[DebugInfoMetadata] Refactor DIExpression::prepend constants (NFC)
[llvm-core.git] / lib / CodeGen / SelectionDAG / SelectionDAGISel.cpp
blobe1c6b18a1bd9550a7fd8be7ccfd7ed75c7e739ad
1 //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAGISel class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/SelectionDAGISel.h"
14 #include "ScheduleDAGSDNodes.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/PostOrderIterator.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/Analysis/CFG.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/CodeGen/FastISel.h"
34 #include "llvm/CodeGen/FunctionLoweringInfo.h"
35 #include "llvm/CodeGen/GCMetadata.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineInstr.h"
42 #include "llvm/CodeGen/MachineInstrBuilder.h"
43 #include "llvm/CodeGen/MachineMemOperand.h"
44 #include "llvm/CodeGen/MachineModuleInfo.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/MachinePassRegistry.h"
47 #include "llvm/CodeGen/MachineRegisterInfo.h"
48 #include "llvm/CodeGen/SchedulerRegistry.h"
49 #include "llvm/CodeGen/SelectionDAG.h"
50 #include "llvm/CodeGen/SelectionDAGNodes.h"
51 #include "llvm/CodeGen/StackProtector.h"
52 #include "llvm/CodeGen/TargetInstrInfo.h"
53 #include "llvm/CodeGen/TargetLowering.h"
54 #include "llvm/CodeGen/TargetRegisterInfo.h"
55 #include "llvm/CodeGen/TargetSubtargetInfo.h"
56 #include "llvm/CodeGen/ValueTypes.h"
57 #include "llvm/IR/BasicBlock.h"
58 #include "llvm/IR/Constants.h"
59 #include "llvm/IR/DataLayout.h"
60 #include "llvm/IR/DebugInfoMetadata.h"
61 #include "llvm/IR/DebugLoc.h"
62 #include "llvm/IR/DiagnosticInfo.h"
63 #include "llvm/IR/Dominators.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/InlineAsm.h"
66 #include "llvm/IR/InstIterator.h"
67 #include "llvm/IR/InstrTypes.h"
68 #include "llvm/IR/Instruction.h"
69 #include "llvm/IR/Instructions.h"
70 #include "llvm/IR/IntrinsicInst.h"
71 #include "llvm/IR/Intrinsics.h"
72 #include "llvm/IR/Metadata.h"
73 #include "llvm/IR/Type.h"
74 #include "llvm/IR/User.h"
75 #include "llvm/IR/Value.h"
76 #include "llvm/MC/MCInstrDesc.h"
77 #include "llvm/MC/MCRegisterInfo.h"
78 #include "llvm/Pass.h"
79 #include "llvm/Support/BranchProbability.h"
80 #include "llvm/Support/Casting.h"
81 #include "llvm/Support/CodeGen.h"
82 #include "llvm/Support/CommandLine.h"
83 #include "llvm/Support/Compiler.h"
84 #include "llvm/Support/Debug.h"
85 #include "llvm/Support/ErrorHandling.h"
86 #include "llvm/Support/KnownBits.h"
87 #include "llvm/Support/MachineValueType.h"
88 #include "llvm/Support/Timer.h"
89 #include "llvm/Support/raw_ostream.h"
90 #include "llvm/Target/TargetIntrinsicInfo.h"
91 #include "llvm/Target/TargetMachine.h"
92 #include "llvm/Target/TargetOptions.h"
93 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstdint>
97 #include <iterator>
98 #include <limits>
99 #include <memory>
100 #include <string>
101 #include <utility>
102 #include <vector>
104 using namespace llvm;
106 #define DEBUG_TYPE "isel"
108 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
109 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
110 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
111 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
112 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
113 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
114 STATISTIC(NumFastIselFailLowerArguments,
115 "Number of entry blocks where fast isel failed to lower arguments");
117 static cl::opt<int> EnableFastISelAbort(
118 "fast-isel-abort", cl::Hidden,
119 cl::desc("Enable abort calls when \"fast\" instruction selection "
120 "fails to lower an instruction: 0 disable the abort, 1 will "
121 "abort but for args, calls and terminators, 2 will also "
122 "abort for argument lowering, and 3 will never fallback "
123 "to SelectionDAG."));
125 static cl::opt<bool> EnableFastISelFallbackReport(
126 "fast-isel-report-on-fallback", cl::Hidden,
127 cl::desc("Emit a diagnostic when \"fast\" instruction selection "
128 "falls back to SelectionDAG."));
130 static cl::opt<bool>
131 UseMBPI("use-mbpi",
132 cl::desc("use Machine Branch Probability Info"),
133 cl::init(true), cl::Hidden);
135 #ifndef NDEBUG
136 static cl::opt<std::string>
137 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden,
138 cl::desc("Only display the basic block whose name "
139 "matches this for all view-*-dags options"));
140 static cl::opt<bool>
141 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
142 cl::desc("Pop up a window to show dags before the first "
143 "dag combine pass"));
144 static cl::opt<bool>
145 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
146 cl::desc("Pop up a window to show dags before legalize types"));
147 static cl::opt<bool>
148 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
149 cl::desc("Pop up a window to show dags before legalize"));
150 static cl::opt<bool>
151 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
152 cl::desc("Pop up a window to show dags before the second "
153 "dag combine pass"));
154 static cl::opt<bool>
155 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
156 cl::desc("Pop up a window to show dags before the post legalize types"
157 " dag combine pass"));
158 static cl::opt<bool>
159 ViewISelDAGs("view-isel-dags", cl::Hidden,
160 cl::desc("Pop up a window to show isel dags as they are selected"));
161 static cl::opt<bool>
162 ViewSchedDAGs("view-sched-dags", cl::Hidden,
163 cl::desc("Pop up a window to show sched dags as they are processed"));
164 static cl::opt<bool>
165 ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
166 cl::desc("Pop up a window to show SUnit dags after they are processed"));
167 #else
168 static const bool ViewDAGCombine1 = false,
169 ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
170 ViewDAGCombine2 = false,
171 ViewDAGCombineLT = false,
172 ViewISelDAGs = false, ViewSchedDAGs = false,
173 ViewSUnitDAGs = false;
174 #endif
176 //===---------------------------------------------------------------------===//
178 /// RegisterScheduler class - Track the registration of instruction schedulers.
180 //===---------------------------------------------------------------------===//
181 MachinePassRegistry<RegisterScheduler::FunctionPassCtor>
182 RegisterScheduler::Registry;
184 //===---------------------------------------------------------------------===//
186 /// ISHeuristic command line option for instruction schedulers.
188 //===---------------------------------------------------------------------===//
189 static cl::opt<RegisterScheduler::FunctionPassCtor, false,
190 RegisterPassParser<RegisterScheduler>>
191 ISHeuristic("pre-RA-sched",
192 cl::init(&createDefaultScheduler), cl::Hidden,
193 cl::desc("Instruction schedulers available (before register"
194 " allocation):"));
196 static RegisterScheduler
197 defaultListDAGScheduler("default", "Best scheduler for the target",
198 createDefaultScheduler);
200 namespace llvm {
202 //===--------------------------------------------------------------------===//
203 /// This class is used by SelectionDAGISel to temporarily override
204 /// the optimization level on a per-function basis.
205 class OptLevelChanger {
206 SelectionDAGISel &IS;
207 CodeGenOpt::Level SavedOptLevel;
208 bool SavedFastISel;
210 public:
211 OptLevelChanger(SelectionDAGISel &ISel,
212 CodeGenOpt::Level NewOptLevel) : IS(ISel) {
213 SavedOptLevel = IS.OptLevel;
214 if (NewOptLevel == SavedOptLevel)
215 return;
216 IS.OptLevel = NewOptLevel;
217 IS.TM.setOptLevel(NewOptLevel);
218 LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function "
219 << IS.MF->getFunction().getName() << "\n");
220 LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel << " ; After: -O"
221 << NewOptLevel << "\n");
222 SavedFastISel = IS.TM.Options.EnableFastISel;
223 if (NewOptLevel == CodeGenOpt::None) {
224 IS.TM.setFastISel(IS.TM.getO0WantsFastISel());
225 LLVM_DEBUG(
226 dbgs() << "\tFastISel is "
227 << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled")
228 << "\n");
232 ~OptLevelChanger() {
233 if (IS.OptLevel == SavedOptLevel)
234 return;
235 LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function "
236 << IS.MF->getFunction().getName() << "\n");
237 LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel << " ; After: -O"
238 << SavedOptLevel << "\n");
239 IS.OptLevel = SavedOptLevel;
240 IS.TM.setOptLevel(SavedOptLevel);
241 IS.TM.setFastISel(SavedFastISel);
245 //===--------------------------------------------------------------------===//
246 /// createDefaultScheduler - This creates an instruction scheduler appropriate
247 /// for the target.
248 ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
249 CodeGenOpt::Level OptLevel) {
250 const TargetLowering *TLI = IS->TLI;
251 const TargetSubtargetInfo &ST = IS->MF->getSubtarget();
253 // Try first to see if the Target has its own way of selecting a scheduler
254 if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) {
255 return SchedulerCtor(IS, OptLevel);
258 if (OptLevel == CodeGenOpt::None ||
259 (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) ||
260 TLI->getSchedulingPreference() == Sched::Source)
261 return createSourceListDAGScheduler(IS, OptLevel);
262 if (TLI->getSchedulingPreference() == Sched::RegPressure)
263 return createBURRListDAGScheduler(IS, OptLevel);
264 if (TLI->getSchedulingPreference() == Sched::Hybrid)
265 return createHybridListDAGScheduler(IS, OptLevel);
266 if (TLI->getSchedulingPreference() == Sched::VLIW)
267 return createVLIWDAGScheduler(IS, OptLevel);
268 assert(TLI->getSchedulingPreference() == Sched::ILP &&
269 "Unknown sched type!");
270 return createILPListDAGScheduler(IS, OptLevel);
273 } // end namespace llvm
275 // EmitInstrWithCustomInserter - This method should be implemented by targets
276 // that mark instructions with the 'usesCustomInserter' flag. These
277 // instructions are special in various ways, which require special support to
278 // insert. The specified MachineInstr is created but not inserted into any
279 // basic blocks, and this method is called to expand it into a sequence of
280 // instructions, potentially also creating new basic blocks and control flow.
281 // When new basic blocks are inserted and the edges from MBB to its successors
282 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
283 // DenseMap.
284 MachineBasicBlock *
285 TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
286 MachineBasicBlock *MBB) const {
287 #ifndef NDEBUG
288 dbgs() << "If a target marks an instruction with "
289 "'usesCustomInserter', it must implement "
290 "TargetLowering::EmitInstrWithCustomInserter!";
291 #endif
292 llvm_unreachable(nullptr);
295 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
296 SDNode *Node) const {
297 assert(!MI.hasPostISelHook() &&
298 "If a target marks an instruction with 'hasPostISelHook', "
299 "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
302 //===----------------------------------------------------------------------===//
303 // SelectionDAGISel code
304 //===----------------------------------------------------------------------===//
306 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm,
307 CodeGenOpt::Level OL) :
308 MachineFunctionPass(ID), TM(tm),
309 FuncInfo(new FunctionLoweringInfo()),
310 CurDAG(new SelectionDAG(tm, OL)),
311 SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
312 AA(), GFI(),
313 OptLevel(OL),
314 DAGSize(0) {
315 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
316 initializeBranchProbabilityInfoWrapperPassPass(
317 *PassRegistry::getPassRegistry());
318 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
319 initializeTargetLibraryInfoWrapperPassPass(
320 *PassRegistry::getPassRegistry());
323 SelectionDAGISel::~SelectionDAGISel() {
324 delete SDB;
325 delete CurDAG;
326 delete FuncInfo;
329 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
330 if (OptLevel != CodeGenOpt::None)
331 AU.addRequired<AAResultsWrapperPass>();
332 AU.addRequired<GCModuleInfo>();
333 AU.addRequired<StackProtector>();
334 AU.addPreserved<GCModuleInfo>();
335 AU.addRequired<TargetLibraryInfoWrapperPass>();
336 AU.addRequired<TargetTransformInfoWrapperPass>();
337 if (UseMBPI && OptLevel != CodeGenOpt::None)
338 AU.addRequired<BranchProbabilityInfoWrapperPass>();
339 MachineFunctionPass::getAnalysisUsage(AU);
342 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
343 /// may trap on it. In this case we have to split the edge so that the path
344 /// through the predecessor block that doesn't go to the phi block doesn't
345 /// execute the possibly trapping instruction. If available, we pass domtree
346 /// and loop info to be updated when we split critical edges. This is because
347 /// SelectionDAGISel preserves these analyses.
348 /// This is required for correctness, so it must be done at -O0.
350 static void SplitCriticalSideEffectEdges(Function &Fn, DominatorTree *DT,
351 LoopInfo *LI) {
352 // Loop for blocks with phi nodes.
353 for (BasicBlock &BB : Fn) {
354 PHINode *PN = dyn_cast<PHINode>(BB.begin());
355 if (!PN) continue;
357 ReprocessBlock:
358 // For each block with a PHI node, check to see if any of the input values
359 // are potentially trapping constant expressions. Constant expressions are
360 // the only potentially trapping value that can occur as the argument to a
361 // PHI.
362 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I)
363 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
364 ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
365 if (!CE || !CE->canTrap()) continue;
367 // The only case we have to worry about is when the edge is critical.
368 // Since this block has a PHI Node, we assume it has multiple input
369 // edges: check to see if the pred has multiple successors.
370 BasicBlock *Pred = PN->getIncomingBlock(i);
371 if (Pred->getTerminator()->getNumSuccessors() == 1)
372 continue;
374 // Okay, we have to split this edge.
375 SplitCriticalEdge(
376 Pred->getTerminator(), GetSuccessorNumber(Pred, &BB),
377 CriticalEdgeSplittingOptions(DT, LI).setMergeIdenticalEdges());
378 goto ReprocessBlock;
383 static void computeUsesMSVCFloatingPoint(const Triple &TT, const Function &F,
384 MachineModuleInfo &MMI) {
385 // Only needed for MSVC
386 if (!TT.isKnownWindowsMSVCEnvironment())
387 return;
389 // If it's already set, nothing to do.
390 if (MMI.usesMSVCFloatingPoint())
391 return;
393 for (const Instruction &I : instructions(F)) {
394 if (I.getType()->isFPOrFPVectorTy()) {
395 MMI.setUsesMSVCFloatingPoint(true);
396 return;
398 for (const auto &Op : I.operands()) {
399 if (Op->getType()->isFPOrFPVectorTy()) {
400 MMI.setUsesMSVCFloatingPoint(true);
401 return;
407 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
408 // If we already selected that function, we do not need to run SDISel.
409 if (mf.getProperties().hasProperty(
410 MachineFunctionProperties::Property::Selected))
411 return false;
412 // Do some sanity-checking on the command-line options.
413 assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
414 "-fast-isel-abort > 0 requires -fast-isel");
416 const Function &Fn = mf.getFunction();
417 MF = &mf;
419 // Reset the target options before resetting the optimization
420 // level below.
421 // FIXME: This is a horrible hack and should be processed via
422 // codegen looking at the optimization level explicitly when
423 // it wants to look at it.
424 TM.resetTargetOptions(Fn);
425 // Reset OptLevel to None for optnone functions.
426 CodeGenOpt::Level NewOptLevel = OptLevel;
427 if (OptLevel != CodeGenOpt::None && skipFunction(Fn))
428 NewOptLevel = CodeGenOpt::None;
429 OptLevelChanger OLC(*this, NewOptLevel);
431 TII = MF->getSubtarget().getInstrInfo();
432 TLI = MF->getSubtarget().getTargetLowering();
433 RegInfo = &MF->getRegInfo();
434 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
435 GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
436 ORE = make_unique<OptimizationRemarkEmitter>(&Fn);
437 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
438 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
439 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
440 LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
442 LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
444 SplitCriticalSideEffectEdges(const_cast<Function &>(Fn), DT, LI);
446 CurDAG->init(*MF, *ORE, this, LibInfo,
447 getAnalysisIfAvailable<LegacyDivergenceAnalysis>());
448 FuncInfo->set(Fn, *MF, CurDAG);
450 // Now get the optional analyzes if we want to.
451 // This is based on the possibly changed OptLevel (after optnone is taken
452 // into account). That's unfortunate but OK because it just means we won't
453 // ask for passes that have been required anyway.
455 if (UseMBPI && OptLevel != CodeGenOpt::None)
456 FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
457 else
458 FuncInfo->BPI = nullptr;
460 if (OptLevel != CodeGenOpt::None)
461 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
462 else
463 AA = nullptr;
465 SDB->init(GFI, AA, LibInfo);
467 MF->setHasInlineAsm(false);
469 FuncInfo->SplitCSR = false;
471 // We split CSR if the target supports it for the given function
472 // and the function has only return exits.
473 if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) {
474 FuncInfo->SplitCSR = true;
476 // Collect all the return blocks.
477 for (const BasicBlock &BB : Fn) {
478 if (!succ_empty(&BB))
479 continue;
481 const Instruction *Term = BB.getTerminator();
482 if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term))
483 continue;
485 // Bail out if the exit block is not Return nor Unreachable.
486 FuncInfo->SplitCSR = false;
487 break;
491 MachineBasicBlock *EntryMBB = &MF->front();
492 if (FuncInfo->SplitCSR)
493 // This performs initialization so lowering for SplitCSR will be correct.
494 TLI->initializeSplitCSR(EntryMBB);
496 SelectAllBasicBlocks(Fn);
497 if (FastISelFailed && EnableFastISelFallbackReport) {
498 DiagnosticInfoISelFallback DiagFallback(Fn);
499 Fn.getContext().diagnose(DiagFallback);
502 // If the first basic block in the function has live ins that need to be
503 // copied into vregs, emit the copies into the top of the block before
504 // emitting the code for the block.
505 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
506 RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);
508 // Insert copies in the entry block and the return blocks.
509 if (FuncInfo->SplitCSR) {
510 SmallVector<MachineBasicBlock*, 4> Returns;
511 // Collect all the return blocks.
512 for (MachineBasicBlock &MBB : mf) {
513 if (!MBB.succ_empty())
514 continue;
516 MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
517 if (Term != MBB.end() && Term->isReturn()) {
518 Returns.push_back(&MBB);
519 continue;
522 TLI->insertCopiesSplitCSR(EntryMBB, Returns);
525 DenseMap<unsigned, unsigned> LiveInMap;
526 if (!FuncInfo->ArgDbgValues.empty())
527 for (std::pair<unsigned, unsigned> LI : RegInfo->liveins())
528 if (LI.second)
529 LiveInMap.insert(LI);
531 // Insert DBG_VALUE instructions for function arguments to the entry block.
532 for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
533 MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
534 bool hasFI = MI->getOperand(0).isFI();
535 unsigned Reg =
536 hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
537 if (TargetRegisterInfo::isPhysicalRegister(Reg))
538 EntryMBB->insert(EntryMBB->begin(), MI);
539 else {
540 MachineInstr *Def = RegInfo->getVRegDef(Reg);
541 if (Def) {
542 MachineBasicBlock::iterator InsertPos = Def;
543 // FIXME: VR def may not be in entry block.
544 Def->getParent()->insert(std::next(InsertPos), MI);
545 } else
546 LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg"
547 << TargetRegisterInfo::virtReg2Index(Reg) << "\n");
550 // If Reg is live-in then update debug info to track its copy in a vreg.
551 DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
552 if (LDI != LiveInMap.end()) {
553 assert(!hasFI && "There's no handling of frame pointer updating here yet "
554 "- add if needed");
555 MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
556 MachineBasicBlock::iterator InsertPos = Def;
557 const MDNode *Variable = MI->getDebugVariable();
558 const MDNode *Expr = MI->getDebugExpression();
559 DebugLoc DL = MI->getDebugLoc();
560 bool IsIndirect = MI->isIndirectDebugValue();
561 if (IsIndirect)
562 assert(MI->getOperand(1).getImm() == 0 &&
563 "DBG_VALUE with nonzero offset");
564 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
565 "Expected inlined-at fields to agree");
566 // Def is never a terminator here, so it is ok to increment InsertPos.
567 BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE),
568 IsIndirect, LDI->second, Variable, Expr);
570 // If this vreg is directly copied into an exported register then
571 // that COPY instructions also need DBG_VALUE, if it is the only
572 // user of LDI->second.
573 MachineInstr *CopyUseMI = nullptr;
574 for (MachineRegisterInfo::use_instr_iterator
575 UI = RegInfo->use_instr_begin(LDI->second),
576 E = RegInfo->use_instr_end(); UI != E; ) {
577 MachineInstr *UseMI = &*(UI++);
578 if (UseMI->isDebugValue()) continue;
579 if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
580 CopyUseMI = UseMI; continue;
582 // Otherwise this is another use or second copy use.
583 CopyUseMI = nullptr; break;
585 if (CopyUseMI) {
586 // Use MI's debug location, which describes where Variable was
587 // declared, rather than whatever is attached to CopyUseMI.
588 MachineInstr *NewMI =
589 BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
590 CopyUseMI->getOperand(0).getReg(), Variable, Expr);
591 MachineBasicBlock::iterator Pos = CopyUseMI;
592 EntryMBB->insertAfter(Pos, NewMI);
597 // Determine if there are any calls in this machine function.
598 MachineFrameInfo &MFI = MF->getFrameInfo();
599 for (const auto &MBB : *MF) {
600 if (MFI.hasCalls() && MF->hasInlineAsm())
601 break;
603 for (const auto &MI : MBB) {
604 const MCInstrDesc &MCID = TII->get(MI.getOpcode());
605 if ((MCID.isCall() && !MCID.isReturn()) ||
606 MI.isStackAligningInlineAsm()) {
607 MFI.setHasCalls(true);
609 if (MI.isInlineAsm()) {
610 MF->setHasInlineAsm(true);
615 // Determine if there is a call to setjmp in the machine function.
616 MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
618 // Determine if floating point is used for msvc
619 computeUsesMSVCFloatingPoint(TM.getTargetTriple(), Fn, MF->getMMI());
621 // Replace forward-declared registers with the registers containing
622 // the desired value.
623 MachineRegisterInfo &MRI = MF->getRegInfo();
624 for (DenseMap<unsigned, unsigned>::iterator
625 I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
626 I != E; ++I) {
627 unsigned From = I->first;
628 unsigned To = I->second;
629 // If To is also scheduled to be replaced, find what its ultimate
630 // replacement is.
631 while (true) {
632 DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
633 if (J == E) break;
634 To = J->second;
636 // Make sure the new register has a sufficiently constrained register class.
637 if (TargetRegisterInfo::isVirtualRegister(From) &&
638 TargetRegisterInfo::isVirtualRegister(To))
639 MRI.constrainRegClass(To, MRI.getRegClass(From));
640 // Replace it.
643 // Replacing one register with another won't touch the kill flags.
644 // We need to conservatively clear the kill flags as a kill on the old
645 // register might dominate existing uses of the new register.
646 if (!MRI.use_empty(To))
647 MRI.clearKillFlags(From);
648 MRI.replaceRegWith(From, To);
651 TLI->finalizeLowering(*MF);
653 // Release function-specific state. SDB and CurDAG are already cleared
654 // at this point.
655 FuncInfo->clear();
657 LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
658 LLVM_DEBUG(MF->print(dbgs()));
660 return true;
663 static void reportFastISelFailure(MachineFunction &MF,
664 OptimizationRemarkEmitter &ORE,
665 OptimizationRemarkMissed &R,
666 bool ShouldAbort) {
667 // Print the function name explicitly if we don't have a debug location (which
668 // makes the diagnostic less useful) or if we're going to emit a raw error.
669 if (!R.getLocation().isValid() || ShouldAbort)
670 R << (" (in function: " + MF.getName() + ")").str();
672 if (ShouldAbort)
673 report_fatal_error(R.getMsg());
675 ORE.emit(R);
678 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
679 BasicBlock::const_iterator End,
680 bool &HadTailCall) {
681 // Allow creating illegal types during DAG building for the basic block.
682 CurDAG->NewNodesMustHaveLegalTypes = false;
684 // Lower the instructions. If a call is emitted as a tail call, cease emitting
685 // nodes for this block.
686 for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
687 if (!ElidedArgCopyInstrs.count(&*I))
688 SDB->visit(*I);
691 // Make sure the root of the DAG is up-to-date.
692 CurDAG->setRoot(SDB->getControlRoot());
693 HadTailCall = SDB->HasTailCall;
694 SDB->resolveOrClearDbgInfo();
695 SDB->clear();
697 // Final step, emit the lowered DAG as machine code.
698 CodeGenAndEmitDAG();
701 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
702 SmallPtrSet<SDNode*, 16> VisitedNodes;
703 SmallVector<SDNode*, 128> Worklist;
705 Worklist.push_back(CurDAG->getRoot().getNode());
707 KnownBits Known;
709 do {
710 SDNode *N = Worklist.pop_back_val();
712 // If we've already seen this node, ignore it.
713 if (!VisitedNodes.insert(N).second)
714 continue;
716 // Otherwise, add all chain operands to the worklist.
717 for (const SDValue &Op : N->op_values())
718 if (Op.getValueType() == MVT::Other)
719 Worklist.push_back(Op.getNode());
721 // If this is a CopyToReg with a vreg dest, process it.
722 if (N->getOpcode() != ISD::CopyToReg)
723 continue;
725 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
726 if (!TargetRegisterInfo::isVirtualRegister(DestReg))
727 continue;
729 // Ignore non-integer values.
730 SDValue Src = N->getOperand(2);
731 EVT SrcVT = Src.getValueType();
732 if (!SrcVT.isInteger())
733 continue;
735 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
736 Known = CurDAG->computeKnownBits(Src);
737 FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known);
738 } while (!Worklist.empty());
741 void SelectionDAGISel::CodeGenAndEmitDAG() {
742 StringRef GroupName = "sdag";
743 StringRef GroupDescription = "Instruction Selection and Scheduling";
744 std::string BlockName;
745 bool MatchFilterBB = false; (void)MatchFilterBB;
746 #ifndef NDEBUG
747 TargetTransformInfo &TTI =
748 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*FuncInfo->Fn);
749 #endif
751 // Pre-type legalization allow creation of any node types.
752 CurDAG->NewNodesMustHaveLegalTypes = false;
754 #ifndef NDEBUG
755 MatchFilterBB = (FilterDAGBasicBlockName.empty() ||
756 FilterDAGBasicBlockName ==
757 FuncInfo->MBB->getBasicBlock()->getName());
758 #endif
759 #ifdef NDEBUG
760 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
761 ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
762 ViewSUnitDAGs)
763 #endif
765 BlockName =
766 (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str();
768 LLVM_DEBUG(dbgs() << "Initial selection DAG: "
769 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
770 << "'\n";
771 CurDAG->dump());
773 if (ViewDAGCombine1 && MatchFilterBB)
774 CurDAG->viewGraph("dag-combine1 input for " + BlockName);
776 // Run the DAG combiner in pre-legalize mode.
778 NamedRegionTimer T("combine1", "DAG Combining 1", GroupName,
779 GroupDescription, TimePassesIsEnabled);
780 CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel);
783 #ifndef NDEBUG
784 if (TTI.hasBranchDivergence())
785 CurDAG->VerifyDAGDiverence();
786 #endif
788 LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: "
789 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
790 << "'\n";
791 CurDAG->dump());
793 // Second step, hack on the DAG until it only uses operations and types that
794 // the target supports.
795 if (ViewLegalizeTypesDAGs && MatchFilterBB)
796 CurDAG->viewGraph("legalize-types input for " + BlockName);
798 bool Changed;
800 NamedRegionTimer T("legalize_types", "Type Legalization", GroupName,
801 GroupDescription, TimePassesIsEnabled);
802 Changed = CurDAG->LegalizeTypes();
805 #ifndef NDEBUG
806 if (TTI.hasBranchDivergence())
807 CurDAG->VerifyDAGDiverence();
808 #endif
810 LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: "
811 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
812 << "'\n";
813 CurDAG->dump());
815 // Only allow creation of legal node types.
816 CurDAG->NewNodesMustHaveLegalTypes = true;
818 if (Changed) {
819 if (ViewDAGCombineLT && MatchFilterBB)
820 CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
822 // Run the DAG combiner in post-type-legalize mode.
824 NamedRegionTimer T("combine_lt", "DAG Combining after legalize types",
825 GroupName, GroupDescription, TimePassesIsEnabled);
826 CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel);
829 #ifndef NDEBUG
830 if (TTI.hasBranchDivergence())
831 CurDAG->VerifyDAGDiverence();
832 #endif
834 LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: "
835 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
836 << "'\n";
837 CurDAG->dump());
841 NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName,
842 GroupDescription, TimePassesIsEnabled);
843 Changed = CurDAG->LegalizeVectors();
846 if (Changed) {
847 LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: "
848 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
849 << "'\n";
850 CurDAG->dump());
853 NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName,
854 GroupDescription, TimePassesIsEnabled);
855 CurDAG->LegalizeTypes();
858 LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: "
859 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
860 << "'\n";
861 CurDAG->dump());
863 if (ViewDAGCombineLT && MatchFilterBB)
864 CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
866 // Run the DAG combiner in post-type-legalize mode.
868 NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors",
869 GroupName, GroupDescription, TimePassesIsEnabled);
870 CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel);
873 LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: "
874 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
875 << "'\n";
876 CurDAG->dump());
878 #ifndef NDEBUG
879 if (TTI.hasBranchDivergence())
880 CurDAG->VerifyDAGDiverence();
881 #endif
884 if (ViewLegalizeDAGs && MatchFilterBB)
885 CurDAG->viewGraph("legalize input for " + BlockName);
888 NamedRegionTimer T("legalize", "DAG Legalization", GroupName,
889 GroupDescription, TimePassesIsEnabled);
890 CurDAG->Legalize();
893 #ifndef NDEBUG
894 if (TTI.hasBranchDivergence())
895 CurDAG->VerifyDAGDiverence();
896 #endif
898 LLVM_DEBUG(dbgs() << "Legalized selection DAG: "
899 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
900 << "'\n";
901 CurDAG->dump());
903 if (ViewDAGCombine2 && MatchFilterBB)
904 CurDAG->viewGraph("dag-combine2 input for " + BlockName);
906 // Run the DAG combiner in post-legalize mode.
908 NamedRegionTimer T("combine2", "DAG Combining 2", GroupName,
909 GroupDescription, TimePassesIsEnabled);
910 CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel);
913 #ifndef NDEBUG
914 if (TTI.hasBranchDivergence())
915 CurDAG->VerifyDAGDiverence();
916 #endif
918 LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: "
919 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
920 << "'\n";
921 CurDAG->dump());
923 if (OptLevel != CodeGenOpt::None)
924 ComputeLiveOutVRegInfo();
926 if (ViewISelDAGs && MatchFilterBB)
927 CurDAG->viewGraph("isel input for " + BlockName);
929 // Third, instruction select all of the operations to machine code, adding the
930 // code to the MachineBasicBlock.
932 NamedRegionTimer T("isel", "Instruction Selection", GroupName,
933 GroupDescription, TimePassesIsEnabled);
934 DoInstructionSelection();
937 LLVM_DEBUG(dbgs() << "Selected selection DAG: "
938 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
939 << "'\n";
940 CurDAG->dump());
942 if (ViewSchedDAGs && MatchFilterBB)
943 CurDAG->viewGraph("scheduler input for " + BlockName);
945 // Schedule machine code.
946 ScheduleDAGSDNodes *Scheduler = CreateScheduler();
948 NamedRegionTimer T("sched", "Instruction Scheduling", GroupName,
949 GroupDescription, TimePassesIsEnabled);
950 Scheduler->Run(CurDAG, FuncInfo->MBB);
953 if (ViewSUnitDAGs && MatchFilterBB)
954 Scheduler->viewGraph();
956 // Emit machine code to BB. This can change 'BB' to the last block being
957 // inserted into.
958 MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
960 NamedRegionTimer T("emit", "Instruction Creation", GroupName,
961 GroupDescription, TimePassesIsEnabled);
963 // FuncInfo->InsertPt is passed by reference and set to the end of the
964 // scheduled instructions.
965 LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
968 // If the block was split, make sure we update any references that are used to
969 // update PHI nodes later on.
970 if (FirstMBB != LastMBB)
971 SDB->UpdateSplitBlock(FirstMBB, LastMBB);
973 // Free the scheduler state.
975 NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName,
976 GroupDescription, TimePassesIsEnabled);
977 delete Scheduler;
980 // Free the SelectionDAG state, now that we're finished with it.
981 CurDAG->clear();
984 namespace {
986 /// ISelUpdater - helper class to handle updates of the instruction selection
987 /// graph.
988 class ISelUpdater : public SelectionDAG::DAGUpdateListener {
989 SelectionDAG::allnodes_iterator &ISelPosition;
991 public:
992 ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
993 : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
995 /// NodeDeleted - Handle nodes deleted from the graph. If the node being
996 /// deleted is the current ISelPosition node, update ISelPosition.
998 void NodeDeleted(SDNode *N, SDNode *E) override {
999 if (ISelPosition == SelectionDAG::allnodes_iterator(N))
1000 ++ISelPosition;
1004 } // end anonymous namespace
1006 // This function is used to enforce the topological node id property
1007 // property leveraged during Instruction selection. Before selection all
1008 // nodes are given a non-negative id such that all nodes have a larger id than
1009 // their operands. As this holds transitively we can prune checks that a node N
1010 // is a predecessor of M another by not recursively checking through M's
1011 // operands if N's ID is larger than M's ID. This is significantly improves
1012 // performance of for various legality checks (e.g. IsLegalToFold /
1013 // UpdateChains).
1015 // However, when we fuse multiple nodes into a single node
1016 // during selection we may induce a predecessor relationship between inputs and
1017 // outputs of distinct nodes being merged violating the topological property.
1018 // Should a fused node have a successor which has yet to be selected, our
1019 // legality checks would be incorrect. To avoid this we mark all unselected
1020 // sucessor nodes, i.e. id != -1 as invalid for pruning by bit-negating (x =>
1021 // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M.
1022 // We use bit-negation to more clearly enforce that node id -1 can only be
1023 // achieved by selected nodes). As the conversion is reversable the original Id,
1024 // topological pruning can still be leveraged when looking for unselected nodes.
1025 // This method is call internally in all ISel replacement calls.
1026 void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) {
1027 SmallVector<SDNode *, 4> Nodes;
1028 Nodes.push_back(Node);
1030 while (!Nodes.empty()) {
1031 SDNode *N = Nodes.pop_back_val();
1032 for (auto *U : N->uses()) {
1033 auto UId = U->getNodeId();
1034 if (UId > 0) {
1035 InvalidateNodeId(U);
1036 Nodes.push_back(U);
1042 // InvalidateNodeId - As discusses in EnforceNodeIdInvariant, mark a
1043 // NodeId with the equivalent node id which is invalid for topological
1044 // pruning.
1045 void SelectionDAGISel::InvalidateNodeId(SDNode *N) {
1046 int InvalidId = -(N->getNodeId() + 1);
1047 N->setNodeId(InvalidId);
1050 // getUninvalidatedNodeId - get original uninvalidated node id.
1051 int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) {
1052 int Id = N->getNodeId();
1053 if (Id < -1)
1054 return -(Id + 1);
1055 return Id;
1058 void SelectionDAGISel::DoInstructionSelection() {
1059 LLVM_DEBUG(dbgs() << "===== Instruction selection begins: "
1060 << printMBBReference(*FuncInfo->MBB) << " '"
1061 << FuncInfo->MBB->getName() << "'\n");
1063 PreprocessISelDAG();
1065 // Select target instructions for the DAG.
1067 // Number all nodes with a topological order and set DAGSize.
1068 DAGSize = CurDAG->AssignTopologicalOrder();
1070 // Create a dummy node (which is not added to allnodes), that adds
1071 // a reference to the root node, preventing it from being deleted,
1072 // and tracking any changes of the root.
1073 HandleSDNode Dummy(CurDAG->getRoot());
1074 SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
1075 ++ISelPosition;
1077 // Make sure that ISelPosition gets properly updated when nodes are deleted
1078 // in calls made from this function.
1079 ISelUpdater ISU(*CurDAG, ISelPosition);
1081 // The AllNodes list is now topological-sorted. Visit the
1082 // nodes by starting at the end of the list (the root of the
1083 // graph) and preceding back toward the beginning (the entry
1084 // node).
1085 while (ISelPosition != CurDAG->allnodes_begin()) {
1086 SDNode *Node = &*--ISelPosition;
1087 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
1088 // but there are currently some corner cases that it misses. Also, this
1089 // makes it theoretically possible to disable the DAGCombiner.
1090 if (Node->use_empty())
1091 continue;
1093 #ifndef NDEBUG
1094 SmallVector<SDNode *, 4> Nodes;
1095 Nodes.push_back(Node);
1097 while (!Nodes.empty()) {
1098 auto N = Nodes.pop_back_val();
1099 if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0)
1100 continue;
1101 for (const SDValue &Op : N->op_values()) {
1102 if (Op->getOpcode() == ISD::TokenFactor)
1103 Nodes.push_back(Op.getNode());
1104 else {
1105 // We rely on topological ordering of node ids for checking for
1106 // cycles when fusing nodes during selection. All unselected nodes
1107 // successors of an already selected node should have a negative id.
1108 // This assertion will catch such cases. If this assertion triggers
1109 // it is likely you using DAG-level Value/Node replacement functions
1110 // (versus equivalent ISEL replacement) in backend-specific
1111 // selections. See comment in EnforceNodeIdInvariant for more
1112 // details.
1113 assert(Op->getNodeId() != -1 &&
1114 "Node has already selected predecessor node");
1118 #endif
1120 // When we are using non-default rounding modes or FP exception behavior
1121 // FP operations are represented by StrictFP pseudo-operations. They
1122 // need to be simplified here so that the target-specific instruction
1123 // selectors know how to handle them.
1125 // If the current node is a strict FP pseudo-op, the isStrictFPOp()
1126 // function will provide the corresponding normal FP opcode to which the
1127 // node should be mutated.
1129 // FIXME: The backends need a way to handle FP constraints.
1130 if (Node->isStrictFPOpcode())
1131 Node = CurDAG->mutateStrictFPToFP(Node);
1133 LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: ";
1134 Node->dump(CurDAG));
1136 Select(Node);
1139 CurDAG->setRoot(Dummy.getValue());
1142 LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n");
1144 PostprocessISelDAG();
1147 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) {
1148 for (const User *U : CPI->users()) {
1149 if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) {
1150 Intrinsic::ID IID = EHPtrCall->getIntrinsicID();
1151 if (IID == Intrinsic::eh_exceptionpointer ||
1152 IID == Intrinsic::eh_exceptioncode)
1153 return true;
1156 return false;
1159 // wasm.landingpad.index intrinsic is for associating a landing pad index number
1160 // with a catchpad instruction. Retrieve the landing pad index in the intrinsic
1161 // and store the mapping in the function.
1162 static void mapWasmLandingPadIndex(MachineBasicBlock *MBB,
1163 const CatchPadInst *CPI) {
1164 MachineFunction *MF = MBB->getParent();
1165 // In case of single catch (...), we don't emit LSDA, so we don't need
1166 // this information.
1167 bool IsSingleCatchAllClause =
1168 CPI->getNumArgOperands() == 1 &&
1169 cast<Constant>(CPI->getArgOperand(0))->isNullValue();
1170 if (!IsSingleCatchAllClause) {
1171 // Create a mapping from landing pad label to landing pad index.
1172 bool IntrFound = false;
1173 for (const User *U : CPI->users()) {
1174 if (const auto *Call = dyn_cast<IntrinsicInst>(U)) {
1175 Intrinsic::ID IID = Call->getIntrinsicID();
1176 if (IID == Intrinsic::wasm_landingpad_index) {
1177 Value *IndexArg = Call->getArgOperand(1);
1178 int Index = cast<ConstantInt>(IndexArg)->getZExtValue();
1179 MF->setWasmLandingPadIndex(MBB, Index);
1180 IntrFound = true;
1181 break;
1185 assert(IntrFound && "wasm.landingpad.index intrinsic not found!");
1186 (void)IntrFound;
1190 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
1191 /// do other setup for EH landing-pad blocks.
1192 bool SelectionDAGISel::PrepareEHLandingPad() {
1193 MachineBasicBlock *MBB = FuncInfo->MBB;
1194 const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn();
1195 const BasicBlock *LLVMBB = MBB->getBasicBlock();
1196 const TargetRegisterClass *PtrRC =
1197 TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout()));
1199 auto Pers = classifyEHPersonality(PersonalityFn);
1201 // Catchpads have one live-in register, which typically holds the exception
1202 // pointer or code.
1203 if (isFuncletEHPersonality(Pers)) {
1204 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) {
1205 if (hasExceptionPointerOrCodeUser(CPI)) {
1206 // Get or create the virtual register to hold the pointer or code. Mark
1207 // the live in physreg and copy into the vreg.
1208 MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn);
1209 assert(EHPhysReg && "target lacks exception pointer register");
1210 MBB->addLiveIn(EHPhysReg);
1211 unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC);
1212 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
1213 TII->get(TargetOpcode::COPY), VReg)
1214 .addReg(EHPhysReg, RegState::Kill);
1217 return true;
1220 // Add a label to mark the beginning of the landing pad. Deletion of the
1221 // landing pad can thus be detected via the MachineModuleInfo.
1222 MCSymbol *Label = MF->addLandingPad(MBB);
1224 const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
1225 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
1226 .addSym(Label);
1228 if (Pers == EHPersonality::Wasm_CXX) {
1229 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI()))
1230 mapWasmLandingPadIndex(MBB, CPI);
1231 } else {
1232 // Assign the call site to the landing pad's begin label.
1233 MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
1234 // Mark exception register as live in.
1235 if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn))
1236 FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
1237 // Mark exception selector register as live in.
1238 if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn))
1239 FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
1242 return true;
1245 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
1246 /// side-effect free and is either dead or folded into a generated instruction.
1247 /// Return false if it needs to be emitted.
1248 static bool isFoldedOrDeadInstruction(const Instruction *I,
1249 FunctionLoweringInfo *FuncInfo) {
1250 return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
1251 !I->isTerminator() && // Terminators aren't folded.
1252 !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded.
1253 !I->isEHPad() && // EH pad instructions aren't folded.
1254 !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
1257 /// Set up SwiftErrorVals by going through the function. If the function has
1258 /// swifterror argument, it will be the first entry.
1259 static void setupSwiftErrorVals(const Function &Fn, const TargetLowering *TLI,
1260 FunctionLoweringInfo *FuncInfo) {
1261 if (!TLI->supportSwiftError())
1262 return;
1264 FuncInfo->SwiftErrorVals.clear();
1265 FuncInfo->SwiftErrorVRegDefMap.clear();
1266 FuncInfo->SwiftErrorVRegUpwardsUse.clear();
1267 FuncInfo->SwiftErrorVRegDefUses.clear();
1268 FuncInfo->SwiftErrorArg = nullptr;
1270 // Check if function has a swifterror argument.
1271 bool HaveSeenSwiftErrorArg = false;
1272 for (Function::const_arg_iterator AI = Fn.arg_begin(), AE = Fn.arg_end();
1273 AI != AE; ++AI)
1274 if (AI->hasSwiftErrorAttr()) {
1275 assert(!HaveSeenSwiftErrorArg &&
1276 "Must have only one swifterror parameter");
1277 (void)HaveSeenSwiftErrorArg; // silence warning.
1278 HaveSeenSwiftErrorArg = true;
1279 FuncInfo->SwiftErrorArg = &*AI;
1280 FuncInfo->SwiftErrorVals.push_back(&*AI);
1283 for (const auto &LLVMBB : Fn)
1284 for (const auto &Inst : LLVMBB) {
1285 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(&Inst))
1286 if (Alloca->isSwiftError())
1287 FuncInfo->SwiftErrorVals.push_back(Alloca);
1291 static void createSwiftErrorEntriesInEntryBlock(FunctionLoweringInfo *FuncInfo,
1292 FastISel *FastIS,
1293 const TargetLowering *TLI,
1294 const TargetInstrInfo *TII,
1295 SelectionDAGBuilder *SDB) {
1296 if (!TLI->supportSwiftError())
1297 return;
1299 // We only need to do this when we have swifterror parameter or swifterror
1300 // alloc.
1301 if (FuncInfo->SwiftErrorVals.empty())
1302 return;
1304 assert(FuncInfo->MBB == &*FuncInfo->MF->begin() &&
1305 "expected to insert into entry block");
1306 auto &DL = FuncInfo->MF->getDataLayout();
1307 auto const *RC = TLI->getRegClassFor(TLI->getPointerTy(DL));
1308 for (const auto *SwiftErrorVal : FuncInfo->SwiftErrorVals) {
1309 // We will always generate a copy from the argument. It is always used at
1310 // least by the 'return' of the swifterror.
1311 if (FuncInfo->SwiftErrorArg && FuncInfo->SwiftErrorArg == SwiftErrorVal)
1312 continue;
1313 unsigned VReg = FuncInfo->MF->getRegInfo().createVirtualRegister(RC);
1314 // Assign Undef to Vreg. We construct MI directly to make sure it works
1315 // with FastISel.
1316 BuildMI(*FuncInfo->MBB, FuncInfo->MBB->getFirstNonPHI(),
1317 SDB->getCurDebugLoc(), TII->get(TargetOpcode::IMPLICIT_DEF),
1318 VReg);
1320 // Keep FastIS informed about the value we just inserted.
1321 if (FastIS)
1322 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1324 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, SwiftErrorVal, VReg);
1328 /// Collect llvm.dbg.declare information. This is done after argument lowering
1329 /// in case the declarations refer to arguments.
1330 static void processDbgDeclares(FunctionLoweringInfo *FuncInfo) {
1331 MachineFunction *MF = FuncInfo->MF;
1332 const DataLayout &DL = MF->getDataLayout();
1333 for (const BasicBlock &BB : *FuncInfo->Fn) {
1334 for (const Instruction &I : BB) {
1335 const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I);
1336 if (!DI)
1337 continue;
1339 assert(DI->getVariable() && "Missing variable");
1340 assert(DI->getDebugLoc() && "Missing location");
1341 const Value *Address = DI->getAddress();
1342 if (!Address)
1343 continue;
1345 // Look through casts and constant offset GEPs. These mostly come from
1346 // inalloca.
1347 APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0);
1348 Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
1350 // Check if the variable is a static alloca or a byval or inalloca
1351 // argument passed in memory. If it is not, then we will ignore this
1352 // intrinsic and handle this during isel like dbg.value.
1353 int FI = std::numeric_limits<int>::max();
1354 if (const auto *AI = dyn_cast<AllocaInst>(Address)) {
1355 auto SI = FuncInfo->StaticAllocaMap.find(AI);
1356 if (SI != FuncInfo->StaticAllocaMap.end())
1357 FI = SI->second;
1358 } else if (const auto *Arg = dyn_cast<Argument>(Address))
1359 FI = FuncInfo->getArgumentFrameIndex(Arg);
1361 if (FI == std::numeric_limits<int>::max())
1362 continue;
1364 DIExpression *Expr = DI->getExpression();
1365 if (Offset.getBoolValue())
1366 Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset,
1367 Offset.getZExtValue());
1368 MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc());
1373 /// Propagate swifterror values through the machine function CFG.
1374 static void propagateSwiftErrorVRegs(FunctionLoweringInfo *FuncInfo) {
1375 auto *TLI = FuncInfo->TLI;
1376 if (!TLI->supportSwiftError())
1377 return;
1379 // We only need to do this when we have swifterror parameter or swifterror
1380 // alloc.
1381 if (FuncInfo->SwiftErrorVals.empty())
1382 return;
1384 // For each machine basic block in reverse post order.
1385 ReversePostOrderTraversal<MachineFunction *> RPOT(FuncInfo->MF);
1386 for (MachineBasicBlock *MBB : RPOT) {
1387 // For each swifterror value in the function.
1388 for(const auto *SwiftErrorVal : FuncInfo->SwiftErrorVals) {
1389 auto Key = std::make_pair(MBB, SwiftErrorVal);
1390 auto UUseIt = FuncInfo->SwiftErrorVRegUpwardsUse.find(Key);
1391 auto VRegDefIt = FuncInfo->SwiftErrorVRegDefMap.find(Key);
1392 bool UpwardsUse = UUseIt != FuncInfo->SwiftErrorVRegUpwardsUse.end();
1393 unsigned UUseVReg = UpwardsUse ? UUseIt->second : 0;
1394 bool DownwardDef = VRegDefIt != FuncInfo->SwiftErrorVRegDefMap.end();
1395 assert(!(UpwardsUse && !DownwardDef) &&
1396 "We can't have an upwards use but no downwards def");
1398 // If there is no upwards exposed use and an entry for the swifterror in
1399 // the def map for this value we don't need to do anything: We already
1400 // have a downward def for this basic block.
1401 if (!UpwardsUse && DownwardDef)
1402 continue;
1404 // Otherwise we either have an upwards exposed use vreg that we need to
1405 // materialize or need to forward the downward def from predecessors.
1407 // Check whether we have a single vreg def from all predecessors.
1408 // Otherwise we need a phi.
1409 SmallVector<std::pair<MachineBasicBlock *, unsigned>, 4> VRegs;
1410 SmallSet<const MachineBasicBlock*, 8> Visited;
1411 for (auto *Pred : MBB->predecessors()) {
1412 if (!Visited.insert(Pred).second)
1413 continue;
1414 VRegs.push_back(std::make_pair(
1415 Pred, FuncInfo->getOrCreateSwiftErrorVReg(Pred, SwiftErrorVal)));
1416 if (Pred != MBB)
1417 continue;
1418 // We have a self-edge.
1419 // If there was no upwards use in this basic block there is now one: the
1420 // phi needs to use it self.
1421 if (!UpwardsUse) {
1422 UpwardsUse = true;
1423 UUseIt = FuncInfo->SwiftErrorVRegUpwardsUse.find(Key);
1424 assert(UUseIt != FuncInfo->SwiftErrorVRegUpwardsUse.end());
1425 UUseVReg = UUseIt->second;
1429 // We need a phi node if we have more than one predecessor with different
1430 // downward defs.
1431 bool needPHI =
1432 VRegs.size() >= 1 &&
1433 std::find_if(
1434 VRegs.begin(), VRegs.end(),
1435 [&](const std::pair<const MachineBasicBlock *, unsigned> &V)
1436 -> bool { return V.second != VRegs[0].second; }) !=
1437 VRegs.end();
1439 // If there is no upwards exposed used and we don't need a phi just
1440 // forward the swifterror vreg from the predecessor(s).
1441 if (!UpwardsUse && !needPHI) {
1442 assert(!VRegs.empty() &&
1443 "No predecessors? The entry block should bail out earlier");
1444 // Just forward the swifterror vreg from the predecessor(s).
1445 FuncInfo->setCurrentSwiftErrorVReg(MBB, SwiftErrorVal, VRegs[0].second);
1446 continue;
1449 auto DLoc = isa<Instruction>(SwiftErrorVal)
1450 ? cast<Instruction>(SwiftErrorVal)->getDebugLoc()
1451 : DebugLoc();
1452 const auto *TII = FuncInfo->MF->getSubtarget().getInstrInfo();
1454 // If we don't need a phi create a copy to the upward exposed vreg.
1455 if (!needPHI) {
1456 assert(UpwardsUse);
1457 assert(!VRegs.empty() &&
1458 "No predecessors? Is the Calling Convention correct?");
1459 unsigned DestReg = UUseVReg;
1460 BuildMI(*MBB, MBB->getFirstNonPHI(), DLoc, TII->get(TargetOpcode::COPY),
1461 DestReg)
1462 .addReg(VRegs[0].second);
1463 continue;
1466 // We need a phi: if there is an upwards exposed use we already have a
1467 // destination virtual register number otherwise we generate a new one.
1468 auto &DL = FuncInfo->MF->getDataLayout();
1469 auto const *RC = TLI->getRegClassFor(TLI->getPointerTy(DL));
1470 unsigned PHIVReg =
1471 UpwardsUse ? UUseVReg
1472 : FuncInfo->MF->getRegInfo().createVirtualRegister(RC);
1473 MachineInstrBuilder SwiftErrorPHI =
1474 BuildMI(*MBB, MBB->getFirstNonPHI(), DLoc,
1475 TII->get(TargetOpcode::PHI), PHIVReg);
1476 for (auto BBRegPair : VRegs) {
1477 SwiftErrorPHI.addReg(BBRegPair.second).addMBB(BBRegPair.first);
1480 // We did not have a definition in this block before: store the phi's vreg
1481 // as this block downward exposed def.
1482 if (!UpwardsUse)
1483 FuncInfo->setCurrentSwiftErrorVReg(MBB, SwiftErrorVal, PHIVReg);
1488 static void preassignSwiftErrorRegs(const TargetLowering *TLI,
1489 FunctionLoweringInfo *FuncInfo,
1490 BasicBlock::const_iterator Begin,
1491 BasicBlock::const_iterator End) {
1492 if (!TLI->supportSwiftError() || FuncInfo->SwiftErrorVals.empty())
1493 return;
1495 // Iterator over instructions and assign vregs to swifterror defs and uses.
1496 for (auto It = Begin; It != End; ++It) {
1497 ImmutableCallSite CS(&*It);
1498 if (CS) {
1499 // A call-site with a swifterror argument is both use and def.
1500 const Value *SwiftErrorAddr = nullptr;
1501 for (auto &Arg : CS.args()) {
1502 if (!Arg->isSwiftError())
1503 continue;
1504 // Use of swifterror.
1505 assert(!SwiftErrorAddr && "Cannot have multiple swifterror arguments");
1506 SwiftErrorAddr = &*Arg;
1507 assert(SwiftErrorAddr->isSwiftError() &&
1508 "Must have a swifterror value argument");
1509 unsigned VReg; bool CreatedReg;
1510 std::tie(VReg, CreatedReg) = FuncInfo->getOrCreateSwiftErrorVRegUseAt(
1511 &*It, FuncInfo->MBB, SwiftErrorAddr);
1512 assert(CreatedReg);
1514 if (!SwiftErrorAddr)
1515 continue;
1517 // Def of swifterror.
1518 unsigned VReg; bool CreatedReg;
1519 std::tie(VReg, CreatedReg) =
1520 FuncInfo->getOrCreateSwiftErrorVRegDefAt(&*It);
1521 assert(CreatedReg);
1522 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, SwiftErrorAddr, VReg);
1524 // A load is a use.
1525 } else if (const LoadInst *LI = dyn_cast<const LoadInst>(&*It)) {
1526 const Value *V = LI->getOperand(0);
1527 if (!V->isSwiftError())
1528 continue;
1530 unsigned VReg; bool CreatedReg;
1531 std::tie(VReg, CreatedReg) =
1532 FuncInfo->getOrCreateSwiftErrorVRegUseAt(LI, FuncInfo->MBB, V);
1533 assert(CreatedReg);
1535 // A store is a def.
1536 } else if (const StoreInst *SI = dyn_cast<const StoreInst>(&*It)) {
1537 const Value *SwiftErrorAddr = SI->getOperand(1);
1538 if (!SwiftErrorAddr->isSwiftError())
1539 continue;
1541 // Def of swifterror.
1542 unsigned VReg; bool CreatedReg;
1543 std::tie(VReg, CreatedReg) =
1544 FuncInfo->getOrCreateSwiftErrorVRegDefAt(&*It);
1545 assert(CreatedReg);
1546 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, SwiftErrorAddr, VReg);
1548 // A return in a swiferror returning function is a use.
1549 } else if (const ReturnInst *R = dyn_cast<const ReturnInst>(&*It)) {
1550 const Function *F = R->getParent()->getParent();
1551 if(!F->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
1552 continue;
1554 unsigned VReg; bool CreatedReg;
1555 std::tie(VReg, CreatedReg) = FuncInfo->getOrCreateSwiftErrorVRegUseAt(
1556 R, FuncInfo->MBB, FuncInfo->SwiftErrorArg);
1557 assert(CreatedReg);
1562 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
1563 FastISelFailed = false;
1564 // Initialize the Fast-ISel state, if needed.
1565 FastISel *FastIS = nullptr;
1566 if (TM.Options.EnableFastISel) {
1567 LLVM_DEBUG(dbgs() << "Enabling fast-isel\n");
1568 FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
1571 setupSwiftErrorVals(Fn, TLI, FuncInfo);
1573 ReversePostOrderTraversal<const Function*> RPOT(&Fn);
1575 // Lower arguments up front. An RPO iteration always visits the entry block
1576 // first.
1577 assert(*RPOT.begin() == &Fn.getEntryBlock());
1578 ++NumEntryBlocks;
1580 // Set up FuncInfo for ISel. Entry blocks never have PHIs.
1581 FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()];
1582 FuncInfo->InsertPt = FuncInfo->MBB->begin();
1584 CurDAG->setFunctionLoweringInfo(FuncInfo);
1586 if (!FastIS) {
1587 LowerArguments(Fn);
1588 } else {
1589 // See if fast isel can lower the arguments.
1590 FastIS->startNewBlock();
1591 if (!FastIS->lowerArguments()) {
1592 FastISelFailed = true;
1593 // Fast isel failed to lower these arguments
1594 ++NumFastIselFailLowerArguments;
1596 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1597 Fn.getSubprogram(),
1598 &Fn.getEntryBlock());
1599 R << "FastISel didn't lower all arguments: "
1600 << ore::NV("Prototype", Fn.getType());
1601 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1);
1603 // Use SelectionDAG argument lowering
1604 LowerArguments(Fn);
1605 CurDAG->setRoot(SDB->getControlRoot());
1606 SDB->clear();
1607 CodeGenAndEmitDAG();
1610 // If we inserted any instructions at the beginning, make a note of
1611 // where they are, so we can be sure to emit subsequent instructions
1612 // after them.
1613 if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1614 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1615 else
1616 FastIS->setLastLocalValue(nullptr);
1618 createSwiftErrorEntriesInEntryBlock(FuncInfo, FastIS, TLI, TII, SDB);
1620 processDbgDeclares(FuncInfo);
1622 // Iterate over all basic blocks in the function.
1623 StackProtector &SP = getAnalysis<StackProtector>();
1624 for (const BasicBlock *LLVMBB : RPOT) {
1625 if (OptLevel != CodeGenOpt::None) {
1626 bool AllPredsVisited = true;
1627 for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
1628 PI != PE; ++PI) {
1629 if (!FuncInfo->VisitedBBs.count(*PI)) {
1630 AllPredsVisited = false;
1631 break;
1635 if (AllPredsVisited) {
1636 for (const PHINode &PN : LLVMBB->phis())
1637 FuncInfo->ComputePHILiveOutRegInfo(&PN);
1638 } else {
1639 for (const PHINode &PN : LLVMBB->phis())
1640 FuncInfo->InvalidatePHILiveOutRegInfo(&PN);
1643 FuncInfo->VisitedBBs.insert(LLVMBB);
1646 BasicBlock::const_iterator const Begin =
1647 LLVMBB->getFirstNonPHI()->getIterator();
1648 BasicBlock::const_iterator const End = LLVMBB->end();
1649 BasicBlock::const_iterator BI = End;
1651 FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1652 if (!FuncInfo->MBB)
1653 continue; // Some blocks like catchpads have no code or MBB.
1655 // Insert new instructions after any phi or argument setup code.
1656 FuncInfo->InsertPt = FuncInfo->MBB->end();
1658 // Setup an EH landing-pad block.
1659 FuncInfo->ExceptionPointerVirtReg = 0;
1660 FuncInfo->ExceptionSelectorVirtReg = 0;
1661 if (LLVMBB->isEHPad())
1662 if (!PrepareEHLandingPad())
1663 continue;
1665 // Before doing SelectionDAG ISel, see if FastISel has been requested.
1666 if (FastIS) {
1667 if (LLVMBB != &Fn.getEntryBlock())
1668 FastIS->startNewBlock();
1670 unsigned NumFastIselRemaining = std::distance(Begin, End);
1672 // Pre-assign swifterror vregs.
1673 preassignSwiftErrorRegs(TLI, FuncInfo, Begin, End);
1675 // Do FastISel on as many instructions as possible.
1676 for (; BI != Begin; --BI) {
1677 const Instruction *Inst = &*std::prev(BI);
1679 // If we no longer require this instruction, skip it.
1680 if (isFoldedOrDeadInstruction(Inst, FuncInfo) ||
1681 ElidedArgCopyInstrs.count(Inst)) {
1682 --NumFastIselRemaining;
1683 continue;
1686 // Bottom-up: reset the insert pos at the top, after any local-value
1687 // instructions.
1688 FastIS->recomputeInsertPt();
1690 // Try to select the instruction with FastISel.
1691 if (FastIS->selectInstruction(Inst)) {
1692 --NumFastIselRemaining;
1693 ++NumFastIselSuccess;
1694 // If fast isel succeeded, skip over all the folded instructions, and
1695 // then see if there is a load right before the selected instructions.
1696 // Try to fold the load if so.
1697 const Instruction *BeforeInst = Inst;
1698 while (BeforeInst != &*Begin) {
1699 BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst));
1700 if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1701 break;
1703 if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1704 BeforeInst->hasOneUse() &&
1705 FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1706 // If we succeeded, don't re-select the load.
1707 BI = std::next(BasicBlock::const_iterator(BeforeInst));
1708 --NumFastIselRemaining;
1709 ++NumFastIselSuccess;
1711 continue;
1714 FastISelFailed = true;
1716 // Then handle certain instructions as single-LLVM-Instruction blocks.
1717 // We cannot separate out GCrelocates to their own blocks since we need
1718 // to keep track of gc-relocates for a particular gc-statepoint. This is
1719 // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before
1720 // visitGCRelocate.
1721 if (isa<CallInst>(Inst) && !isStatepoint(Inst) && !isGCRelocate(Inst) &&
1722 !isGCResult(Inst)) {
1723 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1724 Inst->getDebugLoc(), LLVMBB);
1726 R << "FastISel missed call";
1728 if (R.isEnabled() || EnableFastISelAbort) {
1729 std::string InstStrStorage;
1730 raw_string_ostream InstStr(InstStrStorage);
1731 InstStr << *Inst;
1733 R << ": " << InstStr.str();
1736 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2);
1738 if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() &&
1739 !Inst->use_empty()) {
1740 unsigned &R = FuncInfo->ValueMap[Inst];
1741 if (!R)
1742 R = FuncInfo->CreateRegs(Inst->getType());
1745 bool HadTailCall = false;
1746 MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1747 SelectBasicBlock(Inst->getIterator(), BI, HadTailCall);
1749 // If the call was emitted as a tail call, we're done with the block.
1750 // We also need to delete any previously emitted instructions.
1751 if (HadTailCall) {
1752 FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1753 --BI;
1754 break;
1757 // Recompute NumFastIselRemaining as Selection DAG instruction
1758 // selection may have handled the call, input args, etc.
1759 unsigned RemainingNow = std::distance(Begin, BI);
1760 NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1761 NumFastIselRemaining = RemainingNow;
1762 continue;
1765 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1766 Inst->getDebugLoc(), LLVMBB);
1768 bool ShouldAbort = EnableFastISelAbort;
1769 if (Inst->isTerminator()) {
1770 // Use a different message for terminator misses.
1771 R << "FastISel missed terminator";
1772 // Don't abort for terminator unless the level is really high
1773 ShouldAbort = (EnableFastISelAbort > 2);
1774 } else {
1775 R << "FastISel missed";
1778 if (R.isEnabled() || EnableFastISelAbort) {
1779 std::string InstStrStorage;
1780 raw_string_ostream InstStr(InstStrStorage);
1781 InstStr << *Inst;
1782 R << ": " << InstStr.str();
1785 reportFastISelFailure(*MF, *ORE, R, ShouldAbort);
1787 NumFastIselFailures += NumFastIselRemaining;
1788 break;
1791 FastIS->recomputeInsertPt();
1794 if (SP.shouldEmitSDCheck(*LLVMBB)) {
1795 bool FunctionBasedInstrumentation =
1796 TLI->getSSPStackGuardCheck(*Fn.getParent());
1797 SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB],
1798 FunctionBasedInstrumentation);
1801 if (Begin != BI)
1802 ++NumDAGBlocks;
1803 else
1804 ++NumFastIselBlocks;
1806 if (Begin != BI) {
1807 // Run SelectionDAG instruction selection on the remainder of the block
1808 // not handled by FastISel. If FastISel is not run, this is the entire
1809 // block.
1810 bool HadTailCall;
1811 SelectBasicBlock(Begin, BI, HadTailCall);
1813 // But if FastISel was run, we already selected some of the block.
1814 // If we emitted a tail-call, we need to delete any previously emitted
1815 // instruction that follows it.
1816 if (HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end())
1817 FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end());
1820 if (FastIS)
1821 FastIS->finishBasicBlock();
1822 FinishBasicBlock();
1823 FuncInfo->PHINodesToUpdate.clear();
1824 ElidedArgCopyInstrs.clear();
1827 SP.copyToMachineFrameInfo(MF->getFrameInfo());
1829 propagateSwiftErrorVRegs(FuncInfo);
1831 delete FastIS;
1832 SDB->clearDanglingDebugInfo();
1833 SDB->SPDescriptor.resetPerFunctionState();
1836 /// Given that the input MI is before a partial terminator sequence TSeq, return
1837 /// true if M + TSeq also a partial terminator sequence.
1839 /// A Terminator sequence is a sequence of MachineInstrs which at this point in
1840 /// lowering copy vregs into physical registers, which are then passed into
1841 /// terminator instructors so we can satisfy ABI constraints. A partial
1842 /// terminator sequence is an improper subset of a terminator sequence (i.e. it
1843 /// may be the whole terminator sequence).
1844 static bool MIIsInTerminatorSequence(const MachineInstr &MI) {
1845 // If we do not have a copy or an implicit def, we return true if and only if
1846 // MI is a debug value.
1847 if (!MI.isCopy() && !MI.isImplicitDef())
1848 // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
1849 // physical registers if there is debug info associated with the terminator
1850 // of our mbb. We want to include said debug info in our terminator
1851 // sequence, so we return true in that case.
1852 return MI.isDebugValue();
1854 // We have left the terminator sequence if we are not doing one of the
1855 // following:
1857 // 1. Copying a vreg into a physical register.
1858 // 2. Copying a vreg into a vreg.
1859 // 3. Defining a register via an implicit def.
1861 // OPI should always be a register definition...
1862 MachineInstr::const_mop_iterator OPI = MI.operands_begin();
1863 if (!OPI->isReg() || !OPI->isDef())
1864 return false;
1866 // Defining any register via an implicit def is always ok.
1867 if (MI.isImplicitDef())
1868 return true;
1870 // Grab the copy source...
1871 MachineInstr::const_mop_iterator OPI2 = OPI;
1872 ++OPI2;
1873 assert(OPI2 != MI.operands_end()
1874 && "Should have a copy implying we should have 2 arguments.");
1876 // Make sure that the copy dest is not a vreg when the copy source is a
1877 // physical register.
1878 if (!OPI2->isReg() ||
1879 (!TargetRegisterInfo::isPhysicalRegister(OPI->getReg()) &&
1880 TargetRegisterInfo::isPhysicalRegister(OPI2->getReg())))
1881 return false;
1883 return true;
1886 /// Find the split point at which to splice the end of BB into its success stack
1887 /// protector check machine basic block.
1889 /// On many platforms, due to ABI constraints, terminators, even before register
1890 /// allocation, use physical registers. This creates an issue for us since
1891 /// physical registers at this point can not travel across basic
1892 /// blocks. Luckily, selectiondag always moves physical registers into vregs
1893 /// when they enter functions and moves them through a sequence of copies back
1894 /// into the physical registers right before the terminator creating a
1895 /// ``Terminator Sequence''. This function is searching for the beginning of the
1896 /// terminator sequence so that we can ensure that we splice off not just the
1897 /// terminator, but additionally the copies that move the vregs into the
1898 /// physical registers.
1899 static MachineBasicBlock::iterator
1900 FindSplitPointForStackProtector(MachineBasicBlock *BB) {
1901 MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
1903 if (SplitPoint == BB->begin())
1904 return SplitPoint;
1906 MachineBasicBlock::iterator Start = BB->begin();
1907 MachineBasicBlock::iterator Previous = SplitPoint;
1908 --Previous;
1910 while (MIIsInTerminatorSequence(*Previous)) {
1911 SplitPoint = Previous;
1912 if (Previous == Start)
1913 break;
1914 --Previous;
1917 return SplitPoint;
1920 void
1921 SelectionDAGISel::FinishBasicBlock() {
1922 LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: "
1923 << FuncInfo->PHINodesToUpdate.size() << "\n";
1924 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e;
1925 ++i) dbgs()
1926 << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first
1927 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1929 // Next, now that we know what the last MBB the LLVM BB expanded is, update
1930 // PHI nodes in successors.
1931 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1932 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1933 assert(PHI->isPHI() &&
1934 "This is not a machine PHI node that we are updating!");
1935 if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1936 continue;
1937 PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1940 // Handle stack protector.
1941 if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
1942 // The target provides a guard check function. There is no need to
1943 // generate error handling code or to split current basic block.
1944 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1946 // Add load and check to the basicblock.
1947 FuncInfo->MBB = ParentMBB;
1948 FuncInfo->InsertPt =
1949 FindSplitPointForStackProtector(ParentMBB);
1950 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1951 CurDAG->setRoot(SDB->getRoot());
1952 SDB->clear();
1953 CodeGenAndEmitDAG();
1955 // Clear the Per-BB State.
1956 SDB->SPDescriptor.resetPerBBState();
1957 } else if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1958 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1959 MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1961 // Find the split point to split the parent mbb. At the same time copy all
1962 // physical registers used in the tail of parent mbb into virtual registers
1963 // before the split point and back into physical registers after the split
1964 // point. This prevents us needing to deal with Live-ins and many other
1965 // register allocation issues caused by us splitting the parent mbb. The
1966 // register allocator will clean up said virtual copies later on.
1967 MachineBasicBlock::iterator SplitPoint =
1968 FindSplitPointForStackProtector(ParentMBB);
1970 // Splice the terminator of ParentMBB into SuccessMBB.
1971 SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
1972 SplitPoint,
1973 ParentMBB->end());
1975 // Add compare/jump on neq/jump to the parent BB.
1976 FuncInfo->MBB = ParentMBB;
1977 FuncInfo->InsertPt = ParentMBB->end();
1978 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1979 CurDAG->setRoot(SDB->getRoot());
1980 SDB->clear();
1981 CodeGenAndEmitDAG();
1983 // CodeGen Failure MBB if we have not codegened it yet.
1984 MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
1985 if (FailureMBB->empty()) {
1986 FuncInfo->MBB = FailureMBB;
1987 FuncInfo->InsertPt = FailureMBB->end();
1988 SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
1989 CurDAG->setRoot(SDB->getRoot());
1990 SDB->clear();
1991 CodeGenAndEmitDAG();
1994 // Clear the Per-BB State.
1995 SDB->SPDescriptor.resetPerBBState();
1998 // Lower each BitTestBlock.
1999 for (auto &BTB : SDB->BitTestCases) {
2000 // Lower header first, if it wasn't already lowered
2001 if (!BTB.Emitted) {
2002 // Set the current basic block to the mbb we wish to insert the code into
2003 FuncInfo->MBB = BTB.Parent;
2004 FuncInfo->InsertPt = FuncInfo->MBB->end();
2005 // Emit the code
2006 SDB->visitBitTestHeader(BTB, FuncInfo->MBB);
2007 CurDAG->setRoot(SDB->getRoot());
2008 SDB->clear();
2009 CodeGenAndEmitDAG();
2012 BranchProbability UnhandledProb = BTB.Prob;
2013 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
2014 UnhandledProb -= BTB.Cases[j].ExtraProb;
2015 // Set the current basic block to the mbb we wish to insert the code into
2016 FuncInfo->MBB = BTB.Cases[j].ThisBB;
2017 FuncInfo->InsertPt = FuncInfo->MBB->end();
2018 // Emit the code
2020 // If all cases cover a contiguous range, it is not necessary to jump to
2021 // the default block after the last bit test fails. This is because the
2022 // range check during bit test header creation has guaranteed that every
2023 // case here doesn't go outside the range. In this case, there is no need
2024 // to perform the last bit test, as it will always be true. Instead, make
2025 // the second-to-last bit-test fall through to the target of the last bit
2026 // test, and delete the last bit test.
2028 MachineBasicBlock *NextMBB;
2029 if (BTB.ContiguousRange && j + 2 == ej) {
2030 // Second-to-last bit-test with contiguous range: fall through to the
2031 // target of the final bit test.
2032 NextMBB = BTB.Cases[j + 1].TargetBB;
2033 } else if (j + 1 == ej) {
2034 // For the last bit test, fall through to Default.
2035 NextMBB = BTB.Default;
2036 } else {
2037 // Otherwise, fall through to the next bit test.
2038 NextMBB = BTB.Cases[j + 1].ThisBB;
2041 SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j],
2042 FuncInfo->MBB);
2044 CurDAG->setRoot(SDB->getRoot());
2045 SDB->clear();
2046 CodeGenAndEmitDAG();
2048 if (BTB.ContiguousRange && j + 2 == ej) {
2049 // Since we're not going to use the final bit test, remove it.
2050 BTB.Cases.pop_back();
2051 break;
2055 // Update PHI Nodes
2056 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
2057 pi != pe; ++pi) {
2058 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
2059 MachineBasicBlock *PHIBB = PHI->getParent();
2060 assert(PHI->isPHI() &&
2061 "This is not a machine PHI node that we are updating!");
2062 // This is "default" BB. We have two jumps to it. From "header" BB and
2063 // from last "case" BB, unless the latter was skipped.
2064 if (PHIBB == BTB.Default) {
2065 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent);
2066 if (!BTB.ContiguousRange) {
2067 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
2068 .addMBB(BTB.Cases.back().ThisBB);
2071 // One of "cases" BB.
2072 for (unsigned j = 0, ej = BTB.Cases.size();
2073 j != ej; ++j) {
2074 MachineBasicBlock* cBB = BTB.Cases[j].ThisBB;
2075 if (cBB->isSuccessor(PHIBB))
2076 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
2080 SDB->BitTestCases.clear();
2082 // If the JumpTable record is filled in, then we need to emit a jump table.
2083 // Updating the PHI nodes is tricky in this case, since we need to determine
2084 // whether the PHI is a successor of the range check MBB or the jump table MBB
2085 for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
2086 // Lower header first, if it wasn't already lowered
2087 if (!SDB->JTCases[i].first.Emitted) {
2088 // Set the current basic block to the mbb we wish to insert the code into
2089 FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
2090 FuncInfo->InsertPt = FuncInfo->MBB->end();
2091 // Emit the code
2092 SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
2093 FuncInfo->MBB);
2094 CurDAG->setRoot(SDB->getRoot());
2095 SDB->clear();
2096 CodeGenAndEmitDAG();
2099 // Set the current basic block to the mbb we wish to insert the code into
2100 FuncInfo->MBB = SDB->JTCases[i].second.MBB;
2101 FuncInfo->InsertPt = FuncInfo->MBB->end();
2102 // Emit the code
2103 SDB->visitJumpTable(SDB->JTCases[i].second);
2104 CurDAG->setRoot(SDB->getRoot());
2105 SDB->clear();
2106 CodeGenAndEmitDAG();
2108 // Update PHI Nodes
2109 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
2110 pi != pe; ++pi) {
2111 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
2112 MachineBasicBlock *PHIBB = PHI->getParent();
2113 assert(PHI->isPHI() &&
2114 "This is not a machine PHI node that we are updating!");
2115 // "default" BB. We can go there only from header BB.
2116 if (PHIBB == SDB->JTCases[i].second.Default)
2117 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
2118 .addMBB(SDB->JTCases[i].first.HeaderBB);
2119 // JT BB. Just iterate over successors here
2120 if (FuncInfo->MBB->isSuccessor(PHIBB))
2121 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
2124 SDB->JTCases.clear();
2126 // If we generated any switch lowering information, build and codegen any
2127 // additional DAGs necessary.
2128 for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
2129 // Set the current basic block to the mbb we wish to insert the code into
2130 FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
2131 FuncInfo->InsertPt = FuncInfo->MBB->end();
2133 // Determine the unique successors.
2134 SmallVector<MachineBasicBlock *, 2> Succs;
2135 Succs.push_back(SDB->SwitchCases[i].TrueBB);
2136 if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
2137 Succs.push_back(SDB->SwitchCases[i].FalseBB);
2139 // Emit the code. Note that this could result in FuncInfo->MBB being split.
2140 SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
2141 CurDAG->setRoot(SDB->getRoot());
2142 SDB->clear();
2143 CodeGenAndEmitDAG();
2145 // Remember the last block, now that any splitting is done, for use in
2146 // populating PHI nodes in successors.
2147 MachineBasicBlock *ThisBB = FuncInfo->MBB;
2149 // Handle any PHI nodes in successors of this chunk, as if we were coming
2150 // from the original BB before switch expansion. Note that PHI nodes can
2151 // occur multiple times in PHINodesToUpdate. We have to be very careful to
2152 // handle them the right number of times.
2153 for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
2154 FuncInfo->MBB = Succs[i];
2155 FuncInfo->InsertPt = FuncInfo->MBB->end();
2156 // FuncInfo->MBB may have been removed from the CFG if a branch was
2157 // constant folded.
2158 if (ThisBB->isSuccessor(FuncInfo->MBB)) {
2159 for (MachineBasicBlock::iterator
2160 MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
2161 MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
2162 MachineInstrBuilder PHI(*MF, MBBI);
2163 // This value for this PHI node is recorded in PHINodesToUpdate.
2164 for (unsigned pn = 0; ; ++pn) {
2165 assert(pn != FuncInfo->PHINodesToUpdate.size() &&
2166 "Didn't find PHI entry!");
2167 if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
2168 PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
2169 break;
2176 SDB->SwitchCases.clear();
2179 /// Create the scheduler. If a specific scheduler was specified
2180 /// via the SchedulerRegistry, use it, otherwise select the
2181 /// one preferred by the target.
2183 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
2184 return ISHeuristic(this, OptLevel);
2187 //===----------------------------------------------------------------------===//
2188 // Helper functions used by the generated instruction selector.
2189 //===----------------------------------------------------------------------===//
2190 // Calls to these methods are generated by tblgen.
2192 /// CheckAndMask - The isel is trying to match something like (and X, 255). If
2193 /// the dag combiner simplified the 255, we still want to match. RHS is the
2194 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
2195 /// specified in the .td file (e.g. 255).
2196 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
2197 int64_t DesiredMaskS) const {
2198 const APInt &ActualMask = RHS->getAPIntValue();
2199 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
2201 // If the actual mask exactly matches, success!
2202 if (ActualMask == DesiredMask)
2203 return true;
2205 // If the actual AND mask is allowing unallowed bits, this doesn't match.
2206 if (!ActualMask.isSubsetOf(DesiredMask))
2207 return false;
2209 // Otherwise, the DAG Combiner may have proven that the value coming in is
2210 // either already zero or is not demanded. Check for known zero input bits.
2211 APInt NeededMask = DesiredMask & ~ActualMask;
2212 if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
2213 return true;
2215 // TODO: check to see if missing bits are just not demanded.
2217 // Otherwise, this pattern doesn't match.
2218 return false;
2221 /// CheckOrMask - The isel is trying to match something like (or X, 255). If
2222 /// the dag combiner simplified the 255, we still want to match. RHS is the
2223 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
2224 /// specified in the .td file (e.g. 255).
2225 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
2226 int64_t DesiredMaskS) const {
2227 const APInt &ActualMask = RHS->getAPIntValue();
2228 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
2230 // If the actual mask exactly matches, success!
2231 if (ActualMask == DesiredMask)
2232 return true;
2234 // If the actual AND mask is allowing unallowed bits, this doesn't match.
2235 if (!ActualMask.isSubsetOf(DesiredMask))
2236 return false;
2238 // Otherwise, the DAG Combiner may have proven that the value coming in is
2239 // either already zero or is not demanded. Check for known zero input bits.
2240 APInt NeededMask = DesiredMask & ~ActualMask;
2241 KnownBits Known = CurDAG->computeKnownBits(LHS);
2243 // If all the missing bits in the or are already known to be set, match!
2244 if (NeededMask.isSubsetOf(Known.One))
2245 return true;
2247 // TODO: check to see if missing bits are just not demanded.
2249 // Otherwise, this pattern doesn't match.
2250 return false;
2253 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
2254 /// by tblgen. Others should not call it.
2255 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops,
2256 const SDLoc &DL) {
2257 std::vector<SDValue> InOps;
2258 std::swap(InOps, Ops);
2260 Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
2261 Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1
2262 Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc
2263 Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack)
2265 unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
2266 if (InOps[e-1].getValueType() == MVT::Glue)
2267 --e; // Don't process a glue operand if it is here.
2269 while (i != e) {
2270 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
2271 if (!InlineAsm::isMemKind(Flags)) {
2272 // Just skip over this operand, copying the operands verbatim.
2273 Ops.insert(Ops.end(), InOps.begin()+i,
2274 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
2275 i += InlineAsm::getNumOperandRegisters(Flags) + 1;
2276 } else {
2277 assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
2278 "Memory operand with multiple values?");
2280 unsigned TiedToOperand;
2281 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) {
2282 // We need the constraint ID from the operand this is tied to.
2283 unsigned CurOp = InlineAsm::Op_FirstOperand;
2284 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2285 for (; TiedToOperand; --TiedToOperand) {
2286 CurOp += InlineAsm::getNumOperandRegisters(Flags)+1;
2287 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2291 // Otherwise, this is a memory operand. Ask the target to select it.
2292 std::vector<SDValue> SelOps;
2293 unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags);
2294 if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps))
2295 report_fatal_error("Could not match memory address. Inline asm"
2296 " failure!");
2298 // Add this to the output node.
2299 unsigned NewFlags =
2300 InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
2301 NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID);
2302 Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32));
2303 Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
2304 i += 2;
2308 // Add the glue input back if present.
2309 if (e != InOps.size())
2310 Ops.push_back(InOps.back());
2313 /// findGlueUse - Return use of MVT::Glue value produced by the specified
2314 /// SDNode.
2316 static SDNode *findGlueUse(SDNode *N) {
2317 unsigned FlagResNo = N->getNumValues()-1;
2318 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2319 SDUse &Use = I.getUse();
2320 if (Use.getResNo() == FlagResNo)
2321 return Use.getUser();
2323 return nullptr;
2326 /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path
2327 /// beyond "ImmedUse". We may ignore chains as they are checked separately.
2328 static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse,
2329 bool IgnoreChains) {
2330 SmallPtrSet<const SDNode *, 16> Visited;
2331 SmallVector<const SDNode *, 16> WorkList;
2332 // Only check if we have non-immediate uses of Def.
2333 if (ImmedUse->isOnlyUserOf(Def))
2334 return false;
2336 // We don't care about paths to Def that go through ImmedUse so mark it
2337 // visited and mark non-def operands as used.
2338 Visited.insert(ImmedUse);
2339 for (const SDValue &Op : ImmedUse->op_values()) {
2340 SDNode *N = Op.getNode();
2341 // Ignore chain deps (they are validated by
2342 // HandleMergeInputChains) and immediate uses
2343 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2344 continue;
2345 if (!Visited.insert(N).second)
2346 continue;
2347 WorkList.push_back(N);
2350 // Initialize worklist to operands of Root.
2351 if (Root != ImmedUse) {
2352 for (const SDValue &Op : Root->op_values()) {
2353 SDNode *N = Op.getNode();
2354 // Ignore chains (they are validated by HandleMergeInputChains)
2355 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2356 continue;
2357 if (!Visited.insert(N).second)
2358 continue;
2359 WorkList.push_back(N);
2363 return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true);
2366 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
2367 /// operand node N of U during instruction selection that starts at Root.
2368 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
2369 SDNode *Root) const {
2370 if (OptLevel == CodeGenOpt::None) return false;
2371 return N.hasOneUse();
2374 /// IsLegalToFold - Returns true if the specific operand node N of
2375 /// U can be folded during instruction selection that starts at Root.
2376 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
2377 CodeGenOpt::Level OptLevel,
2378 bool IgnoreChains) {
2379 if (OptLevel == CodeGenOpt::None) return false;
2381 // If Root use can somehow reach N through a path that that doesn't contain
2382 // U then folding N would create a cycle. e.g. In the following
2383 // diagram, Root can reach N through X. If N is folded into Root, then
2384 // X is both a predecessor and a successor of U.
2386 // [N*] //
2387 // ^ ^ //
2388 // / \ //
2389 // [U*] [X]? //
2390 // ^ ^ //
2391 // \ / //
2392 // \ / //
2393 // [Root*] //
2395 // * indicates nodes to be folded together.
2397 // If Root produces glue, then it gets (even more) interesting. Since it
2398 // will be "glued" together with its glue use in the scheduler, we need to
2399 // check if it might reach N.
2401 // [N*] //
2402 // ^ ^ //
2403 // / \ //
2404 // [U*] [X]? //
2405 // ^ ^ //
2406 // \ \ //
2407 // \ | //
2408 // [Root*] | //
2409 // ^ | //
2410 // f | //
2411 // | / //
2412 // [Y] / //
2413 // ^ / //
2414 // f / //
2415 // | / //
2416 // [GU] //
2418 // If GU (glue use) indirectly reaches N (the load), and Root folds N
2419 // (call it Fold), then X is a predecessor of GU and a successor of
2420 // Fold. But since Fold and GU are glued together, this will create
2421 // a cycle in the scheduling graph.
2423 // If the node has glue, walk down the graph to the "lowest" node in the
2424 // glueged set.
2425 EVT VT = Root->getValueType(Root->getNumValues()-1);
2426 while (VT == MVT::Glue) {
2427 SDNode *GU = findGlueUse(Root);
2428 if (!GU)
2429 break;
2430 Root = GU;
2431 VT = Root->getValueType(Root->getNumValues()-1);
2433 // If our query node has a glue result with a use, we've walked up it. If
2434 // the user (which has already been selected) has a chain or indirectly uses
2435 // the chain, HandleMergeInputChains will not consider it. Because of
2436 // this, we cannot ignore chains in this predicate.
2437 IgnoreChains = false;
2440 return !findNonImmUse(Root, N.getNode(), U, IgnoreChains);
2443 void SelectionDAGISel::Select_INLINEASM(SDNode *N, bool Branch) {
2444 SDLoc DL(N);
2446 std::vector<SDValue> Ops(N->op_begin(), N->op_end());
2447 SelectInlineAsmMemoryOperands(Ops, DL);
2449 const EVT VTs[] = {MVT::Other, MVT::Glue};
2450 SDValue New = CurDAG->getNode(Branch ? ISD::INLINEASM_BR : ISD::INLINEASM, DL, VTs, Ops);
2451 New->setNodeId(-1);
2452 ReplaceUses(N, New.getNode());
2453 CurDAG->RemoveDeadNode(N);
2456 void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
2457 SDLoc dl(Op);
2458 MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
2459 const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
2460 unsigned Reg =
2461 TLI->getRegisterByName(RegStr->getString().data(), Op->getValueType(0),
2462 *CurDAG);
2463 SDValue New = CurDAG->getCopyFromReg(
2464 Op->getOperand(0), dl, Reg, Op->getValueType(0));
2465 New->setNodeId(-1);
2466 ReplaceUses(Op, New.getNode());
2467 CurDAG->RemoveDeadNode(Op);
2470 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
2471 SDLoc dl(Op);
2472 MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
2473 const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
2474 unsigned Reg = TLI->getRegisterByName(RegStr->getString().data(),
2475 Op->getOperand(2).getValueType(),
2476 *CurDAG);
2477 SDValue New = CurDAG->getCopyToReg(
2478 Op->getOperand(0), dl, Reg, Op->getOperand(2));
2479 New->setNodeId(-1);
2480 ReplaceUses(Op, New.getNode());
2481 CurDAG->RemoveDeadNode(Op);
2484 void SelectionDAGISel::Select_UNDEF(SDNode *N) {
2485 CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
2488 /// GetVBR - decode a vbr encoding whose top bit is set.
2489 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline uint64_t
2490 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
2491 assert(Val >= 128 && "Not a VBR");
2492 Val &= 127; // Remove first vbr bit.
2494 unsigned Shift = 7;
2495 uint64_t NextBits;
2496 do {
2497 NextBits = MatcherTable[Idx++];
2498 Val |= (NextBits&127) << Shift;
2499 Shift += 7;
2500 } while (NextBits & 128);
2502 return Val;
2505 /// When a match is complete, this method updates uses of interior chain results
2506 /// to use the new results.
2507 void SelectionDAGISel::UpdateChains(
2508 SDNode *NodeToMatch, SDValue InputChain,
2509 SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) {
2510 SmallVector<SDNode*, 4> NowDeadNodes;
2512 // Now that all the normal results are replaced, we replace the chain and
2513 // glue results if present.
2514 if (!ChainNodesMatched.empty()) {
2515 assert(InputChain.getNode() &&
2516 "Matched input chains but didn't produce a chain");
2517 // Loop over all of the nodes we matched that produced a chain result.
2518 // Replace all the chain results with the final chain we ended up with.
2519 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2520 SDNode *ChainNode = ChainNodesMatched[i];
2521 // If ChainNode is null, it's because we replaced it on a previous
2522 // iteration and we cleared it out of the map. Just skip it.
2523 if (!ChainNode)
2524 continue;
2526 assert(ChainNode->getOpcode() != ISD::DELETED_NODE &&
2527 "Deleted node left in chain");
2529 // Don't replace the results of the root node if we're doing a
2530 // MorphNodeTo.
2531 if (ChainNode == NodeToMatch && isMorphNodeTo)
2532 continue;
2534 SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
2535 if (ChainVal.getValueType() == MVT::Glue)
2536 ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
2537 assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
2538 SelectionDAG::DAGNodeDeletedListener NDL(
2539 *CurDAG, [&](SDNode *N, SDNode *E) {
2540 std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N,
2541 static_cast<SDNode *>(nullptr));
2543 if (ChainNode->getOpcode() != ISD::TokenFactor)
2544 ReplaceUses(ChainVal, InputChain);
2546 // If the node became dead and we haven't already seen it, delete it.
2547 if (ChainNode != NodeToMatch && ChainNode->use_empty() &&
2548 !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
2549 NowDeadNodes.push_back(ChainNode);
2553 if (!NowDeadNodes.empty())
2554 CurDAG->RemoveDeadNodes(NowDeadNodes);
2556 LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n");
2559 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2560 /// operation for when the pattern matched at least one node with a chains. The
2561 /// input vector contains a list of all of the chained nodes that we match. We
2562 /// must determine if this is a valid thing to cover (i.e. matching it won't
2563 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2564 /// be used as the input node chain for the generated nodes.
2565 static SDValue
2566 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
2567 SelectionDAG *CurDAG) {
2569 SmallPtrSet<const SDNode *, 16> Visited;
2570 SmallVector<const SDNode *, 8> Worklist;
2571 SmallVector<SDValue, 3> InputChains;
2572 unsigned int Max = 8192;
2574 // Quick exit on trivial merge.
2575 if (ChainNodesMatched.size() == 1)
2576 return ChainNodesMatched[0]->getOperand(0);
2578 // Add chains that aren't already added (internal). Peek through
2579 // token factors.
2580 std::function<void(const SDValue)> AddChains = [&](const SDValue V) {
2581 if (V.getValueType() != MVT::Other)
2582 return;
2583 if (V->getOpcode() == ISD::EntryToken)
2584 return;
2585 if (!Visited.insert(V.getNode()).second)
2586 return;
2587 if (V->getOpcode() == ISD::TokenFactor) {
2588 for (const SDValue &Op : V->op_values())
2589 AddChains(Op);
2590 } else
2591 InputChains.push_back(V);
2594 for (auto *N : ChainNodesMatched) {
2595 Worklist.push_back(N);
2596 Visited.insert(N);
2599 while (!Worklist.empty())
2600 AddChains(Worklist.pop_back_val()->getOperand(0));
2602 // Skip the search if there are no chain dependencies.
2603 if (InputChains.size() == 0)
2604 return CurDAG->getEntryNode();
2606 // If one of these chains is a successor of input, we must have a
2607 // node that is both the predecessor and successor of the
2608 // to-be-merged nodes. Fail.
2609 Visited.clear();
2610 for (SDValue V : InputChains)
2611 Worklist.push_back(V.getNode());
2613 for (auto *N : ChainNodesMatched)
2614 if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true))
2615 return SDValue();
2617 // Return merged chain.
2618 if (InputChains.size() == 1)
2619 return InputChains[0];
2620 return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
2621 MVT::Other, InputChains);
2624 /// MorphNode - Handle morphing a node in place for the selector.
2625 SDNode *SelectionDAGISel::
2626 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
2627 ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
2628 // It is possible we're using MorphNodeTo to replace a node with no
2629 // normal results with one that has a normal result (or we could be
2630 // adding a chain) and the input could have glue and chains as well.
2631 // In this case we need to shift the operands down.
2632 // FIXME: This is a horrible hack and broken in obscure cases, no worse
2633 // than the old isel though.
2634 int OldGlueResultNo = -1, OldChainResultNo = -1;
2636 unsigned NTMNumResults = Node->getNumValues();
2637 if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
2638 OldGlueResultNo = NTMNumResults-1;
2639 if (NTMNumResults != 1 &&
2640 Node->getValueType(NTMNumResults-2) == MVT::Other)
2641 OldChainResultNo = NTMNumResults-2;
2642 } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2643 OldChainResultNo = NTMNumResults-1;
2645 // Call the underlying SelectionDAG routine to do the transmogrification. Note
2646 // that this deletes operands of the old node that become dead.
2647 SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);
2649 // MorphNodeTo can operate in two ways: if an existing node with the
2650 // specified operands exists, it can just return it. Otherwise, it
2651 // updates the node in place to have the requested operands.
2652 if (Res == Node) {
2653 // If we updated the node in place, reset the node ID. To the isel,
2654 // this should be just like a newly allocated machine node.
2655 Res->setNodeId(-1);
2658 unsigned ResNumResults = Res->getNumValues();
2659 // Move the glue if needed.
2660 if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2661 (unsigned)OldGlueResultNo != ResNumResults-1)
2662 ReplaceUses(SDValue(Node, OldGlueResultNo),
2663 SDValue(Res, ResNumResults - 1));
2665 if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2666 --ResNumResults;
2668 // Move the chain reference if needed.
2669 if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2670 (unsigned)OldChainResultNo != ResNumResults-1)
2671 ReplaceUses(SDValue(Node, OldChainResultNo),
2672 SDValue(Res, ResNumResults - 1));
2674 // Otherwise, no replacement happened because the node already exists. Replace
2675 // Uses of the old node with the new one.
2676 if (Res != Node) {
2677 ReplaceNode(Node, Res);
2678 } else {
2679 EnforceNodeIdInvariant(Res);
2682 return Res;
2685 /// CheckSame - Implements OP_CheckSame.
2686 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2687 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2688 SDValue N,
2689 const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2690 // Accept if it is exactly the same as a previously recorded node.
2691 unsigned RecNo = MatcherTable[MatcherIndex++];
2692 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2693 return N == RecordedNodes[RecNo].first;
2696 /// CheckChildSame - Implements OP_CheckChildXSame.
2697 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2698 CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2699 SDValue N,
2700 const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes,
2701 unsigned ChildNo) {
2702 if (ChildNo >= N.getNumOperands())
2703 return false; // Match fails if out of range child #.
2704 return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
2705 RecordedNodes);
2708 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2709 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2710 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2711 const SelectionDAGISel &SDISel) {
2712 return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2715 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
2716 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2717 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2718 const SelectionDAGISel &SDISel, SDNode *N) {
2719 return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2722 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2723 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2724 SDNode *N) {
2725 uint16_t Opc = MatcherTable[MatcherIndex++];
2726 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2727 return N->getOpcode() == Opc;
2730 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2731 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2732 const TargetLowering *TLI, const DataLayout &DL) {
2733 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2734 if (N.getValueType() == VT) return true;
2736 // Handle the case when VT is iPTR.
2737 return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL);
2740 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2741 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2742 SDValue N, const TargetLowering *TLI, const DataLayout &DL,
2743 unsigned ChildNo) {
2744 if (ChildNo >= N.getNumOperands())
2745 return false; // Match fails if out of range child #.
2746 return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI,
2747 DL);
2750 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2751 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2752 SDValue N) {
2753 return cast<CondCodeSDNode>(N)->get() ==
2754 (ISD::CondCode)MatcherTable[MatcherIndex++];
2757 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2758 CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2759 SDValue N) {
2760 if (2 >= N.getNumOperands())
2761 return false;
2762 return ::CheckCondCode(MatcherTable, MatcherIndex, N.getOperand(2));
2765 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2766 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2767 SDValue N, const TargetLowering *TLI, const DataLayout &DL) {
2768 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2769 if (cast<VTSDNode>(N)->getVT() == VT)
2770 return true;
2772 // Handle the case when VT is iPTR.
2773 return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL);
2776 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2777 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2778 SDValue N) {
2779 int64_t Val = MatcherTable[MatcherIndex++];
2780 if (Val & 128)
2781 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2783 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2784 return C && C->getSExtValue() == Val;
2787 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2788 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2789 SDValue N, unsigned ChildNo) {
2790 if (ChildNo >= N.getNumOperands())
2791 return false; // Match fails if out of range child #.
2792 return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
2795 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2796 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2797 SDValue N, const SelectionDAGISel &SDISel) {
2798 int64_t Val = MatcherTable[MatcherIndex++];
2799 if (Val & 128)
2800 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2802 if (N->getOpcode() != ISD::AND) return false;
2804 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2805 return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2808 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2809 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2810 SDValue N, const SelectionDAGISel &SDISel) {
2811 int64_t Val = MatcherTable[MatcherIndex++];
2812 if (Val & 128)
2813 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2815 if (N->getOpcode() != ISD::OR) return false;
2817 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2818 return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2821 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
2822 /// scope, evaluate the current node. If the current predicate is known to
2823 /// fail, set Result=true and return anything. If the current predicate is
2824 /// known to pass, set Result=false and return the MatcherIndex to continue
2825 /// with. If the current predicate is unknown, set Result=false and return the
2826 /// MatcherIndex to continue with.
2827 static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2828 unsigned Index, SDValue N,
2829 bool &Result,
2830 const SelectionDAGISel &SDISel,
2831 SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2832 switch (Table[Index++]) {
2833 default:
2834 Result = false;
2835 return Index-1; // Could not evaluate this predicate.
2836 case SelectionDAGISel::OPC_CheckSame:
2837 Result = !::CheckSame(Table, Index, N, RecordedNodes);
2838 return Index;
2839 case SelectionDAGISel::OPC_CheckChild0Same:
2840 case SelectionDAGISel::OPC_CheckChild1Same:
2841 case SelectionDAGISel::OPC_CheckChild2Same:
2842 case SelectionDAGISel::OPC_CheckChild3Same:
2843 Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
2844 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
2845 return Index;
2846 case SelectionDAGISel::OPC_CheckPatternPredicate:
2847 Result = !::CheckPatternPredicate(Table, Index, SDISel);
2848 return Index;
2849 case SelectionDAGISel::OPC_CheckPredicate:
2850 Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2851 return Index;
2852 case SelectionDAGISel::OPC_CheckOpcode:
2853 Result = !::CheckOpcode(Table, Index, N.getNode());
2854 return Index;
2855 case SelectionDAGISel::OPC_CheckType:
2856 Result = !::CheckType(Table, Index, N, SDISel.TLI,
2857 SDISel.CurDAG->getDataLayout());
2858 return Index;
2859 case SelectionDAGISel::OPC_CheckTypeRes: {
2860 unsigned Res = Table[Index++];
2861 Result = !::CheckType(Table, Index, N.getValue(Res), SDISel.TLI,
2862 SDISel.CurDAG->getDataLayout());
2863 return Index;
2865 case SelectionDAGISel::OPC_CheckChild0Type:
2866 case SelectionDAGISel::OPC_CheckChild1Type:
2867 case SelectionDAGISel::OPC_CheckChild2Type:
2868 case SelectionDAGISel::OPC_CheckChild3Type:
2869 case SelectionDAGISel::OPC_CheckChild4Type:
2870 case SelectionDAGISel::OPC_CheckChild5Type:
2871 case SelectionDAGISel::OPC_CheckChild6Type:
2872 case SelectionDAGISel::OPC_CheckChild7Type:
2873 Result = !::CheckChildType(
2874 Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(),
2875 Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type);
2876 return Index;
2877 case SelectionDAGISel::OPC_CheckCondCode:
2878 Result = !::CheckCondCode(Table, Index, N);
2879 return Index;
2880 case SelectionDAGISel::OPC_CheckChild2CondCode:
2881 Result = !::CheckChild2CondCode(Table, Index, N);
2882 return Index;
2883 case SelectionDAGISel::OPC_CheckValueType:
2884 Result = !::CheckValueType(Table, Index, N, SDISel.TLI,
2885 SDISel.CurDAG->getDataLayout());
2886 return Index;
2887 case SelectionDAGISel::OPC_CheckInteger:
2888 Result = !::CheckInteger(Table, Index, N);
2889 return Index;
2890 case SelectionDAGISel::OPC_CheckChild0Integer:
2891 case SelectionDAGISel::OPC_CheckChild1Integer:
2892 case SelectionDAGISel::OPC_CheckChild2Integer:
2893 case SelectionDAGISel::OPC_CheckChild3Integer:
2894 case SelectionDAGISel::OPC_CheckChild4Integer:
2895 Result = !::CheckChildInteger(Table, Index, N,
2896 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
2897 return Index;
2898 case SelectionDAGISel::OPC_CheckAndImm:
2899 Result = !::CheckAndImm(Table, Index, N, SDISel);
2900 return Index;
2901 case SelectionDAGISel::OPC_CheckOrImm:
2902 Result = !::CheckOrImm(Table, Index, N, SDISel);
2903 return Index;
2907 namespace {
2909 struct MatchScope {
2910 /// FailIndex - If this match fails, this is the index to continue with.
2911 unsigned FailIndex;
2913 /// NodeStack - The node stack when the scope was formed.
2914 SmallVector<SDValue, 4> NodeStack;
2916 /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2917 unsigned NumRecordedNodes;
2919 /// NumMatchedMemRefs - The number of matched memref entries.
2920 unsigned NumMatchedMemRefs;
2922 /// InputChain/InputGlue - The current chain/glue
2923 SDValue InputChain, InputGlue;
2925 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2926 bool HasChainNodesMatched;
2929 /// \A DAG update listener to keep the matching state
2930 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
2931 /// change the DAG while matching. X86 addressing mode matcher is an example
2932 /// for this.
2933 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
2935 SDNode **NodeToMatch;
2936 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes;
2937 SmallVectorImpl<MatchScope> &MatchScopes;
2939 public:
2940 MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch,
2941 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN,
2942 SmallVectorImpl<MatchScope> &MS)
2943 : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch),
2944 RecordedNodes(RN), MatchScopes(MS) {}
2946 void NodeDeleted(SDNode *N, SDNode *E) override {
2947 // Some early-returns here to avoid the search if we deleted the node or
2948 // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
2949 // do, so it's unnecessary to update matching state at that point).
2950 // Neither of these can occur currently because we only install this
2951 // update listener during matching a complex patterns.
2952 if (!E || E->isMachineOpcode())
2953 return;
2954 // Check if NodeToMatch was updated.
2955 if (N == *NodeToMatch)
2956 *NodeToMatch = E;
2957 // Performing linear search here does not matter because we almost never
2958 // run this code. You'd have to have a CSE during complex pattern
2959 // matching.
2960 for (auto &I : RecordedNodes)
2961 if (I.first.getNode() == N)
2962 I.first.setNode(E);
2964 for (auto &I : MatchScopes)
2965 for (auto &J : I.NodeStack)
2966 if (J.getNode() == N)
2967 J.setNode(E);
2971 } // end anonymous namespace
2973 void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch,
2974 const unsigned char *MatcherTable,
2975 unsigned TableSize) {
2976 // FIXME: Should these even be selected? Handle these cases in the caller?
2977 switch (NodeToMatch->getOpcode()) {
2978 default:
2979 break;
2980 case ISD::EntryToken: // These nodes remain the same.
2981 case ISD::BasicBlock:
2982 case ISD::Register:
2983 case ISD::RegisterMask:
2984 case ISD::HANDLENODE:
2985 case ISD::MDNODE_SDNODE:
2986 case ISD::TargetConstant:
2987 case ISD::TargetConstantFP:
2988 case ISD::TargetConstantPool:
2989 case ISD::TargetFrameIndex:
2990 case ISD::TargetExternalSymbol:
2991 case ISD::MCSymbol:
2992 case ISD::TargetBlockAddress:
2993 case ISD::TargetJumpTable:
2994 case ISD::TargetGlobalTLSAddress:
2995 case ISD::TargetGlobalAddress:
2996 case ISD::TokenFactor:
2997 case ISD::CopyFromReg:
2998 case ISD::CopyToReg:
2999 case ISD::EH_LABEL:
3000 case ISD::ANNOTATION_LABEL:
3001 case ISD::LIFETIME_START:
3002 case ISD::LIFETIME_END:
3003 NodeToMatch->setNodeId(-1); // Mark selected.
3004 return;
3005 case ISD::AssertSext:
3006 case ISD::AssertZext:
3007 ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0));
3008 CurDAG->RemoveDeadNode(NodeToMatch);
3009 return;
3010 case ISD::INLINEASM:
3011 case ISD::INLINEASM_BR:
3012 Select_INLINEASM(NodeToMatch,
3013 NodeToMatch->getOpcode() == ISD::INLINEASM_BR);
3014 return;
3015 case ISD::READ_REGISTER:
3016 Select_READ_REGISTER(NodeToMatch);
3017 return;
3018 case ISD::WRITE_REGISTER:
3019 Select_WRITE_REGISTER(NodeToMatch);
3020 return;
3021 case ISD::UNDEF:
3022 Select_UNDEF(NodeToMatch);
3023 return;
3026 assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
3028 // Set up the node stack with NodeToMatch as the only node on the stack.
3029 SmallVector<SDValue, 8> NodeStack;
3030 SDValue N = SDValue(NodeToMatch, 0);
3031 NodeStack.push_back(N);
3033 // MatchScopes - Scopes used when matching, if a match failure happens, this
3034 // indicates where to continue checking.
3035 SmallVector<MatchScope, 8> MatchScopes;
3037 // RecordedNodes - This is the set of nodes that have been recorded by the
3038 // state machine. The second value is the parent of the node, or null if the
3039 // root is recorded.
3040 SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
3042 // MatchedMemRefs - This is the set of MemRef's we've seen in the input
3043 // pattern.
3044 SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
3046 // These are the current input chain and glue for use when generating nodes.
3047 // Various Emit operations change these. For example, emitting a copytoreg
3048 // uses and updates these.
3049 SDValue InputChain, InputGlue;
3051 // ChainNodesMatched - If a pattern matches nodes that have input/output
3052 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
3053 // which ones they are. The result is captured into this list so that we can
3054 // update the chain results when the pattern is complete.
3055 SmallVector<SDNode*, 3> ChainNodesMatched;
3057 LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n");
3059 // Determine where to start the interpreter. Normally we start at opcode #0,
3060 // but if the state machine starts with an OPC_SwitchOpcode, then we
3061 // accelerate the first lookup (which is guaranteed to be hot) with the
3062 // OpcodeOffset table.
3063 unsigned MatcherIndex = 0;
3065 if (!OpcodeOffset.empty()) {
3066 // Already computed the OpcodeOffset table, just index into it.
3067 if (N.getOpcode() < OpcodeOffset.size())
3068 MatcherIndex = OpcodeOffset[N.getOpcode()];
3069 LLVM_DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n");
3071 } else if (MatcherTable[0] == OPC_SwitchOpcode) {
3072 // Otherwise, the table isn't computed, but the state machine does start
3073 // with an OPC_SwitchOpcode instruction. Populate the table now, since this
3074 // is the first time we're selecting an instruction.
3075 unsigned Idx = 1;
3076 while (true) {
3077 // Get the size of this case.
3078 unsigned CaseSize = MatcherTable[Idx++];
3079 if (CaseSize & 128)
3080 CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
3081 if (CaseSize == 0) break;
3083 // Get the opcode, add the index to the table.
3084 uint16_t Opc = MatcherTable[Idx++];
3085 Opc |= (unsigned short)MatcherTable[Idx++] << 8;
3086 if (Opc >= OpcodeOffset.size())
3087 OpcodeOffset.resize((Opc+1)*2);
3088 OpcodeOffset[Opc] = Idx;
3089 Idx += CaseSize;
3092 // Okay, do the lookup for the first opcode.
3093 if (N.getOpcode() < OpcodeOffset.size())
3094 MatcherIndex = OpcodeOffset[N.getOpcode()];
3097 while (true) {
3098 assert(MatcherIndex < TableSize && "Invalid index");
3099 #ifndef NDEBUG
3100 unsigned CurrentOpcodeIndex = MatcherIndex;
3101 #endif
3102 BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
3103 switch (Opcode) {
3104 case OPC_Scope: {
3105 // Okay, the semantics of this operation are that we should push a scope
3106 // then evaluate the first child. However, pushing a scope only to have
3107 // the first check fail (which then pops it) is inefficient. If we can
3108 // determine immediately that the first check (or first several) will
3109 // immediately fail, don't even bother pushing a scope for them.
3110 unsigned FailIndex;
3112 while (true) {
3113 unsigned NumToSkip = MatcherTable[MatcherIndex++];
3114 if (NumToSkip & 128)
3115 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3116 // Found the end of the scope with no match.
3117 if (NumToSkip == 0) {
3118 FailIndex = 0;
3119 break;
3122 FailIndex = MatcherIndex+NumToSkip;
3124 unsigned MatcherIndexOfPredicate = MatcherIndex;
3125 (void)MatcherIndexOfPredicate; // silence warning.
3127 // If we can't evaluate this predicate without pushing a scope (e.g. if
3128 // it is a 'MoveParent') or if the predicate succeeds on this node, we
3129 // push the scope and evaluate the full predicate chain.
3130 bool Result;
3131 MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
3132 Result, *this, RecordedNodes);
3133 if (!Result)
3134 break;
3136 LLVM_DEBUG(
3137 dbgs() << " Skipped scope entry (due to false predicate) at "
3138 << "index " << MatcherIndexOfPredicate << ", continuing at "
3139 << FailIndex << "\n");
3140 ++NumDAGIselRetries;
3142 // Otherwise, we know that this case of the Scope is guaranteed to fail,
3143 // move to the next case.
3144 MatcherIndex = FailIndex;
3147 // If the whole scope failed to match, bail.
3148 if (FailIndex == 0) break;
3150 // Push a MatchScope which indicates where to go if the first child fails
3151 // to match.
3152 MatchScope NewEntry;
3153 NewEntry.FailIndex = FailIndex;
3154 NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
3155 NewEntry.NumRecordedNodes = RecordedNodes.size();
3156 NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
3157 NewEntry.InputChain = InputChain;
3158 NewEntry.InputGlue = InputGlue;
3159 NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
3160 MatchScopes.push_back(NewEntry);
3161 continue;
3163 case OPC_RecordNode: {
3164 // Remember this node, it may end up being an operand in the pattern.
3165 SDNode *Parent = nullptr;
3166 if (NodeStack.size() > 1)
3167 Parent = NodeStack[NodeStack.size()-2].getNode();
3168 RecordedNodes.push_back(std::make_pair(N, Parent));
3169 continue;
3172 case OPC_RecordChild0: case OPC_RecordChild1:
3173 case OPC_RecordChild2: case OPC_RecordChild3:
3174 case OPC_RecordChild4: case OPC_RecordChild5:
3175 case OPC_RecordChild6: case OPC_RecordChild7: {
3176 unsigned ChildNo = Opcode-OPC_RecordChild0;
3177 if (ChildNo >= N.getNumOperands())
3178 break; // Match fails if out of range child #.
3180 RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
3181 N.getNode()));
3182 continue;
3184 case OPC_RecordMemRef:
3185 if (auto *MN = dyn_cast<MemSDNode>(N))
3186 MatchedMemRefs.push_back(MN->getMemOperand());
3187 else {
3188 LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG);
3189 dbgs() << '\n');
3192 continue;
3194 case OPC_CaptureGlueInput:
3195 // If the current node has an input glue, capture it in InputGlue.
3196 if (N->getNumOperands() != 0 &&
3197 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
3198 InputGlue = N->getOperand(N->getNumOperands()-1);
3199 continue;
3201 case OPC_MoveChild: {
3202 unsigned ChildNo = MatcherTable[MatcherIndex++];
3203 if (ChildNo >= N.getNumOperands())
3204 break; // Match fails if out of range child #.
3205 N = N.getOperand(ChildNo);
3206 NodeStack.push_back(N);
3207 continue;
3210 case OPC_MoveChild0: case OPC_MoveChild1:
3211 case OPC_MoveChild2: case OPC_MoveChild3:
3212 case OPC_MoveChild4: case OPC_MoveChild5:
3213 case OPC_MoveChild6: case OPC_MoveChild7: {
3214 unsigned ChildNo = Opcode-OPC_MoveChild0;
3215 if (ChildNo >= N.getNumOperands())
3216 break; // Match fails if out of range child #.
3217 N = N.getOperand(ChildNo);
3218 NodeStack.push_back(N);
3219 continue;
3222 case OPC_MoveParent:
3223 // Pop the current node off the NodeStack.
3224 NodeStack.pop_back();
3225 assert(!NodeStack.empty() && "Node stack imbalance!");
3226 N = NodeStack.back();
3227 continue;
3229 case OPC_CheckSame:
3230 if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
3231 continue;
3233 case OPC_CheckChild0Same: case OPC_CheckChild1Same:
3234 case OPC_CheckChild2Same: case OPC_CheckChild3Same:
3235 if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
3236 Opcode-OPC_CheckChild0Same))
3237 break;
3238 continue;
3240 case OPC_CheckPatternPredicate:
3241 if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
3242 continue;
3243 case OPC_CheckPredicate:
3244 if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
3245 N.getNode()))
3246 break;
3247 continue;
3248 case OPC_CheckPredicateWithOperands: {
3249 unsigned OpNum = MatcherTable[MatcherIndex++];
3250 SmallVector<SDValue, 8> Operands;
3252 for (unsigned i = 0; i < OpNum; ++i)
3253 Operands.push_back(RecordedNodes[MatcherTable[MatcherIndex++]].first);
3255 unsigned PredNo = MatcherTable[MatcherIndex++];
3256 if (!CheckNodePredicateWithOperands(N.getNode(), PredNo, Operands))
3257 break;
3258 continue;
3260 case OPC_CheckComplexPat: {
3261 unsigned CPNum = MatcherTable[MatcherIndex++];
3262 unsigned RecNo = MatcherTable[MatcherIndex++];
3263 assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
3265 // If target can modify DAG during matching, keep the matching state
3266 // consistent.
3267 std::unique_ptr<MatchStateUpdater> MSU;
3268 if (ComplexPatternFuncMutatesDAG())
3269 MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes,
3270 MatchScopes));
3272 if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
3273 RecordedNodes[RecNo].first, CPNum,
3274 RecordedNodes))
3275 break;
3276 continue;
3278 case OPC_CheckOpcode:
3279 if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
3280 continue;
3282 case OPC_CheckType:
3283 if (!::CheckType(MatcherTable, MatcherIndex, N, TLI,
3284 CurDAG->getDataLayout()))
3285 break;
3286 continue;
3288 case OPC_CheckTypeRes: {
3289 unsigned Res = MatcherTable[MatcherIndex++];
3290 if (!::CheckType(MatcherTable, MatcherIndex, N.getValue(Res), TLI,
3291 CurDAG->getDataLayout()))
3292 break;
3293 continue;
3296 case OPC_SwitchOpcode: {
3297 unsigned CurNodeOpcode = N.getOpcode();
3298 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3299 unsigned CaseSize;
3300 while (true) {
3301 // Get the size of this case.
3302 CaseSize = MatcherTable[MatcherIndex++];
3303 if (CaseSize & 128)
3304 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3305 if (CaseSize == 0) break;
3307 uint16_t Opc = MatcherTable[MatcherIndex++];
3308 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3310 // If the opcode matches, then we will execute this case.
3311 if (CurNodeOpcode == Opc)
3312 break;
3314 // Otherwise, skip over this case.
3315 MatcherIndex += CaseSize;
3318 // If no cases matched, bail out.
3319 if (CaseSize == 0) break;
3321 // Otherwise, execute the case we found.
3322 LLVM_DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart << " to "
3323 << MatcherIndex << "\n");
3324 continue;
3327 case OPC_SwitchType: {
3328 MVT CurNodeVT = N.getSimpleValueType();
3329 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3330 unsigned CaseSize;
3331 while (true) {
3332 // Get the size of this case.
3333 CaseSize = MatcherTable[MatcherIndex++];
3334 if (CaseSize & 128)
3335 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3336 if (CaseSize == 0) break;
3338 MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3339 if (CaseVT == MVT::iPTR)
3340 CaseVT = TLI->getPointerTy(CurDAG->getDataLayout());
3342 // If the VT matches, then we will execute this case.
3343 if (CurNodeVT == CaseVT)
3344 break;
3346 // Otherwise, skip over this case.
3347 MatcherIndex += CaseSize;
3350 // If no cases matched, bail out.
3351 if (CaseSize == 0) break;
3353 // Otherwise, execute the case we found.
3354 LLVM_DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString()
3355 << "] from " << SwitchStart << " to " << MatcherIndex
3356 << '\n');
3357 continue;
3359 case OPC_CheckChild0Type: case OPC_CheckChild1Type:
3360 case OPC_CheckChild2Type: case OPC_CheckChild3Type:
3361 case OPC_CheckChild4Type: case OPC_CheckChild5Type:
3362 case OPC_CheckChild6Type: case OPC_CheckChild7Type:
3363 if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
3364 CurDAG->getDataLayout(),
3365 Opcode - OPC_CheckChild0Type))
3366 break;
3367 continue;
3368 case OPC_CheckCondCode:
3369 if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
3370 continue;
3371 case OPC_CheckChild2CondCode:
3372 if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break;
3373 continue;
3374 case OPC_CheckValueType:
3375 if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI,
3376 CurDAG->getDataLayout()))
3377 break;
3378 continue;
3379 case OPC_CheckInteger:
3380 if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
3381 continue;
3382 case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
3383 case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
3384 case OPC_CheckChild4Integer:
3385 if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
3386 Opcode-OPC_CheckChild0Integer)) break;
3387 continue;
3388 case OPC_CheckAndImm:
3389 if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
3390 continue;
3391 case OPC_CheckOrImm:
3392 if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
3393 continue;
3394 case OPC_CheckImmAllOnesV:
3395 if (!ISD::isBuildVectorAllOnes(N.getNode())) break;
3396 continue;
3397 case OPC_CheckImmAllZerosV:
3398 if (!ISD::isBuildVectorAllZeros(N.getNode())) break;
3399 continue;
3401 case OPC_CheckFoldableChainNode: {
3402 assert(NodeStack.size() != 1 && "No parent node");
3403 // Verify that all intermediate nodes between the root and this one have
3404 // a single use.
3405 bool HasMultipleUses = false;
3406 for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
3407 if (!NodeStack[i].getNode()->hasOneUse()) {
3408 HasMultipleUses = true;
3409 break;
3411 if (HasMultipleUses) break;
3413 // Check to see that the target thinks this is profitable to fold and that
3414 // we can fold it without inducing cycles in the graph.
3415 if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3416 NodeToMatch) ||
3417 !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3418 NodeToMatch, OptLevel,
3419 true/*We validate our own chains*/))
3420 break;
3422 continue;
3424 case OPC_EmitInteger: {
3425 MVT::SimpleValueType VT =
3426 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3427 int64_t Val = MatcherTable[MatcherIndex++];
3428 if (Val & 128)
3429 Val = GetVBR(Val, MatcherTable, MatcherIndex);
3430 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3431 CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch),
3432 VT), nullptr));
3433 continue;
3435 case OPC_EmitRegister: {
3436 MVT::SimpleValueType VT =
3437 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3438 unsigned RegNo = MatcherTable[MatcherIndex++];
3439 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3440 CurDAG->getRegister(RegNo, VT), nullptr));
3441 continue;
3443 case OPC_EmitRegister2: {
3444 // For targets w/ more than 256 register names, the register enum
3445 // values are stored in two bytes in the matcher table (just like
3446 // opcodes).
3447 MVT::SimpleValueType VT =
3448 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3449 unsigned RegNo = MatcherTable[MatcherIndex++];
3450 RegNo |= MatcherTable[MatcherIndex++] << 8;
3451 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3452 CurDAG->getRegister(RegNo, VT), nullptr));
3453 continue;
3456 case OPC_EmitConvertToTarget: {
3457 // Convert from IMM/FPIMM to target version.
3458 unsigned RecNo = MatcherTable[MatcherIndex++];
3459 assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
3460 SDValue Imm = RecordedNodes[RecNo].first;
3462 if (Imm->getOpcode() == ISD::Constant) {
3463 const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
3464 Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch),
3465 Imm.getValueType());
3466 } else if (Imm->getOpcode() == ISD::ConstantFP) {
3467 const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
3468 Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch),
3469 Imm.getValueType());
3472 RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
3473 continue;
3476 case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0
3477 case OPC_EmitMergeInputChains1_1: // OPC_EmitMergeInputChains, 1, 1
3478 case OPC_EmitMergeInputChains1_2: { // OPC_EmitMergeInputChains, 1, 2
3479 // These are space-optimized forms of OPC_EmitMergeInputChains.
3480 assert(!InputChain.getNode() &&
3481 "EmitMergeInputChains should be the first chain producing node");
3482 assert(ChainNodesMatched.empty() &&
3483 "Should only have one EmitMergeInputChains per match");
3485 // Read all of the chained nodes.
3486 unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0;
3487 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3488 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3490 // FIXME: What if other value results of the node have uses not matched
3491 // by this pattern?
3492 if (ChainNodesMatched.back() != NodeToMatch &&
3493 !RecordedNodes[RecNo].first.hasOneUse()) {
3494 ChainNodesMatched.clear();
3495 break;
3498 // Merge the input chains if they are not intra-pattern references.
3499 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3501 if (!InputChain.getNode())
3502 break; // Failed to merge.
3503 continue;
3506 case OPC_EmitMergeInputChains: {
3507 assert(!InputChain.getNode() &&
3508 "EmitMergeInputChains should be the first chain producing node");
3509 // This node gets a list of nodes we matched in the input that have
3510 // chains. We want to token factor all of the input chains to these nodes
3511 // together. However, if any of the input chains is actually one of the
3512 // nodes matched in this pattern, then we have an intra-match reference.
3513 // Ignore these because the newly token factored chain should not refer to
3514 // the old nodes.
3515 unsigned NumChains = MatcherTable[MatcherIndex++];
3516 assert(NumChains != 0 && "Can't TF zero chains");
3518 assert(ChainNodesMatched.empty() &&
3519 "Should only have one EmitMergeInputChains per match");
3521 // Read all of the chained nodes.
3522 for (unsigned i = 0; i != NumChains; ++i) {
3523 unsigned RecNo = MatcherTable[MatcherIndex++];
3524 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3525 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3527 // FIXME: What if other value results of the node have uses not matched
3528 // by this pattern?
3529 if (ChainNodesMatched.back() != NodeToMatch &&
3530 !RecordedNodes[RecNo].first.hasOneUse()) {
3531 ChainNodesMatched.clear();
3532 break;
3536 // If the inner loop broke out, the match fails.
3537 if (ChainNodesMatched.empty())
3538 break;
3540 // Merge the input chains if they are not intra-pattern references.
3541 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3543 if (!InputChain.getNode())
3544 break; // Failed to merge.
3546 continue;
3549 case OPC_EmitCopyToReg: {
3550 unsigned RecNo = MatcherTable[MatcherIndex++];
3551 assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
3552 unsigned DestPhysReg = MatcherTable[MatcherIndex++];
3554 if (!InputChain.getNode())
3555 InputChain = CurDAG->getEntryNode();
3557 InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
3558 DestPhysReg, RecordedNodes[RecNo].first,
3559 InputGlue);
3561 InputGlue = InputChain.getValue(1);
3562 continue;
3565 case OPC_EmitNodeXForm: {
3566 unsigned XFormNo = MatcherTable[MatcherIndex++];
3567 unsigned RecNo = MatcherTable[MatcherIndex++];
3568 assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
3569 SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
3570 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
3571 continue;
3573 case OPC_Coverage: {
3574 // This is emitted right before MorphNode/EmitNode.
3575 // So it should be safe to assume that this node has been selected
3576 unsigned index = MatcherTable[MatcherIndex++];
3577 index |= (MatcherTable[MatcherIndex++] << 8);
3578 dbgs() << "COVERED: " << getPatternForIndex(index) << "\n";
3579 dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n";
3580 continue;
3583 case OPC_EmitNode: case OPC_MorphNodeTo:
3584 case OPC_EmitNode0: case OPC_EmitNode1: case OPC_EmitNode2:
3585 case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: {
3586 uint16_t TargetOpc = MatcherTable[MatcherIndex++];
3587 TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3588 unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
3589 // Get the result VT list.
3590 unsigned NumVTs;
3591 // If this is one of the compressed forms, get the number of VTs based
3592 // on the Opcode. Otherwise read the next byte from the table.
3593 if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2)
3594 NumVTs = Opcode - OPC_MorphNodeTo0;
3595 else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2)
3596 NumVTs = Opcode - OPC_EmitNode0;
3597 else
3598 NumVTs = MatcherTable[MatcherIndex++];
3599 SmallVector<EVT, 4> VTs;
3600 for (unsigned i = 0; i != NumVTs; ++i) {
3601 MVT::SimpleValueType VT =
3602 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3603 if (VT == MVT::iPTR)
3604 VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy;
3605 VTs.push_back(VT);
3608 if (EmitNodeInfo & OPFL_Chain)
3609 VTs.push_back(MVT::Other);
3610 if (EmitNodeInfo & OPFL_GlueOutput)
3611 VTs.push_back(MVT::Glue);
3613 // This is hot code, so optimize the two most common cases of 1 and 2
3614 // results.
3615 SDVTList VTList;
3616 if (VTs.size() == 1)
3617 VTList = CurDAG->getVTList(VTs[0]);
3618 else if (VTs.size() == 2)
3619 VTList = CurDAG->getVTList(VTs[0], VTs[1]);
3620 else
3621 VTList = CurDAG->getVTList(VTs);
3623 // Get the operand list.
3624 unsigned NumOps = MatcherTable[MatcherIndex++];
3625 SmallVector<SDValue, 8> Ops;
3626 for (unsigned i = 0; i != NumOps; ++i) {
3627 unsigned RecNo = MatcherTable[MatcherIndex++];
3628 if (RecNo & 128)
3629 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
3631 assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
3632 Ops.push_back(RecordedNodes[RecNo].first);
3635 // If there are variadic operands to add, handle them now.
3636 if (EmitNodeInfo & OPFL_VariadicInfo) {
3637 // Determine the start index to copy from.
3638 unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
3639 FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
3640 assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
3641 "Invalid variadic node");
3642 // Copy all of the variadic operands, not including a potential glue
3643 // input.
3644 for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
3645 i != e; ++i) {
3646 SDValue V = NodeToMatch->getOperand(i);
3647 if (V.getValueType() == MVT::Glue) break;
3648 Ops.push_back(V);
3652 // If this has chain/glue inputs, add them.
3653 if (EmitNodeInfo & OPFL_Chain)
3654 Ops.push_back(InputChain);
3655 if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
3656 Ops.push_back(InputGlue);
3658 // Create the node.
3659 MachineSDNode *Res = nullptr;
3660 bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo ||
3661 (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2);
3662 if (!IsMorphNodeTo) {
3663 // If this is a normal EmitNode command, just create the new node and
3664 // add the results to the RecordedNodes list.
3665 Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
3666 VTList, Ops);
3668 // Add all the non-glue/non-chain results to the RecordedNodes list.
3669 for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
3670 if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
3671 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
3672 nullptr));
3674 } else {
3675 assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE &&
3676 "NodeToMatch was removed partway through selection");
3677 SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N,
3678 SDNode *E) {
3679 CurDAG->salvageDebugInfo(*N);
3680 auto &Chain = ChainNodesMatched;
3681 assert((!E || !is_contained(Chain, N)) &&
3682 "Chain node replaced during MorphNode");
3683 Chain.erase(std::remove(Chain.begin(), Chain.end(), N), Chain.end());
3685 Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList,
3686 Ops, EmitNodeInfo));
3689 // If the node had chain/glue results, update our notion of the current
3690 // chain and glue.
3691 if (EmitNodeInfo & OPFL_GlueOutput) {
3692 InputGlue = SDValue(Res, VTs.size()-1);
3693 if (EmitNodeInfo & OPFL_Chain)
3694 InputChain = SDValue(Res, VTs.size()-2);
3695 } else if (EmitNodeInfo & OPFL_Chain)
3696 InputChain = SDValue(Res, VTs.size()-1);
3698 // If the OPFL_MemRefs glue is set on this node, slap all of the
3699 // accumulated memrefs onto it.
3701 // FIXME: This is vastly incorrect for patterns with multiple outputs
3702 // instructions that access memory and for ComplexPatterns that match
3703 // loads.
3704 if (EmitNodeInfo & OPFL_MemRefs) {
3705 // Only attach load or store memory operands if the generated
3706 // instruction may load or store.
3707 const MCInstrDesc &MCID = TII->get(TargetOpc);
3708 bool mayLoad = MCID.mayLoad();
3709 bool mayStore = MCID.mayStore();
3711 // We expect to have relatively few of these so just filter them into a
3712 // temporary buffer so that we can easily add them to the instruction.
3713 SmallVector<MachineMemOperand *, 4> FilteredMemRefs;
3714 for (MachineMemOperand *MMO : MatchedMemRefs) {
3715 if (MMO->isLoad()) {
3716 if (mayLoad)
3717 FilteredMemRefs.push_back(MMO);
3718 } else if (MMO->isStore()) {
3719 if (mayStore)
3720 FilteredMemRefs.push_back(MMO);
3721 } else {
3722 FilteredMemRefs.push_back(MMO);
3726 CurDAG->setNodeMemRefs(Res, FilteredMemRefs);
3729 LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs()
3730 << " Dropping mem operands\n";
3731 dbgs() << " " << (IsMorphNodeTo ? "Morphed" : "Created")
3732 << " node: ";
3733 Res->dump(CurDAG););
3735 // If this was a MorphNodeTo then we're completely done!
3736 if (IsMorphNodeTo) {
3737 // Update chain uses.
3738 UpdateChains(Res, InputChain, ChainNodesMatched, true);
3739 return;
3741 continue;
3744 case OPC_CompleteMatch: {
3745 // The match has been completed, and any new nodes (if any) have been
3746 // created. Patch up references to the matched dag to use the newly
3747 // created nodes.
3748 unsigned NumResults = MatcherTable[MatcherIndex++];
3750 for (unsigned i = 0; i != NumResults; ++i) {
3751 unsigned ResSlot = MatcherTable[MatcherIndex++];
3752 if (ResSlot & 128)
3753 ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
3755 assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
3756 SDValue Res = RecordedNodes[ResSlot].first;
3758 assert(i < NodeToMatch->getNumValues() &&
3759 NodeToMatch->getValueType(i) != MVT::Other &&
3760 NodeToMatch->getValueType(i) != MVT::Glue &&
3761 "Invalid number of results to complete!");
3762 assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
3763 NodeToMatch->getValueType(i) == MVT::iPTR ||
3764 Res.getValueType() == MVT::iPTR ||
3765 NodeToMatch->getValueType(i).getSizeInBits() ==
3766 Res.getValueSizeInBits()) &&
3767 "invalid replacement");
3768 ReplaceUses(SDValue(NodeToMatch, i), Res);
3771 // Update chain uses.
3772 UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false);
3774 // If the root node defines glue, we need to update it to the glue result.
3775 // TODO: This never happens in our tests and I think it can be removed /
3776 // replaced with an assert, but if we do it this the way the change is
3777 // NFC.
3778 if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) ==
3779 MVT::Glue &&
3780 InputGlue.getNode())
3781 ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1),
3782 InputGlue);
3784 assert(NodeToMatch->use_empty() &&
3785 "Didn't replace all uses of the node?");
3786 CurDAG->RemoveDeadNode(NodeToMatch);
3788 return;
3792 // If the code reached this point, then the match failed. See if there is
3793 // another child to try in the current 'Scope', otherwise pop it until we
3794 // find a case to check.
3795 LLVM_DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex
3796 << "\n");
3797 ++NumDAGIselRetries;
3798 while (true) {
3799 if (MatchScopes.empty()) {
3800 CannotYetSelect(NodeToMatch);
3801 return;
3804 // Restore the interpreter state back to the point where the scope was
3805 // formed.
3806 MatchScope &LastScope = MatchScopes.back();
3807 RecordedNodes.resize(LastScope.NumRecordedNodes);
3808 NodeStack.clear();
3809 NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
3810 N = NodeStack.back();
3812 if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
3813 MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
3814 MatcherIndex = LastScope.FailIndex;
3816 LLVM_DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n");
3818 InputChain = LastScope.InputChain;
3819 InputGlue = LastScope.InputGlue;
3820 if (!LastScope.HasChainNodesMatched)
3821 ChainNodesMatched.clear();
3823 // Check to see what the offset is at the new MatcherIndex. If it is zero
3824 // we have reached the end of this scope, otherwise we have another child
3825 // in the current scope to try.
3826 unsigned NumToSkip = MatcherTable[MatcherIndex++];
3827 if (NumToSkip & 128)
3828 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3830 // If we have another child in this scope to match, update FailIndex and
3831 // try it.
3832 if (NumToSkip != 0) {
3833 LastScope.FailIndex = MatcherIndex+NumToSkip;
3834 break;
3837 // End of this scope, pop it and try the next child in the containing
3838 // scope.
3839 MatchScopes.pop_back();
3844 bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const {
3845 assert(N->getOpcode() == ISD::OR && "Unexpected opcode");
3846 auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
3847 if (!C)
3848 return false;
3850 // Detect when "or" is used to add an offset to a stack object.
3851 if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) {
3852 MachineFrameInfo &MFI = MF->getFrameInfo();
3853 unsigned A = MFI.getObjectAlignment(FN->getIndex());
3854 assert(isPowerOf2_32(A) && "Unexpected alignment");
3855 int32_t Off = C->getSExtValue();
3856 // If the alleged offset fits in the zero bits guaranteed by
3857 // the alignment, then this or is really an add.
3858 return (Off >= 0) && (((A - 1) & Off) == unsigned(Off));
3860 return false;
3863 void SelectionDAGISel::CannotYetSelect(SDNode *N) {
3864 std::string msg;
3865 raw_string_ostream Msg(msg);
3866 Msg << "Cannot select: ";
3868 if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
3869 N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
3870 N->getOpcode() != ISD::INTRINSIC_VOID) {
3871 N->printrFull(Msg, CurDAG);
3872 Msg << "\nIn function: " << MF->getName();
3873 } else {
3874 bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3875 unsigned iid =
3876 cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3877 if (iid < Intrinsic::num_intrinsics)
3878 Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid, None);
3879 else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3880 Msg << "target intrinsic %" << TII->getName(iid);
3881 else
3882 Msg << "unknown intrinsic #" << iid;
3884 report_fatal_error(Msg.str());
3887 char SelectionDAGISel::ID = 0;