use-soft-float").getValueAsString() == "true";
277 // If the soft float attribute is set on the function turn on the soft float
278 // subtarget feature.
279 if (SoftFloat)
280 Key += FS.empty() ? "+soft-float" : ",+soft-float";
282 // Keep track of the key width after all features are added so we can extract
283 // the feature string out later.
284 unsigned CPUFSWidth = Key.size();
286 // Extract prefer-vector-width attribute.
287 unsigned PreferVectorWidthOverride = 0;
288 if (F.hasFnAttribute("prefer-vector-width")) {
289 StringRef Val = F.getFnAttribute("prefer-vector-width").getValueAsString();
290 unsigned Width;
291 if (!Val.getAsInteger(0, Width)) {
292 Key += ",prefer-vector-width=";
293 Key += Val;
294 PreferVectorWidthOverride = Width;
298 // Extract required-vector-width attribute.
299 unsigned RequiredVectorWidth = UINT32_MAX;
300 if (F.hasFnAttribute("required-vector-width")) {
301 StringRef Val = F.getFnAttribute("required-vector-width").getValueAsString();
302 unsigned Width;
303 if (!Val.getAsInteger(0, Width)) {
304 Key += ",required-vector-width=";
305 Key += Val;
306 RequiredVectorWidth = Width;
310 // Extracted here so that we make sure there is backing for the StringRef. If
311 // we assigned earlier, its possible the SmallString reallocated leaving a
312 // dangling StringRef.
313 FS = Key.slice(CPU.size(), CPUFSWidth);
315 auto &I = SubtargetMap[Key];
316 if (!I) {
317 // This needs to be done before we create a new subtarget since any
318 // creation will depend on the TM and the code generation flags on the
319 // function that reside in TargetOptions.
320 resetTargetOptions(F);
321 I = llvm::make_unique<X86Subtarget>(TargetTriple, CPU, FS, *this,
322 Options.StackAlignmentOverride,
323 PreferVectorWidthOverride,
324 RequiredVectorWidth);
326 return I.get();
329 //===----------------------------------------------------------------------===//
330 // Command line options for x86
331 //===----------------------------------------------------------------------===//
332 static cl::opt<bool>
333 UseVZeroUpper("x86-use-vzeroupper", cl::Hidden,
334 cl::desc("Minimize AVX to SSE transition penalty"),
335 cl::init(true));
337 //===----------------------------------------------------------------------===//
338 // X86 TTI query.
339 //===----------------------------------------------------------------------===//
341 TargetTransformInfo
342 X86TargetMachine::getTargetTransformInfo(const Function &F) {
343 return TargetTransformInfo(X86TTIImpl(this, F));
346 //===----------------------------------------------------------------------===//
347 // Pass Pipeline Configuration
348 //===----------------------------------------------------------------------===//
350 namespace {
352 /// X86 Code Generator Pass Configuration Options.
353 class X86PassConfig : public TargetPassConfig {
354 public:
355 X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM)
356 : TargetPassConfig(TM, PM) {}
358 X86TargetMachine &getX86TargetMachine() const {
359 return getTM<X86TargetMachine>();
362 ScheduleDAGInstrs *
363 createMachineScheduler(MachineSchedContext *C) const override {
364 ScheduleDAGMILive *DAG = createGenericSchedLive(C);
365 DAG->addMutation(createX86MacroFusionDAGMutation());
366 return DAG;
369 void addIRPasses() override;
370 bool addInstSelector() override;
371 bool addIRTranslator() override;
372 bool addLegalizeMachineIR() override;
373 bool addRegBankSelect() override;
374 bool addGlobalInstructionSelect() override;
375 bool addILPOpts() override;
376 bool addPreISel() override;
377 void addMachineSSAOptimization() override;
378 void addPreRegAlloc() override;
379 void addPostRegAlloc() override;
380 void addPreEmitPass() override;
381 void addPreEmitPass2() override;
382 void addPreSched2() override;
385 class X86ExecutionDomainFix : public ExecutionDomainFix {
386 public:
387 static char ID;
388 X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {}
389 StringRef getPassName() const override {
390 return "X86 Execution Dependency Fix";
393 char X86ExecutionDomainFix::ID;
395 } // end anonymous namespace
397 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix",
398 "X86 Execution Domain Fix", false, false)
399 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
400 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix",
401 "X86 Execution Domain Fix", false, false)
403 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
404 return new X86PassConfig(*this, PM);
407 void X86PassConfig::addIRPasses() {
408 addPass(createAtomicExpandPass());
410 TargetPassConfig::addIRPasses();
412 if (TM->getOptLevel() != CodeGenOpt::None)
413 addPass(createInterleavedAccessPass());
415 // Add passes that handle indirect branch removal and insertion of a retpoline
416 // thunk. These will be a no-op unless a function subtarget has the retpoline
417 // feature enabled.
418 addPass(createIndirectBrExpandPass());
421 bool X86PassConfig::addInstSelector() {
422 // Install an instruction selector.
423 addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
425 // For ELF, cleanup any local-dynamic TLS accesses.
426 if (TM->getTargetTriple().isOSBinFormatELF() &&
427 getOptLevel() != CodeGenOpt::None)
428 addPass(createCleanupLocalDynamicTLSPass());
430 addPass(createX86GlobalBaseRegPass());
431 return false;
434 bool X86PassConfig::addIRTranslator() {
435 addPass(new IRTranslator());
436 return false;
439 bool X86PassConfig::addLegalizeMachineIR() {
440 addPass(new Legalizer());
441 return false;
444 bool X86PassConfig::addRegBankSelect() {
445 addPass(new RegBankSelect());
446 return false;
449 bool X86PassConfig::addGlobalInstructionSelect() {
450 addPass(new InstructionSelect());
451 return false;
454 bool X86PassConfig::addILPOpts() {
455 if (EnableCondBrFoldingPass)
456 addPass(createX86CondBrFolding());
457 addPass(&EarlyIfConverterID);
458 if (EnableMachineCombinerPass)
459 addPass(&MachineCombinerID);
460 addPass(createX86CmovConverterPass());
461 return true;
464 bool X86PassConfig::addPreISel() {
465 // Only add this pass for 32-bit x86 Windows.
466 const Triple &TT = TM->getTargetTriple();
467 if (TT.isOSWindows() && TT.getArch() == Triple::x86)
468 addPass(createX86WinEHStatePass());
469 return true;
472 void X86PassConfig::addPreRegAlloc() {
473 if (getOptLevel() != CodeGenOpt::None) {
474 addPass(&LiveRangeShrinkID);
475 addPass(createX86FixupSetCC());
476 addPass(createX86OptimizeLEAs());
477 addPass(createX86CallFrameOptimization());
478 addPass(createX86AvoidStoreForwardingBlocks());
481 addPass(createX86SpeculativeLoadHardeningPass());
482 addPass(createX86FlagsCopyLoweringPass());
483 addPass(createX86WinAllocaExpander());
485 void X86PassConfig::addMachineSSAOptimization() {
486 addPass(createX86DomainReassignmentPass());
487 TargetPassConfig::addMachineSSAOptimization();
490 void X86PassConfig::addPostRegAlloc() {
491 addPass(createX86FloatingPointStackifierPass());
494 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); }
496 void X86PassConfig::addPreEmitPass() {
497 if (getOptLevel() != CodeGenOpt::None) {
498 addPass(new X86ExecutionDomainFix());
499 addPass(createBreakFalseDeps());
502 addPass(createShadowCallStackPass());
503 addPass(createX86IndirectBranchTrackingPass());
505 if (UseVZeroUpper)
506 addPass(createX86IssueVZeroUpperPass());
508 if (getOptLevel() != CodeGenOpt::None) {
509 addPass(createX86FixupBWInsts());
510 addPass(createX86PadShortFunctions());
511 addPass(createX86FixupLEAs());
512 addPass(createX86EvexToVexInsts());
516 void X86PassConfig::addPreEmitPass2() {
517 addPass(createX86RetpolineThunksPass());
518 // Verify basic block incoming and outgoing cfa offset and register values and
519 // correct CFA calculation rule where needed by inserting appropriate CFI
520 // instructions.
521 const Triple &TT = TM->getTargetTriple();
522 if (!TT.isOSDarwin() && !TT.isOSWindows())
523 addPass(createCFIInstrInserter());