1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the X86 specific subclass of TargetMachine.
12 //===----------------------------------------------------------------------===//
14 #include "X86TargetMachine.h"
15 #include "MCTargetDesc/X86MCTargetDesc.h"
17 #include "X86CallLowering.h"
18 #include "X86LegalizerInfo.h"
19 #include "X86MacroFusion.h"
20 #include "X86Subtarget.h"
21 #include "X86TargetObjectFile.h"
22 #include "X86TargetTransformInfo.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/CodeGen/ExecutionDomainFix.h"
30 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
31 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
32 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
33 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
34 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
35 #include "llvm/CodeGen/MachineScheduler.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/CodeGen/TargetPassConfig.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/CodeGen.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/TargetRegistry.h"
46 #include "llvm/Target/TargetLoweringObjectFile.h"
47 #include "llvm/Target/TargetOptions.h"
53 static cl::opt
<bool> EnableMachineCombinerPass("x86-machine-combiner",
54 cl::desc("Enable the machine combiner pass"),
55 cl::init(true), cl::Hidden
);
57 static cl::opt
<bool> EnableCondBrFoldingPass("x86-condbr-folding",
58 cl::desc("Enable the conditional branch "
60 cl::init(true), cl::Hidden
);
64 void initializeWinEHStatePassPass(PassRegistry
&);
65 void initializeFixupLEAPassPass(PassRegistry
&);
66 void initializeShadowCallStackPass(PassRegistry
&);
67 void initializeX86CallFrameOptimizationPass(PassRegistry
&);
68 void initializeX86CmovConverterPassPass(PassRegistry
&);
69 void initializeX86ExecutionDomainFixPass(PassRegistry
&);
70 void initializeX86DomainReassignmentPass(PassRegistry
&);
71 void initializeX86AvoidSFBPassPass(PassRegistry
&);
72 void initializeX86SpeculativeLoadHardeningPassPass(PassRegistry
&);
73 void initializeX86FlagsCopyLoweringPassPass(PassRegistry
&);
75 } // end namespace llvm
77 extern "C" void LLVMInitializeX86Target() {
78 // Register the target.
79 RegisterTargetMachine
<X86TargetMachine
> X(getTheX86_32Target());
80 RegisterTargetMachine
<X86TargetMachine
> Y(getTheX86_64Target());
82 PassRegistry
&PR
= *PassRegistry::getPassRegistry();
83 initializeGlobalISel(PR
);
84 initializeWinEHStatePassPass(PR
);
85 initializeFixupBWInstPassPass(PR
);
86 initializeEvexToVexInstPassPass(PR
);
87 initializeFixupLEAPassPass(PR
);
88 initializeShadowCallStackPass(PR
);
89 initializeX86CallFrameOptimizationPass(PR
);
90 initializeX86CmovConverterPassPass(PR
);
91 initializeX86ExecutionDomainFixPass(PR
);
92 initializeX86DomainReassignmentPass(PR
);
93 initializeX86AvoidSFBPassPass(PR
);
94 initializeX86SpeculativeLoadHardeningPassPass(PR
);
95 initializeX86FlagsCopyLoweringPassPass(PR
);
98 static std::unique_ptr
<TargetLoweringObjectFile
> createTLOF(const Triple
&TT
) {
99 if (TT
.isOSBinFormatMachO()) {
100 if (TT
.getArch() == Triple::x86_64
)
101 return llvm::make_unique
<X86_64MachoTargetObjectFile
>();
102 return llvm::make_unique
<TargetLoweringObjectFileMachO
>();
105 if (TT
.isOSFreeBSD())
106 return llvm::make_unique
<X86FreeBSDTargetObjectFile
>();
107 if (TT
.isOSLinux() || TT
.isOSNaCl() || TT
.isOSIAMCU())
108 return llvm::make_unique
<X86LinuxNaClTargetObjectFile
>();
109 if (TT
.isOSSolaris())
110 return llvm::make_unique
<X86SolarisTargetObjectFile
>();
111 if (TT
.isOSFuchsia())
112 return llvm::make_unique
<X86FuchsiaTargetObjectFile
>();
113 if (TT
.isOSBinFormatELF())
114 return llvm::make_unique
<X86ELFTargetObjectFile
>();
115 if (TT
.isOSBinFormatCOFF())
116 return llvm::make_unique
<TargetLoweringObjectFileCOFF
>();
117 llvm_unreachable("unknown subtarget type");
120 static std::string
computeDataLayout(const Triple
&TT
) {
121 // X86 is little endian
122 std::string Ret
= "e";
124 Ret
+= DataLayout::getManglingComponent(TT
);
125 // X86 and x32 have 32 bit pointers.
126 if ((TT
.isArch64Bit() &&
127 (TT
.getEnvironment() == Triple::GNUX32
|| TT
.isOSNaCl())) ||
131 // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
132 if (TT
.isArch64Bit() || TT
.isOSWindows() || TT
.isOSNaCl())
134 else if (TT
.isOSIAMCU())
135 Ret
+= "-i64:32-f64:32";
139 // Some ABIs align long double to 128 bits, others to 32.
140 if (TT
.isOSNaCl() || TT
.isOSIAMCU())
142 else if (TT
.isArch64Bit() || TT
.isOSDarwin())
150 // The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
151 if (TT
.isArch64Bit())
152 Ret
+= "-n8:16:32:64";
156 // The stack is aligned to 32 bits on some ABIs and 128 bits on others.
157 if ((!TT
.isArch64Bit() && TT
.isOSWindows()) || TT
.isOSIAMCU())
158 Ret
+= "-a:0:32-S32";
165 static Reloc::Model
getEffectiveRelocModel(const Triple
&TT
,
167 Optional
<Reloc::Model
> RM
) {
168 bool is64Bit
= TT
.getArch() == Triple::x86_64
;
169 if (!RM
.hasValue()) {
170 // JIT codegen should use static relocations by default, since it's
171 // typically executed in process and not relocatable.
173 return Reloc::Static
;
175 // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
176 // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
177 // use static relocation model by default.
178 if (TT
.isOSDarwin()) {
181 return Reloc::DynamicNoPIC
;
183 if (TT
.isOSWindows() && is64Bit
)
185 return Reloc::Static
;
188 // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC
189 // is defined as a model for code which may be used in static or dynamic
190 // executables but not necessarily a shared library. On X86-32 we just
191 // compile in -static mode, in x86-64 we use PIC.
192 if (*RM
== Reloc::DynamicNoPIC
) {
195 if (!TT
.isOSDarwin())
196 return Reloc::Static
;
199 // If we are on Darwin, disallow static relocation model in X86-64 mode, since
200 // the Mach-O file format doesn't support it.
201 if (*RM
== Reloc::Static
&& TT
.isOSDarwin() && is64Bit
)
207 static CodeModel::Model
getEffectiveCodeModel(Optional
<CodeModel::Model
> CM
,
208 bool JIT
, bool Is64Bit
) {
212 return Is64Bit
? CodeModel::Large
: CodeModel::Small
;
213 return CodeModel::Small
;
216 /// Create an X86 target.
218 X86TargetMachine::X86TargetMachine(const Target
&T
, const Triple
&TT
,
219 StringRef CPU
, StringRef FS
,
220 const TargetOptions
&Options
,
221 Optional
<Reloc::Model
> RM
,
222 Optional
<CodeModel::Model
> CM
,
223 CodeGenOpt::Level OL
, bool JIT
)
225 T
, computeDataLayout(TT
), TT
, CPU
, FS
, Options
,
226 getEffectiveRelocModel(TT
, JIT
, RM
),
227 getEffectiveCodeModel(CM
, JIT
, TT
.getArch() == Triple::x86_64
), OL
),
228 TLOF(createTLOF(getTargetTriple())) {
229 // Windows stack unwinder gets confused when execution flow "falls through"
230 // after a call to 'noreturn' function.
231 // To prevent that, we emit a trap for 'unreachable' IR instructions.
232 // (which on X86, happens to be the 'ud2' instruction)
233 // On PS4, the "return address" of a 'noreturn' call must still be within
234 // the calling function, and TrapUnreachable is an easy way to get that.
235 // The check here for 64-bit windows is a bit icky, but as we're unlikely
236 // to ever want to mix 32 and 64-bit windows code in a single module
237 // this should be fine.
238 if ((TT
.isOSWindows() && TT
.getArch() == Triple::x86_64
) || TT
.isPS4() ||
239 TT
.isOSBinFormatMachO()) {
240 this->Options
.TrapUnreachable
= true;
241 this->Options
.NoTrapAfterNoreturn
= TT
.isOSBinFormatMachO();
244 // Outlining is available for x86-64.
245 if (TT
.getArch() == Triple::x86_64
)
246 setMachineOutliner(true);
251 X86TargetMachine::~X86TargetMachine() = default;
254 X86TargetMachine::getSubtargetImpl(const Function
&F
) const {
255 Attribute CPUAttr
= F
.getFnAttribute("target-cpu");
256 Attribute FSAttr
= F
.getFnAttribute("target-features");
258 StringRef CPU
= !CPUAttr
.hasAttribute(Attribute::None
)
259 ? CPUAttr
.getValueAsString()
260 : (StringRef
)TargetCPU
;
261 StringRef FS
= !FSAttr
.hasAttribute(Attribute::None
)
262 ? FSAttr
.getValueAsString()
263 : (StringRef
)TargetFS
;
265 SmallString
<512> Key
;
266 Key
.reserve(CPU
.size() + FS
.size());
270 // FIXME: This is related to the code below to reset the target options,
271 // we need to know whether or not the soft float flag is set on the
272 // function before we can generate a subtarget. We also need to use
273 // it as a key for the subtarget since that can be the only difference
274 // between two functions.
276 F
.getFnAttribute("use-soft-float").getValueAsString() == "true";
277 // If the soft float attribute is set on the function turn on the soft float
278 // subtarget feature.
280 Key
+= FS
.empty() ? "+soft-float" : ",+soft-float";
282 // Keep track of the key width after all features are added so we can extract
283 // the feature string out later.
284 unsigned CPUFSWidth
= Key
.size();
286 // Extract prefer-vector-width attribute.
287 unsigned PreferVectorWidthOverride
= 0;
288 if (F
.hasFnAttribute("prefer-vector-width")) {
289 StringRef Val
= F
.getFnAttribute("prefer-vector-width").getValueAsString();
291 if (!Val
.getAsInteger(0, Width
)) {
292 Key
+= ",prefer-vector-width=";
294 PreferVectorWidthOverride
= Width
;
298 // Extract required-vector-width attribute.
299 unsigned RequiredVectorWidth
= UINT32_MAX
;
300 if (F
.hasFnAttribute("required-vector-width")) {
301 StringRef Val
= F
.getFnAttribute("required-vector-width").getValueAsString();
303 if (!Val
.getAsInteger(0, Width
)) {
304 Key
+= ",required-vector-width=";
306 RequiredVectorWidth
= Width
;
310 // Extracted here so that we make sure there is backing for the StringRef. If
311 // we assigned earlier, its possible the SmallString reallocated leaving a
312 // dangling StringRef.
313 FS
= Key
.slice(CPU
.size(), CPUFSWidth
);
315 auto &I
= SubtargetMap
[Key
];
317 // This needs to be done before we create a new subtarget since any
318 // creation will depend on the TM and the code generation flags on the
319 // function that reside in TargetOptions.
320 resetTargetOptions(F
);
321 I
= llvm::make_unique
<X86Subtarget
>(TargetTriple
, CPU
, FS
, *this,
322 Options
.StackAlignmentOverride
,
323 PreferVectorWidthOverride
,
324 RequiredVectorWidth
);
329 //===----------------------------------------------------------------------===//
330 // Command line options for x86
331 //===----------------------------------------------------------------------===//
333 UseVZeroUpper("x86-use-vzeroupper", cl::Hidden
,
334 cl::desc("Minimize AVX to SSE transition penalty"),
337 //===----------------------------------------------------------------------===//
339 //===----------------------------------------------------------------------===//
342 X86TargetMachine::getTargetTransformInfo(const Function
&F
) {
343 return TargetTransformInfo(X86TTIImpl(this, F
));
346 //===----------------------------------------------------------------------===//
347 // Pass Pipeline Configuration
348 //===----------------------------------------------------------------------===//
352 /// X86 Code Generator Pass Configuration Options.
353 class X86PassConfig
: public TargetPassConfig
{
355 X86PassConfig(X86TargetMachine
&TM
, PassManagerBase
&PM
)
356 : TargetPassConfig(TM
, PM
) {}
358 X86TargetMachine
&getX86TargetMachine() const {
359 return getTM
<X86TargetMachine
>();
363 createMachineScheduler(MachineSchedContext
*C
) const override
{
364 ScheduleDAGMILive
*DAG
= createGenericSchedLive(C
);
365 DAG
->addMutation(createX86MacroFusionDAGMutation());
369 void addIRPasses() override
;
370 bool addInstSelector() override
;
371 bool addIRTranslator() override
;
372 bool addLegalizeMachineIR() override
;
373 bool addRegBankSelect() override
;
374 bool addGlobalInstructionSelect() override
;
375 bool addILPOpts() override
;
376 bool addPreISel() override
;
377 void addMachineSSAOptimization() override
;
378 void addPreRegAlloc() override
;
379 void addPostRegAlloc() override
;
380 void addPreEmitPass() override
;
381 void addPreEmitPass2() override
;
382 void addPreSched2() override
;
385 class X86ExecutionDomainFix
: public ExecutionDomainFix
{
388 X86ExecutionDomainFix() : ExecutionDomainFix(ID
, X86::VR128XRegClass
) {}
389 StringRef
getPassName() const override
{
390 return "X86 Execution Dependency Fix";
393 char X86ExecutionDomainFix::ID
;
395 } // end anonymous namespace
397 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix
, "x86-execution-domain-fix",
398 "X86 Execution Domain Fix", false, false)
399 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis
)
400 INITIALIZE_PASS_END(X86ExecutionDomainFix
, "x86-execution-domain-fix",
401 "X86 Execution Domain Fix", false, false)
403 TargetPassConfig
*X86TargetMachine::createPassConfig(PassManagerBase
&PM
) {
404 return new X86PassConfig(*this, PM
);
407 void X86PassConfig::addIRPasses() {
408 addPass(createAtomicExpandPass());
410 TargetPassConfig::addIRPasses();
412 if (TM
->getOptLevel() != CodeGenOpt::None
)
413 addPass(createInterleavedAccessPass());
415 // Add passes that handle indirect branch removal and insertion of a retpoline
416 // thunk. These will be a no-op unless a function subtarget has the retpoline
418 addPass(createIndirectBrExpandPass());
421 bool X86PassConfig::addInstSelector() {
422 // Install an instruction selector.
423 addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
425 // For ELF, cleanup any local-dynamic TLS accesses.
426 if (TM
->getTargetTriple().isOSBinFormatELF() &&
427 getOptLevel() != CodeGenOpt::None
)
428 addPass(createCleanupLocalDynamicTLSPass());
430 addPass(createX86GlobalBaseRegPass());
434 bool X86PassConfig::addIRTranslator() {
435 addPass(new IRTranslator());
439 bool X86PassConfig::addLegalizeMachineIR() {
440 addPass(new Legalizer());
444 bool X86PassConfig::addRegBankSelect() {
445 addPass(new RegBankSelect());
449 bool X86PassConfig::addGlobalInstructionSelect() {
450 addPass(new InstructionSelect());
454 bool X86PassConfig::addILPOpts() {
455 if (EnableCondBrFoldingPass
)
456 addPass(createX86CondBrFolding());
457 addPass(&EarlyIfConverterID
);
458 if (EnableMachineCombinerPass
)
459 addPass(&MachineCombinerID
);
460 addPass(createX86CmovConverterPass());
464 bool X86PassConfig::addPreISel() {
465 // Only add this pass for 32-bit x86 Windows.
466 const Triple
&TT
= TM
->getTargetTriple();
467 if (TT
.isOSWindows() && TT
.getArch() == Triple::x86
)
468 addPass(createX86WinEHStatePass());
472 void X86PassConfig::addPreRegAlloc() {
473 if (getOptLevel() != CodeGenOpt::None
) {
474 addPass(&LiveRangeShrinkID
);
475 addPass(createX86FixupSetCC());
476 addPass(createX86OptimizeLEAs());
477 addPass(createX86CallFrameOptimization());
478 addPass(createX86AvoidStoreForwardingBlocks());
481 addPass(createX86SpeculativeLoadHardeningPass());
482 addPass(createX86FlagsCopyLoweringPass());
483 addPass(createX86WinAllocaExpander());
485 void X86PassConfig::addMachineSSAOptimization() {
486 addPass(createX86DomainReassignmentPass());
487 TargetPassConfig::addMachineSSAOptimization();
490 void X86PassConfig::addPostRegAlloc() {
491 addPass(createX86FloatingPointStackifierPass());
494 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); }
496 void X86PassConfig::addPreEmitPass() {
497 if (getOptLevel() != CodeGenOpt::None
) {
498 addPass(new X86ExecutionDomainFix());
499 addPass(createBreakFalseDeps());
502 addPass(createShadowCallStackPass());
503 addPass(createX86IndirectBranchTrackingPass());
506 addPass(createX86IssueVZeroUpperPass());
508 if (getOptLevel() != CodeGenOpt::None
) {
509 addPass(createX86FixupBWInsts());
510 addPass(createX86PadShortFunctions());
511 addPass(createX86FixupLEAs());
512 addPass(createX86EvexToVexInsts());
516 void X86PassConfig::addPreEmitPass2() {
517 addPass(createX86RetpolineThunksPass());
518 // Verify basic block incoming and outgoing cfa offset and register values and
519 // correct CFA calculation rule where needed by inserting appropriate CFI
521 const Triple
&TT
= TM
->getTargetTriple();
522 if (!TT
.isOSDarwin() && !TT
.isOSWindows())
523 addPass(createCFIInstrInserter());