1 //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This implements the SelectionDAGISel class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/SelectionDAGISel.h"
14 #include "ScheduleDAGSDNodes.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/PostOrderIterator.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/Analysis/CFG.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/CodeGen/FastISel.h"
34 #include "llvm/CodeGen/FunctionLoweringInfo.h"
35 #include "llvm/CodeGen/GCMetadata.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineInstr.h"
42 #include "llvm/CodeGen/MachineInstrBuilder.h"
43 #include "llvm/CodeGen/MachineMemOperand.h"
44 #include "llvm/CodeGen/MachineModuleInfo.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/MachinePassRegistry.h"
47 #include "llvm/CodeGen/MachineRegisterInfo.h"
48 #include "llvm/CodeGen/SchedulerRegistry.h"
49 #include "llvm/CodeGen/SelectionDAG.h"
50 #include "llvm/CodeGen/SelectionDAGNodes.h"
51 #include "llvm/CodeGen/StackProtector.h"
52 #include "llvm/CodeGen/TargetInstrInfo.h"
53 #include "llvm/CodeGen/TargetLowering.h"
54 #include "llvm/CodeGen/TargetRegisterInfo.h"
55 #include "llvm/CodeGen/TargetSubtargetInfo.h"
56 #include "llvm/CodeGen/ValueTypes.h"
57 #include "llvm/IR/BasicBlock.h"
58 #include "llvm/IR/Constants.h"
59 #include "llvm/IR/DataLayout.h"
60 #include "llvm/IR/DebugInfoMetadata.h"
61 #include "llvm/IR/DebugLoc.h"
62 #include "llvm/IR/DiagnosticInfo.h"
63 #include "llvm/IR/Dominators.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/InlineAsm.h"
66 #include "llvm/IR/InstIterator.h"
67 #include "llvm/IR/InstrTypes.h"
68 #include "llvm/IR/Instruction.h"
69 #include "llvm/IR/Instructions.h"
70 #include "llvm/IR/IntrinsicInst.h"
71 #include "llvm/IR/Intrinsics.h"
72 #include "llvm/IR/Metadata.h"
73 #include "llvm/IR/Type.h"
74 #include "llvm/IR/User.h"
75 #include "llvm/IR/Value.h"
76 #include "llvm/MC/MCInstrDesc.h"
77 #include "llvm/MC/MCRegisterInfo.h"
78 #include "llvm/Pass.h"
79 #include "llvm/Support/BranchProbability.h"
80 #include "llvm/Support/Casting.h"
81 #include "llvm/Support/CodeGen.h"
82 #include "llvm/Support/CommandLine.h"
83 #include "llvm/Support/Compiler.h"
84 #include "llvm/Support/Debug.h"
85 #include "llvm/Support/ErrorHandling.h"
86 #include "llvm/Support/KnownBits.h"
87 #include "llvm/Support/MachineValueType.h"
88 #include "llvm/Support/Timer.h"
89 #include "llvm/Support/raw_ostream.h"
90 #include "llvm/Target/TargetIntrinsicInfo.h"
91 #include "llvm/Target/TargetMachine.h"
92 #include "llvm/Target/TargetOptions.h"
93 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
104 using namespace llvm
;
106 #define DEBUG_TYPE "isel"
108 STATISTIC(NumFastIselFailures
, "Number of instructions fast isel failed on");
109 STATISTIC(NumFastIselSuccess
, "Number of instructions fast isel selected");
110 STATISTIC(NumFastIselBlocks
, "Number of blocks selected entirely by fast isel");
111 STATISTIC(NumDAGBlocks
, "Number of blocks selected using DAG");
112 STATISTIC(NumDAGIselRetries
,"Number of times dag isel has to try another path");
113 STATISTIC(NumEntryBlocks
, "Number of entry blocks encountered");
114 STATISTIC(NumFastIselFailLowerArguments
,
115 "Number of entry blocks where fast isel failed to lower arguments");
117 static cl::opt
<int> EnableFastISelAbort(
118 "fast-isel-abort", cl::Hidden
,
119 cl::desc("Enable abort calls when \"fast\" instruction selection "
120 "fails to lower an instruction: 0 disable the abort, 1 will "
121 "abort but for args, calls and terminators, 2 will also "
122 "abort for argument lowering, and 3 will never fallback "
123 "to SelectionDAG."));
125 static cl::opt
<bool> EnableFastISelFallbackReport(
126 "fast-isel-report-on-fallback", cl::Hidden
,
127 cl::desc("Emit a diagnostic when \"fast\" instruction selection "
128 "falls back to SelectionDAG."));
132 cl::desc("use Machine Branch Probability Info"),
133 cl::init(true), cl::Hidden
);
136 static cl::opt
<std::string
>
137 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden
,
138 cl::desc("Only display the basic block whose name "
139 "matches this for all view-*-dags options"));
141 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden
,
142 cl::desc("Pop up a window to show dags before the first "
143 "dag combine pass"));
145 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden
,
146 cl::desc("Pop up a window to show dags before legalize types"));
148 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden
,
149 cl::desc("Pop up a window to show dags before legalize"));
151 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden
,
152 cl::desc("Pop up a window to show dags before the second "
153 "dag combine pass"));
155 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden
,
156 cl::desc("Pop up a window to show dags before the post legalize types"
157 " dag combine pass"));
159 ViewISelDAGs("view-isel-dags", cl::Hidden
,
160 cl::desc("Pop up a window to show isel dags as they are selected"));
162 ViewSchedDAGs("view-sched-dags", cl::Hidden
,
163 cl::desc("Pop up a window to show sched dags as they are processed"));
165 ViewSUnitDAGs("view-sunit-dags", cl::Hidden
,
166 cl::desc("Pop up a window to show SUnit dags after they are processed"));
168 static const bool ViewDAGCombine1
= false,
169 ViewLegalizeTypesDAGs
= false, ViewLegalizeDAGs
= false,
170 ViewDAGCombine2
= false,
171 ViewDAGCombineLT
= false,
172 ViewISelDAGs
= false, ViewSchedDAGs
= false,
173 ViewSUnitDAGs
= false;
176 //===---------------------------------------------------------------------===//
178 /// RegisterScheduler class - Track the registration of instruction schedulers.
180 //===---------------------------------------------------------------------===//
181 MachinePassRegistry
<RegisterScheduler::FunctionPassCtor
>
182 RegisterScheduler::Registry
;
184 //===---------------------------------------------------------------------===//
186 /// ISHeuristic command line option for instruction schedulers.
188 //===---------------------------------------------------------------------===//
189 static cl::opt
<RegisterScheduler::FunctionPassCtor
, false,
190 RegisterPassParser
<RegisterScheduler
>>
191 ISHeuristic("pre-RA-sched",
192 cl::init(&createDefaultScheduler
), cl::Hidden
,
193 cl::desc("Instruction schedulers available (before register"
196 static RegisterScheduler
197 defaultListDAGScheduler("default", "Best scheduler for the target",
198 createDefaultScheduler
);
202 //===--------------------------------------------------------------------===//
203 /// This class is used by SelectionDAGISel to temporarily override
204 /// the optimization level on a per-function basis.
205 class OptLevelChanger
{
206 SelectionDAGISel
&IS
;
207 CodeGenOpt::Level SavedOptLevel
;
211 OptLevelChanger(SelectionDAGISel
&ISel
,
212 CodeGenOpt::Level NewOptLevel
) : IS(ISel
) {
213 SavedOptLevel
= IS
.OptLevel
;
214 if (NewOptLevel
== SavedOptLevel
)
216 IS
.OptLevel
= NewOptLevel
;
217 IS
.TM
.setOptLevel(NewOptLevel
);
218 LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function "
219 << IS
.MF
->getFunction().getName() << "\n");
220 LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel
<< " ; After: -O"
221 << NewOptLevel
<< "\n");
222 SavedFastISel
= IS
.TM
.Options
.EnableFastISel
;
223 if (NewOptLevel
== CodeGenOpt::None
) {
224 IS
.TM
.setFastISel(IS
.TM
.getO0WantsFastISel());
226 dbgs() << "\tFastISel is "
227 << (IS
.TM
.Options
.EnableFastISel
? "enabled" : "disabled")
233 if (IS
.OptLevel
== SavedOptLevel
)
235 LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function "
236 << IS
.MF
->getFunction().getName() << "\n");
237 LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS
.OptLevel
<< " ; After: -O"
238 << SavedOptLevel
<< "\n");
239 IS
.OptLevel
= SavedOptLevel
;
240 IS
.TM
.setOptLevel(SavedOptLevel
);
241 IS
.TM
.setFastISel(SavedFastISel
);
245 //===--------------------------------------------------------------------===//
246 /// createDefaultScheduler - This creates an instruction scheduler appropriate
248 ScheduleDAGSDNodes
* createDefaultScheduler(SelectionDAGISel
*IS
,
249 CodeGenOpt::Level OptLevel
) {
250 const TargetLowering
*TLI
= IS
->TLI
;
251 const TargetSubtargetInfo
&ST
= IS
->MF
->getSubtarget();
253 // Try first to see if the Target has its own way of selecting a scheduler
254 if (auto *SchedulerCtor
= ST
.getDAGScheduler(OptLevel
)) {
255 return SchedulerCtor(IS
, OptLevel
);
258 if (OptLevel
== CodeGenOpt::None
||
259 (ST
.enableMachineScheduler() && ST
.enableMachineSchedDefaultSched()) ||
260 TLI
->getSchedulingPreference() == Sched::Source
)
261 return createSourceListDAGScheduler(IS
, OptLevel
);
262 if (TLI
->getSchedulingPreference() == Sched::RegPressure
)
263 return createBURRListDAGScheduler(IS
, OptLevel
);
264 if (TLI
->getSchedulingPreference() == Sched::Hybrid
)
265 return createHybridListDAGScheduler(IS
, OptLevel
);
266 if (TLI
->getSchedulingPreference() == Sched::VLIW
)
267 return createVLIWDAGScheduler(IS
, OptLevel
);
268 assert(TLI
->getSchedulingPreference() == Sched::ILP
&&
269 "Unknown sched type!");
270 return createILPListDAGScheduler(IS
, OptLevel
);
273 } // end namespace llvm
275 // EmitInstrWithCustomInserter - This method should be implemented by targets
276 // that mark instructions with the 'usesCustomInserter' flag. These
277 // instructions are special in various ways, which require special support to
278 // insert. The specified MachineInstr is created but not inserted into any
279 // basic blocks, and this method is called to expand it into a sequence of
280 // instructions, potentially also creating new basic blocks and control flow.
281 // When new basic blocks are inserted and the edges from MBB to its successors
282 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
285 TargetLowering::EmitInstrWithCustomInserter(MachineInstr
&MI
,
286 MachineBasicBlock
*MBB
) const {
288 dbgs() << "If a target marks an instruction with "
289 "'usesCustomInserter', it must implement "
290 "TargetLowering::EmitInstrWithCustomInserter!";
292 llvm_unreachable(nullptr);
295 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr
&MI
,
296 SDNode
*Node
) const {
297 assert(!MI
.hasPostISelHook() &&
298 "If a target marks an instruction with 'hasPostISelHook', "
299 "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
302 //===----------------------------------------------------------------------===//
303 // SelectionDAGISel code
304 //===----------------------------------------------------------------------===//
306 SelectionDAGISel::SelectionDAGISel(TargetMachine
&tm
,
307 CodeGenOpt::Level OL
) :
308 MachineFunctionPass(ID
), TM(tm
),
309 FuncInfo(new FunctionLoweringInfo()),
310 CurDAG(new SelectionDAG(tm
, OL
)),
311 SDB(new SelectionDAGBuilder(*CurDAG
, *FuncInfo
, OL
)),
315 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
316 initializeBranchProbabilityInfoWrapperPassPass(
317 *PassRegistry::getPassRegistry());
318 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
319 initializeTargetLibraryInfoWrapperPassPass(
320 *PassRegistry::getPassRegistry());
323 SelectionDAGISel::~SelectionDAGISel() {
329 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage
&AU
) const {
330 if (OptLevel
!= CodeGenOpt::None
)
331 AU
.addRequired
<AAResultsWrapperPass
>();
332 AU
.addRequired
<GCModuleInfo
>();
333 AU
.addRequired
<StackProtector
>();
334 AU
.addPreserved
<GCModuleInfo
>();
335 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
336 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
337 if (UseMBPI
&& OptLevel
!= CodeGenOpt::None
)
338 AU
.addRequired
<BranchProbabilityInfoWrapperPass
>();
339 MachineFunctionPass::getAnalysisUsage(AU
);
342 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
343 /// may trap on it. In this case we have to split the edge so that the path
344 /// through the predecessor block that doesn't go to the phi block doesn't
345 /// execute the possibly trapping instruction. If available, we pass domtree
346 /// and loop info to be updated when we split critical edges. This is because
347 /// SelectionDAGISel preserves these analyses.
348 /// This is required for correctness, so it must be done at -O0.
350 static void SplitCriticalSideEffectEdges(Function
&Fn
, DominatorTree
*DT
,
352 // Loop for blocks with phi nodes.
353 for (BasicBlock
&BB
: Fn
) {
354 PHINode
*PN
= dyn_cast
<PHINode
>(BB
.begin());
358 // For each block with a PHI node, check to see if any of the input values
359 // are potentially trapping constant expressions. Constant expressions are
360 // the only potentially trapping value that can occur as the argument to a
362 for (BasicBlock::iterator I
= BB
.begin(); (PN
= dyn_cast
<PHINode
>(I
)); ++I
)
363 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
364 ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(PN
->getIncomingValue(i
));
365 if (!CE
|| !CE
->canTrap()) continue;
367 // The only case we have to worry about is when the edge is critical.
368 // Since this block has a PHI Node, we assume it has multiple input
369 // edges: check to see if the pred has multiple successors.
370 BasicBlock
*Pred
= PN
->getIncomingBlock(i
);
371 if (Pred
->getTerminator()->getNumSuccessors() == 1)
374 // Okay, we have to split this edge.
376 Pred
->getTerminator(), GetSuccessorNumber(Pred
, &BB
),
377 CriticalEdgeSplittingOptions(DT
, LI
).setMergeIdenticalEdges());
383 static void computeUsesMSVCFloatingPoint(const Triple
&TT
, const Function
&F
,
384 MachineModuleInfo
&MMI
) {
385 // Only needed for MSVC
386 if (!TT
.isKnownWindowsMSVCEnvironment())
389 // If it's already set, nothing to do.
390 if (MMI
.usesMSVCFloatingPoint())
393 for (const Instruction
&I
: instructions(F
)) {
394 if (I
.getType()->isFPOrFPVectorTy()) {
395 MMI
.setUsesMSVCFloatingPoint(true);
398 for (const auto &Op
: I
.operands()) {
399 if (Op
->getType()->isFPOrFPVectorTy()) {
400 MMI
.setUsesMSVCFloatingPoint(true);
407 bool SelectionDAGISel::runOnMachineFunction(MachineFunction
&mf
) {
408 // If we already selected that function, we do not need to run SDISel.
409 if (mf
.getProperties().hasProperty(
410 MachineFunctionProperties::Property::Selected
))
412 // Do some sanity-checking on the command-line options.
413 assert((!EnableFastISelAbort
|| TM
.Options
.EnableFastISel
) &&
414 "-fast-isel-abort > 0 requires -fast-isel");
416 const Function
&Fn
= mf
.getFunction();
419 // Reset the target options before resetting the optimization
421 // FIXME: This is a horrible hack and should be processed via
422 // codegen looking at the optimization level explicitly when
423 // it wants to look at it.
424 TM
.resetTargetOptions(Fn
);
425 // Reset OptLevel to None for optnone functions.
426 CodeGenOpt::Level NewOptLevel
= OptLevel
;
427 if (OptLevel
!= CodeGenOpt::None
&& skipFunction(Fn
))
428 NewOptLevel
= CodeGenOpt::None
;
429 OptLevelChanger
OLC(*this, NewOptLevel
);
431 TII
= MF
->getSubtarget().getInstrInfo();
432 TLI
= MF
->getSubtarget().getTargetLowering();
433 RegInfo
= &MF
->getRegInfo();
434 LibInfo
= &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI();
435 GFI
= Fn
.hasGC() ? &getAnalysis
<GCModuleInfo
>().getFunctionInfo(Fn
) : nullptr;
436 ORE
= make_unique
<OptimizationRemarkEmitter
>(&Fn
);
437 auto *DTWP
= getAnalysisIfAvailable
<DominatorTreeWrapperPass
>();
438 DominatorTree
*DT
= DTWP
? &DTWP
->getDomTree() : nullptr;
439 auto *LIWP
= getAnalysisIfAvailable
<LoopInfoWrapperPass
>();
440 LoopInfo
*LI
= LIWP
? &LIWP
->getLoopInfo() : nullptr;
442 LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn
.getName() << "\n");
444 SplitCriticalSideEffectEdges(const_cast<Function
&>(Fn
), DT
, LI
);
446 CurDAG
->init(*MF
, *ORE
, this, LibInfo
,
447 getAnalysisIfAvailable
<LegacyDivergenceAnalysis
>());
448 FuncInfo
->set(Fn
, *MF
, CurDAG
);
450 // Now get the optional analyzes if we want to.
451 // This is based on the possibly changed OptLevel (after optnone is taken
452 // into account). That's unfortunate but OK because it just means we won't
453 // ask for passes that have been required anyway.
455 if (UseMBPI
&& OptLevel
!= CodeGenOpt::None
)
456 FuncInfo
->BPI
= &getAnalysis
<BranchProbabilityInfoWrapperPass
>().getBPI();
458 FuncInfo
->BPI
= nullptr;
460 if (OptLevel
!= CodeGenOpt::None
)
461 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
465 SDB
->init(GFI
, AA
, LibInfo
);
467 MF
->setHasInlineAsm(false);
469 FuncInfo
->SplitCSR
= false;
471 // We split CSR if the target supports it for the given function
472 // and the function has only return exits.
473 if (OptLevel
!= CodeGenOpt::None
&& TLI
->supportSplitCSR(MF
)) {
474 FuncInfo
->SplitCSR
= true;
476 // Collect all the return blocks.
477 for (const BasicBlock
&BB
: Fn
) {
478 if (!succ_empty(&BB
))
481 const Instruction
*Term
= BB
.getTerminator();
482 if (isa
<UnreachableInst
>(Term
) || isa
<ReturnInst
>(Term
))
485 // Bail out if the exit block is not Return nor Unreachable.
486 FuncInfo
->SplitCSR
= false;
491 MachineBasicBlock
*EntryMBB
= &MF
->front();
492 if (FuncInfo
->SplitCSR
)
493 // This performs initialization so lowering for SplitCSR will be correct.
494 TLI
->initializeSplitCSR(EntryMBB
);
496 SelectAllBasicBlocks(Fn
);
497 if (FastISelFailed
&& EnableFastISelFallbackReport
) {
498 DiagnosticInfoISelFallback
DiagFallback(Fn
);
499 Fn
.getContext().diagnose(DiagFallback
);
502 // If the first basic block in the function has live ins that need to be
503 // copied into vregs, emit the copies into the top of the block before
504 // emitting the code for the block.
505 const TargetRegisterInfo
&TRI
= *MF
->getSubtarget().getRegisterInfo();
506 RegInfo
->EmitLiveInCopies(EntryMBB
, TRI
, *TII
);
508 // Insert copies in the entry block and the return blocks.
509 if (FuncInfo
->SplitCSR
) {
510 SmallVector
<MachineBasicBlock
*, 4> Returns
;
511 // Collect all the return blocks.
512 for (MachineBasicBlock
&MBB
: mf
) {
513 if (!MBB
.succ_empty())
516 MachineBasicBlock::iterator Term
= MBB
.getFirstTerminator();
517 if (Term
!= MBB
.end() && Term
->isReturn()) {
518 Returns
.push_back(&MBB
);
522 TLI
->insertCopiesSplitCSR(EntryMBB
, Returns
);
525 DenseMap
<unsigned, unsigned> LiveInMap
;
526 if (!FuncInfo
->ArgDbgValues
.empty())
527 for (std::pair
<unsigned, unsigned> LI
: RegInfo
->liveins())
529 LiveInMap
.insert(LI
);
531 // Insert DBG_VALUE instructions for function arguments to the entry block.
532 for (unsigned i
= 0, e
= FuncInfo
->ArgDbgValues
.size(); i
!= e
; ++i
) {
533 MachineInstr
*MI
= FuncInfo
->ArgDbgValues
[e
-i
-1];
534 bool hasFI
= MI
->getOperand(0).isFI();
536 hasFI
? TRI
.getFrameRegister(*MF
) : MI
->getOperand(0).getReg();
537 if (TargetRegisterInfo::isPhysicalRegister(Reg
))
538 EntryMBB
->insert(EntryMBB
->begin(), MI
);
540 MachineInstr
*Def
= RegInfo
->getVRegDef(Reg
);
542 MachineBasicBlock::iterator InsertPos
= Def
;
543 // FIXME: VR def may not be in entry block.
544 Def
->getParent()->insert(std::next(InsertPos
), MI
);
546 LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg"
547 << TargetRegisterInfo::virtReg2Index(Reg
) << "\n");
550 // If Reg is live-in then update debug info to track its copy in a vreg.
551 DenseMap
<unsigned, unsigned>::iterator LDI
= LiveInMap
.find(Reg
);
552 if (LDI
!= LiveInMap
.end()) {
553 assert(!hasFI
&& "There's no handling of frame pointer updating here yet "
555 MachineInstr
*Def
= RegInfo
->getVRegDef(LDI
->second
);
556 MachineBasicBlock::iterator InsertPos
= Def
;
557 const MDNode
*Variable
= MI
->getDebugVariable();
558 const MDNode
*Expr
= MI
->getDebugExpression();
559 DebugLoc DL
= MI
->getDebugLoc();
560 bool IsIndirect
= MI
->isIndirectDebugValue();
562 assert(MI
->getOperand(1).getImm() == 0 &&
563 "DBG_VALUE with nonzero offset");
564 assert(cast
<DILocalVariable
>(Variable
)->isValidLocationForIntrinsic(DL
) &&
565 "Expected inlined-at fields to agree");
566 // Def is never a terminator here, so it is ok to increment InsertPos.
567 BuildMI(*EntryMBB
, ++InsertPos
, DL
, TII
->get(TargetOpcode::DBG_VALUE
),
568 IsIndirect
, LDI
->second
, Variable
, Expr
);
570 // If this vreg is directly copied into an exported register then
571 // that COPY instructions also need DBG_VALUE, if it is the only
572 // user of LDI->second.
573 MachineInstr
*CopyUseMI
= nullptr;
574 for (MachineRegisterInfo::use_instr_iterator
575 UI
= RegInfo
->use_instr_begin(LDI
->second
),
576 E
= RegInfo
->use_instr_end(); UI
!= E
; ) {
577 MachineInstr
*UseMI
= &*(UI
++);
578 if (UseMI
->isDebugValue()) continue;
579 if (UseMI
->isCopy() && !CopyUseMI
&& UseMI
->getParent() == EntryMBB
) {
580 CopyUseMI
= UseMI
; continue;
582 // Otherwise this is another use or second copy use.
583 CopyUseMI
= nullptr; break;
586 // Use MI's debug location, which describes where Variable was
587 // declared, rather than whatever is attached to CopyUseMI.
588 MachineInstr
*NewMI
=
589 BuildMI(*MF
, DL
, TII
->get(TargetOpcode::DBG_VALUE
), IsIndirect
,
590 CopyUseMI
->getOperand(0).getReg(), Variable
, Expr
);
591 MachineBasicBlock::iterator Pos
= CopyUseMI
;
592 EntryMBB
->insertAfter(Pos
, NewMI
);
597 // Determine if there are any calls in this machine function.
598 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
599 for (const auto &MBB
: *MF
) {
600 if (MFI
.hasCalls() && MF
->hasInlineAsm())
603 for (const auto &MI
: MBB
) {
604 const MCInstrDesc
&MCID
= TII
->get(MI
.getOpcode());
605 if ((MCID
.isCall() && !MCID
.isReturn()) ||
606 MI
.isStackAligningInlineAsm()) {
607 MFI
.setHasCalls(true);
609 if (MI
.isInlineAsm()) {
610 MF
->setHasInlineAsm(true);
615 // Determine if there is a call to setjmp in the machine function.
616 MF
->setExposesReturnsTwice(Fn
.callsFunctionThatReturnsTwice());
618 // Determine if floating point is used for msvc
619 computeUsesMSVCFloatingPoint(TM
.getTargetTriple(), Fn
, MF
->getMMI());
621 // Replace forward-declared registers with the registers containing
622 // the desired value.
623 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
624 for (DenseMap
<unsigned, unsigned>::iterator
625 I
= FuncInfo
->RegFixups
.begin(), E
= FuncInfo
->RegFixups
.end();
627 unsigned From
= I
->first
;
628 unsigned To
= I
->second
;
629 // If To is also scheduled to be replaced, find what its ultimate
632 DenseMap
<unsigned, unsigned>::iterator J
= FuncInfo
->RegFixups
.find(To
);
636 // Make sure the new register has a sufficiently constrained register class.
637 if (TargetRegisterInfo::isVirtualRegister(From
) &&
638 TargetRegisterInfo::isVirtualRegister(To
))
639 MRI
.constrainRegClass(To
, MRI
.getRegClass(From
));
643 // Replacing one register with another won't touch the kill flags.
644 // We need to conservatively clear the kill flags as a kill on the old
645 // register might dominate existing uses of the new register.
646 if (!MRI
.use_empty(To
))
647 MRI
.clearKillFlags(From
);
648 MRI
.replaceRegWith(From
, To
);
651 TLI
->finalizeLowering(*MF
);
653 // Release function-specific state. SDB and CurDAG are already cleared
657 LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
658 LLVM_DEBUG(MF
->print(dbgs()));
663 static void reportFastISelFailure(MachineFunction
&MF
,
664 OptimizationRemarkEmitter
&ORE
,
665 OptimizationRemarkMissed
&R
,
667 // Print the function name explicitly if we don't have a debug location (which
668 // makes the diagnostic less useful) or if we're going to emit a raw error.
669 if (!R
.getLocation().isValid() || ShouldAbort
)
670 R
<< (" (in function: " + MF
.getName() + ")").str();
673 report_fatal_error(R
.getMsg());
678 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin
,
679 BasicBlock::const_iterator End
,
681 // Allow creating illegal types during DAG building for the basic block.
682 CurDAG
->NewNodesMustHaveLegalTypes
= false;
684 // Lower the instructions. If a call is emitted as a tail call, cease emitting
685 // nodes for this block.
686 for (BasicBlock::const_iterator I
= Begin
; I
!= End
&& !SDB
->HasTailCall
; ++I
) {
687 if (!ElidedArgCopyInstrs
.count(&*I
))
691 // Make sure the root of the DAG is up-to-date.
692 CurDAG
->setRoot(SDB
->getControlRoot());
693 HadTailCall
= SDB
->HasTailCall
;
694 SDB
->resolveOrClearDbgInfo();
697 // Final step, emit the lowered DAG as machine code.
701 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
702 SmallPtrSet
<SDNode
*, 16> VisitedNodes
;
703 SmallVector
<SDNode
*, 128> Worklist
;
705 Worklist
.push_back(CurDAG
->getRoot().getNode());
710 SDNode
*N
= Worklist
.pop_back_val();
712 // If we've already seen this node, ignore it.
713 if (!VisitedNodes
.insert(N
).second
)
716 // Otherwise, add all chain operands to the worklist.
717 for (const SDValue
&Op
: N
->op_values())
718 if (Op
.getValueType() == MVT::Other
)
719 Worklist
.push_back(Op
.getNode());
721 // If this is a CopyToReg with a vreg dest, process it.
722 if (N
->getOpcode() != ISD::CopyToReg
)
725 unsigned DestReg
= cast
<RegisterSDNode
>(N
->getOperand(1))->getReg();
726 if (!TargetRegisterInfo::isVirtualRegister(DestReg
))
729 // Ignore non-integer values.
730 SDValue Src
= N
->getOperand(2);
731 EVT SrcVT
= Src
.getValueType();
732 if (!SrcVT
.isInteger())
735 unsigned NumSignBits
= CurDAG
->ComputeNumSignBits(Src
);
736 Known
= CurDAG
->computeKnownBits(Src
);
737 FuncInfo
->AddLiveOutRegInfo(DestReg
, NumSignBits
, Known
);
738 } while (!Worklist
.empty());
741 void SelectionDAGISel::CodeGenAndEmitDAG() {
742 StringRef GroupName
= "sdag";
743 StringRef GroupDescription
= "Instruction Selection and Scheduling";
744 std::string BlockName
;
745 bool MatchFilterBB
= false; (void)MatchFilterBB
;
747 TargetTransformInfo
&TTI
=
748 getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(*FuncInfo
->Fn
);
751 // Pre-type legalization allow creation of any node types.
752 CurDAG
->NewNodesMustHaveLegalTypes
= false;
755 MatchFilterBB
= (FilterDAGBasicBlockName
.empty() ||
756 FilterDAGBasicBlockName
==
757 FuncInfo
->MBB
->getBasicBlock()->getName());
760 if (ViewDAGCombine1
|| ViewLegalizeTypesDAGs
|| ViewLegalizeDAGs
||
761 ViewDAGCombine2
|| ViewDAGCombineLT
|| ViewISelDAGs
|| ViewSchedDAGs
||
766 (MF
->getName() + ":" + FuncInfo
->MBB
->getBasicBlock()->getName()).str();
768 LLVM_DEBUG(dbgs() << "Initial selection DAG: "
769 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
773 if (ViewDAGCombine1
&& MatchFilterBB
)
774 CurDAG
->viewGraph("dag-combine1 input for " + BlockName
);
776 // Run the DAG combiner in pre-legalize mode.
778 NamedRegionTimer
T("combine1", "DAG Combining 1", GroupName
,
779 GroupDescription
, TimePassesIsEnabled
);
780 CurDAG
->Combine(BeforeLegalizeTypes
, AA
, OptLevel
);
784 if (TTI
.hasBranchDivergence())
785 CurDAG
->VerifyDAGDiverence();
788 LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: "
789 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
793 // Second step, hack on the DAG until it only uses operations and types that
794 // the target supports.
795 if (ViewLegalizeTypesDAGs
&& MatchFilterBB
)
796 CurDAG
->viewGraph("legalize-types input for " + BlockName
);
800 NamedRegionTimer
T("legalize_types", "Type Legalization", GroupName
,
801 GroupDescription
, TimePassesIsEnabled
);
802 Changed
= CurDAG
->LegalizeTypes();
806 if (TTI
.hasBranchDivergence())
807 CurDAG
->VerifyDAGDiverence();
810 LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: "
811 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
815 // Only allow creation of legal node types.
816 CurDAG
->NewNodesMustHaveLegalTypes
= true;
819 if (ViewDAGCombineLT
&& MatchFilterBB
)
820 CurDAG
->viewGraph("dag-combine-lt input for " + BlockName
);
822 // Run the DAG combiner in post-type-legalize mode.
824 NamedRegionTimer
T("combine_lt", "DAG Combining after legalize types",
825 GroupName
, GroupDescription
, TimePassesIsEnabled
);
826 CurDAG
->Combine(AfterLegalizeTypes
, AA
, OptLevel
);
830 if (TTI
.hasBranchDivergence())
831 CurDAG
->VerifyDAGDiverence();
834 LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: "
835 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
841 NamedRegionTimer
T("legalize_vec", "Vector Legalization", GroupName
,
842 GroupDescription
, TimePassesIsEnabled
);
843 Changed
= CurDAG
->LegalizeVectors();
847 LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: "
848 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
853 NamedRegionTimer
T("legalize_types2", "Type Legalization 2", GroupName
,
854 GroupDescription
, TimePassesIsEnabled
);
855 CurDAG
->LegalizeTypes();
858 LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: "
859 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
863 if (ViewDAGCombineLT
&& MatchFilterBB
)
864 CurDAG
->viewGraph("dag-combine-lv input for " + BlockName
);
866 // Run the DAG combiner in post-type-legalize mode.
868 NamedRegionTimer
T("combine_lv", "DAG Combining after legalize vectors",
869 GroupName
, GroupDescription
, TimePassesIsEnabled
);
870 CurDAG
->Combine(AfterLegalizeVectorOps
, AA
, OptLevel
);
873 LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: "
874 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
879 if (TTI
.hasBranchDivergence())
880 CurDAG
->VerifyDAGDiverence();
884 if (ViewLegalizeDAGs
&& MatchFilterBB
)
885 CurDAG
->viewGraph("legalize input for " + BlockName
);
888 NamedRegionTimer
T("legalize", "DAG Legalization", GroupName
,
889 GroupDescription
, TimePassesIsEnabled
);
894 if (TTI
.hasBranchDivergence())
895 CurDAG
->VerifyDAGDiverence();
898 LLVM_DEBUG(dbgs() << "Legalized selection DAG: "
899 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
903 if (ViewDAGCombine2
&& MatchFilterBB
)
904 CurDAG
->viewGraph("dag-combine2 input for " + BlockName
);
906 // Run the DAG combiner in post-legalize mode.
908 NamedRegionTimer
T("combine2", "DAG Combining 2", GroupName
,
909 GroupDescription
, TimePassesIsEnabled
);
910 CurDAG
->Combine(AfterLegalizeDAG
, AA
, OptLevel
);
914 if (TTI
.hasBranchDivergence())
915 CurDAG
->VerifyDAGDiverence();
918 LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: "
919 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
923 if (OptLevel
!= CodeGenOpt::None
)
924 ComputeLiveOutVRegInfo();
926 if (ViewISelDAGs
&& MatchFilterBB
)
927 CurDAG
->viewGraph("isel input for " + BlockName
);
929 // Third, instruction select all of the operations to machine code, adding the
930 // code to the MachineBasicBlock.
932 NamedRegionTimer
T("isel", "Instruction Selection", GroupName
,
933 GroupDescription
, TimePassesIsEnabled
);
934 DoInstructionSelection();
937 LLVM_DEBUG(dbgs() << "Selected selection DAG: "
938 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
942 if (ViewSchedDAGs
&& MatchFilterBB
)
943 CurDAG
->viewGraph("scheduler input for " + BlockName
);
945 // Schedule machine code.
946 ScheduleDAGSDNodes
*Scheduler
= CreateScheduler();
948 NamedRegionTimer
T("sched", "Instruction Scheduling", GroupName
,
949 GroupDescription
, TimePassesIsEnabled
);
950 Scheduler
->Run(CurDAG
, FuncInfo
->MBB
);
953 if (ViewSUnitDAGs
&& MatchFilterBB
)
954 Scheduler
->viewGraph();
956 // Emit machine code to BB. This can change 'BB' to the last block being
958 MachineBasicBlock
*FirstMBB
= FuncInfo
->MBB
, *LastMBB
;
960 NamedRegionTimer
T("emit", "Instruction Creation", GroupName
,
961 GroupDescription
, TimePassesIsEnabled
);
963 // FuncInfo->InsertPt is passed by reference and set to the end of the
964 // scheduled instructions.
965 LastMBB
= FuncInfo
->MBB
= Scheduler
->EmitSchedule(FuncInfo
->InsertPt
);
968 // If the block was split, make sure we update any references that are used to
969 // update PHI nodes later on.
970 if (FirstMBB
!= LastMBB
)
971 SDB
->UpdateSplitBlock(FirstMBB
, LastMBB
);
973 // Free the scheduler state.
975 NamedRegionTimer
T("cleanup", "Instruction Scheduling Cleanup", GroupName
,
976 GroupDescription
, TimePassesIsEnabled
);
980 // Free the SelectionDAG state, now that we're finished with it.
986 /// ISelUpdater - helper class to handle updates of the instruction selection
988 class ISelUpdater
: public SelectionDAG::DAGUpdateListener
{
989 SelectionDAG::allnodes_iterator
&ISelPosition
;
992 ISelUpdater(SelectionDAG
&DAG
, SelectionDAG::allnodes_iterator
&isp
)
993 : SelectionDAG::DAGUpdateListener(DAG
), ISelPosition(isp
) {}
995 /// NodeDeleted - Handle nodes deleted from the graph. If the node being
996 /// deleted is the current ISelPosition node, update ISelPosition.
998 void NodeDeleted(SDNode
*N
, SDNode
*E
) override
{
999 if (ISelPosition
== SelectionDAG::allnodes_iterator(N
))
1004 } // end anonymous namespace
1006 // This function is used to enforce the topological node id property
1007 // property leveraged during Instruction selection. Before selection all
1008 // nodes are given a non-negative id such that all nodes have a larger id than
1009 // their operands. As this holds transitively we can prune checks that a node N
1010 // is a predecessor of M another by not recursively checking through M's
1011 // operands if N's ID is larger than M's ID. This is significantly improves
1012 // performance of for various legality checks (e.g. IsLegalToFold /
1015 // However, when we fuse multiple nodes into a single node
1016 // during selection we may induce a predecessor relationship between inputs and
1017 // outputs of distinct nodes being merged violating the topological property.
1018 // Should a fused node have a successor which has yet to be selected, our
1019 // legality checks would be incorrect. To avoid this we mark all unselected
1020 // sucessor nodes, i.e. id != -1 as invalid for pruning by bit-negating (x =>
1021 // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M.
1022 // We use bit-negation to more clearly enforce that node id -1 can only be
1023 // achieved by selected nodes). As the conversion is reversable the original Id,
1024 // topological pruning can still be leveraged when looking for unselected nodes.
1025 // This method is call internally in all ISel replacement calls.
1026 void SelectionDAGISel::EnforceNodeIdInvariant(SDNode
*Node
) {
1027 SmallVector
<SDNode
*, 4> Nodes
;
1028 Nodes
.push_back(Node
);
1030 while (!Nodes
.empty()) {
1031 SDNode
*N
= Nodes
.pop_back_val();
1032 for (auto *U
: N
->uses()) {
1033 auto UId
= U
->getNodeId();
1035 InvalidateNodeId(U
);
1042 // InvalidateNodeId - As discusses in EnforceNodeIdInvariant, mark a
1043 // NodeId with the equivalent node id which is invalid for topological
1045 void SelectionDAGISel::InvalidateNodeId(SDNode
*N
) {
1046 int InvalidId
= -(N
->getNodeId() + 1);
1047 N
->setNodeId(InvalidId
);
1050 // getUninvalidatedNodeId - get original uninvalidated node id.
1051 int SelectionDAGISel::getUninvalidatedNodeId(SDNode
*N
) {
1052 int Id
= N
->getNodeId();
1058 void SelectionDAGISel::DoInstructionSelection() {
1059 LLVM_DEBUG(dbgs() << "===== Instruction selection begins: "
1060 << printMBBReference(*FuncInfo
->MBB
) << " '"
1061 << FuncInfo
->MBB
->getName() << "'\n");
1063 PreprocessISelDAG();
1065 // Select target instructions for the DAG.
1067 // Number all nodes with a topological order and set DAGSize.
1068 DAGSize
= CurDAG
->AssignTopologicalOrder();
1070 // Create a dummy node (which is not added to allnodes), that adds
1071 // a reference to the root node, preventing it from being deleted,
1072 // and tracking any changes of the root.
1073 HandleSDNode
Dummy(CurDAG
->getRoot());
1074 SelectionDAG::allnodes_iterator
ISelPosition (CurDAG
->getRoot().getNode());
1077 // Make sure that ISelPosition gets properly updated when nodes are deleted
1078 // in calls made from this function.
1079 ISelUpdater
ISU(*CurDAG
, ISelPosition
);
1081 // The AllNodes list is now topological-sorted. Visit the
1082 // nodes by starting at the end of the list (the root of the
1083 // graph) and preceding back toward the beginning (the entry
1085 while (ISelPosition
!= CurDAG
->allnodes_begin()) {
1086 SDNode
*Node
= &*--ISelPosition
;
1087 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
1088 // but there are currently some corner cases that it misses. Also, this
1089 // makes it theoretically possible to disable the DAGCombiner.
1090 if (Node
->use_empty())
1094 SmallVector
<SDNode
*, 4> Nodes
;
1095 Nodes
.push_back(Node
);
1097 while (!Nodes
.empty()) {
1098 auto N
= Nodes
.pop_back_val();
1099 if (N
->getOpcode() == ISD::TokenFactor
|| N
->getNodeId() < 0)
1101 for (const SDValue
&Op
: N
->op_values()) {
1102 if (Op
->getOpcode() == ISD::TokenFactor
)
1103 Nodes
.push_back(Op
.getNode());
1105 // We rely on topological ordering of node ids for checking for
1106 // cycles when fusing nodes during selection. All unselected nodes
1107 // successors of an already selected node should have a negative id.
1108 // This assertion will catch such cases. If this assertion triggers
1109 // it is likely you using DAG-level Value/Node replacement functions
1110 // (versus equivalent ISEL replacement) in backend-specific
1111 // selections. See comment in EnforceNodeIdInvariant for more
1113 assert(Op
->getNodeId() != -1 &&
1114 "Node has already selected predecessor node");
1120 // When we are using non-default rounding modes or FP exception behavior
1121 // FP operations are represented by StrictFP pseudo-operations. They
1122 // need to be simplified here so that the target-specific instruction
1123 // selectors know how to handle them.
1125 // If the current node is a strict FP pseudo-op, the isStrictFPOp()
1126 // function will provide the corresponding normal FP opcode to which the
1127 // node should be mutated.
1129 // FIXME: The backends need a way to handle FP constraints.
1130 if (Node
->isStrictFPOpcode())
1131 Node
= CurDAG
->mutateStrictFPToFP(Node
);
1133 LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: ";
1134 Node
->dump(CurDAG
));
1139 CurDAG
->setRoot(Dummy
.getValue());
1142 LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n");
1144 PostprocessISelDAG();
1147 static bool hasExceptionPointerOrCodeUser(const CatchPadInst
*CPI
) {
1148 for (const User
*U
: CPI
->users()) {
1149 if (const IntrinsicInst
*EHPtrCall
= dyn_cast
<IntrinsicInst
>(U
)) {
1150 Intrinsic::ID IID
= EHPtrCall
->getIntrinsicID();
1151 if (IID
== Intrinsic::eh_exceptionpointer
||
1152 IID
== Intrinsic::eh_exceptioncode
)
1159 // wasm.landingpad.index intrinsic is for associating a landing pad index number
1160 // with a catchpad instruction. Retrieve the landing pad index in the intrinsic
1161 // and store the mapping in the function.
1162 static void mapWasmLandingPadIndex(MachineBasicBlock
*MBB
,
1163 const CatchPadInst
*CPI
) {
1164 MachineFunction
*MF
= MBB
->getParent();
1165 // In case of single catch (...), we don't emit LSDA, so we don't need
1166 // this information.
1167 bool IsSingleCatchAllClause
=
1168 CPI
->getNumArgOperands() == 1 &&
1169 cast
<Constant
>(CPI
->getArgOperand(0))->isNullValue();
1170 if (!IsSingleCatchAllClause
) {
1171 // Create a mapping from landing pad label to landing pad index.
1172 bool IntrFound
= false;
1173 for (const User
*U
: CPI
->users()) {
1174 if (const auto *Call
= dyn_cast
<IntrinsicInst
>(U
)) {
1175 Intrinsic::ID IID
= Call
->getIntrinsicID();
1176 if (IID
== Intrinsic::wasm_landingpad_index
) {
1177 Value
*IndexArg
= Call
->getArgOperand(1);
1178 int Index
= cast
<ConstantInt
>(IndexArg
)->getZExtValue();
1179 MF
->setWasmLandingPadIndex(MBB
, Index
);
1185 assert(IntrFound
&& "wasm.landingpad.index intrinsic not found!");
1190 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
1191 /// do other setup for EH landing-pad blocks.
1192 bool SelectionDAGISel::PrepareEHLandingPad() {
1193 MachineBasicBlock
*MBB
= FuncInfo
->MBB
;
1194 const Constant
*PersonalityFn
= FuncInfo
->Fn
->getPersonalityFn();
1195 const BasicBlock
*LLVMBB
= MBB
->getBasicBlock();
1196 const TargetRegisterClass
*PtrRC
=
1197 TLI
->getRegClassFor(TLI
->getPointerTy(CurDAG
->getDataLayout()));
1199 auto Pers
= classifyEHPersonality(PersonalityFn
);
1201 // Catchpads have one live-in register, which typically holds the exception
1203 if (isFuncletEHPersonality(Pers
)) {
1204 if (const auto *CPI
= dyn_cast
<CatchPadInst
>(LLVMBB
->getFirstNonPHI())) {
1205 if (hasExceptionPointerOrCodeUser(CPI
)) {
1206 // Get or create the virtual register to hold the pointer or code. Mark
1207 // the live in physreg and copy into the vreg.
1208 MCPhysReg EHPhysReg
= TLI
->getExceptionPointerRegister(PersonalityFn
);
1209 assert(EHPhysReg
&& "target lacks exception pointer register");
1210 MBB
->addLiveIn(EHPhysReg
);
1211 unsigned VReg
= FuncInfo
->getCatchPadExceptionPointerVReg(CPI
, PtrRC
);
1212 BuildMI(*MBB
, FuncInfo
->InsertPt
, SDB
->getCurDebugLoc(),
1213 TII
->get(TargetOpcode::COPY
), VReg
)
1214 .addReg(EHPhysReg
, RegState::Kill
);
1220 // Add a label to mark the beginning of the landing pad. Deletion of the
1221 // landing pad can thus be detected via the MachineModuleInfo.
1222 MCSymbol
*Label
= MF
->addLandingPad(MBB
);
1224 const MCInstrDesc
&II
= TII
->get(TargetOpcode::EH_LABEL
);
1225 BuildMI(*MBB
, FuncInfo
->InsertPt
, SDB
->getCurDebugLoc(), II
)
1228 if (Pers
== EHPersonality::Wasm_CXX
) {
1229 if (const auto *CPI
= dyn_cast
<CatchPadInst
>(LLVMBB
->getFirstNonPHI()))
1230 mapWasmLandingPadIndex(MBB
, CPI
);
1232 // Assign the call site to the landing pad's begin label.
1233 MF
->setCallSiteLandingPad(Label
, SDB
->LPadToCallSiteMap
[MBB
]);
1234 // Mark exception register as live in.
1235 if (unsigned Reg
= TLI
->getExceptionPointerRegister(PersonalityFn
))
1236 FuncInfo
->ExceptionPointerVirtReg
= MBB
->addLiveIn(Reg
, PtrRC
);
1237 // Mark exception selector register as live in.
1238 if (unsigned Reg
= TLI
->getExceptionSelectorRegister(PersonalityFn
))
1239 FuncInfo
->ExceptionSelectorVirtReg
= MBB
->addLiveIn(Reg
, PtrRC
);
1245 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
1246 /// side-effect free and is either dead or folded into a generated instruction.
1247 /// Return false if it needs to be emitted.
1248 static bool isFoldedOrDeadInstruction(const Instruction
*I
,
1249 FunctionLoweringInfo
*FuncInfo
) {
1250 return !I
->mayWriteToMemory() && // Side-effecting instructions aren't folded.
1251 !I
->isTerminator() && // Terminators aren't folded.
1252 !isa
<DbgInfoIntrinsic
>(I
) && // Debug instructions aren't folded.
1253 !I
->isEHPad() && // EH pad instructions aren't folded.
1254 !FuncInfo
->isExportedInst(I
); // Exported instrs must be computed.
1257 /// Set up SwiftErrorVals by going through the function. If the function has
1258 /// swifterror argument, it will be the first entry.
1259 static void setupSwiftErrorVals(const Function
&Fn
, const TargetLowering
*TLI
,
1260 FunctionLoweringInfo
*FuncInfo
) {
1261 if (!TLI
->supportSwiftError())
1264 FuncInfo
->SwiftErrorVals
.clear();
1265 FuncInfo
->SwiftErrorVRegDefMap
.clear();
1266 FuncInfo
->SwiftErrorVRegUpwardsUse
.clear();
1267 FuncInfo
->SwiftErrorVRegDefUses
.clear();
1268 FuncInfo
->SwiftErrorArg
= nullptr;
1270 // Check if function has a swifterror argument.
1271 bool HaveSeenSwiftErrorArg
= false;
1272 for (Function::const_arg_iterator AI
= Fn
.arg_begin(), AE
= Fn
.arg_end();
1274 if (AI
->hasSwiftErrorAttr()) {
1275 assert(!HaveSeenSwiftErrorArg
&&
1276 "Must have only one swifterror parameter");
1277 (void)HaveSeenSwiftErrorArg
; // silence warning.
1278 HaveSeenSwiftErrorArg
= true;
1279 FuncInfo
->SwiftErrorArg
= &*AI
;
1280 FuncInfo
->SwiftErrorVals
.push_back(&*AI
);
1283 for (const auto &LLVMBB
: Fn
)
1284 for (const auto &Inst
: LLVMBB
) {
1285 if (const AllocaInst
*Alloca
= dyn_cast
<AllocaInst
>(&Inst
))
1286 if (Alloca
->isSwiftError())
1287 FuncInfo
->SwiftErrorVals
.push_back(Alloca
);
1291 static void createSwiftErrorEntriesInEntryBlock(FunctionLoweringInfo
*FuncInfo
,
1293 const TargetLowering
*TLI
,
1294 const TargetInstrInfo
*TII
,
1295 SelectionDAGBuilder
*SDB
) {
1296 if (!TLI
->supportSwiftError())
1299 // We only need to do this when we have swifterror parameter or swifterror
1301 if (FuncInfo
->SwiftErrorVals
.empty())
1304 assert(FuncInfo
->MBB
== &*FuncInfo
->MF
->begin() &&
1305 "expected to insert into entry block");
1306 auto &DL
= FuncInfo
->MF
->getDataLayout();
1307 auto const *RC
= TLI
->getRegClassFor(TLI
->getPointerTy(DL
));
1308 for (const auto *SwiftErrorVal
: FuncInfo
->SwiftErrorVals
) {
1309 // We will always generate a copy from the argument. It is always used at
1310 // least by the 'return' of the swifterror.
1311 if (FuncInfo
->SwiftErrorArg
&& FuncInfo
->SwiftErrorArg
== SwiftErrorVal
)
1313 unsigned VReg
= FuncInfo
->MF
->getRegInfo().createVirtualRegister(RC
);
1314 // Assign Undef to Vreg. We construct MI directly to make sure it works
1316 BuildMI(*FuncInfo
->MBB
, FuncInfo
->MBB
->getFirstNonPHI(),
1317 SDB
->getCurDebugLoc(), TII
->get(TargetOpcode::IMPLICIT_DEF
),
1320 // Keep FastIS informed about the value we just inserted.
1322 FastIS
->setLastLocalValue(&*std::prev(FuncInfo
->InsertPt
));
1324 FuncInfo
->setCurrentSwiftErrorVReg(FuncInfo
->MBB
, SwiftErrorVal
, VReg
);
1328 /// Collect llvm.dbg.declare information. This is done after argument lowering
1329 /// in case the declarations refer to arguments.
1330 static void processDbgDeclares(FunctionLoweringInfo
*FuncInfo
) {
1331 MachineFunction
*MF
= FuncInfo
->MF
;
1332 const DataLayout
&DL
= MF
->getDataLayout();
1333 for (const BasicBlock
&BB
: *FuncInfo
->Fn
) {
1334 for (const Instruction
&I
: BB
) {
1335 const DbgDeclareInst
*DI
= dyn_cast
<DbgDeclareInst
>(&I
);
1339 assert(DI
->getVariable() && "Missing variable");
1340 assert(DI
->getDebugLoc() && "Missing location");
1341 const Value
*Address
= DI
->getAddress();
1345 // Look through casts and constant offset GEPs. These mostly come from
1347 APInt
Offset(DL
.getTypeSizeInBits(Address
->getType()), 0);
1348 Address
= Address
->stripAndAccumulateInBoundsConstantOffsets(DL
, Offset
);
1350 // Check if the variable is a static alloca or a byval or inalloca
1351 // argument passed in memory. If it is not, then we will ignore this
1352 // intrinsic and handle this during isel like dbg.value.
1353 int FI
= std::numeric_limits
<int>::max();
1354 if (const auto *AI
= dyn_cast
<AllocaInst
>(Address
)) {
1355 auto SI
= FuncInfo
->StaticAllocaMap
.find(AI
);
1356 if (SI
!= FuncInfo
->StaticAllocaMap
.end())
1358 } else if (const auto *Arg
= dyn_cast
<Argument
>(Address
))
1359 FI
= FuncInfo
->getArgumentFrameIndex(Arg
);
1361 if (FI
== std::numeric_limits
<int>::max())
1364 DIExpression
*Expr
= DI
->getExpression();
1365 if (Offset
.getBoolValue())
1366 Expr
= DIExpression::prepend(Expr
, DIExpression::ApplyOffset
,
1367 Offset
.getZExtValue());
1368 MF
->setVariableDbgInfo(DI
->getVariable(), Expr
, FI
, DI
->getDebugLoc());
1373 /// Propagate swifterror values through the machine function CFG.
1374 static void propagateSwiftErrorVRegs(FunctionLoweringInfo
*FuncInfo
) {
1375 auto *TLI
= FuncInfo
->TLI
;
1376 if (!TLI
->supportSwiftError())
1379 // We only need to do this when we have swifterror parameter or swifterror
1381 if (FuncInfo
->SwiftErrorVals
.empty())
1384 // For each machine basic block in reverse post order.
1385 ReversePostOrderTraversal
<MachineFunction
*> RPOT(FuncInfo
->MF
);
1386 for (MachineBasicBlock
*MBB
: RPOT
) {
1387 // For each swifterror value in the function.
1388 for(const auto *SwiftErrorVal
: FuncInfo
->SwiftErrorVals
) {
1389 auto Key
= std::make_pair(MBB
, SwiftErrorVal
);
1390 auto UUseIt
= FuncInfo
->SwiftErrorVRegUpwardsUse
.find(Key
);
1391 auto VRegDefIt
= FuncInfo
->SwiftErrorVRegDefMap
.find(Key
);
1392 bool UpwardsUse
= UUseIt
!= FuncInfo
->SwiftErrorVRegUpwardsUse
.end();
1393 unsigned UUseVReg
= UpwardsUse
? UUseIt
->second
: 0;
1394 bool DownwardDef
= VRegDefIt
!= FuncInfo
->SwiftErrorVRegDefMap
.end();
1395 assert(!(UpwardsUse
&& !DownwardDef
) &&
1396 "We can't have an upwards use but no downwards def");
1398 // If there is no upwards exposed use and an entry for the swifterror in
1399 // the def map for this value we don't need to do anything: We already
1400 // have a downward def for this basic block.
1401 if (!UpwardsUse
&& DownwardDef
)
1404 // Otherwise we either have an upwards exposed use vreg that we need to
1405 // materialize or need to forward the downward def from predecessors.
1407 // Check whether we have a single vreg def from all predecessors.
1408 // Otherwise we need a phi.
1409 SmallVector
<std::pair
<MachineBasicBlock
*, unsigned>, 4> VRegs
;
1410 SmallSet
<const MachineBasicBlock
*, 8> Visited
;
1411 for (auto *Pred
: MBB
->predecessors()) {
1412 if (!Visited
.insert(Pred
).second
)
1414 VRegs
.push_back(std::make_pair(
1415 Pred
, FuncInfo
->getOrCreateSwiftErrorVReg(Pred
, SwiftErrorVal
)));
1418 // We have a self-edge.
1419 // If there was no upwards use in this basic block there is now one: the
1420 // phi needs to use it self.
1423 UUseIt
= FuncInfo
->SwiftErrorVRegUpwardsUse
.find(Key
);
1424 assert(UUseIt
!= FuncInfo
->SwiftErrorVRegUpwardsUse
.end());
1425 UUseVReg
= UUseIt
->second
;
1429 // We need a phi node if we have more than one predecessor with different
1432 VRegs
.size() >= 1 &&
1434 VRegs
.begin(), VRegs
.end(),
1435 [&](const std::pair
<const MachineBasicBlock
*, unsigned> &V
)
1436 -> bool { return V
.second
!= VRegs
[0].second
; }) !=
1439 // If there is no upwards exposed used and we don't need a phi just
1440 // forward the swifterror vreg from the predecessor(s).
1441 if (!UpwardsUse
&& !needPHI
) {
1442 assert(!VRegs
.empty() &&
1443 "No predecessors? The entry block should bail out earlier");
1444 // Just forward the swifterror vreg from the predecessor(s).
1445 FuncInfo
->setCurrentSwiftErrorVReg(MBB
, SwiftErrorVal
, VRegs
[0].second
);
1449 auto DLoc
= isa
<Instruction
>(SwiftErrorVal
)
1450 ? cast
<Instruction
>(SwiftErrorVal
)->getDebugLoc()
1452 const auto *TII
= FuncInfo
->MF
->getSubtarget().getInstrInfo();
1454 // If we don't need a phi create a copy to the upward exposed vreg.
1457 assert(!VRegs
.empty() &&
1458 "No predecessors? Is the Calling Convention correct?");
1459 unsigned DestReg
= UUseVReg
;
1460 BuildMI(*MBB
, MBB
->getFirstNonPHI(), DLoc
, TII
->get(TargetOpcode::COPY
),
1462 .addReg(VRegs
[0].second
);
1466 // We need a phi: if there is an upwards exposed use we already have a
1467 // destination virtual register number otherwise we generate a new one.
1468 auto &DL
= FuncInfo
->MF
->getDataLayout();
1469 auto const *RC
= TLI
->getRegClassFor(TLI
->getPointerTy(DL
));
1471 UpwardsUse
? UUseVReg
1472 : FuncInfo
->MF
->getRegInfo().createVirtualRegister(RC
);
1473 MachineInstrBuilder SwiftErrorPHI
=
1474 BuildMI(*MBB
, MBB
->getFirstNonPHI(), DLoc
,
1475 TII
->get(TargetOpcode::PHI
), PHIVReg
);
1476 for (auto BBRegPair
: VRegs
) {
1477 SwiftErrorPHI
.addReg(BBRegPair
.second
).addMBB(BBRegPair
.first
);
1480 // We did not have a definition in this block before: store the phi's vreg
1481 // as this block downward exposed def.
1483 FuncInfo
->setCurrentSwiftErrorVReg(MBB
, SwiftErrorVal
, PHIVReg
);
1488 static void preassignSwiftErrorRegs(const TargetLowering
*TLI
,
1489 FunctionLoweringInfo
*FuncInfo
,
1490 BasicBlock::const_iterator Begin
,
1491 BasicBlock::const_iterator End
) {
1492 if (!TLI
->supportSwiftError() || FuncInfo
->SwiftErrorVals
.empty())
1495 // Iterator over instructions and assign vregs to swifterror defs and uses.
1496 for (auto It
= Begin
; It
!= End
; ++It
) {
1497 ImmutableCallSite
CS(&*It
);
1499 // A call-site with a swifterror argument is both use and def.
1500 const Value
*SwiftErrorAddr
= nullptr;
1501 for (auto &Arg
: CS
.args()) {
1502 if (!Arg
->isSwiftError())
1504 // Use of swifterror.
1505 assert(!SwiftErrorAddr
&& "Cannot have multiple swifterror arguments");
1506 SwiftErrorAddr
= &*Arg
;
1507 assert(SwiftErrorAddr
->isSwiftError() &&
1508 "Must have a swifterror value argument");
1509 unsigned VReg
; bool CreatedReg
;
1510 std::tie(VReg
, CreatedReg
) = FuncInfo
->getOrCreateSwiftErrorVRegUseAt(
1511 &*It
, FuncInfo
->MBB
, SwiftErrorAddr
);
1514 if (!SwiftErrorAddr
)
1517 // Def of swifterror.
1518 unsigned VReg
; bool CreatedReg
;
1519 std::tie(VReg
, CreatedReg
) =
1520 FuncInfo
->getOrCreateSwiftErrorVRegDefAt(&*It
);
1522 FuncInfo
->setCurrentSwiftErrorVReg(FuncInfo
->MBB
, SwiftErrorAddr
, VReg
);
1525 } else if (const LoadInst
*LI
= dyn_cast
<const LoadInst
>(&*It
)) {
1526 const Value
*V
= LI
->getOperand(0);
1527 if (!V
->isSwiftError())
1530 unsigned VReg
; bool CreatedReg
;
1531 std::tie(VReg
, CreatedReg
) =
1532 FuncInfo
->getOrCreateSwiftErrorVRegUseAt(LI
, FuncInfo
->MBB
, V
);
1535 // A store is a def.
1536 } else if (const StoreInst
*SI
= dyn_cast
<const StoreInst
>(&*It
)) {
1537 const Value
*SwiftErrorAddr
= SI
->getOperand(1);
1538 if (!SwiftErrorAddr
->isSwiftError())
1541 // Def of swifterror.
1542 unsigned VReg
; bool CreatedReg
;
1543 std::tie(VReg
, CreatedReg
) =
1544 FuncInfo
->getOrCreateSwiftErrorVRegDefAt(&*It
);
1546 FuncInfo
->setCurrentSwiftErrorVReg(FuncInfo
->MBB
, SwiftErrorAddr
, VReg
);
1548 // A return in a swiferror returning function is a use.
1549 } else if (const ReturnInst
*R
= dyn_cast
<const ReturnInst
>(&*It
)) {
1550 const Function
*F
= R
->getParent()->getParent();
1551 if(!F
->getAttributes().hasAttrSomewhere(Attribute::SwiftError
))
1554 unsigned VReg
; bool CreatedReg
;
1555 std::tie(VReg
, CreatedReg
) = FuncInfo
->getOrCreateSwiftErrorVRegUseAt(
1556 R
, FuncInfo
->MBB
, FuncInfo
->SwiftErrorArg
);
1562 void SelectionDAGISel::SelectAllBasicBlocks(const Function
&Fn
) {
1563 FastISelFailed
= false;
1564 // Initialize the Fast-ISel state, if needed.
1565 FastISel
*FastIS
= nullptr;
1566 if (TM
.Options
.EnableFastISel
) {
1567 LLVM_DEBUG(dbgs() << "Enabling fast-isel\n");
1568 FastIS
= TLI
->createFastISel(*FuncInfo
, LibInfo
);
1571 setupSwiftErrorVals(Fn
, TLI
, FuncInfo
);
1573 ReversePostOrderTraversal
<const Function
*> RPOT(&Fn
);
1575 // Lower arguments up front. An RPO iteration always visits the entry block
1577 assert(*RPOT
.begin() == &Fn
.getEntryBlock());
1580 // Set up FuncInfo for ISel. Entry blocks never have PHIs.
1581 FuncInfo
->MBB
= FuncInfo
->MBBMap
[&Fn
.getEntryBlock()];
1582 FuncInfo
->InsertPt
= FuncInfo
->MBB
->begin();
1584 CurDAG
->setFunctionLoweringInfo(FuncInfo
);
1589 // See if fast isel can lower the arguments.
1590 FastIS
->startNewBlock();
1591 if (!FastIS
->lowerArguments()) {
1592 FastISelFailed
= true;
1593 // Fast isel failed to lower these arguments
1594 ++NumFastIselFailLowerArguments
;
1596 OptimizationRemarkMissed
R("sdagisel", "FastISelFailure",
1598 &Fn
.getEntryBlock());
1599 R
<< "FastISel didn't lower all arguments: "
1600 << ore::NV("Prototype", Fn
.getType());
1601 reportFastISelFailure(*MF
, *ORE
, R
, EnableFastISelAbort
> 1);
1603 // Use SelectionDAG argument lowering
1605 CurDAG
->setRoot(SDB
->getControlRoot());
1607 CodeGenAndEmitDAG();
1610 // If we inserted any instructions at the beginning, make a note of
1611 // where they are, so we can be sure to emit subsequent instructions
1613 if (FuncInfo
->InsertPt
!= FuncInfo
->MBB
->begin())
1614 FastIS
->setLastLocalValue(&*std::prev(FuncInfo
->InsertPt
));
1616 FastIS
->setLastLocalValue(nullptr);
1618 createSwiftErrorEntriesInEntryBlock(FuncInfo
, FastIS
, TLI
, TII
, SDB
);
1620 processDbgDeclares(FuncInfo
);
1622 // Iterate over all basic blocks in the function.
1623 StackProtector
&SP
= getAnalysis
<StackProtector
>();
1624 for (const BasicBlock
*LLVMBB
: RPOT
) {
1625 if (OptLevel
!= CodeGenOpt::None
) {
1626 bool AllPredsVisited
= true;
1627 for (const_pred_iterator PI
= pred_begin(LLVMBB
), PE
= pred_end(LLVMBB
);
1629 if (!FuncInfo
->VisitedBBs
.count(*PI
)) {
1630 AllPredsVisited
= false;
1635 if (AllPredsVisited
) {
1636 for (const PHINode
&PN
: LLVMBB
->phis())
1637 FuncInfo
->ComputePHILiveOutRegInfo(&PN
);
1639 for (const PHINode
&PN
: LLVMBB
->phis())
1640 FuncInfo
->InvalidatePHILiveOutRegInfo(&PN
);
1643 FuncInfo
->VisitedBBs
.insert(LLVMBB
);
1646 BasicBlock::const_iterator
const Begin
=
1647 LLVMBB
->getFirstNonPHI()->getIterator();
1648 BasicBlock::const_iterator
const End
= LLVMBB
->end();
1649 BasicBlock::const_iterator BI
= End
;
1651 FuncInfo
->MBB
= FuncInfo
->MBBMap
[LLVMBB
];
1653 continue; // Some blocks like catchpads have no code or MBB.
1655 // Insert new instructions after any phi or argument setup code.
1656 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
1658 // Setup an EH landing-pad block.
1659 FuncInfo
->ExceptionPointerVirtReg
= 0;
1660 FuncInfo
->ExceptionSelectorVirtReg
= 0;
1661 if (LLVMBB
->isEHPad())
1662 if (!PrepareEHLandingPad())
1665 // Before doing SelectionDAG ISel, see if FastISel has been requested.
1667 if (LLVMBB
!= &Fn
.getEntryBlock())
1668 FastIS
->startNewBlock();
1670 unsigned NumFastIselRemaining
= std::distance(Begin
, End
);
1672 // Pre-assign swifterror vregs.
1673 preassignSwiftErrorRegs(TLI
, FuncInfo
, Begin
, End
);
1675 // Do FastISel on as many instructions as possible.
1676 for (; BI
!= Begin
; --BI
) {
1677 const Instruction
*Inst
= &*std::prev(BI
);
1679 // If we no longer require this instruction, skip it.
1680 if (isFoldedOrDeadInstruction(Inst
, FuncInfo
) ||
1681 ElidedArgCopyInstrs
.count(Inst
)) {
1682 --NumFastIselRemaining
;
1686 // Bottom-up: reset the insert pos at the top, after any local-value
1688 FastIS
->recomputeInsertPt();
1690 // Try to select the instruction with FastISel.
1691 if (FastIS
->selectInstruction(Inst
)) {
1692 --NumFastIselRemaining
;
1693 ++NumFastIselSuccess
;
1694 // If fast isel succeeded, skip over all the folded instructions, and
1695 // then see if there is a load right before the selected instructions.
1696 // Try to fold the load if so.
1697 const Instruction
*BeforeInst
= Inst
;
1698 while (BeforeInst
!= &*Begin
) {
1699 BeforeInst
= &*std::prev(BasicBlock::const_iterator(BeforeInst
));
1700 if (!isFoldedOrDeadInstruction(BeforeInst
, FuncInfo
))
1703 if (BeforeInst
!= Inst
&& isa
<LoadInst
>(BeforeInst
) &&
1704 BeforeInst
->hasOneUse() &&
1705 FastIS
->tryToFoldLoad(cast
<LoadInst
>(BeforeInst
), Inst
)) {
1706 // If we succeeded, don't re-select the load.
1707 BI
= std::next(BasicBlock::const_iterator(BeforeInst
));
1708 --NumFastIselRemaining
;
1709 ++NumFastIselSuccess
;
1714 FastISelFailed
= true;
1716 // Then handle certain instructions as single-LLVM-Instruction blocks.
1717 // We cannot separate out GCrelocates to their own blocks since we need
1718 // to keep track of gc-relocates for a particular gc-statepoint. This is
1719 // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before
1721 if (isa
<CallInst
>(Inst
) && !isStatepoint(Inst
) && !isGCRelocate(Inst
) &&
1722 !isGCResult(Inst
)) {
1723 OptimizationRemarkMissed
R("sdagisel", "FastISelFailure",
1724 Inst
->getDebugLoc(), LLVMBB
);
1726 R
<< "FastISel missed call";
1728 if (R
.isEnabled() || EnableFastISelAbort
) {
1729 std::string InstStrStorage
;
1730 raw_string_ostream
InstStr(InstStrStorage
);
1733 R
<< ": " << InstStr
.str();
1736 reportFastISelFailure(*MF
, *ORE
, R
, EnableFastISelAbort
> 2);
1738 if (!Inst
->getType()->isVoidTy() && !Inst
->getType()->isTokenTy() &&
1739 !Inst
->use_empty()) {
1740 unsigned &R
= FuncInfo
->ValueMap
[Inst
];
1742 R
= FuncInfo
->CreateRegs(Inst
->getType());
1745 bool HadTailCall
= false;
1746 MachineBasicBlock::iterator SavedInsertPt
= FuncInfo
->InsertPt
;
1747 SelectBasicBlock(Inst
->getIterator(), BI
, HadTailCall
);
1749 // If the call was emitted as a tail call, we're done with the block.
1750 // We also need to delete any previously emitted instructions.
1752 FastIS
->removeDeadCode(SavedInsertPt
, FuncInfo
->MBB
->end());
1757 // Recompute NumFastIselRemaining as Selection DAG instruction
1758 // selection may have handled the call, input args, etc.
1759 unsigned RemainingNow
= std::distance(Begin
, BI
);
1760 NumFastIselFailures
+= NumFastIselRemaining
- RemainingNow
;
1761 NumFastIselRemaining
= RemainingNow
;
1765 OptimizationRemarkMissed
R("sdagisel", "FastISelFailure",
1766 Inst
->getDebugLoc(), LLVMBB
);
1768 bool ShouldAbort
= EnableFastISelAbort
;
1769 if (Inst
->isTerminator()) {
1770 // Use a different message for terminator misses.
1771 R
<< "FastISel missed terminator";
1772 // Don't abort for terminator unless the level is really high
1773 ShouldAbort
= (EnableFastISelAbort
> 2);
1775 R
<< "FastISel missed";
1778 if (R
.isEnabled() || EnableFastISelAbort
) {
1779 std::string InstStrStorage
;
1780 raw_string_ostream
InstStr(InstStrStorage
);
1782 R
<< ": " << InstStr
.str();
1785 reportFastISelFailure(*MF
, *ORE
, R
, ShouldAbort
);
1787 NumFastIselFailures
+= NumFastIselRemaining
;
1791 FastIS
->recomputeInsertPt();
1794 if (SP
.shouldEmitSDCheck(*LLVMBB
)) {
1795 bool FunctionBasedInstrumentation
=
1796 TLI
->getSSPStackGuardCheck(*Fn
.getParent());
1797 SDB
->SPDescriptor
.initialize(LLVMBB
, FuncInfo
->MBBMap
[LLVMBB
],
1798 FunctionBasedInstrumentation
);
1804 ++NumFastIselBlocks
;
1807 // Run SelectionDAG instruction selection on the remainder of the block
1808 // not handled by FastISel. If FastISel is not run, this is the entire
1811 SelectBasicBlock(Begin
, BI
, HadTailCall
);
1813 // But if FastISel was run, we already selected some of the block.
1814 // If we emitted a tail-call, we need to delete any previously emitted
1815 // instruction that follows it.
1816 if (HadTailCall
&& FuncInfo
->InsertPt
!= FuncInfo
->MBB
->end())
1817 FastIS
->removeDeadCode(FuncInfo
->InsertPt
, FuncInfo
->MBB
->end());
1821 FastIS
->finishBasicBlock();
1823 FuncInfo
->PHINodesToUpdate
.clear();
1824 ElidedArgCopyInstrs
.clear();
1827 SP
.copyToMachineFrameInfo(MF
->getFrameInfo());
1829 propagateSwiftErrorVRegs(FuncInfo
);
1832 SDB
->clearDanglingDebugInfo();
1833 SDB
->SPDescriptor
.resetPerFunctionState();
1836 /// Given that the input MI is before a partial terminator sequence TSeq, return
1837 /// true if M + TSeq also a partial terminator sequence.
1839 /// A Terminator sequence is a sequence of MachineInstrs which at this point in
1840 /// lowering copy vregs into physical registers, which are then passed into
1841 /// terminator instructors so we can satisfy ABI constraints. A partial
1842 /// terminator sequence is an improper subset of a terminator sequence (i.e. it
1843 /// may be the whole terminator sequence).
1844 static bool MIIsInTerminatorSequence(const MachineInstr
&MI
) {
1845 // If we do not have a copy or an implicit def, we return true if and only if
1846 // MI is a debug value.
1847 if (!MI
.isCopy() && !MI
.isImplicitDef())
1848 // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
1849 // physical registers if there is debug info associated with the terminator
1850 // of our mbb. We want to include said debug info in our terminator
1851 // sequence, so we return true in that case.
1852 return MI
.isDebugValue();
1854 // We have left the terminator sequence if we are not doing one of the
1857 // 1. Copying a vreg into a physical register.
1858 // 2. Copying a vreg into a vreg.
1859 // 3. Defining a register via an implicit def.
1861 // OPI should always be a register definition...
1862 MachineInstr::const_mop_iterator OPI
= MI
.operands_begin();
1863 if (!OPI
->isReg() || !OPI
->isDef())
1866 // Defining any register via an implicit def is always ok.
1867 if (MI
.isImplicitDef())
1870 // Grab the copy source...
1871 MachineInstr::const_mop_iterator OPI2
= OPI
;
1873 assert(OPI2
!= MI
.operands_end()
1874 && "Should have a copy implying we should have 2 arguments.");
1876 // Make sure that the copy dest is not a vreg when the copy source is a
1877 // physical register.
1878 if (!OPI2
->isReg() ||
1879 (!TargetRegisterInfo::isPhysicalRegister(OPI
->getReg()) &&
1880 TargetRegisterInfo::isPhysicalRegister(OPI2
->getReg())))
1886 /// Find the split point at which to splice the end of BB into its success stack
1887 /// protector check machine basic block.
1889 /// On many platforms, due to ABI constraints, terminators, even before register
1890 /// allocation, use physical registers. This creates an issue for us since
1891 /// physical registers at this point can not travel across basic
1892 /// blocks. Luckily, selectiondag always moves physical registers into vregs
1893 /// when they enter functions and moves them through a sequence of copies back
1894 /// into the physical registers right before the terminator creating a
1895 /// ``Terminator Sequence''. This function is searching for the beginning of the
1896 /// terminator sequence so that we can ensure that we splice off not just the
1897 /// terminator, but additionally the copies that move the vregs into the
1898 /// physical registers.
1899 static MachineBasicBlock::iterator
1900 FindSplitPointForStackProtector(MachineBasicBlock
*BB
) {
1901 MachineBasicBlock::iterator SplitPoint
= BB
->getFirstTerminator();
1903 if (SplitPoint
== BB
->begin())
1906 MachineBasicBlock::iterator Start
= BB
->begin();
1907 MachineBasicBlock::iterator Previous
= SplitPoint
;
1910 while (MIIsInTerminatorSequence(*Previous
)) {
1911 SplitPoint
= Previous
;
1912 if (Previous
== Start
)
1921 SelectionDAGISel::FinishBasicBlock() {
1922 LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: "
1923 << FuncInfo
->PHINodesToUpdate
.size() << "\n";
1924 for (unsigned i
= 0, e
= FuncInfo
->PHINodesToUpdate
.size(); i
!= e
;
1926 << "Node " << i
<< " : (" << FuncInfo
->PHINodesToUpdate
[i
].first
1927 << ", " << FuncInfo
->PHINodesToUpdate
[i
].second
<< ")\n");
1929 // Next, now that we know what the last MBB the LLVM BB expanded is, update
1930 // PHI nodes in successors.
1931 for (unsigned i
= 0, e
= FuncInfo
->PHINodesToUpdate
.size(); i
!= e
; ++i
) {
1932 MachineInstrBuilder
PHI(*MF
, FuncInfo
->PHINodesToUpdate
[i
].first
);
1933 assert(PHI
->isPHI() &&
1934 "This is not a machine PHI node that we are updating!");
1935 if (!FuncInfo
->MBB
->isSuccessor(PHI
->getParent()))
1937 PHI
.addReg(FuncInfo
->PHINodesToUpdate
[i
].second
).addMBB(FuncInfo
->MBB
);
1940 // Handle stack protector.
1941 if (SDB
->SPDescriptor
.shouldEmitFunctionBasedCheckStackProtector()) {
1942 // The target provides a guard check function. There is no need to
1943 // generate error handling code or to split current basic block.
1944 MachineBasicBlock
*ParentMBB
= SDB
->SPDescriptor
.getParentMBB();
1946 // Add load and check to the basicblock.
1947 FuncInfo
->MBB
= ParentMBB
;
1948 FuncInfo
->InsertPt
=
1949 FindSplitPointForStackProtector(ParentMBB
);
1950 SDB
->visitSPDescriptorParent(SDB
->SPDescriptor
, ParentMBB
);
1951 CurDAG
->setRoot(SDB
->getRoot());
1953 CodeGenAndEmitDAG();
1955 // Clear the Per-BB State.
1956 SDB
->SPDescriptor
.resetPerBBState();
1957 } else if (SDB
->SPDescriptor
.shouldEmitStackProtector()) {
1958 MachineBasicBlock
*ParentMBB
= SDB
->SPDescriptor
.getParentMBB();
1959 MachineBasicBlock
*SuccessMBB
= SDB
->SPDescriptor
.getSuccessMBB();
1961 // Find the split point to split the parent mbb. At the same time copy all
1962 // physical registers used in the tail of parent mbb into virtual registers
1963 // before the split point and back into physical registers after the split
1964 // point. This prevents us needing to deal with Live-ins and many other
1965 // register allocation issues caused by us splitting the parent mbb. The
1966 // register allocator will clean up said virtual copies later on.
1967 MachineBasicBlock::iterator SplitPoint
=
1968 FindSplitPointForStackProtector(ParentMBB
);
1970 // Splice the terminator of ParentMBB into SuccessMBB.
1971 SuccessMBB
->splice(SuccessMBB
->end(), ParentMBB
,
1975 // Add compare/jump on neq/jump to the parent BB.
1976 FuncInfo
->MBB
= ParentMBB
;
1977 FuncInfo
->InsertPt
= ParentMBB
->end();
1978 SDB
->visitSPDescriptorParent(SDB
->SPDescriptor
, ParentMBB
);
1979 CurDAG
->setRoot(SDB
->getRoot());
1981 CodeGenAndEmitDAG();
1983 // CodeGen Failure MBB if we have not codegened it yet.
1984 MachineBasicBlock
*FailureMBB
= SDB
->SPDescriptor
.getFailureMBB();
1985 if (FailureMBB
->empty()) {
1986 FuncInfo
->MBB
= FailureMBB
;
1987 FuncInfo
->InsertPt
= FailureMBB
->end();
1988 SDB
->visitSPDescriptorFailure(SDB
->SPDescriptor
);
1989 CurDAG
->setRoot(SDB
->getRoot());
1991 CodeGenAndEmitDAG();
1994 // Clear the Per-BB State.
1995 SDB
->SPDescriptor
.resetPerBBState();
1998 // Lower each BitTestBlock.
1999 for (auto &BTB
: SDB
->BitTestCases
) {
2000 // Lower header first, if it wasn't already lowered
2002 // Set the current basic block to the mbb we wish to insert the code into
2003 FuncInfo
->MBB
= BTB
.Parent
;
2004 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
2006 SDB
->visitBitTestHeader(BTB
, FuncInfo
->MBB
);
2007 CurDAG
->setRoot(SDB
->getRoot());
2009 CodeGenAndEmitDAG();
2012 BranchProbability UnhandledProb
= BTB
.Prob
;
2013 for (unsigned j
= 0, ej
= BTB
.Cases
.size(); j
!= ej
; ++j
) {
2014 UnhandledProb
-= BTB
.Cases
[j
].ExtraProb
;
2015 // Set the current basic block to the mbb we wish to insert the code into
2016 FuncInfo
->MBB
= BTB
.Cases
[j
].ThisBB
;
2017 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
2020 // If all cases cover a contiguous range, it is not necessary to jump to
2021 // the default block after the last bit test fails. This is because the
2022 // range check during bit test header creation has guaranteed that every
2023 // case here doesn't go outside the range. In this case, there is no need
2024 // to perform the last bit test, as it will always be true. Instead, make
2025 // the second-to-last bit-test fall through to the target of the last bit
2026 // test, and delete the last bit test.
2028 MachineBasicBlock
*NextMBB
;
2029 if (BTB
.ContiguousRange
&& j
+ 2 == ej
) {
2030 // Second-to-last bit-test with contiguous range: fall through to the
2031 // target of the final bit test.
2032 NextMBB
= BTB
.Cases
[j
+ 1].TargetBB
;
2033 } else if (j
+ 1 == ej
) {
2034 // For the last bit test, fall through to Default.
2035 NextMBB
= BTB
.Default
;
2037 // Otherwise, fall through to the next bit test.
2038 NextMBB
= BTB
.Cases
[j
+ 1].ThisBB
;
2041 SDB
->visitBitTestCase(BTB
, NextMBB
, UnhandledProb
, BTB
.Reg
, BTB
.Cases
[j
],
2044 CurDAG
->setRoot(SDB
->getRoot());
2046 CodeGenAndEmitDAG();
2048 if (BTB
.ContiguousRange
&& j
+ 2 == ej
) {
2049 // Since we're not going to use the final bit test, remove it.
2050 BTB
.Cases
.pop_back();
2056 for (unsigned pi
= 0, pe
= FuncInfo
->PHINodesToUpdate
.size();
2058 MachineInstrBuilder
PHI(*MF
, FuncInfo
->PHINodesToUpdate
[pi
].first
);
2059 MachineBasicBlock
*PHIBB
= PHI
->getParent();
2060 assert(PHI
->isPHI() &&
2061 "This is not a machine PHI node that we are updating!");
2062 // This is "default" BB. We have two jumps to it. From "header" BB and
2063 // from last "case" BB, unless the latter was skipped.
2064 if (PHIBB
== BTB
.Default
) {
2065 PHI
.addReg(FuncInfo
->PHINodesToUpdate
[pi
].second
).addMBB(BTB
.Parent
);
2066 if (!BTB
.ContiguousRange
) {
2067 PHI
.addReg(FuncInfo
->PHINodesToUpdate
[pi
].second
)
2068 .addMBB(BTB
.Cases
.back().ThisBB
);
2071 // One of "cases" BB.
2072 for (unsigned j
= 0, ej
= BTB
.Cases
.size();
2074 MachineBasicBlock
* cBB
= BTB
.Cases
[j
].ThisBB
;
2075 if (cBB
->isSuccessor(PHIBB
))
2076 PHI
.addReg(FuncInfo
->PHINodesToUpdate
[pi
].second
).addMBB(cBB
);
2080 SDB
->BitTestCases
.clear();
2082 // If the JumpTable record is filled in, then we need to emit a jump table.
2083 // Updating the PHI nodes is tricky in this case, since we need to determine
2084 // whether the PHI is a successor of the range check MBB or the jump table MBB
2085 for (unsigned i
= 0, e
= SDB
->JTCases
.size(); i
!= e
; ++i
) {
2086 // Lower header first, if it wasn't already lowered
2087 if (!SDB
->JTCases
[i
].first
.Emitted
) {
2088 // Set the current basic block to the mbb we wish to insert the code into
2089 FuncInfo
->MBB
= SDB
->JTCases
[i
].first
.HeaderBB
;
2090 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
2092 SDB
->visitJumpTableHeader(SDB
->JTCases
[i
].second
, SDB
->JTCases
[i
].first
,
2094 CurDAG
->setRoot(SDB
->getRoot());
2096 CodeGenAndEmitDAG();
2099 // Set the current basic block to the mbb we wish to insert the code into
2100 FuncInfo
->MBB
= SDB
->JTCases
[i
].second
.MBB
;
2101 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
2103 SDB
->visitJumpTable(SDB
->JTCases
[i
].second
);
2104 CurDAG
->setRoot(SDB
->getRoot());
2106 CodeGenAndEmitDAG();
2109 for (unsigned pi
= 0, pe
= FuncInfo
->PHINodesToUpdate
.size();
2111 MachineInstrBuilder
PHI(*MF
, FuncInfo
->PHINodesToUpdate
[pi
].first
);
2112 MachineBasicBlock
*PHIBB
= PHI
->getParent();
2113 assert(PHI
->isPHI() &&
2114 "This is not a machine PHI node that we are updating!");
2115 // "default" BB. We can go there only from header BB.
2116 if (PHIBB
== SDB
->JTCases
[i
].second
.Default
)
2117 PHI
.addReg(FuncInfo
->PHINodesToUpdate
[pi
].second
)
2118 .addMBB(SDB
->JTCases
[i
].first
.HeaderBB
);
2119 // JT BB. Just iterate over successors here
2120 if (FuncInfo
->MBB
->isSuccessor(PHIBB
))
2121 PHI
.addReg(FuncInfo
->PHINodesToUpdate
[pi
].second
).addMBB(FuncInfo
->MBB
);
2124 SDB
->JTCases
.clear();
2126 // If we generated any switch lowering information, build and codegen any
2127 // additional DAGs necessary.
2128 for (unsigned i
= 0, e
= SDB
->SwitchCases
.size(); i
!= e
; ++i
) {
2129 // Set the current basic block to the mbb we wish to insert the code into
2130 FuncInfo
->MBB
= SDB
->SwitchCases
[i
].ThisBB
;
2131 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
2133 // Determine the unique successors.
2134 SmallVector
<MachineBasicBlock
*, 2> Succs
;
2135 Succs
.push_back(SDB
->SwitchCases
[i
].TrueBB
);
2136 if (SDB
->SwitchCases
[i
].TrueBB
!= SDB
->SwitchCases
[i
].FalseBB
)
2137 Succs
.push_back(SDB
->SwitchCases
[i
].FalseBB
);
2139 // Emit the code. Note that this could result in FuncInfo->MBB being split.
2140 SDB
->visitSwitchCase(SDB
->SwitchCases
[i
], FuncInfo
->MBB
);
2141 CurDAG
->setRoot(SDB
->getRoot());
2143 CodeGenAndEmitDAG();
2145 // Remember the last block, now that any splitting is done, for use in
2146 // populating PHI nodes in successors.
2147 MachineBasicBlock
*ThisBB
= FuncInfo
->MBB
;
2149 // Handle any PHI nodes in successors of this chunk, as if we were coming
2150 // from the original BB before switch expansion. Note that PHI nodes can
2151 // occur multiple times in PHINodesToUpdate. We have to be very careful to
2152 // handle them the right number of times.
2153 for (unsigned i
= 0, e
= Succs
.size(); i
!= e
; ++i
) {
2154 FuncInfo
->MBB
= Succs
[i
];
2155 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
2156 // FuncInfo->MBB may have been removed from the CFG if a branch was
2158 if (ThisBB
->isSuccessor(FuncInfo
->MBB
)) {
2159 for (MachineBasicBlock::iterator
2160 MBBI
= FuncInfo
->MBB
->begin(), MBBE
= FuncInfo
->MBB
->end();
2161 MBBI
!= MBBE
&& MBBI
->isPHI(); ++MBBI
) {
2162 MachineInstrBuilder
PHI(*MF
, MBBI
);
2163 // This value for this PHI node is recorded in PHINodesToUpdate.
2164 for (unsigned pn
= 0; ; ++pn
) {
2165 assert(pn
!= FuncInfo
->PHINodesToUpdate
.size() &&
2166 "Didn't find PHI entry!");
2167 if (FuncInfo
->PHINodesToUpdate
[pn
].first
== PHI
) {
2168 PHI
.addReg(FuncInfo
->PHINodesToUpdate
[pn
].second
).addMBB(ThisBB
);
2176 SDB
->SwitchCases
.clear();
2179 /// Create the scheduler. If a specific scheduler was specified
2180 /// via the SchedulerRegistry, use it, otherwise select the
2181 /// one preferred by the target.
2183 ScheduleDAGSDNodes
*SelectionDAGISel::CreateScheduler() {
2184 return ISHeuristic(this, OptLevel
);
2187 //===----------------------------------------------------------------------===//
2188 // Helper functions used by the generated instruction selector.
2189 //===----------------------------------------------------------------------===//
2190 // Calls to these methods are generated by tblgen.
2192 /// CheckAndMask - The isel is trying to match something like (and X, 255). If
2193 /// the dag combiner simplified the 255, we still want to match. RHS is the
2194 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
2195 /// specified in the .td file (e.g. 255).
2196 bool SelectionDAGISel::CheckAndMask(SDValue LHS
, ConstantSDNode
*RHS
,
2197 int64_t DesiredMaskS
) const {
2198 const APInt
&ActualMask
= RHS
->getAPIntValue();
2199 const APInt
&DesiredMask
= APInt(LHS
.getValueSizeInBits(), DesiredMaskS
);
2201 // If the actual mask exactly matches, success!
2202 if (ActualMask
== DesiredMask
)
2205 // If the actual AND mask is allowing unallowed bits, this doesn't match.
2206 if (!ActualMask
.isSubsetOf(DesiredMask
))
2209 // Otherwise, the DAG Combiner may have proven that the value coming in is
2210 // either already zero or is not demanded. Check for known zero input bits.
2211 APInt NeededMask
= DesiredMask
& ~ActualMask
;
2212 if (CurDAG
->MaskedValueIsZero(LHS
, NeededMask
))
2215 // TODO: check to see if missing bits are just not demanded.
2217 // Otherwise, this pattern doesn't match.
2221 /// CheckOrMask - The isel is trying to match something like (or X, 255). If
2222 /// the dag combiner simplified the 255, we still want to match. RHS is the
2223 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
2224 /// specified in the .td file (e.g. 255).
2225 bool SelectionDAGISel::CheckOrMask(SDValue LHS
, ConstantSDNode
*RHS
,
2226 int64_t DesiredMaskS
) const {
2227 const APInt
&ActualMask
= RHS
->getAPIntValue();
2228 const APInt
&DesiredMask
= APInt(LHS
.getValueSizeInBits(), DesiredMaskS
);
2230 // If the actual mask exactly matches, success!
2231 if (ActualMask
== DesiredMask
)
2234 // If the actual AND mask is allowing unallowed bits, this doesn't match.
2235 if (!ActualMask
.isSubsetOf(DesiredMask
))
2238 // Otherwise, the DAG Combiner may have proven that the value coming in is
2239 // either already zero or is not demanded. Check for known zero input bits.
2240 APInt NeededMask
= DesiredMask
& ~ActualMask
;
2241 KnownBits Known
= CurDAG
->computeKnownBits(LHS
);
2243 // If all the missing bits in the or are already known to be set, match!
2244 if (NeededMask
.isSubsetOf(Known
.One
))
2247 // TODO: check to see if missing bits are just not demanded.
2249 // Otherwise, this pattern doesn't match.
2253 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
2254 /// by tblgen. Others should not call it.
2255 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector
<SDValue
> &Ops
,
2257 std::vector
<SDValue
> InOps
;
2258 std::swap(InOps
, Ops
);
2260 Ops
.push_back(InOps
[InlineAsm::Op_InputChain
]); // 0
2261 Ops
.push_back(InOps
[InlineAsm::Op_AsmString
]); // 1
2262 Ops
.push_back(InOps
[InlineAsm::Op_MDNode
]); // 2, !srcloc
2263 Ops
.push_back(InOps
[InlineAsm::Op_ExtraInfo
]); // 3 (SideEffect, AlignStack)
2265 unsigned i
= InlineAsm::Op_FirstOperand
, e
= InOps
.size();
2266 if (InOps
[e
-1].getValueType() == MVT::Glue
)
2267 --e
; // Don't process a glue operand if it is here.
2270 unsigned Flags
= cast
<ConstantSDNode
>(InOps
[i
])->getZExtValue();
2271 if (!InlineAsm::isMemKind(Flags
)) {
2272 // Just skip over this operand, copying the operands verbatim.
2273 Ops
.insert(Ops
.end(), InOps
.begin()+i
,
2274 InOps
.begin()+i
+InlineAsm::getNumOperandRegisters(Flags
) + 1);
2275 i
+= InlineAsm::getNumOperandRegisters(Flags
) + 1;
2277 assert(InlineAsm::getNumOperandRegisters(Flags
) == 1 &&
2278 "Memory operand with multiple values?");
2280 unsigned TiedToOperand
;
2281 if (InlineAsm::isUseOperandTiedToDef(Flags
, TiedToOperand
)) {
2282 // We need the constraint ID from the operand this is tied to.
2283 unsigned CurOp
= InlineAsm::Op_FirstOperand
;
2284 Flags
= cast
<ConstantSDNode
>(InOps
[CurOp
])->getZExtValue();
2285 for (; TiedToOperand
; --TiedToOperand
) {
2286 CurOp
+= InlineAsm::getNumOperandRegisters(Flags
)+1;
2287 Flags
= cast
<ConstantSDNode
>(InOps
[CurOp
])->getZExtValue();
2291 // Otherwise, this is a memory operand. Ask the target to select it.
2292 std::vector
<SDValue
> SelOps
;
2293 unsigned ConstraintID
= InlineAsm::getMemoryConstraintID(Flags
);
2294 if (SelectInlineAsmMemoryOperand(InOps
[i
+1], ConstraintID
, SelOps
))
2295 report_fatal_error("Could not match memory address. Inline asm"
2298 // Add this to the output node.
2300 InlineAsm::getFlagWord(InlineAsm::Kind_Mem
, SelOps
.size());
2301 NewFlags
= InlineAsm::getFlagWordForMem(NewFlags
, ConstraintID
);
2302 Ops
.push_back(CurDAG
->getTargetConstant(NewFlags
, DL
, MVT::i32
));
2303 Ops
.insert(Ops
.end(), SelOps
.begin(), SelOps
.end());
2308 // Add the glue input back if present.
2309 if (e
!= InOps
.size())
2310 Ops
.push_back(InOps
.back());
2313 /// findGlueUse - Return use of MVT::Glue value produced by the specified
2316 static SDNode
*findGlueUse(SDNode
*N
) {
2317 unsigned FlagResNo
= N
->getNumValues()-1;
2318 for (SDNode::use_iterator I
= N
->use_begin(), E
= N
->use_end(); I
!= E
; ++I
) {
2319 SDUse
&Use
= I
.getUse();
2320 if (Use
.getResNo() == FlagResNo
)
2321 return Use
.getUser();
2326 /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path
2327 /// beyond "ImmedUse". We may ignore chains as they are checked separately.
2328 static bool findNonImmUse(SDNode
*Root
, SDNode
*Def
, SDNode
*ImmedUse
,
2329 bool IgnoreChains
) {
2330 SmallPtrSet
<const SDNode
*, 16> Visited
;
2331 SmallVector
<const SDNode
*, 16> WorkList
;
2332 // Only check if we have non-immediate uses of Def.
2333 if (ImmedUse
->isOnlyUserOf(Def
))
2336 // We don't care about paths to Def that go through ImmedUse so mark it
2337 // visited and mark non-def operands as used.
2338 Visited
.insert(ImmedUse
);
2339 for (const SDValue
&Op
: ImmedUse
->op_values()) {
2340 SDNode
*N
= Op
.getNode();
2341 // Ignore chain deps (they are validated by
2342 // HandleMergeInputChains) and immediate uses
2343 if ((Op
.getValueType() == MVT::Other
&& IgnoreChains
) || N
== Def
)
2345 if (!Visited
.insert(N
).second
)
2347 WorkList
.push_back(N
);
2350 // Initialize worklist to operands of Root.
2351 if (Root
!= ImmedUse
) {
2352 for (const SDValue
&Op
: Root
->op_values()) {
2353 SDNode
*N
= Op
.getNode();
2354 // Ignore chains (they are validated by HandleMergeInputChains)
2355 if ((Op
.getValueType() == MVT::Other
&& IgnoreChains
) || N
== Def
)
2357 if (!Visited
.insert(N
).second
)
2359 WorkList
.push_back(N
);
2363 return SDNode::hasPredecessorHelper(Def
, Visited
, WorkList
, 0, true);
2366 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
2367 /// operand node N of U during instruction selection that starts at Root.
2368 bool SelectionDAGISel::IsProfitableToFold(SDValue N
, SDNode
*U
,
2369 SDNode
*Root
) const {
2370 if (OptLevel
== CodeGenOpt::None
) return false;
2371 return N
.hasOneUse();
2374 /// IsLegalToFold - Returns true if the specific operand node N of
2375 /// U can be folded during instruction selection that starts at Root.
2376 bool SelectionDAGISel::IsLegalToFold(SDValue N
, SDNode
*U
, SDNode
*Root
,
2377 CodeGenOpt::Level OptLevel
,
2378 bool IgnoreChains
) {
2379 if (OptLevel
== CodeGenOpt::None
) return false;
2381 // If Root use can somehow reach N through a path that that doesn't contain
2382 // U then folding N would create a cycle. e.g. In the following
2383 // diagram, Root can reach N through X. If N is folded into Root, then
2384 // X is both a predecessor and a successor of U.
2395 // * indicates nodes to be folded together.
2397 // If Root produces glue, then it gets (even more) interesting. Since it
2398 // will be "glued" together with its glue use in the scheduler, we need to
2399 // check if it might reach N.
2418 // If GU (glue use) indirectly reaches N (the load), and Root folds N
2419 // (call it Fold), then X is a predecessor of GU and a successor of
2420 // Fold. But since Fold and GU are glued together, this will create
2421 // a cycle in the scheduling graph.
2423 // If the node has glue, walk down the graph to the "lowest" node in the
2425 EVT VT
= Root
->getValueType(Root
->getNumValues()-1);
2426 while (VT
== MVT::Glue
) {
2427 SDNode
*GU
= findGlueUse(Root
);
2431 VT
= Root
->getValueType(Root
->getNumValues()-1);
2433 // If our query node has a glue result with a use, we've walked up it. If
2434 // the user (which has already been selected) has a chain or indirectly uses
2435 // the chain, HandleMergeInputChains will not consider it. Because of
2436 // this, we cannot ignore chains in this predicate.
2437 IgnoreChains
= false;
2440 return !findNonImmUse(Root
, N
.getNode(), U
, IgnoreChains
);
2443 void SelectionDAGISel::Select_INLINEASM(SDNode
*N
, bool Branch
) {
2446 std::vector
<SDValue
> Ops(N
->op_begin(), N
->op_end());
2447 SelectInlineAsmMemoryOperands(Ops
, DL
);
2449 const EVT VTs
[] = {MVT::Other
, MVT::Glue
};
2450 SDValue New
= CurDAG
->getNode(Branch
? ISD::INLINEASM_BR
: ISD::INLINEASM
, DL
, VTs
, Ops
);
2452 ReplaceUses(N
, New
.getNode());
2453 CurDAG
->RemoveDeadNode(N
);
2456 void SelectionDAGISel::Select_READ_REGISTER(SDNode
*Op
) {
2458 MDNodeSDNode
*MD
= dyn_cast
<MDNodeSDNode
>(Op
->getOperand(1));
2459 const MDString
*RegStr
= dyn_cast
<MDString
>(MD
->getMD()->getOperand(0));
2461 TLI
->getRegisterByName(RegStr
->getString().data(), Op
->getValueType(0),
2463 SDValue New
= CurDAG
->getCopyFromReg(
2464 Op
->getOperand(0), dl
, Reg
, Op
->getValueType(0));
2466 ReplaceUses(Op
, New
.getNode());
2467 CurDAG
->RemoveDeadNode(Op
);
2470 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode
*Op
) {
2472 MDNodeSDNode
*MD
= dyn_cast
<MDNodeSDNode
>(Op
->getOperand(1));
2473 const MDString
*RegStr
= dyn_cast
<MDString
>(MD
->getMD()->getOperand(0));
2474 unsigned Reg
= TLI
->getRegisterByName(RegStr
->getString().data(),
2475 Op
->getOperand(2).getValueType(),
2477 SDValue New
= CurDAG
->getCopyToReg(
2478 Op
->getOperand(0), dl
, Reg
, Op
->getOperand(2));
2480 ReplaceUses(Op
, New
.getNode());
2481 CurDAG
->RemoveDeadNode(Op
);
2484 void SelectionDAGISel::Select_UNDEF(SDNode
*N
) {
2485 CurDAG
->SelectNodeTo(N
, TargetOpcode::IMPLICIT_DEF
, N
->getValueType(0));
2488 /// GetVBR - decode a vbr encoding whose top bit is set.
2489 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline uint64_t
2490 GetVBR(uint64_t Val
, const unsigned char *MatcherTable
, unsigned &Idx
) {
2491 assert(Val
>= 128 && "Not a VBR");
2492 Val
&= 127; // Remove first vbr bit.
2497 NextBits
= MatcherTable
[Idx
++];
2498 Val
|= (NextBits
&127) << Shift
;
2500 } while (NextBits
& 128);
2505 /// When a match is complete, this method updates uses of interior chain results
2506 /// to use the new results.
2507 void SelectionDAGISel::UpdateChains(
2508 SDNode
*NodeToMatch
, SDValue InputChain
,
2509 SmallVectorImpl
<SDNode
*> &ChainNodesMatched
, bool isMorphNodeTo
) {
2510 SmallVector
<SDNode
*, 4> NowDeadNodes
;
2512 // Now that all the normal results are replaced, we replace the chain and
2513 // glue results if present.
2514 if (!ChainNodesMatched
.empty()) {
2515 assert(InputChain
.getNode() &&
2516 "Matched input chains but didn't produce a chain");
2517 // Loop over all of the nodes we matched that produced a chain result.
2518 // Replace all the chain results with the final chain we ended up with.
2519 for (unsigned i
= 0, e
= ChainNodesMatched
.size(); i
!= e
; ++i
) {
2520 SDNode
*ChainNode
= ChainNodesMatched
[i
];
2521 // If ChainNode is null, it's because we replaced it on a previous
2522 // iteration and we cleared it out of the map. Just skip it.
2526 assert(ChainNode
->getOpcode() != ISD::DELETED_NODE
&&
2527 "Deleted node left in chain");
2529 // Don't replace the results of the root node if we're doing a
2531 if (ChainNode
== NodeToMatch
&& isMorphNodeTo
)
2534 SDValue ChainVal
= SDValue(ChainNode
, ChainNode
->getNumValues()-1);
2535 if (ChainVal
.getValueType() == MVT::Glue
)
2536 ChainVal
= ChainVal
.getValue(ChainVal
->getNumValues()-2);
2537 assert(ChainVal
.getValueType() == MVT::Other
&& "Not a chain?");
2538 SelectionDAG::DAGNodeDeletedListener
NDL(
2539 *CurDAG
, [&](SDNode
*N
, SDNode
*E
) {
2540 std::replace(ChainNodesMatched
.begin(), ChainNodesMatched
.end(), N
,
2541 static_cast<SDNode
*>(nullptr));
2543 if (ChainNode
->getOpcode() != ISD::TokenFactor
)
2544 ReplaceUses(ChainVal
, InputChain
);
2546 // If the node became dead and we haven't already seen it, delete it.
2547 if (ChainNode
!= NodeToMatch
&& ChainNode
->use_empty() &&
2548 !std::count(NowDeadNodes
.begin(), NowDeadNodes
.end(), ChainNode
))
2549 NowDeadNodes
.push_back(ChainNode
);
2553 if (!NowDeadNodes
.empty())
2554 CurDAG
->RemoveDeadNodes(NowDeadNodes
);
2556 LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n");
2559 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2560 /// operation for when the pattern matched at least one node with a chains. The
2561 /// input vector contains a list of all of the chained nodes that we match. We
2562 /// must determine if this is a valid thing to cover (i.e. matching it won't
2563 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2564 /// be used as the input node chain for the generated nodes.
2566 HandleMergeInputChains(SmallVectorImpl
<SDNode
*> &ChainNodesMatched
,
2567 SelectionDAG
*CurDAG
) {
2569 SmallPtrSet
<const SDNode
*, 16> Visited
;
2570 SmallVector
<const SDNode
*, 8> Worklist
;
2571 SmallVector
<SDValue
, 3> InputChains
;
2572 unsigned int Max
= 8192;
2574 // Quick exit on trivial merge.
2575 if (ChainNodesMatched
.size() == 1)
2576 return ChainNodesMatched
[0]->getOperand(0);
2578 // Add chains that aren't already added (internal). Peek through
2580 std::function
<void(const SDValue
)> AddChains
= [&](const SDValue V
) {
2581 if (V
.getValueType() != MVT::Other
)
2583 if (V
->getOpcode() == ISD::EntryToken
)
2585 if (!Visited
.insert(V
.getNode()).second
)
2587 if (V
->getOpcode() == ISD::TokenFactor
) {
2588 for (const SDValue
&Op
: V
->op_values())
2591 InputChains
.push_back(V
);
2594 for (auto *N
: ChainNodesMatched
) {
2595 Worklist
.push_back(N
);
2599 while (!Worklist
.empty())
2600 AddChains(Worklist
.pop_back_val()->getOperand(0));
2602 // Skip the search if there are no chain dependencies.
2603 if (InputChains
.size() == 0)
2604 return CurDAG
->getEntryNode();
2606 // If one of these chains is a successor of input, we must have a
2607 // node that is both the predecessor and successor of the
2608 // to-be-merged nodes. Fail.
2610 for (SDValue V
: InputChains
)
2611 Worklist
.push_back(V
.getNode());
2613 for (auto *N
: ChainNodesMatched
)
2614 if (SDNode::hasPredecessorHelper(N
, Visited
, Worklist
, Max
, true))
2617 // Return merged chain.
2618 if (InputChains
.size() == 1)
2619 return InputChains
[0];
2620 return CurDAG
->getNode(ISD::TokenFactor
, SDLoc(ChainNodesMatched
[0]),
2621 MVT::Other
, InputChains
);
2624 /// MorphNode - Handle morphing a node in place for the selector.
2625 SDNode
*SelectionDAGISel::
2626 MorphNode(SDNode
*Node
, unsigned TargetOpc
, SDVTList VTList
,
2627 ArrayRef
<SDValue
> Ops
, unsigned EmitNodeInfo
) {
2628 // It is possible we're using MorphNodeTo to replace a node with no
2629 // normal results with one that has a normal result (or we could be
2630 // adding a chain) and the input could have glue and chains as well.
2631 // In this case we need to shift the operands down.
2632 // FIXME: This is a horrible hack and broken in obscure cases, no worse
2633 // than the old isel though.
2634 int OldGlueResultNo
= -1, OldChainResultNo
= -1;
2636 unsigned NTMNumResults
= Node
->getNumValues();
2637 if (Node
->getValueType(NTMNumResults
-1) == MVT::Glue
) {
2638 OldGlueResultNo
= NTMNumResults
-1;
2639 if (NTMNumResults
!= 1 &&
2640 Node
->getValueType(NTMNumResults
-2) == MVT::Other
)
2641 OldChainResultNo
= NTMNumResults
-2;
2642 } else if (Node
->getValueType(NTMNumResults
-1) == MVT::Other
)
2643 OldChainResultNo
= NTMNumResults
-1;
2645 // Call the underlying SelectionDAG routine to do the transmogrification. Note
2646 // that this deletes operands of the old node that become dead.
2647 SDNode
*Res
= CurDAG
->MorphNodeTo(Node
, ~TargetOpc
, VTList
, Ops
);
2649 // MorphNodeTo can operate in two ways: if an existing node with the
2650 // specified operands exists, it can just return it. Otherwise, it
2651 // updates the node in place to have the requested operands.
2653 // If we updated the node in place, reset the node ID. To the isel,
2654 // this should be just like a newly allocated machine node.
2658 unsigned ResNumResults
= Res
->getNumValues();
2659 // Move the glue if needed.
2660 if ((EmitNodeInfo
& OPFL_GlueOutput
) && OldGlueResultNo
!= -1 &&
2661 (unsigned)OldGlueResultNo
!= ResNumResults
-1)
2662 ReplaceUses(SDValue(Node
, OldGlueResultNo
),
2663 SDValue(Res
, ResNumResults
- 1));
2665 if ((EmitNodeInfo
& OPFL_GlueOutput
) != 0)
2668 // Move the chain reference if needed.
2669 if ((EmitNodeInfo
& OPFL_Chain
) && OldChainResultNo
!= -1 &&
2670 (unsigned)OldChainResultNo
!= ResNumResults
-1)
2671 ReplaceUses(SDValue(Node
, OldChainResultNo
),
2672 SDValue(Res
, ResNumResults
- 1));
2674 // Otherwise, no replacement happened because the node already exists. Replace
2675 // Uses of the old node with the new one.
2677 ReplaceNode(Node
, Res
);
2679 EnforceNodeIdInvariant(Res
);
2685 /// CheckSame - Implements OP_CheckSame.
2686 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2687 CheckSame(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2689 const SmallVectorImpl
<std::pair
<SDValue
, SDNode
*>> &RecordedNodes
) {
2690 // Accept if it is exactly the same as a previously recorded node.
2691 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
2692 assert(RecNo
< RecordedNodes
.size() && "Invalid CheckSame");
2693 return N
== RecordedNodes
[RecNo
].first
;
2696 /// CheckChildSame - Implements OP_CheckChildXSame.
2697 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2698 CheckChildSame(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2700 const SmallVectorImpl
<std::pair
<SDValue
, SDNode
*>> &RecordedNodes
,
2702 if (ChildNo
>= N
.getNumOperands())
2703 return false; // Match fails if out of range child #.
2704 return ::CheckSame(MatcherTable
, MatcherIndex
, N
.getOperand(ChildNo
),
2708 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2709 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2710 CheckPatternPredicate(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2711 const SelectionDAGISel
&SDISel
) {
2712 return SDISel
.CheckPatternPredicate(MatcherTable
[MatcherIndex
++]);
2715 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
2716 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2717 CheckNodePredicate(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2718 const SelectionDAGISel
&SDISel
, SDNode
*N
) {
2719 return SDISel
.CheckNodePredicate(N
, MatcherTable
[MatcherIndex
++]);
2722 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2723 CheckOpcode(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2725 uint16_t Opc
= MatcherTable
[MatcherIndex
++];
2726 Opc
|= (unsigned short)MatcherTable
[MatcherIndex
++] << 8;
2727 return N
->getOpcode() == Opc
;
2730 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2731 CheckType(const unsigned char *MatcherTable
, unsigned &MatcherIndex
, SDValue N
,
2732 const TargetLowering
*TLI
, const DataLayout
&DL
) {
2733 MVT::SimpleValueType VT
= (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
2734 if (N
.getValueType() == VT
) return true;
2736 // Handle the case when VT is iPTR.
2737 return VT
== MVT::iPTR
&& N
.getValueType() == TLI
->getPointerTy(DL
);
2740 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2741 CheckChildType(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2742 SDValue N
, const TargetLowering
*TLI
, const DataLayout
&DL
,
2744 if (ChildNo
>= N
.getNumOperands())
2745 return false; // Match fails if out of range child #.
2746 return ::CheckType(MatcherTable
, MatcherIndex
, N
.getOperand(ChildNo
), TLI
,
2750 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2751 CheckCondCode(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2753 return cast
<CondCodeSDNode
>(N
)->get() ==
2754 (ISD::CondCode
)MatcherTable
[MatcherIndex
++];
2757 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2758 CheckChild2CondCode(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2760 if (2 >= N
.getNumOperands())
2762 return ::CheckCondCode(MatcherTable
, MatcherIndex
, N
.getOperand(2));
2765 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2766 CheckValueType(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2767 SDValue N
, const TargetLowering
*TLI
, const DataLayout
&DL
) {
2768 MVT::SimpleValueType VT
= (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
2769 if (cast
<VTSDNode
>(N
)->getVT() == VT
)
2772 // Handle the case when VT is iPTR.
2773 return VT
== MVT::iPTR
&& cast
<VTSDNode
>(N
)->getVT() == TLI
->getPointerTy(DL
);
2776 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2777 CheckInteger(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2779 int64_t Val
= MatcherTable
[MatcherIndex
++];
2781 Val
= GetVBR(Val
, MatcherTable
, MatcherIndex
);
2783 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
);
2784 return C
&& C
->getSExtValue() == Val
;
2787 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2788 CheckChildInteger(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2789 SDValue N
, unsigned ChildNo
) {
2790 if (ChildNo
>= N
.getNumOperands())
2791 return false; // Match fails if out of range child #.
2792 return ::CheckInteger(MatcherTable
, MatcherIndex
, N
.getOperand(ChildNo
));
2795 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2796 CheckAndImm(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2797 SDValue N
, const SelectionDAGISel
&SDISel
) {
2798 int64_t Val
= MatcherTable
[MatcherIndex
++];
2800 Val
= GetVBR(Val
, MatcherTable
, MatcherIndex
);
2802 if (N
->getOpcode() != ISD::AND
) return false;
2804 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
2805 return C
&& SDISel
.CheckAndMask(N
.getOperand(0), C
, Val
);
2808 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2809 CheckOrImm(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2810 SDValue N
, const SelectionDAGISel
&SDISel
) {
2811 int64_t Val
= MatcherTable
[MatcherIndex
++];
2813 Val
= GetVBR(Val
, MatcherTable
, MatcherIndex
);
2815 if (N
->getOpcode() != ISD::OR
) return false;
2817 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
2818 return C
&& SDISel
.CheckOrMask(N
.getOperand(0), C
, Val
);
2821 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
2822 /// scope, evaluate the current node. If the current predicate is known to
2823 /// fail, set Result=true and return anything. If the current predicate is
2824 /// known to pass, set Result=false and return the MatcherIndex to continue
2825 /// with. If the current predicate is unknown, set Result=false and return the
2826 /// MatcherIndex to continue with.
2827 static unsigned IsPredicateKnownToFail(const unsigned char *Table
,
2828 unsigned Index
, SDValue N
,
2830 const SelectionDAGISel
&SDISel
,
2831 SmallVectorImpl
<std::pair
<SDValue
, SDNode
*>> &RecordedNodes
) {
2832 switch (Table
[Index
++]) {
2835 return Index
-1; // Could not evaluate this predicate.
2836 case SelectionDAGISel::OPC_CheckSame
:
2837 Result
= !::CheckSame(Table
, Index
, N
, RecordedNodes
);
2839 case SelectionDAGISel::OPC_CheckChild0Same
:
2840 case SelectionDAGISel::OPC_CheckChild1Same
:
2841 case SelectionDAGISel::OPC_CheckChild2Same
:
2842 case SelectionDAGISel::OPC_CheckChild3Same
:
2843 Result
= !::CheckChildSame(Table
, Index
, N
, RecordedNodes
,
2844 Table
[Index
-1] - SelectionDAGISel::OPC_CheckChild0Same
);
2846 case SelectionDAGISel::OPC_CheckPatternPredicate
:
2847 Result
= !::CheckPatternPredicate(Table
, Index
, SDISel
);
2849 case SelectionDAGISel::OPC_CheckPredicate
:
2850 Result
= !::CheckNodePredicate(Table
, Index
, SDISel
, N
.getNode());
2852 case SelectionDAGISel::OPC_CheckOpcode
:
2853 Result
= !::CheckOpcode(Table
, Index
, N
.getNode());
2855 case SelectionDAGISel::OPC_CheckType
:
2856 Result
= !::CheckType(Table
, Index
, N
, SDISel
.TLI
,
2857 SDISel
.CurDAG
->getDataLayout());
2859 case SelectionDAGISel::OPC_CheckTypeRes
: {
2860 unsigned Res
= Table
[Index
++];
2861 Result
= !::CheckType(Table
, Index
, N
.getValue(Res
), SDISel
.TLI
,
2862 SDISel
.CurDAG
->getDataLayout());
2865 case SelectionDAGISel::OPC_CheckChild0Type
:
2866 case SelectionDAGISel::OPC_CheckChild1Type
:
2867 case SelectionDAGISel::OPC_CheckChild2Type
:
2868 case SelectionDAGISel::OPC_CheckChild3Type
:
2869 case SelectionDAGISel::OPC_CheckChild4Type
:
2870 case SelectionDAGISel::OPC_CheckChild5Type
:
2871 case SelectionDAGISel::OPC_CheckChild6Type
:
2872 case SelectionDAGISel::OPC_CheckChild7Type
:
2873 Result
= !::CheckChildType(
2874 Table
, Index
, N
, SDISel
.TLI
, SDISel
.CurDAG
->getDataLayout(),
2875 Table
[Index
- 1] - SelectionDAGISel::OPC_CheckChild0Type
);
2877 case SelectionDAGISel::OPC_CheckCondCode
:
2878 Result
= !::CheckCondCode(Table
, Index
, N
);
2880 case SelectionDAGISel::OPC_CheckChild2CondCode
:
2881 Result
= !::CheckChild2CondCode(Table
, Index
, N
);
2883 case SelectionDAGISel::OPC_CheckValueType
:
2884 Result
= !::CheckValueType(Table
, Index
, N
, SDISel
.TLI
,
2885 SDISel
.CurDAG
->getDataLayout());
2887 case SelectionDAGISel::OPC_CheckInteger
:
2888 Result
= !::CheckInteger(Table
, Index
, N
);
2890 case SelectionDAGISel::OPC_CheckChild0Integer
:
2891 case SelectionDAGISel::OPC_CheckChild1Integer
:
2892 case SelectionDAGISel::OPC_CheckChild2Integer
:
2893 case SelectionDAGISel::OPC_CheckChild3Integer
:
2894 case SelectionDAGISel::OPC_CheckChild4Integer
:
2895 Result
= !::CheckChildInteger(Table
, Index
, N
,
2896 Table
[Index
-1] - SelectionDAGISel::OPC_CheckChild0Integer
);
2898 case SelectionDAGISel::OPC_CheckAndImm
:
2899 Result
= !::CheckAndImm(Table
, Index
, N
, SDISel
);
2901 case SelectionDAGISel::OPC_CheckOrImm
:
2902 Result
= !::CheckOrImm(Table
, Index
, N
, SDISel
);
2910 /// FailIndex - If this match fails, this is the index to continue with.
2913 /// NodeStack - The node stack when the scope was formed.
2914 SmallVector
<SDValue
, 4> NodeStack
;
2916 /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2917 unsigned NumRecordedNodes
;
2919 /// NumMatchedMemRefs - The number of matched memref entries.
2920 unsigned NumMatchedMemRefs
;
2922 /// InputChain/InputGlue - The current chain/glue
2923 SDValue InputChain
, InputGlue
;
2925 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2926 bool HasChainNodesMatched
;
2929 /// \A DAG update listener to keep the matching state
2930 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
2931 /// change the DAG while matching. X86 addressing mode matcher is an example
2933 class MatchStateUpdater
: public SelectionDAG::DAGUpdateListener
2935 SDNode
**NodeToMatch
;
2936 SmallVectorImpl
<std::pair
<SDValue
, SDNode
*>> &RecordedNodes
;
2937 SmallVectorImpl
<MatchScope
> &MatchScopes
;
2940 MatchStateUpdater(SelectionDAG
&DAG
, SDNode
**NodeToMatch
,
2941 SmallVectorImpl
<std::pair
<SDValue
, SDNode
*>> &RN
,
2942 SmallVectorImpl
<MatchScope
> &MS
)
2943 : SelectionDAG::DAGUpdateListener(DAG
), NodeToMatch(NodeToMatch
),
2944 RecordedNodes(RN
), MatchScopes(MS
) {}
2946 void NodeDeleted(SDNode
*N
, SDNode
*E
) override
{
2947 // Some early-returns here to avoid the search if we deleted the node or
2948 // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
2949 // do, so it's unnecessary to update matching state at that point).
2950 // Neither of these can occur currently because we only install this
2951 // update listener during matching a complex patterns.
2952 if (!E
|| E
->isMachineOpcode())
2954 // Check if NodeToMatch was updated.
2955 if (N
== *NodeToMatch
)
2957 // Performing linear search here does not matter because we almost never
2958 // run this code. You'd have to have a CSE during complex pattern
2960 for (auto &I
: RecordedNodes
)
2961 if (I
.first
.getNode() == N
)
2964 for (auto &I
: MatchScopes
)
2965 for (auto &J
: I
.NodeStack
)
2966 if (J
.getNode() == N
)
2971 } // end anonymous namespace
2973 void SelectionDAGISel::SelectCodeCommon(SDNode
*NodeToMatch
,
2974 const unsigned char *MatcherTable
,
2975 unsigned TableSize
) {
2976 // FIXME: Should these even be selected? Handle these cases in the caller?
2977 switch (NodeToMatch
->getOpcode()) {
2980 case ISD::EntryToken
: // These nodes remain the same.
2981 case ISD::BasicBlock
:
2983 case ISD::RegisterMask
:
2984 case ISD::HANDLENODE
:
2985 case ISD::MDNODE_SDNODE
:
2986 case ISD::TargetConstant
:
2987 case ISD::TargetConstantFP
:
2988 case ISD::TargetConstantPool
:
2989 case ISD::TargetFrameIndex
:
2990 case ISD::TargetExternalSymbol
:
2992 case ISD::TargetBlockAddress
:
2993 case ISD::TargetJumpTable
:
2994 case ISD::TargetGlobalTLSAddress
:
2995 case ISD::TargetGlobalAddress
:
2996 case ISD::TokenFactor
:
2997 case ISD::CopyFromReg
:
2998 case ISD::CopyToReg
:
3000 case ISD::ANNOTATION_LABEL
:
3001 case ISD::LIFETIME_START
:
3002 case ISD::LIFETIME_END
:
3003 NodeToMatch
->setNodeId(-1); // Mark selected.
3005 case ISD::AssertSext
:
3006 case ISD::AssertZext
:
3007 ReplaceUses(SDValue(NodeToMatch
, 0), NodeToMatch
->getOperand(0));
3008 CurDAG
->RemoveDeadNode(NodeToMatch
);
3010 case ISD::INLINEASM
:
3011 case ISD::INLINEASM_BR
:
3012 Select_INLINEASM(NodeToMatch
,
3013 NodeToMatch
->getOpcode() == ISD::INLINEASM_BR
);
3015 case ISD::READ_REGISTER
:
3016 Select_READ_REGISTER(NodeToMatch
);
3018 case ISD::WRITE_REGISTER
:
3019 Select_WRITE_REGISTER(NodeToMatch
);
3022 Select_UNDEF(NodeToMatch
);
3026 assert(!NodeToMatch
->isMachineOpcode() && "Node already selected!");
3028 // Set up the node stack with NodeToMatch as the only node on the stack.
3029 SmallVector
<SDValue
, 8> NodeStack
;
3030 SDValue N
= SDValue(NodeToMatch
, 0);
3031 NodeStack
.push_back(N
);
3033 // MatchScopes - Scopes used when matching, if a match failure happens, this
3034 // indicates where to continue checking.
3035 SmallVector
<MatchScope
, 8> MatchScopes
;
3037 // RecordedNodes - This is the set of nodes that have been recorded by the
3038 // state machine. The second value is the parent of the node, or null if the
3039 // root is recorded.
3040 SmallVector
<std::pair
<SDValue
, SDNode
*>, 8> RecordedNodes
;
3042 // MatchedMemRefs - This is the set of MemRef's we've seen in the input
3044 SmallVector
<MachineMemOperand
*, 2> MatchedMemRefs
;
3046 // These are the current input chain and glue for use when generating nodes.
3047 // Various Emit operations change these. For example, emitting a copytoreg
3048 // uses and updates these.
3049 SDValue InputChain
, InputGlue
;
3051 // ChainNodesMatched - If a pattern matches nodes that have input/output
3052 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
3053 // which ones they are. The result is captured into this list so that we can
3054 // update the chain results when the pattern is complete.
3055 SmallVector
<SDNode
*, 3> ChainNodesMatched
;
3057 LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n");
3059 // Determine where to start the interpreter. Normally we start at opcode #0,
3060 // but if the state machine starts with an OPC_SwitchOpcode, then we
3061 // accelerate the first lookup (which is guaranteed to be hot) with the
3062 // OpcodeOffset table.
3063 unsigned MatcherIndex
= 0;
3065 if (!OpcodeOffset
.empty()) {
3066 // Already computed the OpcodeOffset table, just index into it.
3067 if (N
.getOpcode() < OpcodeOffset
.size())
3068 MatcherIndex
= OpcodeOffset
[N
.getOpcode()];
3069 LLVM_DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex
<< "\n");
3071 } else if (MatcherTable
[0] == OPC_SwitchOpcode
) {
3072 // Otherwise, the table isn't computed, but the state machine does start
3073 // with an OPC_SwitchOpcode instruction. Populate the table now, since this
3074 // is the first time we're selecting an instruction.
3077 // Get the size of this case.
3078 unsigned CaseSize
= MatcherTable
[Idx
++];
3080 CaseSize
= GetVBR(CaseSize
, MatcherTable
, Idx
);
3081 if (CaseSize
== 0) break;
3083 // Get the opcode, add the index to the table.
3084 uint16_t Opc
= MatcherTable
[Idx
++];
3085 Opc
|= (unsigned short)MatcherTable
[Idx
++] << 8;
3086 if (Opc
>= OpcodeOffset
.size())
3087 OpcodeOffset
.resize((Opc
+1)*2);
3088 OpcodeOffset
[Opc
] = Idx
;
3092 // Okay, do the lookup for the first opcode.
3093 if (N
.getOpcode() < OpcodeOffset
.size())
3094 MatcherIndex
= OpcodeOffset
[N
.getOpcode()];
3098 assert(MatcherIndex
< TableSize
&& "Invalid index");
3100 unsigned CurrentOpcodeIndex
= MatcherIndex
;
3102 BuiltinOpcodes Opcode
= (BuiltinOpcodes
)MatcherTable
[MatcherIndex
++];
3105 // Okay, the semantics of this operation are that we should push a scope
3106 // then evaluate the first child. However, pushing a scope only to have
3107 // the first check fail (which then pops it) is inefficient. If we can
3108 // determine immediately that the first check (or first several) will
3109 // immediately fail, don't even bother pushing a scope for them.
3113 unsigned NumToSkip
= MatcherTable
[MatcherIndex
++];
3114 if (NumToSkip
& 128)
3115 NumToSkip
= GetVBR(NumToSkip
, MatcherTable
, MatcherIndex
);
3116 // Found the end of the scope with no match.
3117 if (NumToSkip
== 0) {
3122 FailIndex
= MatcherIndex
+NumToSkip
;
3124 unsigned MatcherIndexOfPredicate
= MatcherIndex
;
3125 (void)MatcherIndexOfPredicate
; // silence warning.
3127 // If we can't evaluate this predicate without pushing a scope (e.g. if
3128 // it is a 'MoveParent') or if the predicate succeeds on this node, we
3129 // push the scope and evaluate the full predicate chain.
3131 MatcherIndex
= IsPredicateKnownToFail(MatcherTable
, MatcherIndex
, N
,
3132 Result
, *this, RecordedNodes
);
3137 dbgs() << " Skipped scope entry (due to false predicate) at "
3138 << "index " << MatcherIndexOfPredicate
<< ", continuing at "
3139 << FailIndex
<< "\n");
3140 ++NumDAGIselRetries
;
3142 // Otherwise, we know that this case of the Scope is guaranteed to fail,
3143 // move to the next case.
3144 MatcherIndex
= FailIndex
;
3147 // If the whole scope failed to match, bail.
3148 if (FailIndex
== 0) break;
3150 // Push a MatchScope which indicates where to go if the first child fails
3152 MatchScope NewEntry
;
3153 NewEntry
.FailIndex
= FailIndex
;
3154 NewEntry
.NodeStack
.append(NodeStack
.begin(), NodeStack
.end());
3155 NewEntry
.NumRecordedNodes
= RecordedNodes
.size();
3156 NewEntry
.NumMatchedMemRefs
= MatchedMemRefs
.size();
3157 NewEntry
.InputChain
= InputChain
;
3158 NewEntry
.InputGlue
= InputGlue
;
3159 NewEntry
.HasChainNodesMatched
= !ChainNodesMatched
.empty();
3160 MatchScopes
.push_back(NewEntry
);
3163 case OPC_RecordNode
: {
3164 // Remember this node, it may end up being an operand in the pattern.
3165 SDNode
*Parent
= nullptr;
3166 if (NodeStack
.size() > 1)
3167 Parent
= NodeStack
[NodeStack
.size()-2].getNode();
3168 RecordedNodes
.push_back(std::make_pair(N
, Parent
));
3172 case OPC_RecordChild0
: case OPC_RecordChild1
:
3173 case OPC_RecordChild2
: case OPC_RecordChild3
:
3174 case OPC_RecordChild4
: case OPC_RecordChild5
:
3175 case OPC_RecordChild6
: case OPC_RecordChild7
: {
3176 unsigned ChildNo
= Opcode
-OPC_RecordChild0
;
3177 if (ChildNo
>= N
.getNumOperands())
3178 break; // Match fails if out of range child #.
3180 RecordedNodes
.push_back(std::make_pair(N
->getOperand(ChildNo
),
3184 case OPC_RecordMemRef
:
3185 if (auto *MN
= dyn_cast
<MemSDNode
>(N
))
3186 MatchedMemRefs
.push_back(MN
->getMemOperand());
3188 LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N
->dump(CurDAG
);
3194 case OPC_CaptureGlueInput
:
3195 // If the current node has an input glue, capture it in InputGlue.
3196 if (N
->getNumOperands() != 0 &&
3197 N
->getOperand(N
->getNumOperands()-1).getValueType() == MVT::Glue
)
3198 InputGlue
= N
->getOperand(N
->getNumOperands()-1);
3201 case OPC_MoveChild
: {
3202 unsigned ChildNo
= MatcherTable
[MatcherIndex
++];
3203 if (ChildNo
>= N
.getNumOperands())
3204 break; // Match fails if out of range child #.
3205 N
= N
.getOperand(ChildNo
);
3206 NodeStack
.push_back(N
);
3210 case OPC_MoveChild0
: case OPC_MoveChild1
:
3211 case OPC_MoveChild2
: case OPC_MoveChild3
:
3212 case OPC_MoveChild4
: case OPC_MoveChild5
:
3213 case OPC_MoveChild6
: case OPC_MoveChild7
: {
3214 unsigned ChildNo
= Opcode
-OPC_MoveChild0
;
3215 if (ChildNo
>= N
.getNumOperands())
3216 break; // Match fails if out of range child #.
3217 N
= N
.getOperand(ChildNo
);
3218 NodeStack
.push_back(N
);
3222 case OPC_MoveParent
:
3223 // Pop the current node off the NodeStack.
3224 NodeStack
.pop_back();
3225 assert(!NodeStack
.empty() && "Node stack imbalance!");
3226 N
= NodeStack
.back();
3230 if (!::CheckSame(MatcherTable
, MatcherIndex
, N
, RecordedNodes
)) break;
3233 case OPC_CheckChild0Same
: case OPC_CheckChild1Same
:
3234 case OPC_CheckChild2Same
: case OPC_CheckChild3Same
:
3235 if (!::CheckChildSame(MatcherTable
, MatcherIndex
, N
, RecordedNodes
,
3236 Opcode
-OPC_CheckChild0Same
))
3240 case OPC_CheckPatternPredicate
:
3241 if (!::CheckPatternPredicate(MatcherTable
, MatcherIndex
, *this)) break;
3243 case OPC_CheckPredicate
:
3244 if (!::CheckNodePredicate(MatcherTable
, MatcherIndex
, *this,
3248 case OPC_CheckPredicateWithOperands
: {
3249 unsigned OpNum
= MatcherTable
[MatcherIndex
++];
3250 SmallVector
<SDValue
, 8> Operands
;
3252 for (unsigned i
= 0; i
< OpNum
; ++i
)
3253 Operands
.push_back(RecordedNodes
[MatcherTable
[MatcherIndex
++]].first
);
3255 unsigned PredNo
= MatcherTable
[MatcherIndex
++];
3256 if (!CheckNodePredicateWithOperands(N
.getNode(), PredNo
, Operands
))
3260 case OPC_CheckComplexPat
: {
3261 unsigned CPNum
= MatcherTable
[MatcherIndex
++];
3262 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
3263 assert(RecNo
< RecordedNodes
.size() && "Invalid CheckComplexPat");
3265 // If target can modify DAG during matching, keep the matching state
3267 std::unique_ptr
<MatchStateUpdater
> MSU
;
3268 if (ComplexPatternFuncMutatesDAG())
3269 MSU
.reset(new MatchStateUpdater(*CurDAG
, &NodeToMatch
, RecordedNodes
,
3272 if (!CheckComplexPattern(NodeToMatch
, RecordedNodes
[RecNo
].second
,
3273 RecordedNodes
[RecNo
].first
, CPNum
,
3278 case OPC_CheckOpcode
:
3279 if (!::CheckOpcode(MatcherTable
, MatcherIndex
, N
.getNode())) break;
3283 if (!::CheckType(MatcherTable
, MatcherIndex
, N
, TLI
,
3284 CurDAG
->getDataLayout()))
3288 case OPC_CheckTypeRes
: {
3289 unsigned Res
= MatcherTable
[MatcherIndex
++];
3290 if (!::CheckType(MatcherTable
, MatcherIndex
, N
.getValue(Res
), TLI
,
3291 CurDAG
->getDataLayout()))
3296 case OPC_SwitchOpcode
: {
3297 unsigned CurNodeOpcode
= N
.getOpcode();
3298 unsigned SwitchStart
= MatcherIndex
-1; (void)SwitchStart
;
3301 // Get the size of this case.
3302 CaseSize
= MatcherTable
[MatcherIndex
++];
3304 CaseSize
= GetVBR(CaseSize
, MatcherTable
, MatcherIndex
);
3305 if (CaseSize
== 0) break;
3307 uint16_t Opc
= MatcherTable
[MatcherIndex
++];
3308 Opc
|= (unsigned short)MatcherTable
[MatcherIndex
++] << 8;
3310 // If the opcode matches, then we will execute this case.
3311 if (CurNodeOpcode
== Opc
)
3314 // Otherwise, skip over this case.
3315 MatcherIndex
+= CaseSize
;
3318 // If no cases matched, bail out.
3319 if (CaseSize
== 0) break;
3321 // Otherwise, execute the case we found.
3322 LLVM_DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart
<< " to "
3323 << MatcherIndex
<< "\n");
3327 case OPC_SwitchType
: {
3328 MVT CurNodeVT
= N
.getSimpleValueType();
3329 unsigned SwitchStart
= MatcherIndex
-1; (void)SwitchStart
;
3332 // Get the size of this case.
3333 CaseSize
= MatcherTable
[MatcherIndex
++];
3335 CaseSize
= GetVBR(CaseSize
, MatcherTable
, MatcherIndex
);
3336 if (CaseSize
== 0) break;
3338 MVT CaseVT
= (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
3339 if (CaseVT
== MVT::iPTR
)
3340 CaseVT
= TLI
->getPointerTy(CurDAG
->getDataLayout());
3342 // If the VT matches, then we will execute this case.
3343 if (CurNodeVT
== CaseVT
)
3346 // Otherwise, skip over this case.
3347 MatcherIndex
+= CaseSize
;
3350 // If no cases matched, bail out.
3351 if (CaseSize
== 0) break;
3353 // Otherwise, execute the case we found.
3354 LLVM_DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT
).getEVTString()
3355 << "] from " << SwitchStart
<< " to " << MatcherIndex
3359 case OPC_CheckChild0Type
: case OPC_CheckChild1Type
:
3360 case OPC_CheckChild2Type
: case OPC_CheckChild3Type
:
3361 case OPC_CheckChild4Type
: case OPC_CheckChild5Type
:
3362 case OPC_CheckChild6Type
: case OPC_CheckChild7Type
:
3363 if (!::CheckChildType(MatcherTable
, MatcherIndex
, N
, TLI
,
3364 CurDAG
->getDataLayout(),
3365 Opcode
- OPC_CheckChild0Type
))
3368 case OPC_CheckCondCode
:
3369 if (!::CheckCondCode(MatcherTable
, MatcherIndex
, N
)) break;
3371 case OPC_CheckChild2CondCode
:
3372 if (!::CheckChild2CondCode(MatcherTable
, MatcherIndex
, N
)) break;
3374 case OPC_CheckValueType
:
3375 if (!::CheckValueType(MatcherTable
, MatcherIndex
, N
, TLI
,
3376 CurDAG
->getDataLayout()))
3379 case OPC_CheckInteger
:
3380 if (!::CheckInteger(MatcherTable
, MatcherIndex
, N
)) break;
3382 case OPC_CheckChild0Integer
: case OPC_CheckChild1Integer
:
3383 case OPC_CheckChild2Integer
: case OPC_CheckChild3Integer
:
3384 case OPC_CheckChild4Integer
:
3385 if (!::CheckChildInteger(MatcherTable
, MatcherIndex
, N
,
3386 Opcode
-OPC_CheckChild0Integer
)) break;
3388 case OPC_CheckAndImm
:
3389 if (!::CheckAndImm(MatcherTable
, MatcherIndex
, N
, *this)) break;
3391 case OPC_CheckOrImm
:
3392 if (!::CheckOrImm(MatcherTable
, MatcherIndex
, N
, *this)) break;
3394 case OPC_CheckImmAllOnesV
:
3395 if (!ISD::isBuildVectorAllOnes(N
.getNode())) break;
3397 case OPC_CheckImmAllZerosV
:
3398 if (!ISD::isBuildVectorAllZeros(N
.getNode())) break;
3401 case OPC_CheckFoldableChainNode
: {
3402 assert(NodeStack
.size() != 1 && "No parent node");
3403 // Verify that all intermediate nodes between the root and this one have
3405 bool HasMultipleUses
= false;
3406 for (unsigned i
= 1, e
= NodeStack
.size()-1; i
!= e
; ++i
)
3407 if (!NodeStack
[i
].getNode()->hasOneUse()) {
3408 HasMultipleUses
= true;
3411 if (HasMultipleUses
) break;
3413 // Check to see that the target thinks this is profitable to fold and that
3414 // we can fold it without inducing cycles in the graph.
3415 if (!IsProfitableToFold(N
, NodeStack
[NodeStack
.size()-2].getNode(),
3417 !IsLegalToFold(N
, NodeStack
[NodeStack
.size()-2].getNode(),
3418 NodeToMatch
, OptLevel
,
3419 true/*We validate our own chains*/))
3424 case OPC_EmitInteger
: {
3425 MVT::SimpleValueType VT
=
3426 (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
3427 int64_t Val
= MatcherTable
[MatcherIndex
++];
3429 Val
= GetVBR(Val
, MatcherTable
, MatcherIndex
);
3430 RecordedNodes
.push_back(std::pair
<SDValue
, SDNode
*>(
3431 CurDAG
->getTargetConstant(Val
, SDLoc(NodeToMatch
),
3435 case OPC_EmitRegister
: {
3436 MVT::SimpleValueType VT
=
3437 (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
3438 unsigned RegNo
= MatcherTable
[MatcherIndex
++];
3439 RecordedNodes
.push_back(std::pair
<SDValue
, SDNode
*>(
3440 CurDAG
->getRegister(RegNo
, VT
), nullptr));
3443 case OPC_EmitRegister2
: {
3444 // For targets w/ more than 256 register names, the register enum
3445 // values are stored in two bytes in the matcher table (just like
3447 MVT::SimpleValueType VT
=
3448 (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
3449 unsigned RegNo
= MatcherTable
[MatcherIndex
++];
3450 RegNo
|= MatcherTable
[MatcherIndex
++] << 8;
3451 RecordedNodes
.push_back(std::pair
<SDValue
, SDNode
*>(
3452 CurDAG
->getRegister(RegNo
, VT
), nullptr));
3456 case OPC_EmitConvertToTarget
: {
3457 // Convert from IMM/FPIMM to target version.
3458 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
3459 assert(RecNo
< RecordedNodes
.size() && "Invalid EmitConvertToTarget");
3460 SDValue Imm
= RecordedNodes
[RecNo
].first
;
3462 if (Imm
->getOpcode() == ISD::Constant
) {
3463 const ConstantInt
*Val
=cast
<ConstantSDNode
>(Imm
)->getConstantIntValue();
3464 Imm
= CurDAG
->getTargetConstant(*Val
, SDLoc(NodeToMatch
),
3465 Imm
.getValueType());
3466 } else if (Imm
->getOpcode() == ISD::ConstantFP
) {
3467 const ConstantFP
*Val
=cast
<ConstantFPSDNode
>(Imm
)->getConstantFPValue();
3468 Imm
= CurDAG
->getTargetConstantFP(*Val
, SDLoc(NodeToMatch
),
3469 Imm
.getValueType());
3472 RecordedNodes
.push_back(std::make_pair(Imm
, RecordedNodes
[RecNo
].second
));
3476 case OPC_EmitMergeInputChains1_0
: // OPC_EmitMergeInputChains, 1, 0
3477 case OPC_EmitMergeInputChains1_1
: // OPC_EmitMergeInputChains, 1, 1
3478 case OPC_EmitMergeInputChains1_2
: { // OPC_EmitMergeInputChains, 1, 2
3479 // These are space-optimized forms of OPC_EmitMergeInputChains.
3480 assert(!InputChain
.getNode() &&
3481 "EmitMergeInputChains should be the first chain producing node");
3482 assert(ChainNodesMatched
.empty() &&
3483 "Should only have one EmitMergeInputChains per match");
3485 // Read all of the chained nodes.
3486 unsigned RecNo
= Opcode
- OPC_EmitMergeInputChains1_0
;
3487 assert(RecNo
< RecordedNodes
.size() && "Invalid EmitMergeInputChains");
3488 ChainNodesMatched
.push_back(RecordedNodes
[RecNo
].first
.getNode());
3490 // FIXME: What if other value results of the node have uses not matched
3492 if (ChainNodesMatched
.back() != NodeToMatch
&&
3493 !RecordedNodes
[RecNo
].first
.hasOneUse()) {
3494 ChainNodesMatched
.clear();
3498 // Merge the input chains if they are not intra-pattern references.
3499 InputChain
= HandleMergeInputChains(ChainNodesMatched
, CurDAG
);
3501 if (!InputChain
.getNode())
3502 break; // Failed to merge.
3506 case OPC_EmitMergeInputChains
: {
3507 assert(!InputChain
.getNode() &&
3508 "EmitMergeInputChains should be the first chain producing node");
3509 // This node gets a list of nodes we matched in the input that have
3510 // chains. We want to token factor all of the input chains to these nodes
3511 // together. However, if any of the input chains is actually one of the
3512 // nodes matched in this pattern, then we have an intra-match reference.
3513 // Ignore these because the newly token factored chain should not refer to
3515 unsigned NumChains
= MatcherTable
[MatcherIndex
++];
3516 assert(NumChains
!= 0 && "Can't TF zero chains");
3518 assert(ChainNodesMatched
.empty() &&
3519 "Should only have one EmitMergeInputChains per match");
3521 // Read all of the chained nodes.
3522 for (unsigned i
= 0; i
!= NumChains
; ++i
) {
3523 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
3524 assert(RecNo
< RecordedNodes
.size() && "Invalid EmitMergeInputChains");
3525 ChainNodesMatched
.push_back(RecordedNodes
[RecNo
].first
.getNode());
3527 // FIXME: What if other value results of the node have uses not matched
3529 if (ChainNodesMatched
.back() != NodeToMatch
&&
3530 !RecordedNodes
[RecNo
].first
.hasOneUse()) {
3531 ChainNodesMatched
.clear();
3536 // If the inner loop broke out, the match fails.
3537 if (ChainNodesMatched
.empty())
3540 // Merge the input chains if they are not intra-pattern references.
3541 InputChain
= HandleMergeInputChains(ChainNodesMatched
, CurDAG
);
3543 if (!InputChain
.getNode())
3544 break; // Failed to merge.
3549 case OPC_EmitCopyToReg
: {
3550 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
3551 assert(RecNo
< RecordedNodes
.size() && "Invalid EmitCopyToReg");
3552 unsigned DestPhysReg
= MatcherTable
[MatcherIndex
++];
3554 if (!InputChain
.getNode())
3555 InputChain
= CurDAG
->getEntryNode();
3557 InputChain
= CurDAG
->getCopyToReg(InputChain
, SDLoc(NodeToMatch
),
3558 DestPhysReg
, RecordedNodes
[RecNo
].first
,
3561 InputGlue
= InputChain
.getValue(1);
3565 case OPC_EmitNodeXForm
: {
3566 unsigned XFormNo
= MatcherTable
[MatcherIndex
++];
3567 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
3568 assert(RecNo
< RecordedNodes
.size() && "Invalid EmitNodeXForm");
3569 SDValue Res
= RunSDNodeXForm(RecordedNodes
[RecNo
].first
, XFormNo
);
3570 RecordedNodes
.push_back(std::pair
<SDValue
,SDNode
*>(Res
, nullptr));
3573 case OPC_Coverage
: {
3574 // This is emitted right before MorphNode/EmitNode.
3575 // So it should be safe to assume that this node has been selected
3576 unsigned index
= MatcherTable
[MatcherIndex
++];
3577 index
|= (MatcherTable
[MatcherIndex
++] << 8);
3578 dbgs() << "COVERED: " << getPatternForIndex(index
) << "\n";
3579 dbgs() << "INCLUDED: " << getIncludePathForIndex(index
) << "\n";
3583 case OPC_EmitNode
: case OPC_MorphNodeTo
:
3584 case OPC_EmitNode0
: case OPC_EmitNode1
: case OPC_EmitNode2
:
3585 case OPC_MorphNodeTo0
: case OPC_MorphNodeTo1
: case OPC_MorphNodeTo2
: {
3586 uint16_t TargetOpc
= MatcherTable
[MatcherIndex
++];
3587 TargetOpc
|= (unsigned short)MatcherTable
[MatcherIndex
++] << 8;
3588 unsigned EmitNodeInfo
= MatcherTable
[MatcherIndex
++];
3589 // Get the result VT list.
3591 // If this is one of the compressed forms, get the number of VTs based
3592 // on the Opcode. Otherwise read the next byte from the table.
3593 if (Opcode
>= OPC_MorphNodeTo0
&& Opcode
<= OPC_MorphNodeTo2
)
3594 NumVTs
= Opcode
- OPC_MorphNodeTo0
;
3595 else if (Opcode
>= OPC_EmitNode0
&& Opcode
<= OPC_EmitNode2
)
3596 NumVTs
= Opcode
- OPC_EmitNode0
;
3598 NumVTs
= MatcherTable
[MatcherIndex
++];
3599 SmallVector
<EVT
, 4> VTs
;
3600 for (unsigned i
= 0; i
!= NumVTs
; ++i
) {
3601 MVT::SimpleValueType VT
=
3602 (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
3603 if (VT
== MVT::iPTR
)
3604 VT
= TLI
->getPointerTy(CurDAG
->getDataLayout()).SimpleTy
;
3608 if (EmitNodeInfo
& OPFL_Chain
)
3609 VTs
.push_back(MVT::Other
);
3610 if (EmitNodeInfo
& OPFL_GlueOutput
)
3611 VTs
.push_back(MVT::Glue
);
3613 // This is hot code, so optimize the two most common cases of 1 and 2
3616 if (VTs
.size() == 1)
3617 VTList
= CurDAG
->getVTList(VTs
[0]);
3618 else if (VTs
.size() == 2)
3619 VTList
= CurDAG
->getVTList(VTs
[0], VTs
[1]);
3621 VTList
= CurDAG
->getVTList(VTs
);
3623 // Get the operand list.
3624 unsigned NumOps
= MatcherTable
[MatcherIndex
++];
3625 SmallVector
<SDValue
, 8> Ops
;
3626 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
3627 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
3629 RecNo
= GetVBR(RecNo
, MatcherTable
, MatcherIndex
);
3631 assert(RecNo
< RecordedNodes
.size() && "Invalid EmitNode");
3632 Ops
.push_back(RecordedNodes
[RecNo
].first
);
3635 // If there are variadic operands to add, handle them now.
3636 if (EmitNodeInfo
& OPFL_VariadicInfo
) {
3637 // Determine the start index to copy from.
3638 unsigned FirstOpToCopy
= getNumFixedFromVariadicInfo(EmitNodeInfo
);
3639 FirstOpToCopy
+= (EmitNodeInfo
& OPFL_Chain
) ? 1 : 0;
3640 assert(NodeToMatch
->getNumOperands() >= FirstOpToCopy
&&
3641 "Invalid variadic node");
3642 // Copy all of the variadic operands, not including a potential glue
3644 for (unsigned i
= FirstOpToCopy
, e
= NodeToMatch
->getNumOperands();
3646 SDValue V
= NodeToMatch
->getOperand(i
);
3647 if (V
.getValueType() == MVT::Glue
) break;
3652 // If this has chain/glue inputs, add them.
3653 if (EmitNodeInfo
& OPFL_Chain
)
3654 Ops
.push_back(InputChain
);
3655 if ((EmitNodeInfo
& OPFL_GlueInput
) && InputGlue
.getNode() != nullptr)
3656 Ops
.push_back(InputGlue
);
3659 MachineSDNode
*Res
= nullptr;
3660 bool IsMorphNodeTo
= Opcode
== OPC_MorphNodeTo
||
3661 (Opcode
>= OPC_MorphNodeTo0
&& Opcode
<= OPC_MorphNodeTo2
);
3662 if (!IsMorphNodeTo
) {
3663 // If this is a normal EmitNode command, just create the new node and
3664 // add the results to the RecordedNodes list.
3665 Res
= CurDAG
->getMachineNode(TargetOpc
, SDLoc(NodeToMatch
),
3668 // Add all the non-glue/non-chain results to the RecordedNodes list.
3669 for (unsigned i
= 0, e
= VTs
.size(); i
!= e
; ++i
) {
3670 if (VTs
[i
] == MVT::Other
|| VTs
[i
] == MVT::Glue
) break;
3671 RecordedNodes
.push_back(std::pair
<SDValue
,SDNode
*>(SDValue(Res
, i
),
3675 assert(NodeToMatch
->getOpcode() != ISD::DELETED_NODE
&&
3676 "NodeToMatch was removed partway through selection");
3677 SelectionDAG::DAGNodeDeletedListener
NDL(*CurDAG
, [&](SDNode
*N
,
3679 CurDAG
->salvageDebugInfo(*N
);
3680 auto &Chain
= ChainNodesMatched
;
3681 assert((!E
|| !is_contained(Chain
, N
)) &&
3682 "Chain node replaced during MorphNode");
3683 Chain
.erase(std::remove(Chain
.begin(), Chain
.end(), N
), Chain
.end());
3685 Res
= cast
<MachineSDNode
>(MorphNode(NodeToMatch
, TargetOpc
, VTList
,
3686 Ops
, EmitNodeInfo
));
3689 // If the node had chain/glue results, update our notion of the current
3691 if (EmitNodeInfo
& OPFL_GlueOutput
) {
3692 InputGlue
= SDValue(Res
, VTs
.size()-1);
3693 if (EmitNodeInfo
& OPFL_Chain
)
3694 InputChain
= SDValue(Res
, VTs
.size()-2);
3695 } else if (EmitNodeInfo
& OPFL_Chain
)
3696 InputChain
= SDValue(Res
, VTs
.size()-1);
3698 // If the OPFL_MemRefs glue is set on this node, slap all of the
3699 // accumulated memrefs onto it.
3701 // FIXME: This is vastly incorrect for patterns with multiple outputs
3702 // instructions that access memory and for ComplexPatterns that match
3704 if (EmitNodeInfo
& OPFL_MemRefs
) {
3705 // Only attach load or store memory operands if the generated
3706 // instruction may load or store.
3707 const MCInstrDesc
&MCID
= TII
->get(TargetOpc
);
3708 bool mayLoad
= MCID
.mayLoad();
3709 bool mayStore
= MCID
.mayStore();
3711 // We expect to have relatively few of these so just filter them into a
3712 // temporary buffer so that we can easily add them to the instruction.
3713 SmallVector
<MachineMemOperand
*, 4> FilteredMemRefs
;
3714 for (MachineMemOperand
*MMO
: MatchedMemRefs
) {
3715 if (MMO
->isLoad()) {
3717 FilteredMemRefs
.push_back(MMO
);
3718 } else if (MMO
->isStore()) {
3720 FilteredMemRefs
.push_back(MMO
);
3722 FilteredMemRefs
.push_back(MMO
);
3726 CurDAG
->setNodeMemRefs(Res
, FilteredMemRefs
);
3729 LLVM_DEBUG(if (!MatchedMemRefs
.empty() && Res
->memoperands_empty()) dbgs()
3730 << " Dropping mem operands\n";
3731 dbgs() << " " << (IsMorphNodeTo
? "Morphed" : "Created")
3733 Res
->dump(CurDAG
););
3735 // If this was a MorphNodeTo then we're completely done!
3736 if (IsMorphNodeTo
) {
3737 // Update chain uses.
3738 UpdateChains(Res
, InputChain
, ChainNodesMatched
, true);
3744 case OPC_CompleteMatch
: {
3745 // The match has been completed, and any new nodes (if any) have been
3746 // created. Patch up references to the matched dag to use the newly
3748 unsigned NumResults
= MatcherTable
[MatcherIndex
++];
3750 for (unsigned i
= 0; i
!= NumResults
; ++i
) {
3751 unsigned ResSlot
= MatcherTable
[MatcherIndex
++];
3753 ResSlot
= GetVBR(ResSlot
, MatcherTable
, MatcherIndex
);
3755 assert(ResSlot
< RecordedNodes
.size() && "Invalid CompleteMatch");
3756 SDValue Res
= RecordedNodes
[ResSlot
].first
;
3758 assert(i
< NodeToMatch
->getNumValues() &&
3759 NodeToMatch
->getValueType(i
) != MVT::Other
&&
3760 NodeToMatch
->getValueType(i
) != MVT::Glue
&&
3761 "Invalid number of results to complete!");
3762 assert((NodeToMatch
->getValueType(i
) == Res
.getValueType() ||
3763 NodeToMatch
->getValueType(i
) == MVT::iPTR
||
3764 Res
.getValueType() == MVT::iPTR
||
3765 NodeToMatch
->getValueType(i
).getSizeInBits() ==
3766 Res
.getValueSizeInBits()) &&
3767 "invalid replacement");
3768 ReplaceUses(SDValue(NodeToMatch
, i
), Res
);
3771 // Update chain uses.
3772 UpdateChains(NodeToMatch
, InputChain
, ChainNodesMatched
, false);
3774 // If the root node defines glue, we need to update it to the glue result.
3775 // TODO: This never happens in our tests and I think it can be removed /
3776 // replaced with an assert, but if we do it this the way the change is
3778 if (NodeToMatch
->getValueType(NodeToMatch
->getNumValues() - 1) ==
3780 InputGlue
.getNode())
3781 ReplaceUses(SDValue(NodeToMatch
, NodeToMatch
->getNumValues() - 1),
3784 assert(NodeToMatch
->use_empty() &&
3785 "Didn't replace all uses of the node?");
3786 CurDAG
->RemoveDeadNode(NodeToMatch
);
3792 // If the code reached this point, then the match failed. See if there is
3793 // another child to try in the current 'Scope', otherwise pop it until we
3794 // find a case to check.
3795 LLVM_DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex
3797 ++NumDAGIselRetries
;
3799 if (MatchScopes
.empty()) {
3800 CannotYetSelect(NodeToMatch
);
3804 // Restore the interpreter state back to the point where the scope was
3806 MatchScope
&LastScope
= MatchScopes
.back();
3807 RecordedNodes
.resize(LastScope
.NumRecordedNodes
);
3809 NodeStack
.append(LastScope
.NodeStack
.begin(), LastScope
.NodeStack
.end());
3810 N
= NodeStack
.back();
3812 if (LastScope
.NumMatchedMemRefs
!= MatchedMemRefs
.size())
3813 MatchedMemRefs
.resize(LastScope
.NumMatchedMemRefs
);
3814 MatcherIndex
= LastScope
.FailIndex
;
3816 LLVM_DEBUG(dbgs() << " Continuing at " << MatcherIndex
<< "\n");
3818 InputChain
= LastScope
.InputChain
;
3819 InputGlue
= LastScope
.InputGlue
;
3820 if (!LastScope
.HasChainNodesMatched
)
3821 ChainNodesMatched
.clear();
3823 // Check to see what the offset is at the new MatcherIndex. If it is zero
3824 // we have reached the end of this scope, otherwise we have another child
3825 // in the current scope to try.
3826 unsigned NumToSkip
= MatcherTable
[MatcherIndex
++];
3827 if (NumToSkip
& 128)
3828 NumToSkip
= GetVBR(NumToSkip
, MatcherTable
, MatcherIndex
);
3830 // If we have another child in this scope to match, update FailIndex and
3832 if (NumToSkip
!= 0) {
3833 LastScope
.FailIndex
= MatcherIndex
+NumToSkip
;
3837 // End of this scope, pop it and try the next child in the containing
3839 MatchScopes
.pop_back();
3844 bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode
*N
) const {
3845 assert(N
->getOpcode() == ISD::OR
&& "Unexpected opcode");
3846 auto *C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
3850 // Detect when "or" is used to add an offset to a stack object.
3851 if (auto *FN
= dyn_cast
<FrameIndexSDNode
>(N
->getOperand(0))) {
3852 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
3853 unsigned A
= MFI
.getObjectAlignment(FN
->getIndex());
3854 assert(isPowerOf2_32(A
) && "Unexpected alignment");
3855 int32_t Off
= C
->getSExtValue();
3856 // If the alleged offset fits in the zero bits guaranteed by
3857 // the alignment, then this or is really an add.
3858 return (Off
>= 0) && (((A
- 1) & Off
) == unsigned(Off
));
3863 void SelectionDAGISel::CannotYetSelect(SDNode
*N
) {
3865 raw_string_ostream
Msg(msg
);
3866 Msg
<< "Cannot select: ";
3868 if (N
->getOpcode() != ISD::INTRINSIC_W_CHAIN
&&
3869 N
->getOpcode() != ISD::INTRINSIC_WO_CHAIN
&&
3870 N
->getOpcode() != ISD::INTRINSIC_VOID
) {
3871 N
->printrFull(Msg
, CurDAG
);
3872 Msg
<< "\nIn function: " << MF
->getName();
3874 bool HasInputChain
= N
->getOperand(0).getValueType() == MVT::Other
;
3876 cast
<ConstantSDNode
>(N
->getOperand(HasInputChain
))->getZExtValue();
3877 if (iid
< Intrinsic::num_intrinsics
)
3878 Msg
<< "intrinsic %" << Intrinsic::getName((Intrinsic::ID
)iid
, None
);
3879 else if (const TargetIntrinsicInfo
*TII
= TM
.getIntrinsicInfo())
3880 Msg
<< "target intrinsic %" << TII
->getName(iid
);
3882 Msg
<< "unknown intrinsic #" << iid
;
3884 report_fatal_error(Msg
.str());
3887 char SelectionDAGISel::ID
= 0;