1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
11 // stores that can be put together into vector-stores. Next, it attempts to
12 // construct vectorizable tree using the use-def chains. If a profitable tree
13 // was found, the SLP vectorizer performs vectorization on the tree.
15 // The pass is inspired by the work described in the paper:
16 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
18 //===----------------------------------------------------------------------===//
20 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
21 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/DenseSet.h"
24 #include "llvm/ADT/MapVector.h"
25 #include "llvm/ADT/None.h"
26 #include "llvm/ADT/Optional.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetVector.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/iterator.h"
35 #include "llvm/ADT/iterator_range.h"
36 #include "llvm/Analysis/AliasAnalysis.h"
37 #include "llvm/Analysis/CodeMetrics.h"
38 #include "llvm/Analysis/DemandedBits.h"
39 #include "llvm/Analysis/GlobalsModRef.h"
40 #include "llvm/Analysis/LoopAccessAnalysis.h"
41 #include "llvm/Analysis/LoopInfo.h"
42 #include "llvm/Analysis/MemoryLocation.h"
43 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
44 #include "llvm/Analysis/ScalarEvolution.h"
45 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
46 #include "llvm/Analysis/TargetLibraryInfo.h"
47 #include "llvm/Analysis/TargetTransformInfo.h"
48 #include "llvm/Analysis/ValueTracking.h"
49 #include "llvm/Analysis/VectorUtils.h"
50 #include "llvm/IR/Attributes.h"
51 #include "llvm/IR/BasicBlock.h"
52 #include "llvm/IR/Constant.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/DebugLoc.h"
56 #include "llvm/IR/DerivedTypes.h"
57 #include "llvm/IR/Dominators.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/IRBuilder.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/IntrinsicInst.h"
64 #include "llvm/IR/Intrinsics.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/NoFolder.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/PassManager.h"
69 #include "llvm/IR/PatternMatch.h"
70 #include "llvm/IR/Type.h"
71 #include "llvm/IR/Use.h"
72 #include "llvm/IR/User.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/IR/ValueHandle.h"
75 #include "llvm/IR/Verifier.h"
76 #include "llvm/Pass.h"
77 #include "llvm/Support/Casting.h"
78 #include "llvm/Support/CommandLine.h"
79 #include "llvm/Support/Compiler.h"
80 #include "llvm/Support/DOTGraphTraits.h"
81 #include "llvm/Support/Debug.h"
82 #include "llvm/Support/ErrorHandling.h"
83 #include "llvm/Support/GraphWriter.h"
84 #include "llvm/Support/KnownBits.h"
85 #include "llvm/Support/MathExtras.h"
86 #include "llvm/Support/raw_ostream.h"
87 #include "llvm/Transforms/Utils/LoopUtils.h"
88 #include "llvm/Transforms/Vectorize.h"
100 using namespace llvm
;
101 using namespace llvm::PatternMatch
;
102 using namespace slpvectorizer
;
104 #define SV_NAME "slp-vectorizer"
105 #define DEBUG_TYPE "SLP"
107 STATISTIC(NumVectorInstructions
, "Number of vector instructions generated");
110 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden
,
111 cl::desc("Only vectorize if you gain more than this "
115 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden
,
116 cl::desc("Attempt to vectorize horizontal reductions"));
118 static cl::opt
<bool> ShouldStartVectorizeHorAtStore(
119 "slp-vectorize-hor-store", cl::init(false), cl::Hidden
,
121 "Attempt to vectorize horizontal reductions feeding into a store"));
124 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden
,
125 cl::desc("Attempt to vectorize for this register size in bits"));
127 /// Limits the size of scheduling regions in a block.
128 /// It avoid long compile times for _very_ large blocks where vector
129 /// instructions are spread over a wide range.
130 /// This limit is way higher than needed by real-world functions.
132 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden
,
133 cl::desc("Limit the size of the SLP scheduling region per block"));
135 static cl::opt
<int> MinVectorRegSizeOption(
136 "slp-min-reg-size", cl::init(128), cl::Hidden
,
137 cl::desc("Attempt to vectorize for this register size in bits"));
139 static cl::opt
<unsigned> RecursionMaxDepth(
140 "slp-recursion-max-depth", cl::init(12), cl::Hidden
,
141 cl::desc("Limit the recursion depth when building a vectorizable tree"));
143 static cl::opt
<unsigned> MinTreeSize(
144 "slp-min-tree-size", cl::init(3), cl::Hidden
,
145 cl::desc("Only vectorize small trees if they are fully vectorizable"));
148 ViewSLPTree("view-slp-tree", cl::Hidden
,
149 cl::desc("Display the SLP trees with Graphviz"));
151 // Limit the number of alias checks. The limit is chosen so that
152 // it has no negative effect on the llvm benchmarks.
153 static const unsigned AliasedCheckLimit
= 10;
155 // Another limit for the alias checks: The maximum distance between load/store
156 // instructions where alias checks are done.
157 // This limit is useful for very large basic blocks.
158 static const unsigned MaxMemDepDistance
= 160;
160 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
161 /// regions to be handled.
162 static const int MinScheduleRegionSize
= 16;
164 /// Predicate for the element types that the SLP vectorizer supports.
166 /// The most important thing to filter here are types which are invalid in LLVM
167 /// vectors. We also filter target specific types which have absolutely no
168 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
169 /// avoids spending time checking the cost model and realizing that they will
170 /// be inevitably scalarized.
171 static bool isValidElementType(Type
*Ty
) {
172 return VectorType::isValidElementType(Ty
) && !Ty
->isX86_FP80Ty() &&
173 !Ty
->isPPC_FP128Ty();
176 /// \returns true if all of the instructions in \p VL are in the same block or
178 static bool allSameBlock(ArrayRef
<Value
*> VL
) {
179 Instruction
*I0
= dyn_cast
<Instruction
>(VL
[0]);
182 BasicBlock
*BB
= I0
->getParent();
183 for (int i
= 1, e
= VL
.size(); i
< e
; i
++) {
184 Instruction
*I
= dyn_cast
<Instruction
>(VL
[i
]);
188 if (BB
!= I
->getParent())
194 /// \returns True if all of the values in \p VL are constants.
195 static bool allConstant(ArrayRef
<Value
*> VL
) {
197 if (!isa
<Constant
>(i
))
202 /// \returns True if all of the values in \p VL are identical.
203 static bool isSplat(ArrayRef
<Value
*> VL
) {
204 for (unsigned i
= 1, e
= VL
.size(); i
< e
; ++i
)
210 /// Checks if the vector of instructions can be represented as a shuffle, like:
211 /// %x0 = extractelement <4 x i8> %x, i32 0
212 /// %x3 = extractelement <4 x i8> %x, i32 3
213 /// %y1 = extractelement <4 x i8> %y, i32 1
214 /// %y2 = extractelement <4 x i8> %y, i32 2
215 /// %x0x0 = mul i8 %x0, %x0
216 /// %x3x3 = mul i8 %x3, %x3
217 /// %y1y1 = mul i8 %y1, %y1
218 /// %y2y2 = mul i8 %y2, %y2
219 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0
220 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
221 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
222 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
223 /// ret <4 x i8> %ins4
224 /// can be transformed into:
225 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
227 /// %2 = mul <4 x i8> %1, %1
229 /// We convert this initially to something like:
230 /// %x0 = extractelement <4 x i8> %x, i32 0
231 /// %x3 = extractelement <4 x i8> %x, i32 3
232 /// %y1 = extractelement <4 x i8> %y, i32 1
233 /// %y2 = extractelement <4 x i8> %y, i32 2
234 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0
235 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
236 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
237 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
238 /// %5 = mul <4 x i8> %4, %4
239 /// %6 = extractelement <4 x i8> %5, i32 0
240 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0
241 /// %7 = extractelement <4 x i8> %5, i32 1
242 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
243 /// %8 = extractelement <4 x i8> %5, i32 2
244 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
245 /// %9 = extractelement <4 x i8> %5, i32 3
246 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
247 /// ret <4 x i8> %ins4
248 /// InstCombiner transforms this into a shuffle and vector mul
249 /// TODO: Can we split off and reuse the shuffle mask detection from
250 /// TargetTransformInfo::getInstructionThroughput?
251 static Optional
<TargetTransformInfo::ShuffleKind
>
252 isShuffle(ArrayRef
<Value
*> VL
) {
253 auto *EI0
= cast
<ExtractElementInst
>(VL
[0]);
254 unsigned Size
= EI0
->getVectorOperandType()->getVectorNumElements();
255 Value
*Vec1
= nullptr;
256 Value
*Vec2
= nullptr;
257 enum ShuffleMode
{ Unknown
, Select
, Permute
};
258 ShuffleMode CommonShuffleMode
= Unknown
;
259 for (unsigned I
= 0, E
= VL
.size(); I
< E
; ++I
) {
260 auto *EI
= cast
<ExtractElementInst
>(VL
[I
]);
261 auto *Vec
= EI
->getVectorOperand();
262 // All vector operands must have the same number of vector elements.
263 if (Vec
->getType()->getVectorNumElements() != Size
)
265 auto *Idx
= dyn_cast
<ConstantInt
>(EI
->getIndexOperand());
268 // Undefined behavior if Idx is negative or >= Size.
269 if (Idx
->getValue().uge(Size
))
271 unsigned IntIdx
= Idx
->getValue().getZExtValue();
272 // We can extractelement from undef vector.
273 if (isa
<UndefValue
>(Vec
))
275 // For correct shuffling we have to have at most 2 different vector operands
276 // in all extractelement instructions.
277 if (!Vec1
|| Vec1
== Vec
)
279 else if (!Vec2
|| Vec2
== Vec
)
283 if (CommonShuffleMode
== Permute
)
285 // If the extract index is not the same as the operation number, it is a
288 CommonShuffleMode
= Permute
;
291 CommonShuffleMode
= Select
;
293 // If we're not crossing lanes in different vectors, consider it as blending.
294 if (CommonShuffleMode
== Select
&& Vec2
)
295 return TargetTransformInfo::SK_Select
;
296 // If Vec2 was never used, we have a permutation of a single vector, otherwise
297 // we have permutation of 2 vectors.
298 return Vec2
? TargetTransformInfo::SK_PermuteTwoSrc
299 : TargetTransformInfo::SK_PermuteSingleSrc
;
304 /// Main data required for vectorization of instructions.
305 struct InstructionsState
{
306 /// The very first instruction in the list with the main opcode.
307 Value
*OpValue
= nullptr;
309 /// The main/alternate instruction.
310 Instruction
*MainOp
= nullptr;
311 Instruction
*AltOp
= nullptr;
313 /// The main/alternate opcodes for the list of instructions.
314 unsigned getOpcode() const {
315 return MainOp
? MainOp
->getOpcode() : 0;
318 unsigned getAltOpcode() const {
319 return AltOp
? AltOp
->getOpcode() : 0;
322 /// Some of the instructions in the list have alternate opcodes.
323 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); }
325 bool isOpcodeOrAlt(Instruction
*I
) const {
326 unsigned CheckedOpcode
= I
->getOpcode();
327 return getOpcode() == CheckedOpcode
|| getAltOpcode() == CheckedOpcode
;
330 InstructionsState() = delete;
331 InstructionsState(Value
*OpValue
, Instruction
*MainOp
, Instruction
*AltOp
)
332 : OpValue(OpValue
), MainOp(MainOp
), AltOp(AltOp
) {}
335 } // end anonymous namespace
337 /// Chooses the correct key for scheduling data. If \p Op has the same (or
338 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
340 static Value
*isOneOf(const InstructionsState
&S
, Value
*Op
) {
341 auto *I
= dyn_cast
<Instruction
>(Op
);
342 if (I
&& S
.isOpcodeOrAlt(I
))
347 /// \returns analysis of the Instructions in \p VL described in
348 /// InstructionsState, the Opcode that we suppose the whole list
349 /// could be vectorized even if its structure is diverse.
350 static InstructionsState
getSameOpcode(ArrayRef
<Value
*> VL
,
351 unsigned BaseIndex
= 0) {
352 // Make sure these are all Instructions.
353 if (llvm::any_of(VL
, [](Value
*V
) { return !isa
<Instruction
>(V
); }))
354 return InstructionsState(VL
[BaseIndex
], nullptr, nullptr);
356 bool IsCastOp
= isa
<CastInst
>(VL
[BaseIndex
]);
357 bool IsBinOp
= isa
<BinaryOperator
>(VL
[BaseIndex
]);
358 unsigned Opcode
= cast
<Instruction
>(VL
[BaseIndex
])->getOpcode();
359 unsigned AltOpcode
= Opcode
;
360 unsigned AltIndex
= BaseIndex
;
362 // Check for one alternate opcode from another BinaryOperator.
363 // TODO - generalize to support all operators (types, calls etc.).
364 for (int Cnt
= 0, E
= VL
.size(); Cnt
< E
; Cnt
++) {
365 unsigned InstOpcode
= cast
<Instruction
>(VL
[Cnt
])->getOpcode();
366 if (IsBinOp
&& isa
<BinaryOperator
>(VL
[Cnt
])) {
367 if (InstOpcode
== Opcode
|| InstOpcode
== AltOpcode
)
369 if (Opcode
== AltOpcode
) {
370 AltOpcode
= InstOpcode
;
374 } else if (IsCastOp
&& isa
<CastInst
>(VL
[Cnt
])) {
375 Type
*Ty0
= cast
<Instruction
>(VL
[BaseIndex
])->getOperand(0)->getType();
376 Type
*Ty1
= cast
<Instruction
>(VL
[Cnt
])->getOperand(0)->getType();
378 if (InstOpcode
== Opcode
|| InstOpcode
== AltOpcode
)
380 if (Opcode
== AltOpcode
) {
381 AltOpcode
= InstOpcode
;
386 } else if (InstOpcode
== Opcode
|| InstOpcode
== AltOpcode
)
388 return InstructionsState(VL
[BaseIndex
], nullptr, nullptr);
391 return InstructionsState(VL
[BaseIndex
], cast
<Instruction
>(VL
[BaseIndex
]),
392 cast
<Instruction
>(VL
[AltIndex
]));
395 /// \returns true if all of the values in \p VL have the same type or false
397 static bool allSameType(ArrayRef
<Value
*> VL
) {
398 Type
*Ty
= VL
[0]->getType();
399 for (int i
= 1, e
= VL
.size(); i
< e
; i
++)
400 if (VL
[i
]->getType() != Ty
)
406 /// \returns True if Extract{Value,Element} instruction extracts element Idx.
407 static Optional
<unsigned> getExtractIndex(Instruction
*E
) {
408 unsigned Opcode
= E
->getOpcode();
409 assert((Opcode
== Instruction::ExtractElement
||
410 Opcode
== Instruction::ExtractValue
) &&
411 "Expected extractelement or extractvalue instruction.");
412 if (Opcode
== Instruction::ExtractElement
) {
413 auto *CI
= dyn_cast
<ConstantInt
>(E
->getOperand(1));
416 return CI
->getZExtValue();
418 ExtractValueInst
*EI
= cast
<ExtractValueInst
>(E
);
419 if (EI
->getNumIndices() != 1)
421 return *EI
->idx_begin();
424 /// \returns True if in-tree use also needs extract. This refers to
425 /// possible scalar operand in vectorized instruction.
426 static bool InTreeUserNeedToExtract(Value
*Scalar
, Instruction
*UserInst
,
427 TargetLibraryInfo
*TLI
) {
428 unsigned Opcode
= UserInst
->getOpcode();
430 case Instruction::Load
: {
431 LoadInst
*LI
= cast
<LoadInst
>(UserInst
);
432 return (LI
->getPointerOperand() == Scalar
);
434 case Instruction::Store
: {
435 StoreInst
*SI
= cast
<StoreInst
>(UserInst
);
436 return (SI
->getPointerOperand() == Scalar
);
438 case Instruction::Call
: {
439 CallInst
*CI
= cast
<CallInst
>(UserInst
);
440 Intrinsic::ID ID
= getVectorIntrinsicIDForCall(CI
, TLI
);
441 if (hasVectorInstrinsicScalarOpd(ID
, 1)) {
442 return (CI
->getArgOperand(1) == Scalar
);
451 /// \returns the AA location that is being access by the instruction.
452 static MemoryLocation
getLocation(Instruction
*I
, AliasAnalysis
*AA
) {
453 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
))
454 return MemoryLocation::get(SI
);
455 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
))
456 return MemoryLocation::get(LI
);
457 return MemoryLocation();
460 /// \returns True if the instruction is not a volatile or atomic load/store.
461 static bool isSimple(Instruction
*I
) {
462 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
))
463 return LI
->isSimple();
464 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
))
465 return SI
->isSimple();
466 if (MemIntrinsic
*MI
= dyn_cast
<MemIntrinsic
>(I
))
467 return !MI
->isVolatile();
473 namespace slpvectorizer
{
475 /// Bottom Up SLP Vectorizer.
478 using ValueList
= SmallVector
<Value
*, 8>;
479 using InstrList
= SmallVector
<Instruction
*, 16>;
480 using ValueSet
= SmallPtrSet
<Value
*, 16>;
481 using StoreList
= SmallVector
<StoreInst
*, 8>;
482 using ExtraValueToDebugLocsMap
=
483 MapVector
<Value
*, SmallVector
<Instruction
*, 2>>;
485 BoUpSLP(Function
*Func
, ScalarEvolution
*Se
, TargetTransformInfo
*Tti
,
486 TargetLibraryInfo
*TLi
, AliasAnalysis
*Aa
, LoopInfo
*Li
,
487 DominatorTree
*Dt
, AssumptionCache
*AC
, DemandedBits
*DB
,
488 const DataLayout
*DL
, OptimizationRemarkEmitter
*ORE
)
489 : F(Func
), SE(Se
), TTI(Tti
), TLI(TLi
), AA(Aa
), LI(Li
), DT(Dt
), AC(AC
),
490 DB(DB
), DL(DL
), ORE(ORE
), Builder(Se
->getContext()) {
491 CodeMetrics::collectEphemeralValues(F
, AC
, EphValues
);
492 // Use the vector register size specified by the target unless overridden
493 // by a command-line option.
494 // TODO: It would be better to limit the vectorization factor based on
495 // data type rather than just register size. For example, x86 AVX has
496 // 256-bit registers, but it does not support integer operations
497 // at that width (that requires AVX2).
498 if (MaxVectorRegSizeOption
.getNumOccurrences())
499 MaxVecRegSize
= MaxVectorRegSizeOption
;
501 MaxVecRegSize
= TTI
->getRegisterBitWidth(true);
503 if (MinVectorRegSizeOption
.getNumOccurrences())
504 MinVecRegSize
= MinVectorRegSizeOption
;
506 MinVecRegSize
= TTI
->getMinVectorRegisterBitWidth();
509 /// Vectorize the tree that starts with the elements in \p VL.
510 /// Returns the vectorized root.
511 Value
*vectorizeTree();
513 /// Vectorize the tree but with the list of externally used values \p
514 /// ExternallyUsedValues. Values in this MapVector can be replaced but the
515 /// generated extractvalue instructions.
516 Value
*vectorizeTree(ExtraValueToDebugLocsMap
&ExternallyUsedValues
);
518 /// \returns the cost incurred by unwanted spills and fills, caused by
519 /// holding live values over call sites.
522 /// \returns the vectorization cost of the subtree that starts at \p VL.
523 /// A negative number means that this is profitable.
526 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
527 /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
528 void buildTree(ArrayRef
<Value
*> Roots
,
529 ArrayRef
<Value
*> UserIgnoreLst
= None
);
531 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
532 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
533 /// into account (anf updating it, if required) list of externally used
534 /// values stored in \p ExternallyUsedValues.
535 void buildTree(ArrayRef
<Value
*> Roots
,
536 ExtraValueToDebugLocsMap
&ExternallyUsedValues
,
537 ArrayRef
<Value
*> UserIgnoreLst
= None
);
539 /// Clear the internal data structures that are created by 'buildTree'.
541 VectorizableTree
.clear();
542 ScalarToTreeEntry
.clear();
544 ExternalUses
.clear();
545 NumOpsWantToKeepOrder
.clear();
546 NumOpsWantToKeepOriginalOrder
= 0;
547 for (auto &Iter
: BlocksSchedules
) {
548 BlockScheduling
*BS
= Iter
.second
.get();
554 unsigned getTreeSize() const { return VectorizableTree
.size(); }
556 /// Perform LICM and CSE on the newly generated gather sequences.
557 void optimizeGatherSequence();
559 /// \returns The best order of instructions for vectorization.
560 Optional
<ArrayRef
<unsigned>> bestOrder() const {
561 auto I
= std::max_element(
562 NumOpsWantToKeepOrder
.begin(), NumOpsWantToKeepOrder
.end(),
563 [](const decltype(NumOpsWantToKeepOrder
)::value_type
&D1
,
564 const decltype(NumOpsWantToKeepOrder
)::value_type
&D2
) {
565 return D1
.second
< D2
.second
;
567 if (I
== NumOpsWantToKeepOrder
.end() ||
568 I
->getSecond() <= NumOpsWantToKeepOriginalOrder
)
571 return makeArrayRef(I
->getFirst());
574 /// \return The vector element size in bits to use when vectorizing the
575 /// expression tree ending at \p V. If V is a store, the size is the width of
576 /// the stored value. Otherwise, the size is the width of the largest loaded
577 /// value reaching V. This method is used by the vectorizer to calculate
578 /// vectorization factors.
579 unsigned getVectorElementSize(Value
*V
);
581 /// Compute the minimum type sizes required to represent the entries in a
582 /// vectorizable tree.
583 void computeMinimumValueSizes();
585 // \returns maximum vector register size as set by TTI or overridden by cl::opt.
586 unsigned getMaxVecRegSize() const {
587 return MaxVecRegSize
;
590 // \returns minimum vector register size as set by cl::opt.
591 unsigned getMinVecRegSize() const {
592 return MinVecRegSize
;
595 /// Check if ArrayType or StructType is isomorphic to some VectorType.
597 /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
598 unsigned canMapToVector(Type
*T
, const DataLayout
&DL
) const;
600 /// \returns True if the VectorizableTree is both tiny and not fully
601 /// vectorizable. We do not vectorize such trees.
602 bool isTreeTinyAndNotFullyVectorizable();
604 OptimizationRemarkEmitter
*getORE() { return ORE
; }
609 /// Checks if all users of \p I are the part of the vectorization tree.
610 bool areAllUsersVectorized(Instruction
*I
) const;
612 /// \returns the cost of the vectorizable entry.
613 int getEntryCost(TreeEntry
*E
);
615 /// This is the recursive part of buildTree.
616 void buildTree_rec(ArrayRef
<Value
*> Roots
, unsigned Depth
, int);
618 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
619 /// be vectorized to use the original vector (or aggregate "bitcast" to a
620 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
621 /// returns false, setting \p CurrentOrder to either an empty vector or a
622 /// non-identity permutation that allows to reuse extract instructions.
623 bool canReuseExtract(ArrayRef
<Value
*> VL
, Value
*OpValue
,
624 SmallVectorImpl
<unsigned> &CurrentOrder
) const;
626 /// Vectorize a single entry in the tree.
627 Value
*vectorizeTree(TreeEntry
*E
);
629 /// Vectorize a single entry in the tree, starting in \p VL.
630 Value
*vectorizeTree(ArrayRef
<Value
*> VL
);
632 /// \returns the scalarization cost for this type. Scalarization in this
633 /// context means the creation of vectors from a group of scalars.
634 int getGatherCost(Type
*Ty
, const DenseSet
<unsigned> &ShuffledIndices
);
636 /// \returns the scalarization cost for this list of values. Assuming that
637 /// this subtree gets vectorized, we may need to extract the values from the
638 /// roots. This method calculates the cost of extracting the values.
639 int getGatherCost(ArrayRef
<Value
*> VL
);
641 /// Set the Builder insert point to one after the last instruction in
643 void setInsertPointAfterBundle(ArrayRef
<Value
*> VL
,
644 const InstructionsState
&S
);
646 /// \returns a vector from a collection of scalars in \p VL.
647 Value
*Gather(ArrayRef
<Value
*> VL
, VectorType
*Ty
);
649 /// \returns whether the VectorizableTree is fully vectorizable and will
650 /// be beneficial even the tree height is tiny.
651 bool isFullyVectorizableTinyTree();
653 /// \reorder commutative operands in alt shuffle if they result in
655 void reorderAltShuffleOperands(const InstructionsState
&S
,
656 ArrayRef
<Value
*> VL
,
657 SmallVectorImpl
<Value
*> &Left
,
658 SmallVectorImpl
<Value
*> &Right
);
660 /// \reorder commutative operands to get better probability of
661 /// generating vectorized code.
662 void reorderInputsAccordingToOpcode(unsigned Opcode
, ArrayRef
<Value
*> VL
,
663 SmallVectorImpl
<Value
*> &Left
,
664 SmallVectorImpl
<Value
*> &Right
);
666 TreeEntry(std::vector
<TreeEntry
> &Container
) : Container(Container
) {}
668 /// \returns true if the scalars in VL are equal to this entry.
669 bool isSame(ArrayRef
<Value
*> VL
) const {
670 if (VL
.size() == Scalars
.size())
671 return std::equal(VL
.begin(), VL
.end(), Scalars
.begin());
672 return VL
.size() == ReuseShuffleIndices
.size() &&
674 VL
.begin(), VL
.end(), ReuseShuffleIndices
.begin(),
675 [this](Value
*V
, unsigned Idx
) { return V
== Scalars
[Idx
]; });
678 /// A vector of scalars.
681 /// The Scalars are vectorized into this value. It is initialized to Null.
682 Value
*VectorizedValue
= nullptr;
684 /// Do we need to gather this sequence ?
685 bool NeedToGather
= false;
687 /// Does this sequence require some shuffling?
688 SmallVector
<unsigned, 4> ReuseShuffleIndices
;
690 /// Does this entry require reordering?
691 ArrayRef
<unsigned> ReorderIndices
;
693 /// Points back to the VectorizableTree.
695 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has
696 /// to be a pointer and needs to be able to initialize the child iterator.
697 /// Thus we need a reference back to the container to translate the indices
699 std::vector
<TreeEntry
> &Container
;
701 /// The TreeEntry index containing the user of this entry. We can actually
702 /// have multiple users so the data structure is not truly a tree.
703 SmallVector
<int, 1> UserTreeIndices
;
706 /// Create a new VectorizableTree entry.
707 void newTreeEntry(ArrayRef
<Value
*> VL
, bool Vectorized
, int &UserTreeIdx
,
708 ArrayRef
<unsigned> ReuseShuffleIndices
= None
,
709 ArrayRef
<unsigned> ReorderIndices
= None
) {
710 VectorizableTree
.emplace_back(VectorizableTree
);
711 int idx
= VectorizableTree
.size() - 1;
712 TreeEntry
*Last
= &VectorizableTree
[idx
];
713 Last
->Scalars
.insert(Last
->Scalars
.begin(), VL
.begin(), VL
.end());
714 Last
->NeedToGather
= !Vectorized
;
715 Last
->ReuseShuffleIndices
.append(ReuseShuffleIndices
.begin(),
716 ReuseShuffleIndices
.end());
717 Last
->ReorderIndices
= ReorderIndices
;
719 for (int i
= 0, e
= VL
.size(); i
!= e
; ++i
) {
720 assert(!getTreeEntry(VL
[i
]) && "Scalar already in tree!");
721 ScalarToTreeEntry
[VL
[i
]] = idx
;
724 MustGather
.insert(VL
.begin(), VL
.end());
727 if (UserTreeIdx
>= 0)
728 Last
->UserTreeIndices
.push_back(UserTreeIdx
);
732 /// -- Vectorization State --
733 /// Holds all of the tree entries.
734 std::vector
<TreeEntry
> VectorizableTree
;
736 TreeEntry
*getTreeEntry(Value
*V
) {
737 auto I
= ScalarToTreeEntry
.find(V
);
738 if (I
!= ScalarToTreeEntry
.end())
739 return &VectorizableTree
[I
->second
];
743 /// Maps a specific scalar to its tree entry.
744 SmallDenseMap
<Value
*, int> ScalarToTreeEntry
;
746 /// A list of scalars that we found that we need to keep as scalars.
749 /// This POD struct describes one external user in the vectorized tree.
750 struct ExternalUser
{
751 ExternalUser(Value
*S
, llvm::User
*U
, int L
)
752 : Scalar(S
), User(U
), Lane(L
) {}
754 // Which scalar in our function.
757 // Which user that uses the scalar.
760 // Which lane does the scalar belong to.
763 using UserList
= SmallVector
<ExternalUser
, 16>;
765 /// Checks if two instructions may access the same memory.
767 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
768 /// is invariant in the calling loop.
769 bool isAliased(const MemoryLocation
&Loc1
, Instruction
*Inst1
,
770 Instruction
*Inst2
) {
771 // First check if the result is already in the cache.
772 AliasCacheKey key
= std::make_pair(Inst1
, Inst2
);
773 Optional
<bool> &result
= AliasCache
[key
];
774 if (result
.hasValue()) {
775 return result
.getValue();
777 MemoryLocation Loc2
= getLocation(Inst2
, AA
);
779 if (Loc1
.Ptr
&& Loc2
.Ptr
&& isSimple(Inst1
) && isSimple(Inst2
)) {
780 // Do the alias check.
781 aliased
= AA
->alias(Loc1
, Loc2
);
783 // Store the result in the cache.
788 using AliasCacheKey
= std::pair
<Instruction
*, Instruction
*>;
790 /// Cache for alias results.
791 /// TODO: consider moving this to the AliasAnalysis itself.
792 DenseMap
<AliasCacheKey
, Optional
<bool>> AliasCache
;
794 /// Removes an instruction from its block and eventually deletes it.
795 /// It's like Instruction::eraseFromParent() except that the actual deletion
796 /// is delayed until BoUpSLP is destructed.
797 /// This is required to ensure that there are no incorrect collisions in the
798 /// AliasCache, which can happen if a new instruction is allocated at the
799 /// same address as a previously deleted instruction.
800 void eraseInstruction(Instruction
*I
) {
801 I
->removeFromParent();
802 I
->dropAllReferences();
803 DeletedInstructions
.emplace_back(I
);
806 /// Temporary store for deleted instructions. Instructions will be deleted
807 /// eventually when the BoUpSLP is destructed.
808 SmallVector
<unique_value
, 8> DeletedInstructions
;
810 /// A list of values that need to extracted out of the tree.
811 /// This list holds pairs of (Internal Scalar : External User). External User
812 /// can be nullptr, it means that this Internal Scalar will be used later,
813 /// after vectorization.
814 UserList ExternalUses
;
816 /// Values used only by @llvm.assume calls.
817 SmallPtrSet
<const Value
*, 32> EphValues
;
819 /// Holds all of the instructions that we gathered.
820 SetVector
<Instruction
*> GatherSeq
;
822 /// A list of blocks that we are going to CSE.
823 SetVector
<BasicBlock
*> CSEBlocks
;
825 /// Contains all scheduling relevant data for an instruction.
826 /// A ScheduleData either represents a single instruction or a member of an
827 /// instruction bundle (= a group of instructions which is combined into a
828 /// vector instruction).
829 struct ScheduleData
{
830 // The initial value for the dependency counters. It means that the
831 // dependencies are not calculated yet.
832 enum { InvalidDeps
= -1 };
834 ScheduleData() = default;
836 void init(int BlockSchedulingRegionID
, Value
*OpVal
) {
837 FirstInBundle
= this;
838 NextInBundle
= nullptr;
839 NextLoadStore
= nullptr;
841 SchedulingRegionID
= BlockSchedulingRegionID
;
842 UnscheduledDepsInBundle
= UnscheduledDeps
;
847 /// Returns true if the dependency information has been calculated.
848 bool hasValidDependencies() const { return Dependencies
!= InvalidDeps
; }
850 /// Returns true for single instructions and for bundle representatives
851 /// (= the head of a bundle).
852 bool isSchedulingEntity() const { return FirstInBundle
== this; }
854 /// Returns true if it represents an instruction bundle and not only a
855 /// single instruction.
856 bool isPartOfBundle() const {
857 return NextInBundle
!= nullptr || FirstInBundle
!= this;
860 /// Returns true if it is ready for scheduling, i.e. it has no more
861 /// unscheduled depending instructions/bundles.
862 bool isReady() const {
863 assert(isSchedulingEntity() &&
864 "can't consider non-scheduling entity for ready list");
865 return UnscheduledDepsInBundle
== 0 && !IsScheduled
;
868 /// Modifies the number of unscheduled dependencies, also updating it for
869 /// the whole bundle.
870 int incrementUnscheduledDeps(int Incr
) {
871 UnscheduledDeps
+= Incr
;
872 return FirstInBundle
->UnscheduledDepsInBundle
+= Incr
;
875 /// Sets the number of unscheduled dependencies to the number of
877 void resetUnscheduledDeps() {
878 incrementUnscheduledDeps(Dependencies
- UnscheduledDeps
);
881 /// Clears all dependency information.
882 void clearDependencies() {
883 Dependencies
= InvalidDeps
;
884 resetUnscheduledDeps();
885 MemoryDependencies
.clear();
888 void dump(raw_ostream
&os
) const {
889 if (!isSchedulingEntity()) {
891 } else if (NextInBundle
) {
893 ScheduleData
*SD
= NextInBundle
;
895 os
<< ';' << *SD
->Inst
;
896 SD
= SD
->NextInBundle
;
904 Instruction
*Inst
= nullptr;
906 /// Points to the head in an instruction bundle (and always to this for
907 /// single instructions).
908 ScheduleData
*FirstInBundle
= nullptr;
910 /// Single linked list of all instructions in a bundle. Null if it is a
911 /// single instruction.
912 ScheduleData
*NextInBundle
= nullptr;
914 /// Single linked list of all memory instructions (e.g. load, store, call)
915 /// in the block - until the end of the scheduling region.
916 ScheduleData
*NextLoadStore
= nullptr;
918 /// The dependent memory instructions.
919 /// This list is derived on demand in calculateDependencies().
920 SmallVector
<ScheduleData
*, 4> MemoryDependencies
;
922 /// This ScheduleData is in the current scheduling region if this matches
923 /// the current SchedulingRegionID of BlockScheduling.
924 int SchedulingRegionID
= 0;
926 /// Used for getting a "good" final ordering of instructions.
927 int SchedulingPriority
= 0;
929 /// The number of dependencies. Constitutes of the number of users of the
930 /// instruction plus the number of dependent memory instructions (if any).
931 /// This value is calculated on demand.
932 /// If InvalidDeps, the number of dependencies is not calculated yet.
933 int Dependencies
= InvalidDeps
;
935 /// The number of dependencies minus the number of dependencies of scheduled
936 /// instructions. As soon as this is zero, the instruction/bundle gets ready
938 /// Note that this is negative as long as Dependencies is not calculated.
939 int UnscheduledDeps
= InvalidDeps
;
941 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
942 /// single instructions.
943 int UnscheduledDepsInBundle
= InvalidDeps
;
945 /// True if this instruction is scheduled (or considered as scheduled in the
947 bool IsScheduled
= false;
949 /// Opcode of the current instruction in the schedule data.
950 Value
*OpValue
= nullptr;
954 friend inline raw_ostream
&operator<<(raw_ostream
&os
,
955 const BoUpSLP::ScheduleData
&SD
) {
961 friend struct GraphTraits
<BoUpSLP
*>;
962 friend struct DOTGraphTraits
<BoUpSLP
*>;
964 /// Contains all scheduling data for a basic block.
965 struct BlockScheduling
{
966 BlockScheduling(BasicBlock
*BB
)
967 : BB(BB
), ChunkSize(BB
->size()), ChunkPos(ChunkSize
) {}
971 ScheduleStart
= nullptr;
972 ScheduleEnd
= nullptr;
973 FirstLoadStoreInRegion
= nullptr;
974 LastLoadStoreInRegion
= nullptr;
976 // Reduce the maximum schedule region size by the size of the
977 // previous scheduling run.
978 ScheduleRegionSizeLimit
-= ScheduleRegionSize
;
979 if (ScheduleRegionSizeLimit
< MinScheduleRegionSize
)
980 ScheduleRegionSizeLimit
= MinScheduleRegionSize
;
981 ScheduleRegionSize
= 0;
983 // Make a new scheduling region, i.e. all existing ScheduleData is not
984 // in the new region yet.
985 ++SchedulingRegionID
;
988 ScheduleData
*getScheduleData(Value
*V
) {
989 ScheduleData
*SD
= ScheduleDataMap
[V
];
990 if (SD
&& SD
->SchedulingRegionID
== SchedulingRegionID
)
995 ScheduleData
*getScheduleData(Value
*V
, Value
*Key
) {
997 return getScheduleData(V
);
998 auto I
= ExtraScheduleDataMap
.find(V
);
999 if (I
!= ExtraScheduleDataMap
.end()) {
1000 ScheduleData
*SD
= I
->second
[Key
];
1001 if (SD
&& SD
->SchedulingRegionID
== SchedulingRegionID
)
1007 bool isInSchedulingRegion(ScheduleData
*SD
) {
1008 return SD
->SchedulingRegionID
== SchedulingRegionID
;
1011 /// Marks an instruction as scheduled and puts all dependent ready
1012 /// instructions into the ready-list.
1013 template <typename ReadyListType
>
1014 void schedule(ScheduleData
*SD
, ReadyListType
&ReadyList
) {
1015 SD
->IsScheduled
= true;
1016 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD
<< "\n");
1018 ScheduleData
*BundleMember
= SD
;
1019 while (BundleMember
) {
1020 if (BundleMember
->Inst
!= BundleMember
->OpValue
) {
1021 BundleMember
= BundleMember
->NextInBundle
;
1024 // Handle the def-use chain dependencies.
1025 for (Use
&U
: BundleMember
->Inst
->operands()) {
1026 auto *I
= dyn_cast
<Instruction
>(U
.get());
1029 doForAllOpcodes(I
, [&ReadyList
](ScheduleData
*OpDef
) {
1030 if (OpDef
&& OpDef
->hasValidDependencies() &&
1031 OpDef
->incrementUnscheduledDeps(-1) == 0) {
1032 // There are no more unscheduled dependencies after
1033 // decrementing, so we can put the dependent instruction
1034 // into the ready list.
1035 ScheduleData
*DepBundle
= OpDef
->FirstInBundle
;
1036 assert(!DepBundle
->IsScheduled
&&
1037 "already scheduled bundle gets ready");
1038 ReadyList
.insert(DepBundle
);
1040 << "SLP: gets ready (def): " << *DepBundle
<< "\n");
1044 // Handle the memory dependencies.
1045 for (ScheduleData
*MemoryDepSD
: BundleMember
->MemoryDependencies
) {
1046 if (MemoryDepSD
->incrementUnscheduledDeps(-1) == 0) {
1047 // There are no more unscheduled dependencies after decrementing,
1048 // so we can put the dependent instruction into the ready list.
1049 ScheduleData
*DepBundle
= MemoryDepSD
->FirstInBundle
;
1050 assert(!DepBundle
->IsScheduled
&&
1051 "already scheduled bundle gets ready");
1052 ReadyList
.insert(DepBundle
);
1054 << "SLP: gets ready (mem): " << *DepBundle
<< "\n");
1057 BundleMember
= BundleMember
->NextInBundle
;
1061 void doForAllOpcodes(Value
*V
,
1062 function_ref
<void(ScheduleData
*SD
)> Action
) {
1063 if (ScheduleData
*SD
= getScheduleData(V
))
1065 auto I
= ExtraScheduleDataMap
.find(V
);
1066 if (I
!= ExtraScheduleDataMap
.end())
1067 for (auto &P
: I
->second
)
1068 if (P
.second
->SchedulingRegionID
== SchedulingRegionID
)
1072 /// Put all instructions into the ReadyList which are ready for scheduling.
1073 template <typename ReadyListType
>
1074 void initialFillReadyList(ReadyListType
&ReadyList
) {
1075 for (auto *I
= ScheduleStart
; I
!= ScheduleEnd
; I
= I
->getNextNode()) {
1076 doForAllOpcodes(I
, [&](ScheduleData
*SD
) {
1077 if (SD
->isSchedulingEntity() && SD
->isReady()) {
1078 ReadyList
.insert(SD
);
1080 << "SLP: initially in ready list: " << *I
<< "\n");
1086 /// Checks if a bundle of instructions can be scheduled, i.e. has no
1087 /// cyclic dependencies. This is only a dry-run, no instructions are
1088 /// actually moved at this stage.
1089 bool tryScheduleBundle(ArrayRef
<Value
*> VL
, BoUpSLP
*SLP
,
1090 const InstructionsState
&S
);
1092 /// Un-bundles a group of instructions.
1093 void cancelScheduling(ArrayRef
<Value
*> VL
, Value
*OpValue
);
1095 /// Allocates schedule data chunk.
1096 ScheduleData
*allocateScheduleDataChunks();
1098 /// Extends the scheduling region so that V is inside the region.
1099 /// \returns true if the region size is within the limit.
1100 bool extendSchedulingRegion(Value
*V
, const InstructionsState
&S
);
1102 /// Initialize the ScheduleData structures for new instructions in the
1103 /// scheduling region.
1104 void initScheduleData(Instruction
*FromI
, Instruction
*ToI
,
1105 ScheduleData
*PrevLoadStore
,
1106 ScheduleData
*NextLoadStore
);
1108 /// Updates the dependency information of a bundle and of all instructions/
1109 /// bundles which depend on the original bundle.
1110 void calculateDependencies(ScheduleData
*SD
, bool InsertInReadyList
,
1113 /// Sets all instruction in the scheduling region to un-scheduled.
1114 void resetSchedule();
1118 /// Simple memory allocation for ScheduleData.
1119 std::vector
<std::unique_ptr
<ScheduleData
[]>> ScheduleDataChunks
;
1121 /// The size of a ScheduleData array in ScheduleDataChunks.
1124 /// The allocator position in the current chunk, which is the last entry
1125 /// of ScheduleDataChunks.
1128 /// Attaches ScheduleData to Instruction.
1129 /// Note that the mapping survives during all vectorization iterations, i.e.
1130 /// ScheduleData structures are recycled.
1131 DenseMap
<Value
*, ScheduleData
*> ScheduleDataMap
;
1133 /// Attaches ScheduleData to Instruction with the leading key.
1134 DenseMap
<Value
*, SmallDenseMap
<Value
*, ScheduleData
*>>
1135 ExtraScheduleDataMap
;
1137 struct ReadyList
: SmallVector
<ScheduleData
*, 8> {
1138 void insert(ScheduleData
*SD
) { push_back(SD
); }
1141 /// The ready-list for scheduling (only used for the dry-run).
1142 ReadyList ReadyInsts
;
1144 /// The first instruction of the scheduling region.
1145 Instruction
*ScheduleStart
= nullptr;
1147 /// The first instruction _after_ the scheduling region.
1148 Instruction
*ScheduleEnd
= nullptr;
1150 /// The first memory accessing instruction in the scheduling region
1152 ScheduleData
*FirstLoadStoreInRegion
= nullptr;
1154 /// The last memory accessing instruction in the scheduling region
1156 ScheduleData
*LastLoadStoreInRegion
= nullptr;
1158 /// The current size of the scheduling region.
1159 int ScheduleRegionSize
= 0;
1161 /// The maximum size allowed for the scheduling region.
1162 int ScheduleRegionSizeLimit
= ScheduleRegionSizeBudget
;
1164 /// The ID of the scheduling region. For a new vectorization iteration this
1165 /// is incremented which "removes" all ScheduleData from the region.
1166 // Make sure that the initial SchedulingRegionID is greater than the
1167 // initial SchedulingRegionID in ScheduleData (which is 0).
1168 int SchedulingRegionID
= 1;
1171 /// Attaches the BlockScheduling structures to basic blocks.
1172 MapVector
<BasicBlock
*, std::unique_ptr
<BlockScheduling
>> BlocksSchedules
;
1174 /// Performs the "real" scheduling. Done before vectorization is actually
1175 /// performed in a basic block.
1176 void scheduleBlock(BlockScheduling
*BS
);
1178 /// List of users to ignore during scheduling and that don't need extracting.
1179 ArrayRef
<Value
*> UserIgnoreList
;
1181 using OrdersType
= SmallVector
<unsigned, 4>;
1182 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
1183 /// sorted SmallVectors of unsigned.
1184 struct OrdersTypeDenseMapInfo
{
1185 static OrdersType
getEmptyKey() {
1191 static OrdersType
getTombstoneKey() {
1197 static unsigned getHashValue(const OrdersType
&V
) {
1198 return static_cast<unsigned>(hash_combine_range(V
.begin(), V
.end()));
1201 static bool isEqual(const OrdersType
&LHS
, const OrdersType
&RHS
) {
1206 /// Contains orders of operations along with the number of bundles that have
1207 /// operations in this order. It stores only those orders that require
1208 /// reordering, if reordering is not required it is counted using \a
1209 /// NumOpsWantToKeepOriginalOrder.
1210 DenseMap
<OrdersType
, unsigned, OrdersTypeDenseMapInfo
> NumOpsWantToKeepOrder
;
1211 /// Number of bundles that do not require reordering.
1212 unsigned NumOpsWantToKeepOriginalOrder
= 0;
1214 // Analysis and block reference.
1216 ScalarEvolution
*SE
;
1217 TargetTransformInfo
*TTI
;
1218 TargetLibraryInfo
*TLI
;
1222 AssumptionCache
*AC
;
1224 const DataLayout
*DL
;
1225 OptimizationRemarkEmitter
*ORE
;
1227 unsigned MaxVecRegSize
; // This is set by TTI or overridden by cl::opt.
1228 unsigned MinVecRegSize
; // Set by cl::opt (default: 128).
1230 /// Instruction builder to construct the vectorized tree.
1231 IRBuilder
<> Builder
;
1233 /// A map of scalar integer values to the smallest bit width with which they
1234 /// can legally be represented. The values map to (width, signed) pairs,
1235 /// where "width" indicates the minimum bit width and "signed" is True if the
1236 /// value must be signed-extended, rather than zero-extended, back to its
1238 MapVector
<Value
*, std::pair
<uint64_t, bool>> MinBWs
;
1241 } // end namespace slpvectorizer
1243 template <> struct GraphTraits
<BoUpSLP
*> {
1244 using TreeEntry
= BoUpSLP::TreeEntry
;
1246 /// NodeRef has to be a pointer per the GraphWriter.
1247 using NodeRef
= TreeEntry
*;
1249 /// Add the VectorizableTree to the index iterator to be able to return
1250 /// TreeEntry pointers.
1251 struct ChildIteratorType
1252 : public iterator_adaptor_base
<ChildIteratorType
,
1253 SmallVector
<int, 1>::iterator
> {
1254 std::vector
<TreeEntry
> &VectorizableTree
;
1256 ChildIteratorType(SmallVector
<int, 1>::iterator W
,
1257 std::vector
<TreeEntry
> &VT
)
1258 : ChildIteratorType::iterator_adaptor_base(W
), VectorizableTree(VT
) {}
1260 NodeRef
operator*() { return &VectorizableTree
[*I
]; }
1263 static NodeRef
getEntryNode(BoUpSLP
&R
) { return &R
.VectorizableTree
[0]; }
1265 static ChildIteratorType
child_begin(NodeRef N
) {
1266 return {N
->UserTreeIndices
.begin(), N
->Container
};
1269 static ChildIteratorType
child_end(NodeRef N
) {
1270 return {N
->UserTreeIndices
.end(), N
->Container
};
1273 /// For the node iterator we just need to turn the TreeEntry iterator into a
1274 /// TreeEntry* iterator so that it dereferences to NodeRef.
1275 using nodes_iterator
= pointer_iterator
<std::vector
<TreeEntry
>::iterator
>;
1277 static nodes_iterator
nodes_begin(BoUpSLP
*R
) {
1278 return nodes_iterator(R
->VectorizableTree
.begin());
1281 static nodes_iterator
nodes_end(BoUpSLP
*R
) {
1282 return nodes_iterator(R
->VectorizableTree
.end());
1285 static unsigned size(BoUpSLP
*R
) { return R
->VectorizableTree
.size(); }
1288 template <> struct DOTGraphTraits
<BoUpSLP
*> : public DefaultDOTGraphTraits
{
1289 using TreeEntry
= BoUpSLP::TreeEntry
;
1291 DOTGraphTraits(bool isSimple
= false) : DefaultDOTGraphTraits(isSimple
) {}
1293 std::string
getNodeLabel(const TreeEntry
*Entry
, const BoUpSLP
*R
) {
1295 raw_string_ostream
OS(Str
);
1296 if (isSplat(Entry
->Scalars
)) {
1297 OS
<< "<splat> " << *Entry
->Scalars
[0];
1300 for (auto V
: Entry
->Scalars
) {
1303 R
->ExternalUses
.begin(), R
->ExternalUses
.end(),
1304 [&](const BoUpSLP::ExternalUser
&EU
) { return EU
.Scalar
== V
; }))
1311 static std::string
getNodeAttributes(const TreeEntry
*Entry
,
1313 if (Entry
->NeedToGather
)
1319 } // end namespace llvm
1321 void BoUpSLP::buildTree(ArrayRef
<Value
*> Roots
,
1322 ArrayRef
<Value
*> UserIgnoreLst
) {
1323 ExtraValueToDebugLocsMap ExternallyUsedValues
;
1324 buildTree(Roots
, ExternallyUsedValues
, UserIgnoreLst
);
1327 void BoUpSLP::buildTree(ArrayRef
<Value
*> Roots
,
1328 ExtraValueToDebugLocsMap
&ExternallyUsedValues
,
1329 ArrayRef
<Value
*> UserIgnoreLst
) {
1331 UserIgnoreList
= UserIgnoreLst
;
1332 if (!allSameType(Roots
))
1334 buildTree_rec(Roots
, 0, -1);
1336 // Collect the values that we need to extract from the tree.
1337 for (TreeEntry
&EIdx
: VectorizableTree
) {
1338 TreeEntry
*Entry
= &EIdx
;
1340 // No need to handle users of gathered values.
1341 if (Entry
->NeedToGather
)
1345 for (int Lane
= 0, LE
= Entry
->Scalars
.size(); Lane
!= LE
; ++Lane
) {
1346 Value
*Scalar
= Entry
->Scalars
[Lane
];
1347 int FoundLane
= Lane
;
1348 if (!Entry
->ReuseShuffleIndices
.empty()) {
1350 std::distance(Entry
->ReuseShuffleIndices
.begin(),
1351 llvm::find(Entry
->ReuseShuffleIndices
, FoundLane
));
1354 // Check if the scalar is externally used as an extra arg.
1355 auto ExtI
= ExternallyUsedValues
.find(Scalar
);
1356 if (ExtI
!= ExternallyUsedValues
.end()) {
1357 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
1358 << Lane
<< " from " << *Scalar
<< ".\n");
1359 ExternalUses
.emplace_back(Scalar
, nullptr, FoundLane
);
1361 for (User
*U
: Scalar
->users()) {
1362 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U
<< ".\n");
1364 Instruction
*UserInst
= dyn_cast
<Instruction
>(U
);
1368 // Skip in-tree scalars that become vectors
1369 if (TreeEntry
*UseEntry
= getTreeEntry(U
)) {
1370 Value
*UseScalar
= UseEntry
->Scalars
[0];
1371 // Some in-tree scalars will remain as scalar in vectorized
1372 // instructions. If that is the case, the one in Lane 0 will
1374 if (UseScalar
!= U
||
1375 !InTreeUserNeedToExtract(Scalar
, UserInst
, TLI
)) {
1376 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
1378 assert(!UseEntry
->NeedToGather
&& "Bad state");
1383 // Ignore users in the user ignore list.
1384 if (is_contained(UserIgnoreList
, UserInst
))
1387 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U
<< " from lane "
1388 << Lane
<< " from " << *Scalar
<< ".\n");
1389 ExternalUses
.push_back(ExternalUser(Scalar
, U
, FoundLane
));
1395 void BoUpSLP::buildTree_rec(ArrayRef
<Value
*> VL
, unsigned Depth
,
1397 assert((allConstant(VL
) || allSameType(VL
)) && "Invalid types!");
1399 InstructionsState S
= getSameOpcode(VL
);
1400 if (Depth
== RecursionMaxDepth
) {
1401 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
1402 newTreeEntry(VL
, false, UserTreeIdx
);
1406 // Don't handle vectors.
1407 if (S
.OpValue
->getType()->isVectorTy()) {
1408 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
1409 newTreeEntry(VL
, false, UserTreeIdx
);
1413 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(S
.OpValue
))
1414 if (SI
->getValueOperand()->getType()->isVectorTy()) {
1415 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
1416 newTreeEntry(VL
, false, UserTreeIdx
);
1420 // If all of the operands are identical or constant we have a simple solution.
1421 if (allConstant(VL
) || isSplat(VL
) || !allSameBlock(VL
) || !S
.getOpcode()) {
1422 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
1423 newTreeEntry(VL
, false, UserTreeIdx
);
1427 // We now know that this is a vector of instructions of the same type from
1430 // Don't vectorize ephemeral values.
1431 for (unsigned i
= 0, e
= VL
.size(); i
!= e
; ++i
) {
1432 if (EphValues
.count(VL
[i
])) {
1433 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL
[i
]
1434 << ") is ephemeral.\n");
1435 newTreeEntry(VL
, false, UserTreeIdx
);
1440 // Check if this is a duplicate of another entry.
1441 if (TreeEntry
*E
= getTreeEntry(S
.OpValue
)) {
1442 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S
.OpValue
<< ".\n");
1443 if (!E
->isSame(VL
)) {
1444 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
1445 newTreeEntry(VL
, false, UserTreeIdx
);
1448 // Record the reuse of the tree node. FIXME, currently this is only used to
1449 // properly draw the graph rather than for the actual vectorization.
1450 E
->UserTreeIndices
.push_back(UserTreeIdx
);
1451 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S
.OpValue
1456 // Check that none of the instructions in the bundle are already in the tree.
1457 for (unsigned i
= 0, e
= VL
.size(); i
!= e
; ++i
) {
1458 auto *I
= dyn_cast
<Instruction
>(VL
[i
]);
1461 if (getTreeEntry(I
)) {
1462 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL
[i
]
1463 << ") is already in tree.\n");
1464 newTreeEntry(VL
, false, UserTreeIdx
);
1469 // If any of the scalars is marked as a value that needs to stay scalar, then
1470 // we need to gather the scalars.
1471 for (unsigned i
= 0, e
= VL
.size(); i
!= e
; ++i
) {
1472 if (MustGather
.count(VL
[i
])) {
1473 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
1474 newTreeEntry(VL
, false, UserTreeIdx
);
1479 // Check that all of the users of the scalars that we want to vectorize are
1481 auto *VL0
= cast
<Instruction
>(S
.OpValue
);
1482 BasicBlock
*BB
= VL0
->getParent();
1484 if (!DT
->isReachableFromEntry(BB
)) {
1485 // Don't go into unreachable blocks. They may contain instructions with
1486 // dependency cycles which confuse the final scheduling.
1487 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
1488 newTreeEntry(VL
, false, UserTreeIdx
);
1492 // Check that every instruction appears once in this bundle.
1493 SmallVector
<unsigned, 4> ReuseShuffleIndicies
;
1494 SmallVector
<Value
*, 4> UniqueValues
;
1495 DenseMap
<Value
*, unsigned> UniquePositions
;
1496 for (Value
*V
: VL
) {
1497 auto Res
= UniquePositions
.try_emplace(V
, UniqueValues
.size());
1498 ReuseShuffleIndicies
.emplace_back(Res
.first
->second
);
1500 UniqueValues
.emplace_back(V
);
1502 if (UniqueValues
.size() == VL
.size()) {
1503 ReuseShuffleIndicies
.clear();
1505 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
1506 if (UniqueValues
.size() <= 1 || !llvm::isPowerOf2_32(UniqueValues
.size())) {
1507 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
1508 newTreeEntry(VL
, false, UserTreeIdx
);
1514 auto &BSRef
= BlocksSchedules
[BB
];
1516 BSRef
= llvm::make_unique
<BlockScheduling
>(BB
);
1518 BlockScheduling
&BS
= *BSRef
.get();
1520 if (!BS
.tryScheduleBundle(VL
, this, S
)) {
1521 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
1522 assert((!BS
.getScheduleData(VL0
) ||
1523 !BS
.getScheduleData(VL0
)->isPartOfBundle()) &&
1524 "tryScheduleBundle should cancelScheduling on failure");
1525 newTreeEntry(VL
, false, UserTreeIdx
, ReuseShuffleIndicies
);
1528 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
1530 unsigned ShuffleOrOp
= S
.isAltShuffle() ?
1531 (unsigned) Instruction::ShuffleVector
: S
.getOpcode();
1532 switch (ShuffleOrOp
) {
1533 case Instruction::PHI
: {
1534 PHINode
*PH
= dyn_cast
<PHINode
>(VL0
);
1536 // Check for terminator values (e.g. invoke).
1537 for (unsigned j
= 0; j
< VL
.size(); ++j
)
1538 for (unsigned i
= 0, e
= PH
->getNumIncomingValues(); i
< e
; ++i
) {
1539 TerminatorInst
*Term
= dyn_cast
<TerminatorInst
>(
1540 cast
<PHINode
>(VL
[j
])->getIncomingValueForBlock(PH
->getIncomingBlock(i
)));
1544 << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n");
1545 BS
.cancelScheduling(VL
, VL0
);
1546 newTreeEntry(VL
, false, UserTreeIdx
, ReuseShuffleIndicies
);
1551 newTreeEntry(VL
, true, UserTreeIdx
, ReuseShuffleIndicies
);
1552 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
1554 for (unsigned i
= 0, e
= PH
->getNumIncomingValues(); i
< e
; ++i
) {
1556 // Prepare the operand vector.
1558 Operands
.push_back(cast
<PHINode
>(j
)->getIncomingValueForBlock(
1559 PH
->getIncomingBlock(i
)));
1561 buildTree_rec(Operands
, Depth
+ 1, UserTreeIdx
);
1565 case Instruction::ExtractValue
:
1566 case Instruction::ExtractElement
: {
1567 OrdersType CurrentOrder
;
1568 bool Reuse
= canReuseExtract(VL
, VL0
, CurrentOrder
);
1570 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
1571 ++NumOpsWantToKeepOriginalOrder
;
1572 newTreeEntry(VL
, /*Vectorized=*/true, UserTreeIdx
,
1573 ReuseShuffleIndicies
);
1576 if (!CurrentOrder
.empty()) {
1578 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
1580 for (unsigned Idx
: CurrentOrder
)
1581 dbgs() << " " << Idx
;
1584 // Insert new order with initial value 0, if it does not exist,
1585 // otherwise return the iterator to the existing one.
1586 auto StoredCurrentOrderAndNum
=
1587 NumOpsWantToKeepOrder
.try_emplace(CurrentOrder
).first
;
1588 ++StoredCurrentOrderAndNum
->getSecond();
1589 newTreeEntry(VL
, /*Vectorized=*/true, UserTreeIdx
, ReuseShuffleIndicies
,
1590 StoredCurrentOrderAndNum
->getFirst());
1593 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
1594 newTreeEntry(VL
, /*Vectorized=*/false, UserTreeIdx
, ReuseShuffleIndicies
);
1595 BS
.cancelScheduling(VL
, VL0
);
1598 case Instruction::Load
: {
1599 // Check that a vectorized load would load the same memory as a scalar
1600 // load. For example, we don't want to vectorize loads that are smaller
1601 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
1602 // treats loading/storing it as an i8 struct. If we vectorize loads/stores
1603 // from such a struct, we read/write packed bits disagreeing with the
1604 // unvectorized version.
1605 Type
*ScalarTy
= VL0
->getType();
1607 if (DL
->getTypeSizeInBits(ScalarTy
) !=
1608 DL
->getTypeAllocSizeInBits(ScalarTy
)) {
1609 BS
.cancelScheduling(VL
, VL0
);
1610 newTreeEntry(VL
, false, UserTreeIdx
, ReuseShuffleIndicies
);
1611 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
1615 // Make sure all loads in the bundle are simple - we can't vectorize
1616 // atomic or volatile loads.
1617 SmallVector
<Value
*, 4> PointerOps(VL
.size());
1618 auto POIter
= PointerOps
.begin();
1619 for (Value
*V
: VL
) {
1620 auto *L
= cast
<LoadInst
>(V
);
1621 if (!L
->isSimple()) {
1622 BS
.cancelScheduling(VL
, VL0
);
1623 newTreeEntry(VL
, false, UserTreeIdx
, ReuseShuffleIndicies
);
1624 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
1627 *POIter
= L
->getPointerOperand();
1631 OrdersType CurrentOrder
;
1632 // Check the order of pointer operands.
1633 if (llvm::sortPtrAccesses(PointerOps
, *DL
, *SE
, CurrentOrder
)) {
1636 if (CurrentOrder
.empty()) {
1637 Ptr0
= PointerOps
.front();
1638 PtrN
= PointerOps
.back();
1640 Ptr0
= PointerOps
[CurrentOrder
.front()];
1641 PtrN
= PointerOps
[CurrentOrder
.back()];
1643 const SCEV
*Scev0
= SE
->getSCEV(Ptr0
);
1644 const SCEV
*ScevN
= SE
->getSCEV(PtrN
);
1646 dyn_cast
<SCEVConstant
>(SE
->getMinusSCEV(ScevN
, Scev0
));
1647 uint64_t Size
= DL
->getTypeAllocSize(ScalarTy
);
1648 // Check that the sorted loads are consecutive.
1649 if (Diff
&& Diff
->getAPInt().getZExtValue() == (VL
.size() - 1) * Size
) {
1650 if (CurrentOrder
.empty()) {
1651 // Original loads are consecutive and does not require reordering.
1652 ++NumOpsWantToKeepOriginalOrder
;
1653 newTreeEntry(VL
, /*Vectorized=*/true, UserTreeIdx
,
1654 ReuseShuffleIndicies
);
1655 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
1658 auto I
= NumOpsWantToKeepOrder
.try_emplace(CurrentOrder
).first
;
1660 newTreeEntry(VL
, /*Vectorized=*/true, UserTreeIdx
,
1661 ReuseShuffleIndicies
, I
->getFirst());
1662 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
1668 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
1669 BS
.cancelScheduling(VL
, VL0
);
1670 newTreeEntry(VL
, false, UserTreeIdx
, ReuseShuffleIndicies
);
1673 case Instruction::ZExt
:
1674 case Instruction::SExt
:
1675 case Instruction::FPToUI
:
1676 case Instruction::FPToSI
:
1677 case Instruction::FPExt
:
1678 case Instruction::PtrToInt
:
1679 case Instruction::IntToPtr
:
1680 case Instruction::SIToFP
:
1681 case Instruction::UIToFP
:
1682 case Instruction::Trunc
:
1683 case Instruction::FPTrunc
:
1684 case Instruction::BitCast
: {
1685 Type
*SrcTy
= VL0
->getOperand(0)->getType();
1686 for (unsigned i
= 0; i
< VL
.size(); ++i
) {
1687 Type
*Ty
= cast
<Instruction
>(VL
[i
])->getOperand(0)->getType();
1688 if (Ty
!= SrcTy
|| !isValidElementType(Ty
)) {
1689 BS
.cancelScheduling(VL
, VL0
);
1690 newTreeEntry(VL
, false, UserTreeIdx
, ReuseShuffleIndicies
);
1692 << "SLP: Gathering casts with different src types.\n");
1696 newTreeEntry(VL
, true, UserTreeIdx
, ReuseShuffleIndicies
);
1697 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");
1699 for (unsigned i
= 0, e
= VL0
->getNumOperands(); i
< e
; ++i
) {
1701 // Prepare the operand vector.
1703 Operands
.push_back(cast
<Instruction
>(j
)->getOperand(i
));
1705 buildTree_rec(Operands
, Depth
+ 1, UserTreeIdx
);
1709 case Instruction::ICmp
:
1710 case Instruction::FCmp
: {
1711 // Check that all of the compares have the same predicate.
1712 CmpInst::Predicate P0
= cast
<CmpInst
>(VL0
)->getPredicate();
1713 Type
*ComparedTy
= VL0
->getOperand(0)->getType();
1714 for (unsigned i
= 1, e
= VL
.size(); i
< e
; ++i
) {
1715 CmpInst
*Cmp
= cast
<CmpInst
>(VL
[i
]);
1716 if (Cmp
->getPredicate() != P0
||
1717 Cmp
->getOperand(0)->getType() != ComparedTy
) {
1718 BS
.cancelScheduling(VL
, VL0
);
1719 newTreeEntry(VL
, false, UserTreeIdx
, ReuseShuffleIndicies
);
1721 << "SLP: Gathering cmp with different predicate.\n");
1726 newTreeEntry(VL
, true, UserTreeIdx
, ReuseShuffleIndicies
);
1727 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");
1729 for (unsigned i
= 0, e
= VL0
->getNumOperands(); i
< e
; ++i
) {
1731 // Prepare the operand vector.
1733 Operands
.push_back(cast
<Instruction
>(j
)->getOperand(i
));
1735 buildTree_rec(Operands
, Depth
+ 1, UserTreeIdx
);
1739 case Instruction::Select
:
1740 case Instruction::Add
:
1741 case Instruction::FAdd
:
1742 case Instruction::Sub
:
1743 case Instruction::FSub
:
1744 case Instruction::Mul
:
1745 case Instruction::FMul
:
1746 case Instruction::UDiv
:
1747 case Instruction::SDiv
:
1748 case Instruction::FDiv
:
1749 case Instruction::URem
:
1750 case Instruction::SRem
:
1751 case Instruction::FRem
:
1752 case Instruction::Shl
:
1753 case Instruction::LShr
:
1754 case Instruction::AShr
:
1755 case Instruction::And
:
1756 case Instruction::Or
:
1757 case Instruction::Xor
:
1758 newTreeEntry(VL
, true, UserTreeIdx
, ReuseShuffleIndicies
);
1759 LLVM_DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
1761 // Sort operands of the instructions so that each side is more likely to
1762 // have the same opcode.
1763 if (isa
<BinaryOperator
>(VL0
) && VL0
->isCommutative()) {
1764 ValueList Left
, Right
;
1765 reorderInputsAccordingToOpcode(S
.getOpcode(), VL
, Left
, Right
);
1766 buildTree_rec(Left
, Depth
+ 1, UserTreeIdx
);
1767 buildTree_rec(Right
, Depth
+ 1, UserTreeIdx
);
1771 for (unsigned i
= 0, e
= VL0
->getNumOperands(); i
< e
; ++i
) {
1773 // Prepare the operand vector.
1775 Operands
.push_back(cast
<Instruction
>(j
)->getOperand(i
));
1777 buildTree_rec(Operands
, Depth
+ 1, UserTreeIdx
);
1781 case Instruction::GetElementPtr
: {
1782 // We don't combine GEPs with complicated (nested) indexing.
1783 for (unsigned j
= 0; j
< VL
.size(); ++j
) {
1784 if (cast
<Instruction
>(VL
[j
])->getNumOperands() != 2) {
1785 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
1786 BS
.cancelScheduling(VL
, VL0
);
1787 newTreeEntry(VL
, false, UserTreeIdx
, ReuseShuffleIndicies
);
1792 // We can't combine several GEPs into one vector if they operate on
1794 Type
*Ty0
= VL0
->getOperand(0)->getType();
1795 for (unsigned j
= 0; j
< VL
.size(); ++j
) {
1796 Type
*CurTy
= cast
<Instruction
>(VL
[j
])->getOperand(0)->getType();
1799 << "SLP: not-vectorizable GEP (different types).\n");
1800 BS
.cancelScheduling(VL
, VL0
);
1801 newTreeEntry(VL
, false, UserTreeIdx
, ReuseShuffleIndicies
);
1806 // We don't combine GEPs with non-constant indexes.
1807 for (unsigned j
= 0; j
< VL
.size(); ++j
) {
1808 auto Op
= cast
<Instruction
>(VL
[j
])->getOperand(1);
1809 if (!isa
<ConstantInt
>(Op
)) {
1811 << "SLP: not-vectorizable GEP (non-constant indexes).\n");
1812 BS
.cancelScheduling(VL
, VL0
);
1813 newTreeEntry(VL
, false, UserTreeIdx
, ReuseShuffleIndicies
);
1818 newTreeEntry(VL
, true, UserTreeIdx
, ReuseShuffleIndicies
);
1819 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
1820 for (unsigned i
= 0, e
= 2; i
< e
; ++i
) {
1822 // Prepare the operand vector.
1824 Operands
.push_back(cast
<Instruction
>(j
)->getOperand(i
));
1826 buildTree_rec(Operands
, Depth
+ 1, UserTreeIdx
);
1830 case Instruction::Store
: {
1831 // Check if the stores are consecutive or of we need to swizzle them.
1832 for (unsigned i
= 0, e
= VL
.size() - 1; i
< e
; ++i
)
1833 if (!isConsecutiveAccess(VL
[i
], VL
[i
+ 1], *DL
, *SE
)) {
1834 BS
.cancelScheduling(VL
, VL0
);
1835 newTreeEntry(VL
, false, UserTreeIdx
, ReuseShuffleIndicies
);
1836 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
1840 newTreeEntry(VL
, true, UserTreeIdx
, ReuseShuffleIndicies
);
1841 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
1845 Operands
.push_back(cast
<Instruction
>(j
)->getOperand(0));
1847 buildTree_rec(Operands
, Depth
+ 1, UserTreeIdx
);
1850 case Instruction::Call
: {
1851 // Check if the calls are all to the same vectorizable intrinsic.
1852 CallInst
*CI
= cast
<CallInst
>(VL0
);
1853 // Check if this is an Intrinsic call or something that can be
1854 // represented by an intrinsic call
1855 Intrinsic::ID ID
= getVectorIntrinsicIDForCall(CI
, TLI
);
1856 if (!isTriviallyVectorizable(ID
)) {
1857 BS
.cancelScheduling(VL
, VL0
);
1858 newTreeEntry(VL
, false, UserTreeIdx
, ReuseShuffleIndicies
);
1859 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
1862 Function
*Int
= CI
->getCalledFunction();
1863 Value
*A1I
= nullptr;
1864 if (hasVectorInstrinsicScalarOpd(ID
, 1))
1865 A1I
= CI
->getArgOperand(1);
1866 for (unsigned i
= 1, e
= VL
.size(); i
!= e
; ++i
) {
1867 CallInst
*CI2
= dyn_cast
<CallInst
>(VL
[i
]);
1868 if (!CI2
|| CI2
->getCalledFunction() != Int
||
1869 getVectorIntrinsicIDForCall(CI2
, TLI
) != ID
||
1870 !CI
->hasIdenticalOperandBundleSchema(*CI2
)) {
1871 BS
.cancelScheduling(VL
, VL0
);
1872 newTreeEntry(VL
, false, UserTreeIdx
, ReuseShuffleIndicies
);
1873 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI
<< "!=" << *VL
[i
]
1877 // ctlz,cttz and powi are special intrinsics whose second argument
1878 // should be same in order for them to be vectorized.
1879 if (hasVectorInstrinsicScalarOpd(ID
, 1)) {
1880 Value
*A1J
= CI2
->getArgOperand(1);
1882 BS
.cancelScheduling(VL
, VL0
);
1883 newTreeEntry(VL
, false, UserTreeIdx
, ReuseShuffleIndicies
);
1884 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
1885 << " argument " << A1I
<< "!=" << A1J
<< "\n");
1889 // Verify that the bundle operands are identical between the two calls.
1890 if (CI
->hasOperandBundles() &&
1891 !std::equal(CI
->op_begin() + CI
->getBundleOperandsStartIndex(),
1892 CI
->op_begin() + CI
->getBundleOperandsEndIndex(),
1893 CI2
->op_begin() + CI2
->getBundleOperandsStartIndex())) {
1894 BS
.cancelScheduling(VL
, VL0
);
1895 newTreeEntry(VL
, false, UserTreeIdx
, ReuseShuffleIndicies
);
1896 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"
1897 << *CI
<< "!=" << *VL
[i
] << '\n');
1902 newTreeEntry(VL
, true, UserTreeIdx
, ReuseShuffleIndicies
);
1903 for (unsigned i
= 0, e
= CI
->getNumArgOperands(); i
!= e
; ++i
) {
1905 // Prepare the operand vector.
1906 for (Value
*j
: VL
) {
1907 CallInst
*CI2
= dyn_cast
<CallInst
>(j
);
1908 Operands
.push_back(CI2
->getArgOperand(i
));
1910 buildTree_rec(Operands
, Depth
+ 1, UserTreeIdx
);
1914 case Instruction::ShuffleVector
:
1915 // If this is not an alternate sequence of opcode like add-sub
1916 // then do not vectorize this instruction.
1917 if (!S
.isAltShuffle()) {
1918 BS
.cancelScheduling(VL
, VL0
);
1919 newTreeEntry(VL
, false, UserTreeIdx
, ReuseShuffleIndicies
);
1920 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
1923 newTreeEntry(VL
, true, UserTreeIdx
, ReuseShuffleIndicies
);
1924 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
1926 // Reorder operands if reordering would enable vectorization.
1927 if (isa
<BinaryOperator
>(VL0
)) {
1928 ValueList Left
, Right
;
1929 reorderAltShuffleOperands(S
, VL
, Left
, Right
);
1930 buildTree_rec(Left
, Depth
+ 1, UserTreeIdx
);
1931 buildTree_rec(Right
, Depth
+ 1, UserTreeIdx
);
1935 for (unsigned i
= 0, e
= VL0
->getNumOperands(); i
< e
; ++i
) {
1937 // Prepare the operand vector.
1939 Operands
.push_back(cast
<Instruction
>(j
)->getOperand(i
));
1941 buildTree_rec(Operands
, Depth
+ 1, UserTreeIdx
);
1946 BS
.cancelScheduling(VL
, VL0
);
1947 newTreeEntry(VL
, false, UserTreeIdx
, ReuseShuffleIndicies
);
1948 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
1953 unsigned BoUpSLP::canMapToVector(Type
*T
, const DataLayout
&DL
) const {
1956 auto *ST
= dyn_cast
<StructType
>(T
);
1958 N
= ST
->getNumElements();
1959 EltTy
= *ST
->element_begin();
1961 N
= cast
<ArrayType
>(T
)->getNumElements();
1962 EltTy
= cast
<ArrayType
>(T
)->getElementType();
1964 if (!isValidElementType(EltTy
))
1966 uint64_t VTSize
= DL
.getTypeStoreSizeInBits(VectorType::get(EltTy
, N
));
1967 if (VTSize
< MinVecRegSize
|| VTSize
> MaxVecRegSize
|| VTSize
!= DL
.getTypeStoreSizeInBits(T
))
1970 // Check that struct is homogeneous.
1971 for (const auto *Ty
: ST
->elements())
1978 bool BoUpSLP::canReuseExtract(ArrayRef
<Value
*> VL
, Value
*OpValue
,
1979 SmallVectorImpl
<unsigned> &CurrentOrder
) const {
1980 Instruction
*E0
= cast
<Instruction
>(OpValue
);
1981 assert(E0
->getOpcode() == Instruction::ExtractElement
||
1982 E0
->getOpcode() == Instruction::ExtractValue
);
1983 assert(E0
->getOpcode() == getSameOpcode(VL
).getOpcode() && "Invalid opcode");
1984 // Check if all of the extracts come from the same vector and from the
1986 Value
*Vec
= E0
->getOperand(0);
1988 CurrentOrder
.clear();
1990 // We have to extract from a vector/aggregate with the same number of elements.
1992 if (E0
->getOpcode() == Instruction::ExtractValue
) {
1993 const DataLayout
&DL
= E0
->getModule()->getDataLayout();
1994 NElts
= canMapToVector(Vec
->getType(), DL
);
1997 // Check if load can be rewritten as load of vector.
1998 LoadInst
*LI
= dyn_cast
<LoadInst
>(Vec
);
1999 if (!LI
|| !LI
->isSimple() || !LI
->hasNUses(VL
.size()))
2002 NElts
= Vec
->getType()->getVectorNumElements();
2005 if (NElts
!= VL
.size())
2008 // Check that all of the indices extract from the correct offset.
2009 bool ShouldKeepOrder
= true;
2010 unsigned E
= VL
.size();
2011 // Assign to all items the initial value E + 1 so we can check if the extract
2012 // instruction index was used already.
2013 // Also, later we can check that all the indices are used and we have a
2014 // consecutive access in the extract instructions, by checking that no
2015 // element of CurrentOrder still has value E + 1.
2016 CurrentOrder
.assign(E
, E
+ 1);
2018 for (; I
< E
; ++I
) {
2019 auto *Inst
= cast
<Instruction
>(VL
[I
]);
2020 if (Inst
->getOperand(0) != Vec
)
2022 Optional
<unsigned> Idx
= getExtractIndex(Inst
);
2025 const unsigned ExtIdx
= *Idx
;
2027 if (ExtIdx
>= E
|| CurrentOrder
[ExtIdx
] != E
+ 1)
2029 ShouldKeepOrder
= false;
2030 CurrentOrder
[ExtIdx
] = I
;
2032 if (CurrentOrder
[I
] != E
+ 1)
2034 CurrentOrder
[I
] = I
;
2038 CurrentOrder
.clear();
2042 return ShouldKeepOrder
;
2045 bool BoUpSLP::areAllUsersVectorized(Instruction
*I
) const {
2046 return I
->hasOneUse() ||
2047 std::all_of(I
->user_begin(), I
->user_end(), [this](User
*U
) {
2048 return ScalarToTreeEntry
.count(U
) > 0;
2052 int BoUpSLP::getEntryCost(TreeEntry
*E
) {
2053 ArrayRef
<Value
*> VL
= E
->Scalars
;
2055 Type
*ScalarTy
= VL
[0]->getType();
2056 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(VL
[0]))
2057 ScalarTy
= SI
->getValueOperand()->getType();
2058 else if (CmpInst
*CI
= dyn_cast
<CmpInst
>(VL
[0]))
2059 ScalarTy
= CI
->getOperand(0)->getType();
2060 VectorType
*VecTy
= VectorType::get(ScalarTy
, VL
.size());
2062 // If we have computed a smaller type for the expression, update VecTy so
2063 // that the costs will be accurate.
2064 if (MinBWs
.count(VL
[0]))
2065 VecTy
= VectorType::get(
2066 IntegerType::get(F
->getContext(), MinBWs
[VL
[0]].first
), VL
.size());
2068 unsigned ReuseShuffleNumbers
= E
->ReuseShuffleIndices
.size();
2069 bool NeedToShuffleReuses
= !E
->ReuseShuffleIndices
.empty();
2070 int ReuseShuffleCost
= 0;
2071 if (NeedToShuffleReuses
) {
2073 TTI
->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc
, VecTy
);
2075 if (E
->NeedToGather
) {
2076 if (allConstant(VL
))
2079 return ReuseShuffleCost
+
2080 TTI
->getShuffleCost(TargetTransformInfo::SK_Broadcast
, VecTy
, 0);
2082 if (getSameOpcode(VL
).getOpcode() == Instruction::ExtractElement
&&
2083 allSameType(VL
) && allSameBlock(VL
)) {
2084 Optional
<TargetTransformInfo::ShuffleKind
> ShuffleKind
= isShuffle(VL
);
2085 if (ShuffleKind
.hasValue()) {
2086 int Cost
= TTI
->getShuffleCost(ShuffleKind
.getValue(), VecTy
);
2087 for (auto *V
: VL
) {
2088 // If all users of instruction are going to be vectorized and this
2089 // instruction itself is not going to be vectorized, consider this
2090 // instruction as dead and remove its cost from the final cost of the
2092 if (areAllUsersVectorized(cast
<Instruction
>(V
)) &&
2093 !ScalarToTreeEntry
.count(V
)) {
2094 auto *IO
= cast
<ConstantInt
>(
2095 cast
<ExtractElementInst
>(V
)->getIndexOperand());
2096 Cost
-= TTI
->getVectorInstrCost(Instruction::ExtractElement
, VecTy
,
2097 IO
->getZExtValue());
2100 return ReuseShuffleCost
+ Cost
;
2103 return ReuseShuffleCost
+ getGatherCost(VL
);
2105 InstructionsState S
= getSameOpcode(VL
);
2106 assert(S
.getOpcode() && allSameType(VL
) && allSameBlock(VL
) && "Invalid VL");
2107 Instruction
*VL0
= cast
<Instruction
>(S
.OpValue
);
2108 unsigned ShuffleOrOp
= S
.isAltShuffle() ?
2109 (unsigned) Instruction::ShuffleVector
: S
.getOpcode();
2110 switch (ShuffleOrOp
) {
2111 case Instruction::PHI
:
2114 case Instruction::ExtractValue
:
2115 case Instruction::ExtractElement
:
2116 if (NeedToShuffleReuses
) {
2118 for (unsigned I
: E
->ReuseShuffleIndices
) {
2119 if (ShuffleOrOp
== Instruction::ExtractElement
) {
2120 auto *IO
= cast
<ConstantInt
>(
2121 cast
<ExtractElementInst
>(VL
[I
])->getIndexOperand());
2122 Idx
= IO
->getZExtValue();
2123 ReuseShuffleCost
-= TTI
->getVectorInstrCost(
2124 Instruction::ExtractElement
, VecTy
, Idx
);
2126 ReuseShuffleCost
-= TTI
->getVectorInstrCost(
2127 Instruction::ExtractElement
, VecTy
, Idx
);
2131 Idx
= ReuseShuffleNumbers
;
2132 for (Value
*V
: VL
) {
2133 if (ShuffleOrOp
== Instruction::ExtractElement
) {
2134 auto *IO
= cast
<ConstantInt
>(
2135 cast
<ExtractElementInst
>(V
)->getIndexOperand());
2136 Idx
= IO
->getZExtValue();
2141 TTI
->getVectorInstrCost(Instruction::ExtractElement
, VecTy
, Idx
);
2144 if (!E
->NeedToGather
) {
2145 int DeadCost
= ReuseShuffleCost
;
2146 if (!E
->ReorderIndices
.empty()) {
2147 // TODO: Merge this shuffle with the ReuseShuffleCost.
2148 DeadCost
+= TTI
->getShuffleCost(
2149 TargetTransformInfo::SK_PermuteSingleSrc
, VecTy
);
2151 for (unsigned i
= 0, e
= VL
.size(); i
< e
; ++i
) {
2152 Instruction
*E
= cast
<Instruction
>(VL
[i
]);
2153 // If all users are going to be vectorized, instruction can be
2154 // considered as dead.
2155 // The same, if have only one user, it will be vectorized for sure.
2156 if (areAllUsersVectorized(E
)) {
2157 // Take credit for instruction that will become dead.
2158 if (E
->hasOneUse()) {
2159 Instruction
*Ext
= E
->user_back();
2160 if ((isa
<SExtInst
>(Ext
) || isa
<ZExtInst
>(Ext
)) &&
2161 all_of(Ext
->users(),
2162 [](User
*U
) { return isa
<GetElementPtrInst
>(U
); })) {
2163 // Use getExtractWithExtendCost() to calculate the cost of
2164 // extractelement/ext pair.
2165 DeadCost
-= TTI
->getExtractWithExtendCost(
2166 Ext
->getOpcode(), Ext
->getType(), VecTy
, i
);
2167 // Add back the cost of s|zext which is subtracted seperately.
2168 DeadCost
+= TTI
->getCastInstrCost(
2169 Ext
->getOpcode(), Ext
->getType(), E
->getType(), Ext
);
2174 TTI
->getVectorInstrCost(Instruction::ExtractElement
, VecTy
, i
);
2179 return ReuseShuffleCost
+ getGatherCost(VL
);
2181 case Instruction::ZExt
:
2182 case Instruction::SExt
:
2183 case Instruction::FPToUI
:
2184 case Instruction::FPToSI
:
2185 case Instruction::FPExt
:
2186 case Instruction::PtrToInt
:
2187 case Instruction::IntToPtr
:
2188 case Instruction::SIToFP
:
2189 case Instruction::UIToFP
:
2190 case Instruction::Trunc
:
2191 case Instruction::FPTrunc
:
2192 case Instruction::BitCast
: {
2193 Type
*SrcTy
= VL0
->getOperand(0)->getType();
2195 TTI
->getCastInstrCost(S
.getOpcode(), ScalarTy
, SrcTy
, VL0
);
2196 if (NeedToShuffleReuses
) {
2197 ReuseShuffleCost
-= (ReuseShuffleNumbers
- VL
.size()) * ScalarEltCost
;
2200 // Calculate the cost of this instruction.
2201 int ScalarCost
= VL
.size() * ScalarEltCost
;
2203 VectorType
*SrcVecTy
= VectorType::get(SrcTy
, VL
.size());
2205 // Check if the values are candidates to demote.
2206 if (!MinBWs
.count(VL0
) || VecTy
!= SrcVecTy
) {
2207 VecCost
= ReuseShuffleCost
+
2208 TTI
->getCastInstrCost(S
.getOpcode(), VecTy
, SrcVecTy
, VL0
);
2210 return VecCost
- ScalarCost
;
2212 case Instruction::FCmp
:
2213 case Instruction::ICmp
:
2214 case Instruction::Select
: {
2215 // Calculate the cost of this instruction.
2216 int ScalarEltCost
= TTI
->getCmpSelInstrCost(S
.getOpcode(), ScalarTy
,
2217 Builder
.getInt1Ty(), VL0
);
2218 if (NeedToShuffleReuses
) {
2219 ReuseShuffleCost
-= (ReuseShuffleNumbers
- VL
.size()) * ScalarEltCost
;
2221 VectorType
*MaskTy
= VectorType::get(Builder
.getInt1Ty(), VL
.size());
2222 int ScalarCost
= VecTy
->getNumElements() * ScalarEltCost
;
2223 int VecCost
= TTI
->getCmpSelInstrCost(S
.getOpcode(), VecTy
, MaskTy
, VL0
);
2224 return ReuseShuffleCost
+ VecCost
- ScalarCost
;
2226 case Instruction::Add
:
2227 case Instruction::FAdd
:
2228 case Instruction::Sub
:
2229 case Instruction::FSub
:
2230 case Instruction::Mul
:
2231 case Instruction::FMul
:
2232 case Instruction::UDiv
:
2233 case Instruction::SDiv
:
2234 case Instruction::FDiv
:
2235 case Instruction::URem
:
2236 case Instruction::SRem
:
2237 case Instruction::FRem
:
2238 case Instruction::Shl
:
2239 case Instruction::LShr
:
2240 case Instruction::AShr
:
2241 case Instruction::And
:
2242 case Instruction::Or
:
2243 case Instruction::Xor
: {
2244 // Certain instructions can be cheaper to vectorize if they have a
2245 // constant second vector operand.
2246 TargetTransformInfo::OperandValueKind Op1VK
=
2247 TargetTransformInfo::OK_AnyValue
;
2248 TargetTransformInfo::OperandValueKind Op2VK
=
2249 TargetTransformInfo::OK_UniformConstantValue
;
2250 TargetTransformInfo::OperandValueProperties Op1VP
=
2251 TargetTransformInfo::OP_None
;
2252 TargetTransformInfo::OperandValueProperties Op2VP
=
2253 TargetTransformInfo::OP_PowerOf2
;
2255 // If all operands are exactly the same ConstantInt then set the
2256 // operand kind to OK_UniformConstantValue.
2257 // If instead not all operands are constants, then set the operand kind
2258 // to OK_AnyValue. If all operands are constants but not the same,
2259 // then set the operand kind to OK_NonUniformConstantValue.
2260 ConstantInt
*CInt0
= nullptr;
2261 for (unsigned i
= 0, e
= VL
.size(); i
< e
; ++i
) {
2262 const Instruction
*I
= cast
<Instruction
>(VL
[i
]);
2263 ConstantInt
*CInt
= dyn_cast
<ConstantInt
>(I
->getOperand(1));
2265 Op2VK
= TargetTransformInfo::OK_AnyValue
;
2266 Op2VP
= TargetTransformInfo::OP_None
;
2269 if (Op2VP
== TargetTransformInfo::OP_PowerOf2
&&
2270 !CInt
->getValue().isPowerOf2())
2271 Op2VP
= TargetTransformInfo::OP_None
;
2277 Op2VK
= TargetTransformInfo::OK_NonUniformConstantValue
;
2280 SmallVector
<const Value
*, 4> Operands(VL0
->operand_values());
2281 int ScalarEltCost
= TTI
->getArithmeticInstrCost(
2282 S
.getOpcode(), ScalarTy
, Op1VK
, Op2VK
, Op1VP
, Op2VP
, Operands
);
2283 if (NeedToShuffleReuses
) {
2284 ReuseShuffleCost
-= (ReuseShuffleNumbers
- VL
.size()) * ScalarEltCost
;
2286 int ScalarCost
= VecTy
->getNumElements() * ScalarEltCost
;
2287 int VecCost
= TTI
->getArithmeticInstrCost(S
.getOpcode(), VecTy
, Op1VK
,
2288 Op2VK
, Op1VP
, Op2VP
, Operands
);
2289 return ReuseShuffleCost
+ VecCost
- ScalarCost
;
2291 case Instruction::GetElementPtr
: {
2292 TargetTransformInfo::OperandValueKind Op1VK
=
2293 TargetTransformInfo::OK_AnyValue
;
2294 TargetTransformInfo::OperandValueKind Op2VK
=
2295 TargetTransformInfo::OK_UniformConstantValue
;
2298 TTI
->getArithmeticInstrCost(Instruction::Add
, ScalarTy
, Op1VK
, Op2VK
);
2299 if (NeedToShuffleReuses
) {
2300 ReuseShuffleCost
-= (ReuseShuffleNumbers
- VL
.size()) * ScalarEltCost
;
2302 int ScalarCost
= VecTy
->getNumElements() * ScalarEltCost
;
2304 TTI
->getArithmeticInstrCost(Instruction::Add
, VecTy
, Op1VK
, Op2VK
);
2305 return ReuseShuffleCost
+ VecCost
- ScalarCost
;
2307 case Instruction::Load
: {
2308 // Cost of wide load - cost of scalar loads.
2309 unsigned alignment
= cast
<LoadInst
>(VL0
)->getAlignment();
2311 TTI
->getMemoryOpCost(Instruction::Load
, ScalarTy
, alignment
, 0, VL0
);
2312 if (NeedToShuffleReuses
) {
2313 ReuseShuffleCost
-= (ReuseShuffleNumbers
- VL
.size()) * ScalarEltCost
;
2315 int ScalarLdCost
= VecTy
->getNumElements() * ScalarEltCost
;
2317 TTI
->getMemoryOpCost(Instruction::Load
, VecTy
, alignment
, 0, VL0
);
2318 if (!E
->ReorderIndices
.empty()) {
2319 // TODO: Merge this shuffle with the ReuseShuffleCost.
2320 VecLdCost
+= TTI
->getShuffleCost(
2321 TargetTransformInfo::SK_PermuteSingleSrc
, VecTy
);
2323 return ReuseShuffleCost
+ VecLdCost
- ScalarLdCost
;
2325 case Instruction::Store
: {
2326 // We know that we can merge the stores. Calculate the cost.
2327 unsigned alignment
= cast
<StoreInst
>(VL0
)->getAlignment();
2329 TTI
->getMemoryOpCost(Instruction::Store
, ScalarTy
, alignment
, 0, VL0
);
2330 if (NeedToShuffleReuses
) {
2331 ReuseShuffleCost
-= (ReuseShuffleNumbers
- VL
.size()) * ScalarEltCost
;
2333 int ScalarStCost
= VecTy
->getNumElements() * ScalarEltCost
;
2335 TTI
->getMemoryOpCost(Instruction::Store
, VecTy
, alignment
, 0, VL0
);
2336 return ReuseShuffleCost
+ VecStCost
- ScalarStCost
;
2338 case Instruction::Call
: {
2339 CallInst
*CI
= cast
<CallInst
>(VL0
);
2340 Intrinsic::ID ID
= getVectorIntrinsicIDForCall(CI
, TLI
);
2342 // Calculate the cost of the scalar and vector calls.
2343 SmallVector
<Type
*, 4> ScalarTys
;
2344 for (unsigned op
= 0, opc
= CI
->getNumArgOperands(); op
!= opc
; ++op
)
2345 ScalarTys
.push_back(CI
->getArgOperand(op
)->getType());
2348 if (auto *FPMO
= dyn_cast
<FPMathOperator
>(CI
))
2349 FMF
= FPMO
->getFastMathFlags();
2352 TTI
->getIntrinsicInstrCost(ID
, ScalarTy
, ScalarTys
, FMF
);
2353 if (NeedToShuffleReuses
) {
2354 ReuseShuffleCost
-= (ReuseShuffleNumbers
- VL
.size()) * ScalarEltCost
;
2356 int ScalarCallCost
= VecTy
->getNumElements() * ScalarEltCost
;
2358 SmallVector
<Value
*, 4> Args(CI
->arg_operands());
2359 int VecCallCost
= TTI
->getIntrinsicInstrCost(ID
, CI
->getType(), Args
, FMF
,
2360 VecTy
->getNumElements());
2362 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost
- ScalarCallCost
2363 << " (" << VecCallCost
<< "-" << ScalarCallCost
<< ")"
2364 << " for " << *CI
<< "\n");
2366 return ReuseShuffleCost
+ VecCallCost
- ScalarCallCost
;
2368 case Instruction::ShuffleVector
: {
2369 assert(S
.isAltShuffle() &&
2370 ((Instruction::isBinaryOp(S
.getOpcode()) &&
2371 Instruction::isBinaryOp(S
.getAltOpcode())) ||
2372 (Instruction::isCast(S
.getOpcode()) &&
2373 Instruction::isCast(S
.getAltOpcode()))) &&
2374 "Invalid Shuffle Vector Operand");
2376 if (NeedToShuffleReuses
) {
2377 for (unsigned Idx
: E
->ReuseShuffleIndices
) {
2378 Instruction
*I
= cast
<Instruction
>(VL
[Idx
]);
2379 ReuseShuffleCost
-= TTI
->getInstructionCost(
2380 I
, TargetTransformInfo::TCK_RecipThroughput
);
2382 for (Value
*V
: VL
) {
2383 Instruction
*I
= cast
<Instruction
>(V
);
2384 ReuseShuffleCost
+= TTI
->getInstructionCost(
2385 I
, TargetTransformInfo::TCK_RecipThroughput
);
2388 for (Value
*i
: VL
) {
2389 Instruction
*I
= cast
<Instruction
>(i
);
2390 assert(S
.isOpcodeOrAlt(I
) && "Unexpected main/alternate opcode");
2391 ScalarCost
+= TTI
->getInstructionCost(
2392 I
, TargetTransformInfo::TCK_RecipThroughput
);
2394 // VecCost is equal to sum of the cost of creating 2 vectors
2395 // and the cost of creating shuffle.
2397 if (Instruction::isBinaryOp(S
.getOpcode())) {
2398 VecCost
= TTI
->getArithmeticInstrCost(S
.getOpcode(), VecTy
);
2399 VecCost
+= TTI
->getArithmeticInstrCost(S
.getAltOpcode(), VecTy
);
2401 Type
*Src0SclTy
= S
.MainOp
->getOperand(0)->getType();
2402 Type
*Src1SclTy
= S
.AltOp
->getOperand(0)->getType();
2403 VectorType
*Src0Ty
= VectorType::get(Src0SclTy
, VL
.size());
2404 VectorType
*Src1Ty
= VectorType::get(Src1SclTy
, VL
.size());
2405 VecCost
= TTI
->getCastInstrCost(S
.getOpcode(), VecTy
, Src0Ty
);
2406 VecCost
+= TTI
->getCastInstrCost(S
.getAltOpcode(), VecTy
, Src1Ty
);
2408 VecCost
+= TTI
->getShuffleCost(TargetTransformInfo::SK_Select
, VecTy
, 0);
2409 return ReuseShuffleCost
+ VecCost
- ScalarCost
;
2412 llvm_unreachable("Unknown instruction");
2416 bool BoUpSLP::isFullyVectorizableTinyTree() {
2417 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
2418 << VectorizableTree
.size() << " is fully vectorizable .\n");
2420 // We only handle trees of heights 1 and 2.
2421 if (VectorizableTree
.size() == 1 && !VectorizableTree
[0].NeedToGather
)
2424 if (VectorizableTree
.size() != 2)
2427 // Handle splat and all-constants stores.
2428 if (!VectorizableTree
[0].NeedToGather
&&
2429 (allConstant(VectorizableTree
[1].Scalars
) ||
2430 isSplat(VectorizableTree
[1].Scalars
)))
2433 // Gathering cost would be too much for tiny trees.
2434 if (VectorizableTree
[0].NeedToGather
|| VectorizableTree
[1].NeedToGather
)
2440 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() {
2441 // We can vectorize the tree if its size is greater than or equal to the
2442 // minimum size specified by the MinTreeSize command line option.
2443 if (VectorizableTree
.size() >= MinTreeSize
)
2446 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
2447 // can vectorize it if we can prove it fully vectorizable.
2448 if (isFullyVectorizableTinyTree())
2451 assert(VectorizableTree
.empty()
2452 ? ExternalUses
.empty()
2453 : true && "We shouldn't have any external users");
2455 // Otherwise, we can't vectorize the tree. It is both tiny and not fully
2460 int BoUpSLP::getSpillCost() {
2461 // Walk from the bottom of the tree to the top, tracking which values are
2462 // live. When we see a call instruction that is not part of our tree,
2463 // query TTI to see if there is a cost to keeping values live over it
2464 // (for example, if spills and fills are required).
2465 unsigned BundleWidth
= VectorizableTree
.front().Scalars
.size();
2468 SmallPtrSet
<Instruction
*, 4> LiveValues
;
2469 Instruction
*PrevInst
= nullptr;
2471 for (const auto &N
: VectorizableTree
) {
2472 Instruction
*Inst
= dyn_cast
<Instruction
>(N
.Scalars
[0]);
2481 // Update LiveValues.
2482 LiveValues
.erase(PrevInst
);
2483 for (auto &J
: PrevInst
->operands()) {
2484 if (isa
<Instruction
>(&*J
) && getTreeEntry(&*J
))
2485 LiveValues
.insert(cast
<Instruction
>(&*J
));
2489 dbgs() << "SLP: #LV: " << LiveValues
.size();
2490 for (auto *X
: LiveValues
)
2491 dbgs() << " " << X
->getName();
2492 dbgs() << ", Looking at ";
2496 // Now find the sequence of instructions between PrevInst and Inst.
2497 BasicBlock::reverse_iterator InstIt
= ++Inst
->getIterator().getReverse(),
2499 PrevInst
->getIterator().getReverse();
2500 while (InstIt
!= PrevInstIt
) {
2501 if (PrevInstIt
== PrevInst
->getParent()->rend()) {
2502 PrevInstIt
= Inst
->getParent()->rbegin();
2506 // Debug informations don't impact spill cost.
2507 if ((isa
<CallInst
>(&*PrevInstIt
) &&
2508 !isa
<DbgInfoIntrinsic
>(&*PrevInstIt
)) &&
2509 &*PrevInstIt
!= PrevInst
) {
2510 SmallVector
<Type
*, 4> V
;
2511 for (auto *II
: LiveValues
)
2512 V
.push_back(VectorType::get(II
->getType(), BundleWidth
));
2513 Cost
+= TTI
->getCostOfKeepingLiveOverCall(V
);
2525 int BoUpSLP::getTreeCost() {
2527 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
2528 << VectorizableTree
.size() << ".\n");
2530 unsigned BundleWidth
= VectorizableTree
[0].Scalars
.size();
2532 for (unsigned I
= 0, E
= VectorizableTree
.size(); I
< E
; ++I
) {
2533 TreeEntry
&TE
= VectorizableTree
[I
];
2535 // We create duplicate tree entries for gather sequences that have multiple
2536 // uses. However, we should not compute the cost of duplicate sequences.
2537 // For example, if we have a build vector (i.e., insertelement sequence)
2538 // that is used by more than one vector instruction, we only need to
2539 // compute the cost of the insertelement instructions once. The redundent
2540 // instructions will be eliminated by CSE.
2542 // We should consider not creating duplicate tree entries for gather
2543 // sequences, and instead add additional edges to the tree representing
2544 // their uses. Since such an approach results in fewer total entries,
2545 // existing heuristics based on tree size may yeild different results.
2547 if (TE
.NeedToGather
&&
2548 std::any_of(std::next(VectorizableTree
.begin(), I
+ 1),
2549 VectorizableTree
.end(), [TE
](TreeEntry
&Entry
) {
2550 return Entry
.NeedToGather
&& Entry
.isSame(TE
.Scalars
);
2554 int C
= getEntryCost(&TE
);
2555 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
2556 << " for bundle that starts with " << *TE
.Scalars
[0]
2561 SmallPtrSet
<Value
*, 16> ExtractCostCalculated
;
2562 int ExtractCost
= 0;
2563 for (ExternalUser
&EU
: ExternalUses
) {
2564 // We only add extract cost once for the same scalar.
2565 if (!ExtractCostCalculated
.insert(EU
.Scalar
).second
)
2568 // Uses by ephemeral values are free (because the ephemeral value will be
2569 // removed prior to code generation, and so the extraction will be
2570 // removed as well).
2571 if (EphValues
.count(EU
.User
))
2574 // If we plan to rewrite the tree in a smaller type, we will need to sign
2575 // extend the extracted value back to the original type. Here, we account
2576 // for the extract and the added cost of the sign extend if needed.
2577 auto *VecTy
= VectorType::get(EU
.Scalar
->getType(), BundleWidth
);
2578 auto *ScalarRoot
= VectorizableTree
[0].Scalars
[0];
2579 if (MinBWs
.count(ScalarRoot
)) {
2580 auto *MinTy
= IntegerType::get(F
->getContext(), MinBWs
[ScalarRoot
].first
);
2582 MinBWs
[ScalarRoot
].second
? Instruction::SExt
: Instruction::ZExt
;
2583 VecTy
= VectorType::get(MinTy
, BundleWidth
);
2584 ExtractCost
+= TTI
->getExtractWithExtendCost(Extend
, EU
.Scalar
->getType(),
2588 TTI
->getVectorInstrCost(Instruction::ExtractElement
, VecTy
, EU
.Lane
);
2592 int SpillCost
= getSpillCost();
2593 Cost
+= SpillCost
+ ExtractCost
;
2597 raw_string_ostream
OS(Str
);
2598 OS
<< "SLP: Spill Cost = " << SpillCost
<< ".\n"
2599 << "SLP: Extract Cost = " << ExtractCost
<< ".\n"
2600 << "SLP: Total Cost = " << Cost
<< ".\n";
2602 LLVM_DEBUG(dbgs() << Str
);
2605 ViewGraph(this, "SLP" + F
->getName(), false, Str
);
2610 int BoUpSLP::getGatherCost(Type
*Ty
,
2611 const DenseSet
<unsigned> &ShuffledIndices
) {
2613 for (unsigned i
= 0, e
= cast
<VectorType
>(Ty
)->getNumElements(); i
< e
; ++i
)
2614 if (!ShuffledIndices
.count(i
))
2615 Cost
+= TTI
->getVectorInstrCost(Instruction::InsertElement
, Ty
, i
);
2616 if (!ShuffledIndices
.empty())
2617 Cost
+= TTI
->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc
, Ty
);
2621 int BoUpSLP::getGatherCost(ArrayRef
<Value
*> VL
) {
2622 // Find the type of the operands in VL.
2623 Type
*ScalarTy
= VL
[0]->getType();
2624 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(VL
[0]))
2625 ScalarTy
= SI
->getValueOperand()->getType();
2626 VectorType
*VecTy
= VectorType::get(ScalarTy
, VL
.size());
2627 // Find the cost of inserting/extracting values from the vector.
2628 // Check if the same elements are inserted several times and count them as
2629 // shuffle candidates.
2630 DenseSet
<unsigned> ShuffledElements
;
2631 DenseSet
<Value
*> UniqueElements
;
2632 // Iterate in reverse order to consider insert elements with the high cost.
2633 for (unsigned I
= VL
.size(); I
> 0; --I
) {
2634 unsigned Idx
= I
- 1;
2635 if (!UniqueElements
.insert(VL
[Idx
]).second
)
2636 ShuffledElements
.insert(Idx
);
2638 return getGatherCost(VecTy
, ShuffledElements
);
2641 // Reorder commutative operations in alternate shuffle if the resulting vectors
2642 // are consecutive loads. This would allow us to vectorize the tree.
2643 // If we have something like-
2644 // load a[0] - load b[0]
2645 // load b[1] + load a[1]
2646 // load a[2] - load b[2]
2647 // load a[3] + load b[3]
2648 // Reordering the second load b[1] load a[1] would allow us to vectorize this
2650 void BoUpSLP::reorderAltShuffleOperands(const InstructionsState
&S
,
2651 ArrayRef
<Value
*> VL
,
2652 SmallVectorImpl
<Value
*> &Left
,
2653 SmallVectorImpl
<Value
*> &Right
) {
2654 // Push left and right operands of binary operation into Left and Right
2655 for (Value
*V
: VL
) {
2656 auto *I
= cast
<Instruction
>(V
);
2657 assert(S
.isOpcodeOrAlt(I
) && "Incorrect instruction in vector");
2658 Left
.push_back(I
->getOperand(0));
2659 Right
.push_back(I
->getOperand(1));
2662 // Reorder if we have a commutative operation and consecutive access
2663 // are on either side of the alternate instructions.
2664 for (unsigned j
= 0; j
< VL
.size() - 1; ++j
) {
2665 if (LoadInst
*L
= dyn_cast
<LoadInst
>(Left
[j
])) {
2666 if (LoadInst
*L1
= dyn_cast
<LoadInst
>(Right
[j
+ 1])) {
2667 Instruction
*VL1
= cast
<Instruction
>(VL
[j
]);
2668 Instruction
*VL2
= cast
<Instruction
>(VL
[j
+ 1]);
2669 if (VL1
->isCommutative() && isConsecutiveAccess(L
, L1
, *DL
, *SE
)) {
2670 std::swap(Left
[j
], Right
[j
]);
2672 } else if (VL2
->isCommutative() &&
2673 isConsecutiveAccess(L
, L1
, *DL
, *SE
)) {
2674 std::swap(Left
[j
+ 1], Right
[j
+ 1]);
2680 if (LoadInst
*L
= dyn_cast
<LoadInst
>(Right
[j
])) {
2681 if (LoadInst
*L1
= dyn_cast
<LoadInst
>(Left
[j
+ 1])) {
2682 Instruction
*VL1
= cast
<Instruction
>(VL
[j
]);
2683 Instruction
*VL2
= cast
<Instruction
>(VL
[j
+ 1]);
2684 if (VL1
->isCommutative() && isConsecutiveAccess(L
, L1
, *DL
, *SE
)) {
2685 std::swap(Left
[j
], Right
[j
]);
2687 } else if (VL2
->isCommutative() &&
2688 isConsecutiveAccess(L
, L1
, *DL
, *SE
)) {
2689 std::swap(Left
[j
+ 1], Right
[j
+ 1]);
2698 // Return true if I should be commuted before adding it's left and right
2699 // operands to the arrays Left and Right.
2701 // The vectorizer is trying to either have all elements one side being
2702 // instruction with the same opcode to enable further vectorization, or having
2703 // a splat to lower the vectorizing cost.
2704 static bool shouldReorderOperands(
2705 int i
, unsigned Opcode
, Instruction
&I
, ArrayRef
<Value
*> Left
,
2706 ArrayRef
<Value
*> Right
, bool AllSameOpcodeLeft
, bool AllSameOpcodeRight
,
2707 bool SplatLeft
, bool SplatRight
, Value
*&VLeft
, Value
*&VRight
) {
2708 VLeft
= I
.getOperand(0);
2709 VRight
= I
.getOperand(1);
2710 // If we have "SplatRight", try to see if commuting is needed to preserve it.
2712 if (VRight
== Right
[i
- 1])
2713 // Preserve SplatRight
2715 if (VLeft
== Right
[i
- 1]) {
2716 // Commuting would preserve SplatRight, but we don't want to break
2717 // SplatLeft either, i.e. preserve the original order if possible.
2718 // (FIXME: why do we care?)
2719 if (SplatLeft
&& VLeft
== Left
[i
- 1])
2724 // Symmetrically handle Right side.
2726 if (VLeft
== Left
[i
- 1])
2727 // Preserve SplatLeft
2729 if (VRight
== Left
[i
- 1])
2733 Instruction
*ILeft
= dyn_cast
<Instruction
>(VLeft
);
2734 Instruction
*IRight
= dyn_cast
<Instruction
>(VRight
);
2736 // If we have "AllSameOpcodeRight", try to see if the left operands preserves
2737 // it and not the right, in this case we want to commute.
2738 if (AllSameOpcodeRight
) {
2739 unsigned RightPrevOpcode
= cast
<Instruction
>(Right
[i
- 1])->getOpcode();
2740 if (IRight
&& RightPrevOpcode
== IRight
->getOpcode())
2741 // Do not commute, a match on the right preserves AllSameOpcodeRight
2743 if (ILeft
&& RightPrevOpcode
== ILeft
->getOpcode()) {
2744 // We have a match and may want to commute, but first check if there is
2745 // not also a match on the existing operands on the Left to preserve
2746 // AllSameOpcodeLeft, i.e. preserve the original order if possible.
2747 // (FIXME: why do we care?)
2748 if (AllSameOpcodeLeft
&& ILeft
&&
2749 cast
<Instruction
>(Left
[i
- 1])->getOpcode() == ILeft
->getOpcode())
2754 // Symmetrically handle Left side.
2755 if (AllSameOpcodeLeft
) {
2756 unsigned LeftPrevOpcode
= cast
<Instruction
>(Left
[i
- 1])->getOpcode();
2757 if (ILeft
&& LeftPrevOpcode
== ILeft
->getOpcode())
2759 if (IRight
&& LeftPrevOpcode
== IRight
->getOpcode())
2765 void BoUpSLP::reorderInputsAccordingToOpcode(unsigned Opcode
,
2766 ArrayRef
<Value
*> VL
,
2767 SmallVectorImpl
<Value
*> &Left
,
2768 SmallVectorImpl
<Value
*> &Right
) {
2770 // Peel the first iteration out of the loop since there's nothing
2771 // interesting to do anyway and it simplifies the checks in the loop.
2772 auto *I
= cast
<Instruction
>(VL
[0]);
2773 Value
*VLeft
= I
->getOperand(0);
2774 Value
*VRight
= I
->getOperand(1);
2775 if (!isa
<Instruction
>(VRight
) && isa
<Instruction
>(VLeft
))
2776 // Favor having instruction to the right. FIXME: why?
2777 std::swap(VLeft
, VRight
);
2778 Left
.push_back(VLeft
);
2779 Right
.push_back(VRight
);
2782 // Keep track if we have instructions with all the same opcode on one side.
2783 bool AllSameOpcodeLeft
= isa
<Instruction
>(Left
[0]);
2784 bool AllSameOpcodeRight
= isa
<Instruction
>(Right
[0]);
2785 // Keep track if we have one side with all the same value (broadcast).
2786 bool SplatLeft
= true;
2787 bool SplatRight
= true;
2789 for (unsigned i
= 1, e
= VL
.size(); i
!= e
; ++i
) {
2790 Instruction
*I
= cast
<Instruction
>(VL
[i
]);
2791 assert(((I
->getOpcode() == Opcode
&& I
->isCommutative()) ||
2792 (I
->getOpcode() != Opcode
&& Instruction::isCommutative(Opcode
))) &&
2793 "Can only process commutative instruction");
2794 // Commute to favor either a splat or maximizing having the same opcodes on
2798 if (shouldReorderOperands(i
, Opcode
, *I
, Left
, Right
, AllSameOpcodeLeft
,
2799 AllSameOpcodeRight
, SplatLeft
, SplatRight
, VLeft
,
2801 Left
.push_back(VRight
);
2802 Right
.push_back(VLeft
);
2804 Left
.push_back(VLeft
);
2805 Right
.push_back(VRight
);
2807 // Update Splat* and AllSameOpcode* after the insertion.
2808 SplatRight
= SplatRight
&& (Right
[i
- 1] == Right
[i
]);
2809 SplatLeft
= SplatLeft
&& (Left
[i
- 1] == Left
[i
]);
2810 AllSameOpcodeLeft
= AllSameOpcodeLeft
&& isa
<Instruction
>(Left
[i
]) &&
2811 (cast
<Instruction
>(Left
[i
- 1])->getOpcode() ==
2812 cast
<Instruction
>(Left
[i
])->getOpcode());
2813 AllSameOpcodeRight
= AllSameOpcodeRight
&& isa
<Instruction
>(Right
[i
]) &&
2814 (cast
<Instruction
>(Right
[i
- 1])->getOpcode() ==
2815 cast
<Instruction
>(Right
[i
])->getOpcode());
2818 // If one operand end up being broadcast, return this operand order.
2819 if (SplatRight
|| SplatLeft
)
2822 // Finally check if we can get longer vectorizable chain by reordering
2823 // without breaking the good operand order detected above.
2824 // E.g. If we have something like-
2825 // load a[0] load b[0]
2826 // load b[1] load a[1]
2827 // load a[2] load b[2]
2828 // load a[3] load b[3]
2829 // Reordering the second load b[1] load a[1] would allow us to vectorize
2830 // this code and we still retain AllSameOpcode property.
2831 // FIXME: This load reordering might break AllSameOpcode in some rare cases
2833 // add a[0],c[0] load b[0]
2834 // add a[1],c[2] load b[1]
2836 // add a[3],c[3] load b[3]
2837 for (unsigned j
= 0, e
= VL
.size() - 1; j
< e
; ++j
) {
2838 if (LoadInst
*L
= dyn_cast
<LoadInst
>(Left
[j
])) {
2839 if (LoadInst
*L1
= dyn_cast
<LoadInst
>(Right
[j
+ 1])) {
2840 if (isConsecutiveAccess(L
, L1
, *DL
, *SE
)) {
2841 std::swap(Left
[j
+ 1], Right
[j
+ 1]);
2846 if (LoadInst
*L
= dyn_cast
<LoadInst
>(Right
[j
])) {
2847 if (LoadInst
*L1
= dyn_cast
<LoadInst
>(Left
[j
+ 1])) {
2848 if (isConsecutiveAccess(L
, L1
, *DL
, *SE
)) {
2849 std::swap(Left
[j
+ 1], Right
[j
+ 1]);
2858 void BoUpSLP::setInsertPointAfterBundle(ArrayRef
<Value
*> VL
,
2859 const InstructionsState
&S
) {
2860 // Get the basic block this bundle is in. All instructions in the bundle
2861 // should be in this block.
2862 auto *Front
= cast
<Instruction
>(S
.OpValue
);
2863 auto *BB
= Front
->getParent();
2864 assert(llvm::all_of(make_range(VL
.begin(), VL
.end()), [=](Value
*V
) -> bool {
2865 auto *I
= cast
<Instruction
>(V
);
2866 return !S
.isOpcodeOrAlt(I
) || I
->getParent() == BB
;
2869 // The last instruction in the bundle in program order.
2870 Instruction
*LastInst
= nullptr;
2872 // Find the last instruction. The common case should be that BB has been
2873 // scheduled, and the last instruction is VL.back(). So we start with
2874 // VL.back() and iterate over schedule data until we reach the end of the
2875 // bundle. The end of the bundle is marked by null ScheduleData.
2876 if (BlocksSchedules
.count(BB
)) {
2878 BlocksSchedules
[BB
]->getScheduleData(isOneOf(S
, VL
.back()));
2879 if (Bundle
&& Bundle
->isPartOfBundle())
2880 for (; Bundle
; Bundle
= Bundle
->NextInBundle
)
2881 if (Bundle
->OpValue
== Bundle
->Inst
)
2882 LastInst
= Bundle
->Inst
;
2885 // LastInst can still be null at this point if there's either not an entry
2886 // for BB in BlocksSchedules or there's no ScheduleData available for
2887 // VL.back(). This can be the case if buildTree_rec aborts for various
2888 // reasons (e.g., the maximum recursion depth is reached, the maximum region
2889 // size is reached, etc.). ScheduleData is initialized in the scheduling
2892 // If this happens, we can still find the last instruction by brute force. We
2893 // iterate forwards from Front (inclusive) until we either see all
2894 // instructions in the bundle or reach the end of the block. If Front is the
2895 // last instruction in program order, LastInst will be set to Front, and we
2896 // will visit all the remaining instructions in the block.
2898 // One of the reasons we exit early from buildTree_rec is to place an upper
2899 // bound on compile-time. Thus, taking an additional compile-time hit here is
2900 // not ideal. However, this should be exceedingly rare since it requires that
2901 // we both exit early from buildTree_rec and that the bundle be out-of-order
2902 // (causing us to iterate all the way to the end of the block).
2904 SmallPtrSet
<Value
*, 16> Bundle(VL
.begin(), VL
.end());
2905 for (auto &I
: make_range(BasicBlock::iterator(Front
), BB
->end())) {
2906 if (Bundle
.erase(&I
) && S
.isOpcodeOrAlt(&I
))
2913 // Set the insertion point after the last instruction in the bundle. Set the
2914 // debug location to Front.
2915 Builder
.SetInsertPoint(BB
, ++LastInst
->getIterator());
2916 Builder
.SetCurrentDebugLocation(Front
->getDebugLoc());
2919 Value
*BoUpSLP::Gather(ArrayRef
<Value
*> VL
, VectorType
*Ty
) {
2920 Value
*Vec
= UndefValue::get(Ty
);
2921 // Generate the 'InsertElement' instruction.
2922 for (unsigned i
= 0; i
< Ty
->getNumElements(); ++i
) {
2923 Vec
= Builder
.CreateInsertElement(Vec
, VL
[i
], Builder
.getInt32(i
));
2924 if (Instruction
*Insrt
= dyn_cast
<Instruction
>(Vec
)) {
2925 GatherSeq
.insert(Insrt
);
2926 CSEBlocks
.insert(Insrt
->getParent());
2928 // Add to our 'need-to-extract' list.
2929 if (TreeEntry
*E
= getTreeEntry(VL
[i
])) {
2930 // Find which lane we need to extract.
2932 for (unsigned Lane
= 0, LE
= E
->Scalars
.size(); Lane
!= LE
; ++Lane
) {
2933 // Is this the lane of the scalar that we are looking for ?
2934 if (E
->Scalars
[Lane
] == VL
[i
]) {
2939 assert(FoundLane
>= 0 && "Could not find the correct lane");
2940 if (!E
->ReuseShuffleIndices
.empty()) {
2942 std::distance(E
->ReuseShuffleIndices
.begin(),
2943 llvm::find(E
->ReuseShuffleIndices
, FoundLane
));
2945 ExternalUses
.push_back(ExternalUser(VL
[i
], Insrt
, FoundLane
));
2953 Value
*BoUpSLP::vectorizeTree(ArrayRef
<Value
*> VL
) {
2954 InstructionsState S
= getSameOpcode(VL
);
2955 if (S
.getOpcode()) {
2956 if (TreeEntry
*E
= getTreeEntry(S
.OpValue
)) {
2957 if (E
->isSame(VL
)) {
2958 Value
*V
= vectorizeTree(E
);
2959 if (VL
.size() == E
->Scalars
.size() && !E
->ReuseShuffleIndices
.empty()) {
2960 // We need to get the vectorized value but without shuffle.
2961 if (auto *SV
= dyn_cast
<ShuffleVectorInst
>(V
)) {
2962 V
= SV
->getOperand(0);
2964 // Reshuffle to get only unique values.
2965 SmallVector
<unsigned, 4> UniqueIdxs
;
2966 SmallSet
<unsigned, 4> UsedIdxs
;
2967 for(unsigned Idx
: E
->ReuseShuffleIndices
)
2968 if (UsedIdxs
.insert(Idx
).second
)
2969 UniqueIdxs
.emplace_back(Idx
);
2970 V
= Builder
.CreateShuffleVector(V
, UndefValue::get(V
->getType()),
2979 Type
*ScalarTy
= S
.OpValue
->getType();
2980 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(S
.OpValue
))
2981 ScalarTy
= SI
->getValueOperand()->getType();
2983 // Check that every instruction appears once in this bundle.
2984 SmallVector
<unsigned, 4> ReuseShuffleIndicies
;
2985 SmallVector
<Value
*, 4> UniqueValues
;
2986 if (VL
.size() > 2) {
2987 DenseMap
<Value
*, unsigned> UniquePositions
;
2988 for (Value
*V
: VL
) {
2989 auto Res
= UniquePositions
.try_emplace(V
, UniqueValues
.size());
2990 ReuseShuffleIndicies
.emplace_back(Res
.first
->second
);
2991 if (Res
.second
|| isa
<Constant
>(V
))
2992 UniqueValues
.emplace_back(V
);
2994 // Do not shuffle single element or if number of unique values is not power
2996 if (UniqueValues
.size() == VL
.size() || UniqueValues
.size() <= 1 ||
2997 !llvm::isPowerOf2_32(UniqueValues
.size()))
2998 ReuseShuffleIndicies
.clear();
3002 VectorType
*VecTy
= VectorType::get(ScalarTy
, VL
.size());
3004 Value
*V
= Gather(VL
, VecTy
);
3005 if (!ReuseShuffleIndicies
.empty()) {
3006 V
= Builder
.CreateShuffleVector(V
, UndefValue::get(VecTy
),
3007 ReuseShuffleIndicies
, "shuffle");
3008 if (auto *I
= dyn_cast
<Instruction
>(V
)) {
3009 GatherSeq
.insert(I
);
3010 CSEBlocks
.insert(I
->getParent());
3016 static void inversePermutation(ArrayRef
<unsigned> Indices
,
3017 SmallVectorImpl
<unsigned> &Mask
) {
3019 const unsigned E
= Indices
.size();
3021 for (unsigned I
= 0; I
< E
; ++I
)
3022 Mask
[Indices
[I
]] = I
;
3025 Value
*BoUpSLP::vectorizeTree(TreeEntry
*E
) {
3026 IRBuilder
<>::InsertPointGuard
Guard(Builder
);
3028 if (E
->VectorizedValue
) {
3029 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E
->Scalars
[0] << ".\n");
3030 return E
->VectorizedValue
;
3033 InstructionsState S
= getSameOpcode(E
->Scalars
);
3034 Instruction
*VL0
= cast
<Instruction
>(S
.OpValue
);
3035 Type
*ScalarTy
= VL0
->getType();
3036 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(VL0
))
3037 ScalarTy
= SI
->getValueOperand()->getType();
3038 VectorType
*VecTy
= VectorType::get(ScalarTy
, E
->Scalars
.size());
3040 bool NeedToShuffleReuses
= !E
->ReuseShuffleIndices
.empty();
3042 if (E
->NeedToGather
) {
3043 setInsertPointAfterBundle(E
->Scalars
, S
);
3044 auto *V
= Gather(E
->Scalars
, VecTy
);
3045 if (NeedToShuffleReuses
) {
3046 V
= Builder
.CreateShuffleVector(V
, UndefValue::get(VecTy
),
3047 E
->ReuseShuffleIndices
, "shuffle");
3048 if (auto *I
= dyn_cast
<Instruction
>(V
)) {
3049 GatherSeq
.insert(I
);
3050 CSEBlocks
.insert(I
->getParent());
3053 E
->VectorizedValue
= V
;
3057 unsigned ShuffleOrOp
= S
.isAltShuffle() ?
3058 (unsigned) Instruction::ShuffleVector
: S
.getOpcode();
3059 switch (ShuffleOrOp
) {
3060 case Instruction::PHI
: {
3061 PHINode
*PH
= dyn_cast
<PHINode
>(VL0
);
3062 Builder
.SetInsertPoint(PH
->getParent()->getFirstNonPHI());
3063 Builder
.SetCurrentDebugLocation(PH
->getDebugLoc());
3064 PHINode
*NewPhi
= Builder
.CreatePHI(VecTy
, PH
->getNumIncomingValues());
3066 if (NeedToShuffleReuses
) {
3067 V
= Builder
.CreateShuffleVector(V
, UndefValue::get(VecTy
),
3068 E
->ReuseShuffleIndices
, "shuffle");
3070 E
->VectorizedValue
= V
;
3072 // PHINodes may have multiple entries from the same block. We want to
3073 // visit every block once.
3074 SmallPtrSet
<BasicBlock
*, 4> VisitedBBs
;
3076 for (unsigned i
= 0, e
= PH
->getNumIncomingValues(); i
< e
; ++i
) {
3078 BasicBlock
*IBB
= PH
->getIncomingBlock(i
);
3080 if (!VisitedBBs
.insert(IBB
).second
) {
3081 NewPhi
->addIncoming(NewPhi
->getIncomingValueForBlock(IBB
), IBB
);
3085 // Prepare the operand vector.
3086 for (Value
*V
: E
->Scalars
)
3087 Operands
.push_back(cast
<PHINode
>(V
)->getIncomingValueForBlock(IBB
));
3089 Builder
.SetInsertPoint(IBB
->getTerminator());
3090 Builder
.SetCurrentDebugLocation(PH
->getDebugLoc());
3091 Value
*Vec
= vectorizeTree(Operands
);
3092 NewPhi
->addIncoming(Vec
, IBB
);
3095 assert(NewPhi
->getNumIncomingValues() == PH
->getNumIncomingValues() &&
3096 "Invalid number of incoming values");
3100 case Instruction::ExtractElement
: {
3101 if (!E
->NeedToGather
) {
3102 Value
*V
= VL0
->getOperand(0);
3103 if (!E
->ReorderIndices
.empty()) {
3105 inversePermutation(E
->ReorderIndices
, Mask
);
3106 Builder
.SetInsertPoint(VL0
);
3107 V
= Builder
.CreateShuffleVector(V
, UndefValue::get(VecTy
), Mask
,
3110 if (NeedToShuffleReuses
) {
3111 // TODO: Merge this shuffle with the ReorderShuffleMask.
3112 if (E
->ReorderIndices
.empty())
3113 Builder
.SetInsertPoint(VL0
);
3114 V
= Builder
.CreateShuffleVector(V
, UndefValue::get(VecTy
),
3115 E
->ReuseShuffleIndices
, "shuffle");
3117 E
->VectorizedValue
= V
;
3120 setInsertPointAfterBundle(E
->Scalars
, S
);
3121 auto *V
= Gather(E
->Scalars
, VecTy
);
3122 if (NeedToShuffleReuses
) {
3123 V
= Builder
.CreateShuffleVector(V
, UndefValue::get(VecTy
),
3124 E
->ReuseShuffleIndices
, "shuffle");
3125 if (auto *I
= dyn_cast
<Instruction
>(V
)) {
3126 GatherSeq
.insert(I
);
3127 CSEBlocks
.insert(I
->getParent());
3130 E
->VectorizedValue
= V
;
3133 case Instruction::ExtractValue
: {
3134 if (!E
->NeedToGather
) {
3135 LoadInst
*LI
= cast
<LoadInst
>(VL0
->getOperand(0));
3136 Builder
.SetInsertPoint(LI
);
3137 PointerType
*PtrTy
= PointerType::get(VecTy
, LI
->getPointerAddressSpace());
3138 Value
*Ptr
= Builder
.CreateBitCast(LI
->getOperand(0), PtrTy
);
3139 LoadInst
*V
= Builder
.CreateAlignedLoad(Ptr
, LI
->getAlignment());
3140 Value
*NewV
= propagateMetadata(V
, E
->Scalars
);
3141 if (!E
->ReorderIndices
.empty()) {
3143 inversePermutation(E
->ReorderIndices
, Mask
);
3144 NewV
= Builder
.CreateShuffleVector(NewV
, UndefValue::get(VecTy
), Mask
,
3147 if (NeedToShuffleReuses
) {
3148 // TODO: Merge this shuffle with the ReorderShuffleMask.
3149 NewV
= Builder
.CreateShuffleVector(
3150 NewV
, UndefValue::get(VecTy
), E
->ReuseShuffleIndices
, "shuffle");
3152 E
->VectorizedValue
= NewV
;
3155 setInsertPointAfterBundle(E
->Scalars
, S
);
3156 auto *V
= Gather(E
->Scalars
, VecTy
);
3157 if (NeedToShuffleReuses
) {
3158 V
= Builder
.CreateShuffleVector(V
, UndefValue::get(VecTy
),
3159 E
->ReuseShuffleIndices
, "shuffle");
3160 if (auto *I
= dyn_cast
<Instruction
>(V
)) {
3161 GatherSeq
.insert(I
);
3162 CSEBlocks
.insert(I
->getParent());
3165 E
->VectorizedValue
= V
;
3168 case Instruction::ZExt
:
3169 case Instruction::SExt
:
3170 case Instruction::FPToUI
:
3171 case Instruction::FPToSI
:
3172 case Instruction::FPExt
:
3173 case Instruction::PtrToInt
:
3174 case Instruction::IntToPtr
:
3175 case Instruction::SIToFP
:
3176 case Instruction::UIToFP
:
3177 case Instruction::Trunc
:
3178 case Instruction::FPTrunc
:
3179 case Instruction::BitCast
: {
3181 for (Value
*V
: E
->Scalars
)
3182 INVL
.push_back(cast
<Instruction
>(V
)->getOperand(0));
3184 setInsertPointAfterBundle(E
->Scalars
, S
);
3186 Value
*InVec
= vectorizeTree(INVL
);
3188 if (E
->VectorizedValue
) {
3189 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0
<< ".\n");
3190 return E
->VectorizedValue
;
3193 CastInst
*CI
= dyn_cast
<CastInst
>(VL0
);
3194 Value
*V
= Builder
.CreateCast(CI
->getOpcode(), InVec
, VecTy
);
3195 if (NeedToShuffleReuses
) {
3196 V
= Builder
.CreateShuffleVector(V
, UndefValue::get(VecTy
),
3197 E
->ReuseShuffleIndices
, "shuffle");
3199 E
->VectorizedValue
= V
;
3200 ++NumVectorInstructions
;
3203 case Instruction::FCmp
:
3204 case Instruction::ICmp
: {
3205 ValueList LHSV
, RHSV
;
3206 for (Value
*V
: E
->Scalars
) {
3207 LHSV
.push_back(cast
<Instruction
>(V
)->getOperand(0));
3208 RHSV
.push_back(cast
<Instruction
>(V
)->getOperand(1));
3211 setInsertPointAfterBundle(E
->Scalars
, S
);
3213 Value
*L
= vectorizeTree(LHSV
);
3214 Value
*R
= vectorizeTree(RHSV
);
3216 if (E
->VectorizedValue
) {
3217 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0
<< ".\n");
3218 return E
->VectorizedValue
;
3221 CmpInst::Predicate P0
= cast
<CmpInst
>(VL0
)->getPredicate();
3223 if (S
.getOpcode() == Instruction::FCmp
)
3224 V
= Builder
.CreateFCmp(P0
, L
, R
);
3226 V
= Builder
.CreateICmp(P0
, L
, R
);
3228 propagateIRFlags(V
, E
->Scalars
, VL0
);
3229 if (NeedToShuffleReuses
) {
3230 V
= Builder
.CreateShuffleVector(V
, UndefValue::get(VecTy
),
3231 E
->ReuseShuffleIndices
, "shuffle");
3233 E
->VectorizedValue
= V
;
3234 ++NumVectorInstructions
;
3237 case Instruction::Select
: {
3238 ValueList TrueVec
, FalseVec
, CondVec
;
3239 for (Value
*V
: E
->Scalars
) {
3240 CondVec
.push_back(cast
<Instruction
>(V
)->getOperand(0));
3241 TrueVec
.push_back(cast
<Instruction
>(V
)->getOperand(1));
3242 FalseVec
.push_back(cast
<Instruction
>(V
)->getOperand(2));
3245 setInsertPointAfterBundle(E
->Scalars
, S
);
3247 Value
*Cond
= vectorizeTree(CondVec
);
3248 Value
*True
= vectorizeTree(TrueVec
);
3249 Value
*False
= vectorizeTree(FalseVec
);
3251 if (E
->VectorizedValue
) {
3252 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0
<< ".\n");
3253 return E
->VectorizedValue
;
3256 Value
*V
= Builder
.CreateSelect(Cond
, True
, False
);
3257 if (NeedToShuffleReuses
) {
3258 V
= Builder
.CreateShuffleVector(V
, UndefValue::get(VecTy
),
3259 E
->ReuseShuffleIndices
, "shuffle");
3261 E
->VectorizedValue
= V
;
3262 ++NumVectorInstructions
;
3265 case Instruction::Add
:
3266 case Instruction::FAdd
:
3267 case Instruction::Sub
:
3268 case Instruction::FSub
:
3269 case Instruction::Mul
:
3270 case Instruction::FMul
:
3271 case Instruction::UDiv
:
3272 case Instruction::SDiv
:
3273 case Instruction::FDiv
:
3274 case Instruction::URem
:
3275 case Instruction::SRem
:
3276 case Instruction::FRem
:
3277 case Instruction::Shl
:
3278 case Instruction::LShr
:
3279 case Instruction::AShr
:
3280 case Instruction::And
:
3281 case Instruction::Or
:
3282 case Instruction::Xor
: {
3283 ValueList LHSVL
, RHSVL
;
3284 if (isa
<BinaryOperator
>(VL0
) && VL0
->isCommutative())
3285 reorderInputsAccordingToOpcode(S
.getOpcode(), E
->Scalars
, LHSVL
,
3288 for (Value
*V
: E
->Scalars
) {
3289 auto *I
= cast
<Instruction
>(V
);
3290 LHSVL
.push_back(I
->getOperand(0));
3291 RHSVL
.push_back(I
->getOperand(1));
3294 setInsertPointAfterBundle(E
->Scalars
, S
);
3296 Value
*LHS
= vectorizeTree(LHSVL
);
3297 Value
*RHS
= vectorizeTree(RHSVL
);
3299 if (E
->VectorizedValue
) {
3300 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0
<< ".\n");
3301 return E
->VectorizedValue
;
3304 Value
*V
= Builder
.CreateBinOp(
3305 static_cast<Instruction::BinaryOps
>(S
.getOpcode()), LHS
, RHS
);
3306 propagateIRFlags(V
, E
->Scalars
, VL0
);
3307 if (auto *I
= dyn_cast
<Instruction
>(V
))
3308 V
= propagateMetadata(I
, E
->Scalars
);
3310 if (NeedToShuffleReuses
) {
3311 V
= Builder
.CreateShuffleVector(V
, UndefValue::get(VecTy
),
3312 E
->ReuseShuffleIndices
, "shuffle");
3314 E
->VectorizedValue
= V
;
3315 ++NumVectorInstructions
;
3319 case Instruction::Load
: {
3320 // Loads are inserted at the head of the tree because we don't want to
3321 // sink them all the way down past store instructions.
3322 bool IsReorder
= !E
->ReorderIndices
.empty();
3324 S
= getSameOpcode(E
->Scalars
, E
->ReorderIndices
.front());
3325 VL0
= cast
<Instruction
>(S
.OpValue
);
3327 setInsertPointAfterBundle(E
->Scalars
, S
);
3329 LoadInst
*LI
= cast
<LoadInst
>(VL0
);
3330 Type
*ScalarLoadTy
= LI
->getType();
3331 unsigned AS
= LI
->getPointerAddressSpace();
3333 Value
*VecPtr
= Builder
.CreateBitCast(LI
->getPointerOperand(),
3334 VecTy
->getPointerTo(AS
));
3336 // The pointer operand uses an in-tree scalar so we add the new BitCast to
3337 // ExternalUses list to make sure that an extract will be generated in the
3339 Value
*PO
= LI
->getPointerOperand();
3340 if (getTreeEntry(PO
))
3341 ExternalUses
.push_back(ExternalUser(PO
, cast
<User
>(VecPtr
), 0));
3343 unsigned Alignment
= LI
->getAlignment();
3344 LI
= Builder
.CreateLoad(VecPtr
);
3346 Alignment
= DL
->getABITypeAlignment(ScalarLoadTy
);
3348 LI
->setAlignment(Alignment
);
3349 Value
*V
= propagateMetadata(LI
, E
->Scalars
);
3352 inversePermutation(E
->ReorderIndices
, Mask
);
3353 V
= Builder
.CreateShuffleVector(V
, UndefValue::get(V
->getType()),
3354 Mask
, "reorder_shuffle");
3356 if (NeedToShuffleReuses
) {
3357 // TODO: Merge this shuffle with the ReorderShuffleMask.
3358 V
= Builder
.CreateShuffleVector(V
, UndefValue::get(VecTy
),
3359 E
->ReuseShuffleIndices
, "shuffle");
3361 E
->VectorizedValue
= V
;
3362 ++NumVectorInstructions
;
3365 case Instruction::Store
: {
3366 StoreInst
*SI
= cast
<StoreInst
>(VL0
);
3367 unsigned Alignment
= SI
->getAlignment();
3368 unsigned AS
= SI
->getPointerAddressSpace();
3370 ValueList ScalarStoreValues
;
3371 for (Value
*V
: E
->Scalars
)
3372 ScalarStoreValues
.push_back(cast
<StoreInst
>(V
)->getValueOperand());
3374 setInsertPointAfterBundle(E
->Scalars
, S
);
3376 Value
*VecValue
= vectorizeTree(ScalarStoreValues
);
3377 Value
*ScalarPtr
= SI
->getPointerOperand();
3378 Value
*VecPtr
= Builder
.CreateBitCast(ScalarPtr
, VecTy
->getPointerTo(AS
));
3379 StoreInst
*ST
= Builder
.CreateStore(VecValue
, VecPtr
);
3381 // The pointer operand uses an in-tree scalar, so add the new BitCast to
3382 // ExternalUses to make sure that an extract will be generated in the
3384 if (getTreeEntry(ScalarPtr
))
3385 ExternalUses
.push_back(ExternalUser(ScalarPtr
, cast
<User
>(VecPtr
), 0));
3388 Alignment
= DL
->getABITypeAlignment(SI
->getValueOperand()->getType());
3390 ST
->setAlignment(Alignment
);
3391 Value
*V
= propagateMetadata(ST
, E
->Scalars
);
3392 if (NeedToShuffleReuses
) {
3393 V
= Builder
.CreateShuffleVector(V
, UndefValue::get(VecTy
),
3394 E
->ReuseShuffleIndices
, "shuffle");
3396 E
->VectorizedValue
= V
;
3397 ++NumVectorInstructions
;
3400 case Instruction::GetElementPtr
: {
3401 setInsertPointAfterBundle(E
->Scalars
, S
);
3404 for (Value
*V
: E
->Scalars
)
3405 Op0VL
.push_back(cast
<GetElementPtrInst
>(V
)->getOperand(0));
3407 Value
*Op0
= vectorizeTree(Op0VL
);
3409 std::vector
<Value
*> OpVecs
;
3410 for (int j
= 1, e
= cast
<GetElementPtrInst
>(VL0
)->getNumOperands(); j
< e
;
3413 for (Value
*V
: E
->Scalars
)
3414 OpVL
.push_back(cast
<GetElementPtrInst
>(V
)->getOperand(j
));
3416 Value
*OpVec
= vectorizeTree(OpVL
);
3417 OpVecs
.push_back(OpVec
);
3420 Value
*V
= Builder
.CreateGEP(
3421 cast
<GetElementPtrInst
>(VL0
)->getSourceElementType(), Op0
, OpVecs
);
3422 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
3423 V
= propagateMetadata(I
, E
->Scalars
);
3425 if (NeedToShuffleReuses
) {
3426 V
= Builder
.CreateShuffleVector(V
, UndefValue::get(VecTy
),
3427 E
->ReuseShuffleIndices
, "shuffle");
3429 E
->VectorizedValue
= V
;
3430 ++NumVectorInstructions
;
3434 case Instruction::Call
: {
3435 CallInst
*CI
= cast
<CallInst
>(VL0
);
3436 setInsertPointAfterBundle(E
->Scalars
, S
);
3438 Intrinsic::ID IID
= Intrinsic::not_intrinsic
;
3439 Value
*ScalarArg
= nullptr;
3440 if (CI
&& (FI
= CI
->getCalledFunction())) {
3441 IID
= FI
->getIntrinsicID();
3443 std::vector
<Value
*> OpVecs
;
3444 for (int j
= 0, e
= CI
->getNumArgOperands(); j
< e
; ++j
) {
3446 // ctlz,cttz and powi are special intrinsics whose second argument is
3447 // a scalar. This argument should not be vectorized.
3448 if (hasVectorInstrinsicScalarOpd(IID
, 1) && j
== 1) {
3449 CallInst
*CEI
= cast
<CallInst
>(VL0
);
3450 ScalarArg
= CEI
->getArgOperand(j
);
3451 OpVecs
.push_back(CEI
->getArgOperand(j
));
3454 for (Value
*V
: E
->Scalars
) {
3455 CallInst
*CEI
= cast
<CallInst
>(V
);
3456 OpVL
.push_back(CEI
->getArgOperand(j
));
3459 Value
*OpVec
= vectorizeTree(OpVL
);
3460 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j
<< "]: " << *OpVec
<< "\n");
3461 OpVecs
.push_back(OpVec
);
3464 Module
*M
= F
->getParent();
3465 Intrinsic::ID ID
= getVectorIntrinsicIDForCall(CI
, TLI
);
3466 Type
*Tys
[] = { VectorType::get(CI
->getType(), E
->Scalars
.size()) };
3467 Function
*CF
= Intrinsic::getDeclaration(M
, ID
, Tys
);
3468 SmallVector
<OperandBundleDef
, 1> OpBundles
;
3469 CI
->getOperandBundlesAsDefs(OpBundles
);
3470 Value
*V
= Builder
.CreateCall(CF
, OpVecs
, OpBundles
);
3472 // The scalar argument uses an in-tree scalar so we add the new vectorized
3473 // call to ExternalUses list to make sure that an extract will be
3474 // generated in the future.
3475 if (ScalarArg
&& getTreeEntry(ScalarArg
))
3476 ExternalUses
.push_back(ExternalUser(ScalarArg
, cast
<User
>(V
), 0));
3478 propagateIRFlags(V
, E
->Scalars
, VL0
);
3479 if (NeedToShuffleReuses
) {
3480 V
= Builder
.CreateShuffleVector(V
, UndefValue::get(VecTy
),
3481 E
->ReuseShuffleIndices
, "shuffle");
3483 E
->VectorizedValue
= V
;
3484 ++NumVectorInstructions
;
3487 case Instruction::ShuffleVector
: {
3488 ValueList LHSVL
, RHSVL
;
3489 assert(S
.isAltShuffle() &&
3490 ((Instruction::isBinaryOp(S
.getOpcode()) &&
3491 Instruction::isBinaryOp(S
.getAltOpcode())) ||
3492 (Instruction::isCast(S
.getOpcode()) &&
3493 Instruction::isCast(S
.getAltOpcode()))) &&
3494 "Invalid Shuffle Vector Operand");
3497 if (Instruction::isBinaryOp(S
.getOpcode())) {
3498 reorderAltShuffleOperands(S
, E
->Scalars
, LHSVL
, RHSVL
);
3499 setInsertPointAfterBundle(E
->Scalars
, S
);
3500 LHS
= vectorizeTree(LHSVL
);
3501 RHS
= vectorizeTree(RHSVL
);
3504 for (Value
*V
: E
->Scalars
)
3505 INVL
.push_back(cast
<Instruction
>(V
)->getOperand(0));
3506 setInsertPointAfterBundle(E
->Scalars
, S
);
3507 LHS
= vectorizeTree(INVL
);
3510 if (E
->VectorizedValue
) {
3511 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0
<< ".\n");
3512 return E
->VectorizedValue
;
3516 if (Instruction::isBinaryOp(S
.getOpcode())) {
3517 V0
= Builder
.CreateBinOp(
3518 static_cast<Instruction::BinaryOps
>(S
.getOpcode()), LHS
, RHS
);
3519 V1
= Builder
.CreateBinOp(
3520 static_cast<Instruction::BinaryOps
>(S
.getAltOpcode()), LHS
, RHS
);
3522 V0
= Builder
.CreateCast(
3523 static_cast<Instruction::CastOps
>(S
.getOpcode()), LHS
, VecTy
);
3524 V1
= Builder
.CreateCast(
3525 static_cast<Instruction::CastOps
>(S
.getAltOpcode()), LHS
, VecTy
);
3528 // Create shuffle to take alternate operations from the vector.
3529 // Also, gather up main and alt scalar ops to propagate IR flags to
3530 // each vector operation.
3531 ValueList OpScalars
, AltScalars
;
3532 unsigned e
= E
->Scalars
.size();
3533 SmallVector
<Constant
*, 8> Mask(e
);
3534 for (unsigned i
= 0; i
< e
; ++i
) {
3535 auto *OpInst
= cast
<Instruction
>(E
->Scalars
[i
]);
3536 assert(S
.isOpcodeOrAlt(OpInst
) && "Unexpected main/alternate opcode");
3537 if (OpInst
->getOpcode() == S
.getAltOpcode()) {
3538 Mask
[i
] = Builder
.getInt32(e
+ i
);
3539 AltScalars
.push_back(E
->Scalars
[i
]);
3541 Mask
[i
] = Builder
.getInt32(i
);
3542 OpScalars
.push_back(E
->Scalars
[i
]);
3546 Value
*ShuffleMask
= ConstantVector::get(Mask
);
3547 propagateIRFlags(V0
, OpScalars
);
3548 propagateIRFlags(V1
, AltScalars
);
3550 Value
*V
= Builder
.CreateShuffleVector(V0
, V1
, ShuffleMask
);
3551 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
3552 V
= propagateMetadata(I
, E
->Scalars
);
3553 if (NeedToShuffleReuses
) {
3554 V
= Builder
.CreateShuffleVector(V
, UndefValue::get(VecTy
),
3555 E
->ReuseShuffleIndices
, "shuffle");
3557 E
->VectorizedValue
= V
;
3558 ++NumVectorInstructions
;
3563 llvm_unreachable("unknown inst");
3568 Value
*BoUpSLP::vectorizeTree() {
3569 ExtraValueToDebugLocsMap ExternallyUsedValues
;
3570 return vectorizeTree(ExternallyUsedValues
);
3574 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap
&ExternallyUsedValues
) {
3575 // All blocks must be scheduled before any instructions are inserted.
3576 for (auto &BSIter
: BlocksSchedules
) {
3577 scheduleBlock(BSIter
.second
.get());
3580 Builder
.SetInsertPoint(&F
->getEntryBlock().front());
3581 auto *VectorRoot
= vectorizeTree(&VectorizableTree
[0]);
3583 // If the vectorized tree can be rewritten in a smaller type, we truncate the
3584 // vectorized root. InstCombine will then rewrite the entire expression. We
3585 // sign extend the extracted values below.
3586 auto *ScalarRoot
= VectorizableTree
[0].Scalars
[0];
3587 if (MinBWs
.count(ScalarRoot
)) {
3588 if (auto *I
= dyn_cast
<Instruction
>(VectorRoot
))
3589 Builder
.SetInsertPoint(&*++BasicBlock::iterator(I
));
3590 auto BundleWidth
= VectorizableTree
[0].Scalars
.size();
3591 auto *MinTy
= IntegerType::get(F
->getContext(), MinBWs
[ScalarRoot
].first
);
3592 auto *VecTy
= VectorType::get(MinTy
, BundleWidth
);
3593 auto *Trunc
= Builder
.CreateTrunc(VectorRoot
, VecTy
);
3594 VectorizableTree
[0].VectorizedValue
= Trunc
;
3597 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses
.size()
3600 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type
3601 // specified by ScalarType.
3602 auto extend
= [&](Value
*ScalarRoot
, Value
*Ex
, Type
*ScalarType
) {
3603 if (!MinBWs
.count(ScalarRoot
))
3605 if (MinBWs
[ScalarRoot
].second
)
3606 return Builder
.CreateSExt(Ex
, ScalarType
);
3607 return Builder
.CreateZExt(Ex
, ScalarType
);
3610 // Extract all of the elements with the external uses.
3611 for (const auto &ExternalUse
: ExternalUses
) {
3612 Value
*Scalar
= ExternalUse
.Scalar
;
3613 llvm::User
*User
= ExternalUse
.User
;
3615 // Skip users that we already RAUW. This happens when one instruction
3616 // has multiple uses of the same value.
3617 if (User
&& !is_contained(Scalar
->users(), User
))
3619 TreeEntry
*E
= getTreeEntry(Scalar
);
3620 assert(E
&& "Invalid scalar");
3621 assert(!E
->NeedToGather
&& "Extracting from a gather list");
3623 Value
*Vec
= E
->VectorizedValue
;
3624 assert(Vec
&& "Can't find vectorizable value");
3626 Value
*Lane
= Builder
.getInt32(ExternalUse
.Lane
);
3627 // If User == nullptr, the Scalar is used as extra arg. Generate
3628 // ExtractElement instruction and update the record for this scalar in
3629 // ExternallyUsedValues.
3631 assert(ExternallyUsedValues
.count(Scalar
) &&
3632 "Scalar with nullptr as an external user must be registered in "
3633 "ExternallyUsedValues map");
3634 if (auto *VecI
= dyn_cast
<Instruction
>(Vec
)) {
3635 Builder
.SetInsertPoint(VecI
->getParent(),
3636 std::next(VecI
->getIterator()));
3638 Builder
.SetInsertPoint(&F
->getEntryBlock().front());
3640 Value
*Ex
= Builder
.CreateExtractElement(Vec
, Lane
);
3641 Ex
= extend(ScalarRoot
, Ex
, Scalar
->getType());
3642 CSEBlocks
.insert(cast
<Instruction
>(Scalar
)->getParent());
3643 auto &Locs
= ExternallyUsedValues
[Scalar
];
3644 ExternallyUsedValues
.insert({Ex
, Locs
});
3645 ExternallyUsedValues
.erase(Scalar
);
3649 // Generate extracts for out-of-tree users.
3650 // Find the insertion point for the extractelement lane.
3651 if (auto *VecI
= dyn_cast
<Instruction
>(Vec
)) {
3652 if (PHINode
*PH
= dyn_cast
<PHINode
>(User
)) {
3653 for (int i
= 0, e
= PH
->getNumIncomingValues(); i
!= e
; ++i
) {
3654 if (PH
->getIncomingValue(i
) == Scalar
) {
3655 TerminatorInst
*IncomingTerminator
=
3656 PH
->getIncomingBlock(i
)->getTerminator();
3657 if (isa
<CatchSwitchInst
>(IncomingTerminator
)) {
3658 Builder
.SetInsertPoint(VecI
->getParent(),
3659 std::next(VecI
->getIterator()));
3661 Builder
.SetInsertPoint(PH
->getIncomingBlock(i
)->getTerminator());
3663 Value
*Ex
= Builder
.CreateExtractElement(Vec
, Lane
);
3664 Ex
= extend(ScalarRoot
, Ex
, Scalar
->getType());
3665 CSEBlocks
.insert(PH
->getIncomingBlock(i
));
3666 PH
->setOperand(i
, Ex
);
3670 Builder
.SetInsertPoint(cast
<Instruction
>(User
));
3671 Value
*Ex
= Builder
.CreateExtractElement(Vec
, Lane
);
3672 Ex
= extend(ScalarRoot
, Ex
, Scalar
->getType());
3673 CSEBlocks
.insert(cast
<Instruction
>(User
)->getParent());
3674 User
->replaceUsesOfWith(Scalar
, Ex
);
3677 Builder
.SetInsertPoint(&F
->getEntryBlock().front());
3678 Value
*Ex
= Builder
.CreateExtractElement(Vec
, Lane
);
3679 Ex
= extend(ScalarRoot
, Ex
, Scalar
->getType());
3680 CSEBlocks
.insert(&F
->getEntryBlock());
3681 User
->replaceUsesOfWith(Scalar
, Ex
);
3684 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User
<< ".\n");
3687 // For each vectorized value:
3688 for (TreeEntry
&EIdx
: VectorizableTree
) {
3689 TreeEntry
*Entry
= &EIdx
;
3691 // No need to handle users of gathered values.
3692 if (Entry
->NeedToGather
)
3695 assert(Entry
->VectorizedValue
&& "Can't find vectorizable value");
3698 for (int Lane
= 0, LE
= Entry
->Scalars
.size(); Lane
!= LE
; ++Lane
) {
3699 Value
*Scalar
= Entry
->Scalars
[Lane
];
3701 Type
*Ty
= Scalar
->getType();
3702 if (!Ty
->isVoidTy()) {
3704 for (User
*U
: Scalar
->users()) {
3705 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U
<< ".\n");
3707 // It is legal to replace users in the ignorelist by undef.
3708 assert((getTreeEntry(U
) || is_contained(UserIgnoreList
, U
)) &&
3709 "Replacing out-of-tree value with undef");
3712 Value
*Undef
= UndefValue::get(Ty
);
3713 Scalar
->replaceAllUsesWith(Undef
);
3715 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar
<< ".\n");
3716 eraseInstruction(cast
<Instruction
>(Scalar
));
3720 Builder
.ClearInsertionPoint();
3722 return VectorizableTree
[0].VectorizedValue
;
3725 void BoUpSLP::optimizeGatherSequence() {
3726 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq
.size()
3727 << " gather sequences instructions.\n");
3728 // LICM InsertElementInst sequences.
3729 for (Instruction
*I
: GatherSeq
) {
3730 if (!isa
<InsertElementInst
>(I
) && !isa
<ShuffleVectorInst
>(I
))
3733 // Check if this block is inside a loop.
3734 Loop
*L
= LI
->getLoopFor(I
->getParent());
3738 // Check if it has a preheader.
3739 BasicBlock
*PreHeader
= L
->getLoopPreheader();
3743 // If the vector or the element that we insert into it are
3744 // instructions that are defined in this basic block then we can't
3745 // hoist this instruction.
3746 auto *Op0
= dyn_cast
<Instruction
>(I
->getOperand(0));
3747 auto *Op1
= dyn_cast
<Instruction
>(I
->getOperand(1));
3748 if (Op0
&& L
->contains(Op0
))
3750 if (Op1
&& L
->contains(Op1
))
3753 // We can hoist this instruction. Move it to the pre-header.
3754 I
->moveBefore(PreHeader
->getTerminator());
3757 // Make a list of all reachable blocks in our CSE queue.
3758 SmallVector
<const DomTreeNode
*, 8> CSEWorkList
;
3759 CSEWorkList
.reserve(CSEBlocks
.size());
3760 for (BasicBlock
*BB
: CSEBlocks
)
3761 if (DomTreeNode
*N
= DT
->getNode(BB
)) {
3762 assert(DT
->isReachableFromEntry(N
));
3763 CSEWorkList
.push_back(N
);
3766 // Sort blocks by domination. This ensures we visit a block after all blocks
3767 // dominating it are visited.
3768 std::stable_sort(CSEWorkList
.begin(), CSEWorkList
.end(),
3769 [this](const DomTreeNode
*A
, const DomTreeNode
*B
) {
3770 return DT
->properlyDominates(A
, B
);
3773 // Perform O(N^2) search over the gather sequences and merge identical
3774 // instructions. TODO: We can further optimize this scan if we split the
3775 // instructions into different buckets based on the insert lane.
3776 SmallVector
<Instruction
*, 16> Visited
;
3777 for (auto I
= CSEWorkList
.begin(), E
= CSEWorkList
.end(); I
!= E
; ++I
) {
3778 assert((I
== CSEWorkList
.begin() || !DT
->dominates(*I
, *std::prev(I
))) &&
3779 "Worklist not sorted properly!");
3780 BasicBlock
*BB
= (*I
)->getBlock();
3781 // For all instructions in blocks containing gather sequences:
3782 for (BasicBlock::iterator it
= BB
->begin(), e
= BB
->end(); it
!= e
;) {
3783 Instruction
*In
= &*it
++;
3784 if (!isa
<InsertElementInst
>(In
) && !isa
<ExtractElementInst
>(In
))
3787 // Check if we can replace this instruction with any of the
3788 // visited instructions.
3789 for (Instruction
*v
: Visited
) {
3790 if (In
->isIdenticalTo(v
) &&
3791 DT
->dominates(v
->getParent(), In
->getParent())) {
3792 In
->replaceAllUsesWith(v
);
3793 eraseInstruction(In
);
3799 assert(!is_contained(Visited
, In
));
3800 Visited
.push_back(In
);
3808 // Groups the instructions to a bundle (which is then a single scheduling entity)
3809 // and schedules instructions until the bundle gets ready.
3810 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef
<Value
*> VL
,
3812 const InstructionsState
&S
) {
3813 if (isa
<PHINode
>(S
.OpValue
))
3816 // Initialize the instruction bundle.
3817 Instruction
*OldScheduleEnd
= ScheduleEnd
;
3818 ScheduleData
*PrevInBundle
= nullptr;
3819 ScheduleData
*Bundle
= nullptr;
3820 bool ReSchedule
= false;
3821 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S
.OpValue
<< "\n");
3823 // Make sure that the scheduling region contains all
3824 // instructions of the bundle.
3825 for (Value
*V
: VL
) {
3826 if (!extendSchedulingRegion(V
, S
))
3830 for (Value
*V
: VL
) {
3831 ScheduleData
*BundleMember
= getScheduleData(V
);
3832 assert(BundleMember
&&
3833 "no ScheduleData for bundle member (maybe not in same basic block)");
3834 if (BundleMember
->IsScheduled
) {
3835 // A bundle member was scheduled as single instruction before and now
3836 // needs to be scheduled as part of the bundle. We just get rid of the
3837 // existing schedule.
3838 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember
3839 << " was already scheduled\n");
3842 assert(BundleMember
->isSchedulingEntity() &&
3843 "bundle member already part of other bundle");
3845 PrevInBundle
->NextInBundle
= BundleMember
;
3847 Bundle
= BundleMember
;
3849 BundleMember
->UnscheduledDepsInBundle
= 0;
3850 Bundle
->UnscheduledDepsInBundle
+= BundleMember
->UnscheduledDeps
;
3852 // Group the instructions to a bundle.
3853 BundleMember
->FirstInBundle
= Bundle
;
3854 PrevInBundle
= BundleMember
;
3856 if (ScheduleEnd
!= OldScheduleEnd
) {
3857 // The scheduling region got new instructions at the lower end (or it is a
3858 // new region for the first bundle). This makes it necessary to
3859 // recalculate all dependencies.
3860 // It is seldom that this needs to be done a second time after adding the
3861 // initial bundle to the region.
3862 for (auto *I
= ScheduleStart
; I
!= ScheduleEnd
; I
= I
->getNextNode()) {
3863 doForAllOpcodes(I
, [](ScheduleData
*SD
) {
3864 SD
->clearDependencies();
3871 initialFillReadyList(ReadyInsts
);
3874 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle
<< " in block "
3875 << BB
->getName() << "\n");
3877 calculateDependencies(Bundle
, true, SLP
);
3879 // Now try to schedule the new bundle. As soon as the bundle is "ready" it
3880 // means that there are no cyclic dependencies and we can schedule it.
3881 // Note that's important that we don't "schedule" the bundle yet (see
3882 // cancelScheduling).
3883 while (!Bundle
->isReady() && !ReadyInsts
.empty()) {
3885 ScheduleData
*pickedSD
= ReadyInsts
.back();
3886 ReadyInsts
.pop_back();
3888 if (pickedSD
->isSchedulingEntity() && pickedSD
->isReady()) {
3889 schedule(pickedSD
, ReadyInsts
);
3892 if (!Bundle
->isReady()) {
3893 cancelScheduling(VL
, S
.OpValue
);
3899 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef
<Value
*> VL
,
3901 if (isa
<PHINode
>(OpValue
))
3904 ScheduleData
*Bundle
= getScheduleData(OpValue
);
3905 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle
<< "\n");
3906 assert(!Bundle
->IsScheduled
&&
3907 "Can't cancel bundle which is already scheduled");
3908 assert(Bundle
->isSchedulingEntity() && Bundle
->isPartOfBundle() &&
3909 "tried to unbundle something which is not a bundle");
3911 // Un-bundle: make single instructions out of the bundle.
3912 ScheduleData
*BundleMember
= Bundle
;
3913 while (BundleMember
) {
3914 assert(BundleMember
->FirstInBundle
== Bundle
&& "corrupt bundle links");
3915 BundleMember
->FirstInBundle
= BundleMember
;
3916 ScheduleData
*Next
= BundleMember
->NextInBundle
;
3917 BundleMember
->NextInBundle
= nullptr;
3918 BundleMember
->UnscheduledDepsInBundle
= BundleMember
->UnscheduledDeps
;
3919 if (BundleMember
->UnscheduledDepsInBundle
== 0) {
3920 ReadyInsts
.insert(BundleMember
);
3922 BundleMember
= Next
;
3926 BoUpSLP::ScheduleData
*BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
3927 // Allocate a new ScheduleData for the instruction.
3928 if (ChunkPos
>= ChunkSize
) {
3929 ScheduleDataChunks
.push_back(llvm::make_unique
<ScheduleData
[]>(ChunkSize
));
3932 return &(ScheduleDataChunks
.back()[ChunkPos
++]);
3935 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value
*V
,
3936 const InstructionsState
&S
) {
3937 if (getScheduleData(V
, isOneOf(S
, V
)))
3939 Instruction
*I
= dyn_cast
<Instruction
>(V
);
3940 assert(I
&& "bundle member must be an instruction");
3941 assert(!isa
<PHINode
>(I
) && "phi nodes don't need to be scheduled");
3942 auto &&CheckSheduleForI
= [this, &S
](Instruction
*I
) -> bool {
3943 ScheduleData
*ISD
= getScheduleData(I
);
3946 assert(isInSchedulingRegion(ISD
) &&
3947 "ScheduleData not in scheduling region");
3948 ScheduleData
*SD
= allocateScheduleDataChunks();
3950 SD
->init(SchedulingRegionID
, S
.OpValue
);
3951 ExtraScheduleDataMap
[I
][S
.OpValue
] = SD
;
3954 if (CheckSheduleForI(I
))
3956 if (!ScheduleStart
) {
3957 // It's the first instruction in the new region.
3958 initScheduleData(I
, I
->getNextNode(), nullptr, nullptr);
3960 ScheduleEnd
= I
->getNextNode();
3961 if (isOneOf(S
, I
) != I
)
3962 CheckSheduleForI(I
);
3963 assert(ScheduleEnd
&& "tried to vectorize a TerminatorInst?");
3964 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I
<< "\n");
3967 // Search up and down at the same time, because we don't know if the new
3968 // instruction is above or below the existing scheduling region.
3969 BasicBlock::reverse_iterator UpIter
=
3970 ++ScheduleStart
->getIterator().getReverse();
3971 BasicBlock::reverse_iterator UpperEnd
= BB
->rend();
3972 BasicBlock::iterator DownIter
= ScheduleEnd
->getIterator();
3973 BasicBlock::iterator LowerEnd
= BB
->end();
3975 if (++ScheduleRegionSize
> ScheduleRegionSizeLimit
) {
3976 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n");
3980 if (UpIter
!= UpperEnd
) {
3981 if (&*UpIter
== I
) {
3982 initScheduleData(I
, ScheduleStart
, nullptr, FirstLoadStoreInRegion
);
3984 if (isOneOf(S
, I
) != I
)
3985 CheckSheduleForI(I
);
3986 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I
3992 if (DownIter
!= LowerEnd
) {
3993 if (&*DownIter
== I
) {
3994 initScheduleData(ScheduleEnd
, I
->getNextNode(), LastLoadStoreInRegion
,
3996 ScheduleEnd
= I
->getNextNode();
3997 if (isOneOf(S
, I
) != I
)
3998 CheckSheduleForI(I
);
3999 assert(ScheduleEnd
&& "tried to vectorize a TerminatorInst?");
4000 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I
4006 assert((UpIter
!= UpperEnd
|| DownIter
!= LowerEnd
) &&
4007 "instruction not found in block");
4012 void BoUpSLP::BlockScheduling::initScheduleData(Instruction
*FromI
,
4014 ScheduleData
*PrevLoadStore
,
4015 ScheduleData
*NextLoadStore
) {
4016 ScheduleData
*CurrentLoadStore
= PrevLoadStore
;
4017 for (Instruction
*I
= FromI
; I
!= ToI
; I
= I
->getNextNode()) {
4018 ScheduleData
*SD
= ScheduleDataMap
[I
];
4020 SD
= allocateScheduleDataChunks();
4021 ScheduleDataMap
[I
] = SD
;
4024 assert(!isInSchedulingRegion(SD
) &&
4025 "new ScheduleData already in scheduling region");
4026 SD
->init(SchedulingRegionID
, I
);
4028 if (I
->mayReadOrWriteMemory() &&
4029 (!isa
<IntrinsicInst
>(I
) ||
4030 cast
<IntrinsicInst
>(I
)->getIntrinsicID() != Intrinsic::sideeffect
)) {
4031 // Update the linked list of memory accessing instructions.
4032 if (CurrentLoadStore
) {
4033 CurrentLoadStore
->NextLoadStore
= SD
;
4035 FirstLoadStoreInRegion
= SD
;
4037 CurrentLoadStore
= SD
;
4040 if (NextLoadStore
) {
4041 if (CurrentLoadStore
)
4042 CurrentLoadStore
->NextLoadStore
= NextLoadStore
;
4044 LastLoadStoreInRegion
= CurrentLoadStore
;
4048 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData
*SD
,
4049 bool InsertInReadyList
,
4051 assert(SD
->isSchedulingEntity());
4053 SmallVector
<ScheduleData
*, 10> WorkList
;
4054 WorkList
.push_back(SD
);
4056 while (!WorkList
.empty()) {
4057 ScheduleData
*SD
= WorkList
.back();
4058 WorkList
.pop_back();
4060 ScheduleData
*BundleMember
= SD
;
4061 while (BundleMember
) {
4062 assert(isInSchedulingRegion(BundleMember
));
4063 if (!BundleMember
->hasValidDependencies()) {
4065 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember
4067 BundleMember
->Dependencies
= 0;
4068 BundleMember
->resetUnscheduledDeps();
4070 // Handle def-use chain dependencies.
4071 if (BundleMember
->OpValue
!= BundleMember
->Inst
) {
4072 ScheduleData
*UseSD
= getScheduleData(BundleMember
->Inst
);
4073 if (UseSD
&& isInSchedulingRegion(UseSD
->FirstInBundle
)) {
4074 BundleMember
->Dependencies
++;
4075 ScheduleData
*DestBundle
= UseSD
->FirstInBundle
;
4076 if (!DestBundle
->IsScheduled
)
4077 BundleMember
->incrementUnscheduledDeps(1);
4078 if (!DestBundle
->hasValidDependencies())
4079 WorkList
.push_back(DestBundle
);
4082 for (User
*U
: BundleMember
->Inst
->users()) {
4083 if (isa
<Instruction
>(U
)) {
4084 ScheduleData
*UseSD
= getScheduleData(U
);
4085 if (UseSD
&& isInSchedulingRegion(UseSD
->FirstInBundle
)) {
4086 BundleMember
->Dependencies
++;
4087 ScheduleData
*DestBundle
= UseSD
->FirstInBundle
;
4088 if (!DestBundle
->IsScheduled
)
4089 BundleMember
->incrementUnscheduledDeps(1);
4090 if (!DestBundle
->hasValidDependencies())
4091 WorkList
.push_back(DestBundle
);
4094 // I'm not sure if this can ever happen. But we need to be safe.
4095 // This lets the instruction/bundle never be scheduled and
4096 // eventually disable vectorization.
4097 BundleMember
->Dependencies
++;
4098 BundleMember
->incrementUnscheduledDeps(1);
4103 // Handle the memory dependencies.
4104 ScheduleData
*DepDest
= BundleMember
->NextLoadStore
;
4106 Instruction
*SrcInst
= BundleMember
->Inst
;
4107 MemoryLocation SrcLoc
= getLocation(SrcInst
, SLP
->AA
);
4108 bool SrcMayWrite
= BundleMember
->Inst
->mayWriteToMemory();
4109 unsigned numAliased
= 0;
4110 unsigned DistToSrc
= 1;
4113 assert(isInSchedulingRegion(DepDest
));
4115 // We have two limits to reduce the complexity:
4116 // 1) AliasedCheckLimit: It's a small limit to reduce calls to
4117 // SLP->isAliased (which is the expensive part in this loop).
4118 // 2) MaxMemDepDistance: It's for very large blocks and it aborts
4119 // the whole loop (even if the loop is fast, it's quadratic).
4120 // It's important for the loop break condition (see below) to
4121 // check this limit even between two read-only instructions.
4122 if (DistToSrc
>= MaxMemDepDistance
||
4123 ((SrcMayWrite
|| DepDest
->Inst
->mayWriteToMemory()) &&
4124 (numAliased
>= AliasedCheckLimit
||
4125 SLP
->isAliased(SrcLoc
, SrcInst
, DepDest
->Inst
)))) {
4127 // We increment the counter only if the locations are aliased
4128 // (instead of counting all alias checks). This gives a better
4129 // balance between reduced runtime and accurate dependencies.
4132 DepDest
->MemoryDependencies
.push_back(BundleMember
);
4133 BundleMember
->Dependencies
++;
4134 ScheduleData
*DestBundle
= DepDest
->FirstInBundle
;
4135 if (!DestBundle
->IsScheduled
) {
4136 BundleMember
->incrementUnscheduledDeps(1);
4138 if (!DestBundle
->hasValidDependencies()) {
4139 WorkList
.push_back(DestBundle
);
4142 DepDest
= DepDest
->NextLoadStore
;
4144 // Example, explaining the loop break condition: Let's assume our
4145 // starting instruction is i0 and MaxMemDepDistance = 3.
4148 // i0,i1,i2,i3,i4,i5,i6,i7,i8
4151 // MaxMemDepDistance let us stop alias-checking at i3 and we add
4152 // dependencies from i0 to i3,i4,.. (even if they are not aliased).
4153 // Previously we already added dependencies from i3 to i6,i7,i8
4154 // (because of MaxMemDepDistance). As we added a dependency from
4155 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
4156 // and we can abort this loop at i6.
4157 if (DistToSrc
>= 2 * MaxMemDepDistance
)
4163 BundleMember
= BundleMember
->NextInBundle
;
4165 if (InsertInReadyList
&& SD
->isReady()) {
4166 ReadyInsts
.push_back(SD
);
4167 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD
->Inst
4173 void BoUpSLP::BlockScheduling::resetSchedule() {
4174 assert(ScheduleStart
&&
4175 "tried to reset schedule on block which has not been scheduled");
4176 for (Instruction
*I
= ScheduleStart
; I
!= ScheduleEnd
; I
= I
->getNextNode()) {
4177 doForAllOpcodes(I
, [&](ScheduleData
*SD
) {
4178 assert(isInSchedulingRegion(SD
) &&
4179 "ScheduleData not in scheduling region");
4180 SD
->IsScheduled
= false;
4181 SD
->resetUnscheduledDeps();
4187 void BoUpSLP::scheduleBlock(BlockScheduling
*BS
) {
4188 if (!BS
->ScheduleStart
)
4191 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS
->BB
->getName() << "\n");
4193 BS
->resetSchedule();
4195 // For the real scheduling we use a more sophisticated ready-list: it is
4196 // sorted by the original instruction location. This lets the final schedule
4197 // be as close as possible to the original instruction order.
4198 struct ScheduleDataCompare
{
4199 bool operator()(ScheduleData
*SD1
, ScheduleData
*SD2
) const {
4200 return SD2
->SchedulingPriority
< SD1
->SchedulingPriority
;
4203 std::set
<ScheduleData
*, ScheduleDataCompare
> ReadyInsts
;
4205 // Ensure that all dependency data is updated and fill the ready-list with
4206 // initial instructions.
4208 int NumToSchedule
= 0;
4209 for (auto *I
= BS
->ScheduleStart
; I
!= BS
->ScheduleEnd
;
4210 I
= I
->getNextNode()) {
4211 BS
->doForAllOpcodes(I
, [this, &Idx
, &NumToSchedule
, BS
](ScheduleData
*SD
) {
4212 assert(SD
->isPartOfBundle() ==
4213 (getTreeEntry(SD
->Inst
) != nullptr) &&
4214 "scheduler and vectorizer bundle mismatch");
4215 SD
->FirstInBundle
->SchedulingPriority
= Idx
++;
4216 if (SD
->isSchedulingEntity()) {
4217 BS
->calculateDependencies(SD
, false, this);
4222 BS
->initialFillReadyList(ReadyInsts
);
4224 Instruction
*LastScheduledInst
= BS
->ScheduleEnd
;
4226 // Do the "real" scheduling.
4227 while (!ReadyInsts
.empty()) {
4228 ScheduleData
*picked
= *ReadyInsts
.begin();
4229 ReadyInsts
.erase(ReadyInsts
.begin());
4231 // Move the scheduled instruction(s) to their dedicated places, if not
4233 ScheduleData
*BundleMember
= picked
;
4234 while (BundleMember
) {
4235 Instruction
*pickedInst
= BundleMember
->Inst
;
4236 if (LastScheduledInst
->getNextNode() != pickedInst
) {
4237 BS
->BB
->getInstList().remove(pickedInst
);
4238 BS
->BB
->getInstList().insert(LastScheduledInst
->getIterator(),
4241 LastScheduledInst
= pickedInst
;
4242 BundleMember
= BundleMember
->NextInBundle
;
4245 BS
->schedule(picked
, ReadyInsts
);
4248 assert(NumToSchedule
== 0 && "could not schedule all instructions");
4250 // Avoid duplicate scheduling of the block.
4251 BS
->ScheduleStart
= nullptr;
4254 unsigned BoUpSLP::getVectorElementSize(Value
*V
) {
4255 // If V is a store, just return the width of the stored value without
4256 // traversing the expression tree. This is the common case.
4257 if (auto *Store
= dyn_cast
<StoreInst
>(V
))
4258 return DL
->getTypeSizeInBits(Store
->getValueOperand()->getType());
4260 // If V is not a store, we can traverse the expression tree to find loads
4261 // that feed it. The type of the loaded value may indicate a more suitable
4262 // width than V's type. We want to base the vector element size on the width
4263 // of memory operations where possible.
4264 SmallVector
<Instruction
*, 16> Worklist
;
4265 SmallPtrSet
<Instruction
*, 16> Visited
;
4266 if (auto *I
= dyn_cast
<Instruction
>(V
))
4267 Worklist
.push_back(I
);
4269 // Traverse the expression tree in bottom-up order looking for loads. If we
4270 // encounter an instruciton we don't yet handle, we give up.
4272 auto FoundUnknownInst
= false;
4273 while (!Worklist
.empty() && !FoundUnknownInst
) {
4274 auto *I
= Worklist
.pop_back_val();
4277 // We should only be looking at scalar instructions here. If the current
4278 // instruction has a vector type, give up.
4279 auto *Ty
= I
->getType();
4280 if (isa
<VectorType
>(Ty
))
4281 FoundUnknownInst
= true;
4283 // If the current instruction is a load, update MaxWidth to reflect the
4284 // width of the loaded value.
4285 else if (isa
<LoadInst
>(I
))
4286 MaxWidth
= std::max
<unsigned>(MaxWidth
, DL
->getTypeSizeInBits(Ty
));
4288 // Otherwise, we need to visit the operands of the instruction. We only
4289 // handle the interesting cases from buildTree here. If an operand is an
4290 // instruction we haven't yet visited, we add it to the worklist.
4291 else if (isa
<PHINode
>(I
) || isa
<CastInst
>(I
) || isa
<GetElementPtrInst
>(I
) ||
4292 isa
<CmpInst
>(I
) || isa
<SelectInst
>(I
) || isa
<BinaryOperator
>(I
)) {
4293 for (Use
&U
: I
->operands())
4294 if (auto *J
= dyn_cast
<Instruction
>(U
.get()))
4295 if (!Visited
.count(J
))
4296 Worklist
.push_back(J
);
4299 // If we don't yet handle the instruction, give up.
4301 FoundUnknownInst
= true;
4304 // If we didn't encounter a memory access in the expression tree, or if we
4305 // gave up for some reason, just return the width of V.
4306 if (!MaxWidth
|| FoundUnknownInst
)
4307 return DL
->getTypeSizeInBits(V
->getType());
4309 // Otherwise, return the maximum width we found.
4313 // Determine if a value V in a vectorizable expression Expr can be demoted to a
4314 // smaller type with a truncation. We collect the values that will be demoted
4315 // in ToDemote and additional roots that require investigating in Roots.
4316 static bool collectValuesToDemote(Value
*V
, SmallPtrSetImpl
<Value
*> &Expr
,
4317 SmallVectorImpl
<Value
*> &ToDemote
,
4318 SmallVectorImpl
<Value
*> &Roots
) {
4319 // We can always demote constants.
4320 if (isa
<Constant
>(V
)) {
4321 ToDemote
.push_back(V
);
4325 // If the value is not an instruction in the expression with only one use, it
4326 // cannot be demoted.
4327 auto *I
= dyn_cast
<Instruction
>(V
);
4328 if (!I
|| !I
->hasOneUse() || !Expr
.count(I
))
4331 switch (I
->getOpcode()) {
4333 // We can always demote truncations and extensions. Since truncations can
4334 // seed additional demotion, we save the truncated value.
4335 case Instruction::Trunc
:
4336 Roots
.push_back(I
->getOperand(0));
4338 case Instruction::ZExt
:
4339 case Instruction::SExt
:
4342 // We can demote certain binary operations if we can demote both of their
4344 case Instruction::Add
:
4345 case Instruction::Sub
:
4346 case Instruction::Mul
:
4347 case Instruction::And
:
4348 case Instruction::Or
:
4349 case Instruction::Xor
:
4350 if (!collectValuesToDemote(I
->getOperand(0), Expr
, ToDemote
, Roots
) ||
4351 !collectValuesToDemote(I
->getOperand(1), Expr
, ToDemote
, Roots
))
4355 // We can demote selects if we can demote their true and false values.
4356 case Instruction::Select
: {
4357 SelectInst
*SI
= cast
<SelectInst
>(I
);
4358 if (!collectValuesToDemote(SI
->getTrueValue(), Expr
, ToDemote
, Roots
) ||
4359 !collectValuesToDemote(SI
->getFalseValue(), Expr
, ToDemote
, Roots
))
4364 // We can demote phis if we can demote all their incoming operands. Note that
4365 // we don't need to worry about cycles since we ensure single use above.
4366 case Instruction::PHI
: {
4367 PHINode
*PN
= cast
<PHINode
>(I
);
4368 for (Value
*IncValue
: PN
->incoming_values())
4369 if (!collectValuesToDemote(IncValue
, Expr
, ToDemote
, Roots
))
4374 // Otherwise, conservatively give up.
4379 // Record the value that we can demote.
4380 ToDemote
.push_back(V
);
4384 void BoUpSLP::computeMinimumValueSizes() {
4385 // If there are no external uses, the expression tree must be rooted by a
4386 // store. We can't demote in-memory values, so there is nothing to do here.
4387 if (ExternalUses
.empty())
4390 // We only attempt to truncate integer expressions.
4391 auto &TreeRoot
= VectorizableTree
[0].Scalars
;
4392 auto *TreeRootIT
= dyn_cast
<IntegerType
>(TreeRoot
[0]->getType());
4396 // If the expression is not rooted by a store, these roots should have
4397 // external uses. We will rely on InstCombine to rewrite the expression in
4398 // the narrower type. However, InstCombine only rewrites single-use values.
4399 // This means that if a tree entry other than a root is used externally, it
4400 // must have multiple uses and InstCombine will not rewrite it. The code
4401 // below ensures that only the roots are used externally.
4402 SmallPtrSet
<Value
*, 32> Expr(TreeRoot
.begin(), TreeRoot
.end());
4403 for (auto &EU
: ExternalUses
)
4404 if (!Expr
.erase(EU
.Scalar
))
4409 // Collect the scalar values of the vectorizable expression. We will use this
4410 // context to determine which values can be demoted. If we see a truncation,
4411 // we mark it as seeding another demotion.
4412 for (auto &Entry
: VectorizableTree
)
4413 Expr
.insert(Entry
.Scalars
.begin(), Entry
.Scalars
.end());
4415 // Ensure the roots of the vectorizable tree don't form a cycle. They must
4416 // have a single external user that is not in the vectorizable tree.
4417 for (auto *Root
: TreeRoot
)
4418 if (!Root
->hasOneUse() || Expr
.count(*Root
->user_begin()))
4421 // Conservatively determine if we can actually truncate the roots of the
4422 // expression. Collect the values that can be demoted in ToDemote and
4423 // additional roots that require investigating in Roots.
4424 SmallVector
<Value
*, 32> ToDemote
;
4425 SmallVector
<Value
*, 4> Roots
;
4426 for (auto *Root
: TreeRoot
)
4427 if (!collectValuesToDemote(Root
, Expr
, ToDemote
, Roots
))
4430 // The maximum bit width required to represent all the values that can be
4431 // demoted without loss of precision. It would be safe to truncate the roots
4432 // of the expression to this width.
4433 auto MaxBitWidth
= 8u;
4435 // We first check if all the bits of the roots are demanded. If they're not,
4436 // we can truncate the roots to this narrower type.
4437 for (auto *Root
: TreeRoot
) {
4438 auto Mask
= DB
->getDemandedBits(cast
<Instruction
>(Root
));
4439 MaxBitWidth
= std::max
<unsigned>(
4440 Mask
.getBitWidth() - Mask
.countLeadingZeros(), MaxBitWidth
);
4443 // True if the roots can be zero-extended back to their original type, rather
4444 // than sign-extended. We know that if the leading bits are not demanded, we
4445 // can safely zero-extend. So we initialize IsKnownPositive to True.
4446 bool IsKnownPositive
= true;
4448 // If all the bits of the roots are demanded, we can try a little harder to
4449 // compute a narrower type. This can happen, for example, if the roots are
4450 // getelementptr indices. InstCombine promotes these indices to the pointer
4451 // width. Thus, all their bits are technically demanded even though the
4452 // address computation might be vectorized in a smaller type.
4454 // We start by looking at each entry that can be demoted. We compute the
4455 // maximum bit width required to store the scalar by using ValueTracking to
4456 // compute the number of high-order bits we can truncate.
4457 if (MaxBitWidth
== DL
->getTypeSizeInBits(TreeRoot
[0]->getType()) &&
4458 llvm::all_of(TreeRoot
, [](Value
*R
) {
4459 assert(R
->hasOneUse() && "Root should have only one use!");
4460 return isa
<GetElementPtrInst
>(R
->user_back());
4464 // Determine if the sign bit of all the roots is known to be zero. If not,
4465 // IsKnownPositive is set to False.
4466 IsKnownPositive
= llvm::all_of(TreeRoot
, [&](Value
*R
) {
4467 KnownBits Known
= computeKnownBits(R
, *DL
);
4468 return Known
.isNonNegative();
4471 // Determine the maximum number of bits required to store the scalar
4473 for (auto *Scalar
: ToDemote
) {
4474 auto NumSignBits
= ComputeNumSignBits(Scalar
, *DL
, 0, AC
, nullptr, DT
);
4475 auto NumTypeBits
= DL
->getTypeSizeInBits(Scalar
->getType());
4476 MaxBitWidth
= std::max
<unsigned>(NumTypeBits
- NumSignBits
, MaxBitWidth
);
4479 // If we can't prove that the sign bit is zero, we must add one to the
4480 // maximum bit width to account for the unknown sign bit. This preserves
4481 // the existing sign bit so we can safely sign-extend the root back to the
4482 // original type. Otherwise, if we know the sign bit is zero, we will
4483 // zero-extend the root instead.
4485 // FIXME: This is somewhat suboptimal, as there will be cases where adding
4486 // one to the maximum bit width will yield a larger-than-necessary
4487 // type. In general, we need to add an extra bit only if we can't
4488 // prove that the upper bit of the original type is equal to the
4489 // upper bit of the proposed smaller type. If these two bits are the
4490 // same (either zero or one) we know that sign-extending from the
4491 // smaller type will result in the same value. Here, since we can't
4492 // yet prove this, we are just making the proposed smaller type
4493 // larger to ensure correctness.
4494 if (!IsKnownPositive
)
4498 // Round MaxBitWidth up to the next power-of-two.
4499 if (!isPowerOf2_64(MaxBitWidth
))
4500 MaxBitWidth
= NextPowerOf2(MaxBitWidth
);
4502 // If the maximum bit width we compute is less than the with of the roots'
4503 // type, we can proceed with the narrowing. Otherwise, do nothing.
4504 if (MaxBitWidth
>= TreeRootIT
->getBitWidth())
4507 // If we can truncate the root, we must collect additional values that might
4508 // be demoted as a result. That is, those seeded by truncations we will
4510 while (!Roots
.empty())
4511 collectValuesToDemote(Roots
.pop_back_val(), Expr
, ToDemote
, Roots
);
4513 // Finally, map the values we can demote to the maximum bit with we computed.
4514 for (auto *Scalar
: ToDemote
)
4515 MinBWs
[Scalar
] = std::make_pair(MaxBitWidth
, !IsKnownPositive
);
4520 /// The SLPVectorizer Pass.
4521 struct SLPVectorizer
: public FunctionPass
{
4522 SLPVectorizerPass Impl
;
4524 /// Pass identification, replacement for typeid
4527 explicit SLPVectorizer() : FunctionPass(ID
) {
4528 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
4531 bool doInitialization(Module
&M
) override
{
4535 bool runOnFunction(Function
&F
) override
{
4536 if (skipFunction(F
))
4539 auto *SE
= &getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
4540 auto *TTI
= &getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(F
);
4541 auto *TLIP
= getAnalysisIfAvailable
<TargetLibraryInfoWrapperPass
>();
4542 auto *TLI
= TLIP
? &TLIP
->getTLI() : nullptr;
4543 auto *AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
4544 auto *LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
4545 auto *DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
4546 auto *AC
= &getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
);
4547 auto *DB
= &getAnalysis
<DemandedBitsWrapperPass
>().getDemandedBits();
4548 auto *ORE
= &getAnalysis
<OptimizationRemarkEmitterWrapperPass
>().getORE();
4550 return Impl
.runImpl(F
, SE
, TTI
, TLI
, AA
, LI
, DT
, AC
, DB
, ORE
);
4553 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
4554 FunctionPass::getAnalysisUsage(AU
);
4555 AU
.addRequired
<AssumptionCacheTracker
>();
4556 AU
.addRequired
<ScalarEvolutionWrapperPass
>();
4557 AU
.addRequired
<AAResultsWrapperPass
>();
4558 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
4559 AU
.addRequired
<LoopInfoWrapperPass
>();
4560 AU
.addRequired
<DominatorTreeWrapperPass
>();
4561 AU
.addRequired
<DemandedBitsWrapperPass
>();
4562 AU
.addRequired
<OptimizationRemarkEmitterWrapperPass
>();
4563 AU
.addPreserved
<LoopInfoWrapperPass
>();
4564 AU
.addPreserved
<DominatorTreeWrapperPass
>();
4565 AU
.addPreserved
<AAResultsWrapperPass
>();
4566 AU
.addPreserved
<GlobalsAAWrapperPass
>();
4567 AU
.setPreservesCFG();
4571 } // end anonymous namespace
4573 PreservedAnalyses
SLPVectorizerPass::run(Function
&F
, FunctionAnalysisManager
&AM
) {
4574 auto *SE
= &AM
.getResult
<ScalarEvolutionAnalysis
>(F
);
4575 auto *TTI
= &AM
.getResult
<TargetIRAnalysis
>(F
);
4576 auto *TLI
= AM
.getCachedResult
<TargetLibraryAnalysis
>(F
);
4577 auto *AA
= &AM
.getResult
<AAManager
>(F
);
4578 auto *LI
= &AM
.getResult
<LoopAnalysis
>(F
);
4579 auto *DT
= &AM
.getResult
<DominatorTreeAnalysis
>(F
);
4580 auto *AC
= &AM
.getResult
<AssumptionAnalysis
>(F
);
4581 auto *DB
= &AM
.getResult
<DemandedBitsAnalysis
>(F
);
4582 auto *ORE
= &AM
.getResult
<OptimizationRemarkEmitterAnalysis
>(F
);
4584 bool Changed
= runImpl(F
, SE
, TTI
, TLI
, AA
, LI
, DT
, AC
, DB
, ORE
);
4586 return PreservedAnalyses::all();
4588 PreservedAnalyses PA
;
4589 PA
.preserveSet
<CFGAnalyses
>();
4590 PA
.preserve
<AAManager
>();
4591 PA
.preserve
<GlobalsAA
>();
4595 bool SLPVectorizerPass::runImpl(Function
&F
, ScalarEvolution
*SE_
,
4596 TargetTransformInfo
*TTI_
,
4597 TargetLibraryInfo
*TLI_
, AliasAnalysis
*AA_
,
4598 LoopInfo
*LI_
, DominatorTree
*DT_
,
4599 AssumptionCache
*AC_
, DemandedBits
*DB_
,
4600 OptimizationRemarkEmitter
*ORE_
) {
4609 DL
= &F
.getParent()->getDataLayout();
4613 bool Changed
= false;
4615 // If the target claims to have no vector registers don't attempt
4617 if (!TTI
->getNumberOfRegisters(true))
4620 // Don't vectorize when the attribute NoImplicitFloat is used.
4621 if (F
.hasFnAttribute(Attribute::NoImplicitFloat
))
4624 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F
.getName() << ".\n");
4626 // Use the bottom up slp vectorizer to construct chains that start with
4627 // store instructions.
4628 BoUpSLP
R(&F
, SE
, TTI
, TLI
, AA
, LI
, DT
, AC
, DB
, DL
, ORE_
);
4630 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
4631 // delete instructions.
4633 // Scan the blocks in the function in post order.
4634 for (auto BB
: post_order(&F
.getEntryBlock())) {
4635 collectSeedInstructions(BB
);
4637 // Vectorize trees that end at stores.
4638 if (!Stores
.empty()) {
4639 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores
.size()
4640 << " underlying objects.\n");
4641 Changed
|= vectorizeStoreChains(R
);
4644 // Vectorize trees that end at reductions.
4645 Changed
|= vectorizeChainsInBlock(BB
, R
);
4647 // Vectorize the index computations of getelementptr instructions. This
4648 // is primarily intended to catch gather-like idioms ending at
4649 // non-consecutive loads.
4650 if (!GEPs
.empty()) {
4651 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs
.size()
4652 << " underlying objects.\n");
4653 Changed
|= vectorizeGEPIndices(BB
, R
);
4658 R
.optimizeGatherSequence();
4659 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F
.getName() << "\"\n");
4660 LLVM_DEBUG(verifyFunction(F
));
4665 /// Check that the Values in the slice in VL array are still existent in
4666 /// the WeakTrackingVH array.
4667 /// Vectorization of part of the VL array may cause later values in the VL array
4668 /// to become invalid. We track when this has happened in the WeakTrackingVH
4670 static bool hasValueBeenRAUWed(ArrayRef
<Value
*> VL
,
4671 ArrayRef
<WeakTrackingVH
> VH
, unsigned SliceBegin
,
4672 unsigned SliceSize
) {
4673 VL
= VL
.slice(SliceBegin
, SliceSize
);
4674 VH
= VH
.slice(SliceBegin
, SliceSize
);
4675 return !std::equal(VL
.begin(), VL
.end(), VH
.begin());
4678 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef
<Value
*> Chain
, BoUpSLP
&R
,
4679 unsigned VecRegSize
) {
4680 const unsigned ChainLen
= Chain
.size();
4681 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
4683 const unsigned Sz
= R
.getVectorElementSize(Chain
[0]);
4684 const unsigned VF
= VecRegSize
/ Sz
;
4686 if (!isPowerOf2_32(Sz
) || VF
< 2)
4689 // Keep track of values that were deleted by vectorizing in the loop below.
4690 const SmallVector
<WeakTrackingVH
, 8> TrackValues(Chain
.begin(), Chain
.end());
4692 bool Changed
= false;
4693 // Look for profitable vectorizable trees at all offsets, starting at zero.
4694 for (unsigned i
= 0, e
= ChainLen
; i
+ VF
<= e
; ++i
) {
4696 // Check that a previous iteration of this loop did not delete the Value.
4697 if (hasValueBeenRAUWed(Chain
, TrackValues
, i
, VF
))
4700 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF
<< " stores at offset " << i
4702 ArrayRef
<Value
*> Operands
= Chain
.slice(i
, VF
);
4704 R
.buildTree(Operands
);
4705 if (R
.isTreeTinyAndNotFullyVectorizable())
4708 R
.computeMinimumValueSizes();
4710 int Cost
= R
.getTreeCost();
4712 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost
<< " for VF=" << VF
4714 if (Cost
< -SLPCostThreshold
) {
4715 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost
<< "\n");
4717 using namespace ore
;
4719 R
.getORE()->emit(OptimizationRemark(SV_NAME
, "StoresVectorized",
4720 cast
<StoreInst
>(Chain
[i
]))
4721 << "Stores SLP vectorized with cost " << NV("Cost", Cost
)
4722 << " and with tree size "
4723 << NV("TreeSize", R
.getTreeSize()));
4727 // Move to the next bundle.
4736 bool SLPVectorizerPass::vectorizeStores(ArrayRef
<StoreInst
*> Stores
,
4738 SetVector
<StoreInst
*> Heads
;
4739 SmallDenseSet
<StoreInst
*> Tails
;
4740 SmallDenseMap
<StoreInst
*, StoreInst
*> ConsecutiveChain
;
4742 // We may run into multiple chains that merge into a single chain. We mark the
4743 // stores that we vectorized so that we don't visit the same store twice.
4744 BoUpSLP::ValueSet VectorizedStores
;
4745 bool Changed
= false;
4747 // Do a quadratic search on all of the given stores in reverse order and find
4748 // all of the pairs of stores that follow each other.
4749 SmallVector
<unsigned, 16> IndexQueue
;
4750 unsigned E
= Stores
.size();
4751 IndexQueue
.resize(E
- 1);
4752 for (unsigned I
= E
; I
> 0; --I
) {
4753 unsigned Idx
= I
- 1;
4754 // If a store has multiple consecutive store candidates, search Stores
4755 // array according to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
4756 // This is because usually pairing with immediate succeeding or preceding
4757 // candidate create the best chance to find slp vectorization opportunity.
4758 unsigned Offset
= 1;
4760 for (unsigned J
= 0; J
< E
- 1; ++J
, ++Offset
) {
4761 if (Idx
>= Offset
) {
4762 IndexQueue
[Cnt
] = Idx
- Offset
;
4765 if (Idx
+ Offset
< E
) {
4766 IndexQueue
[Cnt
] = Idx
+ Offset
;
4771 for (auto K
: IndexQueue
) {
4772 if (isConsecutiveAccess(Stores
[K
], Stores
[Idx
], *DL
, *SE
)) {
4773 Tails
.insert(Stores
[Idx
]);
4774 Heads
.insert(Stores
[K
]);
4775 ConsecutiveChain
[Stores
[K
]] = Stores
[Idx
];
4781 // For stores that start but don't end a link in the chain:
4782 for (auto *SI
: llvm::reverse(Heads
)) {
4783 if (Tails
.count(SI
))
4786 // We found a store instr that starts a chain. Now follow the chain and try
4788 BoUpSLP::ValueList Operands
;
4790 // Collect the chain into a list.
4791 while ((Tails
.count(I
) || Heads
.count(I
)) && !VectorizedStores
.count(I
)) {
4792 Operands
.push_back(I
);
4793 // Move to the next value in the chain.
4794 I
= ConsecutiveChain
[I
];
4797 // FIXME: Is division-by-2 the correct step? Should we assert that the
4798 // register size is a power-of-2?
4799 for (unsigned Size
= R
.getMaxVecRegSize(); Size
>= R
.getMinVecRegSize();
4801 if (vectorizeStoreChain(Operands
, R
, Size
)) {
4802 // Mark the vectorized stores so that we don't vectorize them again.
4803 VectorizedStores
.insert(Operands
.begin(), Operands
.end());
4813 void SLPVectorizerPass::collectSeedInstructions(BasicBlock
*BB
) {
4814 // Initialize the collections. We will make a single pass over the block.
4818 // Visit the store and getelementptr instructions in BB and organize them in
4819 // Stores and GEPs according to the underlying objects of their pointer
4821 for (Instruction
&I
: *BB
) {
4822 // Ignore store instructions that are volatile or have a pointer operand
4823 // that doesn't point to a scalar type.
4824 if (auto *SI
= dyn_cast
<StoreInst
>(&I
)) {
4825 if (!SI
->isSimple())
4827 if (!isValidElementType(SI
->getValueOperand()->getType()))
4829 Stores
[GetUnderlyingObject(SI
->getPointerOperand(), *DL
)].push_back(SI
);
4832 // Ignore getelementptr instructions that have more than one index, a
4833 // constant index, or a pointer operand that doesn't point to a scalar
4835 else if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(&I
)) {
4836 auto Idx
= GEP
->idx_begin()->get();
4837 if (GEP
->getNumIndices() > 1 || isa
<Constant
>(Idx
))
4839 if (!isValidElementType(Idx
->getType()))
4841 if (GEP
->getType()->isVectorTy())
4843 GEPs
[GEP
->getPointerOperand()].push_back(GEP
);
4848 bool SLPVectorizerPass::tryToVectorizePair(Value
*A
, Value
*B
, BoUpSLP
&R
) {
4851 Value
*VL
[] = { A
, B
};
4852 return tryToVectorizeList(VL
, R
, /*UserCost=*/0, true);
4855 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef
<Value
*> VL
, BoUpSLP
&R
,
4856 int UserCost
, bool AllowReorder
) {
4860 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
4861 << VL
.size() << ".\n");
4863 // Check that all of the parts are scalar instructions of the same type,
4864 // we permit an alternate opcode via InstructionsState.
4865 InstructionsState S
= getSameOpcode(VL
);
4869 Instruction
*I0
= cast
<Instruction
>(S
.OpValue
);
4870 unsigned Sz
= R
.getVectorElementSize(I0
);
4871 unsigned MinVF
= std::max(2U, R
.getMinVecRegSize() / Sz
);
4872 unsigned MaxVF
= std::max
<unsigned>(PowerOf2Floor(VL
.size()), MinVF
);
4874 R
.getORE()->emit([&]() {
4875 return OptimizationRemarkMissed(SV_NAME
, "SmallVF", I0
)
4876 << "Cannot SLP vectorize list: vectorization factor "
4877 << "less than 2 is not supported";
4882 for (Value
*V
: VL
) {
4883 Type
*Ty
= V
->getType();
4884 if (!isValidElementType(Ty
)) {
4885 // NOTE: the following will give user internal llvm type name, which may
4887 R
.getORE()->emit([&]() {
4888 std::string type_str
;
4889 llvm::raw_string_ostream
rso(type_str
);
4891 return OptimizationRemarkMissed(SV_NAME
, "UnsupportedType", I0
)
4892 << "Cannot SLP vectorize list: type "
4893 << rso
.str() + " is unsupported by vectorizer";
4899 bool Changed
= false;
4900 bool CandidateFound
= false;
4901 int MinCost
= SLPCostThreshold
;
4903 // Keep track of values that were deleted by vectorizing in the loop below.
4904 SmallVector
<WeakTrackingVH
, 8> TrackValues(VL
.begin(), VL
.end());
4906 unsigned NextInst
= 0, MaxInst
= VL
.size();
4907 for (unsigned VF
= MaxVF
; NextInst
+ 1 < MaxInst
&& VF
>= MinVF
;
4909 // No actual vectorization should happen, if number of parts is the same as
4910 // provided vectorization factor (i.e. the scalar type is used for vector
4911 // code during codegen).
4912 auto *VecTy
= VectorType::get(VL
[0]->getType(), VF
);
4913 if (TTI
->getNumberOfParts(VecTy
) == VF
)
4915 for (unsigned I
= NextInst
; I
< MaxInst
; ++I
) {
4916 unsigned OpsWidth
= 0;
4918 if (I
+ VF
> MaxInst
)
4919 OpsWidth
= MaxInst
- I
;
4923 if (!isPowerOf2_32(OpsWidth
) || OpsWidth
< 2)
4926 // Check that a previous iteration of this loop did not delete the Value.
4927 if (hasValueBeenRAUWed(VL
, TrackValues
, I
, OpsWidth
))
4930 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth
<< " operations "
4932 ArrayRef
<Value
*> Ops
= VL
.slice(I
, OpsWidth
);
4935 Optional
<ArrayRef
<unsigned>> Order
= R
.bestOrder();
4936 // TODO: check if we can allow reordering for more cases.
4937 if (AllowReorder
&& Order
) {
4938 // TODO: reorder tree nodes without tree rebuilding.
4939 // Conceptually, there is nothing actually preventing us from trying to
4940 // reorder a larger list. In fact, we do exactly this when vectorizing
4941 // reductions. However, at this point, we only expect to get here when
4942 // there are exactly two operations.
4943 assert(Ops
.size() == 2);
4944 Value
*ReorderedOps
[] = {Ops
[1], Ops
[0]};
4945 R
.buildTree(ReorderedOps
, None
);
4947 if (R
.isTreeTinyAndNotFullyVectorizable())
4950 R
.computeMinimumValueSizes();
4951 int Cost
= R
.getTreeCost() - UserCost
;
4952 CandidateFound
= true;
4953 MinCost
= std::min(MinCost
, Cost
);
4955 if (Cost
< -SLPCostThreshold
) {
4956 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost
<< ".\n");
4957 R
.getORE()->emit(OptimizationRemark(SV_NAME
, "VectorizedList",
4958 cast
<Instruction
>(Ops
[0]))
4959 << "SLP vectorized with cost " << ore::NV("Cost", Cost
)
4960 << " and with tree size "
4961 << ore::NV("TreeSize", R
.getTreeSize()));
4964 // Move to the next bundle.
4972 if (!Changed
&& CandidateFound
) {
4973 R
.getORE()->emit([&]() {
4974 return OptimizationRemarkMissed(SV_NAME
, "NotBeneficial", I0
)
4975 << "List vectorization was possible but not beneficial with cost "
4976 << ore::NV("Cost", MinCost
) << " >= "
4977 << ore::NV("Treshold", -SLPCostThreshold
);
4979 } else if (!Changed
) {
4980 R
.getORE()->emit([&]() {
4981 return OptimizationRemarkMissed(SV_NAME
, "NotPossible", I0
)
4982 << "Cannot SLP vectorize list: vectorization was impossible"
4983 << " with available vectorization factors";
4989 bool SLPVectorizerPass::tryToVectorize(Instruction
*I
, BoUpSLP
&R
) {
4993 if (!isa
<BinaryOperator
>(I
) && !isa
<CmpInst
>(I
))
4996 Value
*P
= I
->getParent();
4998 // Vectorize in current basic block only.
4999 auto *Op0
= dyn_cast
<Instruction
>(I
->getOperand(0));
5000 auto *Op1
= dyn_cast
<Instruction
>(I
->getOperand(1));
5001 if (!Op0
|| !Op1
|| Op0
->getParent() != P
|| Op1
->getParent() != P
)
5004 // Try to vectorize V.
5005 if (tryToVectorizePair(Op0
, Op1
, R
))
5008 auto *A
= dyn_cast
<BinaryOperator
>(Op0
);
5009 auto *B
= dyn_cast
<BinaryOperator
>(Op1
);
5011 if (B
&& B
->hasOneUse()) {
5012 auto *B0
= dyn_cast
<BinaryOperator
>(B
->getOperand(0));
5013 auto *B1
= dyn_cast
<BinaryOperator
>(B
->getOperand(1));
5014 if (B0
&& B0
->getParent() == P
&& tryToVectorizePair(A
, B0
, R
))
5016 if (B1
&& B1
->getParent() == P
&& tryToVectorizePair(A
, B1
, R
))
5021 if (A
&& A
->hasOneUse()) {
5022 auto *A0
= dyn_cast
<BinaryOperator
>(A
->getOperand(0));
5023 auto *A1
= dyn_cast
<BinaryOperator
>(A
->getOperand(1));
5024 if (A0
&& A0
->getParent() == P
&& tryToVectorizePair(A0
, B
, R
))
5026 if (A1
&& A1
->getParent() == P
&& tryToVectorizePair(A1
, B
, R
))
5032 /// Generate a shuffle mask to be used in a reduction tree.
5034 /// \param VecLen The length of the vector to be reduced.
5035 /// \param NumEltsToRdx The number of elements that should be reduced in the
5037 /// \param IsPairwise Whether the reduction is a pairwise or splitting
5038 /// reduction. A pairwise reduction will generate a mask of
5039 /// <0,2,...> or <1,3,..> while a splitting reduction will generate
5040 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2.
5041 /// \param IsLeft True will generate a mask of even elements, odd otherwise.
5042 static Value
*createRdxShuffleMask(unsigned VecLen
, unsigned NumEltsToRdx
,
5043 bool IsPairwise
, bool IsLeft
,
5044 IRBuilder
<> &Builder
) {
5045 assert((IsPairwise
|| !IsLeft
) && "Don't support a <0,1,undef,...> mask");
5047 SmallVector
<Constant
*, 32> ShuffleMask(
5048 VecLen
, UndefValue::get(Builder
.getInt32Ty()));
5051 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
5052 for (unsigned i
= 0; i
!= NumEltsToRdx
; ++i
)
5053 ShuffleMask
[i
] = Builder
.getInt32(2 * i
+ !IsLeft
);
5055 // Move the upper half of the vector to the lower half.
5056 for (unsigned i
= 0; i
!= NumEltsToRdx
; ++i
)
5057 ShuffleMask
[i
] = Builder
.getInt32(NumEltsToRdx
+ i
);
5059 return ConstantVector::get(ShuffleMask
);
5064 /// Model horizontal reductions.
5066 /// A horizontal reduction is a tree of reduction operations (currently add and
5067 /// fadd) that has operations that can be put into a vector as its leaf.
5068 /// For example, this tree:
5075 /// This tree has "mul" as its reduced values and "+" as its reduction
5076 /// operations. A reduction might be feeding into a store or a binary operation
5091 class HorizontalReduction
{
5092 using ReductionOpsType
= SmallVector
<Value
*, 16>;
5093 using ReductionOpsListType
= SmallVector
<ReductionOpsType
, 2>;
5094 ReductionOpsListType ReductionOps
;
5095 SmallVector
<Value
*, 32> ReducedVals
;
5096 // Use map vector to make stable output.
5097 MapVector
<Instruction
*, Value
*> ExtraArgs
;
5099 /// Kind of the reduction data.
5100 enum ReductionKind
{
5101 RK_None
, /// Not a reduction.
5102 RK_Arithmetic
, /// Binary reduction data.
5103 RK_Min
, /// Minimum reduction data.
5104 RK_UMin
, /// Unsigned minimum reduction data.
5105 RK_Max
, /// Maximum reduction data.
5106 RK_UMax
, /// Unsigned maximum reduction data.
5109 /// Contains info about operation, like its opcode, left and right operands.
5110 class OperationData
{
5111 /// Opcode of the instruction.
5112 unsigned Opcode
= 0;
5114 /// Left operand of the reduction operation.
5115 Value
*LHS
= nullptr;
5117 /// Right operand of the reduction operation.
5118 Value
*RHS
= nullptr;
5120 /// Kind of the reduction operation.
5121 ReductionKind Kind
= RK_None
;
5123 /// True if float point min/max reduction has no NaNs.
5126 /// Checks if the reduction operation can be vectorized.
5127 bool isVectorizable() const {
5128 return LHS
&& RHS
&&
5129 // We currently only support adds && min/max reductions.
5130 ((Kind
== RK_Arithmetic
&&
5131 (Opcode
== Instruction::Add
|| Opcode
== Instruction::FAdd
)) ||
5132 ((Opcode
== Instruction::ICmp
|| Opcode
== Instruction::FCmp
) &&
5133 (Kind
== RK_Min
|| Kind
== RK_Max
)) ||
5134 (Opcode
== Instruction::ICmp
&&
5135 (Kind
== RK_UMin
|| Kind
== RK_UMax
)));
5138 /// Creates reduction operation with the current opcode.
5139 Value
*createOp(IRBuilder
<> &Builder
, const Twine
&Name
) const {
5140 assert(isVectorizable() &&
5141 "Expected add|fadd or min/max reduction operation.");
5145 return Builder
.CreateBinOp((Instruction::BinaryOps
)Opcode
, LHS
, RHS
,
5148 Cmp
= Opcode
== Instruction::ICmp
? Builder
.CreateICmpSLT(LHS
, RHS
)
5149 : Builder
.CreateFCmpOLT(LHS
, RHS
);
5152 Cmp
= Opcode
== Instruction::ICmp
? Builder
.CreateICmpSGT(LHS
, RHS
)
5153 : Builder
.CreateFCmpOGT(LHS
, RHS
);
5156 assert(Opcode
== Instruction::ICmp
&& "Expected integer types.");
5157 Cmp
= Builder
.CreateICmpULT(LHS
, RHS
);
5160 assert(Opcode
== Instruction::ICmp
&& "Expected integer types.");
5161 Cmp
= Builder
.CreateICmpUGT(LHS
, RHS
);
5164 llvm_unreachable("Unknown reduction operation.");
5166 return Builder
.CreateSelect(Cmp
, LHS
, RHS
, Name
);
5170 explicit OperationData() = default;
5172 /// Construction for reduced values. They are identified by opcode only and
5173 /// don't have associated LHS/RHS values.
5174 explicit OperationData(Value
*V
) {
5175 if (auto *I
= dyn_cast
<Instruction
>(V
))
5176 Opcode
= I
->getOpcode();
5179 /// Constructor for reduction operations with opcode and its left and
5181 OperationData(unsigned Opcode
, Value
*LHS
, Value
*RHS
, ReductionKind Kind
,
5183 : Opcode(Opcode
), LHS(LHS
), RHS(RHS
), Kind(Kind
), NoNaN(NoNaN
) {
5184 assert(Kind
!= RK_None
&& "One of the reduction operations is expected.");
5187 explicit operator bool() const { return Opcode
; }
5189 /// Get the index of the first operand.
5190 unsigned getFirstOperandIndex() const {
5191 assert(!!*this && "The opcode is not set.");
5205 /// Total number of operands in the reduction operation.
5206 unsigned getNumberOfOperands() const {
5207 assert(Kind
!= RK_None
&& !!*this && LHS
&& RHS
&&
5208 "Expected reduction operation.");
5220 llvm_unreachable("Reduction kind is not set");
5223 /// Checks if the operation has the same parent as \p P.
5224 bool hasSameParent(Instruction
*I
, Value
*P
, bool IsRedOp
) const {
5225 assert(Kind
!= RK_None
&& !!*this && LHS
&& RHS
&&
5226 "Expected reduction operation.");
5228 return I
->getParent() == P
;
5231 // Arithmetic reduction operation must be used once only.
5232 return I
->getParent() == P
;
5237 // SelectInst must be used twice while the condition op must have single
5239 auto *Cmp
= cast
<Instruction
>(cast
<SelectInst
>(I
)->getCondition());
5240 return I
->getParent() == P
&& Cmp
&& Cmp
->getParent() == P
;
5245 llvm_unreachable("Reduction kind is not set");
5247 /// Expected number of uses for reduction operations/reduced values.
5248 bool hasRequiredNumberOfUses(Instruction
*I
, bool IsReductionOp
) const {
5249 assert(Kind
!= RK_None
&& !!*this && LHS
&& RHS
&&
5250 "Expected reduction operation.");
5253 return I
->hasOneUse();
5258 return I
->hasNUses(2) &&
5260 cast
<SelectInst
>(I
)->getCondition()->hasOneUse());
5264 llvm_unreachable("Reduction kind is not set");
5267 /// Initializes the list of reduction operations.
5268 void initReductionOps(ReductionOpsListType
&ReductionOps
) {
5269 assert(Kind
!= RK_None
&& !!*this && LHS
&& RHS
&&
5270 "Expected reduction operation.");
5273 ReductionOps
.assign(1, ReductionOpsType());
5279 ReductionOps
.assign(2, ReductionOpsType());
5282 llvm_unreachable("Reduction kind is not set");
5285 /// Add all reduction operations for the reduction instruction \p I.
5286 void addReductionOps(Instruction
*I
, ReductionOpsListType
&ReductionOps
) {
5287 assert(Kind
!= RK_None
&& !!*this && LHS
&& RHS
&&
5288 "Expected reduction operation.");
5291 ReductionOps
[0].emplace_back(I
);
5297 ReductionOps
[0].emplace_back(cast
<SelectInst
>(I
)->getCondition());
5298 ReductionOps
[1].emplace_back(I
);
5301 llvm_unreachable("Reduction kind is not set");
5305 /// Checks if instruction is associative and can be vectorized.
5306 bool isAssociative(Instruction
*I
) const {
5307 assert(Kind
!= RK_None
&& *this && LHS
&& RHS
&&
5308 "Expected reduction operation.");
5311 return I
->isAssociative();
5314 return Opcode
== Instruction::ICmp
||
5315 cast
<Instruction
>(I
->getOperand(0))->isFast();
5318 assert(Opcode
== Instruction::ICmp
&&
5319 "Only integer compare operation is expected.");
5324 llvm_unreachable("Reduction kind is not set");
5327 /// Checks if the reduction operation can be vectorized.
5328 bool isVectorizable(Instruction
*I
) const {
5329 return isVectorizable() && isAssociative(I
);
5332 /// Checks if two operation data are both a reduction op or both a reduced
5334 bool operator==(const OperationData
&OD
) {
5335 assert(((Kind
!= OD
.Kind
) || ((!LHS
== !OD
.LHS
) && (!RHS
== !OD
.RHS
))) &&
5336 "One of the comparing operations is incorrect.");
5337 return this == &OD
|| (Kind
== OD
.Kind
&& Opcode
== OD
.Opcode
);
5339 bool operator!=(const OperationData
&OD
) { return !(*this == OD
); }
5348 /// Get the opcode of the reduction operation.
5349 unsigned getOpcode() const {
5350 assert(isVectorizable() && "Expected vectorizable operation.");
5354 /// Get kind of reduction data.
5355 ReductionKind
getKind() const { return Kind
; }
5356 Value
*getLHS() const { return LHS
; }
5357 Value
*getRHS() const { return RHS
; }
5358 Type
*getConditionType() const {
5366 return CmpInst::makeCmpResultType(LHS
->getType());
5370 llvm_unreachable("Reduction kind is not set");
5373 /// Creates reduction operation with the current opcode with the IR flags
5374 /// from \p ReductionOps.
5375 Value
*createOp(IRBuilder
<> &Builder
, const Twine
&Name
,
5376 const ReductionOpsListType
&ReductionOps
) const {
5377 assert(isVectorizable() &&
5378 "Expected add|fadd or min/max reduction operation.");
5379 auto *Op
= createOp(Builder
, Name
);
5382 propagateIRFlags(Op
, ReductionOps
[0]);
5388 if (auto *SI
= dyn_cast
<SelectInst
>(Op
))
5389 propagateIRFlags(SI
->getCondition(), ReductionOps
[0]);
5390 propagateIRFlags(Op
, ReductionOps
[1]);
5395 llvm_unreachable("Unknown reduction operation.");
5397 /// Creates reduction operation with the current opcode with the IR flags
5399 Value
*createOp(IRBuilder
<> &Builder
, const Twine
&Name
,
5400 Instruction
*I
) const {
5401 assert(isVectorizable() &&
5402 "Expected add|fadd or min/max reduction operation.");
5403 auto *Op
= createOp(Builder
, Name
);
5406 propagateIRFlags(Op
, I
);
5412 if (auto *SI
= dyn_cast
<SelectInst
>(Op
)) {
5413 propagateIRFlags(SI
->getCondition(),
5414 cast
<SelectInst
>(I
)->getCondition());
5416 propagateIRFlags(Op
, I
);
5421 llvm_unreachable("Unknown reduction operation.");
5424 TargetTransformInfo::ReductionFlags
getFlags() const {
5425 TargetTransformInfo::ReductionFlags Flags
;
5426 Flags
.NoNaN
= NoNaN
;
5431 Flags
.IsSigned
= Opcode
== Instruction::ICmp
;
5432 Flags
.IsMaxOp
= false;
5435 Flags
.IsSigned
= Opcode
== Instruction::ICmp
;
5436 Flags
.IsMaxOp
= true;
5439 Flags
.IsSigned
= false;
5440 Flags
.IsMaxOp
= false;
5443 Flags
.IsSigned
= false;
5444 Flags
.IsMaxOp
= true;
5447 llvm_unreachable("Reduction kind is not set");
5453 Instruction
*ReductionRoot
= nullptr;
5455 /// The operation data of the reduction operation.
5456 OperationData ReductionData
;
5458 /// The operation data of the values we perform a reduction on.
5459 OperationData ReducedValueData
;
5461 /// Should we model this reduction as a pairwise reduction tree or a tree that
5462 /// splits the vector in halves and adds those halves.
5463 bool IsPairwiseReduction
= false;
5465 /// Checks if the ParentStackElem.first should be marked as a reduction
5466 /// operation with an extra argument or as extra argument itself.
5467 void markExtraArg(std::pair
<Instruction
*, unsigned> &ParentStackElem
,
5469 if (ExtraArgs
.count(ParentStackElem
.first
)) {
5470 ExtraArgs
[ParentStackElem
.first
] = nullptr;
5471 // We ran into something like:
5472 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
5473 // The whole ParentStackElem.first should be considered as an extra value
5475 // Do not perform analysis of remaining operands of ParentStackElem.first
5476 // instruction, this whole instruction is an extra argument.
5477 ParentStackElem
.second
= ParentStackElem
.first
->getNumOperands();
5479 // We ran into something like:
5480 // ParentStackElem.first += ... + ExtraArg + ...
5481 ExtraArgs
[ParentStackElem
.first
] = ExtraArg
;
5485 static OperationData
getOperationData(Value
*V
) {
5487 return OperationData();
5491 if (m_BinOp(m_Value(LHS
), m_Value(RHS
)).match(V
)) {
5492 return OperationData(cast
<BinaryOperator
>(V
)->getOpcode(), LHS
, RHS
,
5495 if (auto *Select
= dyn_cast
<SelectInst
>(V
)) {
5496 // Look for a min/max pattern.
5497 if (m_UMin(m_Value(LHS
), m_Value(RHS
)).match(Select
)) {
5498 return OperationData(Instruction::ICmp
, LHS
, RHS
, RK_UMin
);
5499 } else if (m_SMin(m_Value(LHS
), m_Value(RHS
)).match(Select
)) {
5500 return OperationData(Instruction::ICmp
, LHS
, RHS
, RK_Min
);
5501 } else if (m_OrdFMin(m_Value(LHS
), m_Value(RHS
)).match(Select
) ||
5502 m_UnordFMin(m_Value(LHS
), m_Value(RHS
)).match(Select
)) {
5503 return OperationData(
5504 Instruction::FCmp
, LHS
, RHS
, RK_Min
,
5505 cast
<Instruction
>(Select
->getCondition())->hasNoNaNs());
5506 } else if (m_UMax(m_Value(LHS
), m_Value(RHS
)).match(Select
)) {
5507 return OperationData(Instruction::ICmp
, LHS
, RHS
, RK_UMax
);
5508 } else if (m_SMax(m_Value(LHS
), m_Value(RHS
)).match(Select
)) {
5509 return OperationData(Instruction::ICmp
, LHS
, RHS
, RK_Max
);
5510 } else if (m_OrdFMax(m_Value(LHS
), m_Value(RHS
)).match(Select
) ||
5511 m_UnordFMax(m_Value(LHS
), m_Value(RHS
)).match(Select
)) {
5512 return OperationData(
5513 Instruction::FCmp
, LHS
, RHS
, RK_Max
,
5514 cast
<Instruction
>(Select
->getCondition())->hasNoNaNs());
5516 // Try harder: look for min/max pattern based on instructions producing
5517 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
5518 // During the intermediate stages of SLP, it's very common to have
5519 // pattern like this (since optimizeGatherSequence is run only once
5521 // %1 = extractelement <2 x i32> %a, i32 0
5522 // %2 = extractelement <2 x i32> %a, i32 1
5523 // %cond = icmp sgt i32 %1, %2
5524 // %3 = extractelement <2 x i32> %a, i32 0
5525 // %4 = extractelement <2 x i32> %a, i32 1
5526 // %select = select i1 %cond, i32 %3, i32 %4
5527 CmpInst::Predicate Pred
;
5531 LHS
= Select
->getTrueValue();
5532 RHS
= Select
->getFalseValue();
5533 Value
*Cond
= Select
->getCondition();
5535 // TODO: Support inverse predicates.
5536 if (match(Cond
, m_Cmp(Pred
, m_Specific(LHS
), m_Instruction(L2
)))) {
5537 if (!isa
<ExtractElementInst
>(RHS
) ||
5538 !L2
->isIdenticalTo(cast
<Instruction
>(RHS
)))
5539 return OperationData(V
);
5540 } else if (match(Cond
, m_Cmp(Pred
, m_Instruction(L1
), m_Specific(RHS
)))) {
5541 if (!isa
<ExtractElementInst
>(LHS
) ||
5542 !L1
->isIdenticalTo(cast
<Instruction
>(LHS
)))
5543 return OperationData(V
);
5545 if (!isa
<ExtractElementInst
>(LHS
) || !isa
<ExtractElementInst
>(RHS
))
5546 return OperationData(V
);
5547 if (!match(Cond
, m_Cmp(Pred
, m_Instruction(L1
), m_Instruction(L2
))) ||
5548 !L1
->isIdenticalTo(cast
<Instruction
>(LHS
)) ||
5549 !L2
->isIdenticalTo(cast
<Instruction
>(RHS
)))
5550 return OperationData(V
);
5554 return OperationData(V
);
5556 case CmpInst::ICMP_ULT
:
5557 case CmpInst::ICMP_ULE
:
5558 return OperationData(Instruction::ICmp
, LHS
, RHS
, RK_UMin
);
5560 case CmpInst::ICMP_SLT
:
5561 case CmpInst::ICMP_SLE
:
5562 return OperationData(Instruction::ICmp
, LHS
, RHS
, RK_Min
);
5564 case CmpInst::FCMP_OLT
:
5565 case CmpInst::FCMP_OLE
:
5566 case CmpInst::FCMP_ULT
:
5567 case CmpInst::FCMP_ULE
:
5568 return OperationData(Instruction::FCmp
, LHS
, RHS
, RK_Min
,
5569 cast
<Instruction
>(Cond
)->hasNoNaNs());
5571 case CmpInst::ICMP_UGT
:
5572 case CmpInst::ICMP_UGE
:
5573 return OperationData(Instruction::ICmp
, LHS
, RHS
, RK_UMax
);
5575 case CmpInst::ICMP_SGT
:
5576 case CmpInst::ICMP_SGE
:
5577 return OperationData(Instruction::ICmp
, LHS
, RHS
, RK_Max
);
5579 case CmpInst::FCMP_OGT
:
5580 case CmpInst::FCMP_OGE
:
5581 case CmpInst::FCMP_UGT
:
5582 case CmpInst::FCMP_UGE
:
5583 return OperationData(Instruction::FCmp
, LHS
, RHS
, RK_Max
,
5584 cast
<Instruction
>(Cond
)->hasNoNaNs());
5588 return OperationData(V
);
5592 HorizontalReduction() = default;
5594 /// Try to find a reduction tree.
5595 bool matchAssociativeReduction(PHINode
*Phi
, Instruction
*B
) {
5596 assert((!Phi
|| is_contained(Phi
->operands(), B
)) &&
5597 "Thi phi needs to use the binary operator");
5599 ReductionData
= getOperationData(B
);
5601 // We could have a initial reductions that is not an add.
5602 // r *= v1 + v2 + v3 + v4
5603 // In such a case start looking for a tree rooted in the first '+'.
5605 if (ReductionData
.getLHS() == Phi
) {
5607 B
= dyn_cast
<Instruction
>(ReductionData
.getRHS());
5608 ReductionData
= getOperationData(B
);
5609 } else if (ReductionData
.getRHS() == Phi
) {
5611 B
= dyn_cast
<Instruction
>(ReductionData
.getLHS());
5612 ReductionData
= getOperationData(B
);
5616 if (!ReductionData
.isVectorizable(B
))
5619 Type
*Ty
= B
->getType();
5620 if (!isValidElementType(Ty
))
5622 if (!Ty
->isIntOrIntVectorTy() && !Ty
->isFPOrFPVectorTy())
5625 ReducedValueData
.clear();
5628 // Post order traverse the reduction tree starting at B. We only handle true
5629 // trees containing only binary operators.
5630 SmallVector
<std::pair
<Instruction
*, unsigned>, 32> Stack
;
5631 Stack
.push_back(std::make_pair(B
, ReductionData
.getFirstOperandIndex()));
5632 ReductionData
.initReductionOps(ReductionOps
);
5633 while (!Stack
.empty()) {
5634 Instruction
*TreeN
= Stack
.back().first
;
5635 unsigned EdgeToVist
= Stack
.back().second
++;
5636 OperationData OpData
= getOperationData(TreeN
);
5637 bool IsReducedValue
= OpData
!= ReductionData
;
5640 if (IsReducedValue
|| EdgeToVist
== OpData
.getNumberOfOperands()) {
5642 ReducedVals
.push_back(TreeN
);
5644 auto I
= ExtraArgs
.find(TreeN
);
5645 if (I
!= ExtraArgs
.end() && !I
->second
) {
5646 // Check if TreeN is an extra argument of its parent operation.
5647 if (Stack
.size() <= 1) {
5648 // TreeN can't be an extra argument as it is a root reduction
5652 // Yes, TreeN is an extra argument, do not add it to a list of
5653 // reduction operations.
5654 // Stack[Stack.size() - 2] always points to the parent operation.
5655 markExtraArg(Stack
[Stack
.size() - 2], TreeN
);
5656 ExtraArgs
.erase(TreeN
);
5658 ReductionData
.addReductionOps(TreeN
, ReductionOps
);
5665 // Visit left or right.
5666 Value
*NextV
= TreeN
->getOperand(EdgeToVist
);
5668 auto *I
= dyn_cast
<Instruction
>(NextV
);
5669 OpData
= getOperationData(I
);
5670 // Continue analysis if the next operand is a reduction operation or
5671 // (possibly) a reduced value. If the reduced value opcode is not set,
5672 // the first met operation != reduction operation is considered as the
5673 // reduced value class.
5674 if (I
&& (!ReducedValueData
|| OpData
== ReducedValueData
||
5675 OpData
== ReductionData
)) {
5676 const bool IsReductionOperation
= OpData
== ReductionData
;
5677 // Only handle trees in the current basic block.
5678 if (!ReductionData
.hasSameParent(I
, B
->getParent(),
5679 IsReductionOperation
)) {
5680 // I is an extra argument for TreeN (its parent operation).
5681 markExtraArg(Stack
.back(), I
);
5685 // Each tree node needs to have minimal number of users except for the
5686 // ultimate reduction.
5687 if (!ReductionData
.hasRequiredNumberOfUses(I
,
5688 OpData
== ReductionData
) &&
5690 // I is an extra argument for TreeN (its parent operation).
5691 markExtraArg(Stack
.back(), I
);
5695 if (IsReductionOperation
) {
5696 // We need to be able to reassociate the reduction operations.
5697 if (!OpData
.isAssociative(I
)) {
5698 // I is an extra argument for TreeN (its parent operation).
5699 markExtraArg(Stack
.back(), I
);
5702 } else if (ReducedValueData
&&
5703 ReducedValueData
!= OpData
) {
5704 // Make sure that the opcodes of the operations that we are going to
5706 // I is an extra argument for TreeN (its parent operation).
5707 markExtraArg(Stack
.back(), I
);
5709 } else if (!ReducedValueData
)
5710 ReducedValueData
= OpData
;
5712 Stack
.push_back(std::make_pair(I
, OpData
.getFirstOperandIndex()));
5716 // NextV is an extra argument for TreeN (its parent operation).
5717 markExtraArg(Stack
.back(), NextV
);
5722 /// Attempt to vectorize the tree found by
5723 /// matchAssociativeReduction.
5724 bool tryToReduce(BoUpSLP
&V
, TargetTransformInfo
*TTI
) {
5725 if (ReducedVals
.empty())
5728 // If there is a sufficient number of reduction values, reduce
5729 // to a nearby power-of-2. Can safely generate oversized
5730 // vectors and rely on the backend to split them to legal sizes.
5731 unsigned NumReducedVals
= ReducedVals
.size();
5732 if (NumReducedVals
< 4)
5735 unsigned ReduxWidth
= PowerOf2Floor(NumReducedVals
);
5737 Value
*VectorizedTree
= nullptr;
5738 IRBuilder
<> Builder(ReductionRoot
);
5739 FastMathFlags Unsafe
;
5741 Builder
.setFastMathFlags(Unsafe
);
5744 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues
;
5745 // The same extra argument may be used several time, so log each attempt
5747 for (auto &Pair
: ExtraArgs
)
5748 ExternallyUsedValues
[Pair
.second
].push_back(Pair
.first
);
5749 SmallVector
<Value
*, 16> IgnoreList
;
5750 for (auto &V
: ReductionOps
)
5751 IgnoreList
.append(V
.begin(), V
.end());
5752 while (i
< NumReducedVals
- ReduxWidth
+ 1 && ReduxWidth
> 2) {
5753 auto VL
= makeArrayRef(&ReducedVals
[i
], ReduxWidth
);
5754 V
.buildTree(VL
, ExternallyUsedValues
, IgnoreList
);
5755 Optional
<ArrayRef
<unsigned>> Order
= V
.bestOrder();
5756 // TODO: Handle orders of size less than number of elements in the vector.
5757 if (Order
&& Order
->size() == VL
.size()) {
5758 // TODO: reorder tree nodes without tree rebuilding.
5759 SmallVector
<Value
*, 4> ReorderedOps(VL
.size());
5760 llvm::transform(*Order
, ReorderedOps
.begin(),
5761 [VL
](const unsigned Idx
) { return VL
[Idx
]; });
5762 V
.buildTree(ReorderedOps
, ExternallyUsedValues
, IgnoreList
);
5764 if (V
.isTreeTinyAndNotFullyVectorizable())
5767 V
.computeMinimumValueSizes();
5770 int TreeCost
= V
.getTreeCost();
5771 int ReductionCost
= getReductionCost(TTI
, ReducedVals
[i
], ReduxWidth
);
5772 int Cost
= TreeCost
+ ReductionCost
;
5773 if (Cost
>= -SLPCostThreshold
) {
5774 V
.getORE()->emit([&]() {
5775 return OptimizationRemarkMissed(
5776 SV_NAME
, "HorSLPNotBeneficial", cast
<Instruction
>(VL
[0]))
5777 << "Vectorizing horizontal reduction is possible"
5778 << "but not beneficial with cost "
5779 << ore::NV("Cost", Cost
) << " and threshold "
5780 << ore::NV("Threshold", -SLPCostThreshold
);
5785 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
5786 << Cost
<< ". (HorRdx)\n");
5787 V
.getORE()->emit([&]() {
5788 return OptimizationRemark(
5789 SV_NAME
, "VectorizedHorizontalReduction", cast
<Instruction
>(VL
[0]))
5790 << "Vectorized horizontal reduction with cost "
5791 << ore::NV("Cost", Cost
) << " and with tree size "
5792 << ore::NV("TreeSize", V
.getTreeSize());
5795 // Vectorize a tree.
5796 DebugLoc Loc
= cast
<Instruction
>(ReducedVals
[i
])->getDebugLoc();
5797 Value
*VectorizedRoot
= V
.vectorizeTree(ExternallyUsedValues
);
5799 // Emit a reduction.
5800 Value
*ReducedSubTree
=
5801 emitReduction(VectorizedRoot
, Builder
, ReduxWidth
, TTI
);
5802 if (VectorizedTree
) {
5803 Builder
.SetCurrentDebugLocation(Loc
);
5804 OperationData
VectReductionData(ReductionData
.getOpcode(),
5805 VectorizedTree
, ReducedSubTree
,
5806 ReductionData
.getKind());
5808 VectReductionData
.createOp(Builder
, "op.rdx", ReductionOps
);
5810 VectorizedTree
= ReducedSubTree
;
5812 ReduxWidth
= PowerOf2Floor(NumReducedVals
- i
);
5815 if (VectorizedTree
) {
5816 // Finish the reduction.
5817 for (; i
< NumReducedVals
; ++i
) {
5818 auto *I
= cast
<Instruction
>(ReducedVals
[i
]);
5819 Builder
.SetCurrentDebugLocation(I
->getDebugLoc());
5820 OperationData
VectReductionData(ReductionData
.getOpcode(),
5822 ReductionData
.getKind());
5823 VectorizedTree
= VectReductionData
.createOp(Builder
, "", ReductionOps
);
5825 for (auto &Pair
: ExternallyUsedValues
) {
5826 assert(!Pair
.second
.empty() &&
5827 "At least one DebugLoc must be inserted");
5828 // Add each externally used value to the final reduction.
5829 for (auto *I
: Pair
.second
) {
5830 Builder
.SetCurrentDebugLocation(I
->getDebugLoc());
5831 OperationData
VectReductionData(ReductionData
.getOpcode(),
5832 VectorizedTree
, Pair
.first
,
5833 ReductionData
.getKind());
5834 VectorizedTree
= VectReductionData
.createOp(Builder
, "op.extra", I
);
5838 ReductionRoot
->replaceAllUsesWith(VectorizedTree
);
5840 return VectorizedTree
!= nullptr;
5843 unsigned numReductionValues() const {
5844 return ReducedVals
.size();
5848 /// Calculate the cost of a reduction.
5849 int getReductionCost(TargetTransformInfo
*TTI
, Value
*FirstReducedVal
,
5850 unsigned ReduxWidth
) {
5851 Type
*ScalarTy
= FirstReducedVal
->getType();
5852 Type
*VecTy
= VectorType::get(ScalarTy
, ReduxWidth
);
5854 int PairwiseRdxCost
;
5855 int SplittingRdxCost
;
5856 switch (ReductionData
.getKind()) {
5859 TTI
->getArithmeticReductionCost(ReductionData
.getOpcode(), VecTy
,
5860 /*IsPairwiseForm=*/true);
5862 TTI
->getArithmeticReductionCost(ReductionData
.getOpcode(), VecTy
,
5863 /*IsPairwiseForm=*/false);
5869 Type
*VecCondTy
= CmpInst::makeCmpResultType(VecTy
);
5870 bool IsUnsigned
= ReductionData
.getKind() == RK_UMin
||
5871 ReductionData
.getKind() == RK_UMax
;
5873 TTI
->getMinMaxReductionCost(VecTy
, VecCondTy
,
5874 /*IsPairwiseForm=*/true, IsUnsigned
);
5876 TTI
->getMinMaxReductionCost(VecTy
, VecCondTy
,
5877 /*IsPairwiseForm=*/false, IsUnsigned
);
5881 llvm_unreachable("Expected arithmetic or min/max reduction operation");
5884 IsPairwiseReduction
= PairwiseRdxCost
< SplittingRdxCost
;
5885 int VecReduxCost
= IsPairwiseReduction
? PairwiseRdxCost
: SplittingRdxCost
;
5887 int ScalarReduxCost
;
5888 switch (ReductionData
.getKind()) {
5891 TTI
->getArithmeticInstrCost(ReductionData
.getOpcode(), ScalarTy
);
5898 TTI
->getCmpSelInstrCost(ReductionData
.getOpcode(), ScalarTy
) +
5899 TTI
->getCmpSelInstrCost(Instruction::Select
, ScalarTy
,
5900 CmpInst::makeCmpResultType(ScalarTy
));
5903 llvm_unreachable("Expected arithmetic or min/max reduction operation");
5905 ScalarReduxCost
*= (ReduxWidth
- 1);
5907 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost
- ScalarReduxCost
5908 << " for reduction that starts with " << *FirstReducedVal
5910 << (IsPairwiseReduction
? "pairwise" : "splitting")
5911 << " reduction)\n");
5913 return VecReduxCost
- ScalarReduxCost
;
5916 /// Emit a horizontal reduction of the vectorized value.
5917 Value
*emitReduction(Value
*VectorizedValue
, IRBuilder
<> &Builder
,
5918 unsigned ReduxWidth
, const TargetTransformInfo
*TTI
) {
5919 assert(VectorizedValue
&& "Need to have a vectorized tree node");
5920 assert(isPowerOf2_32(ReduxWidth
) &&
5921 "We only handle power-of-two reductions for now");
5923 if (!IsPairwiseReduction
)
5924 return createSimpleTargetReduction(
5925 Builder
, TTI
, ReductionData
.getOpcode(), VectorizedValue
,
5926 ReductionData
.getFlags(), ReductionOps
.back());
5928 Value
*TmpVec
= VectorizedValue
;
5929 for (unsigned i
= ReduxWidth
/ 2; i
!= 0; i
>>= 1) {
5931 createRdxShuffleMask(ReduxWidth
, i
, true, true, Builder
);
5933 createRdxShuffleMask(ReduxWidth
, i
, true, false, Builder
);
5935 Value
*LeftShuf
= Builder
.CreateShuffleVector(
5936 TmpVec
, UndefValue::get(TmpVec
->getType()), LeftMask
, "rdx.shuf.l");
5937 Value
*RightShuf
= Builder
.CreateShuffleVector(
5938 TmpVec
, UndefValue::get(TmpVec
->getType()), (RightMask
),
5940 OperationData
VectReductionData(ReductionData
.getOpcode(), LeftShuf
,
5941 RightShuf
, ReductionData
.getKind());
5942 TmpVec
= VectReductionData
.createOp(Builder
, "op.rdx", ReductionOps
);
5945 // The result is in the first element of the vector.
5946 return Builder
.CreateExtractElement(TmpVec
, Builder
.getInt32(0));
5950 } // end anonymous namespace
5952 /// Recognize construction of vectors like
5953 /// %ra = insertelement <4 x float> undef, float %s0, i32 0
5954 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1
5955 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2
5956 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3
5957 /// starting from the last insertelement instruction.
5959 /// Returns true if it matches
5960 static bool findBuildVector(InsertElementInst
*LastInsertElem
,
5961 TargetTransformInfo
*TTI
,
5962 SmallVectorImpl
<Value
*> &BuildVectorOpds
,
5967 if (auto *CI
= dyn_cast
<ConstantInt
>(LastInsertElem
->getOperand(2))) {
5968 UserCost
+= TTI
->getVectorInstrCost(Instruction::InsertElement
,
5969 LastInsertElem
->getType(),
5970 CI
->getZExtValue());
5972 BuildVectorOpds
.push_back(LastInsertElem
->getOperand(1));
5973 V
= LastInsertElem
->getOperand(0);
5974 if (isa
<UndefValue
>(V
))
5976 LastInsertElem
= dyn_cast
<InsertElementInst
>(V
);
5977 if (!LastInsertElem
|| !LastInsertElem
->hasOneUse())
5980 std::reverse(BuildVectorOpds
.begin(), BuildVectorOpds
.end());
5984 /// Like findBuildVector, but looks for construction of aggregate.
5986 /// \return true if it matches.
5987 static bool findBuildAggregate(InsertValueInst
*IV
,
5988 SmallVectorImpl
<Value
*> &BuildVectorOpds
) {
5991 BuildVectorOpds
.push_back(IV
->getInsertedValueOperand());
5992 V
= IV
->getAggregateOperand();
5993 if (isa
<UndefValue
>(V
))
5995 IV
= dyn_cast
<InsertValueInst
>(V
);
5996 if (!IV
|| !IV
->hasOneUse())
5999 std::reverse(BuildVectorOpds
.begin(), BuildVectorOpds
.end());
6003 static bool PhiTypeSorterFunc(Value
*V
, Value
*V2
) {
6004 return V
->getType() < V2
->getType();
6007 /// Try and get a reduction value from a phi node.
6009 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
6010 /// if they come from either \p ParentBB or a containing loop latch.
6012 /// \returns A candidate reduction value if possible, or \code nullptr \endcode
6013 /// if not possible.
6014 static Value
*getReductionValue(const DominatorTree
*DT
, PHINode
*P
,
6015 BasicBlock
*ParentBB
, LoopInfo
*LI
) {
6016 // There are situations where the reduction value is not dominated by the
6017 // reduction phi. Vectorizing such cases has been reported to cause
6018 // miscompiles. See PR25787.
6019 auto DominatedReduxValue
= [&](Value
*R
) {
6020 return isa
<Instruction
>(R
) &&
6021 DT
->dominates(P
->getParent(), cast
<Instruction
>(R
)->getParent());
6024 Value
*Rdx
= nullptr;
6026 // Return the incoming value if it comes from the same BB as the phi node.
6027 if (P
->getIncomingBlock(0) == ParentBB
) {
6028 Rdx
= P
->getIncomingValue(0);
6029 } else if (P
->getIncomingBlock(1) == ParentBB
) {
6030 Rdx
= P
->getIncomingValue(1);
6033 if (Rdx
&& DominatedReduxValue(Rdx
))
6036 // Otherwise, check whether we have a loop latch to look at.
6037 Loop
*BBL
= LI
->getLoopFor(ParentBB
);
6040 BasicBlock
*BBLatch
= BBL
->getLoopLatch();
6044 // There is a loop latch, return the incoming value if it comes from
6045 // that. This reduction pattern occasionally turns up.
6046 if (P
->getIncomingBlock(0) == BBLatch
) {
6047 Rdx
= P
->getIncomingValue(0);
6048 } else if (P
->getIncomingBlock(1) == BBLatch
) {
6049 Rdx
= P
->getIncomingValue(1);
6052 if (Rdx
&& DominatedReduxValue(Rdx
))
6058 /// Attempt to reduce a horizontal reduction.
6059 /// If it is legal to match a horizontal reduction feeding the phi node \a P
6060 /// with reduction operators \a Root (or one of its operands) in a basic block
6061 /// \a BB, then check if it can be done. If horizontal reduction is not found
6062 /// and root instruction is a binary operation, vectorization of the operands is
6064 /// \returns true if a horizontal reduction was matched and reduced or operands
6065 /// of one of the binary instruction were vectorized.
6066 /// \returns false if a horizontal reduction was not matched (or not possible)
6067 /// or no vectorization of any binary operation feeding \a Root instruction was
6069 static bool tryToVectorizeHorReductionOrInstOperands(
6070 PHINode
*P
, Instruction
*Root
, BasicBlock
*BB
, BoUpSLP
&R
,
6071 TargetTransformInfo
*TTI
,
6072 const function_ref
<bool(Instruction
*, BoUpSLP
&)> Vectorize
) {
6073 if (!ShouldVectorizeHor
)
6079 if (Root
->getParent() != BB
|| isa
<PHINode
>(Root
))
6081 // Start analysis starting from Root instruction. If horizontal reduction is
6082 // found, try to vectorize it. If it is not a horizontal reduction or
6083 // vectorization is not possible or not effective, and currently analyzed
6084 // instruction is a binary operation, try to vectorize the operands, using
6085 // pre-order DFS traversal order. If the operands were not vectorized, repeat
6086 // the same procedure considering each operand as a possible root of the
6087 // horizontal reduction.
6088 // Interrupt the process if the Root instruction itself was vectorized or all
6089 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
6090 SmallVector
<std::pair
<WeakTrackingVH
, unsigned>, 8> Stack(1, {Root
, 0});
6091 SmallPtrSet
<Value
*, 8> VisitedInstrs
;
6093 while (!Stack
.empty()) {
6096 std::tie(V
, Level
) = Stack
.pop_back_val();
6099 auto *Inst
= dyn_cast
<Instruction
>(V
);
6102 auto *BI
= dyn_cast
<BinaryOperator
>(Inst
);
6103 auto *SI
= dyn_cast
<SelectInst
>(Inst
);
6105 HorizontalReduction HorRdx
;
6106 if (HorRdx
.matchAssociativeReduction(P
, Inst
)) {
6107 if (HorRdx
.tryToReduce(R
, TTI
)) {
6109 // Set P to nullptr to avoid re-analysis of phi node in
6110 // matchAssociativeReduction function unless this is the root node.
6116 Inst
= dyn_cast
<Instruction
>(BI
->getOperand(0));
6118 Inst
= dyn_cast
<Instruction
>(BI
->getOperand(1));
6120 // Set P to nullptr to avoid re-analysis of phi node in
6121 // matchAssociativeReduction function unless this is the root node.
6127 // Set P to nullptr to avoid re-analysis of phi node in
6128 // matchAssociativeReduction function unless this is the root node.
6130 if (Vectorize(Inst
, R
)) {
6135 // Try to vectorize operands.
6136 // Continue analysis for the instruction from the same basic block only to
6137 // save compile time.
6138 if (++Level
< RecursionMaxDepth
)
6139 for (auto *Op
: Inst
->operand_values())
6140 if (VisitedInstrs
.insert(Op
).second
)
6141 if (auto *I
= dyn_cast
<Instruction
>(Op
))
6142 if (!isa
<PHINode
>(I
) && I
->getParent() == BB
)
6143 Stack
.emplace_back(Op
, Level
);
6148 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode
*P
, Value
*V
,
6149 BasicBlock
*BB
, BoUpSLP
&R
,
6150 TargetTransformInfo
*TTI
) {
6153 auto *I
= dyn_cast
<Instruction
>(V
);
6157 if (!isa
<BinaryOperator
>(I
))
6159 // Try to match and vectorize a horizontal reduction.
6160 auto &&ExtraVectorization
= [this](Instruction
*I
, BoUpSLP
&R
) -> bool {
6161 return tryToVectorize(I
, R
);
6163 return tryToVectorizeHorReductionOrInstOperands(P
, I
, BB
, R
, TTI
,
6164 ExtraVectorization
);
6167 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst
*IVI
,
6168 BasicBlock
*BB
, BoUpSLP
&R
) {
6169 const DataLayout
&DL
= BB
->getModule()->getDataLayout();
6170 if (!R
.canMapToVector(IVI
->getType(), DL
))
6173 SmallVector
<Value
*, 16> BuildVectorOpds
;
6174 if (!findBuildAggregate(IVI
, BuildVectorOpds
))
6177 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI
<< "\n");
6178 // Aggregate value is unlikely to be processed in vector register, we need to
6179 // extract scalars into scalar registers, so NeedExtraction is set true.
6180 return tryToVectorizeList(BuildVectorOpds
, R
);
6183 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst
*IEI
,
6184 BasicBlock
*BB
, BoUpSLP
&R
) {
6186 SmallVector
<Value
*, 16> BuildVectorOpds
;
6187 if (!findBuildVector(IEI
, TTI
, BuildVectorOpds
, UserCost
) ||
6188 (llvm::all_of(BuildVectorOpds
,
6189 [](Value
*V
) { return isa
<ExtractElementInst
>(V
); }) &&
6190 isShuffle(BuildVectorOpds
)))
6193 // Vectorize starting with the build vector operands ignoring the BuildVector
6194 // instructions for the purpose of scheduling and user extraction.
6195 return tryToVectorizeList(BuildVectorOpds
, R
, UserCost
);
6198 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst
*CI
, BasicBlock
*BB
,
6200 if (tryToVectorizePair(CI
->getOperand(0), CI
->getOperand(1), R
))
6203 bool OpsChanged
= false;
6204 for (int Idx
= 0; Idx
< 2; ++Idx
) {
6206 vectorizeRootInstruction(nullptr, CI
->getOperand(Idx
), BB
, R
, TTI
);
6211 bool SLPVectorizerPass::vectorizeSimpleInstructions(
6212 SmallVectorImpl
<WeakVH
> &Instructions
, BasicBlock
*BB
, BoUpSLP
&R
) {
6213 bool OpsChanged
= false;
6214 for (auto &VH
: reverse(Instructions
)) {
6215 auto *I
= dyn_cast_or_null
<Instruction
>(VH
);
6218 if (auto *LastInsertValue
= dyn_cast
<InsertValueInst
>(I
))
6219 OpsChanged
|= vectorizeInsertValueInst(LastInsertValue
, BB
, R
);
6220 else if (auto *LastInsertElem
= dyn_cast
<InsertElementInst
>(I
))
6221 OpsChanged
|= vectorizeInsertElementInst(LastInsertElem
, BB
, R
);
6222 else if (auto *CI
= dyn_cast
<CmpInst
>(I
))
6223 OpsChanged
|= vectorizeCmpInst(CI
, BB
, R
);
6225 Instructions
.clear();
6229 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock
*BB
, BoUpSLP
&R
) {
6230 bool Changed
= false;
6231 SmallVector
<Value
*, 4> Incoming
;
6232 SmallPtrSet
<Value
*, 16> VisitedInstrs
;
6234 bool HaveVectorizedPhiNodes
= true;
6235 while (HaveVectorizedPhiNodes
) {
6236 HaveVectorizedPhiNodes
= false;
6238 // Collect the incoming values from the PHIs.
6240 for (Instruction
&I
: *BB
) {
6241 PHINode
*P
= dyn_cast
<PHINode
>(&I
);
6245 if (!VisitedInstrs
.count(P
))
6246 Incoming
.push_back(P
);
6250 std::stable_sort(Incoming
.begin(), Incoming
.end(), PhiTypeSorterFunc
);
6252 // Try to vectorize elements base on their type.
6253 for (SmallVector
<Value
*, 4>::iterator IncIt
= Incoming
.begin(),
6257 // Look for the next elements with the same type.
6258 SmallVector
<Value
*, 4>::iterator SameTypeIt
= IncIt
;
6259 while (SameTypeIt
!= E
&&
6260 (*SameTypeIt
)->getType() == (*IncIt
)->getType()) {
6261 VisitedInstrs
.insert(*SameTypeIt
);
6265 // Try to vectorize them.
6266 unsigned NumElts
= (SameTypeIt
- IncIt
);
6267 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs ("
6268 << NumElts
<< ")\n");
6269 // The order in which the phi nodes appear in the program does not matter.
6270 // So allow tryToVectorizeList to reorder them if it is beneficial. This
6271 // is done when there are exactly two elements since tryToVectorizeList
6272 // asserts that there are only two values when AllowReorder is true.
6273 bool AllowReorder
= NumElts
== 2;
6274 if (NumElts
> 1 && tryToVectorizeList(makeArrayRef(IncIt
, NumElts
), R
,
6275 /*UserCost=*/0, AllowReorder
)) {
6276 // Success start over because instructions might have been changed.
6277 HaveVectorizedPhiNodes
= true;
6282 // Start over at the next instruction of a different type (or the end).
6287 VisitedInstrs
.clear();
6289 SmallVector
<WeakVH
, 8> PostProcessInstructions
;
6290 SmallDenseSet
<Instruction
*, 4> KeyNodes
;
6291 for (BasicBlock::iterator it
= BB
->begin(), e
= BB
->end(); it
!= e
; it
++) {
6292 // We may go through BB multiple times so skip the one we have checked.
6293 if (!VisitedInstrs
.insert(&*it
).second
) {
6294 if (it
->use_empty() && KeyNodes
.count(&*it
) > 0 &&
6295 vectorizeSimpleInstructions(PostProcessInstructions
, BB
, R
)) {
6296 // We would like to start over since some instructions are deleted
6297 // and the iterator may become invalid value.
6305 if (isa
<DbgInfoIntrinsic
>(it
))
6308 // Try to vectorize reductions that use PHINodes.
6309 if (PHINode
*P
= dyn_cast
<PHINode
>(it
)) {
6310 // Check that the PHI is a reduction PHI.
6311 if (P
->getNumIncomingValues() != 2)
6314 // Try to match and vectorize a horizontal reduction.
6315 if (vectorizeRootInstruction(P
, getReductionValue(DT
, P
, BB
, LI
), BB
, R
,
6325 // Ran into an instruction without users, like terminator, or function call
6326 // with ignored return value, store. Ignore unused instructions (basing on
6327 // instruction type, except for CallInst and InvokeInst).
6328 if (it
->use_empty() && (it
->getType()->isVoidTy() || isa
<CallInst
>(it
) ||
6329 isa
<InvokeInst
>(it
))) {
6330 KeyNodes
.insert(&*it
);
6331 bool OpsChanged
= false;
6332 if (ShouldStartVectorizeHorAtStore
|| !isa
<StoreInst
>(it
)) {
6333 for (auto *V
: it
->operand_values()) {
6334 // Try to match and vectorize a horizontal reduction.
6335 OpsChanged
|= vectorizeRootInstruction(nullptr, V
, BB
, R
, TTI
);
6338 // Start vectorization of post-process list of instructions from the
6339 // top-tree instructions to try to vectorize as many instructions as
6341 OpsChanged
|= vectorizeSimpleInstructions(PostProcessInstructions
, BB
, R
);
6343 // We would like to start over since some instructions are deleted
6344 // and the iterator may become invalid value.
6352 if (isa
<InsertElementInst
>(it
) || isa
<CmpInst
>(it
) ||
6353 isa
<InsertValueInst
>(it
))
6354 PostProcessInstructions
.push_back(&*it
);
6360 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock
*BB
, BoUpSLP
&R
) {
6361 auto Changed
= false;
6362 for (auto &Entry
: GEPs
) {
6363 // If the getelementptr list has fewer than two elements, there's nothing
6365 if (Entry
.second
.size() < 2)
6368 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
6369 << Entry
.second
.size() << ".\n");
6371 // We process the getelementptr list in chunks of 16 (like we do for
6372 // stores) to minimize compile-time.
6373 for (unsigned BI
= 0, BE
= Entry
.second
.size(); BI
< BE
; BI
+= 16) {
6374 auto Len
= std::min
<unsigned>(BE
- BI
, 16);
6375 auto GEPList
= makeArrayRef(&Entry
.second
[BI
], Len
);
6377 // Initialize a set a candidate getelementptrs. Note that we use a
6378 // SetVector here to preserve program order. If the index computations
6379 // are vectorizable and begin with loads, we want to minimize the chance
6380 // of having to reorder them later.
6381 SetVector
<Value
*> Candidates(GEPList
.begin(), GEPList
.end());
6383 // Some of the candidates may have already been vectorized after we
6384 // initially collected them. If so, the WeakTrackingVHs will have
6386 // values, so remove them from the set of candidates.
6387 Candidates
.remove(nullptr);
6389 // Remove from the set of candidates all pairs of getelementptrs with
6390 // constant differences. Such getelementptrs are likely not good
6391 // candidates for vectorization in a bottom-up phase since one can be
6392 // computed from the other. We also ensure all candidate getelementptr
6393 // indices are unique.
6394 for (int I
= 0, E
= GEPList
.size(); I
< E
&& Candidates
.size() > 1; ++I
) {
6395 auto *GEPI
= cast
<GetElementPtrInst
>(GEPList
[I
]);
6396 if (!Candidates
.count(GEPI
))
6398 auto *SCEVI
= SE
->getSCEV(GEPList
[I
]);
6399 for (int J
= I
+ 1; J
< E
&& Candidates
.size() > 1; ++J
) {
6400 auto *GEPJ
= cast
<GetElementPtrInst
>(GEPList
[J
]);
6401 auto *SCEVJ
= SE
->getSCEV(GEPList
[J
]);
6402 if (isa
<SCEVConstant
>(SE
->getMinusSCEV(SCEVI
, SCEVJ
))) {
6403 Candidates
.remove(GEPList
[I
]);
6404 Candidates
.remove(GEPList
[J
]);
6405 } else if (GEPI
->idx_begin()->get() == GEPJ
->idx_begin()->get()) {
6406 Candidates
.remove(GEPList
[J
]);
6411 // We break out of the above computation as soon as we know there are
6412 // fewer than two candidates remaining.
6413 if (Candidates
.size() < 2)
6416 // Add the single, non-constant index of each candidate to the bundle. We
6417 // ensured the indices met these constraints when we originally collected
6418 // the getelementptrs.
6419 SmallVector
<Value
*, 16> Bundle(Candidates
.size());
6420 auto BundleIndex
= 0u;
6421 for (auto *V
: Candidates
) {
6422 auto *GEP
= cast
<GetElementPtrInst
>(V
);
6423 auto *GEPIdx
= GEP
->idx_begin()->get();
6424 assert(GEP
->getNumIndices() == 1 || !isa
<Constant
>(GEPIdx
));
6425 Bundle
[BundleIndex
++] = GEPIdx
;
6428 // Try and vectorize the indices. We are currently only interested in
6429 // gather-like cases of the form:
6431 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
6433 // where the loads of "a", the loads of "b", and the subtractions can be
6434 // performed in parallel. It's likely that detecting this pattern in a
6435 // bottom-up phase will be simpler and less costly than building a
6436 // full-blown top-down phase beginning at the consecutive loads.
6437 Changed
|= tryToVectorizeList(Bundle
, R
);
6443 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP
&R
) {
6444 bool Changed
= false;
6445 // Attempt to sort and vectorize each of the store-groups.
6446 for (StoreListMap::iterator it
= Stores
.begin(), e
= Stores
.end(); it
!= e
;
6448 if (it
->second
.size() < 2)
6451 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
6452 << it
->second
.size() << ".\n");
6454 // Process the stores in chunks of 16.
6455 // TODO: The limit of 16 inhibits greater vectorization factors.
6456 // For example, AVX2 supports v32i8. Increasing this limit, however,
6457 // may cause a significant compile-time increase.
6458 for (unsigned CI
= 0, CE
= it
->second
.size(); CI
< CE
; CI
+= 16) {
6459 unsigned Len
= std::min
<unsigned>(CE
- CI
, 16);
6460 Changed
|= vectorizeStores(makeArrayRef(&it
->second
[CI
], Len
), R
);
6466 char SLPVectorizer::ID
= 0;
6468 static const char lv_name
[] = "SLP Vectorizer";
6470 INITIALIZE_PASS_BEGIN(SLPVectorizer
, SV_NAME
, lv_name
, false, false)
6471 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
6472 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
6473 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
6474 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass
)
6475 INITIALIZE_PASS_DEPENDENCY(LoopSimplify
)
6476 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass
)
6477 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass
)
6478 INITIALIZE_PASS_END(SLPVectorizer
, SV_NAME
, lv_name
, false, false)
6480 Pass
*llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }