1 //===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the interfaces that ARM uses to lower LLVM code into a
12 //===----------------------------------------------------------------------===//
14 #include "ARMISelLowering.h"
15 #include "ARMBaseInstrInfo.h"
16 #include "ARMBaseRegisterInfo.h"
17 #include "ARMCallingConv.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMPerfectShuffle.h"
21 #include "ARMRegisterInfo.h"
22 #include "ARMSelectionDAGInfo.h"
23 #include "ARMSubtarget.h"
24 #include "MCTargetDesc/ARMAddressingModes.h"
25 #include "MCTargetDesc/ARMBaseInfo.h"
26 #include "Utils/ARMBaseInfo.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/BitVector.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringExtras.h"
37 #include "llvm/ADT/StringRef.h"
38 #include "llvm/ADT/StringSwitch.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/VectorUtils.h"
42 #include "llvm/CodeGen/CallingConvLower.h"
43 #include "llvm/CodeGen/ISDOpcodes.h"
44 #include "llvm/CodeGen/IntrinsicLowering.h"
45 #include "llvm/CodeGen/MachineBasicBlock.h"
46 #include "llvm/CodeGen/MachineConstantPool.h"
47 #include "llvm/CodeGen/MachineFrameInfo.h"
48 #include "llvm/CodeGen/MachineFunction.h"
49 #include "llvm/CodeGen/MachineInstr.h"
50 #include "llvm/CodeGen/MachineInstrBuilder.h"
51 #include "llvm/CodeGen/MachineJumpTableInfo.h"
52 #include "llvm/CodeGen/MachineMemOperand.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineRegisterInfo.h"
55 #include "llvm/CodeGen/RuntimeLibcalls.h"
56 #include "llvm/CodeGen/SelectionDAG.h"
57 #include "llvm/CodeGen/SelectionDAGNodes.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/ValueTypes.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DebugLoc.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GlobalAlias.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InlineAsm.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/PatternMatch.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/User.h"
85 #include "llvm/IR/Value.h"
86 #include "llvm/MC/MCInstrDesc.h"
87 #include "llvm/MC/MCInstrItineraries.h"
88 #include "llvm/MC/MCRegisterInfo.h"
89 #include "llvm/MC/MCSchedule.h"
90 #include "llvm/Support/AtomicOrdering.h"
91 #include "llvm/Support/BranchProbability.h"
92 #include "llvm/Support/Casting.h"
93 #include "llvm/Support/CodeGen.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/ErrorHandling.h"
98 #include "llvm/Support/KnownBits.h"
99 #include "llvm/Support/MachineValueType.h"
100 #include "llvm/Support/MathExtras.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include "llvm/Target/TargetMachine.h"
103 #include "llvm/Target/TargetOptions.h"
115 using namespace llvm
;
116 using namespace llvm::PatternMatch
;
118 #define DEBUG_TYPE "arm-isel"
120 STATISTIC(NumTailCalls
, "Number of tail calls");
121 STATISTIC(NumMovwMovt
, "Number of GAs materialized with movw + movt");
122 STATISTIC(NumLoopByVals
, "Number of loops generated for byval arguments");
123 STATISTIC(NumConstpoolPromoted
,
124 "Number of constants with their storage promoted into constant pools");
127 ARMInterworking("arm-interworking", cl::Hidden
,
128 cl::desc("Enable / disable ARM interworking (for debugging only)"),
131 static cl::opt
<bool> EnableConstpoolPromotion(
132 "arm-promote-constant", cl::Hidden
,
133 cl::desc("Enable / disable promotion of unnamed_addr constants into "
135 cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
136 static cl::opt
<unsigned> ConstpoolPromotionMaxSize(
137 "arm-promote-constant-max-size", cl::Hidden
,
138 cl::desc("Maximum size of constant to promote into a constant pool"),
140 static cl::opt
<unsigned> ConstpoolPromotionMaxTotal(
141 "arm-promote-constant-max-total", cl::Hidden
,
142 cl::desc("Maximum size of ALL constants to promote into a constant pool"),
145 // The APCS parameter registers.
146 static const MCPhysReg GPRArgRegs
[] = {
147 ARM::R0
, ARM::R1
, ARM::R2
, ARM::R3
150 void ARMTargetLowering::addTypeForNEON(MVT VT
, MVT PromotedLdStVT
,
151 MVT PromotedBitwiseVT
) {
152 if (VT
!= PromotedLdStVT
) {
153 setOperationAction(ISD::LOAD
, VT
, Promote
);
154 AddPromotedToType (ISD::LOAD
, VT
, PromotedLdStVT
);
156 setOperationAction(ISD::STORE
, VT
, Promote
);
157 AddPromotedToType (ISD::STORE
, VT
, PromotedLdStVT
);
160 MVT ElemTy
= VT
.getVectorElementType();
161 if (ElemTy
!= MVT::f64
)
162 setOperationAction(ISD::SETCC
, VT
, Custom
);
163 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
164 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
165 if (ElemTy
== MVT::i32
) {
166 setOperationAction(ISD::SINT_TO_FP
, VT
, Custom
);
167 setOperationAction(ISD::UINT_TO_FP
, VT
, Custom
);
168 setOperationAction(ISD::FP_TO_SINT
, VT
, Custom
);
169 setOperationAction(ISD::FP_TO_UINT
, VT
, Custom
);
171 setOperationAction(ISD::SINT_TO_FP
, VT
, Expand
);
172 setOperationAction(ISD::UINT_TO_FP
, VT
, Expand
);
173 setOperationAction(ISD::FP_TO_SINT
, VT
, Expand
);
174 setOperationAction(ISD::FP_TO_UINT
, VT
, Expand
);
176 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
177 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
178 setOperationAction(ISD::CONCAT_VECTORS
, VT
, Legal
);
179 setOperationAction(ISD::EXTRACT_SUBVECTOR
, VT
, Legal
);
180 setOperationAction(ISD::SELECT
, VT
, Expand
);
181 setOperationAction(ISD::SELECT_CC
, VT
, Expand
);
182 setOperationAction(ISD::VSELECT
, VT
, Expand
);
183 setOperationAction(ISD::SIGN_EXTEND_INREG
, VT
, Expand
);
184 if (VT
.isInteger()) {
185 setOperationAction(ISD::SHL
, VT
, Custom
);
186 setOperationAction(ISD::SRA
, VT
, Custom
);
187 setOperationAction(ISD::SRL
, VT
, Custom
);
190 // Promote all bit-wise operations.
191 if (VT
.isInteger() && VT
!= PromotedBitwiseVT
) {
192 setOperationAction(ISD::AND
, VT
, Promote
);
193 AddPromotedToType (ISD::AND
, VT
, PromotedBitwiseVT
);
194 setOperationAction(ISD::OR
, VT
, Promote
);
195 AddPromotedToType (ISD::OR
, VT
, PromotedBitwiseVT
);
196 setOperationAction(ISD::XOR
, VT
, Promote
);
197 AddPromotedToType (ISD::XOR
, VT
, PromotedBitwiseVT
);
200 // Neon does not support vector divide/remainder operations.
201 setOperationAction(ISD::SDIV
, VT
, Expand
);
202 setOperationAction(ISD::UDIV
, VT
, Expand
);
203 setOperationAction(ISD::FDIV
, VT
, Expand
);
204 setOperationAction(ISD::SREM
, VT
, Expand
);
205 setOperationAction(ISD::UREM
, VT
, Expand
);
206 setOperationAction(ISD::FREM
, VT
, Expand
);
208 if (!VT
.isFloatingPoint() &&
209 VT
!= MVT::v2i64
&& VT
!= MVT::v1i64
)
210 for (auto Opcode
: {ISD::ABS
, ISD::SMIN
, ISD::SMAX
, ISD::UMIN
, ISD::UMAX
})
211 setOperationAction(Opcode
, VT
, Legal
);
214 void ARMTargetLowering::addDRTypeForNEON(MVT VT
) {
215 addRegisterClass(VT
, &ARM::DPRRegClass
);
216 addTypeForNEON(VT
, MVT::f64
, MVT::v2i32
);
219 void ARMTargetLowering::addQRTypeForNEON(MVT VT
) {
220 addRegisterClass(VT
, &ARM::DPairRegClass
);
221 addTypeForNEON(VT
, MVT::v2f64
, MVT::v4i32
);
224 void ARMTargetLowering::setAllExpand(MVT VT
) {
225 for (unsigned Opc
= 0; Opc
< ISD::BUILTIN_OP_END
; ++Opc
)
226 setOperationAction(Opc
, VT
, Expand
);
228 // We support these really simple operations even on types where all
229 // the actual arithmetic has to be broken down into simpler
230 // operations or turned into library calls.
231 setOperationAction(ISD::BITCAST
, VT
, Legal
);
232 setOperationAction(ISD::LOAD
, VT
, Legal
);
233 setOperationAction(ISD::STORE
, VT
, Legal
);
234 setOperationAction(ISD::UNDEF
, VT
, Legal
);
237 void ARMTargetLowering::addAllExtLoads(const MVT From
, const MVT To
,
238 LegalizeAction Action
) {
239 setLoadExtAction(ISD::EXTLOAD
, From
, To
, Action
);
240 setLoadExtAction(ISD::ZEXTLOAD
, From
, To
, Action
);
241 setLoadExtAction(ISD::SEXTLOAD
, From
, To
, Action
);
244 void ARMTargetLowering::addMVEVectorTypes(bool HasMVEFP
) {
245 const MVT IntTypes
[] = { MVT::v16i8
, MVT::v8i16
, MVT::v4i32
};
247 for (auto VT
: IntTypes
) {
248 addRegisterClass(VT
, &ARM::QPRRegClass
);
249 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
250 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
251 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
252 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
253 setOperationAction(ISD::SHL
, VT
, Custom
);
254 setOperationAction(ISD::SRA
, VT
, Custom
);
255 setOperationAction(ISD::SRL
, VT
, Custom
);
256 setOperationAction(ISD::SMIN
, VT
, Legal
);
257 setOperationAction(ISD::SMAX
, VT
, Legal
);
258 setOperationAction(ISD::UMIN
, VT
, Legal
);
259 setOperationAction(ISD::UMAX
, VT
, Legal
);
260 setOperationAction(ISD::ABS
, VT
, Legal
);
261 setOperationAction(ISD::SETCC
, VT
, Custom
);
263 // No native support for these.
264 setOperationAction(ISD::UDIV
, VT
, Expand
);
265 setOperationAction(ISD::SDIV
, VT
, Expand
);
266 setOperationAction(ISD::UREM
, VT
, Expand
);
267 setOperationAction(ISD::SREM
, VT
, Expand
);
268 setOperationAction(ISD::CTPOP
, VT
, Expand
);
271 setOperationAction(ISD::VECREDUCE_ADD
, VT
, Legal
);
274 setOperationAction(ISD::SINT_TO_FP
, VT
, Expand
);
275 setOperationAction(ISD::UINT_TO_FP
, VT
, Expand
);
276 setOperationAction(ISD::FP_TO_SINT
, VT
, Expand
);
277 setOperationAction(ISD::FP_TO_UINT
, VT
, Expand
);
280 // Pre and Post inc are supported on loads and stores
281 for (unsigned im
= (unsigned)ISD::PRE_INC
;
282 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
283 setIndexedLoadAction(im
, VT
, Legal
);
284 setIndexedStoreAction(im
, VT
, Legal
);
288 const MVT FloatTypes
[] = { MVT::v8f16
, MVT::v4f32
};
289 for (auto VT
: FloatTypes
) {
290 addRegisterClass(VT
, &ARM::QPRRegClass
);
294 // These are legal or custom whether we have MVE.fp or not
295 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
296 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
297 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
.getVectorElementType(), Custom
);
298 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
299 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
300 setOperationAction(ISD::BUILD_VECTOR
, VT
.getVectorElementType(), Custom
);
301 setOperationAction(ISD::SCALAR_TO_VECTOR
, VT
, Legal
);
302 setOperationAction(ISD::SETCC
, VT
, Custom
);
304 // Pre and Post inc are supported on loads and stores
305 for (unsigned im
= (unsigned)ISD::PRE_INC
;
306 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
307 setIndexedLoadAction(im
, VT
, Legal
);
308 setIndexedStoreAction(im
, VT
, Legal
);
312 setOperationAction(ISD::FMINNUM
, VT
, Legal
);
313 setOperationAction(ISD::FMAXNUM
, VT
, Legal
);
314 setOperationAction(ISD::FROUND
, VT
, Legal
);
316 // No native support for these.
317 setOperationAction(ISD::FDIV
, VT
, Expand
);
318 setOperationAction(ISD::FREM
, VT
, Expand
);
319 setOperationAction(ISD::FSQRT
, VT
, Expand
);
320 setOperationAction(ISD::FSIN
, VT
, Expand
);
321 setOperationAction(ISD::FCOS
, VT
, Expand
);
322 setOperationAction(ISD::FPOW
, VT
, Expand
);
323 setOperationAction(ISD::FLOG
, VT
, Expand
);
324 setOperationAction(ISD::FLOG2
, VT
, Expand
);
325 setOperationAction(ISD::FLOG10
, VT
, Expand
);
326 setOperationAction(ISD::FEXP
, VT
, Expand
);
327 setOperationAction(ISD::FEXP2
, VT
, Expand
);
328 setOperationAction(ISD::FNEARBYINT
, VT
, Expand
);
332 // We 'support' these types up to bitcast/load/store level, regardless of
333 // MVE integer-only / float support. Only doing FP data processing on the FP
334 // vector types is inhibited at integer-only level.
335 const MVT LongTypes
[] = { MVT::v2i64
, MVT::v2f64
};
336 for (auto VT
: LongTypes
) {
337 addRegisterClass(VT
, &ARM::QPRRegClass
);
339 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
340 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
341 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
343 // We can do bitwise operations on v2i64 vectors
344 setOperationAction(ISD::AND
, MVT::v2i64
, Legal
);
345 setOperationAction(ISD::OR
, MVT::v2i64
, Legal
);
346 setOperationAction(ISD::XOR
, MVT::v2i64
, Legal
);
348 // It is legal to extload from v4i8 to v4i16 or v4i32.
349 addAllExtLoads(MVT::v8i16
, MVT::v8i8
, Legal
);
350 addAllExtLoads(MVT::v4i32
, MVT::v4i16
, Legal
);
351 addAllExtLoads(MVT::v4i32
, MVT::v4i8
, Legal
);
353 // Some truncating stores are legal too.
354 setTruncStoreAction(MVT::v4i32
, MVT::v4i16
, Legal
);
355 setTruncStoreAction(MVT::v4i32
, MVT::v4i8
, Legal
);
356 setTruncStoreAction(MVT::v8i16
, MVT::v8i8
, Legal
);
358 // Pre and Post inc on these are legal, given the correct extends
359 for (unsigned im
= (unsigned)ISD::PRE_INC
;
360 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
361 setIndexedLoadAction(im
, MVT::v8i8
, Legal
);
362 setIndexedStoreAction(im
, MVT::v8i8
, Legal
);
363 setIndexedLoadAction(im
, MVT::v4i8
, Legal
);
364 setIndexedStoreAction(im
, MVT::v4i8
, Legal
);
365 setIndexedLoadAction(im
, MVT::v4i16
, Legal
);
366 setIndexedStoreAction(im
, MVT::v4i16
, Legal
);
370 const MVT pTypes
[] = {MVT::v16i1
, MVT::v8i1
, MVT::v4i1
};
371 for (auto VT
: pTypes
) {
372 addRegisterClass(VT
, &ARM::VCCRRegClass
);
373 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
374 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
375 setOperationAction(ISD::EXTRACT_SUBVECTOR
, VT
, Custom
);
376 setOperationAction(ISD::CONCAT_VECTORS
, VT
, Custom
);
377 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
378 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
379 setOperationAction(ISD::SETCC
, VT
, Custom
);
380 setOperationAction(ISD::SCALAR_TO_VECTOR
, VT
, Expand
);
384 ARMTargetLowering::ARMTargetLowering(const TargetMachine
&TM
,
385 const ARMSubtarget
&STI
)
386 : TargetLowering(TM
), Subtarget(&STI
) {
387 RegInfo
= Subtarget
->getRegisterInfo();
388 Itins
= Subtarget
->getInstrItineraryData();
390 setBooleanContents(ZeroOrOneBooleanContent
);
391 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent
);
393 if (!Subtarget
->isTargetDarwin() && !Subtarget
->isTargetIOS() &&
394 !Subtarget
->isTargetWatchOS()) {
395 bool IsHFTarget
= TM
.Options
.FloatABIType
== FloatABI::Hard
;
396 for (int LCID
= 0; LCID
< RTLIB::UNKNOWN_LIBCALL
; ++LCID
)
397 setLibcallCallingConv(static_cast<RTLIB::Libcall
>(LCID
),
398 IsHFTarget
? CallingConv::ARM_AAPCS_VFP
399 : CallingConv::ARM_AAPCS
);
402 if (Subtarget
->isTargetMachO()) {
403 // Uses VFP for Thumb libfuncs if available.
404 if (Subtarget
->isThumb() && Subtarget
->hasVFP2Base() &&
405 Subtarget
->hasARMOps() && !Subtarget
->useSoftFloat()) {
406 static const struct {
407 const RTLIB::Libcall Op
;
408 const char * const Name
;
409 const ISD::CondCode Cond
;
411 // Single-precision floating-point arithmetic.
412 { RTLIB::ADD_F32
, "__addsf3vfp", ISD::SETCC_INVALID
},
413 { RTLIB::SUB_F32
, "__subsf3vfp", ISD::SETCC_INVALID
},
414 { RTLIB::MUL_F32
, "__mulsf3vfp", ISD::SETCC_INVALID
},
415 { RTLIB::DIV_F32
, "__divsf3vfp", ISD::SETCC_INVALID
},
417 // Double-precision floating-point arithmetic.
418 { RTLIB::ADD_F64
, "__adddf3vfp", ISD::SETCC_INVALID
},
419 { RTLIB::SUB_F64
, "__subdf3vfp", ISD::SETCC_INVALID
},
420 { RTLIB::MUL_F64
, "__muldf3vfp", ISD::SETCC_INVALID
},
421 { RTLIB::DIV_F64
, "__divdf3vfp", ISD::SETCC_INVALID
},
423 // Single-precision comparisons.
424 { RTLIB::OEQ_F32
, "__eqsf2vfp", ISD::SETNE
},
425 { RTLIB::UNE_F32
, "__nesf2vfp", ISD::SETNE
},
426 { RTLIB::OLT_F32
, "__ltsf2vfp", ISD::SETNE
},
427 { RTLIB::OLE_F32
, "__lesf2vfp", ISD::SETNE
},
428 { RTLIB::OGE_F32
, "__gesf2vfp", ISD::SETNE
},
429 { RTLIB::OGT_F32
, "__gtsf2vfp", ISD::SETNE
},
430 { RTLIB::UO_F32
, "__unordsf2vfp", ISD::SETNE
},
431 { RTLIB::O_F32
, "__unordsf2vfp", ISD::SETEQ
},
433 // Double-precision comparisons.
434 { RTLIB::OEQ_F64
, "__eqdf2vfp", ISD::SETNE
},
435 { RTLIB::UNE_F64
, "__nedf2vfp", ISD::SETNE
},
436 { RTLIB::OLT_F64
, "__ltdf2vfp", ISD::SETNE
},
437 { RTLIB::OLE_F64
, "__ledf2vfp", ISD::SETNE
},
438 { RTLIB::OGE_F64
, "__gedf2vfp", ISD::SETNE
},
439 { RTLIB::OGT_F64
, "__gtdf2vfp", ISD::SETNE
},
440 { RTLIB::UO_F64
, "__unorddf2vfp", ISD::SETNE
},
441 { RTLIB::O_F64
, "__unorddf2vfp", ISD::SETEQ
},
443 // Floating-point to integer conversions.
444 // i64 conversions are done via library routines even when generating VFP
445 // instructions, so use the same ones.
446 { RTLIB::FPTOSINT_F64_I32
, "__fixdfsivfp", ISD::SETCC_INVALID
},
447 { RTLIB::FPTOUINT_F64_I32
, "__fixunsdfsivfp", ISD::SETCC_INVALID
},
448 { RTLIB::FPTOSINT_F32_I32
, "__fixsfsivfp", ISD::SETCC_INVALID
},
449 { RTLIB::FPTOUINT_F32_I32
, "__fixunssfsivfp", ISD::SETCC_INVALID
},
451 // Conversions between floating types.
452 { RTLIB::FPROUND_F64_F32
, "__truncdfsf2vfp", ISD::SETCC_INVALID
},
453 { RTLIB::FPEXT_F32_F64
, "__extendsfdf2vfp", ISD::SETCC_INVALID
},
455 // Integer to floating-point conversions.
456 // i64 conversions are done via library routines even when generating VFP
457 // instructions, so use the same ones.
458 // FIXME: There appears to be some naming inconsistency in ARM libgcc:
459 // e.g., __floatunsidf vs. __floatunssidfvfp.
460 { RTLIB::SINTTOFP_I32_F64
, "__floatsidfvfp", ISD::SETCC_INVALID
},
461 { RTLIB::UINTTOFP_I32_F64
, "__floatunssidfvfp", ISD::SETCC_INVALID
},
462 { RTLIB::SINTTOFP_I32_F32
, "__floatsisfvfp", ISD::SETCC_INVALID
},
463 { RTLIB::UINTTOFP_I32_F32
, "__floatunssisfvfp", ISD::SETCC_INVALID
},
466 for (const auto &LC
: LibraryCalls
) {
467 setLibcallName(LC
.Op
, LC
.Name
);
468 if (LC
.Cond
!= ISD::SETCC_INVALID
)
469 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
474 // These libcalls are not available in 32-bit.
475 setLibcallName(RTLIB::SHL_I128
, nullptr);
476 setLibcallName(RTLIB::SRL_I128
, nullptr);
477 setLibcallName(RTLIB::SRA_I128
, nullptr);
480 if (Subtarget
->isAAPCS_ABI() &&
481 (Subtarget
->isTargetAEABI() || Subtarget
->isTargetGNUAEABI() ||
482 Subtarget
->isTargetMuslAEABI() || Subtarget
->isTargetAndroid())) {
483 static const struct {
484 const RTLIB::Libcall Op
;
485 const char * const Name
;
486 const CallingConv::ID CC
;
487 const ISD::CondCode Cond
;
489 // Double-precision floating-point arithmetic helper functions
490 // RTABI chapter 4.1.2, Table 2
491 { RTLIB::ADD_F64
, "__aeabi_dadd", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
492 { RTLIB::DIV_F64
, "__aeabi_ddiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
493 { RTLIB::MUL_F64
, "__aeabi_dmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
494 { RTLIB::SUB_F64
, "__aeabi_dsub", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
496 // Double-precision floating-point comparison helper functions
497 // RTABI chapter 4.1.2, Table 3
498 { RTLIB::OEQ_F64
, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS
, ISD::SETNE
},
499 { RTLIB::UNE_F64
, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
500 { RTLIB::OLT_F64
, "__aeabi_dcmplt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
501 { RTLIB::OLE_F64
, "__aeabi_dcmple", CallingConv::ARM_AAPCS
, ISD::SETNE
},
502 { RTLIB::OGE_F64
, "__aeabi_dcmpge", CallingConv::ARM_AAPCS
, ISD::SETNE
},
503 { RTLIB::OGT_F64
, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
504 { RTLIB::UO_F64
, "__aeabi_dcmpun", CallingConv::ARM_AAPCS
, ISD::SETNE
},
505 { RTLIB::O_F64
, "__aeabi_dcmpun", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
507 // Single-precision floating-point arithmetic helper functions
508 // RTABI chapter 4.1.2, Table 4
509 { RTLIB::ADD_F32
, "__aeabi_fadd", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
510 { RTLIB::DIV_F32
, "__aeabi_fdiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
511 { RTLIB::MUL_F32
, "__aeabi_fmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
512 { RTLIB::SUB_F32
, "__aeabi_fsub", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
514 // Single-precision floating-point comparison helper functions
515 // RTABI chapter 4.1.2, Table 5
516 { RTLIB::OEQ_F32
, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS
, ISD::SETNE
},
517 { RTLIB::UNE_F32
, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
518 { RTLIB::OLT_F32
, "__aeabi_fcmplt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
519 { RTLIB::OLE_F32
, "__aeabi_fcmple", CallingConv::ARM_AAPCS
, ISD::SETNE
},
520 { RTLIB::OGE_F32
, "__aeabi_fcmpge", CallingConv::ARM_AAPCS
, ISD::SETNE
},
521 { RTLIB::OGT_F32
, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
522 { RTLIB::UO_F32
, "__aeabi_fcmpun", CallingConv::ARM_AAPCS
, ISD::SETNE
},
523 { RTLIB::O_F32
, "__aeabi_fcmpun", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
525 // Floating-point to integer conversions.
526 // RTABI chapter 4.1.2, Table 6
527 { RTLIB::FPTOSINT_F64_I32
, "__aeabi_d2iz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
528 { RTLIB::FPTOUINT_F64_I32
, "__aeabi_d2uiz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
529 { RTLIB::FPTOSINT_F64_I64
, "__aeabi_d2lz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
530 { RTLIB::FPTOUINT_F64_I64
, "__aeabi_d2ulz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
531 { RTLIB::FPTOSINT_F32_I32
, "__aeabi_f2iz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
532 { RTLIB::FPTOUINT_F32_I32
, "__aeabi_f2uiz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
533 { RTLIB::FPTOSINT_F32_I64
, "__aeabi_f2lz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
534 { RTLIB::FPTOUINT_F32_I64
, "__aeabi_f2ulz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
536 // Conversions between floating types.
537 // RTABI chapter 4.1.2, Table 7
538 { RTLIB::FPROUND_F64_F32
, "__aeabi_d2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
539 { RTLIB::FPROUND_F64_F16
, "__aeabi_d2h", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
540 { RTLIB::FPEXT_F32_F64
, "__aeabi_f2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
542 // Integer to floating-point conversions.
543 // RTABI chapter 4.1.2, Table 8
544 { RTLIB::SINTTOFP_I32_F64
, "__aeabi_i2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
545 { RTLIB::UINTTOFP_I32_F64
, "__aeabi_ui2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
546 { RTLIB::SINTTOFP_I64_F64
, "__aeabi_l2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
547 { RTLIB::UINTTOFP_I64_F64
, "__aeabi_ul2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
548 { RTLIB::SINTTOFP_I32_F32
, "__aeabi_i2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
549 { RTLIB::UINTTOFP_I32_F32
, "__aeabi_ui2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
550 { RTLIB::SINTTOFP_I64_F32
, "__aeabi_l2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
551 { RTLIB::UINTTOFP_I64_F32
, "__aeabi_ul2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
553 // Long long helper functions
554 // RTABI chapter 4.2, Table 9
555 { RTLIB::MUL_I64
, "__aeabi_lmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
556 { RTLIB::SHL_I64
, "__aeabi_llsl", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
557 { RTLIB::SRL_I64
, "__aeabi_llsr", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
558 { RTLIB::SRA_I64
, "__aeabi_lasr", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
560 // Integer division functions
561 // RTABI chapter 4.3.1
562 { RTLIB::SDIV_I8
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
563 { RTLIB::SDIV_I16
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
564 { RTLIB::SDIV_I32
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
565 { RTLIB::SDIV_I64
, "__aeabi_ldivmod", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
566 { RTLIB::UDIV_I8
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
567 { RTLIB::UDIV_I16
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
568 { RTLIB::UDIV_I32
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
569 { RTLIB::UDIV_I64
, "__aeabi_uldivmod", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
572 for (const auto &LC
: LibraryCalls
) {
573 setLibcallName(LC
.Op
, LC
.Name
);
574 setLibcallCallingConv(LC
.Op
, LC
.CC
);
575 if (LC
.Cond
!= ISD::SETCC_INVALID
)
576 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
579 // EABI dependent RTLIB
580 if (TM
.Options
.EABIVersion
== EABI::EABI4
||
581 TM
.Options
.EABIVersion
== EABI::EABI5
) {
582 static const struct {
583 const RTLIB::Libcall Op
;
584 const char *const Name
;
585 const CallingConv::ID CC
;
586 const ISD::CondCode Cond
;
587 } MemOpsLibraryCalls
[] = {
589 // RTABI chapter 4.3.4
590 { RTLIB::MEMCPY
, "__aeabi_memcpy", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
591 { RTLIB::MEMMOVE
, "__aeabi_memmove", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
592 { RTLIB::MEMSET
, "__aeabi_memset", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
595 for (const auto &LC
: MemOpsLibraryCalls
) {
596 setLibcallName(LC
.Op
, LC
.Name
);
597 setLibcallCallingConv(LC
.Op
, LC
.CC
);
598 if (LC
.Cond
!= ISD::SETCC_INVALID
)
599 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
604 if (Subtarget
->isTargetWindows()) {
605 static const struct {
606 const RTLIB::Libcall Op
;
607 const char * const Name
;
608 const CallingConv::ID CC
;
610 { RTLIB::FPTOSINT_F32_I64
, "__stoi64", CallingConv::ARM_AAPCS_VFP
},
611 { RTLIB::FPTOSINT_F64_I64
, "__dtoi64", CallingConv::ARM_AAPCS_VFP
},
612 { RTLIB::FPTOUINT_F32_I64
, "__stou64", CallingConv::ARM_AAPCS_VFP
},
613 { RTLIB::FPTOUINT_F64_I64
, "__dtou64", CallingConv::ARM_AAPCS_VFP
},
614 { RTLIB::SINTTOFP_I64_F32
, "__i64tos", CallingConv::ARM_AAPCS_VFP
},
615 { RTLIB::SINTTOFP_I64_F64
, "__i64tod", CallingConv::ARM_AAPCS_VFP
},
616 { RTLIB::UINTTOFP_I64_F32
, "__u64tos", CallingConv::ARM_AAPCS_VFP
},
617 { RTLIB::UINTTOFP_I64_F64
, "__u64tod", CallingConv::ARM_AAPCS_VFP
},
620 for (const auto &LC
: LibraryCalls
) {
621 setLibcallName(LC
.Op
, LC
.Name
);
622 setLibcallCallingConv(LC
.Op
, LC
.CC
);
626 // Use divmod compiler-rt calls for iOS 5.0 and later.
627 if (Subtarget
->isTargetMachO() &&
628 !(Subtarget
->isTargetIOS() &&
629 Subtarget
->getTargetTriple().isOSVersionLT(5, 0))) {
630 setLibcallName(RTLIB::SDIVREM_I32
, "__divmodsi4");
631 setLibcallName(RTLIB::UDIVREM_I32
, "__udivmodsi4");
634 // The half <-> float conversion functions are always soft-float on
635 // non-watchos platforms, but are needed for some targets which use a
636 // hard-float calling convention by default.
637 if (!Subtarget
->isTargetWatchABI()) {
638 if (Subtarget
->isAAPCS_ABI()) {
639 setLibcallCallingConv(RTLIB::FPROUND_F32_F16
, CallingConv::ARM_AAPCS
);
640 setLibcallCallingConv(RTLIB::FPROUND_F64_F16
, CallingConv::ARM_AAPCS
);
641 setLibcallCallingConv(RTLIB::FPEXT_F16_F32
, CallingConv::ARM_AAPCS
);
643 setLibcallCallingConv(RTLIB::FPROUND_F32_F16
, CallingConv::ARM_APCS
);
644 setLibcallCallingConv(RTLIB::FPROUND_F64_F16
, CallingConv::ARM_APCS
);
645 setLibcallCallingConv(RTLIB::FPEXT_F16_F32
, CallingConv::ARM_APCS
);
649 // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
650 // a __gnu_ prefix (which is the default).
651 if (Subtarget
->isTargetAEABI()) {
652 static const struct {
653 const RTLIB::Libcall Op
;
654 const char * const Name
;
655 const CallingConv::ID CC
;
657 { RTLIB::FPROUND_F32_F16
, "__aeabi_f2h", CallingConv::ARM_AAPCS
},
658 { RTLIB::FPROUND_F64_F16
, "__aeabi_d2h", CallingConv::ARM_AAPCS
},
659 { RTLIB::FPEXT_F16_F32
, "__aeabi_h2f", CallingConv::ARM_AAPCS
},
662 for (const auto &LC
: LibraryCalls
) {
663 setLibcallName(LC
.Op
, LC
.Name
);
664 setLibcallCallingConv(LC
.Op
, LC
.CC
);
668 if (Subtarget
->isThumb1Only())
669 addRegisterClass(MVT::i32
, &ARM::tGPRRegClass
);
671 addRegisterClass(MVT::i32
, &ARM::GPRRegClass
);
673 if (!Subtarget
->useSoftFloat() && !Subtarget
->isThumb1Only() &&
674 Subtarget
->hasFPRegs()) {
675 addRegisterClass(MVT::f32
, &ARM::SPRRegClass
);
676 addRegisterClass(MVT::f64
, &ARM::DPRRegClass
);
677 if (!Subtarget
->hasVFP2Base())
678 setAllExpand(MVT::f32
);
679 if (!Subtarget
->hasFP64())
680 setAllExpand(MVT::f64
);
683 if (Subtarget
->hasFullFP16()) {
684 addRegisterClass(MVT::f16
, &ARM::HPRRegClass
);
685 setOperationAction(ISD::BITCAST
, MVT::i16
, Custom
);
686 setOperationAction(ISD::BITCAST
, MVT::i32
, Custom
);
687 setOperationAction(ISD::BITCAST
, MVT::f16
, Custom
);
689 setOperationAction(ISD::FMINNUM
, MVT::f16
, Legal
);
690 setOperationAction(ISD::FMAXNUM
, MVT::f16
, Legal
);
693 for (MVT VT
: MVT::vector_valuetypes()) {
694 for (MVT InnerVT
: MVT::vector_valuetypes()) {
695 setTruncStoreAction(VT
, InnerVT
, Expand
);
696 addAllExtLoads(VT
, InnerVT
, Expand
);
699 setOperationAction(ISD::MULHS
, VT
, Expand
);
700 setOperationAction(ISD::SMUL_LOHI
, VT
, Expand
);
701 setOperationAction(ISD::MULHU
, VT
, Expand
);
702 setOperationAction(ISD::UMUL_LOHI
, VT
, Expand
);
704 setOperationAction(ISD::BSWAP
, VT
, Expand
);
707 setOperationAction(ISD::ConstantFP
, MVT::f32
, Custom
);
708 setOperationAction(ISD::ConstantFP
, MVT::f64
, Custom
);
710 setOperationAction(ISD::READ_REGISTER
, MVT::i64
, Custom
);
711 setOperationAction(ISD::WRITE_REGISTER
, MVT::i64
, Custom
);
713 if (Subtarget
->hasMVEIntegerOps())
714 addMVEVectorTypes(Subtarget
->hasMVEFloatOps());
716 // Combine low-overhead loop intrinsics so that we can lower i1 types.
717 if (Subtarget
->hasLOB()) {
718 setTargetDAGCombine(ISD::BRCOND
);
719 setTargetDAGCombine(ISD::BR_CC
);
722 if (Subtarget
->hasNEON()) {
723 addDRTypeForNEON(MVT::v2f32
);
724 addDRTypeForNEON(MVT::v8i8
);
725 addDRTypeForNEON(MVT::v4i16
);
726 addDRTypeForNEON(MVT::v2i32
);
727 addDRTypeForNEON(MVT::v1i64
);
729 addQRTypeForNEON(MVT::v4f32
);
730 addQRTypeForNEON(MVT::v2f64
);
731 addQRTypeForNEON(MVT::v16i8
);
732 addQRTypeForNEON(MVT::v8i16
);
733 addQRTypeForNEON(MVT::v4i32
);
734 addQRTypeForNEON(MVT::v2i64
);
736 if (Subtarget
->hasFullFP16()) {
737 addQRTypeForNEON(MVT::v8f16
);
738 addDRTypeForNEON(MVT::v4f16
);
742 if (Subtarget
->hasMVEIntegerOps() || Subtarget
->hasNEON()) {
743 // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
744 // none of Neon, MVE or VFP supports any arithmetic operations on it.
745 setOperationAction(ISD::FADD
, MVT::v2f64
, Expand
);
746 setOperationAction(ISD::FSUB
, MVT::v2f64
, Expand
);
747 setOperationAction(ISD::FMUL
, MVT::v2f64
, Expand
);
748 // FIXME: Code duplication: FDIV and FREM are expanded always, see
749 // ARMTargetLowering::addTypeForNEON method for details.
750 setOperationAction(ISD::FDIV
, MVT::v2f64
, Expand
);
751 setOperationAction(ISD::FREM
, MVT::v2f64
, Expand
);
752 // FIXME: Create unittest.
753 // In another words, find a way when "copysign" appears in DAG with vector
755 setOperationAction(ISD::FCOPYSIGN
, MVT::v2f64
, Expand
);
756 // FIXME: Code duplication: SETCC has custom operation action, see
757 // ARMTargetLowering::addTypeForNEON method for details.
758 setOperationAction(ISD::SETCC
, MVT::v2f64
, Expand
);
759 // FIXME: Create unittest for FNEG and for FABS.
760 setOperationAction(ISD::FNEG
, MVT::v2f64
, Expand
);
761 setOperationAction(ISD::FABS
, MVT::v2f64
, Expand
);
762 setOperationAction(ISD::FSQRT
, MVT::v2f64
, Expand
);
763 setOperationAction(ISD::FSIN
, MVT::v2f64
, Expand
);
764 setOperationAction(ISD::FCOS
, MVT::v2f64
, Expand
);
765 setOperationAction(ISD::FPOW
, MVT::v2f64
, Expand
);
766 setOperationAction(ISD::FLOG
, MVT::v2f64
, Expand
);
767 setOperationAction(ISD::FLOG2
, MVT::v2f64
, Expand
);
768 setOperationAction(ISD::FLOG10
, MVT::v2f64
, Expand
);
769 setOperationAction(ISD::FEXP
, MVT::v2f64
, Expand
);
770 setOperationAction(ISD::FEXP2
, MVT::v2f64
, Expand
);
771 // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
772 setOperationAction(ISD::FCEIL
, MVT::v2f64
, Expand
);
773 setOperationAction(ISD::FTRUNC
, MVT::v2f64
, Expand
);
774 setOperationAction(ISD::FRINT
, MVT::v2f64
, Expand
);
775 setOperationAction(ISD::FNEARBYINT
, MVT::v2f64
, Expand
);
776 setOperationAction(ISD::FFLOOR
, MVT::v2f64
, Expand
);
777 setOperationAction(ISD::FMA
, MVT::v2f64
, Expand
);
780 if (Subtarget
->hasNEON()) {
781 // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
782 // supported for v4f32.
783 setOperationAction(ISD::FSQRT
, MVT::v4f32
, Expand
);
784 setOperationAction(ISD::FSIN
, MVT::v4f32
, Expand
);
785 setOperationAction(ISD::FCOS
, MVT::v4f32
, Expand
);
786 setOperationAction(ISD::FPOW
, MVT::v4f32
, Expand
);
787 setOperationAction(ISD::FLOG
, MVT::v4f32
, Expand
);
788 setOperationAction(ISD::FLOG2
, MVT::v4f32
, Expand
);
789 setOperationAction(ISD::FLOG10
, MVT::v4f32
, Expand
);
790 setOperationAction(ISD::FEXP
, MVT::v4f32
, Expand
);
791 setOperationAction(ISD::FEXP2
, MVT::v4f32
, Expand
);
792 setOperationAction(ISD::FCEIL
, MVT::v4f32
, Expand
);
793 setOperationAction(ISD::FTRUNC
, MVT::v4f32
, Expand
);
794 setOperationAction(ISD::FRINT
, MVT::v4f32
, Expand
);
795 setOperationAction(ISD::FNEARBYINT
, MVT::v4f32
, Expand
);
796 setOperationAction(ISD::FFLOOR
, MVT::v4f32
, Expand
);
798 // Mark v2f32 intrinsics.
799 setOperationAction(ISD::FSQRT
, MVT::v2f32
, Expand
);
800 setOperationAction(ISD::FSIN
, MVT::v2f32
, Expand
);
801 setOperationAction(ISD::FCOS
, MVT::v2f32
, Expand
);
802 setOperationAction(ISD::FPOW
, MVT::v2f32
, Expand
);
803 setOperationAction(ISD::FLOG
, MVT::v2f32
, Expand
);
804 setOperationAction(ISD::FLOG2
, MVT::v2f32
, Expand
);
805 setOperationAction(ISD::FLOG10
, MVT::v2f32
, Expand
);
806 setOperationAction(ISD::FEXP
, MVT::v2f32
, Expand
);
807 setOperationAction(ISD::FEXP2
, MVT::v2f32
, Expand
);
808 setOperationAction(ISD::FCEIL
, MVT::v2f32
, Expand
);
809 setOperationAction(ISD::FTRUNC
, MVT::v2f32
, Expand
);
810 setOperationAction(ISD::FRINT
, MVT::v2f32
, Expand
);
811 setOperationAction(ISD::FNEARBYINT
, MVT::v2f32
, Expand
);
812 setOperationAction(ISD::FFLOOR
, MVT::v2f32
, Expand
);
814 // Neon does not support some operations on v1i64 and v2i64 types.
815 setOperationAction(ISD::MUL
, MVT::v1i64
, Expand
);
816 // Custom handling for some quad-vector types to detect VMULL.
817 setOperationAction(ISD::MUL
, MVT::v8i16
, Custom
);
818 setOperationAction(ISD::MUL
, MVT::v4i32
, Custom
);
819 setOperationAction(ISD::MUL
, MVT::v2i64
, Custom
);
820 // Custom handling for some vector types to avoid expensive expansions
821 setOperationAction(ISD::SDIV
, MVT::v4i16
, Custom
);
822 setOperationAction(ISD::SDIV
, MVT::v8i8
, Custom
);
823 setOperationAction(ISD::UDIV
, MVT::v4i16
, Custom
);
824 setOperationAction(ISD::UDIV
, MVT::v8i8
, Custom
);
825 // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
826 // a destination type that is wider than the source, and nor does
827 // it have a FP_TO_[SU]INT instruction with a narrower destination than
829 setOperationAction(ISD::SINT_TO_FP
, MVT::v4i16
, Custom
);
830 setOperationAction(ISD::SINT_TO_FP
, MVT::v8i16
, Custom
);
831 setOperationAction(ISD::UINT_TO_FP
, MVT::v4i16
, Custom
);
832 setOperationAction(ISD::UINT_TO_FP
, MVT::v8i16
, Custom
);
833 setOperationAction(ISD::FP_TO_UINT
, MVT::v4i16
, Custom
);
834 setOperationAction(ISD::FP_TO_UINT
, MVT::v8i16
, Custom
);
835 setOperationAction(ISD::FP_TO_SINT
, MVT::v4i16
, Custom
);
836 setOperationAction(ISD::FP_TO_SINT
, MVT::v8i16
, Custom
);
838 setOperationAction(ISD::FP_ROUND
, MVT::v2f32
, Expand
);
839 setOperationAction(ISD::FP_EXTEND
, MVT::v2f64
, Expand
);
841 // NEON does not have single instruction CTPOP for vectors with element
842 // types wider than 8-bits. However, custom lowering can leverage the
843 // v8i8/v16i8 vcnt instruction.
844 setOperationAction(ISD::CTPOP
, MVT::v2i32
, Custom
);
845 setOperationAction(ISD::CTPOP
, MVT::v4i32
, Custom
);
846 setOperationAction(ISD::CTPOP
, MVT::v4i16
, Custom
);
847 setOperationAction(ISD::CTPOP
, MVT::v8i16
, Custom
);
848 setOperationAction(ISD::CTPOP
, MVT::v1i64
, Custom
);
849 setOperationAction(ISD::CTPOP
, MVT::v2i64
, Custom
);
851 setOperationAction(ISD::CTLZ
, MVT::v1i64
, Expand
);
852 setOperationAction(ISD::CTLZ
, MVT::v2i64
, Expand
);
854 // NEON does not have single instruction CTTZ for vectors.
855 setOperationAction(ISD::CTTZ
, MVT::v8i8
, Custom
);
856 setOperationAction(ISD::CTTZ
, MVT::v4i16
, Custom
);
857 setOperationAction(ISD::CTTZ
, MVT::v2i32
, Custom
);
858 setOperationAction(ISD::CTTZ
, MVT::v1i64
, Custom
);
860 setOperationAction(ISD::CTTZ
, MVT::v16i8
, Custom
);
861 setOperationAction(ISD::CTTZ
, MVT::v8i16
, Custom
);
862 setOperationAction(ISD::CTTZ
, MVT::v4i32
, Custom
);
863 setOperationAction(ISD::CTTZ
, MVT::v2i64
, Custom
);
865 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v8i8
, Custom
);
866 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v4i16
, Custom
);
867 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v2i32
, Custom
);
868 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v1i64
, Custom
);
870 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v16i8
, Custom
);
871 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v8i16
, Custom
);
872 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v4i32
, Custom
);
873 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v2i64
, Custom
);
875 // NEON only has FMA instructions as of VFP4.
876 if (!Subtarget
->hasVFP4Base()) {
877 setOperationAction(ISD::FMA
, MVT::v2f32
, Expand
);
878 setOperationAction(ISD::FMA
, MVT::v4f32
, Expand
);
881 setTargetDAGCombine(ISD::INTRINSIC_VOID
);
882 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN
);
883 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN
);
884 setTargetDAGCombine(ISD::SHL
);
885 setTargetDAGCombine(ISD::SRL
);
886 setTargetDAGCombine(ISD::SRA
);
887 setTargetDAGCombine(ISD::SIGN_EXTEND
);
888 setTargetDAGCombine(ISD::ZERO_EXTEND
);
889 setTargetDAGCombine(ISD::ANY_EXTEND
);
890 setTargetDAGCombine(ISD::STORE
);
891 setTargetDAGCombine(ISD::FP_TO_SINT
);
892 setTargetDAGCombine(ISD::FP_TO_UINT
);
893 setTargetDAGCombine(ISD::FDIV
);
894 setTargetDAGCombine(ISD::LOAD
);
896 // It is legal to extload from v4i8 to v4i16 or v4i32.
897 for (MVT Ty
: {MVT::v8i8
, MVT::v4i8
, MVT::v2i8
, MVT::v4i16
, MVT::v2i16
,
899 for (MVT VT
: MVT::integer_vector_valuetypes()) {
900 setLoadExtAction(ISD::EXTLOAD
, VT
, Ty
, Legal
);
901 setLoadExtAction(ISD::ZEXTLOAD
, VT
, Ty
, Legal
);
902 setLoadExtAction(ISD::SEXTLOAD
, VT
, Ty
, Legal
);
907 if (Subtarget
->hasNEON() || Subtarget
->hasMVEIntegerOps()) {
908 setTargetDAGCombine(ISD::BUILD_VECTOR
);
909 setTargetDAGCombine(ISD::VECTOR_SHUFFLE
);
910 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT
);
913 if (!Subtarget
->hasFP64()) {
914 // When targeting a floating-point unit with only single-precision
915 // operations, f64 is legal for the few double-precision instructions which
916 // are present However, no double-precision operations other than moves,
917 // loads and stores are provided by the hardware.
918 setOperationAction(ISD::FADD
, MVT::f64
, Expand
);
919 setOperationAction(ISD::FSUB
, MVT::f64
, Expand
);
920 setOperationAction(ISD::FMUL
, MVT::f64
, Expand
);
921 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
922 setOperationAction(ISD::FDIV
, MVT::f64
, Expand
);
923 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
924 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Expand
);
925 setOperationAction(ISD::FGETSIGN
, MVT::f64
, Expand
);
926 setOperationAction(ISD::FNEG
, MVT::f64
, Expand
);
927 setOperationAction(ISD::FABS
, MVT::f64
, Expand
);
928 setOperationAction(ISD::FSQRT
, MVT::f64
, Expand
);
929 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
930 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
931 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
932 setOperationAction(ISD::FLOG
, MVT::f64
, Expand
);
933 setOperationAction(ISD::FLOG2
, MVT::f64
, Expand
);
934 setOperationAction(ISD::FLOG10
, MVT::f64
, Expand
);
935 setOperationAction(ISD::FEXP
, MVT::f64
, Expand
);
936 setOperationAction(ISD::FEXP2
, MVT::f64
, Expand
);
937 setOperationAction(ISD::FCEIL
, MVT::f64
, Expand
);
938 setOperationAction(ISD::FTRUNC
, MVT::f64
, Expand
);
939 setOperationAction(ISD::FRINT
, MVT::f64
, Expand
);
940 setOperationAction(ISD::FNEARBYINT
, MVT::f64
, Expand
);
941 setOperationAction(ISD::FFLOOR
, MVT::f64
, Expand
);
942 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Custom
);
943 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Custom
);
944 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
945 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Custom
);
946 setOperationAction(ISD::FP_TO_SINT
, MVT::f64
, Custom
);
947 setOperationAction(ISD::FP_TO_UINT
, MVT::f64
, Custom
);
948 setOperationAction(ISD::FP_ROUND
, MVT::f32
, Custom
);
951 if (!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()) {
952 setOperationAction(ISD::FP_EXTEND
, MVT::f64
, Custom
);
953 if (Subtarget
->hasFullFP16())
954 setOperationAction(ISD::FP_ROUND
, MVT::f16
, Custom
);
957 if (!Subtarget
->hasFP16())
958 setOperationAction(ISD::FP_EXTEND
, MVT::f32
, Custom
);
960 if (!Subtarget
->hasFP64())
961 setOperationAction(ISD::FP_ROUND
, MVT::f32
, Custom
);
963 computeRegisterProperties(Subtarget
->getRegisterInfo());
965 // ARM does not have floating-point extending loads.
966 for (MVT VT
: MVT::fp_valuetypes()) {
967 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f32
, Expand
);
968 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f16
, Expand
);
971 // ... or truncating stores
972 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
973 setTruncStoreAction(MVT::f32
, MVT::f16
, Expand
);
974 setTruncStoreAction(MVT::f64
, MVT::f16
, Expand
);
976 // ARM does not have i1 sign extending load.
977 for (MVT VT
: MVT::integer_valuetypes())
978 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Promote
);
980 // ARM supports all 4 flavors of integer indexed load / store.
981 if (!Subtarget
->isThumb1Only()) {
982 for (unsigned im
= (unsigned)ISD::PRE_INC
;
983 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
984 setIndexedLoadAction(im
, MVT::i1
, Legal
);
985 setIndexedLoadAction(im
, MVT::i8
, Legal
);
986 setIndexedLoadAction(im
, MVT::i16
, Legal
);
987 setIndexedLoadAction(im
, MVT::i32
, Legal
);
988 setIndexedStoreAction(im
, MVT::i1
, Legal
);
989 setIndexedStoreAction(im
, MVT::i8
, Legal
);
990 setIndexedStoreAction(im
, MVT::i16
, Legal
);
991 setIndexedStoreAction(im
, MVT::i32
, Legal
);
994 // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
995 setIndexedLoadAction(ISD::POST_INC
, MVT::i32
, Legal
);
996 setIndexedStoreAction(ISD::POST_INC
, MVT::i32
, Legal
);
999 setOperationAction(ISD::SADDO
, MVT::i32
, Custom
);
1000 setOperationAction(ISD::UADDO
, MVT::i32
, Custom
);
1001 setOperationAction(ISD::SSUBO
, MVT::i32
, Custom
);
1002 setOperationAction(ISD::USUBO
, MVT::i32
, Custom
);
1004 setOperationAction(ISD::ADDCARRY
, MVT::i32
, Custom
);
1005 setOperationAction(ISD::SUBCARRY
, MVT::i32
, Custom
);
1007 // i64 operation support.
1008 setOperationAction(ISD::MUL
, MVT::i64
, Expand
);
1009 setOperationAction(ISD::MULHU
, MVT::i32
, Expand
);
1010 if (Subtarget
->isThumb1Only()) {
1011 setOperationAction(ISD::UMUL_LOHI
, MVT::i32
, Expand
);
1012 setOperationAction(ISD::SMUL_LOHI
, MVT::i32
, Expand
);
1014 if (Subtarget
->isThumb1Only() || !Subtarget
->hasV6Ops()
1015 || (Subtarget
->isThumb2() && !Subtarget
->hasDSP()))
1016 setOperationAction(ISD::MULHS
, MVT::i32
, Expand
);
1018 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Custom
);
1019 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Custom
);
1020 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Custom
);
1021 setOperationAction(ISD::SRL
, MVT::i64
, Custom
);
1022 setOperationAction(ISD::SRA
, MVT::i64
, Custom
);
1023 setOperationAction(ISD::INTRINSIC_VOID
, MVT::Other
, Custom
);
1024 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::i64
, Custom
);
1026 // MVE lowers 64 bit shifts to lsll and lsrl
1027 // assuming that ISD::SRL and SRA of i64 are already marked custom
1028 if (Subtarget
->hasMVEIntegerOps())
1029 setOperationAction(ISD::SHL
, MVT::i64
, Custom
);
1031 // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
1032 if (Subtarget
->isThumb1Only()) {
1033 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Expand
);
1034 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Expand
);
1035 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Expand
);
1038 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV6T2Ops())
1039 setOperationAction(ISD::BITREVERSE
, MVT::i32
, Legal
);
1041 // ARM does not have ROTL.
1042 setOperationAction(ISD::ROTL
, MVT::i32
, Expand
);
1043 for (MVT VT
: MVT::vector_valuetypes()) {
1044 setOperationAction(ISD::ROTL
, VT
, Expand
);
1045 setOperationAction(ISD::ROTR
, VT
, Expand
);
1047 setOperationAction(ISD::CTTZ
, MVT::i32
, Custom
);
1048 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
1049 if (!Subtarget
->hasV5TOps() || Subtarget
->isThumb1Only()) {
1050 setOperationAction(ISD::CTLZ
, MVT::i32
, Expand
);
1051 setOperationAction(ISD::CTLZ_ZERO_UNDEF
, MVT::i32
, LibCall
);
1054 // @llvm.readcyclecounter requires the Performance Monitors extension.
1055 // Default to the 0 expansion on unsupported platforms.
1056 // FIXME: Technically there are older ARM CPUs that have
1057 // implementation-specific ways of obtaining this information.
1058 if (Subtarget
->hasPerfMon())
1059 setOperationAction(ISD::READCYCLECOUNTER
, MVT::i64
, Custom
);
1061 // Only ARMv6 has BSWAP.
1062 if (!Subtarget
->hasV6Ops())
1063 setOperationAction(ISD::BSWAP
, MVT::i32
, Expand
);
1065 bool hasDivide
= Subtarget
->isThumb() ? Subtarget
->hasDivideInThumbMode()
1066 : Subtarget
->hasDivideInARMMode();
1068 // These are expanded into libcalls if the cpu doesn't have HW divider.
1069 setOperationAction(ISD::SDIV
, MVT::i32
, LibCall
);
1070 setOperationAction(ISD::UDIV
, MVT::i32
, LibCall
);
1073 if (Subtarget
->isTargetWindows() && !Subtarget
->hasDivideInThumbMode()) {
1074 setOperationAction(ISD::SDIV
, MVT::i32
, Custom
);
1075 setOperationAction(ISD::UDIV
, MVT::i32
, Custom
);
1077 setOperationAction(ISD::SDIV
, MVT::i64
, Custom
);
1078 setOperationAction(ISD::UDIV
, MVT::i64
, Custom
);
1081 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
1082 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
1084 // Register based DivRem for AEABI (RTABI 4.2)
1085 if (Subtarget
->isTargetAEABI() || Subtarget
->isTargetAndroid() ||
1086 Subtarget
->isTargetGNUAEABI() || Subtarget
->isTargetMuslAEABI() ||
1087 Subtarget
->isTargetWindows()) {
1088 setOperationAction(ISD::SREM
, MVT::i64
, Custom
);
1089 setOperationAction(ISD::UREM
, MVT::i64
, Custom
);
1090 HasStandaloneRem
= false;
1092 if (Subtarget
->isTargetWindows()) {
1094 const RTLIB::Libcall Op
;
1095 const char * const Name
;
1096 const CallingConv::ID CC
;
1097 } LibraryCalls
[] = {
1098 { RTLIB::SDIVREM_I8
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1099 { RTLIB::SDIVREM_I16
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1100 { RTLIB::SDIVREM_I32
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1101 { RTLIB::SDIVREM_I64
, "__rt_sdiv64", CallingConv::ARM_AAPCS
},
1103 { RTLIB::UDIVREM_I8
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1104 { RTLIB::UDIVREM_I16
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1105 { RTLIB::UDIVREM_I32
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1106 { RTLIB::UDIVREM_I64
, "__rt_udiv64", CallingConv::ARM_AAPCS
},
1109 for (const auto &LC
: LibraryCalls
) {
1110 setLibcallName(LC
.Op
, LC
.Name
);
1111 setLibcallCallingConv(LC
.Op
, LC
.CC
);
1115 const RTLIB::Libcall Op
;
1116 const char * const Name
;
1117 const CallingConv::ID CC
;
1118 } LibraryCalls
[] = {
1119 { RTLIB::SDIVREM_I8
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1120 { RTLIB::SDIVREM_I16
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1121 { RTLIB::SDIVREM_I32
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1122 { RTLIB::SDIVREM_I64
, "__aeabi_ldivmod", CallingConv::ARM_AAPCS
},
1124 { RTLIB::UDIVREM_I8
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1125 { RTLIB::UDIVREM_I16
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1126 { RTLIB::UDIVREM_I32
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1127 { RTLIB::UDIVREM_I64
, "__aeabi_uldivmod", CallingConv::ARM_AAPCS
},
1130 for (const auto &LC
: LibraryCalls
) {
1131 setLibcallName(LC
.Op
, LC
.Name
);
1132 setLibcallCallingConv(LC
.Op
, LC
.CC
);
1136 setOperationAction(ISD::SDIVREM
, MVT::i32
, Custom
);
1137 setOperationAction(ISD::UDIVREM
, MVT::i32
, Custom
);
1138 setOperationAction(ISD::SDIVREM
, MVT::i64
, Custom
);
1139 setOperationAction(ISD::UDIVREM
, MVT::i64
, Custom
);
1141 setOperationAction(ISD::SDIVREM
, MVT::i32
, Expand
);
1142 setOperationAction(ISD::UDIVREM
, MVT::i32
, Expand
);
1145 if (Subtarget
->isTargetWindows() && Subtarget
->getTargetTriple().isOSMSVCRT())
1146 for (auto &VT
: {MVT::f32
, MVT::f64
})
1147 setOperationAction(ISD::FPOWI
, VT
, Custom
);
1149 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
1150 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
1151 setOperationAction(ISD::GlobalTLSAddress
, MVT::i32
, Custom
);
1152 setOperationAction(ISD::BlockAddress
, MVT::i32
, Custom
);
1154 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
1155 setOperationAction(ISD::DEBUGTRAP
, MVT::Other
, Legal
);
1157 // Use the default implementation.
1158 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
1159 setOperationAction(ISD::VAARG
, MVT::Other
, Expand
);
1160 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
1161 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
1162 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
1163 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
1165 if (Subtarget
->isTargetWindows())
1166 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Custom
);
1168 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Expand
);
1170 // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
1171 // the default expansion.
1172 InsertFencesForAtomic
= false;
1173 if (Subtarget
->hasAnyDataBarrier() &&
1174 (!Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps())) {
1175 // ATOMIC_FENCE needs custom lowering; the others should have been expanded
1176 // to ldrex/strex loops already.
1177 setOperationAction(ISD::ATOMIC_FENCE
, MVT::Other
, Custom
);
1178 if (!Subtarget
->isThumb() || !Subtarget
->isMClass())
1179 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i64
, Custom
);
1181 // On v8, we have particularly efficient implementations of atomic fences
1182 // if they can be combined with nearby atomic loads and stores.
1183 if (!Subtarget
->hasAcquireRelease() ||
1184 getTargetMachine().getOptLevel() == 0) {
1185 // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
1186 InsertFencesForAtomic
= true;
1189 // If there's anything we can use as a barrier, go through custom lowering
1190 // for ATOMIC_FENCE.
1191 // If target has DMB in thumb, Fences can be inserted.
1192 if (Subtarget
->hasDataBarrier())
1193 InsertFencesForAtomic
= true;
1195 setOperationAction(ISD::ATOMIC_FENCE
, MVT::Other
,
1196 Subtarget
->hasAnyDataBarrier() ? Custom
: Expand
);
1198 // Set them all for expansion, which will force libcalls.
1199 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i32
, Expand
);
1200 setOperationAction(ISD::ATOMIC_SWAP
, MVT::i32
, Expand
);
1201 setOperationAction(ISD::ATOMIC_LOAD_ADD
, MVT::i32
, Expand
);
1202 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i32
, Expand
);
1203 setOperationAction(ISD::ATOMIC_LOAD_AND
, MVT::i32
, Expand
);
1204 setOperationAction(ISD::ATOMIC_LOAD_OR
, MVT::i32
, Expand
);
1205 setOperationAction(ISD::ATOMIC_LOAD_XOR
, MVT::i32
, Expand
);
1206 setOperationAction(ISD::ATOMIC_LOAD_NAND
, MVT::i32
, Expand
);
1207 setOperationAction(ISD::ATOMIC_LOAD_MIN
, MVT::i32
, Expand
);
1208 setOperationAction(ISD::ATOMIC_LOAD_MAX
, MVT::i32
, Expand
);
1209 setOperationAction(ISD::ATOMIC_LOAD_UMIN
, MVT::i32
, Expand
);
1210 setOperationAction(ISD::ATOMIC_LOAD_UMAX
, MVT::i32
, Expand
);
1211 // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
1212 // Unordered/Monotonic case.
1213 if (!InsertFencesForAtomic
) {
1214 setOperationAction(ISD::ATOMIC_LOAD
, MVT::i32
, Custom
);
1215 setOperationAction(ISD::ATOMIC_STORE
, MVT::i32
, Custom
);
1219 setOperationAction(ISD::PREFETCH
, MVT::Other
, Custom
);
1221 // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
1222 if (!Subtarget
->hasV6Ops()) {
1223 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i16
, Expand
);
1224 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i8
, Expand
);
1226 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
1228 if (!Subtarget
->useSoftFloat() && Subtarget
->hasFPRegs() &&
1229 !Subtarget
->isThumb1Only()) {
1230 // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
1231 // iff target supports vfp2.
1232 setOperationAction(ISD::BITCAST
, MVT::i64
, Custom
);
1233 setOperationAction(ISD::FLT_ROUNDS_
, MVT::i32
, Custom
);
1236 // We want to custom lower some of our intrinsics.
1237 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::Other
, Custom
);
1238 setOperationAction(ISD::EH_SJLJ_SETJMP
, MVT::i32
, Custom
);
1239 setOperationAction(ISD::EH_SJLJ_LONGJMP
, MVT::Other
, Custom
);
1240 setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH
, MVT::Other
, Custom
);
1241 if (Subtarget
->useSjLjEH())
1242 setLibcallName(RTLIB::UNWIND_RESUME
, "_Unwind_SjLj_Resume");
1244 setOperationAction(ISD::SETCC
, MVT::i32
, Expand
);
1245 setOperationAction(ISD::SETCC
, MVT::f32
, Expand
);
1246 setOperationAction(ISD::SETCC
, MVT::f64
, Expand
);
1247 setOperationAction(ISD::SELECT
, MVT::i32
, Custom
);
1248 setOperationAction(ISD::SELECT
, MVT::f32
, Custom
);
1249 setOperationAction(ISD::SELECT
, MVT::f64
, Custom
);
1250 setOperationAction(ISD::SELECT_CC
, MVT::i32
, Custom
);
1251 setOperationAction(ISD::SELECT_CC
, MVT::f32
, Custom
);
1252 setOperationAction(ISD::SELECT_CC
, MVT::f64
, Custom
);
1253 if (Subtarget
->hasFullFP16()) {
1254 setOperationAction(ISD::SETCC
, MVT::f16
, Expand
);
1255 setOperationAction(ISD::SELECT
, MVT::f16
, Custom
);
1256 setOperationAction(ISD::SELECT_CC
, MVT::f16
, Custom
);
1259 setOperationAction(ISD::SETCCCARRY
, MVT::i32
, Custom
);
1261 setOperationAction(ISD::BRCOND
, MVT::Other
, Custom
);
1262 setOperationAction(ISD::BR_CC
, MVT::i32
, Custom
);
1263 if (Subtarget
->hasFullFP16())
1264 setOperationAction(ISD::BR_CC
, MVT::f16
, Custom
);
1265 setOperationAction(ISD::BR_CC
, MVT::f32
, Custom
);
1266 setOperationAction(ISD::BR_CC
, MVT::f64
, Custom
);
1267 setOperationAction(ISD::BR_JT
, MVT::Other
, Custom
);
1269 // We don't support sin/cos/fmod/copysign/pow
1270 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
1271 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
1272 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
1273 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
1274 setOperationAction(ISD::FSINCOS
, MVT::f64
, Expand
);
1275 setOperationAction(ISD::FSINCOS
, MVT::f32
, Expand
);
1276 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
1277 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
1278 if (!Subtarget
->useSoftFloat() && Subtarget
->hasVFP2Base() &&
1279 !Subtarget
->isThumb1Only()) {
1280 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Custom
);
1281 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
1283 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
1284 setOperationAction(ISD::FPOW
, MVT::f32
, Expand
);
1286 if (!Subtarget
->hasVFP4Base()) {
1287 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
1288 setOperationAction(ISD::FMA
, MVT::f32
, Expand
);
1291 // Various VFP goodness
1292 if (!Subtarget
->useSoftFloat() && !Subtarget
->isThumb1Only()) {
1293 // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
1294 if (!Subtarget
->hasFPARMv8Base() || !Subtarget
->hasFP64()) {
1295 setOperationAction(ISD::FP16_TO_FP
, MVT::f64
, Expand
);
1296 setOperationAction(ISD::FP_TO_FP16
, MVT::f64
, Expand
);
1299 // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
1300 if (!Subtarget
->hasFP16()) {
1301 setOperationAction(ISD::FP16_TO_FP
, MVT::f32
, Expand
);
1302 setOperationAction(ISD::FP_TO_FP16
, MVT::f32
, Expand
);
1306 // Use __sincos_stret if available.
1307 if (getLibcallName(RTLIB::SINCOS_STRET_F32
) != nullptr &&
1308 getLibcallName(RTLIB::SINCOS_STRET_F64
) != nullptr) {
1309 setOperationAction(ISD::FSINCOS
, MVT::f64
, Custom
);
1310 setOperationAction(ISD::FSINCOS
, MVT::f32
, Custom
);
1313 // FP-ARMv8 implements a lot of rounding-like FP operations.
1314 if (Subtarget
->hasFPARMv8Base()) {
1315 setOperationAction(ISD::FFLOOR
, MVT::f32
, Legal
);
1316 setOperationAction(ISD::FCEIL
, MVT::f32
, Legal
);
1317 setOperationAction(ISD::FROUND
, MVT::f32
, Legal
);
1318 setOperationAction(ISD::FTRUNC
, MVT::f32
, Legal
);
1319 setOperationAction(ISD::FNEARBYINT
, MVT::f32
, Legal
);
1320 setOperationAction(ISD::FRINT
, MVT::f32
, Legal
);
1321 setOperationAction(ISD::FMINNUM
, MVT::f32
, Legal
);
1322 setOperationAction(ISD::FMAXNUM
, MVT::f32
, Legal
);
1323 if (Subtarget
->hasNEON()) {
1324 setOperationAction(ISD::FMINNUM
, MVT::v2f32
, Legal
);
1325 setOperationAction(ISD::FMAXNUM
, MVT::v2f32
, Legal
);
1326 setOperationAction(ISD::FMINNUM
, MVT::v4f32
, Legal
);
1327 setOperationAction(ISD::FMAXNUM
, MVT::v4f32
, Legal
);
1330 if (Subtarget
->hasFP64()) {
1331 setOperationAction(ISD::FFLOOR
, MVT::f64
, Legal
);
1332 setOperationAction(ISD::FCEIL
, MVT::f64
, Legal
);
1333 setOperationAction(ISD::FROUND
, MVT::f64
, Legal
);
1334 setOperationAction(ISD::FTRUNC
, MVT::f64
, Legal
);
1335 setOperationAction(ISD::FNEARBYINT
, MVT::f64
, Legal
);
1336 setOperationAction(ISD::FRINT
, MVT::f64
, Legal
);
1337 setOperationAction(ISD::FMINNUM
, MVT::f64
, Legal
);
1338 setOperationAction(ISD::FMAXNUM
, MVT::f64
, Legal
);
1342 // FP16 often need to be promoted to call lib functions
1343 if (Subtarget
->hasFullFP16()) {
1344 setOperationAction(ISD::FREM
, MVT::f16
, Promote
);
1345 setOperationAction(ISD::FCOPYSIGN
, MVT::f16
, Expand
);
1346 setOperationAction(ISD::FSIN
, MVT::f16
, Promote
);
1347 setOperationAction(ISD::FCOS
, MVT::f16
, Promote
);
1348 setOperationAction(ISD::FSINCOS
, MVT::f16
, Promote
);
1349 setOperationAction(ISD::FPOWI
, MVT::f16
, Promote
);
1350 setOperationAction(ISD::FPOW
, MVT::f16
, Promote
);
1351 setOperationAction(ISD::FEXP
, MVT::f16
, Promote
);
1352 setOperationAction(ISD::FEXP2
, MVT::f16
, Promote
);
1353 setOperationAction(ISD::FLOG
, MVT::f16
, Promote
);
1354 setOperationAction(ISD::FLOG10
, MVT::f16
, Promote
);
1355 setOperationAction(ISD::FLOG2
, MVT::f16
, Promote
);
1357 setOperationAction(ISD::FROUND
, MVT::f16
, Legal
);
1360 if (Subtarget
->hasNEON()) {
1361 // vmin and vmax aren't available in a scalar form, so we use
1362 // a NEON instruction with an undef lane instead.
1363 setOperationAction(ISD::FMINIMUM
, MVT::f16
, Legal
);
1364 setOperationAction(ISD::FMAXIMUM
, MVT::f16
, Legal
);
1365 setOperationAction(ISD::FMINIMUM
, MVT::f32
, Legal
);
1366 setOperationAction(ISD::FMAXIMUM
, MVT::f32
, Legal
);
1367 setOperationAction(ISD::FMINIMUM
, MVT::v2f32
, Legal
);
1368 setOperationAction(ISD::FMAXIMUM
, MVT::v2f32
, Legal
);
1369 setOperationAction(ISD::FMINIMUM
, MVT::v4f32
, Legal
);
1370 setOperationAction(ISD::FMAXIMUM
, MVT::v4f32
, Legal
);
1372 if (Subtarget
->hasFullFP16()) {
1373 setOperationAction(ISD::FMINNUM
, MVT::v4f16
, Legal
);
1374 setOperationAction(ISD::FMAXNUM
, MVT::v4f16
, Legal
);
1375 setOperationAction(ISD::FMINNUM
, MVT::v8f16
, Legal
);
1376 setOperationAction(ISD::FMAXNUM
, MVT::v8f16
, Legal
);
1378 setOperationAction(ISD::FMINIMUM
, MVT::v4f16
, Legal
);
1379 setOperationAction(ISD::FMAXIMUM
, MVT::v4f16
, Legal
);
1380 setOperationAction(ISD::FMINIMUM
, MVT::v8f16
, Legal
);
1381 setOperationAction(ISD::FMAXIMUM
, MVT::v8f16
, Legal
);
1385 // We have target-specific dag combine patterns for the following nodes:
1386 // ARMISD::VMOVRRD - No need to call setTargetDAGCombine
1387 setTargetDAGCombine(ISD::ADD
);
1388 setTargetDAGCombine(ISD::SUB
);
1389 setTargetDAGCombine(ISD::MUL
);
1390 setTargetDAGCombine(ISD::AND
);
1391 setTargetDAGCombine(ISD::OR
);
1392 setTargetDAGCombine(ISD::XOR
);
1394 if (Subtarget
->hasV6Ops())
1395 setTargetDAGCombine(ISD::SRL
);
1396 if (Subtarget
->isThumb1Only())
1397 setTargetDAGCombine(ISD::SHL
);
1399 setStackPointerRegisterToSaveRestore(ARM::SP
);
1401 if (Subtarget
->useSoftFloat() || Subtarget
->isThumb1Only() ||
1402 !Subtarget
->hasVFP2Base() || Subtarget
->hasMinSize())
1403 setSchedulingPreference(Sched::RegPressure
);
1405 setSchedulingPreference(Sched::Hybrid
);
1407 //// temporary - rewrite interface to use type
1408 MaxStoresPerMemset
= 8;
1409 MaxStoresPerMemsetOptSize
= 4;
1410 MaxStoresPerMemcpy
= 4; // For @llvm.memcpy -> sequence of stores
1411 MaxStoresPerMemcpyOptSize
= 2;
1412 MaxStoresPerMemmove
= 4; // For @llvm.memmove -> sequence of stores
1413 MaxStoresPerMemmoveOptSize
= 2;
1415 // On ARM arguments smaller than 4 bytes are extended, so all arguments
1416 // are at least 4 bytes aligned.
1417 setMinStackArgumentAlignment(4);
1419 // Prefer likely predicted branches to selects on out-of-order cores.
1420 PredictableSelectIsExpensive
= Subtarget
->getSchedModel().isOutOfOrder();
1422 setPrefLoopAlignment(Subtarget
->getPrefLoopAlignment());
1424 setMinFunctionAlignment(Subtarget
->isThumb() ? 1 : 2);
1426 if (Subtarget
->isThumb() || Subtarget
->isThumb2())
1427 setTargetDAGCombine(ISD::ABS
);
1430 bool ARMTargetLowering::useSoftFloat() const {
1431 return Subtarget
->useSoftFloat();
1434 // FIXME: It might make sense to define the representative register class as the
1435 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1436 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1437 // SPR's representative would be DPR_VFP2. This should work well if register
1438 // pressure tracking were modified such that a register use would increment the
1439 // pressure of the register class's representative and all of it's super
1440 // classes' representatives transitively. We have not implemented this because
1441 // of the difficulty prior to coalescing of modeling operand register classes
1442 // due to the common occurrence of cross class copies and subregister insertions
1444 std::pair
<const TargetRegisterClass
*, uint8_t>
1445 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo
*TRI
,
1447 const TargetRegisterClass
*RRC
= nullptr;
1449 switch (VT
.SimpleTy
) {
1451 return TargetLowering::findRepresentativeClass(TRI
, VT
);
1452 // Use DPR as representative register class for all floating point
1453 // and vector types. Since there are 32 SPR registers and 32 DPR registers so
1454 // the cost is 1 for both f32 and f64.
1455 case MVT::f32
: case MVT::f64
: case MVT::v8i8
: case MVT::v4i16
:
1456 case MVT::v2i32
: case MVT::v1i64
: case MVT::v2f32
:
1457 RRC
= &ARM::DPRRegClass
;
1458 // When NEON is used for SP, only half of the register file is available
1459 // because operations that define both SP and DP results will be constrained
1460 // to the VFP2 class (D0-D15). We currently model this constraint prior to
1461 // coalescing by double-counting the SP regs. See the FIXME above.
1462 if (Subtarget
->useNEONForSinglePrecisionFP())
1465 case MVT::v16i8
: case MVT::v8i16
: case MVT::v4i32
: case MVT::v2i64
:
1466 case MVT::v4f32
: case MVT::v2f64
:
1467 RRC
= &ARM::DPRRegClass
;
1471 RRC
= &ARM::DPRRegClass
;
1475 RRC
= &ARM::DPRRegClass
;
1479 return std::make_pair(RRC
, Cost
);
1482 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode
) const {
1483 switch ((ARMISD::NodeType
)Opcode
) {
1484 case ARMISD::FIRST_NUMBER
: break;
1485 case ARMISD::Wrapper
: return "ARMISD::Wrapper";
1486 case ARMISD::WrapperPIC
: return "ARMISD::WrapperPIC";
1487 case ARMISD::WrapperJT
: return "ARMISD::WrapperJT";
1488 case ARMISD::COPY_STRUCT_BYVAL
: return "ARMISD::COPY_STRUCT_BYVAL";
1489 case ARMISD::CALL
: return "ARMISD::CALL";
1490 case ARMISD::CALL_PRED
: return "ARMISD::CALL_PRED";
1491 case ARMISD::CALL_NOLINK
: return "ARMISD::CALL_NOLINK";
1492 case ARMISD::BRCOND
: return "ARMISD::BRCOND";
1493 case ARMISD::BR_JT
: return "ARMISD::BR_JT";
1494 case ARMISD::BR2_JT
: return "ARMISD::BR2_JT";
1495 case ARMISD::RET_FLAG
: return "ARMISD::RET_FLAG";
1496 case ARMISD::INTRET_FLAG
: return "ARMISD::INTRET_FLAG";
1497 case ARMISD::PIC_ADD
: return "ARMISD::PIC_ADD";
1498 case ARMISD::CMP
: return "ARMISD::CMP";
1499 case ARMISD::CMN
: return "ARMISD::CMN";
1500 case ARMISD::CMPZ
: return "ARMISD::CMPZ";
1501 case ARMISD::CMPFP
: return "ARMISD::CMPFP";
1502 case ARMISD::CMPFPw0
: return "ARMISD::CMPFPw0";
1503 case ARMISD::BCC_i64
: return "ARMISD::BCC_i64";
1504 case ARMISD::FMSTAT
: return "ARMISD::FMSTAT";
1506 case ARMISD::CMOV
: return "ARMISD::CMOV";
1507 case ARMISD::SUBS
: return "ARMISD::SUBS";
1509 case ARMISD::SSAT
: return "ARMISD::SSAT";
1510 case ARMISD::USAT
: return "ARMISD::USAT";
1512 case ARMISD::ASRL
: return "ARMISD::ASRL";
1513 case ARMISD::LSRL
: return "ARMISD::LSRL";
1514 case ARMISD::LSLL
: return "ARMISD::LSLL";
1516 case ARMISD::SRL_FLAG
: return "ARMISD::SRL_FLAG";
1517 case ARMISD::SRA_FLAG
: return "ARMISD::SRA_FLAG";
1518 case ARMISD::RRX
: return "ARMISD::RRX";
1520 case ARMISD::ADDC
: return "ARMISD::ADDC";
1521 case ARMISD::ADDE
: return "ARMISD::ADDE";
1522 case ARMISD::SUBC
: return "ARMISD::SUBC";
1523 case ARMISD::SUBE
: return "ARMISD::SUBE";
1524 case ARMISD::LSLS
: return "ARMISD::LSLS";
1526 case ARMISD::VMOVRRD
: return "ARMISD::VMOVRRD";
1527 case ARMISD::VMOVDRR
: return "ARMISD::VMOVDRR";
1528 case ARMISD::VMOVhr
: return "ARMISD::VMOVhr";
1529 case ARMISD::VMOVrh
: return "ARMISD::VMOVrh";
1530 case ARMISD::VMOVSR
: return "ARMISD::VMOVSR";
1532 case ARMISD::EH_SJLJ_SETJMP
: return "ARMISD::EH_SJLJ_SETJMP";
1533 case ARMISD::EH_SJLJ_LONGJMP
: return "ARMISD::EH_SJLJ_LONGJMP";
1534 case ARMISD::EH_SJLJ_SETUP_DISPATCH
: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
1536 case ARMISD::TC_RETURN
: return "ARMISD::TC_RETURN";
1538 case ARMISD::THREAD_POINTER
:return "ARMISD::THREAD_POINTER";
1540 case ARMISD::DYN_ALLOC
: return "ARMISD::DYN_ALLOC";
1542 case ARMISD::MEMBARRIER_MCR
: return "ARMISD::MEMBARRIER_MCR";
1544 case ARMISD::PRELOAD
: return "ARMISD::PRELOAD";
1546 case ARMISD::WIN__CHKSTK
: return "ARMISD::WIN__CHKSTK";
1547 case ARMISD::WIN__DBZCHK
: return "ARMISD::WIN__DBZCHK";
1549 case ARMISD::PREDICATE_CAST
: return "ARMISD::PREDICATE_CAST";
1550 case ARMISD::VCMP
: return "ARMISD::VCMP";
1551 case ARMISD::VCMPZ
: return "ARMISD::VCMPZ";
1552 case ARMISD::VTST
: return "ARMISD::VTST";
1554 case ARMISD::VSHLs
: return "ARMISD::VSHLs";
1555 case ARMISD::VSHLu
: return "ARMISD::VSHLu";
1556 case ARMISD::VSHLIMM
: return "ARMISD::VSHLIMM";
1557 case ARMISD::VSHRsIMM
: return "ARMISD::VSHRsIMM";
1558 case ARMISD::VSHRuIMM
: return "ARMISD::VSHRuIMM";
1559 case ARMISD::VRSHRsIMM
: return "ARMISD::VRSHRsIMM";
1560 case ARMISD::VRSHRuIMM
: return "ARMISD::VRSHRuIMM";
1561 case ARMISD::VRSHRNIMM
: return "ARMISD::VRSHRNIMM";
1562 case ARMISD::VQSHLsIMM
: return "ARMISD::VQSHLsIMM";
1563 case ARMISD::VQSHLuIMM
: return "ARMISD::VQSHLuIMM";
1564 case ARMISD::VQSHLsuIMM
: return "ARMISD::VQSHLsuIMM";
1565 case ARMISD::VQSHRNsIMM
: return "ARMISD::VQSHRNsIMM";
1566 case ARMISD::VQSHRNuIMM
: return "ARMISD::VQSHRNuIMM";
1567 case ARMISD::VQSHRNsuIMM
: return "ARMISD::VQSHRNsuIMM";
1568 case ARMISD::VQRSHRNsIMM
: return "ARMISD::VQRSHRNsIMM";
1569 case ARMISD::VQRSHRNuIMM
: return "ARMISD::VQRSHRNuIMM";
1570 case ARMISD::VQRSHRNsuIMM
: return "ARMISD::VQRSHRNsuIMM";
1571 case ARMISD::VSLIIMM
: return "ARMISD::VSLIIMM";
1572 case ARMISD::VSRIIMM
: return "ARMISD::VSRIIMM";
1573 case ARMISD::VGETLANEu
: return "ARMISD::VGETLANEu";
1574 case ARMISD::VGETLANEs
: return "ARMISD::VGETLANEs";
1575 case ARMISD::VMOVIMM
: return "ARMISD::VMOVIMM";
1576 case ARMISD::VMVNIMM
: return "ARMISD::VMVNIMM";
1577 case ARMISD::VMOVFPIMM
: return "ARMISD::VMOVFPIMM";
1578 case ARMISD::VDUP
: return "ARMISD::VDUP";
1579 case ARMISD::VDUPLANE
: return "ARMISD::VDUPLANE";
1580 case ARMISD::VEXT
: return "ARMISD::VEXT";
1581 case ARMISD::VREV64
: return "ARMISD::VREV64";
1582 case ARMISD::VREV32
: return "ARMISD::VREV32";
1583 case ARMISD::VREV16
: return "ARMISD::VREV16";
1584 case ARMISD::VZIP
: return "ARMISD::VZIP";
1585 case ARMISD::VUZP
: return "ARMISD::VUZP";
1586 case ARMISD::VTRN
: return "ARMISD::VTRN";
1587 case ARMISD::VTBL1
: return "ARMISD::VTBL1";
1588 case ARMISD::VTBL2
: return "ARMISD::VTBL2";
1589 case ARMISD::VMULLs
: return "ARMISD::VMULLs";
1590 case ARMISD::VMULLu
: return "ARMISD::VMULLu";
1591 case ARMISD::UMAAL
: return "ARMISD::UMAAL";
1592 case ARMISD::UMLAL
: return "ARMISD::UMLAL";
1593 case ARMISD::SMLAL
: return "ARMISD::SMLAL";
1594 case ARMISD::SMLALBB
: return "ARMISD::SMLALBB";
1595 case ARMISD::SMLALBT
: return "ARMISD::SMLALBT";
1596 case ARMISD::SMLALTB
: return "ARMISD::SMLALTB";
1597 case ARMISD::SMLALTT
: return "ARMISD::SMLALTT";
1598 case ARMISD::SMULWB
: return "ARMISD::SMULWB";
1599 case ARMISD::SMULWT
: return "ARMISD::SMULWT";
1600 case ARMISD::SMLALD
: return "ARMISD::SMLALD";
1601 case ARMISD::SMLALDX
: return "ARMISD::SMLALDX";
1602 case ARMISD::SMLSLD
: return "ARMISD::SMLSLD";
1603 case ARMISD::SMLSLDX
: return "ARMISD::SMLSLDX";
1604 case ARMISD::SMMLAR
: return "ARMISD::SMMLAR";
1605 case ARMISD::SMMLSR
: return "ARMISD::SMMLSR";
1606 case ARMISD::BUILD_VECTOR
: return "ARMISD::BUILD_VECTOR";
1607 case ARMISD::BFI
: return "ARMISD::BFI";
1608 case ARMISD::VORRIMM
: return "ARMISD::VORRIMM";
1609 case ARMISD::VBICIMM
: return "ARMISD::VBICIMM";
1610 case ARMISD::VBSL
: return "ARMISD::VBSL";
1611 case ARMISD::MEMCPY
: return "ARMISD::MEMCPY";
1612 case ARMISD::VLD1DUP
: return "ARMISD::VLD1DUP";
1613 case ARMISD::VLD2DUP
: return "ARMISD::VLD2DUP";
1614 case ARMISD::VLD3DUP
: return "ARMISD::VLD3DUP";
1615 case ARMISD::VLD4DUP
: return "ARMISD::VLD4DUP";
1616 case ARMISD::VLD1_UPD
: return "ARMISD::VLD1_UPD";
1617 case ARMISD::VLD2_UPD
: return "ARMISD::VLD2_UPD";
1618 case ARMISD::VLD3_UPD
: return "ARMISD::VLD3_UPD";
1619 case ARMISD::VLD4_UPD
: return "ARMISD::VLD4_UPD";
1620 case ARMISD::VLD2LN_UPD
: return "ARMISD::VLD2LN_UPD";
1621 case ARMISD::VLD3LN_UPD
: return "ARMISD::VLD3LN_UPD";
1622 case ARMISD::VLD4LN_UPD
: return "ARMISD::VLD4LN_UPD";
1623 case ARMISD::VLD1DUP_UPD
: return "ARMISD::VLD1DUP_UPD";
1624 case ARMISD::VLD2DUP_UPD
: return "ARMISD::VLD2DUP_UPD";
1625 case ARMISD::VLD3DUP_UPD
: return "ARMISD::VLD3DUP_UPD";
1626 case ARMISD::VLD4DUP_UPD
: return "ARMISD::VLD4DUP_UPD";
1627 case ARMISD::VST1_UPD
: return "ARMISD::VST1_UPD";
1628 case ARMISD::VST2_UPD
: return "ARMISD::VST2_UPD";
1629 case ARMISD::VST3_UPD
: return "ARMISD::VST3_UPD";
1630 case ARMISD::VST4_UPD
: return "ARMISD::VST4_UPD";
1631 case ARMISD::VST2LN_UPD
: return "ARMISD::VST2LN_UPD";
1632 case ARMISD::VST3LN_UPD
: return "ARMISD::VST3LN_UPD";
1633 case ARMISD::VST4LN_UPD
: return "ARMISD::VST4LN_UPD";
1634 case ARMISD::WLS
: return "ARMISD::WLS";
1635 case ARMISD::LE
: return "ARMISD::LE";
1636 case ARMISD::LOOP_DEC
: return "ARMISD::LOOP_DEC";
1641 EVT
ARMTargetLowering::getSetCCResultType(const DataLayout
&DL
, LLVMContext
&,
1644 return getPointerTy(DL
);
1646 // MVE has a predicate register.
1647 if (Subtarget
->hasMVEIntegerOps() &&
1648 (VT
== MVT::v4i32
|| VT
== MVT::v8i16
|| VT
== MVT::v16i8
))
1649 return MVT::getVectorVT(MVT::i1
, VT
.getVectorElementCount());
1650 return VT
.changeVectorElementTypeToInteger();
1653 /// getRegClassFor - Return the register class that should be used for the
1654 /// specified value type.
1655 const TargetRegisterClass
*
1656 ARMTargetLowering::getRegClassFor(MVT VT
, bool isDivergent
) const {
1658 // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1659 // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1660 // load / store 4 to 8 consecutive NEON D registers, or 2 to 4 consecutive
1662 if (Subtarget
->hasNEON() || Subtarget
->hasMVEIntegerOps()) {
1663 if (VT
== MVT::v4i64
)
1664 return &ARM::QQPRRegClass
;
1665 if (VT
== MVT::v8i64
)
1666 return &ARM::QQQQPRRegClass
;
1668 return TargetLowering::getRegClassFor(VT
);
1671 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1672 // source/dest is aligned and the copy size is large enough. We therefore want
1673 // to align such objects passed to memory intrinsics.
1674 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst
*CI
, unsigned &MinSize
,
1675 unsigned &PrefAlign
) const {
1676 if (!isa
<MemIntrinsic
>(CI
))
1679 // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1680 // cycle faster than 4-byte aligned LDM.
1681 PrefAlign
= (Subtarget
->hasV6Ops() && !Subtarget
->isMClass() ? 8 : 4);
1685 // Create a fast isel object.
1687 ARMTargetLowering::createFastISel(FunctionLoweringInfo
&funcInfo
,
1688 const TargetLibraryInfo
*libInfo
) const {
1689 return ARM::createFastISel(funcInfo
, libInfo
);
1692 Sched::Preference
ARMTargetLowering::getSchedulingPreference(SDNode
*N
) const {
1693 unsigned NumVals
= N
->getNumValues();
1695 return Sched::RegPressure
;
1697 for (unsigned i
= 0; i
!= NumVals
; ++i
) {
1698 EVT VT
= N
->getValueType(i
);
1699 if (VT
== MVT::Glue
|| VT
== MVT::Other
)
1701 if (VT
.isFloatingPoint() || VT
.isVector())
1705 if (!N
->isMachineOpcode())
1706 return Sched::RegPressure
;
1708 // Load are scheduled for latency even if there instruction itinerary
1709 // is not available.
1710 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
1711 const MCInstrDesc
&MCID
= TII
->get(N
->getMachineOpcode());
1713 if (MCID
.getNumDefs() == 0)
1714 return Sched::RegPressure
;
1715 if (!Itins
->isEmpty() &&
1716 Itins
->getOperandCycle(MCID
.getSchedClass(), 0) > 2)
1719 return Sched::RegPressure
;
1722 //===----------------------------------------------------------------------===//
1724 //===----------------------------------------------------------------------===//
1726 static bool isSRL16(const SDValue
&Op
) {
1727 if (Op
.getOpcode() != ISD::SRL
)
1729 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1730 return Const
->getZExtValue() == 16;
1734 static bool isSRA16(const SDValue
&Op
) {
1735 if (Op
.getOpcode() != ISD::SRA
)
1737 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1738 return Const
->getZExtValue() == 16;
1742 static bool isSHL16(const SDValue
&Op
) {
1743 if (Op
.getOpcode() != ISD::SHL
)
1745 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1746 return Const
->getZExtValue() == 16;
1750 // Check for a signed 16-bit value. We special case SRA because it makes it
1751 // more simple when also looking for SRAs that aren't sign extending a
1752 // smaller value. Without the check, we'd need to take extra care with
1753 // checking order for some operations.
1754 static bool isS16(const SDValue
&Op
, SelectionDAG
&DAG
) {
1756 return isSHL16(Op
.getOperand(0));
1757 return DAG
.ComputeNumSignBits(Op
) == 17;
1760 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1761 static ARMCC::CondCodes
IntCCToARMCC(ISD::CondCode CC
) {
1763 default: llvm_unreachable("Unknown condition code!");
1764 case ISD::SETNE
: return ARMCC::NE
;
1765 case ISD::SETEQ
: return ARMCC::EQ
;
1766 case ISD::SETGT
: return ARMCC::GT
;
1767 case ISD::SETGE
: return ARMCC::GE
;
1768 case ISD::SETLT
: return ARMCC::LT
;
1769 case ISD::SETLE
: return ARMCC::LE
;
1770 case ISD::SETUGT
: return ARMCC::HI
;
1771 case ISD::SETUGE
: return ARMCC::HS
;
1772 case ISD::SETULT
: return ARMCC::LO
;
1773 case ISD::SETULE
: return ARMCC::LS
;
1777 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1778 static void FPCCToARMCC(ISD::CondCode CC
, ARMCC::CondCodes
&CondCode
,
1779 ARMCC::CondCodes
&CondCode2
, bool &InvalidOnQNaN
) {
1780 CondCode2
= ARMCC::AL
;
1781 InvalidOnQNaN
= true;
1783 default: llvm_unreachable("Unknown FP condition!");
1786 CondCode
= ARMCC::EQ
;
1787 InvalidOnQNaN
= false;
1790 case ISD::SETOGT
: CondCode
= ARMCC::GT
; break;
1792 case ISD::SETOGE
: CondCode
= ARMCC::GE
; break;
1793 case ISD::SETOLT
: CondCode
= ARMCC::MI
; break;
1794 case ISD::SETOLE
: CondCode
= ARMCC::LS
; break;
1796 CondCode
= ARMCC::MI
;
1797 CondCode2
= ARMCC::GT
;
1798 InvalidOnQNaN
= false;
1800 case ISD::SETO
: CondCode
= ARMCC::VC
; break;
1801 case ISD::SETUO
: CondCode
= ARMCC::VS
; break;
1803 CondCode
= ARMCC::EQ
;
1804 CondCode2
= ARMCC::VS
;
1805 InvalidOnQNaN
= false;
1807 case ISD::SETUGT
: CondCode
= ARMCC::HI
; break;
1808 case ISD::SETUGE
: CondCode
= ARMCC::PL
; break;
1810 case ISD::SETULT
: CondCode
= ARMCC::LT
; break;
1812 case ISD::SETULE
: CondCode
= ARMCC::LE
; break;
1815 CondCode
= ARMCC::NE
;
1816 InvalidOnQNaN
= false;
1821 //===----------------------------------------------------------------------===//
1822 // Calling Convention Implementation
1823 //===----------------------------------------------------------------------===//
1825 /// getEffectiveCallingConv - Get the effective calling convention, taking into
1826 /// account presence of floating point hardware and calling convention
1827 /// limitations, such as support for variadic functions.
1829 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC
,
1830 bool isVarArg
) const {
1833 report_fatal_error("Unsupported calling convention");
1834 case CallingConv::ARM_AAPCS
:
1835 case CallingConv::ARM_APCS
:
1836 case CallingConv::GHC
:
1838 case CallingConv::PreserveMost
:
1839 return CallingConv::PreserveMost
;
1840 case CallingConv::ARM_AAPCS_VFP
:
1841 case CallingConv::Swift
:
1842 return isVarArg
? CallingConv::ARM_AAPCS
: CallingConv::ARM_AAPCS_VFP
;
1843 case CallingConv::C
:
1844 if (!Subtarget
->isAAPCS_ABI())
1845 return CallingConv::ARM_APCS
;
1846 else if (Subtarget
->hasVFP2Base() && !Subtarget
->isThumb1Only() &&
1847 getTargetMachine().Options
.FloatABIType
== FloatABI::Hard
&&
1849 return CallingConv::ARM_AAPCS_VFP
;
1851 return CallingConv::ARM_AAPCS
;
1852 case CallingConv::Fast
:
1853 case CallingConv::CXX_FAST_TLS
:
1854 if (!Subtarget
->isAAPCS_ABI()) {
1855 if (Subtarget
->hasVFP2Base() && !Subtarget
->isThumb1Only() && !isVarArg
)
1856 return CallingConv::Fast
;
1857 return CallingConv::ARM_APCS
;
1858 } else if (Subtarget
->hasVFP2Base() &&
1859 !Subtarget
->isThumb1Only() && !isVarArg
)
1860 return CallingConv::ARM_AAPCS_VFP
;
1862 return CallingConv::ARM_AAPCS
;
1866 CCAssignFn
*ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC
,
1867 bool isVarArg
) const {
1868 return CCAssignFnForNode(CC
, false, isVarArg
);
1871 CCAssignFn
*ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC
,
1872 bool isVarArg
) const {
1873 return CCAssignFnForNode(CC
, true, isVarArg
);
1876 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
1877 /// CallingConvention.
1878 CCAssignFn
*ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC
,
1880 bool isVarArg
) const {
1881 switch (getEffectiveCallingConv(CC
, isVarArg
)) {
1883 report_fatal_error("Unsupported calling convention");
1884 case CallingConv::ARM_APCS
:
1885 return (Return
? RetCC_ARM_APCS
: CC_ARM_APCS
);
1886 case CallingConv::ARM_AAPCS
:
1887 return (Return
? RetCC_ARM_AAPCS
: CC_ARM_AAPCS
);
1888 case CallingConv::ARM_AAPCS_VFP
:
1889 return (Return
? RetCC_ARM_AAPCS_VFP
: CC_ARM_AAPCS_VFP
);
1890 case CallingConv::Fast
:
1891 return (Return
? RetFastCC_ARM_APCS
: FastCC_ARM_APCS
);
1892 case CallingConv::GHC
:
1893 return (Return
? RetCC_ARM_APCS
: CC_ARM_APCS_GHC
);
1894 case CallingConv::PreserveMost
:
1895 return (Return
? RetCC_ARM_AAPCS
: CC_ARM_AAPCS
);
1899 /// LowerCallResult - Lower the result values of a call into the
1900 /// appropriate copies out of appropriate physical registers.
1901 SDValue
ARMTargetLowering::LowerCallResult(
1902 SDValue Chain
, SDValue InFlag
, CallingConv::ID CallConv
, bool isVarArg
,
1903 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
1904 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
, bool isThisReturn
,
1905 SDValue ThisVal
) const {
1906 // Assign locations to each value returned by this call.
1907 SmallVector
<CCValAssign
, 16> RVLocs
;
1908 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
1910 CCInfo
.AnalyzeCallResult(Ins
, CCAssignFnForReturn(CallConv
, isVarArg
));
1912 // Copy all of the result registers out of their specified physreg.
1913 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
1914 CCValAssign VA
= RVLocs
[i
];
1916 // Pass 'this' value directly from the argument to return value, to avoid
1917 // reg unit interference
1918 if (i
== 0 && isThisReturn
) {
1919 assert(!VA
.needsCustom() && VA
.getLocVT() == MVT::i32
&&
1920 "unexpected return calling convention register assignment");
1921 InVals
.push_back(ThisVal
);
1926 if (VA
.needsCustom()) {
1927 // Handle f64 or half of a v2f64.
1928 SDValue Lo
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
,
1930 Chain
= Lo
.getValue(1);
1931 InFlag
= Lo
.getValue(2);
1932 VA
= RVLocs
[++i
]; // skip ahead to next loc
1933 SDValue Hi
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
,
1935 Chain
= Hi
.getValue(1);
1936 InFlag
= Hi
.getValue(2);
1937 if (!Subtarget
->isLittle())
1939 Val
= DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
1941 if (VA
.getLocVT() == MVT::v2f64
) {
1942 SDValue Vec
= DAG
.getNode(ISD::UNDEF
, dl
, MVT::v2f64
);
1943 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Vec
, Val
,
1944 DAG
.getConstant(0, dl
, MVT::i32
));
1946 VA
= RVLocs
[++i
]; // skip ahead to next loc
1947 Lo
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
, InFlag
);
1948 Chain
= Lo
.getValue(1);
1949 InFlag
= Lo
.getValue(2);
1950 VA
= RVLocs
[++i
]; // skip ahead to next loc
1951 Hi
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
, InFlag
);
1952 Chain
= Hi
.getValue(1);
1953 InFlag
= Hi
.getValue(2);
1954 if (!Subtarget
->isLittle())
1956 Val
= DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
1957 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Vec
, Val
,
1958 DAG
.getConstant(1, dl
, MVT::i32
));
1961 Val
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), VA
.getLocVT(),
1963 Chain
= Val
.getValue(1);
1964 InFlag
= Val
.getValue(2);
1967 switch (VA
.getLocInfo()) {
1968 default: llvm_unreachable("Unknown loc info!");
1969 case CCValAssign::Full
: break;
1970 case CCValAssign::BCvt
:
1971 Val
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getValVT(), Val
);
1975 InVals
.push_back(Val
);
1981 /// LowerMemOpCallTo - Store the argument to the stack.
1982 SDValue
ARMTargetLowering::LowerMemOpCallTo(SDValue Chain
, SDValue StackPtr
,
1983 SDValue Arg
, const SDLoc
&dl
,
1985 const CCValAssign
&VA
,
1986 ISD::ArgFlagsTy Flags
) const {
1987 unsigned LocMemOffset
= VA
.getLocMemOffset();
1988 SDValue PtrOff
= DAG
.getIntPtrConstant(LocMemOffset
, dl
);
1989 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(DAG
.getDataLayout()),
1991 return DAG
.getStore(
1992 Chain
, dl
, Arg
, PtrOff
,
1993 MachinePointerInfo::getStack(DAG
.getMachineFunction(), LocMemOffset
));
1996 void ARMTargetLowering::PassF64ArgInRegs(const SDLoc
&dl
, SelectionDAG
&DAG
,
1997 SDValue Chain
, SDValue
&Arg
,
1998 RegsToPassVector
&RegsToPass
,
1999 CCValAssign
&VA
, CCValAssign
&NextVA
,
2001 SmallVectorImpl
<SDValue
> &MemOpChains
,
2002 ISD::ArgFlagsTy Flags
) const {
2003 SDValue fmrrd
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
2004 DAG
.getVTList(MVT::i32
, MVT::i32
), Arg
);
2005 unsigned id
= Subtarget
->isLittle() ? 0 : 1;
2006 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), fmrrd
.getValue(id
)));
2008 if (NextVA
.isRegLoc())
2009 RegsToPass
.push_back(std::make_pair(NextVA
.getLocReg(), fmrrd
.getValue(1-id
)));
2011 assert(NextVA
.isMemLoc());
2012 if (!StackPtr
.getNode())
2013 StackPtr
= DAG
.getCopyFromReg(Chain
, dl
, ARM::SP
,
2014 getPointerTy(DAG
.getDataLayout()));
2016 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, fmrrd
.getValue(1-id
),
2022 /// LowerCall - Lowering a call into a callseq_start <-
2023 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
2026 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo
&CLI
,
2027 SmallVectorImpl
<SDValue
> &InVals
) const {
2028 SelectionDAG
&DAG
= CLI
.DAG
;
2030 SmallVectorImpl
<ISD::OutputArg
> &Outs
= CLI
.Outs
;
2031 SmallVectorImpl
<SDValue
> &OutVals
= CLI
.OutVals
;
2032 SmallVectorImpl
<ISD::InputArg
> &Ins
= CLI
.Ins
;
2033 SDValue Chain
= CLI
.Chain
;
2034 SDValue Callee
= CLI
.Callee
;
2035 bool &isTailCall
= CLI
.IsTailCall
;
2036 CallingConv::ID CallConv
= CLI
.CallConv
;
2037 bool doesNotRet
= CLI
.DoesNotReturn
;
2038 bool isVarArg
= CLI
.IsVarArg
;
2040 MachineFunction
&MF
= DAG
.getMachineFunction();
2041 bool isStructRet
= (Outs
.empty()) ? false : Outs
[0].Flags
.isSRet();
2042 bool isThisReturn
= false;
2043 auto Attr
= MF
.getFunction().getFnAttribute("disable-tail-calls");
2044 bool PreferIndirect
= false;
2046 // Disable tail calls if they're not supported.
2047 if (!Subtarget
->supportsTailCall() || Attr
.getValueAsString() == "true")
2050 if (isa
<GlobalAddressSDNode
>(Callee
)) {
2051 // If we're optimizing for minimum size and the function is called three or
2052 // more times in this block, we can improve codesize by calling indirectly
2053 // as BLXr has a 16-bit encoding.
2054 auto *GV
= cast
<GlobalAddressSDNode
>(Callee
)->getGlobal();
2056 auto *BB
= CLI
.CS
.getParent();
2057 PreferIndirect
= Subtarget
->isThumb() && Subtarget
->hasMinSize() &&
2058 count_if(GV
->users(), [&BB
](const User
*U
) {
2059 return isa
<Instruction
>(U
) &&
2060 cast
<Instruction
>(U
)->getParent() == BB
;
2065 // Check if it's really possible to do a tail call.
2066 isTailCall
= IsEligibleForTailCallOptimization(
2067 Callee
, CallConv
, isVarArg
, isStructRet
,
2068 MF
.getFunction().hasStructRetAttr(), Outs
, OutVals
, Ins
, DAG
,
2070 if (!isTailCall
&& CLI
.CS
&& CLI
.CS
.isMustTailCall())
2071 report_fatal_error("failed to perform tail call elimination on a call "
2072 "site marked musttail");
2073 // We don't support GuaranteedTailCallOpt for ARM, only automatically
2074 // detected sibcalls.
2079 // Analyze operands of the call, assigning locations to each operand.
2080 SmallVector
<CCValAssign
, 16> ArgLocs
;
2081 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
2083 CCInfo
.AnalyzeCallOperands(Outs
, CCAssignFnForCall(CallConv
, isVarArg
));
2085 // Get a count of how many bytes are to be pushed on the stack.
2086 unsigned NumBytes
= CCInfo
.getNextStackOffset();
2089 // For tail calls, memory operands are available in our caller's stack.
2092 // Adjust the stack pointer for the new arguments...
2093 // These operations are automatically eliminated by the prolog/epilog pass
2094 Chain
= DAG
.getCALLSEQ_START(Chain
, NumBytes
, 0, dl
);
2098 DAG
.getCopyFromReg(Chain
, dl
, ARM::SP
, getPointerTy(DAG
.getDataLayout()));
2100 RegsToPassVector RegsToPass
;
2101 SmallVector
<SDValue
, 8> MemOpChains
;
2103 // Walk the register/memloc assignments, inserting copies/loads. In the case
2104 // of tail call optimization, arguments are handled later.
2105 for (unsigned i
= 0, realArgIdx
= 0, e
= ArgLocs
.size();
2107 ++i
, ++realArgIdx
) {
2108 CCValAssign
&VA
= ArgLocs
[i
];
2109 SDValue Arg
= OutVals
[realArgIdx
];
2110 ISD::ArgFlagsTy Flags
= Outs
[realArgIdx
].Flags
;
2111 bool isByVal
= Flags
.isByVal();
2113 // Promote the value if needed.
2114 switch (VA
.getLocInfo()) {
2115 default: llvm_unreachable("Unknown loc info!");
2116 case CCValAssign::Full
: break;
2117 case CCValAssign::SExt
:
2118 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2120 case CCValAssign::ZExt
:
2121 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2123 case CCValAssign::AExt
:
2124 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2126 case CCValAssign::BCvt
:
2127 Arg
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getLocVT(), Arg
);
2131 // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
2132 if (VA
.needsCustom()) {
2133 if (VA
.getLocVT() == MVT::v2f64
) {
2134 SDValue Op0
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2135 DAG
.getConstant(0, dl
, MVT::i32
));
2136 SDValue Op1
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2137 DAG
.getConstant(1, dl
, MVT::i32
));
2139 PassF64ArgInRegs(dl
, DAG
, Chain
, Op0
, RegsToPass
,
2140 VA
, ArgLocs
[++i
], StackPtr
, MemOpChains
, Flags
);
2142 VA
= ArgLocs
[++i
]; // skip ahead to next loc
2143 if (VA
.isRegLoc()) {
2144 PassF64ArgInRegs(dl
, DAG
, Chain
, Op1
, RegsToPass
,
2145 VA
, ArgLocs
[++i
], StackPtr
, MemOpChains
, Flags
);
2147 assert(VA
.isMemLoc());
2149 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, Op1
,
2150 dl
, DAG
, VA
, Flags
));
2153 PassF64ArgInRegs(dl
, DAG
, Chain
, Arg
, RegsToPass
, VA
, ArgLocs
[++i
],
2154 StackPtr
, MemOpChains
, Flags
);
2156 } else if (VA
.isRegLoc()) {
2157 if (realArgIdx
== 0 && Flags
.isReturned() && !Flags
.isSwiftSelf() &&
2158 Outs
[0].VT
== MVT::i32
) {
2159 assert(VA
.getLocVT() == MVT::i32
&&
2160 "unexpected calling convention register assignment");
2161 assert(!Ins
.empty() && Ins
[0].VT
== MVT::i32
&&
2162 "unexpected use of 'returned'");
2163 isThisReturn
= true;
2165 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
2166 } else if (isByVal
) {
2167 assert(VA
.isMemLoc());
2168 unsigned offset
= 0;
2170 // True if this byval aggregate will be split between registers
2172 unsigned ByValArgsCount
= CCInfo
.getInRegsParamsCount();
2173 unsigned CurByValIdx
= CCInfo
.getInRegsParamsProcessed();
2175 if (CurByValIdx
< ByValArgsCount
) {
2177 unsigned RegBegin
, RegEnd
;
2178 CCInfo
.getInRegsParamInfo(CurByValIdx
, RegBegin
, RegEnd
);
2181 DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout());
2183 for (i
= 0, j
= RegBegin
; j
< RegEnd
; i
++, j
++) {
2184 SDValue Const
= DAG
.getConstant(4*i
, dl
, MVT::i32
);
2185 SDValue AddArg
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Arg
, Const
);
2186 SDValue Load
= DAG
.getLoad(PtrVT
, dl
, Chain
, AddArg
,
2187 MachinePointerInfo(),
2188 DAG
.InferPtrAlignment(AddArg
));
2189 MemOpChains
.push_back(Load
.getValue(1));
2190 RegsToPass
.push_back(std::make_pair(j
, Load
));
2193 // If parameter size outsides register area, "offset" value
2194 // helps us to calculate stack slot for remained part properly.
2195 offset
= RegEnd
- RegBegin
;
2197 CCInfo
.nextInRegsParam();
2200 if (Flags
.getByValSize() > 4*offset
) {
2201 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
2202 unsigned LocMemOffset
= VA
.getLocMemOffset();
2203 SDValue StkPtrOff
= DAG
.getIntPtrConstant(LocMemOffset
, dl
);
2204 SDValue Dst
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackPtr
, StkPtrOff
);
2205 SDValue SrcOffset
= DAG
.getIntPtrConstant(4*offset
, dl
);
2206 SDValue Src
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Arg
, SrcOffset
);
2207 SDValue SizeNode
= DAG
.getConstant(Flags
.getByValSize() - 4*offset
, dl
,
2209 SDValue AlignNode
= DAG
.getConstant(Flags
.getByValAlign(), dl
,
2212 SDVTList VTs
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
2213 SDValue Ops
[] = { Chain
, Dst
, Src
, SizeNode
, AlignNode
};
2214 MemOpChains
.push_back(DAG
.getNode(ARMISD::COPY_STRUCT_BYVAL
, dl
, VTs
,
2217 } else if (!isTailCall
) {
2218 assert(VA
.isMemLoc());
2220 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, Arg
,
2221 dl
, DAG
, VA
, Flags
));
2225 if (!MemOpChains
.empty())
2226 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOpChains
);
2228 // Build a sequence of copy-to-reg nodes chained together with token chain
2229 // and flag operands which copy the outgoing args into the appropriate regs.
2231 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
2232 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
2233 RegsToPass
[i
].second
, InFlag
);
2234 InFlag
= Chain
.getValue(1);
2237 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2238 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2239 // node so that legalize doesn't hack it.
2240 bool isDirect
= false;
2242 const TargetMachine
&TM
= getTargetMachine();
2243 const Module
*Mod
= MF
.getFunction().getParent();
2244 const GlobalValue
*GV
= nullptr;
2245 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
2246 GV
= G
->getGlobal();
2248 !TM
.shouldAssumeDSOLocal(*Mod
, GV
) && Subtarget
->isTargetMachO();
2250 bool isARMFunc
= !Subtarget
->isThumb() || (isStub
&& !Subtarget
->isMClass());
2251 bool isLocalARMFunc
= false;
2252 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
2253 auto PtrVt
= getPointerTy(DAG
.getDataLayout());
2255 if (Subtarget
->genLongCalls()) {
2256 assert((!isPositionIndependent() || Subtarget
->isTargetWindows()) &&
2257 "long-calls codegen is not position independent!");
2258 // Handle a global address or an external symbol. If it's not one of
2259 // those, the target's already in a register, so we don't need to do
2261 if (isa
<GlobalAddressSDNode
>(Callee
)) {
2262 // Create a constant pool entry for the callee address
2263 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2264 ARMConstantPoolValue
*CPV
=
2265 ARMConstantPoolConstant::Create(GV
, ARMPCLabelIndex
, ARMCP::CPValue
, 0);
2267 // Get the address of the callee into a register
2268 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2269 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2270 Callee
= DAG
.getLoad(
2271 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2272 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2273 } else if (ExternalSymbolSDNode
*S
=dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
2274 const char *Sym
= S
->getSymbol();
2276 // Create a constant pool entry for the callee address
2277 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2278 ARMConstantPoolValue
*CPV
=
2279 ARMConstantPoolSymbol::Create(*DAG
.getContext(), Sym
,
2280 ARMPCLabelIndex
, 0);
2281 // Get the address of the callee into a register
2282 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2283 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2284 Callee
= DAG
.getLoad(
2285 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2286 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2288 } else if (isa
<GlobalAddressSDNode
>(Callee
)) {
2289 if (!PreferIndirect
) {
2291 bool isDef
= GV
->isStrongDefinitionForLinker();
2293 // ARM call to a local ARM function is predicable.
2294 isLocalARMFunc
= !Subtarget
->isThumb() && (isDef
|| !ARMInterworking
);
2295 // tBX takes a register source operand.
2296 if (isStub
&& Subtarget
->isThumb1Only() && !Subtarget
->hasV5TOps()) {
2297 assert(Subtarget
->isTargetMachO() && "WrapperPIC use on non-MachO?");
2298 Callee
= DAG
.getNode(
2299 ARMISD::WrapperPIC
, dl
, PtrVt
,
2300 DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, 0, ARMII::MO_NONLAZY
));
2301 Callee
= DAG
.getLoad(
2302 PtrVt
, dl
, DAG
.getEntryNode(), Callee
,
2303 MachinePointerInfo::getGOT(DAG
.getMachineFunction()),
2304 /* Alignment = */ 0, MachineMemOperand::MODereferenceable
|
2305 MachineMemOperand::MOInvariant
);
2306 } else if (Subtarget
->isTargetCOFF()) {
2307 assert(Subtarget
->isTargetWindows() &&
2308 "Windows is the only supported COFF target");
2309 unsigned TargetFlags
= GV
->hasDLLImportStorageClass()
2310 ? ARMII::MO_DLLIMPORT
2311 : ARMII::MO_NO_FLAG
;
2312 Callee
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, /*offset=*/0,
2314 if (GV
->hasDLLImportStorageClass())
2316 DAG
.getLoad(PtrVt
, dl
, DAG
.getEntryNode(),
2317 DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVt
, Callee
),
2318 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
2320 Callee
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, 0, 0);
2323 } else if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
2325 // tBX takes a register source operand.
2326 const char *Sym
= S
->getSymbol();
2327 if (isARMFunc
&& Subtarget
->isThumb1Only() && !Subtarget
->hasV5TOps()) {
2328 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2329 ARMConstantPoolValue
*CPV
=
2330 ARMConstantPoolSymbol::Create(*DAG
.getContext(), Sym
,
2331 ARMPCLabelIndex
, 4);
2332 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2333 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2334 Callee
= DAG
.getLoad(
2335 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2336 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2337 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
2338 Callee
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVt
, Callee
, PICLabel
);
2340 Callee
= DAG
.getTargetExternalSymbol(Sym
, PtrVt
, 0);
2344 // FIXME: handle tail calls differently.
2346 if (Subtarget
->isThumb()) {
2347 if ((!isDirect
|| isARMFunc
) && !Subtarget
->hasV5TOps())
2348 CallOpc
= ARMISD::CALL_NOLINK
;
2350 CallOpc
= ARMISD::CALL
;
2352 if (!isDirect
&& !Subtarget
->hasV5TOps())
2353 CallOpc
= ARMISD::CALL_NOLINK
;
2354 else if (doesNotRet
&& isDirect
&& Subtarget
->hasRetAddrStack() &&
2355 // Emit regular call when code size is the priority
2356 !Subtarget
->hasMinSize())
2357 // "mov lr, pc; b _foo" to avoid confusing the RSP
2358 CallOpc
= ARMISD::CALL_NOLINK
;
2360 CallOpc
= isLocalARMFunc
? ARMISD::CALL_PRED
: ARMISD::CALL
;
2363 std::vector
<SDValue
> Ops
;
2364 Ops
.push_back(Chain
);
2365 Ops
.push_back(Callee
);
2367 // Add argument registers to the end of the list so that they are known live
2369 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
2370 Ops
.push_back(DAG
.getRegister(RegsToPass
[i
].first
,
2371 RegsToPass
[i
].second
.getValueType()));
2373 // Add a register mask operand representing the call-preserved registers.
2375 const uint32_t *Mask
;
2376 const ARMBaseRegisterInfo
*ARI
= Subtarget
->getRegisterInfo();
2378 // For 'this' returns, use the R0-preserving mask if applicable
2379 Mask
= ARI
->getThisReturnPreservedMask(MF
, CallConv
);
2381 // Set isThisReturn to false if the calling convention is not one that
2382 // allows 'returned' to be modeled in this way, so LowerCallResult does
2383 // not try to pass 'this' straight through
2384 isThisReturn
= false;
2385 Mask
= ARI
->getCallPreservedMask(MF
, CallConv
);
2388 Mask
= ARI
->getCallPreservedMask(MF
, CallConv
);
2390 assert(Mask
&& "Missing call preserved mask for calling convention");
2391 Ops
.push_back(DAG
.getRegisterMask(Mask
));
2394 if (InFlag
.getNode())
2395 Ops
.push_back(InFlag
);
2397 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
2399 MF
.getFrameInfo().setHasTailCall();
2400 return DAG
.getNode(ARMISD::TC_RETURN
, dl
, NodeTys
, Ops
);
2403 // Returns a chain and a flag for retval copy to use.
2404 Chain
= DAG
.getNode(CallOpc
, dl
, NodeTys
, Ops
);
2405 InFlag
= Chain
.getValue(1);
2407 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(NumBytes
, dl
, true),
2408 DAG
.getIntPtrConstant(0, dl
, true), InFlag
, dl
);
2410 InFlag
= Chain
.getValue(1);
2412 // Handle result values, copying them out of physregs into vregs that we
2414 return LowerCallResult(Chain
, InFlag
, CallConv
, isVarArg
, Ins
, dl
, DAG
,
2415 InVals
, isThisReturn
,
2416 isThisReturn
? OutVals
[0] : SDValue());
2419 /// HandleByVal - Every parameter *after* a byval parameter is passed
2420 /// on the stack. Remember the next parameter register to allocate,
2421 /// and then confiscate the rest of the parameter registers to insure
2423 void ARMTargetLowering::HandleByVal(CCState
*State
, unsigned &Size
,
2424 unsigned Align
) const {
2425 // Byval (as with any stack) slots are always at least 4 byte aligned.
2426 Align
= std::max(Align
, 4U);
2428 unsigned Reg
= State
->AllocateReg(GPRArgRegs
);
2432 unsigned AlignInRegs
= Align
/ 4;
2433 unsigned Waste
= (ARM::R4
- Reg
) % AlignInRegs
;
2434 for (unsigned i
= 0; i
< Waste
; ++i
)
2435 Reg
= State
->AllocateReg(GPRArgRegs
);
2440 unsigned Excess
= 4 * (ARM::R4
- Reg
);
2442 // Special case when NSAA != SP and parameter size greater than size of
2443 // all remained GPR regs. In that case we can't split parameter, we must
2444 // send it to stack. We also must set NCRN to R4, so waste all
2445 // remained registers.
2446 const unsigned NSAAOffset
= State
->getNextStackOffset();
2447 if (NSAAOffset
!= 0 && Size
> Excess
) {
2448 while (State
->AllocateReg(GPRArgRegs
))
2453 // First register for byval parameter is the first register that wasn't
2454 // allocated before this method call, so it would be "reg".
2455 // If parameter is small enough to be saved in range [reg, r4), then
2456 // the end (first after last) register would be reg + param-size-in-regs,
2457 // else parameter would be splitted between registers and stack,
2458 // end register would be r4 in this case.
2459 unsigned ByValRegBegin
= Reg
;
2460 unsigned ByValRegEnd
= std::min
<unsigned>(Reg
+ Size
/ 4, ARM::R4
);
2461 State
->addInRegsParamInfo(ByValRegBegin
, ByValRegEnd
);
2462 // Note, first register is allocated in the beginning of function already,
2463 // allocate remained amount of registers we need.
2464 for (unsigned i
= Reg
+ 1; i
!= ByValRegEnd
; ++i
)
2465 State
->AllocateReg(GPRArgRegs
);
2466 // A byval parameter that is split between registers and memory needs its
2467 // size truncated here.
2468 // In the case where the entire structure fits in registers, we set the
2469 // size in memory to zero.
2470 Size
= std::max
<int>(Size
- Excess
, 0);
2473 /// MatchingStackOffset - Return true if the given stack call argument is
2474 /// already available in the same position (relatively) of the caller's
2475 /// incoming argument stack.
2477 bool MatchingStackOffset(SDValue Arg
, unsigned Offset
, ISD::ArgFlagsTy Flags
,
2478 MachineFrameInfo
&MFI
, const MachineRegisterInfo
*MRI
,
2479 const TargetInstrInfo
*TII
) {
2480 unsigned Bytes
= Arg
.getValueSizeInBits() / 8;
2481 int FI
= std::numeric_limits
<int>::max();
2482 if (Arg
.getOpcode() == ISD::CopyFromReg
) {
2483 unsigned VR
= cast
<RegisterSDNode
>(Arg
.getOperand(1))->getReg();
2484 if (!Register::isVirtualRegister(VR
))
2486 MachineInstr
*Def
= MRI
->getVRegDef(VR
);
2489 if (!Flags
.isByVal()) {
2490 if (!TII
->isLoadFromStackSlot(*Def
, FI
))
2495 } else if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Arg
)) {
2496 if (Flags
.isByVal())
2497 // ByVal argument is passed in as a pointer but it's now being
2498 // dereferenced. e.g.
2499 // define @foo(%struct.X* %A) {
2500 // tail call @bar(%struct.X* byval %A)
2503 SDValue Ptr
= Ld
->getBasePtr();
2504 FrameIndexSDNode
*FINode
= dyn_cast
<FrameIndexSDNode
>(Ptr
);
2507 FI
= FINode
->getIndex();
2511 assert(FI
!= std::numeric_limits
<int>::max());
2512 if (!MFI
.isFixedObjectIndex(FI
))
2514 return Offset
== MFI
.getObjectOffset(FI
) && Bytes
== MFI
.getObjectSize(FI
);
2517 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2518 /// for tail call optimization. Targets which want to do tail call
2519 /// optimization should implement this function.
2520 bool ARMTargetLowering::IsEligibleForTailCallOptimization(
2521 SDValue Callee
, CallingConv::ID CalleeCC
, bool isVarArg
,
2522 bool isCalleeStructRet
, bool isCallerStructRet
,
2523 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2524 const SmallVectorImpl
<SDValue
> &OutVals
,
2525 const SmallVectorImpl
<ISD::InputArg
> &Ins
, SelectionDAG
&DAG
,
2526 const bool isIndirect
) const {
2527 MachineFunction
&MF
= DAG
.getMachineFunction();
2528 const Function
&CallerF
= MF
.getFunction();
2529 CallingConv::ID CallerCC
= CallerF
.getCallingConv();
2531 assert(Subtarget
->supportsTailCall());
2533 // Indirect tail calls cannot be optimized for Thumb1 if the args
2534 // to the call take up r0-r3. The reason is that there are no legal registers
2535 // left to hold the pointer to the function to be called.
2536 if (Subtarget
->isThumb1Only() && Outs
.size() >= 4 &&
2537 (!isa
<GlobalAddressSDNode
>(Callee
.getNode()) || isIndirect
))
2540 // Look for obvious safe cases to perform tail call optimization that do not
2541 // require ABI changes. This is what gcc calls sibcall.
2543 // Exception-handling functions need a special set of instructions to indicate
2544 // a return to the hardware. Tail-calling another function would probably
2546 if (CallerF
.hasFnAttribute("interrupt"))
2549 // Also avoid sibcall optimization if either caller or callee uses struct
2550 // return semantics.
2551 if (isCalleeStructRet
|| isCallerStructRet
)
2554 // Externally-defined functions with weak linkage should not be
2555 // tail-called on ARM when the OS does not support dynamic
2556 // pre-emption of symbols, as the AAELF spec requires normal calls
2557 // to undefined weak functions to be replaced with a NOP or jump to the
2558 // next instruction. The behaviour of branch instructions in this
2559 // situation (as used for tail calls) is implementation-defined, so we
2560 // cannot rely on the linker replacing the tail call with a return.
2561 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
2562 const GlobalValue
*GV
= G
->getGlobal();
2563 const Triple
&TT
= getTargetMachine().getTargetTriple();
2564 if (GV
->hasExternalWeakLinkage() &&
2565 (!TT
.isOSWindows() || TT
.isOSBinFormatELF() || TT
.isOSBinFormatMachO()))
2569 // Check that the call results are passed in the same way.
2570 LLVMContext
&C
= *DAG
.getContext();
2571 if (!CCState::resultsCompatible(CalleeCC
, CallerCC
, MF
, C
, Ins
,
2572 CCAssignFnForReturn(CalleeCC
, isVarArg
),
2573 CCAssignFnForReturn(CallerCC
, isVarArg
)))
2575 // The callee has to preserve all registers the caller needs to preserve.
2576 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
2577 const uint32_t *CallerPreserved
= TRI
->getCallPreservedMask(MF
, CallerCC
);
2578 if (CalleeCC
!= CallerCC
) {
2579 const uint32_t *CalleePreserved
= TRI
->getCallPreservedMask(MF
, CalleeCC
);
2580 if (!TRI
->regmaskSubsetEqual(CallerPreserved
, CalleePreserved
))
2584 // If Caller's vararg or byval argument has been split between registers and
2585 // stack, do not perform tail call, since part of the argument is in caller's
2587 const ARMFunctionInfo
*AFI_Caller
= MF
.getInfo
<ARMFunctionInfo
>();
2588 if (AFI_Caller
->getArgRegsSaveSize())
2591 // If the callee takes no arguments then go on to check the results of the
2593 if (!Outs
.empty()) {
2594 // Check if stack adjustment is needed. For now, do not do this if any
2595 // argument is passed on the stack.
2596 SmallVector
<CCValAssign
, 16> ArgLocs
;
2597 CCState
CCInfo(CalleeCC
, isVarArg
, MF
, ArgLocs
, C
);
2598 CCInfo
.AnalyzeCallOperands(Outs
, CCAssignFnForCall(CalleeCC
, isVarArg
));
2599 if (CCInfo
.getNextStackOffset()) {
2600 // Check if the arguments are already laid out in the right way as
2601 // the caller's fixed stack objects.
2602 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2603 const MachineRegisterInfo
*MRI
= &MF
.getRegInfo();
2604 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
2605 for (unsigned i
= 0, realArgIdx
= 0, e
= ArgLocs
.size();
2607 ++i
, ++realArgIdx
) {
2608 CCValAssign
&VA
= ArgLocs
[i
];
2609 EVT RegVT
= VA
.getLocVT();
2610 SDValue Arg
= OutVals
[realArgIdx
];
2611 ISD::ArgFlagsTy Flags
= Outs
[realArgIdx
].Flags
;
2612 if (VA
.getLocInfo() == CCValAssign::Indirect
)
2614 if (VA
.needsCustom()) {
2615 // f64 and vector types are split into multiple registers or
2616 // register/stack-slot combinations. The types will not match
2617 // the registers; give up on memory f64 refs until we figure
2618 // out what to do about this.
2621 if (!ArgLocs
[++i
].isRegLoc())
2623 if (RegVT
== MVT::v2f64
) {
2624 if (!ArgLocs
[++i
].isRegLoc())
2626 if (!ArgLocs
[++i
].isRegLoc())
2629 } else if (!VA
.isRegLoc()) {
2630 if (!MatchingStackOffset(Arg
, VA
.getLocMemOffset(), Flags
,
2637 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
2638 if (!parametersInCSRMatch(MRI
, CallerPreserved
, ArgLocs
, OutVals
))
2646 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv
,
2647 MachineFunction
&MF
, bool isVarArg
,
2648 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2649 LLVMContext
&Context
) const {
2650 SmallVector
<CCValAssign
, 16> RVLocs
;
2651 CCState
CCInfo(CallConv
, isVarArg
, MF
, RVLocs
, Context
);
2652 return CCInfo
.CheckReturn(Outs
, CCAssignFnForReturn(CallConv
, isVarArg
));
2655 static SDValue
LowerInterruptReturn(SmallVectorImpl
<SDValue
> &RetOps
,
2656 const SDLoc
&DL
, SelectionDAG
&DAG
) {
2657 const MachineFunction
&MF
= DAG
.getMachineFunction();
2658 const Function
&F
= MF
.getFunction();
2660 StringRef IntKind
= F
.getFnAttribute("interrupt").getValueAsString();
2662 // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
2663 // version of the "preferred return address". These offsets affect the return
2664 // instruction if this is a return from PL1 without hypervisor extensions.
2665 // IRQ/FIQ: +4 "subs pc, lr, #4"
2666 // SWI: 0 "subs pc, lr, #0"
2667 // ABORT: +4 "subs pc, lr, #4"
2668 // UNDEF: +4/+2 "subs pc, lr, #0"
2669 // UNDEF varies depending on where the exception came from ARM or Thumb
2670 // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
2673 if (IntKind
== "" || IntKind
== "IRQ" || IntKind
== "FIQ" ||
2676 else if (IntKind
== "SWI" || IntKind
== "UNDEF")
2679 report_fatal_error("Unsupported interrupt attribute. If present, value "
2680 "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
2682 RetOps
.insert(RetOps
.begin() + 1,
2683 DAG
.getConstant(LROffset
, DL
, MVT::i32
, false));
2685 return DAG
.getNode(ARMISD::INTRET_FLAG
, DL
, MVT::Other
, RetOps
);
2689 ARMTargetLowering::LowerReturn(SDValue Chain
, CallingConv::ID CallConv
,
2691 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2692 const SmallVectorImpl
<SDValue
> &OutVals
,
2693 const SDLoc
&dl
, SelectionDAG
&DAG
) const {
2694 // CCValAssign - represent the assignment of the return value to a location.
2695 SmallVector
<CCValAssign
, 16> RVLocs
;
2697 // CCState - Info about the registers and stack slots.
2698 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
2701 // Analyze outgoing return values.
2702 CCInfo
.AnalyzeReturn(Outs
, CCAssignFnForReturn(CallConv
, isVarArg
));
2705 SmallVector
<SDValue
, 4> RetOps
;
2706 RetOps
.push_back(Chain
); // Operand #0 = Chain (updated below)
2707 bool isLittleEndian
= Subtarget
->isLittle();
2709 MachineFunction
&MF
= DAG
.getMachineFunction();
2710 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
2711 AFI
->setReturnRegsCount(RVLocs
.size());
2713 // Copy the result values into the output registers.
2714 for (unsigned i
= 0, realRVLocIdx
= 0;
2716 ++i
, ++realRVLocIdx
) {
2717 CCValAssign
&VA
= RVLocs
[i
];
2718 assert(VA
.isRegLoc() && "Can only return in registers!");
2720 SDValue Arg
= OutVals
[realRVLocIdx
];
2721 bool ReturnF16
= false;
2723 if (Subtarget
->hasFullFP16() && Subtarget
->isTargetHardFloat()) {
2724 // Half-precision return values can be returned like this:
2726 // t11 f16 = fadd ...
2727 // t12: i16 = bitcast t11
2728 // t13: i32 = zero_extend t12
2729 // t14: f32 = bitcast t13 <~~~~~~~ Arg
2731 // to avoid code generation for bitcasts, we simply set Arg to the node
2732 // that produces the f16 value, t11 in this case.
2734 if (Arg
.getValueType() == MVT::f32
&& Arg
.getOpcode() == ISD::BITCAST
) {
2735 SDValue ZE
= Arg
.getOperand(0);
2736 if (ZE
.getOpcode() == ISD::ZERO_EXTEND
&& ZE
.getValueType() == MVT::i32
) {
2737 SDValue BC
= ZE
.getOperand(0);
2738 if (BC
.getOpcode() == ISD::BITCAST
&& BC
.getValueType() == MVT::i16
) {
2739 Arg
= BC
.getOperand(0);
2746 switch (VA
.getLocInfo()) {
2747 default: llvm_unreachable("Unknown loc info!");
2748 case CCValAssign::Full
: break;
2749 case CCValAssign::BCvt
:
2751 Arg
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getLocVT(), Arg
);
2755 if (VA
.needsCustom()) {
2756 if (VA
.getLocVT() == MVT::v2f64
) {
2757 // Extract the first half and return it in two registers.
2758 SDValue Half
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2759 DAG
.getConstant(0, dl
, MVT::i32
));
2760 SDValue HalfGPRs
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
2761 DAG
.getVTList(MVT::i32
, MVT::i32
), Half
);
2763 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2764 HalfGPRs
.getValue(isLittleEndian
? 0 : 1),
2766 Flag
= Chain
.getValue(1);
2767 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2768 VA
= RVLocs
[++i
]; // skip ahead to next loc
2769 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2770 HalfGPRs
.getValue(isLittleEndian
? 1 : 0),
2772 Flag
= Chain
.getValue(1);
2773 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2774 VA
= RVLocs
[++i
]; // skip ahead to next loc
2776 // Extract the 2nd half and fall through to handle it as an f64 value.
2777 Arg
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2778 DAG
.getConstant(1, dl
, MVT::i32
));
2780 // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
2782 SDValue fmrrd
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
2783 DAG
.getVTList(MVT::i32
, MVT::i32
), Arg
);
2784 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2785 fmrrd
.getValue(isLittleEndian
? 0 : 1),
2787 Flag
= Chain
.getValue(1);
2788 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2789 VA
= RVLocs
[++i
]; // skip ahead to next loc
2790 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2791 fmrrd
.getValue(isLittleEndian
? 1 : 0),
2794 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(), Arg
, Flag
);
2796 // Guarantee that all emitted copies are
2797 // stuck together, avoiding something bad.
2798 Flag
= Chain
.getValue(1);
2799 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(),
2800 ReturnF16
? MVT::f16
: VA
.getLocVT()));
2802 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
2803 const MCPhysReg
*I
=
2804 TRI
->getCalleeSavedRegsViaCopy(&DAG
.getMachineFunction());
2807 if (ARM::GPRRegClass
.contains(*I
))
2808 RetOps
.push_back(DAG
.getRegister(*I
, MVT::i32
));
2809 else if (ARM::DPRRegClass
.contains(*I
))
2810 RetOps
.push_back(DAG
.getRegister(*I
, MVT::getFloatingPointVT(64)));
2812 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2816 // Update chain and glue.
2819 RetOps
.push_back(Flag
);
2821 // CPUs which aren't M-class use a special sequence to return from
2822 // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
2823 // though we use "subs pc, lr, #N").
2825 // M-class CPUs actually use a normal return sequence with a special
2826 // (hardware-provided) value in LR, so the normal code path works.
2827 if (DAG
.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
2828 !Subtarget
->isMClass()) {
2829 if (Subtarget
->isThumb1Only())
2830 report_fatal_error("interrupt attribute is not supported in Thumb1");
2831 return LowerInterruptReturn(RetOps
, dl
, DAG
);
2834 return DAG
.getNode(ARMISD::RET_FLAG
, dl
, MVT::Other
, RetOps
);
2837 bool ARMTargetLowering::isUsedByReturnOnly(SDNode
*N
, SDValue
&Chain
) const {
2838 if (N
->getNumValues() != 1)
2840 if (!N
->hasNUsesOfValue(1, 0))
2843 SDValue TCChain
= Chain
;
2844 SDNode
*Copy
= *N
->use_begin();
2845 if (Copy
->getOpcode() == ISD::CopyToReg
) {
2846 // If the copy has a glue operand, we conservatively assume it isn't safe to
2847 // perform a tail call.
2848 if (Copy
->getOperand(Copy
->getNumOperands()-1).getValueType() == MVT::Glue
)
2850 TCChain
= Copy
->getOperand(0);
2851 } else if (Copy
->getOpcode() == ARMISD::VMOVRRD
) {
2852 SDNode
*VMov
= Copy
;
2853 // f64 returned in a pair of GPRs.
2854 SmallPtrSet
<SDNode
*, 2> Copies
;
2855 for (SDNode::use_iterator UI
= VMov
->use_begin(), UE
= VMov
->use_end();
2857 if (UI
->getOpcode() != ISD::CopyToReg
)
2861 if (Copies
.size() > 2)
2864 for (SDNode::use_iterator UI
= VMov
->use_begin(), UE
= VMov
->use_end();
2866 SDValue UseChain
= UI
->getOperand(0);
2867 if (Copies
.count(UseChain
.getNode()))
2871 // We are at the top of this chain.
2872 // If the copy has a glue operand, we conservatively assume it
2873 // isn't safe to perform a tail call.
2874 if (UI
->getOperand(UI
->getNumOperands()-1).getValueType() == MVT::Glue
)
2880 } else if (Copy
->getOpcode() == ISD::BITCAST
) {
2881 // f32 returned in a single GPR.
2882 if (!Copy
->hasOneUse())
2884 Copy
= *Copy
->use_begin();
2885 if (Copy
->getOpcode() != ISD::CopyToReg
|| !Copy
->hasNUsesOfValue(1, 0))
2887 // If the copy has a glue operand, we conservatively assume it isn't safe to
2888 // perform a tail call.
2889 if (Copy
->getOperand(Copy
->getNumOperands()-1).getValueType() == MVT::Glue
)
2891 TCChain
= Copy
->getOperand(0);
2896 bool HasRet
= false;
2897 for (SDNode::use_iterator UI
= Copy
->use_begin(), UE
= Copy
->use_end();
2899 if (UI
->getOpcode() != ARMISD::RET_FLAG
&&
2900 UI
->getOpcode() != ARMISD::INTRET_FLAG
)
2912 bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst
*CI
) const {
2913 if (!Subtarget
->supportsTailCall())
2917 CI
->getParent()->getParent()->getFnAttribute("disable-tail-calls");
2918 if (!CI
->isTailCall() || Attr
.getValueAsString() == "true")
2924 // Trying to write a 64 bit value so need to split into two 32 bit values first,
2925 // and pass the lower and high parts through.
2926 static SDValue
LowerWRITE_REGISTER(SDValue Op
, SelectionDAG
&DAG
) {
2928 SDValue WriteValue
= Op
->getOperand(2);
2930 // This function is only supposed to be called for i64 type argument.
2931 assert(WriteValue
.getValueType() == MVT::i64
2932 && "LowerWRITE_REGISTER called for non-i64 type argument.");
2934 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, WriteValue
,
2935 DAG
.getConstant(0, DL
, MVT::i32
));
2936 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, WriteValue
,
2937 DAG
.getConstant(1, DL
, MVT::i32
));
2938 SDValue Ops
[] = { Op
->getOperand(0), Op
->getOperand(1), Lo
, Hi
};
2939 return DAG
.getNode(ISD::WRITE_REGISTER
, DL
, MVT::Other
, Ops
);
2942 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2943 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2944 // one of the above mentioned nodes. It has to be wrapped because otherwise
2945 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2946 // be used to form addressing mode. These wrapped nodes will be selected
2948 SDValue
ARMTargetLowering::LowerConstantPool(SDValue Op
,
2949 SelectionDAG
&DAG
) const {
2950 EVT PtrVT
= Op
.getValueType();
2951 // FIXME there is no actual debug info here
2953 ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(Op
);
2956 // When generating execute-only code Constant Pools must be promoted to the
2957 // global data section. It's a bit ugly that we can't share them across basic
2958 // blocks, but this way we guarantee that execute-only behaves correct with
2959 // position-independent addressing modes.
2960 if (Subtarget
->genExecuteOnly()) {
2961 auto AFI
= DAG
.getMachineFunction().getInfo
<ARMFunctionInfo
>();
2962 auto T
= const_cast<Type
*>(CP
->getType());
2963 auto C
= const_cast<Constant
*>(CP
->getConstVal());
2964 auto M
= const_cast<Module
*>(DAG
.getMachineFunction().
2965 getFunction().getParent());
2966 auto GV
= new GlobalVariable(
2967 *M
, T
, /*isConstant=*/true, GlobalVariable::InternalLinkage
, C
,
2968 Twine(DAG
.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
2969 Twine(DAG
.getMachineFunction().getFunctionNumber()) + "_" +
2970 Twine(AFI
->createPICLabelUId())
2972 SDValue GA
= DAG
.getTargetGlobalAddress(dyn_cast
<GlobalValue
>(GV
),
2974 return LowerGlobalAddress(GA
, DAG
);
2977 if (CP
->isMachineConstantPoolEntry())
2978 Res
= DAG
.getTargetConstantPool(CP
->getMachineCPVal(), PtrVT
,
2979 CP
->getAlignment());
2981 Res
= DAG
.getTargetConstantPool(CP
->getConstVal(), PtrVT
,
2982 CP
->getAlignment());
2983 return DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Res
);
2986 unsigned ARMTargetLowering::getJumpTableEncoding() const {
2987 return MachineJumpTableInfo::EK_Inline
;
2990 SDValue
ARMTargetLowering::LowerBlockAddress(SDValue Op
,
2991 SelectionDAG
&DAG
) const {
2992 MachineFunction
&MF
= DAG
.getMachineFunction();
2993 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
2994 unsigned ARMPCLabelIndex
= 0;
2996 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
2997 const BlockAddress
*BA
= cast
<BlockAddressSDNode
>(Op
)->getBlockAddress();
2999 bool IsPositionIndependent
= isPositionIndependent() || Subtarget
->isROPI();
3000 if (!IsPositionIndependent
) {
3001 CPAddr
= DAG
.getTargetConstantPool(BA
, PtrVT
, 4);
3003 unsigned PCAdj
= Subtarget
->isThumb() ? 4 : 8;
3004 ARMPCLabelIndex
= AFI
->createPICLabelUId();
3005 ARMConstantPoolValue
*CPV
=
3006 ARMConstantPoolConstant::Create(BA
, ARMPCLabelIndex
,
3007 ARMCP::CPBlockAddress
, PCAdj
);
3008 CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3010 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
, CPAddr
);
3011 SDValue Result
= DAG
.getLoad(
3012 PtrVT
, DL
, DAG
.getEntryNode(), CPAddr
,
3013 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3014 if (!IsPositionIndependent
)
3016 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, DL
, MVT::i32
);
3017 return DAG
.getNode(ARMISD::PIC_ADD
, DL
, PtrVT
, Result
, PICLabel
);
3020 /// Convert a TLS address reference into the correct sequence of loads
3021 /// and calls to compute the variable's address for Darwin, and return an
3022 /// SDValue containing the final node.
3024 /// Darwin only has one TLS scheme which must be capable of dealing with the
3025 /// fully general situation, in the worst case. This means:
3026 /// + "extern __thread" declaration.
3027 /// + Defined in a possibly unknown dynamic library.
3029 /// The general system is that each __thread variable has a [3 x i32] descriptor
3030 /// which contains information used by the runtime to calculate the address. The
3031 /// only part of this the compiler needs to know about is the first word, which
3032 /// contains a function pointer that must be called with the address of the
3033 /// entire descriptor in "r0".
3035 /// Since this descriptor may be in a different unit, in general access must
3036 /// proceed along the usual ARM rules. A common sequence to produce is:
3038 /// movw rT1, :lower16:_var$non_lazy_ptr
3039 /// movt rT1, :upper16:_var$non_lazy_ptr
3043 /// [...address now in r0...]
3045 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op
,
3046 SelectionDAG
&DAG
) const {
3047 assert(Subtarget
->isTargetDarwin() &&
3048 "This function expects a Darwin target");
3051 // First step is to get the address of the actua global symbol. This is where
3052 // the TLS descriptor lives.
3053 SDValue DescAddr
= LowerGlobalAddressDarwin(Op
, DAG
);
3055 // The first entry in the descriptor is a function pointer that we must call
3056 // to obtain the address of the variable.
3057 SDValue Chain
= DAG
.getEntryNode();
3058 SDValue FuncTLVGet
= DAG
.getLoad(
3059 MVT::i32
, DL
, Chain
, DescAddr
,
3060 MachinePointerInfo::getGOT(DAG
.getMachineFunction()),
3061 /* Alignment = */ 4,
3062 MachineMemOperand::MONonTemporal
| MachineMemOperand::MODereferenceable
|
3063 MachineMemOperand::MOInvariant
);
3064 Chain
= FuncTLVGet
.getValue(1);
3066 MachineFunction
&F
= DAG
.getMachineFunction();
3067 MachineFrameInfo
&MFI
= F
.getFrameInfo();
3068 MFI
.setAdjustsStack(true);
3070 // TLS calls preserve all registers except those that absolutely must be
3071 // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
3074 getTargetMachine().getSubtargetImpl(F
.getFunction())->getRegisterInfo();
3075 auto ARI
= static_cast<const ARMRegisterInfo
*>(TRI
);
3076 const uint32_t *Mask
= ARI
->getTLSCallPreservedMask(DAG
.getMachineFunction());
3078 // Finally, we can make the call. This is just a degenerate version of a
3079 // normal AArch64 call node: r0 takes the address of the descriptor, and
3080 // returns the address of the variable in this thread.
3081 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::R0
, DescAddr
, SDValue());
3083 DAG
.getNode(ARMISD::CALL
, DL
, DAG
.getVTList(MVT::Other
, MVT::Glue
),
3084 Chain
, FuncTLVGet
, DAG
.getRegister(ARM::R0
, MVT::i32
),
3085 DAG
.getRegisterMask(Mask
), Chain
.getValue(1));
3086 return DAG
.getCopyFromReg(Chain
, DL
, ARM::R0
, MVT::i32
, Chain
.getValue(1));
3090 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op
,
3091 SelectionDAG
&DAG
) const {
3092 assert(Subtarget
->isTargetWindows() && "Windows specific TLS lowering");
3094 SDValue Chain
= DAG
.getEntryNode();
3095 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3098 // Load the current TEB (thread environment block)
3099 SDValue Ops
[] = {Chain
,
3100 DAG
.getConstant(Intrinsic::arm_mrc
, DL
, MVT::i32
),
3101 DAG
.getConstant(15, DL
, MVT::i32
),
3102 DAG
.getConstant(0, DL
, MVT::i32
),
3103 DAG
.getConstant(13, DL
, MVT::i32
),
3104 DAG
.getConstant(0, DL
, MVT::i32
),
3105 DAG
.getConstant(2, DL
, MVT::i32
)};
3106 SDValue CurrentTEB
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, DL
,
3107 DAG
.getVTList(MVT::i32
, MVT::Other
), Ops
);
3109 SDValue TEB
= CurrentTEB
.getValue(0);
3110 Chain
= CurrentTEB
.getValue(1);
3112 // Load the ThreadLocalStoragePointer from the TEB
3113 // A pointer to the TLS array is located at offset 0x2c from the TEB.
3115 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TEB
, DAG
.getIntPtrConstant(0x2c, DL
));
3116 TLSArray
= DAG
.getLoad(PtrVT
, DL
, Chain
, TLSArray
, MachinePointerInfo());
3118 // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
3119 // offset into the TLSArray.
3121 // Load the TLS index from the C runtime
3123 DAG
.getTargetExternalSymbol("_tls_index", PtrVT
, ARMII::MO_NO_FLAG
);
3124 TLSIndex
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
, TLSIndex
);
3125 TLSIndex
= DAG
.getLoad(PtrVT
, DL
, Chain
, TLSIndex
, MachinePointerInfo());
3127 SDValue Slot
= DAG
.getNode(ISD::SHL
, DL
, PtrVT
, TLSIndex
,
3128 DAG
.getConstant(2, DL
, MVT::i32
));
3129 SDValue TLS
= DAG
.getLoad(PtrVT
, DL
, Chain
,
3130 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TLSArray
, Slot
),
3131 MachinePointerInfo());
3133 // Get the offset of the start of the .tls section (section base)
3134 const auto *GA
= cast
<GlobalAddressSDNode
>(Op
);
3135 auto *CPV
= ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMCP::SECREL
);
3136 SDValue Offset
= DAG
.getLoad(
3137 PtrVT
, DL
, Chain
, DAG
.getNode(ARMISD::Wrapper
, DL
, MVT::i32
,
3138 DAG
.getTargetConstantPool(CPV
, PtrVT
, 4)),
3139 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3141 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TLS
, Offset
);
3144 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
3146 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode
*GA
,
3147 SelectionDAG
&DAG
) const {
3149 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3150 unsigned char PCAdj
= Subtarget
->isThumb() ? 4 : 8;
3151 MachineFunction
&MF
= DAG
.getMachineFunction();
3152 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3153 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3154 ARMConstantPoolValue
*CPV
=
3155 ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMPCLabelIndex
,
3156 ARMCP::CPValue
, PCAdj
, ARMCP::TLSGD
, true);
3157 SDValue Argument
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3158 Argument
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Argument
);
3159 Argument
= DAG
.getLoad(
3160 PtrVT
, dl
, DAG
.getEntryNode(), Argument
,
3161 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3162 SDValue Chain
= Argument
.getValue(1);
3164 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3165 Argument
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Argument
, PICLabel
);
3167 // call __tls_get_addr.
3170 Entry
.Node
= Argument
;
3171 Entry
.Ty
= (Type
*) Type::getInt32Ty(*DAG
.getContext());
3172 Args
.push_back(Entry
);
3174 // FIXME: is there useful debug info available here?
3175 TargetLowering::CallLoweringInfo
CLI(DAG
);
3176 CLI
.setDebugLoc(dl
).setChain(Chain
).setLibCallee(
3177 CallingConv::C
, Type::getInt32Ty(*DAG
.getContext()),
3178 DAG
.getExternalSymbol("__tls_get_addr", PtrVT
), std::move(Args
));
3180 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
3181 return CallResult
.first
;
3184 // Lower ISD::GlobalTLSAddress using the "initial exec" or
3185 // "local exec" model.
3187 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode
*GA
,
3189 TLSModel::Model model
) const {
3190 const GlobalValue
*GV
= GA
->getGlobal();
3193 SDValue Chain
= DAG
.getEntryNode();
3194 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3195 // Get the Thread Pointer
3196 SDValue ThreadPointer
= DAG
.getNode(ARMISD::THREAD_POINTER
, dl
, PtrVT
);
3198 if (model
== TLSModel::InitialExec
) {
3199 MachineFunction
&MF
= DAG
.getMachineFunction();
3200 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3201 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3202 // Initial exec model.
3203 unsigned char PCAdj
= Subtarget
->isThumb() ? 4 : 8;
3204 ARMConstantPoolValue
*CPV
=
3205 ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMPCLabelIndex
,
3206 ARMCP::CPValue
, PCAdj
, ARMCP::GOTTPOFF
,
3208 Offset
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3209 Offset
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Offset
);
3210 Offset
= DAG
.getLoad(
3211 PtrVT
, dl
, Chain
, Offset
,
3212 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3213 Chain
= Offset
.getValue(1);
3215 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3216 Offset
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Offset
, PICLabel
);
3218 Offset
= DAG
.getLoad(
3219 PtrVT
, dl
, Chain
, Offset
,
3220 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3223 assert(model
== TLSModel::LocalExec
);
3224 ARMConstantPoolValue
*CPV
=
3225 ARMConstantPoolConstant::Create(GV
, ARMCP::TPOFF
);
3226 Offset
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3227 Offset
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Offset
);
3228 Offset
= DAG
.getLoad(
3229 PtrVT
, dl
, Chain
, Offset
,
3230 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3233 // The address of the thread local variable is the add of the thread
3234 // pointer with the offset of the variable.
3235 return DAG
.getNode(ISD::ADD
, dl
, PtrVT
, ThreadPointer
, Offset
);
3239 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) const {
3240 GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
3241 if (DAG
.getTarget().useEmulatedTLS())
3242 return LowerToTLSEmulatedModel(GA
, DAG
);
3244 if (Subtarget
->isTargetDarwin())
3245 return LowerGlobalTLSAddressDarwin(Op
, DAG
);
3247 if (Subtarget
->isTargetWindows())
3248 return LowerGlobalTLSAddressWindows(Op
, DAG
);
3250 // TODO: implement the "local dynamic" model
3251 assert(Subtarget
->isTargetELF() && "Only ELF implemented here");
3252 TLSModel::Model model
= getTargetMachine().getTLSModel(GA
->getGlobal());
3255 case TLSModel::GeneralDynamic
:
3256 case TLSModel::LocalDynamic
:
3257 return LowerToTLSGeneralDynamicModel(GA
, DAG
);
3258 case TLSModel::InitialExec
:
3259 case TLSModel::LocalExec
:
3260 return LowerToTLSExecModels(GA
, DAG
, model
);
3262 llvm_unreachable("bogus TLS model");
3265 /// Return true if all users of V are within function F, looking through
3267 static bool allUsersAreInFunction(const Value
*V
, const Function
*F
) {
3268 SmallVector
<const User
*,4> Worklist
;
3269 for (auto *U
: V
->users())
3270 Worklist
.push_back(U
);
3271 while (!Worklist
.empty()) {
3272 auto *U
= Worklist
.pop_back_val();
3273 if (isa
<ConstantExpr
>(U
)) {
3274 for (auto *UU
: U
->users())
3275 Worklist
.push_back(UU
);
3279 auto *I
= dyn_cast
<Instruction
>(U
);
3280 if (!I
|| I
->getParent()->getParent() != F
)
3286 static SDValue
promoteToConstantPool(const ARMTargetLowering
*TLI
,
3287 const GlobalValue
*GV
, SelectionDAG
&DAG
,
3288 EVT PtrVT
, const SDLoc
&dl
) {
3289 // If we're creating a pool entry for a constant global with unnamed address,
3290 // and the global is small enough, we can emit it inline into the constant pool
3291 // to save ourselves an indirection.
3293 // This is a win if the constant is only used in one function (so it doesn't
3294 // need to be duplicated) or duplicating the constant wouldn't increase code
3295 // size (implying the constant is no larger than 4 bytes).
3296 const Function
&F
= DAG
.getMachineFunction().getFunction();
3298 // We rely on this decision to inline being idemopotent and unrelated to the
3299 // use-site. We know that if we inline a variable at one use site, we'll
3300 // inline it elsewhere too (and reuse the constant pool entry). Fast-isel
3301 // doesn't know about this optimization, so bail out if it's enabled else
3302 // we could decide to inline here (and thus never emit the GV) but require
3303 // the GV from fast-isel generated code.
3304 if (!EnableConstpoolPromotion
||
3305 DAG
.getMachineFunction().getTarget().Options
.EnableFastISel
)
3308 auto *GVar
= dyn_cast
<GlobalVariable
>(GV
);
3309 if (!GVar
|| !GVar
->hasInitializer() ||
3310 !GVar
->isConstant() || !GVar
->hasGlobalUnnamedAddr() ||
3311 !GVar
->hasLocalLinkage())
3314 // If we inline a value that contains relocations, we move the relocations
3315 // from .data to .text. This is not allowed in position-independent code.
3316 auto *Init
= GVar
->getInitializer();
3317 if ((TLI
->isPositionIndependent() || TLI
->getSubtarget()->isROPI()) &&
3318 Init
->needsRelocation())
3321 // The constant islands pass can only really deal with alignment requests
3322 // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
3323 // any type wanting greater alignment requirements than 4 bytes. We also
3324 // can only promote constants that are multiples of 4 bytes in size or
3325 // are paddable to a multiple of 4. Currently we only try and pad constants
3326 // that are strings for simplicity.
3327 auto *CDAInit
= dyn_cast
<ConstantDataArray
>(Init
);
3328 unsigned Size
= DAG
.getDataLayout().getTypeAllocSize(Init
->getType());
3329 unsigned Align
= DAG
.getDataLayout().getPreferredAlignment(GVar
);
3330 unsigned RequiredPadding
= 4 - (Size
% 4);
3331 bool PaddingPossible
=
3332 RequiredPadding
== 4 || (CDAInit
&& CDAInit
->isString());
3333 if (!PaddingPossible
|| Align
> 4 || Size
> ConstpoolPromotionMaxSize
||
3337 unsigned PaddedSize
= Size
+ ((RequiredPadding
== 4) ? 0 : RequiredPadding
);
3338 MachineFunction
&MF
= DAG
.getMachineFunction();
3339 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3341 // We can't bloat the constant pool too much, else the ConstantIslands pass
3342 // may fail to converge. If we haven't promoted this global yet (it may have
3343 // multiple uses), and promoting it would increase the constant pool size (Sz
3344 // > 4), ensure we have space to do so up to MaxTotal.
3345 if (!AFI
->getGlobalsPromotedToConstantPool().count(GVar
) && Size
> 4)
3346 if (AFI
->getPromotedConstpoolIncrease() + PaddedSize
- 4 >=
3347 ConstpoolPromotionMaxTotal
)
3350 // This is only valid if all users are in a single function; we can't clone
3351 // the constant in general. The LLVM IR unnamed_addr allows merging
3352 // constants, but not cloning them.
3354 // We could potentially allow cloning if we could prove all uses of the
3355 // constant in the current function don't care about the address, like
3356 // printf format strings. But that isn't implemented for now.
3357 if (!allUsersAreInFunction(GVar
, &F
))
3360 // We're going to inline this global. Pad it out if needed.
3361 if (RequiredPadding
!= 4) {
3362 StringRef S
= CDAInit
->getAsString();
3364 SmallVector
<uint8_t,16> V(S
.size());
3365 std::copy(S
.bytes_begin(), S
.bytes_end(), V
.begin());
3366 while (RequiredPadding
--)
3368 Init
= ConstantDataArray::get(*DAG
.getContext(), V
);
3371 auto CPVal
= ARMConstantPoolConstant::Create(GVar
, Init
);
3373 DAG
.getTargetConstantPool(CPVal
, PtrVT
, /*Align=*/4);
3374 if (!AFI
->getGlobalsPromotedToConstantPool().count(GVar
)) {
3375 AFI
->markGlobalAsPromotedToConstantPool(GVar
);
3376 AFI
->setPromotedConstpoolIncrease(AFI
->getPromotedConstpoolIncrease() +
3379 ++NumConstpoolPromoted
;
3380 return DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3383 bool ARMTargetLowering::isReadOnly(const GlobalValue
*GV
) const {
3384 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(GV
))
3385 if (!(GV
= GA
->getBaseObject()))
3387 if (const auto *V
= dyn_cast
<GlobalVariable
>(GV
))
3388 return V
->isConstant();
3389 return isa
<Function
>(GV
);
3392 SDValue
ARMTargetLowering::LowerGlobalAddress(SDValue Op
,
3393 SelectionDAG
&DAG
) const {
3394 switch (Subtarget
->getTargetTriple().getObjectFormat()) {
3395 default: llvm_unreachable("unknown object format");
3397 return LowerGlobalAddressWindows(Op
, DAG
);
3399 return LowerGlobalAddressELF(Op
, DAG
);
3401 return LowerGlobalAddressDarwin(Op
, DAG
);
3405 SDValue
ARMTargetLowering::LowerGlobalAddressELF(SDValue Op
,
3406 SelectionDAG
&DAG
) const {
3407 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3409 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3410 const TargetMachine
&TM
= getTargetMachine();
3411 bool IsRO
= isReadOnly(GV
);
3413 // promoteToConstantPool only if not generating XO text section
3414 if (TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
) && !Subtarget
->genExecuteOnly())
3415 if (SDValue V
= promoteToConstantPool(this, GV
, DAG
, PtrVT
, dl
))
3418 if (isPositionIndependent()) {
3419 bool UseGOT_PREL
= !TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
);
3420 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0,
3421 UseGOT_PREL
? ARMII::MO_GOT
: 0);
3422 SDValue Result
= DAG
.getNode(ARMISD::WrapperPIC
, dl
, PtrVT
, G
);
3425 DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Result
,
3426 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3428 } else if (Subtarget
->isROPI() && IsRO
) {
3430 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
);
3431 SDValue Result
= DAG
.getNode(ARMISD::WrapperPIC
, dl
, PtrVT
, G
);
3433 } else if (Subtarget
->isRWPI() && !IsRO
) {
3436 if (Subtarget
->useMovt()) {
3438 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0, ARMII::MO_SBREL
);
3439 RelAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVT
, G
);
3440 } else { // use literal pool for address constant
3441 ARMConstantPoolValue
*CPV
=
3442 ARMConstantPoolConstant::Create(GV
, ARMCP::SBREL
);
3443 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3444 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3445 RelAddr
= DAG
.getLoad(
3446 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3447 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3449 SDValue SB
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, ARM::R9
, PtrVT
);
3450 SDValue Result
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, SB
, RelAddr
);
3454 // If we have T2 ops, we can materialize the address directly via movt/movw
3455 // pair. This is always cheaper.
3456 if (Subtarget
->useMovt()) {
3458 // FIXME: Once remat is capable of dealing with instructions with register
3459 // operands, expand this into two nodes.
3460 return DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVT
,
3461 DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
));
3463 SDValue CPAddr
= DAG
.getTargetConstantPool(GV
, PtrVT
, 4);
3464 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3466 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3467 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3471 SDValue
ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op
,
3472 SelectionDAG
&DAG
) const {
3473 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
3474 "ROPI/RWPI not currently supported for Darwin");
3475 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3477 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3479 if (Subtarget
->useMovt())
3482 // FIXME: Once remat is capable of dealing with instructions with register
3483 // operands, expand this into multiple nodes
3485 isPositionIndependent() ? ARMISD::WrapperPIC
: ARMISD::Wrapper
;
3487 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0, ARMII::MO_NONLAZY
);
3488 SDValue Result
= DAG
.getNode(Wrapper
, dl
, PtrVT
, G
);
3490 if (Subtarget
->isGVIndirectSymbol(GV
))
3491 Result
= DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Result
,
3492 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3496 SDValue
ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op
,
3497 SelectionDAG
&DAG
) const {
3498 assert(Subtarget
->isTargetWindows() && "non-Windows COFF is not supported");
3499 assert(Subtarget
->useMovt() &&
3500 "Windows on ARM expects to use movw/movt");
3501 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
3502 "ROPI/RWPI not currently supported for Windows");
3504 const TargetMachine
&TM
= getTargetMachine();
3505 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3506 ARMII::TOF TargetFlags
= ARMII::MO_NO_FLAG
;
3507 if (GV
->hasDLLImportStorageClass())
3508 TargetFlags
= ARMII::MO_DLLIMPORT
;
3509 else if (!TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
))
3510 TargetFlags
= ARMII::MO_COFFSTUB
;
3511 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3517 // FIXME: Once remat is capable of dealing with instructions with register
3518 // operands, expand this into two nodes.
3519 Result
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
,
3520 DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, /*offset=*/0,
3522 if (TargetFlags
& (ARMII::MO_DLLIMPORT
| ARMII::MO_COFFSTUB
))
3523 Result
= DAG
.getLoad(PtrVT
, DL
, DAG
.getEntryNode(), Result
,
3524 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3529 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op
, SelectionDAG
&DAG
) const {
3531 SDValue Val
= DAG
.getConstant(0, dl
, MVT::i32
);
3532 return DAG
.getNode(ARMISD::EH_SJLJ_SETJMP
, dl
,
3533 DAG
.getVTList(MVT::i32
, MVT::Other
), Op
.getOperand(0),
3534 Op
.getOperand(1), Val
);
3538 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op
, SelectionDAG
&DAG
) const {
3540 return DAG
.getNode(ARMISD::EH_SJLJ_LONGJMP
, dl
, MVT::Other
, Op
.getOperand(0),
3541 Op
.getOperand(1), DAG
.getConstant(0, dl
, MVT::i32
));
3544 SDValue
ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op
,
3545 SelectionDAG
&DAG
) const {
3547 return DAG
.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH
, dl
, MVT::Other
,
3551 SDValue
ARMTargetLowering::LowerINTRINSIC_VOID(
3552 SDValue Op
, SelectionDAG
&DAG
, const ARMSubtarget
*Subtarget
) const {
3554 cast
<ConstantSDNode
>(
3555 Op
.getOperand(Op
.getOperand(0).getValueType() == MVT::Other
))
3559 return SDValue(); // Don't custom lower most intrinsics.
3560 case Intrinsic::arm_gnu_eabi_mcount
: {
3561 MachineFunction
&MF
= DAG
.getMachineFunction();
3562 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3564 SDValue Chain
= Op
.getOperand(0);
3565 // call "\01__gnu_mcount_nc"
3566 const ARMBaseRegisterInfo
*ARI
= Subtarget
->getRegisterInfo();
3567 const uint32_t *Mask
=
3568 ARI
->getCallPreservedMask(DAG
.getMachineFunction(), CallingConv::C
);
3569 assert(Mask
&& "Missing call preserved mask for calling convention");
3570 // Mark LR an implicit live-in.
3571 unsigned Reg
= MF
.addLiveIn(ARM::LR
, getRegClassFor(MVT::i32
));
3572 SDValue ReturnAddress
=
3573 DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, Reg
, PtrVT
);
3574 std::vector
<EVT
> ResultTys
= {MVT::Other
, MVT::Glue
};
3576 DAG
.getTargetExternalSymbol("\01__gnu_mcount_nc", PtrVT
, 0);
3577 SDValue RegisterMask
= DAG
.getRegisterMask(Mask
);
3578 if (Subtarget
->isThumb())
3581 ARM::tBL_PUSHLR
, dl
, ResultTys
,
3582 {ReturnAddress
, DAG
.getTargetConstant(ARMCC::AL
, dl
, PtrVT
),
3583 DAG
.getRegister(0, PtrVT
), Callee
, RegisterMask
, Chain
}),
3586 DAG
.getMachineNode(ARM::BL_PUSHLR
, dl
, ResultTys
,
3587 {ReturnAddress
, Callee
, RegisterMask
, Chain
}),
3594 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
,
3595 const ARMSubtarget
*Subtarget
) const {
3596 unsigned IntNo
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
3599 default: return SDValue(); // Don't custom lower most intrinsics.
3600 case Intrinsic::thread_pointer
: {
3601 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3602 return DAG
.getNode(ARMISD::THREAD_POINTER
, dl
, PtrVT
);
3604 case Intrinsic::eh_sjlj_lsda
: {
3605 MachineFunction
&MF
= DAG
.getMachineFunction();
3606 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3607 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3608 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3610 bool IsPositionIndependent
= isPositionIndependent();
3611 unsigned PCAdj
= IsPositionIndependent
? (Subtarget
->isThumb() ? 4 : 8) : 0;
3612 ARMConstantPoolValue
*CPV
=
3613 ARMConstantPoolConstant::Create(&MF
.getFunction(), ARMPCLabelIndex
,
3614 ARMCP::CPLSDA
, PCAdj
);
3615 CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3616 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3617 SDValue Result
= DAG
.getLoad(
3618 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3619 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3621 if (IsPositionIndependent
) {
3622 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3623 Result
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Result
, PICLabel
);
3627 case Intrinsic::arm_neon_vabs
:
3628 return DAG
.getNode(ISD::ABS
, SDLoc(Op
), Op
.getValueType(),
3630 case Intrinsic::arm_neon_vmulls
:
3631 case Intrinsic::arm_neon_vmullu
: {
3632 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmulls
)
3633 ? ARMISD::VMULLs
: ARMISD::VMULLu
;
3634 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3635 Op
.getOperand(1), Op
.getOperand(2));
3637 case Intrinsic::arm_neon_vminnm
:
3638 case Intrinsic::arm_neon_vmaxnm
: {
3639 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vminnm
)
3640 ? ISD::FMINNUM
: ISD::FMAXNUM
;
3641 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3642 Op
.getOperand(1), Op
.getOperand(2));
3644 case Intrinsic::arm_neon_vminu
:
3645 case Intrinsic::arm_neon_vmaxu
: {
3646 if (Op
.getValueType().isFloatingPoint())
3648 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vminu
)
3649 ? ISD::UMIN
: ISD::UMAX
;
3650 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3651 Op
.getOperand(1), Op
.getOperand(2));
3653 case Intrinsic::arm_neon_vmins
:
3654 case Intrinsic::arm_neon_vmaxs
: {
3655 // v{min,max}s is overloaded between signed integers and floats.
3656 if (!Op
.getValueType().isFloatingPoint()) {
3657 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmins
)
3658 ? ISD::SMIN
: ISD::SMAX
;
3659 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3660 Op
.getOperand(1), Op
.getOperand(2));
3662 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmins
)
3663 ? ISD::FMINIMUM
: ISD::FMAXIMUM
;
3664 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3665 Op
.getOperand(1), Op
.getOperand(2));
3667 case Intrinsic::arm_neon_vtbl1
:
3668 return DAG
.getNode(ARMISD::VTBL1
, SDLoc(Op
), Op
.getValueType(),
3669 Op
.getOperand(1), Op
.getOperand(2));
3670 case Intrinsic::arm_neon_vtbl2
:
3671 return DAG
.getNode(ARMISD::VTBL2
, SDLoc(Op
), Op
.getValueType(),
3672 Op
.getOperand(1), Op
.getOperand(2), Op
.getOperand(3));
3676 static SDValue
LowerATOMIC_FENCE(SDValue Op
, SelectionDAG
&DAG
,
3677 const ARMSubtarget
*Subtarget
) {
3679 ConstantSDNode
*SSIDNode
= cast
<ConstantSDNode
>(Op
.getOperand(2));
3680 auto SSID
= static_cast<SyncScope::ID
>(SSIDNode
->getZExtValue());
3681 if (SSID
== SyncScope::SingleThread
)
3684 if (!Subtarget
->hasDataBarrier()) {
3685 // Some ARMv6 cpus can support data barriers with an mcr instruction.
3686 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
3688 assert(Subtarget
->hasV6Ops() && !Subtarget
->isThumb() &&
3689 "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
3690 return DAG
.getNode(ARMISD::MEMBARRIER_MCR
, dl
, MVT::Other
, Op
.getOperand(0),
3691 DAG
.getConstant(0, dl
, MVT::i32
));
3694 ConstantSDNode
*OrdN
= cast
<ConstantSDNode
>(Op
.getOperand(1));
3695 AtomicOrdering Ord
= static_cast<AtomicOrdering
>(OrdN
->getZExtValue());
3696 ARM_MB::MemBOpt Domain
= ARM_MB::ISH
;
3697 if (Subtarget
->isMClass()) {
3698 // Only a full system barrier exists in the M-class architectures.
3699 Domain
= ARM_MB::SY
;
3700 } else if (Subtarget
->preferISHSTBarriers() &&
3701 Ord
== AtomicOrdering::Release
) {
3702 // Swift happens to implement ISHST barriers in a way that's compatible with
3703 // Release semantics but weaker than ISH so we'd be fools not to use
3704 // it. Beware: other processors probably don't!
3705 Domain
= ARM_MB::ISHST
;
3708 return DAG
.getNode(ISD::INTRINSIC_VOID
, dl
, MVT::Other
, Op
.getOperand(0),
3709 DAG
.getConstant(Intrinsic::arm_dmb
, dl
, MVT::i32
),
3710 DAG
.getConstant(Domain
, dl
, MVT::i32
));
3713 static SDValue
LowerPREFETCH(SDValue Op
, SelectionDAG
&DAG
,
3714 const ARMSubtarget
*Subtarget
) {
3715 // ARM pre v5TE and Thumb1 does not have preload instructions.
3716 if (!(Subtarget
->isThumb2() ||
3717 (!Subtarget
->isThumb1Only() && Subtarget
->hasV5TEOps())))
3718 // Just preserve the chain.
3719 return Op
.getOperand(0);
3722 unsigned isRead
= ~cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue() & 1;
3724 (!Subtarget
->hasV7Ops() || !Subtarget
->hasMPExtension()))
3725 // ARMv7 with MP extension has PLDW.
3726 return Op
.getOperand(0);
3728 unsigned isData
= cast
<ConstantSDNode
>(Op
.getOperand(4))->getZExtValue();
3729 if (Subtarget
->isThumb()) {
3731 isRead
= ~isRead
& 1;
3732 isData
= ~isData
& 1;
3735 return DAG
.getNode(ARMISD::PRELOAD
, dl
, MVT::Other
, Op
.getOperand(0),
3736 Op
.getOperand(1), DAG
.getConstant(isRead
, dl
, MVT::i32
),
3737 DAG
.getConstant(isData
, dl
, MVT::i32
));
3740 static SDValue
LowerVASTART(SDValue Op
, SelectionDAG
&DAG
) {
3741 MachineFunction
&MF
= DAG
.getMachineFunction();
3742 ARMFunctionInfo
*FuncInfo
= MF
.getInfo
<ARMFunctionInfo
>();
3744 // vastart just stores the address of the VarArgsFrameIndex slot into the
3745 // memory location argument.
3747 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout());
3748 SDValue FR
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(), PtrVT
);
3749 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
3750 return DAG
.getStore(Op
.getOperand(0), dl
, FR
, Op
.getOperand(1),
3751 MachinePointerInfo(SV
));
3754 SDValue
ARMTargetLowering::GetF64FormalArgument(CCValAssign
&VA
,
3755 CCValAssign
&NextVA
,
3758 const SDLoc
&dl
) const {
3759 MachineFunction
&MF
= DAG
.getMachineFunction();
3760 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3762 const TargetRegisterClass
*RC
;
3763 if (AFI
->isThumb1OnlyFunction())
3764 RC
= &ARM::tGPRRegClass
;
3766 RC
= &ARM::GPRRegClass
;
3768 // Transform the arguments stored in physical registers into virtual ones.
3769 unsigned Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
3770 SDValue ArgValue
= DAG
.getCopyFromReg(Root
, dl
, Reg
, MVT::i32
);
3773 if (NextVA
.isMemLoc()) {
3774 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3775 int FI
= MFI
.CreateFixedObject(4, NextVA
.getLocMemOffset(), true);
3777 // Create load node to retrieve arguments from the stack.
3778 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
3779 ArgValue2
= DAG
.getLoad(
3780 MVT::i32
, dl
, Root
, FIN
,
3781 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
));
3783 Reg
= MF
.addLiveIn(NextVA
.getLocReg(), RC
);
3784 ArgValue2
= DAG
.getCopyFromReg(Root
, dl
, Reg
, MVT::i32
);
3786 if (!Subtarget
->isLittle())
3787 std::swap (ArgValue
, ArgValue2
);
3788 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, ArgValue
, ArgValue2
);
3791 // The remaining GPRs hold either the beginning of variable-argument
3792 // data, or the beginning of an aggregate passed by value (usually
3793 // byval). Either way, we allocate stack slots adjacent to the data
3794 // provided by our caller, and store the unallocated registers there.
3795 // If this is a variadic function, the va_list pointer will begin with
3796 // these values; otherwise, this reassembles a (byval) structure that
3797 // was split between registers and memory.
3798 // Return: The frame index registers were stored into.
3799 int ARMTargetLowering::StoreByValRegs(CCState
&CCInfo
, SelectionDAG
&DAG
,
3800 const SDLoc
&dl
, SDValue
&Chain
,
3801 const Value
*OrigArg
,
3802 unsigned InRegsParamRecordIdx
,
3803 int ArgOffset
, unsigned ArgSize
) const {
3804 // Currently, two use-cases possible:
3805 // Case #1. Non-var-args function, and we meet first byval parameter.
3806 // Setup first unallocated register as first byval register;
3807 // eat all remained registers
3808 // (these two actions are performed by HandleByVal method).
3809 // Then, here, we initialize stack frame with
3810 // "store-reg" instructions.
3811 // Case #2. Var-args function, that doesn't contain byval parameters.
3812 // The same: eat all remained unallocated registers,
3813 // initialize stack frame.
3815 MachineFunction
&MF
= DAG
.getMachineFunction();
3816 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3817 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3818 unsigned RBegin
, REnd
;
3819 if (InRegsParamRecordIdx
< CCInfo
.getInRegsParamsCount()) {
3820 CCInfo
.getInRegsParamInfo(InRegsParamRecordIdx
, RBegin
, REnd
);
3822 unsigned RBeginIdx
= CCInfo
.getFirstUnallocated(GPRArgRegs
);
3823 RBegin
= RBeginIdx
== 4 ? (unsigned)ARM::R4
: GPRArgRegs
[RBeginIdx
];
3828 ArgOffset
= -4 * (ARM::R4
- RBegin
);
3830 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
3831 int FrameIndex
= MFI
.CreateFixedObject(ArgSize
, ArgOffset
, false);
3832 SDValue FIN
= DAG
.getFrameIndex(FrameIndex
, PtrVT
);
3834 SmallVector
<SDValue
, 4> MemOps
;
3835 const TargetRegisterClass
*RC
=
3836 AFI
->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
: &ARM::GPRRegClass
;
3838 for (unsigned Reg
= RBegin
, i
= 0; Reg
< REnd
; ++Reg
, ++i
) {
3839 unsigned VReg
= MF
.addLiveIn(Reg
, RC
);
3840 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::i32
);
3841 SDValue Store
= DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
,
3842 MachinePointerInfo(OrigArg
, 4 * i
));
3843 MemOps
.push_back(Store
);
3844 FIN
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, FIN
, DAG
.getConstant(4, dl
, PtrVT
));
3847 if (!MemOps
.empty())
3848 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOps
);
3852 // Setup stack frame, the va_list pointer will start from.
3853 void ARMTargetLowering::VarArgStyleRegisters(CCState
&CCInfo
, SelectionDAG
&DAG
,
3854 const SDLoc
&dl
, SDValue
&Chain
,
3856 unsigned TotalArgRegsSaveSize
,
3857 bool ForceMutable
) const {
3858 MachineFunction
&MF
= DAG
.getMachineFunction();
3859 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3861 // Try to store any remaining integer argument regs
3862 // to their spots on the stack so that they may be loaded by dereferencing
3863 // the result of va_next.
3864 // If there is no regs to be stored, just point address after last
3865 // argument passed via stack.
3866 int FrameIndex
= StoreByValRegs(CCInfo
, DAG
, dl
, Chain
, nullptr,
3867 CCInfo
.getInRegsParamsCount(),
3868 CCInfo
.getNextStackOffset(),
3869 std::max(4U, TotalArgRegsSaveSize
));
3870 AFI
->setVarArgsFrameIndex(FrameIndex
);
3873 SDValue
ARMTargetLowering::LowerFormalArguments(
3874 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
3875 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
3876 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
3877 MachineFunction
&MF
= DAG
.getMachineFunction();
3878 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3880 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3882 // Assign locations to all of the incoming arguments.
3883 SmallVector
<CCValAssign
, 16> ArgLocs
;
3884 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
3886 CCInfo
.AnalyzeFormalArguments(Ins
, CCAssignFnForCall(CallConv
, isVarArg
));
3888 SmallVector
<SDValue
, 16> ArgValues
;
3890 Function::const_arg_iterator CurOrigArg
= MF
.getFunction().arg_begin();
3891 unsigned CurArgIdx
= 0;
3893 // Initially ArgRegsSaveSize is zero.
3894 // Then we increase this value each time we meet byval parameter.
3895 // We also increase this value in case of varargs function.
3896 AFI
->setArgRegsSaveSize(0);
3898 // Calculate the amount of stack space that we need to allocate to store
3899 // byval and variadic arguments that are passed in registers.
3900 // We need to know this before we allocate the first byval or variadic
3901 // argument, as they will be allocated a stack slot below the CFA (Canonical
3902 // Frame Address, the stack pointer at entry to the function).
3903 unsigned ArgRegBegin
= ARM::R4
;
3904 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3905 if (CCInfo
.getInRegsParamsProcessed() >= CCInfo
.getInRegsParamsCount())
3908 CCValAssign
&VA
= ArgLocs
[i
];
3909 unsigned Index
= VA
.getValNo();
3910 ISD::ArgFlagsTy Flags
= Ins
[Index
].Flags
;
3911 if (!Flags
.isByVal())
3914 assert(VA
.isMemLoc() && "unexpected byval pointer in reg");
3915 unsigned RBegin
, REnd
;
3916 CCInfo
.getInRegsParamInfo(CCInfo
.getInRegsParamsProcessed(), RBegin
, REnd
);
3917 ArgRegBegin
= std::min(ArgRegBegin
, RBegin
);
3919 CCInfo
.nextInRegsParam();
3921 CCInfo
.rewindByValRegsInfo();
3923 int lastInsIndex
= -1;
3924 if (isVarArg
&& MFI
.hasVAStart()) {
3925 unsigned RegIdx
= CCInfo
.getFirstUnallocated(GPRArgRegs
);
3926 if (RegIdx
!= array_lengthof(GPRArgRegs
))
3927 ArgRegBegin
= std::min(ArgRegBegin
, (unsigned)GPRArgRegs
[RegIdx
]);
3930 unsigned TotalArgRegsSaveSize
= 4 * (ARM::R4
- ArgRegBegin
);
3931 AFI
->setArgRegsSaveSize(TotalArgRegsSaveSize
);
3932 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
3934 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3935 CCValAssign
&VA
= ArgLocs
[i
];
3936 if (Ins
[VA
.getValNo()].isOrigArg()) {
3937 std::advance(CurOrigArg
,
3938 Ins
[VA
.getValNo()].getOrigArgIndex() - CurArgIdx
);
3939 CurArgIdx
= Ins
[VA
.getValNo()].getOrigArgIndex();
3941 // Arguments stored in registers.
3942 if (VA
.isRegLoc()) {
3943 EVT RegVT
= VA
.getLocVT();
3945 if (VA
.needsCustom()) {
3946 // f64 and vector types are split up into multiple registers or
3947 // combinations of registers and stack slots.
3948 if (VA
.getLocVT() == MVT::v2f64
) {
3949 SDValue ArgValue1
= GetF64FormalArgument(VA
, ArgLocs
[++i
],
3951 VA
= ArgLocs
[++i
]; // skip ahead to next loc
3953 if (VA
.isMemLoc()) {
3954 int FI
= MFI
.CreateFixedObject(8, VA
.getLocMemOffset(), true);
3955 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
3956 ArgValue2
= DAG
.getLoad(MVT::f64
, dl
, Chain
, FIN
,
3957 MachinePointerInfo::getFixedStack(
3958 DAG
.getMachineFunction(), FI
));
3960 ArgValue2
= GetF64FormalArgument(VA
, ArgLocs
[++i
],
3963 ArgValue
= DAG
.getNode(ISD::UNDEF
, dl
, MVT::v2f64
);
3964 ArgValue
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
,
3965 ArgValue
, ArgValue1
,
3966 DAG
.getIntPtrConstant(0, dl
));
3967 ArgValue
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
,
3968 ArgValue
, ArgValue2
,
3969 DAG
.getIntPtrConstant(1, dl
));
3971 ArgValue
= GetF64FormalArgument(VA
, ArgLocs
[++i
], Chain
, DAG
, dl
);
3973 const TargetRegisterClass
*RC
;
3976 if (RegVT
== MVT::f16
)
3977 RC
= &ARM::HPRRegClass
;
3978 else if (RegVT
== MVT::f32
)
3979 RC
= &ARM::SPRRegClass
;
3980 else if (RegVT
== MVT::f64
|| RegVT
== MVT::v4f16
)
3981 RC
= &ARM::DPRRegClass
;
3982 else if (RegVT
== MVT::v2f64
|| RegVT
== MVT::v8f16
)
3983 RC
= &ARM::QPRRegClass
;
3984 else if (RegVT
== MVT::i32
)
3985 RC
= AFI
->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
3986 : &ARM::GPRRegClass
;
3988 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
3990 // Transform the arguments in physical registers into virtual ones.
3991 unsigned Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
3992 ArgValue
= DAG
.getCopyFromReg(Chain
, dl
, Reg
, RegVT
);
3994 // If this value is passed in r0 and has the returned attribute (e.g.
3995 // C++ 'structors), record this fact for later use.
3996 if (VA
.getLocReg() == ARM::R0
&& Ins
[VA
.getValNo()].Flags
.isReturned()) {
3997 AFI
->setPreservesR0();
4001 // If this is an 8 or 16-bit value, it is really passed promoted
4002 // to 32 bits. Insert an assert[sz]ext to capture this, then
4003 // truncate to the right size.
4004 switch (VA
.getLocInfo()) {
4005 default: llvm_unreachable("Unknown loc info!");
4006 case CCValAssign::Full
: break;
4007 case CCValAssign::BCvt
:
4008 ArgValue
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getValVT(), ArgValue
);
4010 case CCValAssign::SExt
:
4011 ArgValue
= DAG
.getNode(ISD::AssertSext
, dl
, RegVT
, ArgValue
,
4012 DAG
.getValueType(VA
.getValVT()));
4013 ArgValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), ArgValue
);
4015 case CCValAssign::ZExt
:
4016 ArgValue
= DAG
.getNode(ISD::AssertZext
, dl
, RegVT
, ArgValue
,
4017 DAG
.getValueType(VA
.getValVT()));
4018 ArgValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), ArgValue
);
4022 InVals
.push_back(ArgValue
);
4023 } else { // VA.isRegLoc()
4025 assert(VA
.isMemLoc());
4026 assert(VA
.getValVT() != MVT::i64
&& "i64 should already be lowered");
4028 int index
= VA
.getValNo();
4030 // Some Ins[] entries become multiple ArgLoc[] entries.
4031 // Process them only once.
4032 if (index
!= lastInsIndex
)
4034 ISD::ArgFlagsTy Flags
= Ins
[index
].Flags
;
4035 // FIXME: For now, all byval parameter objects are marked mutable.
4036 // This can be changed with more analysis.
4037 // In case of tail call optimization mark all arguments mutable.
4038 // Since they could be overwritten by lowering of arguments in case of
4040 if (Flags
.isByVal()) {
4041 assert(Ins
[index
].isOrigArg() &&
4042 "Byval arguments cannot be implicit");
4043 unsigned CurByValIndex
= CCInfo
.getInRegsParamsProcessed();
4045 int FrameIndex
= StoreByValRegs(
4046 CCInfo
, DAG
, dl
, Chain
, &*CurOrigArg
, CurByValIndex
,
4047 VA
.getLocMemOffset(), Flags
.getByValSize());
4048 InVals
.push_back(DAG
.getFrameIndex(FrameIndex
, PtrVT
));
4049 CCInfo
.nextInRegsParam();
4051 unsigned FIOffset
= VA
.getLocMemOffset();
4052 int FI
= MFI
.CreateFixedObject(VA
.getLocVT().getSizeInBits()/8,
4055 // Create load nodes to retrieve arguments from the stack.
4056 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
4057 InVals
.push_back(DAG
.getLoad(VA
.getValVT(), dl
, Chain
, FIN
,
4058 MachinePointerInfo::getFixedStack(
4059 DAG
.getMachineFunction(), FI
)));
4061 lastInsIndex
= index
;
4067 if (isVarArg
&& MFI
.hasVAStart())
4068 VarArgStyleRegisters(CCInfo
, DAG
, dl
, Chain
,
4069 CCInfo
.getNextStackOffset(),
4070 TotalArgRegsSaveSize
);
4072 AFI
->setArgumentStackSize(CCInfo
.getNextStackOffset());
4077 /// isFloatingPointZero - Return true if this is +0.0.
4078 static bool isFloatingPointZero(SDValue Op
) {
4079 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(Op
))
4080 return CFP
->getValueAPF().isPosZero();
4081 else if (ISD::isEXTLoad(Op
.getNode()) || ISD::isNON_EXTLoad(Op
.getNode())) {
4082 // Maybe this has already been legalized into the constant pool?
4083 if (Op
.getOperand(1).getOpcode() == ARMISD::Wrapper
) {
4084 SDValue WrapperOp
= Op
.getOperand(1).getOperand(0);
4085 if (ConstantPoolSDNode
*CP
= dyn_cast
<ConstantPoolSDNode
>(WrapperOp
))
4086 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CP
->getConstVal()))
4087 return CFP
->getValueAPF().isPosZero();
4089 } else if (Op
->getOpcode() == ISD::BITCAST
&&
4090 Op
->getValueType(0) == MVT::f64
) {
4091 // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
4092 // created by LowerConstantFP().
4093 SDValue BitcastOp
= Op
->getOperand(0);
4094 if (BitcastOp
->getOpcode() == ARMISD::VMOVIMM
&&
4095 isNullConstant(BitcastOp
->getOperand(0)))
4101 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
4102 /// the given operands.
4103 SDValue
ARMTargetLowering::getARMCmp(SDValue LHS
, SDValue RHS
, ISD::CondCode CC
,
4104 SDValue
&ARMcc
, SelectionDAG
&DAG
,
4105 const SDLoc
&dl
) const {
4106 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(RHS
.getNode())) {
4107 unsigned C
= RHSC
->getZExtValue();
4108 if (!isLegalICmpImmediate((int32_t)C
)) {
4109 // Constant does not fit, try adjusting it by one.
4114 if (C
!= 0x80000000 && isLegalICmpImmediate(C
-1)) {
4115 CC
= (CC
== ISD::SETLT
) ? ISD::SETLE
: ISD::SETGT
;
4116 RHS
= DAG
.getConstant(C
- 1, dl
, MVT::i32
);
4121 if (C
!= 0 && isLegalICmpImmediate(C
-1)) {
4122 CC
= (CC
== ISD::SETULT
) ? ISD::SETULE
: ISD::SETUGT
;
4123 RHS
= DAG
.getConstant(C
- 1, dl
, MVT::i32
);
4128 if (C
!= 0x7fffffff && isLegalICmpImmediate(C
+1)) {
4129 CC
= (CC
== ISD::SETLE
) ? ISD::SETLT
: ISD::SETGE
;
4130 RHS
= DAG
.getConstant(C
+ 1, dl
, MVT::i32
);
4135 if (C
!= 0xffffffff && isLegalICmpImmediate(C
+1)) {
4136 CC
= (CC
== ISD::SETULE
) ? ISD::SETULT
: ISD::SETUGE
;
4137 RHS
= DAG
.getConstant(C
+ 1, dl
, MVT::i32
);
4142 } else if ((ARM_AM::getShiftOpcForNode(LHS
.getOpcode()) != ARM_AM::no_shift
) &&
4143 (ARM_AM::getShiftOpcForNode(RHS
.getOpcode()) == ARM_AM::no_shift
)) {
4144 // In ARM and Thumb-2, the compare instructions can shift their second
4146 CC
= ISD::getSetCCSwappedOperands(CC
);
4147 std::swap(LHS
, RHS
);
4150 // Thumb1 has very limited immediate modes, so turning an "and" into a
4151 // shift can save multiple instructions.
4153 // If we have (x & C1), and C1 is an appropriate mask, we can transform it
4154 // into "((x << n) >> n)". But that isn't necessarily profitable on its
4155 // own. If it's the operand to an unsigned comparison with an immediate,
4156 // we can eliminate one of the shifts: we transform
4157 // "((x << n) >> n) == C2" to "(x << n) == (C2 << n)".
4159 // We avoid transforming cases which aren't profitable due to encoding
4162 // 1. C2 fits into the immediate field of a cmp, and the transformed version
4163 // would not; in that case, we're essentially trading one immediate load for
4165 // 2. C1 is 255 or 65535, so we can use uxtb or uxth.
4166 // 3. C2 is zero; we have other code for this special case.
4168 // FIXME: Figure out profitability for Thumb2; we usually can't save an
4169 // instruction, since the AND is always one instruction anyway, but we could
4170 // use narrow instructions in some cases.
4171 if (Subtarget
->isThumb1Only() && LHS
->getOpcode() == ISD::AND
&&
4172 LHS
->hasOneUse() && isa
<ConstantSDNode
>(LHS
.getOperand(1)) &&
4173 LHS
.getValueType() == MVT::i32
&& isa
<ConstantSDNode
>(RHS
) &&
4174 !isSignedIntSetCC(CC
)) {
4175 unsigned Mask
= cast
<ConstantSDNode
>(LHS
.getOperand(1))->getZExtValue();
4176 auto *RHSC
= cast
<ConstantSDNode
>(RHS
.getNode());
4177 uint64_t RHSV
= RHSC
->getZExtValue();
4178 if (isMask_32(Mask
) && (RHSV
& ~Mask
) == 0 && Mask
!= 255 && Mask
!= 65535) {
4179 unsigned ShiftBits
= countLeadingZeros(Mask
);
4180 if (RHSV
&& (RHSV
> 255 || (RHSV
<< ShiftBits
) <= 255)) {
4181 SDValue ShiftAmt
= DAG
.getConstant(ShiftBits
, dl
, MVT::i32
);
4182 LHS
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, LHS
.getOperand(0), ShiftAmt
);
4183 RHS
= DAG
.getConstant(RHSV
<< ShiftBits
, dl
, MVT::i32
);
4188 // The specific comparison "(x<<c) > 0x80000000U" can be optimized to a
4189 // single "lsls x, c+1". The shift sets the "C" and "Z" flags the same
4191 // FIXME: Add support for ARM/Thumb2; this would need isel patterns, and
4192 // some tweaks to the heuristics for the previous and->shift transform.
4193 // FIXME: Optimize cases where the LHS isn't a shift.
4194 if (Subtarget
->isThumb1Only() && LHS
->getOpcode() == ISD::SHL
&&
4195 isa
<ConstantSDNode
>(RHS
) &&
4196 cast
<ConstantSDNode
>(RHS
)->getZExtValue() == 0x80000000U
&&
4197 CC
== ISD::SETUGT
&& isa
<ConstantSDNode
>(LHS
.getOperand(1)) &&
4198 cast
<ConstantSDNode
>(LHS
.getOperand(1))->getZExtValue() < 31) {
4200 cast
<ConstantSDNode
>(LHS
.getOperand(1))->getZExtValue() + 1;
4201 SDValue Shift
= DAG
.getNode(ARMISD::LSLS
, dl
,
4202 DAG
.getVTList(MVT::i32
, MVT::i32
),
4204 DAG
.getConstant(ShiftAmt
, dl
, MVT::i32
));
4205 SDValue Chain
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, ARM::CPSR
,
4206 Shift
.getValue(1), SDValue());
4207 ARMcc
= DAG
.getConstant(ARMCC::HI
, dl
, MVT::i32
);
4208 return Chain
.getValue(1);
4211 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
4213 // If the RHS is a constant zero then the V (overflow) flag will never be
4214 // set. This can allow us to simplify GE to PL or LT to MI, which can be
4215 // simpler for other passes (like the peephole optimiser) to deal with.
4216 if (isNullConstant(RHS
)) {
4220 CondCode
= ARMCC::PL
;
4223 CondCode
= ARMCC::MI
;
4228 ARMISD::NodeType CompareType
;
4231 CompareType
= ARMISD::CMP
;
4236 CompareType
= ARMISD::CMPZ
;
4239 ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
4240 return DAG
.getNode(CompareType
, dl
, MVT::Glue
, LHS
, RHS
);
4243 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
4244 SDValue
ARMTargetLowering::getVFPCmp(SDValue LHS
, SDValue RHS
,
4245 SelectionDAG
&DAG
, const SDLoc
&dl
,
4246 bool InvalidOnQNaN
) const {
4247 assert(Subtarget
->hasFP64() || RHS
.getValueType() != MVT::f64
);
4249 SDValue C
= DAG
.getConstant(InvalidOnQNaN
, dl
, MVT::i32
);
4250 if (!isFloatingPointZero(RHS
))
4251 Cmp
= DAG
.getNode(ARMISD::CMPFP
, dl
, MVT::Glue
, LHS
, RHS
, C
);
4253 Cmp
= DAG
.getNode(ARMISD::CMPFPw0
, dl
, MVT::Glue
, LHS
, C
);
4254 return DAG
.getNode(ARMISD::FMSTAT
, dl
, MVT::Glue
, Cmp
);
4257 /// duplicateCmp - Glue values can have only one use, so this function
4258 /// duplicates a comparison node.
4260 ARMTargetLowering::duplicateCmp(SDValue Cmp
, SelectionDAG
&DAG
) const {
4261 unsigned Opc
= Cmp
.getOpcode();
4263 if (Opc
== ARMISD::CMP
|| Opc
== ARMISD::CMPZ
)
4264 return DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0),Cmp
.getOperand(1));
4266 assert(Opc
== ARMISD::FMSTAT
&& "unexpected comparison operation");
4267 Cmp
= Cmp
.getOperand(0);
4268 Opc
= Cmp
.getOpcode();
4269 if (Opc
== ARMISD::CMPFP
)
4270 Cmp
= DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0),
4271 Cmp
.getOperand(1), Cmp
.getOperand(2));
4273 assert(Opc
== ARMISD::CMPFPw0
&& "unexpected operand of FMSTAT");
4274 Cmp
= DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0),
4277 return DAG
.getNode(ARMISD::FMSTAT
, DL
, MVT::Glue
, Cmp
);
4280 // This function returns three things: the arithmetic computation itself
4281 // (Value), a comparison (OverflowCmp), and a condition code (ARMcc). The
4282 // comparison and the condition code define the case in which the arithmetic
4283 // computation *does not* overflow.
4284 std::pair
<SDValue
, SDValue
>
4285 ARMTargetLowering::getARMXALUOOp(SDValue Op
, SelectionDAG
&DAG
,
4286 SDValue
&ARMcc
) const {
4287 assert(Op
.getValueType() == MVT::i32
&& "Unsupported value type");
4289 SDValue Value
, OverflowCmp
;
4290 SDValue LHS
= Op
.getOperand(0);
4291 SDValue RHS
= Op
.getOperand(1);
4294 // FIXME: We are currently always generating CMPs because we don't support
4295 // generating CMN through the backend. This is not as good as the natural
4296 // CMP case because it causes a register dependency and cannot be folded
4299 switch (Op
.getOpcode()) {
4301 llvm_unreachable("Unknown overflow instruction!");
4303 ARMcc
= DAG
.getConstant(ARMCC::VC
, dl
, MVT::i32
);
4304 Value
= DAG
.getNode(ISD::ADD
, dl
, Op
.getValueType(), LHS
, RHS
);
4305 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
, LHS
);
4308 ARMcc
= DAG
.getConstant(ARMCC::HS
, dl
, MVT::i32
);
4309 // We use ADDC here to correspond to its use in LowerUnsignedALUO.
4310 // We do not use it in the USUBO case as Value may not be used.
4311 Value
= DAG
.getNode(ARMISD::ADDC
, dl
,
4312 DAG
.getVTList(Op
.getValueType(), MVT::i32
), LHS
, RHS
)
4314 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
, LHS
);
4317 ARMcc
= DAG
.getConstant(ARMCC::VC
, dl
, MVT::i32
);
4318 Value
= DAG
.getNode(ISD::SUB
, dl
, Op
.getValueType(), LHS
, RHS
);
4319 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, LHS
, RHS
);
4322 ARMcc
= DAG
.getConstant(ARMCC::HS
, dl
, MVT::i32
);
4323 Value
= DAG
.getNode(ISD::SUB
, dl
, Op
.getValueType(), LHS
, RHS
);
4324 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, LHS
, RHS
);
4327 // We generate a UMUL_LOHI and then check if the high word is 0.
4328 ARMcc
= DAG
.getConstant(ARMCC::EQ
, dl
, MVT::i32
);
4329 Value
= DAG
.getNode(ISD::UMUL_LOHI
, dl
,
4330 DAG
.getVTList(Op
.getValueType(), Op
.getValueType()),
4332 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
.getValue(1),
4333 DAG
.getConstant(0, dl
, MVT::i32
));
4334 Value
= Value
.getValue(0); // We only want the low 32 bits for the result.
4337 // We generate a SMUL_LOHI and then check if all the bits of the high word
4338 // are the same as the sign bit of the low word.
4339 ARMcc
= DAG
.getConstant(ARMCC::EQ
, dl
, MVT::i32
);
4340 Value
= DAG
.getNode(ISD::SMUL_LOHI
, dl
,
4341 DAG
.getVTList(Op
.getValueType(), Op
.getValueType()),
4343 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
.getValue(1),
4344 DAG
.getNode(ISD::SRA
, dl
, Op
.getValueType(),
4346 DAG
.getConstant(31, dl
, MVT::i32
)));
4347 Value
= Value
.getValue(0); // We only want the low 32 bits for the result.
4351 return std::make_pair(Value
, OverflowCmp
);
4355 ARMTargetLowering::LowerSignedALUO(SDValue Op
, SelectionDAG
&DAG
) const {
4356 // Let legalize expand this if it isn't a legal type yet.
4357 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Op
.getValueType()))
4360 SDValue Value
, OverflowCmp
;
4362 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Op
, DAG
, ARMcc
);
4363 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4365 // We use 0 and 1 as false and true values.
4366 SDValue TVal
= DAG
.getConstant(1, dl
, MVT::i32
);
4367 SDValue FVal
= DAG
.getConstant(0, dl
, MVT::i32
);
4368 EVT VT
= Op
.getValueType();
4370 SDValue Overflow
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, TVal
, FVal
,
4371 ARMcc
, CCR
, OverflowCmp
);
4373 SDVTList VTs
= DAG
.getVTList(Op
.getValueType(), MVT::i32
);
4374 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, VTs
, Value
, Overflow
);
4377 static SDValue
ConvertBooleanCarryToCarryFlag(SDValue BoolCarry
,
4378 SelectionDAG
&DAG
) {
4379 SDLoc
DL(BoolCarry
);
4380 EVT CarryVT
= BoolCarry
.getValueType();
4382 // This converts the boolean value carry into the carry flag by doing
4383 // ARMISD::SUBC Carry, 1
4384 SDValue Carry
= DAG
.getNode(ARMISD::SUBC
, DL
,
4385 DAG
.getVTList(CarryVT
, MVT::i32
),
4386 BoolCarry
, DAG
.getConstant(1, DL
, CarryVT
));
4387 return Carry
.getValue(1);
4390 static SDValue
ConvertCarryFlagToBooleanCarry(SDValue Flags
, EVT VT
,
4391 SelectionDAG
&DAG
) {
4394 // Now convert the carry flag into a boolean carry. We do this
4395 // using ARMISD:ADDE 0, 0, Carry
4396 return DAG
.getNode(ARMISD::ADDE
, DL
, DAG
.getVTList(VT
, MVT::i32
),
4397 DAG
.getConstant(0, DL
, MVT::i32
),
4398 DAG
.getConstant(0, DL
, MVT::i32
), Flags
);
4401 SDValue
ARMTargetLowering::LowerUnsignedALUO(SDValue Op
,
4402 SelectionDAG
&DAG
) const {
4403 // Let legalize expand this if it isn't a legal type yet.
4404 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Op
.getValueType()))
4407 SDValue LHS
= Op
.getOperand(0);
4408 SDValue RHS
= Op
.getOperand(1);
4411 EVT VT
= Op
.getValueType();
4412 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
4415 switch (Op
.getOpcode()) {
4417 llvm_unreachable("Unknown overflow instruction!");
4419 Value
= DAG
.getNode(ARMISD::ADDC
, dl
, VTs
, LHS
, RHS
);
4420 // Convert the carry flag into a boolean value.
4421 Overflow
= ConvertCarryFlagToBooleanCarry(Value
.getValue(1), VT
, DAG
);
4424 Value
= DAG
.getNode(ARMISD::SUBC
, dl
, VTs
, LHS
, RHS
);
4425 // Convert the carry flag into a boolean value.
4426 Overflow
= ConvertCarryFlagToBooleanCarry(Value
.getValue(1), VT
, DAG
);
4427 // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
4428 // value. So compute 1 - C.
4429 Overflow
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
4430 DAG
.getConstant(1, dl
, MVT::i32
), Overflow
);
4435 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, VTs
, Value
, Overflow
);
4438 SDValue
ARMTargetLowering::LowerSELECT(SDValue Op
, SelectionDAG
&DAG
) const {
4439 SDValue Cond
= Op
.getOperand(0);
4440 SDValue SelectTrue
= Op
.getOperand(1);
4441 SDValue SelectFalse
= Op
.getOperand(2);
4443 unsigned Opc
= Cond
.getOpcode();
4445 if (Cond
.getResNo() == 1 &&
4446 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
4447 Opc
== ISD::USUBO
)) {
4448 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Cond
->getValueType(0)))
4451 SDValue Value
, OverflowCmp
;
4453 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Cond
, DAG
, ARMcc
);
4454 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4455 EVT VT
= Op
.getValueType();
4457 return getCMOV(dl
, VT
, SelectTrue
, SelectFalse
, ARMcc
, CCR
,
4463 // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
4464 // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
4466 if (Cond
.getOpcode() == ARMISD::CMOV
&& Cond
.hasOneUse()) {
4467 const ConstantSDNode
*CMOVTrue
=
4468 dyn_cast
<ConstantSDNode
>(Cond
.getOperand(0));
4469 const ConstantSDNode
*CMOVFalse
=
4470 dyn_cast
<ConstantSDNode
>(Cond
.getOperand(1));
4472 if (CMOVTrue
&& CMOVFalse
) {
4473 unsigned CMOVTrueVal
= CMOVTrue
->getZExtValue();
4474 unsigned CMOVFalseVal
= CMOVFalse
->getZExtValue();
4478 if (CMOVTrueVal
== 1 && CMOVFalseVal
== 0) {
4480 False
= SelectFalse
;
4481 } else if (CMOVTrueVal
== 0 && CMOVFalseVal
== 1) {
4486 if (True
.getNode() && False
.getNode()) {
4487 EVT VT
= Op
.getValueType();
4488 SDValue ARMcc
= Cond
.getOperand(2);
4489 SDValue CCR
= Cond
.getOperand(3);
4490 SDValue Cmp
= duplicateCmp(Cond
.getOperand(4), DAG
);
4491 assert(True
.getValueType() == VT
);
4492 return getCMOV(dl
, VT
, True
, False
, ARMcc
, CCR
, Cmp
, DAG
);
4497 // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
4498 // undefined bits before doing a full-word comparison with zero.
4499 Cond
= DAG
.getNode(ISD::AND
, dl
, Cond
.getValueType(), Cond
,
4500 DAG
.getConstant(1, dl
, Cond
.getValueType()));
4502 return DAG
.getSelectCC(dl
, Cond
,
4503 DAG
.getConstant(0, dl
, Cond
.getValueType()),
4504 SelectTrue
, SelectFalse
, ISD::SETNE
);
4507 static void checkVSELConstraints(ISD::CondCode CC
, ARMCC::CondCodes
&CondCode
,
4508 bool &swpCmpOps
, bool &swpVselOps
) {
4509 // Start by selecting the GE condition code for opcodes that return true for
4511 if (CC
== ISD::SETUGE
|| CC
== ISD::SETOGE
|| CC
== ISD::SETOLE
||
4512 CC
== ISD::SETULE
|| CC
== ISD::SETGE
|| CC
== ISD::SETLE
)
4513 CondCode
= ARMCC::GE
;
4515 // and GT for opcodes that return false for 'equality'.
4516 else if (CC
== ISD::SETUGT
|| CC
== ISD::SETOGT
|| CC
== ISD::SETOLT
||
4517 CC
== ISD::SETULT
|| CC
== ISD::SETGT
|| CC
== ISD::SETLT
)
4518 CondCode
= ARMCC::GT
;
4520 // Since we are constrained to GE/GT, if the opcode contains 'less', we need
4521 // to swap the compare operands.
4522 if (CC
== ISD::SETOLE
|| CC
== ISD::SETULE
|| CC
== ISD::SETOLT
||
4523 CC
== ISD::SETULT
|| CC
== ISD::SETLE
|| CC
== ISD::SETLT
)
4526 // Both GT and GE are ordered comparisons, and return false for 'unordered'.
4527 // If we have an unordered opcode, we need to swap the operands to the VSEL
4528 // instruction (effectively negating the condition).
4530 // This also has the effect of swapping which one of 'less' or 'greater'
4531 // returns true, so we also swap the compare operands. It also switches
4532 // whether we return true for 'equality', so we compensate by picking the
4533 // opposite condition code to our original choice.
4534 if (CC
== ISD::SETULE
|| CC
== ISD::SETULT
|| CC
== ISD::SETUGE
||
4535 CC
== ISD::SETUGT
) {
4536 swpCmpOps
= !swpCmpOps
;
4537 swpVselOps
= !swpVselOps
;
4538 CondCode
= CondCode
== ARMCC::GT
? ARMCC::GE
: ARMCC::GT
;
4541 // 'ordered' is 'anything but unordered', so use the VS condition code and
4542 // swap the VSEL operands.
4543 if (CC
== ISD::SETO
) {
4544 CondCode
= ARMCC::VS
;
4548 // 'unordered or not equal' is 'anything but equal', so use the EQ condition
4549 // code and swap the VSEL operands. Also do this if we don't care about the
4551 if (CC
== ISD::SETUNE
|| CC
== ISD::SETNE
) {
4552 CondCode
= ARMCC::EQ
;
4557 SDValue
ARMTargetLowering::getCMOV(const SDLoc
&dl
, EVT VT
, SDValue FalseVal
,
4558 SDValue TrueVal
, SDValue ARMcc
, SDValue CCR
,
4559 SDValue Cmp
, SelectionDAG
&DAG
) const {
4560 if (!Subtarget
->hasFP64() && VT
== MVT::f64
) {
4561 FalseVal
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
4562 DAG
.getVTList(MVT::i32
, MVT::i32
), FalseVal
);
4563 TrueVal
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
4564 DAG
.getVTList(MVT::i32
, MVT::i32
), TrueVal
);
4566 SDValue TrueLow
= TrueVal
.getValue(0);
4567 SDValue TrueHigh
= TrueVal
.getValue(1);
4568 SDValue FalseLow
= FalseVal
.getValue(0);
4569 SDValue FalseHigh
= FalseVal
.getValue(1);
4571 SDValue Low
= DAG
.getNode(ARMISD::CMOV
, dl
, MVT::i32
, FalseLow
, TrueLow
,
4573 SDValue High
= DAG
.getNode(ARMISD::CMOV
, dl
, MVT::i32
, FalseHigh
, TrueHigh
,
4574 ARMcc
, CCR
, duplicateCmp(Cmp
, DAG
));
4576 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Low
, High
);
4578 return DAG
.getNode(ARMISD::CMOV
, dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
,
4583 static bool isGTorGE(ISD::CondCode CC
) {
4584 return CC
== ISD::SETGT
|| CC
== ISD::SETGE
;
4587 static bool isLTorLE(ISD::CondCode CC
) {
4588 return CC
== ISD::SETLT
|| CC
== ISD::SETLE
;
4591 // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
4592 // All of these conditions (and their <= and >= counterparts) will do:
4597 static bool isLowerSaturate(const SDValue LHS
, const SDValue RHS
,
4598 const SDValue TrueVal
, const SDValue FalseVal
,
4599 const ISD::CondCode CC
, const SDValue K
) {
4600 return (isGTorGE(CC
) &&
4601 ((K
== LHS
&& K
== TrueVal
) || (K
== RHS
&& K
== FalseVal
))) ||
4603 ((K
== RHS
&& K
== TrueVal
) || (K
== LHS
&& K
== FalseVal
)));
4606 // Similar to isLowerSaturate(), but checks for upper-saturating conditions.
4607 static bool isUpperSaturate(const SDValue LHS
, const SDValue RHS
,
4608 const SDValue TrueVal
, const SDValue FalseVal
,
4609 const ISD::CondCode CC
, const SDValue K
) {
4610 return (isGTorGE(CC
) &&
4611 ((K
== RHS
&& K
== TrueVal
) || (K
== LHS
&& K
== FalseVal
))) ||
4613 ((K
== LHS
&& K
== TrueVal
) || (K
== RHS
&& K
== FalseVal
)));
4616 // Check if two chained conditionals could be converted into SSAT or USAT.
4618 // SSAT can replace a set of two conditional selectors that bound a number to an
4619 // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
4621 // x < -k ? -k : (x > k ? k : x)
4622 // x < -k ? -k : (x < k ? x : k)
4623 // x > -k ? (x > k ? k : x) : -k
4624 // x < k ? (x < -k ? -k : x) : k
4627 // USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1 is
4630 // It returns true if the conversion can be done, false otherwise.
4631 // Additionally, the variable is returned in parameter V, the constant in K and
4632 // usat is set to true if the conditional represents an unsigned saturation
4633 static bool isSaturatingConditional(const SDValue
&Op
, SDValue
&V
,
4634 uint64_t &K
, bool &usat
) {
4635 SDValue LHS1
= Op
.getOperand(0);
4636 SDValue RHS1
= Op
.getOperand(1);
4637 SDValue TrueVal1
= Op
.getOperand(2);
4638 SDValue FalseVal1
= Op
.getOperand(3);
4639 ISD::CondCode CC1
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4641 const SDValue Op2
= isa
<ConstantSDNode
>(TrueVal1
) ? FalseVal1
: TrueVal1
;
4642 if (Op2
.getOpcode() != ISD::SELECT_CC
)
4645 SDValue LHS2
= Op2
.getOperand(0);
4646 SDValue RHS2
= Op2
.getOperand(1);
4647 SDValue TrueVal2
= Op2
.getOperand(2);
4648 SDValue FalseVal2
= Op2
.getOperand(3);
4649 ISD::CondCode CC2
= cast
<CondCodeSDNode
>(Op2
.getOperand(4))->get();
4651 // Find out which are the constants and which are the variables
4652 // in each conditional
4653 SDValue
*K1
= isa
<ConstantSDNode
>(LHS1
) ? &LHS1
: isa
<ConstantSDNode
>(RHS1
)
4656 SDValue
*K2
= isa
<ConstantSDNode
>(LHS2
) ? &LHS2
: isa
<ConstantSDNode
>(RHS2
)
4659 SDValue K2Tmp
= isa
<ConstantSDNode
>(TrueVal2
) ? TrueVal2
: FalseVal2
;
4660 SDValue V1Tmp
= (K1
&& *K1
== LHS1
) ? RHS1
: LHS1
;
4661 SDValue V2Tmp
= (K2
&& *K2
== LHS2
) ? RHS2
: LHS2
;
4662 SDValue V2
= (K2Tmp
== TrueVal2
) ? FalseVal2
: TrueVal2
;
4664 // We must detect cases where the original operations worked with 16- or
4665 // 8-bit values. In such case, V2Tmp != V2 because the comparison operations
4666 // must work with sign-extended values but the select operations return
4667 // the original non-extended value.
4668 SDValue V2TmpReg
= V2Tmp
;
4669 if (V2Tmp
->getOpcode() == ISD::SIGN_EXTEND_INREG
)
4670 V2TmpReg
= V2Tmp
->getOperand(0);
4672 // Check that the registers and the constants have the correct values
4673 // in both conditionals
4674 if (!K1
|| !K2
|| *K1
== Op2
|| *K2
!= K2Tmp
|| V1Tmp
!= V2Tmp
||
4678 // Figure out which conditional is saturating the lower/upper bound.
4679 const SDValue
*LowerCheckOp
=
4680 isLowerSaturate(LHS1
, RHS1
, TrueVal1
, FalseVal1
, CC1
, *K1
)
4682 : isLowerSaturate(LHS2
, RHS2
, TrueVal2
, FalseVal2
, CC2
, *K2
)
4685 const SDValue
*UpperCheckOp
=
4686 isUpperSaturate(LHS1
, RHS1
, TrueVal1
, FalseVal1
, CC1
, *K1
)
4688 : isUpperSaturate(LHS2
, RHS2
, TrueVal2
, FalseVal2
, CC2
, *K2
)
4692 if (!UpperCheckOp
|| !LowerCheckOp
|| LowerCheckOp
== UpperCheckOp
)
4695 // Check that the constant in the lower-bound check is
4696 // the opposite of the constant in the upper-bound check
4697 // in 1's complement.
4698 int64_t Val1
= cast
<ConstantSDNode
>(*K1
)->getSExtValue();
4699 int64_t Val2
= cast
<ConstantSDNode
>(*K2
)->getSExtValue();
4700 int64_t PosVal
= std::max(Val1
, Val2
);
4701 int64_t NegVal
= std::min(Val1
, Val2
);
4703 if (((Val1
> Val2
&& UpperCheckOp
== &Op
) ||
4704 (Val1
< Val2
&& UpperCheckOp
== &Op2
)) &&
4705 isPowerOf2_64(PosVal
+ 1)) {
4707 // Handle the difference between USAT (unsigned) and SSAT (signed) saturation
4710 else if (NegVal
== 0)
4716 K
= (uint64_t)PosVal
; // At this point, PosVal is guaranteed to be positive
4724 // Check if a condition of the type x < k ? k : x can be converted into a
4725 // bit operation instead of conditional moves.
4726 // Currently this is allowed given:
4727 // - The conditions and values match up
4728 // - k is 0 or -1 (all ones)
4729 // This function will not check the last condition, thats up to the caller
4730 // It returns true if the transformation can be made, and in such case
4731 // returns x in V, and k in SatK.
4732 static bool isLowerSaturatingConditional(const SDValue
&Op
, SDValue
&V
,
4735 SDValue LHS
= Op
.getOperand(0);
4736 SDValue RHS
= Op
.getOperand(1);
4737 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4738 SDValue TrueVal
= Op
.getOperand(2);
4739 SDValue FalseVal
= Op
.getOperand(3);
4741 SDValue
*K
= isa
<ConstantSDNode
>(LHS
) ? &LHS
: isa
<ConstantSDNode
>(RHS
)
4745 // No constant operation in comparison, early out
4749 SDValue KTmp
= isa
<ConstantSDNode
>(TrueVal
) ? TrueVal
: FalseVal
;
4750 V
= (KTmp
== TrueVal
) ? FalseVal
: TrueVal
;
4751 SDValue VTmp
= (K
&& *K
== LHS
) ? RHS
: LHS
;
4753 // If the constant on left and right side, or variable on left and right,
4754 // does not match, early out
4755 if (*K
!= KTmp
|| V
!= VTmp
)
4758 if (isLowerSaturate(LHS
, RHS
, TrueVal
, FalseVal
, CC
, *K
)) {
4766 bool ARMTargetLowering::isUnsupportedFloatingType(EVT VT
) const {
4768 return !Subtarget
->hasVFP2Base();
4770 return !Subtarget
->hasFP64();
4772 return !Subtarget
->hasFullFP16();
4776 SDValue
ARMTargetLowering::LowerSELECT_CC(SDValue Op
, SelectionDAG
&DAG
) const {
4777 EVT VT
= Op
.getValueType();
4780 // Try to convert two saturating conditional selects into a single SSAT
4782 uint64_t SatConstant
;
4784 if (((!Subtarget
->isThumb() && Subtarget
->hasV6Ops()) || Subtarget
->isThumb2()) &&
4785 isSaturatingConditional(Op
, SatValue
, SatConstant
, SatUSat
)) {
4787 return DAG
.getNode(ARMISD::USAT
, dl
, VT
, SatValue
,
4788 DAG
.getConstant(countTrailingOnes(SatConstant
), dl
, VT
));
4790 return DAG
.getNode(ARMISD::SSAT
, dl
, VT
, SatValue
,
4791 DAG
.getConstant(countTrailingOnes(SatConstant
), dl
, VT
));
4794 // Try to convert expressions of the form x < k ? k : x (and similar forms)
4795 // into more efficient bit operations, which is possible when k is 0 or -1
4796 // On ARM and Thumb-2 which have flexible operand 2 this will result in
4797 // single instructions. On Thumb the shift and the bit operation will be two
4799 // Only allow this transformation on full-width (32-bit) operations
4800 SDValue LowerSatConstant
;
4801 if (VT
== MVT::i32
&&
4802 isLowerSaturatingConditional(Op
, SatValue
, LowerSatConstant
)) {
4803 SDValue ShiftV
= DAG
.getNode(ISD::SRA
, dl
, VT
, SatValue
,
4804 DAG
.getConstant(31, dl
, VT
));
4805 if (isNullConstant(LowerSatConstant
)) {
4806 SDValue NotShiftV
= DAG
.getNode(ISD::XOR
, dl
, VT
, ShiftV
,
4807 DAG
.getAllOnesConstant(dl
, VT
));
4808 return DAG
.getNode(ISD::AND
, dl
, VT
, SatValue
, NotShiftV
);
4809 } else if (isAllOnesConstant(LowerSatConstant
))
4810 return DAG
.getNode(ISD::OR
, dl
, VT
, SatValue
, ShiftV
);
4813 SDValue LHS
= Op
.getOperand(0);
4814 SDValue RHS
= Op
.getOperand(1);
4815 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4816 SDValue TrueVal
= Op
.getOperand(2);
4817 SDValue FalseVal
= Op
.getOperand(3);
4819 if (isUnsupportedFloatingType(LHS
.getValueType())) {
4820 DAG
.getTargetLoweringInfo().softenSetCCOperands(
4821 DAG
, LHS
.getValueType(), LHS
, RHS
, CC
, dl
);
4823 // If softenSetCCOperands only returned one value, we should compare it to
4825 if (!RHS
.getNode()) {
4826 RHS
= DAG
.getConstant(0, dl
, LHS
.getValueType());
4831 if (LHS
.getValueType() == MVT::i32
) {
4832 // Try to generate VSEL on ARMv8.
4833 // The VSEL instruction can't use all the usual ARM condition
4834 // codes: it only has two bits to select the condition code, so it's
4835 // constrained to use only GE, GT, VS and EQ.
4837 // To implement all the various ISD::SETXXX opcodes, we sometimes need to
4838 // swap the operands of the previous compare instruction (effectively
4839 // inverting the compare condition, swapping 'less' and 'greater') and
4840 // sometimes need to swap the operands to the VSEL (which inverts the
4841 // condition in the sense of firing whenever the previous condition didn't)
4842 if (Subtarget
->hasFPARMv8Base() && (TrueVal
.getValueType() == MVT::f16
||
4843 TrueVal
.getValueType() == MVT::f32
||
4844 TrueVal
.getValueType() == MVT::f64
)) {
4845 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
4846 if (CondCode
== ARMCC::LT
|| CondCode
== ARMCC::LE
||
4847 CondCode
== ARMCC::VC
|| CondCode
== ARMCC::NE
) {
4848 CC
= ISD::getSetCCInverse(CC
, true);
4849 std::swap(TrueVal
, FalseVal
);
4854 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4855 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
4856 // Choose GE over PL, which vsel does now support
4857 if (cast
<ConstantSDNode
>(ARMcc
)->getZExtValue() == ARMCC::PL
)
4858 ARMcc
= DAG
.getConstant(ARMCC::GE
, dl
, MVT::i32
);
4859 return getCMOV(dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
, Cmp
, DAG
);
4862 ARMCC::CondCodes CondCode
, CondCode2
;
4864 FPCCToARMCC(CC
, CondCode
, CondCode2
, InvalidOnQNaN
);
4866 // Normalize the fp compare. If RHS is zero we prefer to keep it there so we
4867 // match CMPFPw0 instead of CMPFP, though we don't do this for f16 because we
4868 // must use VSEL (limited condition codes), due to not having conditional f16
4870 if (Subtarget
->hasFPARMv8Base() &&
4871 !(isFloatingPointZero(RHS
) && TrueVal
.getValueType() != MVT::f16
) &&
4872 (TrueVal
.getValueType() == MVT::f16
||
4873 TrueVal
.getValueType() == MVT::f32
||
4874 TrueVal
.getValueType() == MVT::f64
)) {
4875 bool swpCmpOps
= false;
4876 bool swpVselOps
= false;
4877 checkVSELConstraints(CC
, CondCode
, swpCmpOps
, swpVselOps
);
4879 if (CondCode
== ARMCC::GT
|| CondCode
== ARMCC::GE
||
4880 CondCode
== ARMCC::VS
|| CondCode
== ARMCC::EQ
) {
4882 std::swap(LHS
, RHS
);
4884 std::swap(TrueVal
, FalseVal
);
4888 SDValue ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
4889 SDValue Cmp
= getVFPCmp(LHS
, RHS
, DAG
, dl
, InvalidOnQNaN
);
4890 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4891 SDValue Result
= getCMOV(dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
, Cmp
, DAG
);
4892 if (CondCode2
!= ARMCC::AL
) {
4893 SDValue ARMcc2
= DAG
.getConstant(CondCode2
, dl
, MVT::i32
);
4894 // FIXME: Needs another CMP because flag can have but one use.
4895 SDValue Cmp2
= getVFPCmp(LHS
, RHS
, DAG
, dl
, InvalidOnQNaN
);
4896 Result
= getCMOV(dl
, VT
, Result
, TrueVal
, ARMcc2
, CCR
, Cmp2
, DAG
);
4901 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
4902 /// to morph to an integer compare sequence.
4903 static bool canChangeToInt(SDValue Op
, bool &SeenZero
,
4904 const ARMSubtarget
*Subtarget
) {
4905 SDNode
*N
= Op
.getNode();
4906 if (!N
->hasOneUse())
4907 // Otherwise it requires moving the value from fp to integer registers.
4909 if (!N
->getNumValues())
4911 EVT VT
= Op
.getValueType();
4912 if (VT
!= MVT::f32
&& !Subtarget
->isFPBrccSlow())
4913 // f32 case is generally profitable. f64 case only makes sense when vcmpe +
4914 // vmrs are very slow, e.g. cortex-a8.
4917 if (isFloatingPointZero(Op
)) {
4921 return ISD::isNormalLoad(N
);
4924 static SDValue
bitcastf32Toi32(SDValue Op
, SelectionDAG
&DAG
) {
4925 if (isFloatingPointZero(Op
))
4926 return DAG
.getConstant(0, SDLoc(Op
), MVT::i32
);
4928 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Op
))
4929 return DAG
.getLoad(MVT::i32
, SDLoc(Op
), Ld
->getChain(), Ld
->getBasePtr(),
4930 Ld
->getPointerInfo(), Ld
->getAlignment(),
4931 Ld
->getMemOperand()->getFlags());
4933 llvm_unreachable("Unknown VFP cmp argument!");
4936 static void expandf64Toi32(SDValue Op
, SelectionDAG
&DAG
,
4937 SDValue
&RetVal1
, SDValue
&RetVal2
) {
4940 if (isFloatingPointZero(Op
)) {
4941 RetVal1
= DAG
.getConstant(0, dl
, MVT::i32
);
4942 RetVal2
= DAG
.getConstant(0, dl
, MVT::i32
);
4946 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Op
)) {
4947 SDValue Ptr
= Ld
->getBasePtr();
4949 DAG
.getLoad(MVT::i32
, dl
, Ld
->getChain(), Ptr
, Ld
->getPointerInfo(),
4950 Ld
->getAlignment(), Ld
->getMemOperand()->getFlags());
4952 EVT PtrType
= Ptr
.getValueType();
4953 unsigned NewAlign
= MinAlign(Ld
->getAlignment(), 4);
4954 SDValue NewPtr
= DAG
.getNode(ISD::ADD
, dl
,
4955 PtrType
, Ptr
, DAG
.getConstant(4, dl
, PtrType
));
4956 RetVal2
= DAG
.getLoad(MVT::i32
, dl
, Ld
->getChain(), NewPtr
,
4957 Ld
->getPointerInfo().getWithOffset(4), NewAlign
,
4958 Ld
->getMemOperand()->getFlags());
4962 llvm_unreachable("Unknown VFP cmp argument!");
4965 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
4966 /// f32 and even f64 comparisons to integer ones.
4968 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op
, SelectionDAG
&DAG
) const {
4969 SDValue Chain
= Op
.getOperand(0);
4970 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(1))->get();
4971 SDValue LHS
= Op
.getOperand(2);
4972 SDValue RHS
= Op
.getOperand(3);
4973 SDValue Dest
= Op
.getOperand(4);
4976 bool LHSSeenZero
= false;
4977 bool LHSOk
= canChangeToInt(LHS
, LHSSeenZero
, Subtarget
);
4978 bool RHSSeenZero
= false;
4979 bool RHSOk
= canChangeToInt(RHS
, RHSSeenZero
, Subtarget
);
4980 if (LHSOk
&& RHSOk
&& (LHSSeenZero
|| RHSSeenZero
)) {
4981 // If unsafe fp math optimization is enabled and there are no other uses of
4982 // the CMP operands, and the condition code is EQ or NE, we can optimize it
4983 // to an integer comparison.
4984 if (CC
== ISD::SETOEQ
)
4986 else if (CC
== ISD::SETUNE
)
4989 SDValue Mask
= DAG
.getConstant(0x7fffffff, dl
, MVT::i32
);
4991 if (LHS
.getValueType() == MVT::f32
) {
4992 LHS
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
4993 bitcastf32Toi32(LHS
, DAG
), Mask
);
4994 RHS
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
4995 bitcastf32Toi32(RHS
, DAG
), Mask
);
4996 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
4997 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4998 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
,
4999 Chain
, Dest
, ARMcc
, CCR
, Cmp
);
5004 expandf64Toi32(LHS
, DAG
, LHS1
, LHS2
);
5005 expandf64Toi32(RHS
, DAG
, RHS1
, RHS2
);
5006 LHS2
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, LHS2
, Mask
);
5007 RHS2
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, RHS2
, Mask
);
5008 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
5009 ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
5010 SDVTList VTList
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
5011 SDValue Ops
[] = { Chain
, ARMcc
, LHS1
, LHS2
, RHS1
, RHS2
, Dest
};
5012 return DAG
.getNode(ARMISD::BCC_i64
, dl
, VTList
, Ops
);
5018 SDValue
ARMTargetLowering::LowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) const {
5019 SDValue Chain
= Op
.getOperand(0);
5020 SDValue Cond
= Op
.getOperand(1);
5021 SDValue Dest
= Op
.getOperand(2);
5024 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5026 unsigned Opc
= Cond
.getOpcode();
5027 bool OptimizeMul
= (Opc
== ISD::SMULO
|| Opc
== ISD::UMULO
) &&
5028 !Subtarget
->isThumb1Only();
5029 if (Cond
.getResNo() == 1 &&
5030 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
5031 Opc
== ISD::USUBO
|| OptimizeMul
)) {
5032 // Only lower legal XALUO ops.
5033 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Cond
->getValueType(0)))
5036 // The actual operation with overflow check.
5037 SDValue Value
, OverflowCmp
;
5039 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Cond
, DAG
, ARMcc
);
5041 // Reverse the condition code.
5042 ARMCC::CondCodes CondCode
=
5043 (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(ARMcc
)->getZExtValue();
5044 CondCode
= ARMCC::getOppositeCondition(CondCode
);
5045 ARMcc
= DAG
.getConstant(CondCode
, SDLoc(ARMcc
), MVT::i32
);
5046 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5048 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, ARMcc
, CCR
,
5055 SDValue
ARMTargetLowering::LowerBR_CC(SDValue Op
, SelectionDAG
&DAG
) const {
5056 SDValue Chain
= Op
.getOperand(0);
5057 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(1))->get();
5058 SDValue LHS
= Op
.getOperand(2);
5059 SDValue RHS
= Op
.getOperand(3);
5060 SDValue Dest
= Op
.getOperand(4);
5063 if (isUnsupportedFloatingType(LHS
.getValueType())) {
5064 DAG
.getTargetLoweringInfo().softenSetCCOperands(
5065 DAG
, LHS
.getValueType(), LHS
, RHS
, CC
, dl
);
5067 // If softenSetCCOperands only returned one value, we should compare it to
5069 if (!RHS
.getNode()) {
5070 RHS
= DAG
.getConstant(0, dl
, LHS
.getValueType());
5075 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5077 unsigned Opc
= LHS
.getOpcode();
5078 bool OptimizeMul
= (Opc
== ISD::SMULO
|| Opc
== ISD::UMULO
) &&
5079 !Subtarget
->isThumb1Only();
5080 if (LHS
.getResNo() == 1 && (isOneConstant(RHS
) || isNullConstant(RHS
)) &&
5081 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
5082 Opc
== ISD::USUBO
|| OptimizeMul
) &&
5083 (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
5084 // Only lower legal XALUO ops.
5085 if (!DAG
.getTargetLoweringInfo().isTypeLegal(LHS
->getValueType(0)))
5088 // The actual operation with overflow check.
5089 SDValue Value
, OverflowCmp
;
5091 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(LHS
.getValue(0), DAG
, ARMcc
);
5093 if ((CC
== ISD::SETNE
) != isOneConstant(RHS
)) {
5094 // Reverse the condition code.
5095 ARMCC::CondCodes CondCode
=
5096 (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(ARMcc
)->getZExtValue();
5097 CondCode
= ARMCC::getOppositeCondition(CondCode
);
5098 ARMcc
= DAG
.getConstant(CondCode
, SDLoc(ARMcc
), MVT::i32
);
5100 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5102 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, ARMcc
, CCR
,
5106 if (LHS
.getValueType() == MVT::i32
) {
5108 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
5109 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5110 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
,
5111 Chain
, Dest
, ARMcc
, CCR
, Cmp
);
5114 if (getTargetMachine().Options
.UnsafeFPMath
&&
5115 (CC
== ISD::SETEQ
|| CC
== ISD::SETOEQ
||
5116 CC
== ISD::SETNE
|| CC
== ISD::SETUNE
)) {
5117 if (SDValue Result
= OptimizeVFPBrcond(Op
, DAG
))
5121 ARMCC::CondCodes CondCode
, CondCode2
;
5123 FPCCToARMCC(CC
, CondCode
, CondCode2
, InvalidOnQNaN
);
5125 SDValue ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
5126 SDValue Cmp
= getVFPCmp(LHS
, RHS
, DAG
, dl
, InvalidOnQNaN
);
5127 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5128 SDVTList VTList
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
5129 SDValue Ops
[] = { Chain
, Dest
, ARMcc
, CCR
, Cmp
};
5130 SDValue Res
= DAG
.getNode(ARMISD::BRCOND
, dl
, VTList
, Ops
);
5131 if (CondCode2
!= ARMCC::AL
) {
5132 ARMcc
= DAG
.getConstant(CondCode2
, dl
, MVT::i32
);
5133 SDValue Ops
[] = { Res
, Dest
, ARMcc
, CCR
, Res
.getValue(1) };
5134 Res
= DAG
.getNode(ARMISD::BRCOND
, dl
, VTList
, Ops
);
5139 SDValue
ARMTargetLowering::LowerBR_JT(SDValue Op
, SelectionDAG
&DAG
) const {
5140 SDValue Chain
= Op
.getOperand(0);
5141 SDValue Table
= Op
.getOperand(1);
5142 SDValue Index
= Op
.getOperand(2);
5145 EVT PTy
= getPointerTy(DAG
.getDataLayout());
5146 JumpTableSDNode
*JT
= cast
<JumpTableSDNode
>(Table
);
5147 SDValue JTI
= DAG
.getTargetJumpTable(JT
->getIndex(), PTy
);
5148 Table
= DAG
.getNode(ARMISD::WrapperJT
, dl
, MVT::i32
, JTI
);
5149 Index
= DAG
.getNode(ISD::MUL
, dl
, PTy
, Index
, DAG
.getConstant(4, dl
, PTy
));
5150 SDValue Addr
= DAG
.getNode(ISD::ADD
, dl
, PTy
, Table
, Index
);
5151 if (Subtarget
->isThumb2() || (Subtarget
->hasV8MBaselineOps() && Subtarget
->isThumb())) {
5152 // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
5153 // which does another jump to the destination. This also makes it easier
5154 // to translate it to TBB / TBH later (Thumb2 only).
5155 // FIXME: This might not work if the function is extremely large.
5156 return DAG
.getNode(ARMISD::BR2_JT
, dl
, MVT::Other
, Chain
,
5157 Addr
, Op
.getOperand(2), JTI
);
5159 if (isPositionIndependent() || Subtarget
->isROPI()) {
5161 DAG
.getLoad((EVT
)MVT::i32
, dl
, Chain
, Addr
,
5162 MachinePointerInfo::getJumpTable(DAG
.getMachineFunction()));
5163 Chain
= Addr
.getValue(1);
5164 Addr
= DAG
.getNode(ISD::ADD
, dl
, PTy
, Table
, Addr
);
5165 return DAG
.getNode(ARMISD::BR_JT
, dl
, MVT::Other
, Chain
, Addr
, JTI
);
5168 DAG
.getLoad(PTy
, dl
, Chain
, Addr
,
5169 MachinePointerInfo::getJumpTable(DAG
.getMachineFunction()));
5170 Chain
= Addr
.getValue(1);
5171 return DAG
.getNode(ARMISD::BR_JT
, dl
, MVT::Other
, Chain
, Addr
, JTI
);
5175 static SDValue
LowerVectorFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
) {
5176 EVT VT
= Op
.getValueType();
5179 if (Op
.getValueType().getVectorElementType() == MVT::i32
) {
5180 if (Op
.getOperand(0).getValueType().getVectorElementType() == MVT::f32
)
5182 return DAG
.UnrollVectorOp(Op
.getNode());
5185 const bool HasFullFP16
=
5186 static_cast<const ARMSubtarget
&>(DAG
.getSubtarget()).hasFullFP16();
5189 const EVT OpTy
= Op
.getOperand(0).getValueType();
5190 if (OpTy
== MVT::v4f32
)
5192 else if (OpTy
== MVT::v4f16
&& HasFullFP16
)
5194 else if (OpTy
== MVT::v8f16
&& HasFullFP16
)
5197 llvm_unreachable("Invalid type for custom lowering!");
5199 if (VT
!= MVT::v4i16
&& VT
!= MVT::v8i16
)
5200 return DAG
.UnrollVectorOp(Op
.getNode());
5202 Op
= DAG
.getNode(Op
.getOpcode(), dl
, NewTy
, Op
.getOperand(0));
5203 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Op
);
5206 SDValue
ARMTargetLowering::LowerFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
) const {
5207 EVT VT
= Op
.getValueType();
5209 return LowerVectorFP_TO_INT(Op
, DAG
);
5210 if (isUnsupportedFloatingType(Op
.getOperand(0).getValueType())) {
5212 if (Op
.getOpcode() == ISD::FP_TO_SINT
)
5213 LC
= RTLIB::getFPTOSINT(Op
.getOperand(0).getValueType(),
5216 LC
= RTLIB::getFPTOUINT(Op
.getOperand(0).getValueType(),
5218 MakeLibCallOptions CallOptions
;
5219 return makeLibCall(DAG
, LC
, Op
.getValueType(), Op
.getOperand(0),
5220 CallOptions
, SDLoc(Op
)).first
;
5226 static SDValue
LowerVectorINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) {
5227 EVT VT
= Op
.getValueType();
5230 if (Op
.getOperand(0).getValueType().getVectorElementType() == MVT::i32
) {
5231 if (VT
.getVectorElementType() == MVT::f32
)
5233 return DAG
.UnrollVectorOp(Op
.getNode());
5236 assert((Op
.getOperand(0).getValueType() == MVT::v4i16
||
5237 Op
.getOperand(0).getValueType() == MVT::v8i16
) &&
5238 "Invalid type for custom lowering!");
5240 const bool HasFullFP16
=
5241 static_cast<const ARMSubtarget
&>(DAG
.getSubtarget()).hasFullFP16();
5244 if (VT
== MVT::v4f32
)
5245 DestVecType
= MVT::v4i32
;
5246 else if (VT
== MVT::v4f16
&& HasFullFP16
)
5247 DestVecType
= MVT::v4i16
;
5248 else if (VT
== MVT::v8f16
&& HasFullFP16
)
5249 DestVecType
= MVT::v8i16
;
5251 return DAG
.UnrollVectorOp(Op
.getNode());
5255 switch (Op
.getOpcode()) {
5256 default: llvm_unreachable("Invalid opcode!");
5257 case ISD::SINT_TO_FP
:
5258 CastOpc
= ISD::SIGN_EXTEND
;
5259 Opc
= ISD::SINT_TO_FP
;
5261 case ISD::UINT_TO_FP
:
5262 CastOpc
= ISD::ZERO_EXTEND
;
5263 Opc
= ISD::UINT_TO_FP
;
5267 Op
= DAG
.getNode(CastOpc
, dl
, DestVecType
, Op
.getOperand(0));
5268 return DAG
.getNode(Opc
, dl
, VT
, Op
);
5271 SDValue
ARMTargetLowering::LowerINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) const {
5272 EVT VT
= Op
.getValueType();
5274 return LowerVectorINT_TO_FP(Op
, DAG
);
5275 if (isUnsupportedFloatingType(VT
)) {
5277 if (Op
.getOpcode() == ISD::SINT_TO_FP
)
5278 LC
= RTLIB::getSINTTOFP(Op
.getOperand(0).getValueType(),
5281 LC
= RTLIB::getUINTTOFP(Op
.getOperand(0).getValueType(),
5283 MakeLibCallOptions CallOptions
;
5284 return makeLibCall(DAG
, LC
, Op
.getValueType(), Op
.getOperand(0),
5285 CallOptions
, SDLoc(Op
)).first
;
5291 SDValue
ARMTargetLowering::LowerFCOPYSIGN(SDValue Op
, SelectionDAG
&DAG
) const {
5292 // Implement fcopysign with a fabs and a conditional fneg.
5293 SDValue Tmp0
= Op
.getOperand(0);
5294 SDValue Tmp1
= Op
.getOperand(1);
5296 EVT VT
= Op
.getValueType();
5297 EVT SrcVT
= Tmp1
.getValueType();
5298 bool InGPR
= Tmp0
.getOpcode() == ISD::BITCAST
||
5299 Tmp0
.getOpcode() == ARMISD::VMOVDRR
;
5300 bool UseNEON
= !InGPR
&& Subtarget
->hasNEON();
5303 // Use VBSL to copy the sign bit.
5304 unsigned EncodedVal
= ARM_AM::createVMOVModImm(0x6, 0x80);
5305 SDValue Mask
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v2i32
,
5306 DAG
.getTargetConstant(EncodedVal
, dl
, MVT::i32
));
5307 EVT OpVT
= (VT
== MVT::f32
) ? MVT::v2i32
: MVT::v1i64
;
5309 Mask
= DAG
.getNode(ARMISD::VSHLIMM
, dl
, OpVT
,
5310 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Mask
),
5311 DAG
.getConstant(32, dl
, MVT::i32
));
5312 else /*if (VT == MVT::f32)*/
5313 Tmp0
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2f32
, Tmp0
);
5314 if (SrcVT
== MVT::f32
) {
5315 Tmp1
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2f32
, Tmp1
);
5317 Tmp1
= DAG
.getNode(ARMISD::VSHLIMM
, dl
, OpVT
,
5318 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp1
),
5319 DAG
.getConstant(32, dl
, MVT::i32
));
5320 } else if (VT
== MVT::f32
)
5321 Tmp1
= DAG
.getNode(ARMISD::VSHRuIMM
, dl
, MVT::v1i64
,
5322 DAG
.getNode(ISD::BITCAST
, dl
, MVT::v1i64
, Tmp1
),
5323 DAG
.getConstant(32, dl
, MVT::i32
));
5324 Tmp0
= DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp0
);
5325 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp1
);
5327 SDValue AllOnes
= DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff),
5329 AllOnes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v8i8
, AllOnes
);
5330 SDValue MaskNot
= DAG
.getNode(ISD::XOR
, dl
, OpVT
, Mask
,
5331 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, AllOnes
));
5333 SDValue Res
= DAG
.getNode(ISD::OR
, dl
, OpVT
,
5334 DAG
.getNode(ISD::AND
, dl
, OpVT
, Tmp1
, Mask
),
5335 DAG
.getNode(ISD::AND
, dl
, OpVT
, Tmp0
, MaskNot
));
5336 if (VT
== MVT::f32
) {
5337 Res
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v2f32
, Res
);
5338 Res
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f32
, Res
,
5339 DAG
.getConstant(0, dl
, MVT::i32
));
5341 Res
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Res
);
5347 // Bitcast operand 1 to i32.
5348 if (SrcVT
== MVT::f64
)
5349 Tmp1
= DAG
.getNode(ARMISD::VMOVRRD
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
5351 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Tmp1
);
5353 // Or in the signbit with integer operations.
5354 SDValue Mask1
= DAG
.getConstant(0x80000000, dl
, MVT::i32
);
5355 SDValue Mask2
= DAG
.getConstant(0x7fffffff, dl
, MVT::i32
);
5356 Tmp1
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Tmp1
, Mask1
);
5357 if (VT
== MVT::f32
) {
5358 Tmp0
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
5359 DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Tmp0
), Mask2
);
5360 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::f32
,
5361 DAG
.getNode(ISD::OR
, dl
, MVT::i32
, Tmp0
, Tmp1
));
5364 // f64: Or the high part with signbit and then combine two parts.
5365 Tmp0
= DAG
.getNode(ARMISD::VMOVRRD
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
5367 SDValue Lo
= Tmp0
.getValue(0);
5368 SDValue Hi
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Tmp0
.getValue(1), Mask2
);
5369 Hi
= DAG
.getNode(ISD::OR
, dl
, MVT::i32
, Hi
, Tmp1
);
5370 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
5373 SDValue
ARMTargetLowering::LowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) const{
5374 MachineFunction
&MF
= DAG
.getMachineFunction();
5375 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
5376 MFI
.setReturnAddressIsTaken(true);
5378 if (verifyReturnAddressArgumentIsConstant(Op
, DAG
))
5381 EVT VT
= Op
.getValueType();
5383 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5385 SDValue FrameAddr
= LowerFRAMEADDR(Op
, DAG
);
5386 SDValue Offset
= DAG
.getConstant(4, dl
, MVT::i32
);
5387 return DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(),
5388 DAG
.getNode(ISD::ADD
, dl
, VT
, FrameAddr
, Offset
),
5389 MachinePointerInfo());
5392 // Return LR, which contains the return address. Mark it an implicit live-in.
5393 unsigned Reg
= MF
.addLiveIn(ARM::LR
, getRegClassFor(MVT::i32
));
5394 return DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, Reg
, VT
);
5397 SDValue
ARMTargetLowering::LowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) const {
5398 const ARMBaseRegisterInfo
&ARI
=
5399 *static_cast<const ARMBaseRegisterInfo
*>(RegInfo
);
5400 MachineFunction
&MF
= DAG
.getMachineFunction();
5401 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
5402 MFI
.setFrameAddressIsTaken(true);
5404 EVT VT
= Op
.getValueType();
5405 SDLoc
dl(Op
); // FIXME probably not meaningful
5406 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5407 Register FrameReg
= ARI
.getFrameRegister(MF
);
5408 SDValue FrameAddr
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, FrameReg
, VT
);
5410 FrameAddr
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), FrameAddr
,
5411 MachinePointerInfo());
5415 // FIXME? Maybe this could be a TableGen attribute on some registers and
5416 // this table could be generated automatically from RegInfo.
5417 unsigned ARMTargetLowering::getRegisterByName(const char* RegName
, EVT VT
,
5418 SelectionDAG
&DAG
) const {
5419 unsigned Reg
= StringSwitch
<unsigned>(RegName
)
5420 .Case("sp", ARM::SP
)
5424 report_fatal_error(Twine("Invalid register name \""
5425 + StringRef(RegName
) + "\"."));
5428 // Result is 64 bit value so split into two 32 bit values and return as a
5430 static void ExpandREAD_REGISTER(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
5431 SelectionDAG
&DAG
) {
5434 // This function is only supposed to be called for i64 type destination.
5435 assert(N
->getValueType(0) == MVT::i64
5436 && "ExpandREAD_REGISTER called for non-i64 type result.");
5438 SDValue Read
= DAG
.getNode(ISD::READ_REGISTER
, DL
,
5439 DAG
.getVTList(MVT::i32
, MVT::i32
, MVT::Other
),
5443 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, Read
.getValue(0),
5445 Results
.push_back(Read
.getOperand(0));
5448 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
5449 /// When \p DstVT, the destination type of \p BC, is on the vector
5450 /// register bank and the source of bitcast, \p Op, operates on the same bank,
5451 /// it might be possible to combine them, such that everything stays on the
5452 /// vector register bank.
5453 /// \p return The node that would replace \p BT, if the combine
5455 static SDValue
CombineVMOVDRRCandidateWithVecOp(const SDNode
*BC
,
5456 SelectionDAG
&DAG
) {
5457 SDValue Op
= BC
->getOperand(0);
5458 EVT DstVT
= BC
->getValueType(0);
5460 // The only vector instruction that can produce a scalar (remember,
5461 // since the bitcast was about to be turned into VMOVDRR, the source
5462 // type is i64) from a vector is EXTRACT_VECTOR_ELT.
5463 // Moreover, we can do this combine only if there is one use.
5464 // Finally, if the destination type is not a vector, there is not
5465 // much point on forcing everything on the vector bank.
5466 if (!DstVT
.isVector() || Op
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
5470 // If the index is not constant, we will introduce an additional
5471 // multiply that will stick.
5472 // Give up in that case.
5473 ConstantSDNode
*Index
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
5476 unsigned DstNumElt
= DstVT
.getVectorNumElements();
5478 // Compute the new index.
5479 const APInt
&APIntIndex
= Index
->getAPIntValue();
5480 APInt
NewIndex(APIntIndex
.getBitWidth(), DstNumElt
);
5481 NewIndex
*= APIntIndex
;
5482 // Check if the new constant index fits into i32.
5483 if (NewIndex
.getBitWidth() > 32)
5486 // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
5487 // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
5489 SDValue ExtractSrc
= Op
.getOperand(0);
5490 EVT VecVT
= EVT::getVectorVT(
5491 *DAG
.getContext(), DstVT
.getScalarType(),
5492 ExtractSrc
.getValueType().getVectorNumElements() * DstNumElt
);
5493 SDValue BitCast
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, ExtractSrc
);
5494 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DstVT
, BitCast
,
5495 DAG
.getConstant(NewIndex
.getZExtValue(), dl
, MVT::i32
));
5498 /// ExpandBITCAST - If the target supports VFP, this function is called to
5499 /// expand a bit convert where either the source or destination type is i64 to
5500 /// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
5501 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
5502 /// vectors), since the legalizer won't know what to do with that.
5503 static SDValue
ExpandBITCAST(SDNode
*N
, SelectionDAG
&DAG
,
5504 const ARMSubtarget
*Subtarget
) {
5505 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5507 SDValue Op
= N
->getOperand(0);
5509 // This function is only supposed to be called for i64 types, either as the
5510 // source or destination of the bit convert.
5511 EVT SrcVT
= Op
.getValueType();
5512 EVT DstVT
= N
->getValueType(0);
5513 const bool HasFullFP16
= Subtarget
->hasFullFP16();
5515 if (SrcVT
== MVT::f32
&& DstVT
== MVT::i32
) {
5516 // FullFP16: half values are passed in S-registers, and we don't
5517 // need any of the bitcast and moves:
5519 // t2: f32,ch = CopyFromReg t0, Register:f32 %0
5520 // t5: i32 = bitcast t2
5521 // t18: f16 = ARMISD::VMOVhr t5
5522 if (Op
.getOpcode() != ISD::CopyFromReg
||
5523 Op
.getValueType() != MVT::f32
)
5526 auto Move
= N
->use_begin();
5527 if (Move
->getOpcode() != ARMISD::VMOVhr
)
5530 SDValue Ops
[] = { Op
.getOperand(0), Op
.getOperand(1) };
5531 SDValue Copy
= DAG
.getNode(ISD::CopyFromReg
, SDLoc(Op
), MVT::f16
, Ops
);
5532 DAG
.ReplaceAllUsesWith(*Move
, &Copy
);
5536 if (SrcVT
== MVT::i16
&& DstVT
== MVT::f16
) {
5539 // SoftFP: read half-precision arguments:
5542 // t7: i16 = truncate t2 <~~~~ Op
5543 // t8: f16 = bitcast t7 <~~~~ N
5545 if (Op
.getOperand(0).getValueType() == MVT::i32
)
5546 return DAG
.getNode(ARMISD::VMOVhr
, SDLoc(Op
),
5547 MVT::f16
, Op
.getOperand(0));
5552 // Half-precision return values
5553 if (SrcVT
== MVT::f16
&& DstVT
== MVT::i16
) {
5557 // t11: f16 = fadd t8, t10
5558 // t12: i16 = bitcast t11 <~~~ SDNode N
5559 // t13: i32 = zero_extend t12
5560 // t16: ch,glue = CopyToReg t0, Register:i32 %r0, t13
5561 // t17: ch = ARMISD::RET_FLAG t16, Register:i32 %r0, t16:1
5563 // transform this into:
5565 // t20: i32 = ARMISD::VMOVrh t11
5566 // t16: ch,glue = CopyToReg t0, Register:i32 %r0, t20
5568 auto ZeroExtend
= N
->use_begin();
5569 if (N
->use_size() != 1 || ZeroExtend
->getOpcode() != ISD::ZERO_EXTEND
||
5570 ZeroExtend
->getValueType(0) != MVT::i32
)
5573 auto Copy
= ZeroExtend
->use_begin();
5574 if (Copy
->getOpcode() == ISD::CopyToReg
&&
5575 Copy
->use_begin()->getOpcode() == ARMISD::RET_FLAG
) {
5576 SDValue Cvt
= DAG
.getNode(ARMISD::VMOVrh
, SDLoc(Op
), MVT::i32
, Op
);
5577 DAG
.ReplaceAllUsesWith(*ZeroExtend
, &Cvt
);
5583 if (!(SrcVT
== MVT::i64
|| DstVT
== MVT::i64
))
5586 // Turn i64->f64 into VMOVDRR.
5587 if (SrcVT
== MVT::i64
&& TLI
.isTypeLegal(DstVT
)) {
5588 // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
5589 // if we can combine the bitcast with its source.
5590 if (SDValue Val
= CombineVMOVDRRCandidateWithVecOp(N
, DAG
))
5593 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, Op
,
5594 DAG
.getConstant(0, dl
, MVT::i32
));
5595 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, Op
,
5596 DAG
.getConstant(1, dl
, MVT::i32
));
5597 return DAG
.getNode(ISD::BITCAST
, dl
, DstVT
,
5598 DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
));
5601 // Turn f64->i64 into VMOVRRD.
5602 if (DstVT
== MVT::i64
&& TLI
.isTypeLegal(SrcVT
)) {
5604 if (DAG
.getDataLayout().isBigEndian() && SrcVT
.isVector() &&
5605 SrcVT
.getVectorNumElements() > 1)
5606 Cvt
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
5607 DAG
.getVTList(MVT::i32
, MVT::i32
),
5608 DAG
.getNode(ARMISD::VREV64
, dl
, SrcVT
, Op
));
5610 Cvt
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
5611 DAG
.getVTList(MVT::i32
, MVT::i32
), Op
);
5612 // Merge the pieces into a single i64 value.
5613 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Cvt
, Cvt
.getValue(1));
5619 /// getZeroVector - Returns a vector of specified type with all zero elements.
5620 /// Zero vectors are used to represent vector negation and in those cases
5621 /// will be implemented with the NEON VNEG instruction. However, VNEG does
5622 /// not support i64 elements, so sometimes the zero vectors will need to be
5623 /// explicitly constructed. Regardless, use a canonical VMOV to create the
5625 static SDValue
getZeroVector(EVT VT
, SelectionDAG
&DAG
, const SDLoc
&dl
) {
5626 assert(VT
.isVector() && "Expected a vector type");
5627 // The canonical modified immediate encoding of a zero vector is....0!
5628 SDValue EncodedVal
= DAG
.getTargetConstant(0, dl
, MVT::i32
);
5629 EVT VmovVT
= VT
.is128BitVector() ? MVT::v4i32
: MVT::v2i32
;
5630 SDValue Vmov
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VmovVT
, EncodedVal
);
5631 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
5634 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
5635 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5636 SDValue
ARMTargetLowering::LowerShiftRightParts(SDValue Op
,
5637 SelectionDAG
&DAG
) const {
5638 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
5639 EVT VT
= Op
.getValueType();
5640 unsigned VTBits
= VT
.getSizeInBits();
5642 SDValue ShOpLo
= Op
.getOperand(0);
5643 SDValue ShOpHi
= Op
.getOperand(1);
5644 SDValue ShAmt
= Op
.getOperand(2);
5646 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5647 unsigned Opc
= (Op
.getOpcode() == ISD::SRA_PARTS
) ? ISD::SRA
: ISD::SRL
;
5649 assert(Op
.getOpcode() == ISD::SRA_PARTS
|| Op
.getOpcode() == ISD::SRL_PARTS
);
5651 SDValue RevShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
5652 DAG
.getConstant(VTBits
, dl
, MVT::i32
), ShAmt
);
5653 SDValue Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, ShOpLo
, ShAmt
);
5654 SDValue ExtraShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, ShAmt
,
5655 DAG
.getConstant(VTBits
, dl
, MVT::i32
));
5656 SDValue Tmp2
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpHi
, RevShAmt
);
5657 SDValue LoSmallShift
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp1
, Tmp2
);
5658 SDValue LoBigShift
= DAG
.getNode(Opc
, dl
, VT
, ShOpHi
, ExtraShAmt
);
5659 SDValue CmpLo
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5660 ISD::SETGE
, ARMcc
, DAG
, dl
);
5661 SDValue Lo
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LoSmallShift
, LoBigShift
,
5664 SDValue HiSmallShift
= DAG
.getNode(Opc
, dl
, VT
, ShOpHi
, ShAmt
);
5665 SDValue HiBigShift
= Opc
== ISD::SRA
5666 ? DAG
.getNode(Opc
, dl
, VT
, ShOpHi
,
5667 DAG
.getConstant(VTBits
- 1, dl
, VT
))
5668 : DAG
.getConstant(0, dl
, VT
);
5669 SDValue CmpHi
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5670 ISD::SETGE
, ARMcc
, DAG
, dl
);
5671 SDValue Hi
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, HiSmallShift
, HiBigShift
,
5674 SDValue Ops
[2] = { Lo
, Hi
};
5675 return DAG
.getMergeValues(Ops
, dl
);
5678 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
5679 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5680 SDValue
ARMTargetLowering::LowerShiftLeftParts(SDValue Op
,
5681 SelectionDAG
&DAG
) const {
5682 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
5683 EVT VT
= Op
.getValueType();
5684 unsigned VTBits
= VT
.getSizeInBits();
5686 SDValue ShOpLo
= Op
.getOperand(0);
5687 SDValue ShOpHi
= Op
.getOperand(1);
5688 SDValue ShAmt
= Op
.getOperand(2);
5690 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5692 assert(Op
.getOpcode() == ISD::SHL_PARTS
);
5693 SDValue RevShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
5694 DAG
.getConstant(VTBits
, dl
, MVT::i32
), ShAmt
);
5695 SDValue Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, ShOpLo
, RevShAmt
);
5696 SDValue Tmp2
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpHi
, ShAmt
);
5697 SDValue HiSmallShift
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp1
, Tmp2
);
5699 SDValue ExtraShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, ShAmt
,
5700 DAG
.getConstant(VTBits
, dl
, MVT::i32
));
5701 SDValue HiBigShift
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ExtraShAmt
);
5702 SDValue CmpHi
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5703 ISD::SETGE
, ARMcc
, DAG
, dl
);
5704 SDValue Hi
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, HiSmallShift
, HiBigShift
,
5707 SDValue CmpLo
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5708 ISD::SETGE
, ARMcc
, DAG
, dl
);
5709 SDValue LoSmallShift
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ShAmt
);
5710 SDValue Lo
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LoSmallShift
,
5711 DAG
.getConstant(0, dl
, VT
), ARMcc
, CCR
, CmpLo
);
5713 SDValue Ops
[2] = { Lo
, Hi
};
5714 return DAG
.getMergeValues(Ops
, dl
);
5717 SDValue
ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op
,
5718 SelectionDAG
&DAG
) const {
5719 // The rounding mode is in bits 23:22 of the FPSCR.
5720 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
5721 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
5722 // so that the shift + and get folded into a bitfield extract.
5724 SDValue Ops
[] = { DAG
.getEntryNode(),
5725 DAG
.getConstant(Intrinsic::arm_get_fpscr
, dl
, MVT::i32
) };
5727 SDValue FPSCR
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, dl
, MVT::i32
, Ops
);
5728 SDValue FltRounds
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, FPSCR
,
5729 DAG
.getConstant(1U << 22, dl
, MVT::i32
));
5730 SDValue RMODE
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, FltRounds
,
5731 DAG
.getConstant(22, dl
, MVT::i32
));
5732 return DAG
.getNode(ISD::AND
, dl
, MVT::i32
, RMODE
,
5733 DAG
.getConstant(3, dl
, MVT::i32
));
5736 static SDValue
LowerCTTZ(SDNode
*N
, SelectionDAG
&DAG
,
5737 const ARMSubtarget
*ST
) {
5739 EVT VT
= N
->getValueType(0);
5740 if (VT
.isVector()) {
5741 assert(ST
->hasNEON());
5743 // Compute the least significant set bit: LSB = X & -X
5744 SDValue X
= N
->getOperand(0);
5745 SDValue NX
= DAG
.getNode(ISD::SUB
, dl
, VT
, getZeroVector(VT
, DAG
, dl
), X
);
5746 SDValue LSB
= DAG
.getNode(ISD::AND
, dl
, VT
, X
, NX
);
5748 EVT ElemTy
= VT
.getVectorElementType();
5750 if (ElemTy
== MVT::i8
) {
5751 // Compute with: cttz(x) = ctpop(lsb - 1)
5752 SDValue One
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5753 DAG
.getTargetConstant(1, dl
, ElemTy
));
5754 SDValue Bits
= DAG
.getNode(ISD::SUB
, dl
, VT
, LSB
, One
);
5755 return DAG
.getNode(ISD::CTPOP
, dl
, VT
, Bits
);
5758 if ((ElemTy
== MVT::i16
|| ElemTy
== MVT::i32
) &&
5759 (N
->getOpcode() == ISD::CTTZ_ZERO_UNDEF
)) {
5760 // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
5761 unsigned NumBits
= ElemTy
.getSizeInBits();
5762 SDValue WidthMinus1
=
5763 DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5764 DAG
.getTargetConstant(NumBits
- 1, dl
, ElemTy
));
5765 SDValue CTLZ
= DAG
.getNode(ISD::CTLZ
, dl
, VT
, LSB
);
5766 return DAG
.getNode(ISD::SUB
, dl
, VT
, WidthMinus1
, CTLZ
);
5769 // Compute with: cttz(x) = ctpop(lsb - 1)
5773 if (ElemTy
== MVT::i64
) {
5774 // Load constant 0xffff'ffff'ffff'ffff to register.
5775 SDValue FF
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5776 DAG
.getTargetConstant(0x1eff, dl
, MVT::i32
));
5777 Bits
= DAG
.getNode(ISD::ADD
, dl
, VT
, LSB
, FF
);
5779 SDValue One
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5780 DAG
.getTargetConstant(1, dl
, ElemTy
));
5781 Bits
= DAG
.getNode(ISD::SUB
, dl
, VT
, LSB
, One
);
5783 return DAG
.getNode(ISD::CTPOP
, dl
, VT
, Bits
);
5786 if (!ST
->hasV6T2Ops())
5789 SDValue rbit
= DAG
.getNode(ISD::BITREVERSE
, dl
, VT
, N
->getOperand(0));
5790 return DAG
.getNode(ISD::CTLZ
, dl
, VT
, rbit
);
5793 static SDValue
LowerCTPOP(SDNode
*N
, SelectionDAG
&DAG
,
5794 const ARMSubtarget
*ST
) {
5795 EVT VT
= N
->getValueType(0);
5798 assert(ST
->hasNEON() && "Custom ctpop lowering requires NEON.");
5799 assert((VT
== MVT::v1i64
|| VT
== MVT::v2i64
|| VT
== MVT::v2i32
||
5800 VT
== MVT::v4i32
|| VT
== MVT::v4i16
|| VT
== MVT::v8i16
) &&
5801 "Unexpected type for custom ctpop lowering");
5803 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5804 EVT VT8Bit
= VT
.is64BitVector() ? MVT::v8i8
: MVT::v16i8
;
5805 SDValue Res
= DAG
.getBitcast(VT8Bit
, N
->getOperand(0));
5806 Res
= DAG
.getNode(ISD::CTPOP
, DL
, VT8Bit
, Res
);
5808 // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
5809 unsigned EltSize
= 8;
5810 unsigned NumElts
= VT
.is64BitVector() ? 8 : 16;
5811 while (EltSize
!= VT
.getScalarSizeInBits()) {
5812 SmallVector
<SDValue
, 8> Ops
;
5813 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpaddlu
, DL
,
5814 TLI
.getPointerTy(DAG
.getDataLayout())));
5819 MVT WidenVT
= MVT::getVectorVT(MVT::getIntegerVT(EltSize
), NumElts
);
5820 Res
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, WidenVT
, Ops
);
5826 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
5827 /// operand of a vector shift operation, where all the elements of the
5828 /// build_vector must have the same constant integer value.
5829 static bool getVShiftImm(SDValue Op
, unsigned ElementBits
, int64_t &Cnt
) {
5830 // Ignore bit_converts.
5831 while (Op
.getOpcode() == ISD::BITCAST
)
5832 Op
= Op
.getOperand(0);
5833 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(Op
.getNode());
5834 APInt SplatBits
, SplatUndef
;
5835 unsigned SplatBitSize
;
5838 !BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
,
5840 SplatBitSize
> ElementBits
)
5842 Cnt
= SplatBits
.getSExtValue();
5846 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
5847 /// operand of a vector shift left operation. That value must be in the range:
5848 /// 0 <= Value < ElementBits for a left shift; or
5849 /// 0 <= Value <= ElementBits for a long left shift.
5850 static bool isVShiftLImm(SDValue Op
, EVT VT
, bool isLong
, int64_t &Cnt
) {
5851 assert(VT
.isVector() && "vector shift count is not a vector type");
5852 int64_t ElementBits
= VT
.getScalarSizeInBits();
5853 if (!getVShiftImm(Op
, ElementBits
, Cnt
))
5855 return (Cnt
>= 0 && (isLong
? Cnt
- 1 : Cnt
) < ElementBits
);
5858 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
5859 /// operand of a vector shift right operation. For a shift opcode, the value
5860 /// is positive, but for an intrinsic the value count must be negative. The
5861 /// absolute value must be in the range:
5862 /// 1 <= |Value| <= ElementBits for a right shift; or
5863 /// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
5864 static bool isVShiftRImm(SDValue Op
, EVT VT
, bool isNarrow
, bool isIntrinsic
,
5866 assert(VT
.isVector() && "vector shift count is not a vector type");
5867 int64_t ElementBits
= VT
.getScalarSizeInBits();
5868 if (!getVShiftImm(Op
, ElementBits
, Cnt
))
5871 return (Cnt
>= 1 && Cnt
<= (isNarrow
? ElementBits
/ 2 : ElementBits
));
5872 if (Cnt
>= -(isNarrow
? ElementBits
/ 2 : ElementBits
) && Cnt
<= -1) {
5879 static SDValue
LowerShift(SDNode
*N
, SelectionDAG
&DAG
,
5880 const ARMSubtarget
*ST
) {
5881 EVT VT
= N
->getValueType(0);
5888 // We essentially have two forms here. Shift by an immediate and shift by a
5889 // vector register (there are also shift by a gpr, but that is just handled
5890 // with a tablegen pattern). We cannot easily match shift by an immediate in
5891 // tablegen so we do that here and generate a VSHLIMM/VSHRsIMM/VSHRuIMM.
5892 // For shifting by a vector, we don't have VSHR, only VSHL (which can be
5893 // signed or unsigned, and a negative shift indicates a shift right).
5894 if (N
->getOpcode() == ISD::SHL
) {
5895 if (isVShiftLImm(N
->getOperand(1), VT
, false, Cnt
))
5896 return DAG
.getNode(ARMISD::VSHLIMM
, dl
, VT
, N
->getOperand(0),
5897 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
5898 return DAG
.getNode(ARMISD::VSHLu
, dl
, VT
, N
->getOperand(0),
5902 assert((N
->getOpcode() == ISD::SRA
|| N
->getOpcode() == ISD::SRL
) &&
5903 "unexpected vector shift opcode");
5905 if (isVShiftRImm(N
->getOperand(1), VT
, false, false, Cnt
)) {
5906 unsigned VShiftOpc
=
5907 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHRsIMM
: ARMISD::VSHRuIMM
);
5908 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0),
5909 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
5912 // Other right shifts we don't have operations for (we use a shift left by a
5913 // negative number).
5914 EVT ShiftVT
= N
->getOperand(1).getValueType();
5915 SDValue NegatedCount
= DAG
.getNode(
5916 ISD::SUB
, dl
, ShiftVT
, getZeroVector(ShiftVT
, DAG
, dl
), N
->getOperand(1));
5917 unsigned VShiftOpc
=
5918 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHLs
: ARMISD::VSHLu
);
5919 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0), NegatedCount
);
5922 static SDValue
Expand64BitShift(SDNode
*N
, SelectionDAG
&DAG
,
5923 const ARMSubtarget
*ST
) {
5924 EVT VT
= N
->getValueType(0);
5927 // We can get here for a node like i32 = ISD::SHL i32, i64
5931 assert((N
->getOpcode() == ISD::SRL
|| N
->getOpcode() == ISD::SRA
||
5932 N
->getOpcode() == ISD::SHL
) &&
5933 "Unknown shift to lower!");
5935 unsigned ShOpc
= N
->getOpcode();
5936 if (ST
->hasMVEIntegerOps()) {
5937 SDValue ShAmt
= N
->getOperand(1);
5938 unsigned ShPartsOpc
= ARMISD::LSLL
;
5939 ConstantSDNode
*Con
= dyn_cast
<ConstantSDNode
>(ShAmt
);
5941 // If the shift amount is greater than 32 or has a greater bitwidth than 64
5942 // then do the default optimisation
5943 if (ShAmt
->getValueType(0).getSizeInBits() > 64 ||
5944 (Con
&& Con
->getZExtValue() >= 32))
5947 // Extract the lower 32 bits of the shift amount if it's not an i32
5948 if (ShAmt
->getValueType(0) != MVT::i32
)
5949 ShAmt
= DAG
.getZExtOrTrunc(ShAmt
, dl
, MVT::i32
);
5951 if (ShOpc
== ISD::SRL
) {
5953 // There is no t2LSRLr instruction so negate and perform an lsll if the
5954 // shift amount is in a register, emulating a right shift.
5955 ShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
5956 DAG
.getConstant(0, dl
, MVT::i32
), ShAmt
);
5958 // Else generate an lsrl on the immediate shift amount
5959 ShPartsOpc
= ARMISD::LSRL
;
5960 } else if (ShOpc
== ISD::SRA
)
5961 ShPartsOpc
= ARMISD::ASRL
;
5963 // Lower 32 bits of the destination/source
5964 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
5965 DAG
.getConstant(0, dl
, MVT::i32
));
5966 // Upper 32 bits of the destination/source
5967 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
5968 DAG
.getConstant(1, dl
, MVT::i32
));
5970 // Generate the shift operation as computed above
5971 Lo
= DAG
.getNode(ShPartsOpc
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
), Lo
, Hi
,
5973 // The upper 32 bits come from the second return value of lsll
5974 Hi
= SDValue(Lo
.getNode(), 1);
5975 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
5978 // We only lower SRA, SRL of 1 here, all others use generic lowering.
5979 if (!isOneConstant(N
->getOperand(1)) || N
->getOpcode() == ISD::SHL
)
5982 // If we are in thumb mode, we don't have RRX.
5983 if (ST
->isThumb1Only())
5986 // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
5987 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
5988 DAG
.getConstant(0, dl
, MVT::i32
));
5989 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
5990 DAG
.getConstant(1, dl
, MVT::i32
));
5992 // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
5993 // captures the result into a carry flag.
5994 unsigned Opc
= N
->getOpcode() == ISD::SRL
? ARMISD::SRL_FLAG
:ARMISD::SRA_FLAG
;
5995 Hi
= DAG
.getNode(Opc
, dl
, DAG
.getVTList(MVT::i32
, MVT::Glue
), Hi
);
5997 // The low part is an ARMISD::RRX operand, which shifts the carry in.
5998 Lo
= DAG
.getNode(ARMISD::RRX
, dl
, MVT::i32
, Lo
, Hi
.getValue(1));
6000 // Merge the pieces into a single i64 value.
6001 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
6004 static SDValue
LowerVSETCC(SDValue Op
, SelectionDAG
&DAG
,
6005 const ARMSubtarget
*ST
) {
6006 bool Invert
= false;
6008 unsigned Opc
= ARMCC::AL
;
6010 SDValue Op0
= Op
.getOperand(0);
6011 SDValue Op1
= Op
.getOperand(1);
6012 SDValue CC
= Op
.getOperand(2);
6013 EVT VT
= Op
.getValueType();
6014 ISD::CondCode SetCCOpcode
= cast
<CondCodeSDNode
>(CC
)->get();
6019 CmpVT
= Op0
.getValueType().changeVectorElementTypeToInteger();
6021 assert(ST
->hasMVEIntegerOps() &&
6022 "No hardware support for integer vector comparison!");
6024 if (Op
.getValueType().getVectorElementType() != MVT::i1
)
6027 // Make sure we expand floating point setcc to scalar if we do not have
6028 // mve.fp, so that we can handle them from there.
6029 if (Op0
.getValueType().isFloatingPoint() && !ST
->hasMVEFloatOps())
6035 if (Op0
.getValueType().getVectorElementType() == MVT::i64
&&
6036 (SetCCOpcode
== ISD::SETEQ
|| SetCCOpcode
== ISD::SETNE
)) {
6037 // Special-case integer 64-bit equality comparisons. They aren't legal,
6038 // but they can be lowered with a few vector instructions.
6039 unsigned CmpElements
= CmpVT
.getVectorNumElements() * 2;
6040 EVT SplitVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::i32
, CmpElements
);
6041 SDValue CastOp0
= DAG
.getNode(ISD::BITCAST
, dl
, SplitVT
, Op0
);
6042 SDValue CastOp1
= DAG
.getNode(ISD::BITCAST
, dl
, SplitVT
, Op1
);
6043 SDValue Cmp
= DAG
.getNode(ISD::SETCC
, dl
, SplitVT
, CastOp0
, CastOp1
,
6044 DAG
.getCondCode(ISD::SETEQ
));
6045 SDValue Reversed
= DAG
.getNode(ARMISD::VREV64
, dl
, SplitVT
, Cmp
);
6046 SDValue Merged
= DAG
.getNode(ISD::AND
, dl
, SplitVT
, Cmp
, Reversed
);
6047 Merged
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, Merged
);
6048 if (SetCCOpcode
== ISD::SETNE
)
6049 Merged
= DAG
.getNOT(dl
, Merged
, CmpVT
);
6050 Merged
= DAG
.getSExtOrTrunc(Merged
, dl
, VT
);
6054 if (CmpVT
.getVectorElementType() == MVT::i64
)
6055 // 64-bit comparisons are not legal in general.
6058 if (Op1
.getValueType().isFloatingPoint()) {
6059 switch (SetCCOpcode
) {
6060 default: llvm_unreachable("Illegal FP comparison");
6063 if (ST
->hasMVEFloatOps()) {
6064 Opc
= ARMCC::NE
; break;
6066 Invert
= true; LLVM_FALLTHROUGH
;
6069 case ISD::SETEQ
: Opc
= ARMCC::EQ
; break;
6071 case ISD::SETLT
: Swap
= true; LLVM_FALLTHROUGH
;
6073 case ISD::SETGT
: Opc
= ARMCC::GT
; break;
6075 case ISD::SETLE
: Swap
= true; LLVM_FALLTHROUGH
;
6077 case ISD::SETGE
: Opc
= ARMCC::GE
; break;
6078 case ISD::SETUGE
: Swap
= true; LLVM_FALLTHROUGH
;
6079 case ISD::SETULE
: Invert
= true; Opc
= ARMCC::GT
; break;
6080 case ISD::SETUGT
: Swap
= true; LLVM_FALLTHROUGH
;
6081 case ISD::SETULT
: Invert
= true; Opc
= ARMCC::GE
; break;
6082 case ISD::SETUEQ
: Invert
= true; LLVM_FALLTHROUGH
;
6084 // Expand this to (OLT | OGT).
6085 SDValue TmpOp0
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op1
, Op0
,
6086 DAG
.getConstant(ARMCC::GT
, dl
, MVT::i32
));
6087 SDValue TmpOp1
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op0
, Op1
,
6088 DAG
.getConstant(ARMCC::GT
, dl
, MVT::i32
));
6089 SDValue Result
= DAG
.getNode(ISD::OR
, dl
, CmpVT
, TmpOp0
, TmpOp1
);
6091 Result
= DAG
.getNOT(dl
, Result
, VT
);
6094 case ISD::SETUO
: Invert
= true; LLVM_FALLTHROUGH
;
6096 // Expand this to (OLT | OGE).
6097 SDValue TmpOp0
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op1
, Op0
,
6098 DAG
.getConstant(ARMCC::GT
, dl
, MVT::i32
));
6099 SDValue TmpOp1
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op0
, Op1
,
6100 DAG
.getConstant(ARMCC::GE
, dl
, MVT::i32
));
6101 SDValue Result
= DAG
.getNode(ISD::OR
, dl
, CmpVT
, TmpOp0
, TmpOp1
);
6103 Result
= DAG
.getNOT(dl
, Result
, VT
);
6108 // Integer comparisons.
6109 switch (SetCCOpcode
) {
6110 default: llvm_unreachable("Illegal integer comparison");
6112 if (ST
->hasMVEIntegerOps()) {
6113 Opc
= ARMCC::NE
; break;
6115 Invert
= true; LLVM_FALLTHROUGH
;
6117 case ISD::SETEQ
: Opc
= ARMCC::EQ
; break;
6118 case ISD::SETLT
: Swap
= true; LLVM_FALLTHROUGH
;
6119 case ISD::SETGT
: Opc
= ARMCC::GT
; break;
6120 case ISD::SETLE
: Swap
= true; LLVM_FALLTHROUGH
;
6121 case ISD::SETGE
: Opc
= ARMCC::GE
; break;
6122 case ISD::SETULT
: Swap
= true; LLVM_FALLTHROUGH
;
6123 case ISD::SETUGT
: Opc
= ARMCC::HI
; break;
6124 case ISD::SETULE
: Swap
= true; LLVM_FALLTHROUGH
;
6125 case ISD::SETUGE
: Opc
= ARMCC::HS
; break;
6128 // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
6129 if (ST
->hasNEON() && Opc
== ARMCC::EQ
) {
6131 if (ISD::isBuildVectorAllZeros(Op1
.getNode()))
6133 else if (ISD::isBuildVectorAllZeros(Op0
.getNode()))
6136 // Ignore bitconvert.
6137 if (AndOp
.getNode() && AndOp
.getOpcode() == ISD::BITCAST
)
6138 AndOp
= AndOp
.getOperand(0);
6140 if (AndOp
.getNode() && AndOp
.getOpcode() == ISD::AND
) {
6141 Op0
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, AndOp
.getOperand(0));
6142 Op1
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, AndOp
.getOperand(1));
6143 SDValue Result
= DAG
.getNode(ARMISD::VTST
, dl
, CmpVT
, Op0
, Op1
);
6145 Result
= DAG
.getNOT(dl
, Result
, VT
);
6152 std::swap(Op0
, Op1
);
6154 // If one of the operands is a constant vector zero, attempt to fold the
6155 // comparison to a specialized compare-against-zero form.
6157 if (ISD::isBuildVectorAllZeros(Op1
.getNode()))
6159 else if (ISD::isBuildVectorAllZeros(Op0
.getNode())) {
6160 if (Opc
== ARMCC::GE
)
6162 else if (Opc
== ARMCC::GT
)
6168 if (SingleOp
.getNode()) {
6169 Result
= DAG
.getNode(ARMISD::VCMPZ
, dl
, CmpVT
, SingleOp
,
6170 DAG
.getConstant(Opc
, dl
, MVT::i32
));
6172 Result
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op0
, Op1
,
6173 DAG
.getConstant(Opc
, dl
, MVT::i32
));
6176 Result
= DAG
.getSExtOrTrunc(Result
, dl
, VT
);
6179 Result
= DAG
.getNOT(dl
, Result
, VT
);
6184 static SDValue
LowerSETCCCARRY(SDValue Op
, SelectionDAG
&DAG
) {
6185 SDValue LHS
= Op
.getOperand(0);
6186 SDValue RHS
= Op
.getOperand(1);
6187 SDValue Carry
= Op
.getOperand(2);
6188 SDValue Cond
= Op
.getOperand(3);
6191 assert(LHS
.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
6193 // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
6194 // have to invert the carry first.
6195 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
6196 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
6197 // This converts the boolean value carry into the carry flag.
6198 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
6200 SDVTList VTs
= DAG
.getVTList(LHS
.getValueType(), MVT::i32
);
6201 SDValue Cmp
= DAG
.getNode(ARMISD::SUBE
, DL
, VTs
, LHS
, RHS
, Carry
);
6203 SDValue FVal
= DAG
.getConstant(0, DL
, MVT::i32
);
6204 SDValue TVal
= DAG
.getConstant(1, DL
, MVT::i32
);
6205 SDValue ARMcc
= DAG
.getConstant(
6206 IntCCToARMCC(cast
<CondCodeSDNode
>(Cond
)->get()), DL
, MVT::i32
);
6207 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
6208 SDValue Chain
= DAG
.getCopyToReg(DAG
.getEntryNode(), DL
, ARM::CPSR
,
6209 Cmp
.getValue(1), SDValue());
6210 return DAG
.getNode(ARMISD::CMOV
, DL
, Op
.getValueType(), FVal
, TVal
, ARMcc
,
6211 CCR
, Chain
.getValue(1));
6214 /// isVMOVModifiedImm - Check if the specified splat value corresponds to a
6215 /// valid vector constant for a NEON or MVE instruction with a "modified
6216 /// immediate" operand (e.g., VMOV). If so, return the encoded value.
6217 static SDValue
isVMOVModifiedImm(uint64_t SplatBits
, uint64_t SplatUndef
,
6218 unsigned SplatBitSize
, SelectionDAG
&DAG
,
6219 const SDLoc
&dl
, EVT
&VT
, bool is128Bits
,
6220 VMOVModImmType type
) {
6221 unsigned OpCmode
, Imm
;
6223 // SplatBitSize is set to the smallest size that splats the vector, so a
6224 // zero vector will always have SplatBitSize == 8. However, NEON modified
6225 // immediate instructions others than VMOV do not support the 8-bit encoding
6226 // of a zero vector, and the default encoding of zero is supposed to be the
6231 switch (SplatBitSize
) {
6233 if (type
!= VMOVModImm
)
6235 // Any 1-byte value is OK. Op=0, Cmode=1110.
6236 assert((SplatBits
& ~0xff) == 0 && "one byte splat value is too big");
6239 VT
= is128Bits
? MVT::v16i8
: MVT::v8i8
;
6243 // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
6244 VT
= is128Bits
? MVT::v8i16
: MVT::v4i16
;
6245 if ((SplatBits
& ~0xff) == 0) {
6246 // Value = 0x00nn: Op=x, Cmode=100x.
6251 if ((SplatBits
& ~0xff00) == 0) {
6252 // Value = 0xnn00: Op=x, Cmode=101x.
6254 Imm
= SplatBits
>> 8;
6260 // NEON's 32-bit VMOV supports splat values where:
6261 // * only one byte is nonzero, or
6262 // * the least significant byte is 0xff and the second byte is nonzero, or
6263 // * the least significant 2 bytes are 0xff and the third is nonzero.
6264 VT
= is128Bits
? MVT::v4i32
: MVT::v2i32
;
6265 if ((SplatBits
& ~0xff) == 0) {
6266 // Value = 0x000000nn: Op=x, Cmode=000x.
6271 if ((SplatBits
& ~0xff00) == 0) {
6272 // Value = 0x0000nn00: Op=x, Cmode=001x.
6274 Imm
= SplatBits
>> 8;
6277 if ((SplatBits
& ~0xff0000) == 0) {
6278 // Value = 0x00nn0000: Op=x, Cmode=010x.
6280 Imm
= SplatBits
>> 16;
6283 if ((SplatBits
& ~0xff000000) == 0) {
6284 // Value = 0xnn000000: Op=x, Cmode=011x.
6286 Imm
= SplatBits
>> 24;
6290 // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
6291 if (type
== OtherModImm
) return SDValue();
6293 if ((SplatBits
& ~0xffff) == 0 &&
6294 ((SplatBits
| SplatUndef
) & 0xff) == 0xff) {
6295 // Value = 0x0000nnff: Op=x, Cmode=1100.
6297 Imm
= SplatBits
>> 8;
6301 // cmode == 0b1101 is not supported for MVE VMVN
6302 if (type
== MVEVMVNModImm
)
6305 if ((SplatBits
& ~0xffffff) == 0 &&
6306 ((SplatBits
| SplatUndef
) & 0xffff) == 0xffff) {
6307 // Value = 0x00nnffff: Op=x, Cmode=1101.
6309 Imm
= SplatBits
>> 16;
6313 // Note: there are a few 32-bit splat values (specifically: 00ffff00,
6314 // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
6315 // VMOV.I32. A (very) minor optimization would be to replicate the value
6316 // and fall through here to test for a valid 64-bit splat. But, then the
6317 // caller would also need to check and handle the change in size.
6321 if (type
!= VMOVModImm
)
6323 // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
6324 uint64_t BitMask
= 0xff;
6326 unsigned ImmMask
= 1;
6328 for (int ByteNum
= 0; ByteNum
< 8; ++ByteNum
) {
6329 if (((SplatBits
| SplatUndef
) & BitMask
) == BitMask
) {
6332 } else if ((SplatBits
& BitMask
) != 0) {
6339 if (DAG
.getDataLayout().isBigEndian())
6340 // swap higher and lower 32 bit word
6341 Imm
= ((Imm
& 0xf) << 4) | ((Imm
& 0xf0) >> 4);
6343 // Op=1, Cmode=1110.
6345 VT
= is128Bits
? MVT::v2i64
: MVT::v1i64
;
6350 llvm_unreachable("unexpected size for isVMOVModifiedImm");
6353 unsigned EncodedVal
= ARM_AM::createVMOVModImm(OpCmode
, Imm
);
6354 return DAG
.getTargetConstant(EncodedVal
, dl
, MVT::i32
);
6357 SDValue
ARMTargetLowering::LowerConstantFP(SDValue Op
, SelectionDAG
&DAG
,
6358 const ARMSubtarget
*ST
) const {
6359 EVT VT
= Op
.getValueType();
6360 bool IsDouble
= (VT
== MVT::f64
);
6361 ConstantFPSDNode
*CFP
= cast
<ConstantFPSDNode
>(Op
);
6362 const APFloat
&FPVal
= CFP
->getValueAPF();
6364 // Prevent floating-point constants from using literal loads
6365 // when execute-only is enabled.
6366 if (ST
->genExecuteOnly()) {
6367 // If we can represent the constant as an immediate, don't lower it
6368 if (isFPImmLegal(FPVal
, VT
))
6370 // Otherwise, construct as integer, and move to float register
6371 APInt INTVal
= FPVal
.bitcastToAPInt();
6373 switch (VT
.getSimpleVT().SimpleTy
) {
6375 llvm_unreachable("Unknown floating point type!");
6378 SDValue Lo
= DAG
.getConstant(INTVal
.trunc(32), DL
, MVT::i32
);
6379 SDValue Hi
= DAG
.getConstant(INTVal
.lshr(32).trunc(32), DL
, MVT::i32
);
6380 if (!ST
->isLittle())
6382 return DAG
.getNode(ARMISD::VMOVDRR
, DL
, MVT::f64
, Lo
, Hi
);
6385 return DAG
.getNode(ARMISD::VMOVSR
, DL
, VT
,
6386 DAG
.getConstant(INTVal
, DL
, MVT::i32
));
6390 if (!ST
->hasVFP3Base())
6393 // Use the default (constant pool) lowering for double constants when we have
6395 if (IsDouble
&& !Subtarget
->hasFP64())
6398 // Try splatting with a VMOV.f32...
6399 int ImmVal
= IsDouble
? ARM_AM::getFP64Imm(FPVal
) : ARM_AM::getFP32Imm(FPVal
);
6402 if (IsDouble
|| !ST
->useNEONForSinglePrecisionFP()) {
6403 // We have code in place to select a valid ConstantFP already, no need to
6408 // It's a float and we are trying to use NEON operations where
6409 // possible. Lower it to a splat followed by an extract.
6411 SDValue NewVal
= DAG
.getTargetConstant(ImmVal
, DL
, MVT::i32
);
6412 SDValue VecConstant
= DAG
.getNode(ARMISD::VMOVFPIMM
, DL
, MVT::v2f32
,
6414 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecConstant
,
6415 DAG
.getConstant(0, DL
, MVT::i32
));
6418 // The rest of our options are NEON only, make sure that's allowed before
6420 if (!ST
->hasNEON() || (!IsDouble
&& !ST
->useNEONForSinglePrecisionFP()))
6424 uint64_t iVal
= FPVal
.bitcastToAPInt().getZExtValue();
6426 // It wouldn't really be worth bothering for doubles except for one very
6427 // important value, which does happen to match: 0.0. So make sure we don't do
6429 if (IsDouble
&& (iVal
& 0xffffffff) != (iVal
>> 32))
6432 // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
6433 SDValue NewVal
= isVMOVModifiedImm(iVal
& 0xffffffffU
, 0, 32, DAG
, SDLoc(Op
),
6434 VMovVT
, false, VMOVModImm
);
6435 if (NewVal
!= SDValue()) {
6437 SDValue VecConstant
= DAG
.getNode(ARMISD::VMOVIMM
, DL
, VMovVT
,
6440 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f64
, VecConstant
);
6442 // It's a float: cast and extract a vector element.
6443 SDValue VecFConstant
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v2f32
,
6445 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecFConstant
,
6446 DAG
.getConstant(0, DL
, MVT::i32
));
6449 // Finally, try a VMVN.i32
6450 NewVal
= isVMOVModifiedImm(~iVal
& 0xffffffffU
, 0, 32, DAG
, SDLoc(Op
), VMovVT
,
6452 if (NewVal
!= SDValue()) {
6454 SDValue VecConstant
= DAG
.getNode(ARMISD::VMVNIMM
, DL
, VMovVT
, NewVal
);
6457 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f64
, VecConstant
);
6459 // It's a float: cast and extract a vector element.
6460 SDValue VecFConstant
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v2f32
,
6462 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecFConstant
,
6463 DAG
.getConstant(0, DL
, MVT::i32
));
6469 // check if an VEXT instruction can handle the shuffle mask when the
6470 // vector sources of the shuffle are the same.
6471 static bool isSingletonVEXTMask(ArrayRef
<int> M
, EVT VT
, unsigned &Imm
) {
6472 unsigned NumElts
= VT
.getVectorNumElements();
6474 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6480 // If this is a VEXT shuffle, the immediate value is the index of the first
6481 // element. The other shuffle indices must be the successive elements after
6483 unsigned ExpectedElt
= Imm
;
6484 for (unsigned i
= 1; i
< NumElts
; ++i
) {
6485 // Increment the expected index. If it wraps around, just follow it
6486 // back to index zero and keep going.
6488 if (ExpectedElt
== NumElts
)
6491 if (M
[i
] < 0) continue; // ignore UNDEF indices
6492 if (ExpectedElt
!= static_cast<unsigned>(M
[i
]))
6499 static bool isVEXTMask(ArrayRef
<int> M
, EVT VT
,
6500 bool &ReverseVEXT
, unsigned &Imm
) {
6501 unsigned NumElts
= VT
.getVectorNumElements();
6502 ReverseVEXT
= false;
6504 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6510 // If this is a VEXT shuffle, the immediate value is the index of the first
6511 // element. The other shuffle indices must be the successive elements after
6513 unsigned ExpectedElt
= Imm
;
6514 for (unsigned i
= 1; i
< NumElts
; ++i
) {
6515 // Increment the expected index. If it wraps around, it may still be
6516 // a VEXT but the source vectors must be swapped.
6518 if (ExpectedElt
== NumElts
* 2) {
6523 if (M
[i
] < 0) continue; // ignore UNDEF indices
6524 if (ExpectedElt
!= static_cast<unsigned>(M
[i
]))
6528 // Adjust the index value if the source operands will be swapped.
6535 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
6536 /// instruction with the specified blocksize. (The order of the elements
6537 /// within each block of the vector is reversed.)
6538 static bool isVREVMask(ArrayRef
<int> M
, EVT VT
, unsigned BlockSize
) {
6539 assert((BlockSize
==16 || BlockSize
==32 || BlockSize
==64) &&
6540 "Only possible block sizes for VREV are: 16, 32, 64");
6542 unsigned EltSz
= VT
.getScalarSizeInBits();
6546 unsigned NumElts
= VT
.getVectorNumElements();
6547 unsigned BlockElts
= M
[0] + 1;
6548 // If the first shuffle index is UNDEF, be optimistic.
6550 BlockElts
= BlockSize
/ EltSz
;
6552 if (BlockSize
<= EltSz
|| BlockSize
!= BlockElts
* EltSz
)
6555 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6556 if (M
[i
] < 0) continue; // ignore UNDEF indices
6557 if ((unsigned) M
[i
] != (i
- i
%BlockElts
) + (BlockElts
- 1 - i
%BlockElts
))
6564 static bool isVTBLMask(ArrayRef
<int> M
, EVT VT
) {
6565 // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
6566 // range, then 0 is placed into the resulting vector. So pretty much any mask
6567 // of 8 elements can work here.
6568 return VT
== MVT::v8i8
&& M
.size() == 8;
6571 static unsigned SelectPairHalf(unsigned Elements
, ArrayRef
<int> Mask
,
6573 if (Mask
.size() == Elements
* 2)
6574 return Index
/ Elements
;
6575 return Mask
[Index
] == 0 ? 0 : 1;
6578 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
6579 // checking that pairs of elements in the shuffle mask represent the same index
6580 // in each vector, incrementing the expected index by 2 at each step.
6581 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
6582 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
6584 // WhichResult gives the offset for each element in the mask based on which
6585 // of the two results it belongs to.
6587 // The transpose can be represented either as:
6588 // result1 = shufflevector v1, v2, result1_shuffle_mask
6589 // result2 = shufflevector v1, v2, result2_shuffle_mask
6590 // where v1/v2 and the shuffle masks have the same number of elements
6591 // (here WhichResult (see below) indicates which result is being checked)
6594 // results = shufflevector v1, v2, shuffle_mask
6595 // where both results are returned in one vector and the shuffle mask has twice
6596 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
6597 // want to check the low half and high half of the shuffle mask as if it were
6599 static bool isVTRNMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6600 unsigned EltSz
= VT
.getScalarSizeInBits();
6604 unsigned NumElts
= VT
.getVectorNumElements();
6605 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6608 // If the mask is twice as long as the input vector then we need to check the
6609 // upper and lower parts of the mask with a matching value for WhichResult
6610 // FIXME: A mask with only even values will be rejected in case the first
6611 // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
6612 // M[0] is used to determine WhichResult
6613 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6614 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6615 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6616 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != j
+ WhichResult
) ||
6617 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != j
+ NumElts
+ WhichResult
))
6622 if (M
.size() == NumElts
*2)
6628 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
6629 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6630 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
6631 static bool isVTRN_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6632 unsigned EltSz
= VT
.getScalarSizeInBits();
6636 unsigned NumElts
= VT
.getVectorNumElements();
6637 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6640 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6641 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6642 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6643 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != j
+ WhichResult
) ||
6644 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != j
+ WhichResult
))
6649 if (M
.size() == NumElts
*2)
6655 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
6656 // that the mask elements are either all even and in steps of size 2 or all odd
6657 // and in steps of size 2.
6658 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
6659 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
6661 // Requires similar checks to that of isVTRNMask with
6662 // respect the how results are returned.
6663 static bool isVUZPMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6664 unsigned EltSz
= VT
.getScalarSizeInBits();
6668 unsigned NumElts
= VT
.getVectorNumElements();
6669 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6672 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6673 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6674 for (unsigned j
= 0; j
< NumElts
; ++j
) {
6675 if (M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != 2 * j
+ WhichResult
)
6680 if (M
.size() == NumElts
*2)
6683 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6684 if (VT
.is64BitVector() && EltSz
== 32)
6690 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
6691 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6692 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
6693 static bool isVUZP_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6694 unsigned EltSz
= VT
.getScalarSizeInBits();
6698 unsigned NumElts
= VT
.getVectorNumElements();
6699 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6702 unsigned Half
= NumElts
/ 2;
6703 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6704 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6705 for (unsigned j
= 0; j
< NumElts
; j
+= Half
) {
6706 unsigned Idx
= WhichResult
;
6707 for (unsigned k
= 0; k
< Half
; ++k
) {
6708 int MIdx
= M
[i
+ j
+ k
];
6709 if (MIdx
>= 0 && (unsigned) MIdx
!= Idx
)
6716 if (M
.size() == NumElts
*2)
6719 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6720 if (VT
.is64BitVector() && EltSz
== 32)
6726 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
6727 // that pairs of elements of the shufflemask represent the same index in each
6728 // vector incrementing sequentially through the vectors.
6729 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
6730 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
6732 // Requires similar checks to that of isVTRNMask with respect the how results
6734 static bool isVZIPMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6735 unsigned EltSz
= VT
.getScalarSizeInBits();
6739 unsigned NumElts
= VT
.getVectorNumElements();
6740 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6743 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6744 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6745 unsigned Idx
= WhichResult
* NumElts
/ 2;
6746 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6747 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != Idx
) ||
6748 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != Idx
+ NumElts
))
6754 if (M
.size() == NumElts
*2)
6757 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6758 if (VT
.is64BitVector() && EltSz
== 32)
6764 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
6765 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6766 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
6767 static bool isVZIP_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6768 unsigned EltSz
= VT
.getScalarSizeInBits();
6772 unsigned NumElts
= VT
.getVectorNumElements();
6773 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6776 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6777 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6778 unsigned Idx
= WhichResult
* NumElts
/ 2;
6779 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6780 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != Idx
) ||
6781 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != Idx
))
6787 if (M
.size() == NumElts
*2)
6790 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6791 if (VT
.is64BitVector() && EltSz
== 32)
6797 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
6798 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
6799 static unsigned isNEONTwoResultShuffleMask(ArrayRef
<int> ShuffleMask
, EVT VT
,
6800 unsigned &WhichResult
,
6803 if (isVTRNMask(ShuffleMask
, VT
, WhichResult
))
6804 return ARMISD::VTRN
;
6805 if (isVUZPMask(ShuffleMask
, VT
, WhichResult
))
6806 return ARMISD::VUZP
;
6807 if (isVZIPMask(ShuffleMask
, VT
, WhichResult
))
6808 return ARMISD::VZIP
;
6811 if (isVTRN_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6812 return ARMISD::VTRN
;
6813 if (isVUZP_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6814 return ARMISD::VUZP
;
6815 if (isVZIP_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6816 return ARMISD::VZIP
;
6821 /// \return true if this is a reverse operation on an vector.
6822 static bool isReverseMask(ArrayRef
<int> M
, EVT VT
) {
6823 unsigned NumElts
= VT
.getVectorNumElements();
6824 // Make sure the mask has the right size.
6825 if (NumElts
!= M
.size())
6828 // Look for <15, ..., 3, -1, 1, 0>.
6829 for (unsigned i
= 0; i
!= NumElts
; ++i
)
6830 if (M
[i
] >= 0 && M
[i
] != (int) (NumElts
- 1 - i
))
6836 // If N is an integer constant that can be moved into a register in one
6837 // instruction, return an SDValue of such a constant (will become a MOV
6838 // instruction). Otherwise return null.
6839 static SDValue
IsSingleInstrConstant(SDValue N
, SelectionDAG
&DAG
,
6840 const ARMSubtarget
*ST
, const SDLoc
&dl
) {
6842 if (!isa
<ConstantSDNode
>(N
))
6844 Val
= cast
<ConstantSDNode
>(N
)->getZExtValue();
6846 if (ST
->isThumb1Only()) {
6847 if (Val
<= 255 || ~Val
<= 255)
6848 return DAG
.getConstant(Val
, dl
, MVT::i32
);
6850 if (ARM_AM::getSOImmVal(Val
) != -1 || ARM_AM::getSOImmVal(~Val
) != -1)
6851 return DAG
.getConstant(Val
, dl
, MVT::i32
);
6856 static SDValue
LowerBUILD_VECTOR_i1(SDValue Op
, SelectionDAG
&DAG
,
6857 const ARMSubtarget
*ST
) {
6859 EVT VT
= Op
.getValueType();
6861 assert(ST
->hasMVEIntegerOps() && "LowerBUILD_VECTOR_i1 called without MVE!");
6863 unsigned NumElts
= VT
.getVectorNumElements();
6865 unsigned BitsPerBool
;
6869 } else if (NumElts
== 8) {
6872 } else if (NumElts
== 16) {
6878 // First create base with bits set where known
6879 unsigned Bits32
= 0;
6880 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6881 SDValue V
= Op
.getOperand(i
);
6882 if (!isa
<ConstantSDNode
>(V
) && !V
.isUndef())
6884 bool BitSet
= V
.isUndef() ? false : cast
<ConstantSDNode
>(V
)->getZExtValue();
6886 Bits32
|= BoolMask
<< (i
* BitsPerBool
);
6889 // Add in unknown nodes
6890 // FIXME: Handle splats of the same value better.
6891 SDValue Base
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, VT
,
6892 DAG
.getConstant(Bits32
, dl
, MVT::i32
));
6893 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6894 SDValue V
= Op
.getOperand(i
);
6895 if (isa
<ConstantSDNode
>(V
) || V
.isUndef())
6897 Base
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Base
, V
,
6898 DAG
.getConstant(i
, dl
, MVT::i32
));
6904 // If this is a case we can't handle, return null and let the default
6905 // expansion code take care of it.
6906 SDValue
ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
,
6907 const ARMSubtarget
*ST
) const {
6908 BuildVectorSDNode
*BVN
= cast
<BuildVectorSDNode
>(Op
.getNode());
6910 EVT VT
= Op
.getValueType();
6912 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
6913 return LowerBUILD_VECTOR_i1(Op
, DAG
, ST
);
6915 APInt SplatBits
, SplatUndef
;
6916 unsigned SplatBitSize
;
6918 if (BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
6919 if (SplatUndef
.isAllOnesValue())
6920 return DAG
.getUNDEF(VT
);
6922 if ((ST
->hasNEON() && SplatBitSize
<= 64) ||
6923 (ST
->hasMVEIntegerOps() && SplatBitSize
<= 32)) {
6924 // Check if an immediate VMOV works.
6926 SDValue Val
= isVMOVModifiedImm(SplatBits
.getZExtValue(),
6927 SplatUndef
.getZExtValue(), SplatBitSize
,
6928 DAG
, dl
, VmovVT
, VT
.is128BitVector(),
6931 if (Val
.getNode()) {
6932 SDValue Vmov
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VmovVT
, Val
);
6933 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
6936 // Try an immediate VMVN.
6937 uint64_t NegatedImm
= (~SplatBits
).getZExtValue();
6938 Val
= isVMOVModifiedImm(
6939 NegatedImm
, SplatUndef
.getZExtValue(), SplatBitSize
,
6940 DAG
, dl
, VmovVT
, VT
.is128BitVector(),
6941 ST
->hasMVEIntegerOps() ? MVEVMVNModImm
: VMVNModImm
);
6942 if (Val
.getNode()) {
6943 SDValue Vmov
= DAG
.getNode(ARMISD::VMVNIMM
, dl
, VmovVT
, Val
);
6944 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
6947 // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
6948 if ((VT
== MVT::v2f32
|| VT
== MVT::v4f32
) && SplatBitSize
== 32) {
6949 int ImmVal
= ARM_AM::getFP32Imm(SplatBits
);
6951 SDValue Val
= DAG
.getTargetConstant(ImmVal
, dl
, MVT::i32
);
6952 return DAG
.getNode(ARMISD::VMOVFPIMM
, dl
, VT
, Val
);
6958 // Scan through the operands to see if only one value is used.
6960 // As an optimisation, even if more than one value is used it may be more
6961 // profitable to splat with one value then change some lanes.
6963 // Heuristically we decide to do this if the vector has a "dominant" value,
6964 // defined as splatted to more than half of the lanes.
6965 unsigned NumElts
= VT
.getVectorNumElements();
6966 bool isOnlyLowElement
= true;
6967 bool usesOnlyOneValue
= true;
6968 bool hasDominantValue
= false;
6969 bool isConstant
= true;
6971 // Map of the number of times a particular SDValue appears in the
6973 DenseMap
<SDValue
, unsigned> ValueCounts
;
6975 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6976 SDValue V
= Op
.getOperand(i
);
6980 isOnlyLowElement
= false;
6981 if (!isa
<ConstantFPSDNode
>(V
) && !isa
<ConstantSDNode
>(V
))
6984 ValueCounts
.insert(std::make_pair(V
, 0));
6985 unsigned &Count
= ValueCounts
[V
];
6987 // Is this value dominant? (takes up more than half of the lanes)
6988 if (++Count
> (NumElts
/ 2)) {
6989 hasDominantValue
= true;
6993 if (ValueCounts
.size() != 1)
6994 usesOnlyOneValue
= false;
6995 if (!Value
.getNode() && !ValueCounts
.empty())
6996 Value
= ValueCounts
.begin()->first
;
6998 if (ValueCounts
.empty())
6999 return DAG
.getUNDEF(VT
);
7001 // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
7002 // Keep going if we are hitting this case.
7003 if (isOnlyLowElement
&& !ISD::isNormalLoad(Value
.getNode()))
7004 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Value
);
7006 unsigned EltSize
= VT
.getScalarSizeInBits();
7008 // Use VDUP for non-constant splats. For f32 constant splats, reduce to
7009 // i32 and try again.
7010 if (hasDominantValue
&& EltSize
<= 32) {
7014 // If we are VDUPing a value that comes directly from a vector, that will
7015 // cause an unnecessary move to and from a GPR, where instead we could
7016 // just use VDUPLANE. We can only do this if the lane being extracted
7017 // is at a constant index, as the VDUP from lane instructions only have
7018 // constant-index forms.
7019 ConstantSDNode
*constIndex
;
7020 if (Value
->getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
7021 (constIndex
= dyn_cast
<ConstantSDNode
>(Value
->getOperand(1)))) {
7022 // We need to create a new undef vector to use for the VDUPLANE if the
7023 // size of the vector from which we get the value is different than the
7024 // size of the vector that we need to create. We will insert the element
7025 // such that the register coalescer will remove unnecessary copies.
7026 if (VT
!= Value
->getOperand(0).getValueType()) {
7027 unsigned index
= constIndex
->getAPIntValue().getLimitedValue() %
7028 VT
.getVectorNumElements();
7029 N
= DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
7030 DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, DAG
.getUNDEF(VT
),
7031 Value
, DAG
.getConstant(index
, dl
, MVT::i32
)),
7032 DAG
.getConstant(index
, dl
, MVT::i32
));
7034 N
= DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
7035 Value
->getOperand(0), Value
->getOperand(1));
7037 N
= DAG
.getNode(ARMISD::VDUP
, dl
, VT
, Value
);
7039 if (!usesOnlyOneValue
) {
7040 // The dominant value was splatted as 'N', but we now have to insert
7041 // all differing elements.
7042 for (unsigned I
= 0; I
< NumElts
; ++I
) {
7043 if (Op
.getOperand(I
) == Value
)
7045 SmallVector
<SDValue
, 3> Ops
;
7047 Ops
.push_back(Op
.getOperand(I
));
7048 Ops
.push_back(DAG
.getConstant(I
, dl
, MVT::i32
));
7049 N
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Ops
);
7054 if (VT
.getVectorElementType().isFloatingPoint()) {
7055 SmallVector
<SDValue
, 8> Ops
;
7056 MVT FVT
= VT
.getVectorElementType().getSimpleVT();
7057 assert(FVT
== MVT::f32
|| FVT
== MVT::f16
);
7058 MVT IVT
= (FVT
== MVT::f32
) ? MVT::i32
: MVT::i16
;
7059 for (unsigned i
= 0; i
< NumElts
; ++i
)
7060 Ops
.push_back(DAG
.getNode(ISD::BITCAST
, dl
, IVT
,
7062 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), IVT
, NumElts
);
7063 SDValue Val
= DAG
.getBuildVector(VecVT
, dl
, Ops
);
7064 Val
= LowerBUILD_VECTOR(Val
, DAG
, ST
);
7066 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
7068 if (usesOnlyOneValue
) {
7069 SDValue Val
= IsSingleInstrConstant(Value
, DAG
, ST
, dl
);
7070 if (isConstant
&& Val
.getNode())
7071 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, Val
);
7075 // If all elements are constants and the case above didn't get hit, fall back
7076 // to the default expansion, which will generate a load from the constant
7081 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
7083 SDValue shuffle
= ReconstructShuffle(Op
, DAG
);
7084 if (shuffle
!= SDValue())
7088 if (ST
->hasNEON() && VT
.is128BitVector() && VT
!= MVT::v2f64
&& VT
!= MVT::v4f32
) {
7089 // If we haven't found an efficient lowering, try splitting a 128-bit vector
7090 // into two 64-bit vectors; we might discover a better way to lower it.
7091 SmallVector
<SDValue
, 64> Ops(Op
->op_begin(), Op
->op_begin() + NumElts
);
7092 EVT ExtVT
= VT
.getVectorElementType();
7093 EVT HVT
= EVT::getVectorVT(*DAG
.getContext(), ExtVT
, NumElts
/ 2);
7095 DAG
.getBuildVector(HVT
, dl
, makeArrayRef(&Ops
[0], NumElts
/ 2));
7096 if (Lower
.getOpcode() == ISD::BUILD_VECTOR
)
7097 Lower
= LowerBUILD_VECTOR(Lower
, DAG
, ST
);
7098 SDValue Upper
= DAG
.getBuildVector(
7099 HVT
, dl
, makeArrayRef(&Ops
[NumElts
/ 2], NumElts
/ 2));
7100 if (Upper
.getOpcode() == ISD::BUILD_VECTOR
)
7101 Upper
= LowerBUILD_VECTOR(Upper
, DAG
, ST
);
7103 return DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, VT
, Lower
, Upper
);
7106 // Vectors with 32- or 64-bit elements can be built by directly assigning
7107 // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands
7108 // will be legalized.
7109 if (EltSize
>= 32) {
7110 // Do the expansion with floating-point types, since that is what the VFP
7111 // registers are defined to use, and since i64 is not legal.
7112 EVT EltVT
= EVT::getFloatingPointVT(EltSize
);
7113 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElts
);
7114 SmallVector
<SDValue
, 8> Ops
;
7115 for (unsigned i
= 0; i
< NumElts
; ++i
)
7116 Ops
.push_back(DAG
.getNode(ISD::BITCAST
, dl
, EltVT
, Op
.getOperand(i
)));
7117 SDValue Val
= DAG
.getNode(ARMISD::BUILD_VECTOR
, dl
, VecVT
, Ops
);
7118 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
7121 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
7122 // know the default expansion would otherwise fall back on something even
7123 // worse. For a vector with one or two non-undef values, that's
7124 // scalar_to_vector for the elements followed by a shuffle (provided the
7125 // shuffle is valid for the target) and materialization element by element
7126 // on the stack followed by a load for everything else.
7127 if (!isConstant
&& !usesOnlyOneValue
) {
7128 SDValue Vec
= DAG
.getUNDEF(VT
);
7129 for (unsigned i
= 0 ; i
< NumElts
; ++i
) {
7130 SDValue V
= Op
.getOperand(i
);
7133 SDValue LaneIdx
= DAG
.getConstant(i
, dl
, MVT::i32
);
7134 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Vec
, V
, LaneIdx
);
7142 // Gather data to see if the operation can be modelled as a
7143 // shuffle in combination with VEXTs.
7144 SDValue
ARMTargetLowering::ReconstructShuffle(SDValue Op
,
7145 SelectionDAG
&DAG
) const {
7146 assert(Op
.getOpcode() == ISD::BUILD_VECTOR
&& "Unknown opcode!");
7148 EVT VT
= Op
.getValueType();
7149 unsigned NumElts
= VT
.getVectorNumElements();
7151 struct ShuffleSourceInfo
{
7153 unsigned MinElt
= std::numeric_limits
<unsigned>::max();
7154 unsigned MaxElt
= 0;
7156 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
7157 // be compatible with the shuffle we intend to construct. As a result
7158 // ShuffleVec will be some sliding window into the original Vec.
7161 // Code should guarantee that element i in Vec starts at element "WindowBase
7162 // + i * WindowScale in ShuffleVec".
7164 int WindowScale
= 1;
7166 ShuffleSourceInfo(SDValue Vec
) : Vec(Vec
), ShuffleVec(Vec
) {}
7168 bool operator ==(SDValue OtherVec
) { return Vec
== OtherVec
; }
7171 // First gather all vectors used as an immediate source for this BUILD_VECTOR
7173 SmallVector
<ShuffleSourceInfo
, 2> Sources
;
7174 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7175 SDValue V
= Op
.getOperand(i
);
7178 else if (V
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
) {
7179 // A shuffle can only come from building a vector from various
7180 // elements of other vectors.
7182 } else if (!isa
<ConstantSDNode
>(V
.getOperand(1))) {
7183 // Furthermore, shuffles require a constant mask, whereas extractelts
7184 // accept variable indices.
7188 // Add this element source to the list if it's not already there.
7189 SDValue SourceVec
= V
.getOperand(0);
7190 auto Source
= llvm::find(Sources
, SourceVec
);
7191 if (Source
== Sources
.end())
7192 Source
= Sources
.insert(Sources
.end(), ShuffleSourceInfo(SourceVec
));
7194 // Update the minimum and maximum lane number seen.
7195 unsigned EltNo
= cast
<ConstantSDNode
>(V
.getOperand(1))->getZExtValue();
7196 Source
->MinElt
= std::min(Source
->MinElt
, EltNo
);
7197 Source
->MaxElt
= std::max(Source
->MaxElt
, EltNo
);
7200 // Currently only do something sane when at most two source vectors
7202 if (Sources
.size() > 2)
7205 // Find out the smallest element size among result and two sources, and use
7206 // it as element size to build the shuffle_vector.
7207 EVT SmallestEltTy
= VT
.getVectorElementType();
7208 for (auto &Source
: Sources
) {
7209 EVT SrcEltTy
= Source
.Vec
.getValueType().getVectorElementType();
7210 if (SrcEltTy
.bitsLT(SmallestEltTy
))
7211 SmallestEltTy
= SrcEltTy
;
7213 unsigned ResMultiplier
=
7214 VT
.getScalarSizeInBits() / SmallestEltTy
.getSizeInBits();
7215 NumElts
= VT
.getSizeInBits() / SmallestEltTy
.getSizeInBits();
7216 EVT ShuffleVT
= EVT::getVectorVT(*DAG
.getContext(), SmallestEltTy
, NumElts
);
7218 // If the source vector is too wide or too narrow, we may nevertheless be able
7219 // to construct a compatible shuffle either by concatenating it with UNDEF or
7220 // extracting a suitable range of elements.
7221 for (auto &Src
: Sources
) {
7222 EVT SrcVT
= Src
.ShuffleVec
.getValueType();
7224 if (SrcVT
.getSizeInBits() == VT
.getSizeInBits())
7227 // This stage of the search produces a source with the same element type as
7228 // the original, but with a total width matching the BUILD_VECTOR output.
7229 EVT EltVT
= SrcVT
.getVectorElementType();
7230 unsigned NumSrcElts
= VT
.getSizeInBits() / EltVT
.getSizeInBits();
7231 EVT DestVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumSrcElts
);
7233 if (SrcVT
.getSizeInBits() < VT
.getSizeInBits()) {
7234 if (2 * SrcVT
.getSizeInBits() != VT
.getSizeInBits())
7236 // We can pad out the smaller vector for free, so if it's part of a
7239 DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, DestVT
, Src
.ShuffleVec
,
7240 DAG
.getUNDEF(Src
.ShuffleVec
.getValueType()));
7244 if (SrcVT
.getSizeInBits() != 2 * VT
.getSizeInBits())
7247 if (Src
.MaxElt
- Src
.MinElt
>= NumSrcElts
) {
7248 // Span too large for a VEXT to cope
7252 if (Src
.MinElt
>= NumSrcElts
) {
7253 // The extraction can just take the second half
7255 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7256 DAG
.getConstant(NumSrcElts
, dl
, MVT::i32
));
7257 Src
.WindowBase
= -NumSrcElts
;
7258 } else if (Src
.MaxElt
< NumSrcElts
) {
7259 // The extraction can just take the first half
7261 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7262 DAG
.getConstant(0, dl
, MVT::i32
));
7264 // An actual VEXT is needed
7266 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7267 DAG
.getConstant(0, dl
, MVT::i32
));
7269 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7270 DAG
.getConstant(NumSrcElts
, dl
, MVT::i32
));
7272 Src
.ShuffleVec
= DAG
.getNode(ARMISD::VEXT
, dl
, DestVT
, VEXTSrc1
,
7274 DAG
.getConstant(Src
.MinElt
, dl
, MVT::i32
));
7275 Src
.WindowBase
= -Src
.MinElt
;
7279 // Another possible incompatibility occurs from the vector element types. We
7280 // can fix this by bitcasting the source vectors to the same type we intend
7282 for (auto &Src
: Sources
) {
7283 EVT SrcEltTy
= Src
.ShuffleVec
.getValueType().getVectorElementType();
7284 if (SrcEltTy
== SmallestEltTy
)
7286 assert(ShuffleVT
.getVectorElementType() == SmallestEltTy
);
7287 Src
.ShuffleVec
= DAG
.getNode(ISD::BITCAST
, dl
, ShuffleVT
, Src
.ShuffleVec
);
7288 Src
.WindowScale
= SrcEltTy
.getSizeInBits() / SmallestEltTy
.getSizeInBits();
7289 Src
.WindowBase
*= Src
.WindowScale
;
7292 // Final sanity check before we try to actually produce a shuffle.
7293 LLVM_DEBUG(for (auto Src
7295 assert(Src
.ShuffleVec
.getValueType() == ShuffleVT
););
7297 // The stars all align, our next step is to produce the mask for the shuffle.
7298 SmallVector
<int, 8> Mask(ShuffleVT
.getVectorNumElements(), -1);
7299 int BitsPerShuffleLane
= ShuffleVT
.getScalarSizeInBits();
7300 for (unsigned i
= 0; i
< VT
.getVectorNumElements(); ++i
) {
7301 SDValue Entry
= Op
.getOperand(i
);
7302 if (Entry
.isUndef())
7305 auto Src
= llvm::find(Sources
, Entry
.getOperand(0));
7306 int EltNo
= cast
<ConstantSDNode
>(Entry
.getOperand(1))->getSExtValue();
7308 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
7309 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
7311 EVT OrigEltTy
= Entry
.getOperand(0).getValueType().getVectorElementType();
7312 int BitsDefined
= std::min(OrigEltTy
.getSizeInBits(),
7313 VT
.getScalarSizeInBits());
7314 int LanesDefined
= BitsDefined
/ BitsPerShuffleLane
;
7316 // This source is expected to fill ResMultiplier lanes of the final shuffle,
7317 // starting at the appropriate offset.
7318 int *LaneMask
= &Mask
[i
* ResMultiplier
];
7320 int ExtractBase
= EltNo
* Src
->WindowScale
+ Src
->WindowBase
;
7321 ExtractBase
+= NumElts
* (Src
- Sources
.begin());
7322 for (int j
= 0; j
< LanesDefined
; ++j
)
7323 LaneMask
[j
] = ExtractBase
+ j
;
7326 // Final check before we try to produce nonsense...
7327 if (!isShuffleMaskLegal(Mask
, ShuffleVT
))
7330 // We can't handle more than two sources. This should have already
7331 // been checked before this point.
7332 assert(Sources
.size() <= 2 && "Too many sources!");
7334 SDValue ShuffleOps
[] = { DAG
.getUNDEF(ShuffleVT
), DAG
.getUNDEF(ShuffleVT
) };
7335 for (unsigned i
= 0; i
< Sources
.size(); ++i
)
7336 ShuffleOps
[i
] = Sources
[i
].ShuffleVec
;
7338 SDValue Shuffle
= DAG
.getVectorShuffle(ShuffleVT
, dl
, ShuffleOps
[0],
7339 ShuffleOps
[1], Mask
);
7340 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Shuffle
);
7343 enum ShuffleOpCodes
{
7344 OP_COPY
= 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
7353 OP_VUZPL
, // VUZP, left result
7354 OP_VUZPR
, // VUZP, right result
7355 OP_VZIPL
, // VZIP, left result
7356 OP_VZIPR
, // VZIP, right result
7357 OP_VTRNL
, // VTRN, left result
7358 OP_VTRNR
// VTRN, right result
7361 static bool isLegalMVEShuffleOp(unsigned PFEntry
) {
7362 unsigned OpNum
= (PFEntry
>> 26) & 0x0F;
7375 /// isShuffleMaskLegal - Targets can use this to indicate that they only
7376 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7377 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7378 /// are assumed to be legal.
7379 bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef
<int> M
, EVT VT
) const {
7380 if (VT
.getVectorNumElements() == 4 &&
7381 (VT
.is128BitVector() || VT
.is64BitVector())) {
7382 unsigned PFIndexes
[4];
7383 for (unsigned i
= 0; i
!= 4; ++i
) {
7387 PFIndexes
[i
] = M
[i
];
7390 // Compute the index in the perfect shuffle table.
7391 unsigned PFTableIndex
=
7392 PFIndexes
[0]*9*9*9+PFIndexes
[1]*9*9+PFIndexes
[2]*9+PFIndexes
[3];
7393 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
7394 unsigned Cost
= (PFEntry
>> 30);
7396 if (Cost
<= 4 && (Subtarget
->hasNEON() || isLegalMVEShuffleOp(PFEntry
)))
7400 bool ReverseVEXT
, isV_UNDEF
;
7401 unsigned Imm
, WhichResult
;
7403 unsigned EltSize
= VT
.getScalarSizeInBits();
7404 if (EltSize
>= 32 ||
7405 ShuffleVectorSDNode::isSplatMask(&M
[0], VT
) ||
7406 isVREVMask(M
, VT
, 64) ||
7407 isVREVMask(M
, VT
, 32) ||
7408 isVREVMask(M
, VT
, 16))
7410 else if (Subtarget
->hasNEON() &&
7411 (isVEXTMask(M
, VT
, ReverseVEXT
, Imm
) ||
7412 isVTBLMask(M
, VT
) ||
7413 isNEONTwoResultShuffleMask(M
, VT
, WhichResult
, isV_UNDEF
)))
7415 else if (Subtarget
->hasNEON() && (VT
== MVT::v8i16
|| VT
== MVT::v16i8
) &&
7416 isReverseMask(M
, VT
))
7422 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
7423 /// the specified operations to build the shuffle.
7424 static SDValue
GeneratePerfectShuffle(unsigned PFEntry
, SDValue LHS
,
7425 SDValue RHS
, SelectionDAG
&DAG
,
7427 unsigned OpNum
= (PFEntry
>> 26) & 0x0F;
7428 unsigned LHSID
= (PFEntry
>> 13) & ((1 << 13)-1);
7429 unsigned RHSID
= (PFEntry
>> 0) & ((1 << 13)-1);
7431 if (OpNum
== OP_COPY
) {
7432 if (LHSID
== (1*9+2)*9+3) return LHS
;
7433 assert(LHSID
== ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
7437 SDValue OpLHS
, OpRHS
;
7438 OpLHS
= GeneratePerfectShuffle(PerfectShuffleTable
[LHSID
], LHS
, RHS
, DAG
, dl
);
7439 OpRHS
= GeneratePerfectShuffle(PerfectShuffleTable
[RHSID
], LHS
, RHS
, DAG
, dl
);
7440 EVT VT
= OpLHS
.getValueType();
7443 default: llvm_unreachable("Unknown shuffle opcode!");
7445 // VREV divides the vector in half and swaps within the half.
7446 if (VT
.getVectorElementType() == MVT::i32
||
7447 VT
.getVectorElementType() == MVT::f32
)
7448 return DAG
.getNode(ARMISD::VREV64
, dl
, VT
, OpLHS
);
7449 // vrev <4 x i16> -> VREV32
7450 if (VT
.getVectorElementType() == MVT::i16
)
7451 return DAG
.getNode(ARMISD::VREV32
, dl
, VT
, OpLHS
);
7452 // vrev <4 x i8> -> VREV16
7453 assert(VT
.getVectorElementType() == MVT::i8
);
7454 return DAG
.getNode(ARMISD::VREV16
, dl
, VT
, OpLHS
);
7459 return DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
7460 OpLHS
, DAG
.getConstant(OpNum
-OP_VDUP0
, dl
, MVT::i32
));
7464 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
,
7466 DAG
.getConstant(OpNum
- OP_VEXT1
+ 1, dl
, MVT::i32
));
7469 return DAG
.getNode(ARMISD::VUZP
, dl
, DAG
.getVTList(VT
, VT
),
7470 OpLHS
, OpRHS
).getValue(OpNum
-OP_VUZPL
);
7473 return DAG
.getNode(ARMISD::VZIP
, dl
, DAG
.getVTList(VT
, VT
),
7474 OpLHS
, OpRHS
).getValue(OpNum
-OP_VZIPL
);
7477 return DAG
.getNode(ARMISD::VTRN
, dl
, DAG
.getVTList(VT
, VT
),
7478 OpLHS
, OpRHS
).getValue(OpNum
-OP_VTRNL
);
7482 static SDValue
LowerVECTOR_SHUFFLEv8i8(SDValue Op
,
7483 ArrayRef
<int> ShuffleMask
,
7484 SelectionDAG
&DAG
) {
7485 // Check to see if we can use the VTBL instruction.
7486 SDValue V1
= Op
.getOperand(0);
7487 SDValue V2
= Op
.getOperand(1);
7490 SmallVector
<SDValue
, 8> VTBLMask
;
7491 for (ArrayRef
<int>::iterator
7492 I
= ShuffleMask
.begin(), E
= ShuffleMask
.end(); I
!= E
; ++I
)
7493 VTBLMask
.push_back(DAG
.getConstant(*I
, DL
, MVT::i32
));
7495 if (V2
.getNode()->isUndef())
7496 return DAG
.getNode(ARMISD::VTBL1
, DL
, MVT::v8i8
, V1
,
7497 DAG
.getBuildVector(MVT::v8i8
, DL
, VTBLMask
));
7499 return DAG
.getNode(ARMISD::VTBL2
, DL
, MVT::v8i8
, V1
, V2
,
7500 DAG
.getBuildVector(MVT::v8i8
, DL
, VTBLMask
));
7503 static SDValue
LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op
,
7504 SelectionDAG
&DAG
) {
7506 SDValue OpLHS
= Op
.getOperand(0);
7507 EVT VT
= OpLHS
.getValueType();
7509 assert((VT
== MVT::v8i16
|| VT
== MVT::v16i8
) &&
7510 "Expect an v8i16/v16i8 type");
7511 OpLHS
= DAG
.getNode(ARMISD::VREV64
, DL
, VT
, OpLHS
);
7512 // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
7513 // extract the first 8 bytes into the top double word and the last 8 bytes
7514 // into the bottom double word. The v8i16 case is similar.
7515 unsigned ExtractNum
= (VT
== MVT::v16i8
) ? 8 : 4;
7516 return DAG
.getNode(ARMISD::VEXT
, DL
, VT
, OpLHS
, OpLHS
,
7517 DAG
.getConstant(ExtractNum
, DL
, MVT::i32
));
7520 static EVT
getVectorTyFromPredicateVector(EVT VT
) {
7521 switch (VT
.getSimpleVT().SimpleTy
) {
7529 llvm_unreachable("Unexpected vector predicate type");
7533 static SDValue
PromoteMVEPredVector(SDLoc dl
, SDValue Pred
, EVT VT
,
7534 SelectionDAG
&DAG
) {
7535 // Converting from boolean predicates to integers involves creating a vector
7536 // of all ones or all zeroes and selecting the lanes based upon the real
7539 DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff), dl
, MVT::i32
);
7540 AllOnes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v16i8
, AllOnes
);
7543 DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0x0), dl
, MVT::i32
);
7544 AllZeroes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v16i8
, AllZeroes
);
7546 // Get full vector type from predicate type
7547 EVT NewVT
= getVectorTyFromPredicateVector(VT
);
7550 // If the real predicate is an v8i1 or v4i1 (not v16i1) then we need to recast
7551 // this to a v16i1. This cannot be done with an ordinary bitcast because the
7552 // sizes are not the same. We have to use a MVE specific PREDICATE_CAST node,
7553 // since we know in hardware the sizes are really the same.
7554 if (VT
!= MVT::v16i1
)
7555 RecastV1
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::v16i1
, Pred
);
7559 // Select either all ones or zeroes depending upon the real predicate bits.
7560 SDValue PredAsVector
=
7561 DAG
.getNode(ISD::VSELECT
, dl
, MVT::v16i8
, RecastV1
, AllOnes
, AllZeroes
);
7563 // Recast our new predicate-as-integer v16i8 vector into something
7564 // appropriate for the shuffle, i.e. v4i32 for a real v4i1 predicate.
7565 return DAG
.getNode(ISD::BITCAST
, dl
, NewVT
, PredAsVector
);
7568 static SDValue
LowerVECTOR_SHUFFLE_i1(SDValue Op
, SelectionDAG
&DAG
,
7569 const ARMSubtarget
*ST
) {
7570 EVT VT
= Op
.getValueType();
7571 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Op
.getNode());
7572 ArrayRef
<int> ShuffleMask
= SVN
->getMask();
7574 assert(ST
->hasMVEIntegerOps() &&
7575 "No support for vector shuffle of boolean predicates");
7577 SDValue V1
= Op
.getOperand(0);
7579 if (isReverseMask(ShuffleMask
, VT
)) {
7580 SDValue cast
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, V1
);
7581 SDValue rbit
= DAG
.getNode(ISD::BITREVERSE
, dl
, MVT::i32
, cast
);
7582 SDValue srl
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, rbit
,
7583 DAG
.getConstant(16, dl
, MVT::i32
));
7584 return DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, VT
, srl
);
7587 // Until we can come up with optimised cases for every single vector
7588 // shuffle in existence we have chosen the least painful strategy. This is
7589 // to essentially promote the boolean predicate to a 8-bit integer, where
7590 // each predicate represents a byte. Then we fall back on a normal integer
7591 // vector shuffle and convert the result back into a predicate vector. In
7592 // many cases the generated code might be even better than scalar code
7593 // operating on bits. Just imagine trying to shuffle 8 arbitrary 2-bit
7594 // fields in a register into 8 other arbitrary 2-bit fields!
7595 SDValue PredAsVector
= PromoteMVEPredVector(dl
, V1
, VT
, DAG
);
7596 EVT NewVT
= PredAsVector
.getValueType();
7599 SDValue Shuffled
= DAG
.getVectorShuffle(NewVT
, dl
, PredAsVector
,
7600 DAG
.getUNDEF(NewVT
), ShuffleMask
);
7602 // Now return the result of comparing the shuffled vector with zero,
7603 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
7604 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, Shuffled
,
7605 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
7608 static SDValue
LowerVECTOR_SHUFFLE(SDValue Op
, SelectionDAG
&DAG
,
7609 const ARMSubtarget
*ST
) {
7610 SDValue V1
= Op
.getOperand(0);
7611 SDValue V2
= Op
.getOperand(1);
7613 EVT VT
= Op
.getValueType();
7614 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Op
.getNode());
7615 unsigned EltSize
= VT
.getScalarSizeInBits();
7617 if (ST
->hasMVEIntegerOps() && EltSize
== 1)
7618 return LowerVECTOR_SHUFFLE_i1(Op
, DAG
, ST
);
7620 // Convert shuffles that are directly supported on NEON to target-specific
7621 // DAG nodes, instead of keeping them as shuffles and matching them again
7622 // during code selection. This is more efficient and avoids the possibility
7623 // of inconsistencies between legalization and selection.
7624 // FIXME: floating-point vectors should be canonicalized to integer vectors
7625 // of the same time so that they get CSEd properly.
7626 ArrayRef
<int> ShuffleMask
= SVN
->getMask();
7628 if (EltSize
<= 32) {
7629 if (SVN
->isSplat()) {
7630 int Lane
= SVN
->getSplatIndex();
7631 // If this is undef splat, generate it via "just" vdup, if possible.
7632 if (Lane
== -1) Lane
= 0;
7634 // Test if V1 is a SCALAR_TO_VECTOR.
7635 if (Lane
== 0 && V1
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
7636 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, V1
.getOperand(0));
7638 // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
7639 // (and probably will turn into a SCALAR_TO_VECTOR once legalization
7641 if (Lane
== 0 && V1
.getOpcode() == ISD::BUILD_VECTOR
&&
7642 !isa
<ConstantSDNode
>(V1
.getOperand(0))) {
7643 bool IsScalarToVector
= true;
7644 for (unsigned i
= 1, e
= V1
.getNumOperands(); i
!= e
; ++i
)
7645 if (!V1
.getOperand(i
).isUndef()) {
7646 IsScalarToVector
= false;
7649 if (IsScalarToVector
)
7650 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, V1
.getOperand(0));
7652 return DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
, V1
,
7653 DAG
.getConstant(Lane
, dl
, MVT::i32
));
7656 bool ReverseVEXT
= false;
7658 if (ST
->hasNEON() && isVEXTMask(ShuffleMask
, VT
, ReverseVEXT
, Imm
)) {
7661 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
, V1
, V2
,
7662 DAG
.getConstant(Imm
, dl
, MVT::i32
));
7665 if (isVREVMask(ShuffleMask
, VT
, 64))
7666 return DAG
.getNode(ARMISD::VREV64
, dl
, VT
, V1
);
7667 if (isVREVMask(ShuffleMask
, VT
, 32))
7668 return DAG
.getNode(ARMISD::VREV32
, dl
, VT
, V1
);
7669 if (isVREVMask(ShuffleMask
, VT
, 16))
7670 return DAG
.getNode(ARMISD::VREV16
, dl
, VT
, V1
);
7672 if (ST
->hasNEON() && V2
->isUndef() && isSingletonVEXTMask(ShuffleMask
, VT
, Imm
)) {
7673 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
, V1
, V1
,
7674 DAG
.getConstant(Imm
, dl
, MVT::i32
));
7677 // Check for Neon shuffles that modify both input vectors in place.
7678 // If both results are used, i.e., if there are two shuffles with the same
7679 // source operands and with masks corresponding to both results of one of
7680 // these operations, DAG memoization will ensure that a single node is
7681 // used for both shuffles.
7682 unsigned WhichResult
= 0;
7683 bool isV_UNDEF
= false;
7684 if (ST
->hasNEON()) {
7685 if (unsigned ShuffleOpc
= isNEONTwoResultShuffleMask(
7686 ShuffleMask
, VT
, WhichResult
, isV_UNDEF
)) {
7689 return DAG
.getNode(ShuffleOpc
, dl
, DAG
.getVTList(VT
, VT
), V1
, V2
)
7690 .getValue(WhichResult
);
7694 // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
7695 // shuffles that produce a result larger than their operands with:
7696 // shuffle(concat(v1, undef), concat(v2, undef))
7698 // shuffle(concat(v1, v2), undef)
7699 // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
7701 // This is useful in the general case, but there are special cases where
7702 // native shuffles produce larger results: the two-result ops.
7704 // Look through the concat when lowering them:
7705 // shuffle(concat(v1, v2), undef)
7707 // concat(VZIP(v1, v2):0, :1)
7709 if (ST
->hasNEON() && V1
->getOpcode() == ISD::CONCAT_VECTORS
&& V2
->isUndef()) {
7710 SDValue SubV1
= V1
->getOperand(0);
7711 SDValue SubV2
= V1
->getOperand(1);
7712 EVT SubVT
= SubV1
.getValueType();
7714 // We expect these to have been canonicalized to -1.
7715 assert(llvm::all_of(ShuffleMask
, [&](int i
) {
7716 return i
< (int)VT
.getVectorNumElements();
7717 }) && "Unexpected shuffle index into UNDEF operand!");
7719 if (unsigned ShuffleOpc
= isNEONTwoResultShuffleMask(
7720 ShuffleMask
, SubVT
, WhichResult
, isV_UNDEF
)) {
7723 assert((WhichResult
== 0) &&
7724 "In-place shuffle of concat can only have one result!");
7725 SDValue Res
= DAG
.getNode(ShuffleOpc
, dl
, DAG
.getVTList(SubVT
, SubVT
),
7727 return DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, VT
, Res
.getValue(0),
7733 // If the shuffle is not directly supported and it has 4 elements, use
7734 // the PerfectShuffle-generated table to synthesize it from other shuffles.
7735 unsigned NumElts
= VT
.getVectorNumElements();
7737 unsigned PFIndexes
[4];
7738 for (unsigned i
= 0; i
!= 4; ++i
) {
7739 if (ShuffleMask
[i
] < 0)
7742 PFIndexes
[i
] = ShuffleMask
[i
];
7745 // Compute the index in the perfect shuffle table.
7746 unsigned PFTableIndex
=
7747 PFIndexes
[0]*9*9*9+PFIndexes
[1]*9*9+PFIndexes
[2]*9+PFIndexes
[3];
7748 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
7749 unsigned Cost
= (PFEntry
>> 30);
7753 return GeneratePerfectShuffle(PFEntry
, V1
, V2
, DAG
, dl
);
7754 else if (isLegalMVEShuffleOp(PFEntry
)) {
7755 unsigned LHSID
= (PFEntry
>> 13) & ((1 << 13)-1);
7756 unsigned RHSID
= (PFEntry
>> 0) & ((1 << 13)-1);
7757 unsigned PFEntryLHS
= PerfectShuffleTable
[LHSID
];
7758 unsigned PFEntryRHS
= PerfectShuffleTable
[RHSID
];
7759 if (isLegalMVEShuffleOp(PFEntryLHS
) && isLegalMVEShuffleOp(PFEntryRHS
))
7760 return GeneratePerfectShuffle(PFEntry
, V1
, V2
, DAG
, dl
);
7765 // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
7766 if (EltSize
>= 32) {
7767 // Do the expansion with floating-point types, since that is what the VFP
7768 // registers are defined to use, and since i64 is not legal.
7769 EVT EltVT
= EVT::getFloatingPointVT(EltSize
);
7770 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElts
);
7771 V1
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, V1
);
7772 V2
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, V2
);
7773 SmallVector
<SDValue
, 8> Ops
;
7774 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7775 if (ShuffleMask
[i
] < 0)
7776 Ops
.push_back(DAG
.getUNDEF(EltVT
));
7778 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, EltVT
,
7779 ShuffleMask
[i
] < (int)NumElts
? V1
: V2
,
7780 DAG
.getConstant(ShuffleMask
[i
] & (NumElts
-1),
7783 SDValue Val
= DAG
.getNode(ARMISD::BUILD_VECTOR
, dl
, VecVT
, Ops
);
7784 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
7787 if (ST
->hasNEON() && (VT
== MVT::v8i16
|| VT
== MVT::v16i8
) && isReverseMask(ShuffleMask
, VT
))
7788 return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op
, DAG
);
7790 if (ST
->hasNEON() && VT
== MVT::v8i8
)
7791 if (SDValue NewOp
= LowerVECTOR_SHUFFLEv8i8(Op
, ShuffleMask
, DAG
))
7797 static SDValue
LowerINSERT_VECTOR_ELT_i1(SDValue Op
, SelectionDAG
&DAG
,
7798 const ARMSubtarget
*ST
) {
7799 EVT VecVT
= Op
.getOperand(0).getValueType();
7802 assert(ST
->hasMVEIntegerOps() &&
7803 "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
7806 DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, Op
->getOperand(0));
7807 unsigned Lane
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue();
7808 unsigned LaneWidth
=
7809 getVectorTyFromPredicateVector(VecVT
).getScalarSizeInBits() / 8;
7810 unsigned Mask
= ((1 << LaneWidth
) - 1) << Lane
* LaneWidth
;
7811 SDValue Ext
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, MVT::i32
,
7812 Op
.getOperand(1), DAG
.getValueType(MVT::i1
));
7813 SDValue BFI
= DAG
.getNode(ARMISD::BFI
, dl
, MVT::i32
, Conv
, Ext
,
7814 DAG
.getConstant(~Mask
, dl
, MVT::i32
));
7815 return DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, Op
.getValueType(), BFI
);
7818 SDValue
ARMTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op
,
7819 SelectionDAG
&DAG
) const {
7820 // INSERT_VECTOR_ELT is legal only for immediate indexes.
7821 SDValue Lane
= Op
.getOperand(2);
7822 if (!isa
<ConstantSDNode
>(Lane
))
7825 SDValue Elt
= Op
.getOperand(1);
7826 EVT EltVT
= Elt
.getValueType();
7828 if (Subtarget
->hasMVEIntegerOps() &&
7829 Op
.getValueType().getScalarSizeInBits() == 1)
7830 return LowerINSERT_VECTOR_ELT_i1(Op
, DAG
, Subtarget
);
7832 if (getTypeAction(*DAG
.getContext(), EltVT
) ==
7833 TargetLowering::TypePromoteFloat
) {
7834 // INSERT_VECTOR_ELT doesn't want f16 operands promoting to f32,
7835 // but the type system will try to do that if we don't intervene.
7836 // Reinterpret any such vector-element insertion as one with the
7837 // corresponding integer types.
7841 EVT IEltVT
= MVT::getIntegerVT(EltVT
.getScalarSizeInBits());
7842 assert(getTypeAction(*DAG
.getContext(), IEltVT
) !=
7843 TargetLowering::TypePromoteFloat
);
7845 SDValue VecIn
= Op
.getOperand(0);
7846 EVT VecVT
= VecIn
.getValueType();
7847 EVT IVecVT
= EVT::getVectorVT(*DAG
.getContext(), IEltVT
,
7848 VecVT
.getVectorNumElements());
7850 SDValue IElt
= DAG
.getNode(ISD::BITCAST
, dl
, IEltVT
, Elt
);
7851 SDValue IVecIn
= DAG
.getNode(ISD::BITCAST
, dl
, IVecVT
, VecIn
);
7852 SDValue IVecOut
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, IVecVT
,
7853 IVecIn
, IElt
, Lane
);
7854 return DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, IVecOut
);
7860 static SDValue
LowerEXTRACT_VECTOR_ELT_i1(SDValue Op
, SelectionDAG
&DAG
,
7861 const ARMSubtarget
*ST
) {
7862 EVT VecVT
= Op
.getOperand(0).getValueType();
7865 assert(ST
->hasMVEIntegerOps() &&
7866 "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
7869 DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, Op
->getOperand(0));
7870 unsigned Lane
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
7871 unsigned LaneWidth
=
7872 getVectorTyFromPredicateVector(VecVT
).getScalarSizeInBits() / 8;
7873 SDValue Shift
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, Conv
,
7874 DAG
.getConstant(Lane
* LaneWidth
, dl
, MVT::i32
));
7878 static SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
,
7879 const ARMSubtarget
*ST
) {
7880 // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
7881 SDValue Lane
= Op
.getOperand(1);
7882 if (!isa
<ConstantSDNode
>(Lane
))
7885 SDValue Vec
= Op
.getOperand(0);
7886 EVT VT
= Vec
.getValueType();
7888 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
7889 return LowerEXTRACT_VECTOR_ELT_i1(Op
, DAG
, ST
);
7891 if (Op
.getValueType() == MVT::i32
&& Vec
.getScalarValueSizeInBits() < 32) {
7893 return DAG
.getNode(ARMISD::VGETLANEu
, dl
, MVT::i32
, Vec
, Lane
);
7899 static SDValue
LowerCONCAT_VECTORS_i1(SDValue Op
, SelectionDAG
&DAG
,
7900 const ARMSubtarget
*ST
) {
7901 SDValue V1
= Op
.getOperand(0);
7902 SDValue V2
= Op
.getOperand(1);
7904 EVT VT
= Op
.getValueType();
7905 EVT Op1VT
= V1
.getValueType();
7906 EVT Op2VT
= V2
.getValueType();
7907 unsigned NumElts
= VT
.getVectorNumElements();
7909 assert(Op1VT
== Op2VT
&& "Operand types don't match!");
7910 assert(VT
.getScalarSizeInBits() == 1 &&
7911 "Unexpected custom CONCAT_VECTORS lowering");
7912 assert(ST
->hasMVEIntegerOps() &&
7913 "CONCAT_VECTORS lowering only supported for MVE");
7915 SDValue NewV1
= PromoteMVEPredVector(dl
, V1
, Op1VT
, DAG
);
7916 SDValue NewV2
= PromoteMVEPredVector(dl
, V2
, Op2VT
, DAG
);
7918 // We now have Op1 + Op2 promoted to vectors of integers, where v8i1 gets
7919 // promoted to v8i16, etc.
7921 MVT ElType
= getVectorTyFromPredicateVector(VT
).getScalarType().getSimpleVT();
7923 // Extract the vector elements from Op1 and Op2 one by one and truncate them
7924 // to be the right size for the destination. For example, if Op1 is v4i1 then
7925 // the promoted vector is v4i32. The result of concatentation gives a v8i1,
7926 // which when promoted is v8i16. That means each i32 element from Op1 needs
7927 // truncating to i16 and inserting in the result.
7928 EVT ConcatVT
= MVT::getVectorVT(ElType
, NumElts
);
7929 SDValue ConVec
= DAG
.getNode(ISD::UNDEF
, dl
, ConcatVT
);
7930 auto ExractInto
= [&DAG
, &dl
](SDValue NewV
, SDValue ConVec
, unsigned &j
) {
7931 EVT NewVT
= NewV
.getValueType();
7932 EVT ConcatVT
= ConVec
.getValueType();
7933 for (unsigned i
= 0, e
= NewVT
.getVectorNumElements(); i
< e
; i
++, j
++) {
7934 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
, NewV
,
7935 DAG
.getIntPtrConstant(i
, dl
));
7936 ConVec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, ConcatVT
, ConVec
, Elt
,
7937 DAG
.getConstant(j
, dl
, MVT::i32
));
7942 ConVec
= ExractInto(NewV1
, ConVec
, j
);
7943 ConVec
= ExractInto(NewV2
, ConVec
, j
);
7945 // Now return the result of comparing the subvector with zero,
7946 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
7947 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, ConVec
,
7948 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
7951 static SDValue
LowerCONCAT_VECTORS(SDValue Op
, SelectionDAG
&DAG
,
7952 const ARMSubtarget
*ST
) {
7953 EVT VT
= Op
->getValueType(0);
7954 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
7955 return LowerCONCAT_VECTORS_i1(Op
, DAG
, ST
);
7957 // The only time a CONCAT_VECTORS operation can have legal types is when
7958 // two 64-bit vectors are concatenated to a 128-bit vector.
7959 assert(Op
.getValueType().is128BitVector() && Op
.getNumOperands() == 2 &&
7960 "unexpected CONCAT_VECTORS");
7962 SDValue Val
= DAG
.getUNDEF(MVT::v2f64
);
7963 SDValue Op0
= Op
.getOperand(0);
7964 SDValue Op1
= Op
.getOperand(1);
7966 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Val
,
7967 DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Op0
),
7968 DAG
.getIntPtrConstant(0, dl
));
7970 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Val
,
7971 DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Op1
),
7972 DAG
.getIntPtrConstant(1, dl
));
7973 return DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), Val
);
7976 static SDValue
LowerEXTRACT_SUBVECTOR(SDValue Op
, SelectionDAG
&DAG
,
7977 const ARMSubtarget
*ST
) {
7978 SDValue V1
= Op
.getOperand(0);
7979 SDValue V2
= Op
.getOperand(1);
7981 EVT VT
= Op
.getValueType();
7982 EVT Op1VT
= V1
.getValueType();
7983 unsigned NumElts
= VT
.getVectorNumElements();
7984 unsigned Index
= cast
<ConstantSDNode
>(V2
)->getZExtValue();
7986 assert(VT
.getScalarSizeInBits() == 1 &&
7987 "Unexpected custom EXTRACT_SUBVECTOR lowering");
7988 assert(ST
->hasMVEIntegerOps() &&
7989 "EXTRACT_SUBVECTOR lowering only supported for MVE");
7991 SDValue NewV1
= PromoteMVEPredVector(dl
, V1
, Op1VT
, DAG
);
7993 // We now have Op1 promoted to a vector of integers, where v8i1 gets
7994 // promoted to v8i16, etc.
7996 MVT ElType
= getVectorTyFromPredicateVector(VT
).getScalarType().getSimpleVT();
7998 EVT SubVT
= MVT::getVectorVT(ElType
, NumElts
);
7999 SDValue SubVec
= DAG
.getNode(ISD::UNDEF
, dl
, SubVT
);
8000 for (unsigned i
= Index
, j
= 0; i
< (Index
+ NumElts
); i
++, j
++) {
8001 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
, NewV1
,
8002 DAG
.getIntPtrConstant(i
, dl
));
8003 SubVec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, SubVT
, SubVec
, Elt
,
8004 DAG
.getConstant(j
, dl
, MVT::i32
));
8007 // Now return the result of comparing the subvector with zero,
8008 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
8009 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, SubVec
,
8010 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
8013 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
8014 /// element has been zero/sign-extended, depending on the isSigned parameter,
8015 /// from an integer type half its size.
8016 static bool isExtendedBUILD_VECTOR(SDNode
*N
, SelectionDAG
&DAG
,
8018 // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
8019 EVT VT
= N
->getValueType(0);
8020 if (VT
== MVT::v2i64
&& N
->getOpcode() == ISD::BITCAST
) {
8021 SDNode
*BVN
= N
->getOperand(0).getNode();
8022 if (BVN
->getValueType(0) != MVT::v4i32
||
8023 BVN
->getOpcode() != ISD::BUILD_VECTOR
)
8025 unsigned LoElt
= DAG
.getDataLayout().isBigEndian() ? 1 : 0;
8026 unsigned HiElt
= 1 - LoElt
;
8027 ConstantSDNode
*Lo0
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(LoElt
));
8028 ConstantSDNode
*Hi0
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(HiElt
));
8029 ConstantSDNode
*Lo1
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(LoElt
+2));
8030 ConstantSDNode
*Hi1
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(HiElt
+2));
8031 if (!Lo0
|| !Hi0
|| !Lo1
|| !Hi1
)
8034 if (Hi0
->getSExtValue() == Lo0
->getSExtValue() >> 32 &&
8035 Hi1
->getSExtValue() == Lo1
->getSExtValue() >> 32)
8038 if (Hi0
->isNullValue() && Hi1
->isNullValue())
8044 if (N
->getOpcode() != ISD::BUILD_VECTOR
)
8047 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
8048 SDNode
*Elt
= N
->getOperand(i
).getNode();
8049 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Elt
)) {
8050 unsigned EltSize
= VT
.getScalarSizeInBits();
8051 unsigned HalfSize
= EltSize
/ 2;
8053 if (!isIntN(HalfSize
, C
->getSExtValue()))
8056 if (!isUIntN(HalfSize
, C
->getZExtValue()))
8067 /// isSignExtended - Check if a node is a vector value that is sign-extended
8068 /// or a constant BUILD_VECTOR with sign-extended elements.
8069 static bool isSignExtended(SDNode
*N
, SelectionDAG
&DAG
) {
8070 if (N
->getOpcode() == ISD::SIGN_EXTEND
|| ISD::isSEXTLoad(N
))
8072 if (isExtendedBUILD_VECTOR(N
, DAG
, true))
8077 /// isZeroExtended - Check if a node is a vector value that is zero-extended
8078 /// or a constant BUILD_VECTOR with zero-extended elements.
8079 static bool isZeroExtended(SDNode
*N
, SelectionDAG
&DAG
) {
8080 if (N
->getOpcode() == ISD::ZERO_EXTEND
|| ISD::isZEXTLoad(N
))
8082 if (isExtendedBUILD_VECTOR(N
, DAG
, false))
8087 static EVT
getExtensionTo64Bits(const EVT
&OrigVT
) {
8088 if (OrigVT
.getSizeInBits() >= 64)
8091 assert(OrigVT
.isSimple() && "Expecting a simple value type");
8093 MVT::SimpleValueType OrigSimpleTy
= OrigVT
.getSimpleVT().SimpleTy
;
8094 switch (OrigSimpleTy
) {
8095 default: llvm_unreachable("Unexpected Vector Type");
8104 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
8105 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
8106 /// We insert the required extension here to get the vector to fill a D register.
8107 static SDValue
AddRequiredExtensionForVMULL(SDValue N
, SelectionDAG
&DAG
,
8110 unsigned ExtOpcode
) {
8111 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
8112 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
8113 // 64-bits we need to insert a new extension so that it will be 64-bits.
8114 assert(ExtTy
.is128BitVector() && "Unexpected extension size");
8115 if (OrigTy
.getSizeInBits() >= 64)
8118 // Must extend size to at least 64 bits to be used as an operand for VMULL.
8119 EVT NewVT
= getExtensionTo64Bits(OrigTy
);
8121 return DAG
.getNode(ExtOpcode
, SDLoc(N
), NewVT
, N
);
8124 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
8125 /// does not do any sign/zero extension. If the original vector is less
8126 /// than 64 bits, an appropriate extension will be added after the load to
8127 /// reach a total size of 64 bits. We have to add the extension separately
8128 /// because ARM does not have a sign/zero extending load for vectors.
8129 static SDValue
SkipLoadExtensionForVMULL(LoadSDNode
*LD
, SelectionDAG
& DAG
) {
8130 EVT ExtendedTy
= getExtensionTo64Bits(LD
->getMemoryVT());
8132 // The load already has the right type.
8133 if (ExtendedTy
== LD
->getMemoryVT())
8134 return DAG
.getLoad(LD
->getMemoryVT(), SDLoc(LD
), LD
->getChain(),
8135 LD
->getBasePtr(), LD
->getPointerInfo(),
8136 LD
->getAlignment(), LD
->getMemOperand()->getFlags());
8138 // We need to create a zextload/sextload. We cannot just create a load
8139 // followed by a zext/zext node because LowerMUL is also run during normal
8140 // operation legalization where we can't create illegal types.
8141 return DAG
.getExtLoad(LD
->getExtensionType(), SDLoc(LD
), ExtendedTy
,
8142 LD
->getChain(), LD
->getBasePtr(), LD
->getPointerInfo(),
8143 LD
->getMemoryVT(), LD
->getAlignment(),
8144 LD
->getMemOperand()->getFlags());
8147 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
8148 /// extending load, or BUILD_VECTOR with extended elements, return the
8149 /// unextended value. The unextended vector should be 64 bits so that it can
8150 /// be used as an operand to a VMULL instruction. If the original vector size
8151 /// before extension is less than 64 bits we add a an extension to resize
8152 /// the vector to 64 bits.
8153 static SDValue
SkipExtensionForVMULL(SDNode
*N
, SelectionDAG
&DAG
) {
8154 if (N
->getOpcode() == ISD::SIGN_EXTEND
|| N
->getOpcode() == ISD::ZERO_EXTEND
)
8155 return AddRequiredExtensionForVMULL(N
->getOperand(0), DAG
,
8156 N
->getOperand(0)->getValueType(0),
8160 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
8161 assert((ISD::isSEXTLoad(LD
) || ISD::isZEXTLoad(LD
)) &&
8162 "Expected extending load");
8164 SDValue newLoad
= SkipLoadExtensionForVMULL(LD
, DAG
);
8165 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), newLoad
.getValue(1));
8166 unsigned Opcode
= ISD::isSEXTLoad(LD
) ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
8168 DAG
.getNode(Opcode
, SDLoc(newLoad
), LD
->getValueType(0), newLoad
);
8169 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 0), extLoad
);
8174 // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will
8175 // have been legalized as a BITCAST from v4i32.
8176 if (N
->getOpcode() == ISD::BITCAST
) {
8177 SDNode
*BVN
= N
->getOperand(0).getNode();
8178 assert(BVN
->getOpcode() == ISD::BUILD_VECTOR
&&
8179 BVN
->getValueType(0) == MVT::v4i32
&& "expected v4i32 BUILD_VECTOR");
8180 unsigned LowElt
= DAG
.getDataLayout().isBigEndian() ? 1 : 0;
8181 return DAG
.getBuildVector(
8182 MVT::v2i32
, SDLoc(N
),
8183 {BVN
->getOperand(LowElt
), BVN
->getOperand(LowElt
+ 2)});
8185 // Construct a new BUILD_VECTOR with elements truncated to half the size.
8186 assert(N
->getOpcode() == ISD::BUILD_VECTOR
&& "expected BUILD_VECTOR");
8187 EVT VT
= N
->getValueType(0);
8188 unsigned EltSize
= VT
.getScalarSizeInBits() / 2;
8189 unsigned NumElts
= VT
.getVectorNumElements();
8190 MVT TruncVT
= MVT::getIntegerVT(EltSize
);
8191 SmallVector
<SDValue
, 8> Ops
;
8193 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
8194 ConstantSDNode
*C
= cast
<ConstantSDNode
>(N
->getOperand(i
));
8195 const APInt
&CInt
= C
->getAPIntValue();
8196 // Element types smaller than 32 bits are not legal, so use i32 elements.
8197 // The values are implicitly truncated so sext vs. zext doesn't matter.
8198 Ops
.push_back(DAG
.getConstant(CInt
.zextOrTrunc(32), dl
, MVT::i32
));
8200 return DAG
.getBuildVector(MVT::getVectorVT(TruncVT
, NumElts
), dl
, Ops
);
8203 static bool isAddSubSExt(SDNode
*N
, SelectionDAG
&DAG
) {
8204 unsigned Opcode
= N
->getOpcode();
8205 if (Opcode
== ISD::ADD
|| Opcode
== ISD::SUB
) {
8206 SDNode
*N0
= N
->getOperand(0).getNode();
8207 SDNode
*N1
= N
->getOperand(1).getNode();
8208 return N0
->hasOneUse() && N1
->hasOneUse() &&
8209 isSignExtended(N0
, DAG
) && isSignExtended(N1
, DAG
);
8214 static bool isAddSubZExt(SDNode
*N
, SelectionDAG
&DAG
) {
8215 unsigned Opcode
= N
->getOpcode();
8216 if (Opcode
== ISD::ADD
|| Opcode
== ISD::SUB
) {
8217 SDNode
*N0
= N
->getOperand(0).getNode();
8218 SDNode
*N1
= N
->getOperand(1).getNode();
8219 return N0
->hasOneUse() && N1
->hasOneUse() &&
8220 isZeroExtended(N0
, DAG
) && isZeroExtended(N1
, DAG
);
8225 static SDValue
LowerMUL(SDValue Op
, SelectionDAG
&DAG
) {
8226 // Multiplications are only custom-lowered for 128-bit vectors so that
8227 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
8228 EVT VT
= Op
.getValueType();
8229 assert(VT
.is128BitVector() && VT
.isInteger() &&
8230 "unexpected type for custom-lowering ISD::MUL");
8231 SDNode
*N0
= Op
.getOperand(0).getNode();
8232 SDNode
*N1
= Op
.getOperand(1).getNode();
8233 unsigned NewOpc
= 0;
8235 bool isN0SExt
= isSignExtended(N0
, DAG
);
8236 bool isN1SExt
= isSignExtended(N1
, DAG
);
8237 if (isN0SExt
&& isN1SExt
)
8238 NewOpc
= ARMISD::VMULLs
;
8240 bool isN0ZExt
= isZeroExtended(N0
, DAG
);
8241 bool isN1ZExt
= isZeroExtended(N1
, DAG
);
8242 if (isN0ZExt
&& isN1ZExt
)
8243 NewOpc
= ARMISD::VMULLu
;
8244 else if (isN1SExt
|| isN1ZExt
) {
8245 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
8246 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
8247 if (isN1SExt
&& isAddSubSExt(N0
, DAG
)) {
8248 NewOpc
= ARMISD::VMULLs
;
8250 } else if (isN1ZExt
&& isAddSubZExt(N0
, DAG
)) {
8251 NewOpc
= ARMISD::VMULLu
;
8253 } else if (isN0ZExt
&& isAddSubZExt(N1
, DAG
)) {
8255 NewOpc
= ARMISD::VMULLu
;
8261 if (VT
== MVT::v2i64
)
8262 // Fall through to expand this. It is not legal.
8265 // Other vector multiplications are legal.
8270 // Legalize to a VMULL instruction.
8273 SDValue Op1
= SkipExtensionForVMULL(N1
, DAG
);
8275 Op0
= SkipExtensionForVMULL(N0
, DAG
);
8276 assert(Op0
.getValueType().is64BitVector() &&
8277 Op1
.getValueType().is64BitVector() &&
8278 "unexpected types for extended operands to VMULL");
8279 return DAG
.getNode(NewOpc
, DL
, VT
, Op0
, Op1
);
8282 // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
8283 // isel lowering to take advantage of no-stall back to back vmul + vmla.
8290 SDValue N00
= SkipExtensionForVMULL(N0
->getOperand(0).getNode(), DAG
);
8291 SDValue N01
= SkipExtensionForVMULL(N0
->getOperand(1).getNode(), DAG
);
8292 EVT Op1VT
= Op1
.getValueType();
8293 return DAG
.getNode(N0
->getOpcode(), DL
, VT
,
8294 DAG
.getNode(NewOpc
, DL
, VT
,
8295 DAG
.getNode(ISD::BITCAST
, DL
, Op1VT
, N00
), Op1
),
8296 DAG
.getNode(NewOpc
, DL
, VT
,
8297 DAG
.getNode(ISD::BITCAST
, DL
, Op1VT
, N01
), Op1
));
8300 static SDValue
LowerSDIV_v4i8(SDValue X
, SDValue Y
, const SDLoc
&dl
,
8301 SelectionDAG
&DAG
) {
8302 // TODO: Should this propagate fast-math-flags?
8305 // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
8306 // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
8307 X
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, X
);
8308 Y
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, Y
);
8309 X
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, X
);
8310 Y
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, Y
);
8311 // Get reciprocal estimate.
8312 // float4 recip = vrecpeq_f32(yf);
8313 Y
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8314 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
8316 // Because char has a smaller range than uchar, we can actually get away
8317 // without any newton steps. This requires that we use a weird bias
8318 // of 0xb000, however (again, this has been exhaustively tested).
8319 // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
8320 X
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, X
, Y
);
8321 X
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, X
);
8322 Y
= DAG
.getConstant(0xb000, dl
, MVT::v4i32
);
8323 X
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, X
, Y
);
8324 X
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, X
);
8325 // Convert back to short.
8326 X
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, X
);
8327 X
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, X
);
8331 static SDValue
LowerSDIV_v4i16(SDValue N0
, SDValue N1
, const SDLoc
&dl
,
8332 SelectionDAG
&DAG
) {
8333 // TODO: Should this propagate fast-math-flags?
8336 // Convert to float.
8337 // float4 yf = vcvt_f32_s32(vmovl_s16(y));
8338 // float4 xf = vcvt_f32_s32(vmovl_s16(x));
8339 N0
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, N0
);
8340 N1
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, N1
);
8341 N0
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N0
);
8342 N1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N1
);
8344 // Use reciprocal estimate and one refinement step.
8345 // float4 recip = vrecpeq_f32(yf);
8346 // recip *= vrecpsq_f32(yf, recip);
8347 N2
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8348 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
8350 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8351 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
8353 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
8354 // Because short has a smaller range than ushort, we can actually get away
8355 // with only a single newton step. This requires that we use a weird bias
8356 // of 89, however (again, this has been exhaustively tested).
8357 // float4 result = as_float4(as_int4(xf*recip) + 0x89);
8358 N0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N0
, N2
);
8359 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, N0
);
8360 N1
= DAG
.getConstant(0x89, dl
, MVT::v4i32
);
8361 N0
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, N0
, N1
);
8362 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, N0
);
8363 // Convert back to integer and return.
8364 // return vmovn_s32(vcvt_s32_f32(result));
8365 N0
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, N0
);
8366 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, N0
);
8370 static SDValue
LowerSDIV(SDValue Op
, SelectionDAG
&DAG
,
8371 const ARMSubtarget
*ST
) {
8372 EVT VT
= Op
.getValueType();
8373 assert((VT
== MVT::v4i16
|| VT
== MVT::v8i8
) &&
8374 "unexpected type for custom-lowering ISD::SDIV");
8377 SDValue N0
= Op
.getOperand(0);
8378 SDValue N1
= Op
.getOperand(1);
8381 if (VT
== MVT::v8i8
) {
8382 N0
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v8i16
, N0
);
8383 N1
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v8i16
, N1
);
8385 N2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8386 DAG
.getIntPtrConstant(4, dl
));
8387 N3
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8388 DAG
.getIntPtrConstant(4, dl
));
8389 N0
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8390 DAG
.getIntPtrConstant(0, dl
));
8391 N1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8392 DAG
.getIntPtrConstant(0, dl
));
8394 N0
= LowerSDIV_v4i8(N0
, N1
, dl
, DAG
); // v4i16
8395 N2
= LowerSDIV_v4i8(N2
, N3
, dl
, DAG
); // v4i16
8397 N0
= DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, MVT::v8i16
, N0
, N2
);
8398 N0
= LowerCONCAT_VECTORS(N0
, DAG
, ST
);
8400 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v8i8
, N0
);
8403 return LowerSDIV_v4i16(N0
, N1
, dl
, DAG
);
8406 static SDValue
LowerUDIV(SDValue Op
, SelectionDAG
&DAG
,
8407 const ARMSubtarget
*ST
) {
8408 // TODO: Should this propagate fast-math-flags?
8409 EVT VT
= Op
.getValueType();
8410 assert((VT
== MVT::v4i16
|| VT
== MVT::v8i8
) &&
8411 "unexpected type for custom-lowering ISD::UDIV");
8414 SDValue N0
= Op
.getOperand(0);
8415 SDValue N1
= Op
.getOperand(1);
8418 if (VT
== MVT::v8i8
) {
8419 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v8i16
, N0
);
8420 N1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v8i16
, N1
);
8422 N2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8423 DAG
.getIntPtrConstant(4, dl
));
8424 N3
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8425 DAG
.getIntPtrConstant(4, dl
));
8426 N0
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8427 DAG
.getIntPtrConstant(0, dl
));
8428 N1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8429 DAG
.getIntPtrConstant(0, dl
));
8431 N0
= LowerSDIV_v4i16(N0
, N1
, dl
, DAG
); // v4i16
8432 N2
= LowerSDIV_v4i16(N2
, N3
, dl
, DAG
); // v4i16
8434 N0
= DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, MVT::v8i16
, N0
, N2
);
8435 N0
= LowerCONCAT_VECTORS(N0
, DAG
, ST
);
8437 N0
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v8i8
,
8438 DAG
.getConstant(Intrinsic::arm_neon_vqmovnsu
, dl
,
8444 // v4i16 sdiv ... Convert to float.
8445 // float4 yf = vcvt_f32_s32(vmovl_u16(y));
8446 // float4 xf = vcvt_f32_s32(vmovl_u16(x));
8447 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v4i32
, N0
);
8448 N1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v4i32
, N1
);
8449 N0
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N0
);
8450 SDValue BN1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N1
);
8452 // Use reciprocal estimate and two refinement steps.
8453 // float4 recip = vrecpeq_f32(yf);
8454 // recip *= vrecpsq_f32(yf, recip);
8455 // recip *= vrecpsq_f32(yf, recip);
8456 N2
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8457 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
8459 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8460 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
8462 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
8463 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8464 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
8466 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
8467 // Simply multiplying by the reciprocal estimate can leave us a few ulps
8468 // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
8469 // and that it will never cause us to return an answer too large).
8470 // float4 result = as_float4(as_int4(xf*recip) + 2);
8471 N0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N0
, N2
);
8472 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, N0
);
8473 N1
= DAG
.getConstant(2, dl
, MVT::v4i32
);
8474 N0
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, N0
, N1
);
8475 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, N0
);
8476 // Convert back to integer and return.
8477 // return vmovn_u32(vcvt_s32_f32(result));
8478 N0
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, N0
);
8479 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, N0
);
8483 static SDValue
LowerADDSUBCARRY(SDValue Op
, SelectionDAG
&DAG
) {
8484 SDNode
*N
= Op
.getNode();
8485 EVT VT
= N
->getValueType(0);
8486 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
8488 SDValue Carry
= Op
.getOperand(2);
8493 if (Op
.getOpcode() == ISD::ADDCARRY
) {
8494 // This converts the boolean value carry into the carry flag.
8495 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
8497 // Do the addition proper using the carry flag we wanted.
8498 Result
= DAG
.getNode(ARMISD::ADDE
, DL
, VTs
, Op
.getOperand(0),
8499 Op
.getOperand(1), Carry
);
8501 // Now convert the carry flag into a boolean value.
8502 Carry
= ConvertCarryFlagToBooleanCarry(Result
.getValue(1), VT
, DAG
);
8504 // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
8505 // have to invert the carry first.
8506 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
8507 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
8508 // This converts the boolean value carry into the carry flag.
8509 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
8511 // Do the subtraction proper using the carry flag we wanted.
8512 Result
= DAG
.getNode(ARMISD::SUBE
, DL
, VTs
, Op
.getOperand(0),
8513 Op
.getOperand(1), Carry
);
8515 // Now convert the carry flag into a boolean value.
8516 Carry
= ConvertCarryFlagToBooleanCarry(Result
.getValue(1), VT
, DAG
);
8517 // But the carry returned by ARMISD::SUBE is not a borrow as expected
8518 // by ISD::SUBCARRY, so compute 1 - C.
8519 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
8520 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
8523 // Return both values.
8524 return DAG
.getNode(ISD::MERGE_VALUES
, DL
, N
->getVTList(), Result
, Carry
);
8527 SDValue
ARMTargetLowering::LowerFSINCOS(SDValue Op
, SelectionDAG
&DAG
) const {
8528 assert(Subtarget
->isTargetDarwin());
8530 // For iOS, we want to call an alternative entry point: __sincos_stret,
8531 // return values are passed via sret.
8533 SDValue Arg
= Op
.getOperand(0);
8534 EVT ArgVT
= Arg
.getValueType();
8535 Type
*ArgTy
= ArgVT
.getTypeForEVT(*DAG
.getContext());
8536 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
8538 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
8539 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8541 // Pair of floats / doubles used to pass the result.
8542 Type
*RetTy
= StructType::get(ArgTy
, ArgTy
);
8543 auto &DL
= DAG
.getDataLayout();
8546 bool ShouldUseSRet
= Subtarget
->isAPCS_ABI();
8548 if (ShouldUseSRet
) {
8549 // Create stack object for sret.
8550 const uint64_t ByteSize
= DL
.getTypeAllocSize(RetTy
);
8551 const unsigned StackAlign
= DL
.getPrefTypeAlignment(RetTy
);
8552 int FrameIdx
= MFI
.CreateStackObject(ByteSize
, StackAlign
, false);
8553 SRet
= DAG
.getFrameIndex(FrameIdx
, TLI
.getPointerTy(DL
));
8557 Entry
.Ty
= RetTy
->getPointerTo();
8558 Entry
.IsSExt
= false;
8559 Entry
.IsZExt
= false;
8560 Entry
.IsSRet
= true;
8561 Args
.push_back(Entry
);
8562 RetTy
= Type::getVoidTy(*DAG
.getContext());
8568 Entry
.IsSExt
= false;
8569 Entry
.IsZExt
= false;
8570 Args
.push_back(Entry
);
8573 (ArgVT
== MVT::f64
) ? RTLIB::SINCOS_STRET_F64
: RTLIB::SINCOS_STRET_F32
;
8574 const char *LibcallName
= getLibcallName(LC
);
8575 CallingConv::ID CC
= getLibcallCallingConv(LC
);
8576 SDValue Callee
= DAG
.getExternalSymbol(LibcallName
, getPointerTy(DL
));
8578 TargetLowering::CallLoweringInfo
CLI(DAG
);
8580 .setChain(DAG
.getEntryNode())
8581 .setCallee(CC
, RetTy
, Callee
, std::move(Args
))
8582 .setDiscardResult(ShouldUseSRet
);
8583 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
8586 return CallResult
.first
;
8589 DAG
.getLoad(ArgVT
, dl
, CallResult
.second
, SRet
, MachinePointerInfo());
8591 // Address of cos field.
8592 SDValue Add
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, SRet
,
8593 DAG
.getIntPtrConstant(ArgVT
.getStoreSize(), dl
));
8595 DAG
.getLoad(ArgVT
, dl
, LoadSin
.getValue(1), Add
, MachinePointerInfo());
8597 SDVTList Tys
= DAG
.getVTList(ArgVT
, ArgVT
);
8598 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, Tys
,
8599 LoadSin
.getValue(0), LoadCos
.getValue(0));
8602 SDValue
ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op
, SelectionDAG
&DAG
,
8604 SDValue
&Chain
) const {
8605 EVT VT
= Op
.getValueType();
8606 assert((VT
== MVT::i32
|| VT
== MVT::i64
) &&
8607 "unexpected type for custom lowering DIV");
8610 const auto &DL
= DAG
.getDataLayout();
8611 const auto &TLI
= DAG
.getTargetLoweringInfo();
8613 const char *Name
= nullptr;
8615 Name
= (VT
== MVT::i32
) ? "__rt_sdiv" : "__rt_sdiv64";
8617 Name
= (VT
== MVT::i32
) ? "__rt_udiv" : "__rt_udiv64";
8619 SDValue ES
= DAG
.getExternalSymbol(Name
, TLI
.getPointerTy(DL
));
8621 ARMTargetLowering::ArgListTy Args
;
8623 for (auto AI
: {1, 0}) {
8625 Arg
.Node
= Op
.getOperand(AI
);
8626 Arg
.Ty
= Arg
.Node
.getValueType().getTypeForEVT(*DAG
.getContext());
8627 Args
.push_back(Arg
);
8630 CallLoweringInfo
CLI(DAG
);
8633 .setCallee(CallingConv::ARM_AAPCS_VFP
, VT
.getTypeForEVT(*DAG
.getContext()),
8634 ES
, std::move(Args
));
8636 return LowerCallTo(CLI
).first
;
8639 // This is a code size optimisation: return the original SDIV node to
8640 // DAGCombiner when we don't want to expand SDIV into a sequence of
8641 // instructions, and an empty node otherwise which will cause the
8642 // SDIV to be expanded in DAGCombine.
8644 ARMTargetLowering::BuildSDIVPow2(SDNode
*N
, const APInt
&Divisor
,
8646 SmallVectorImpl
<SDNode
*> &Created
) const {
8647 // TODO: Support SREM
8648 if (N
->getOpcode() != ISD::SDIV
)
8651 const auto &ST
= static_cast<const ARMSubtarget
&>(DAG
.getSubtarget());
8652 const bool MinSize
= ST
.hasMinSize();
8653 const bool HasDivide
= ST
.isThumb() ? ST
.hasDivideInThumbMode()
8654 : ST
.hasDivideInARMMode();
8656 // Don't touch vector types; rewriting this may lead to scalarizing
8658 if (N
->getOperand(0).getValueType().isVector())
8661 // Bail if MinSize is not set, and also for both ARM and Thumb mode we need
8662 // hwdiv support for this to be really profitable.
8663 if (!(MinSize
&& HasDivide
))
8666 // ARM mode is a bit simpler than Thumb: we can handle large power
8667 // of 2 immediates with 1 mov instruction; no further checks required,
8668 // just return the sdiv node.
8670 return SDValue(N
, 0);
8672 // In Thumb mode, immediates larger than 128 need a wide 4-byte MOV,
8673 // and thus lose the code size benefits of a MOVS that requires only 2.
8674 // TargetTransformInfo and 'getIntImmCodeSizeCost' could be helpful here,
8675 // but as it's doing exactly this, it's not worth the trouble to get TTI.
8676 if (Divisor
.sgt(128))
8679 return SDValue(N
, 0);
8682 SDValue
ARMTargetLowering::LowerDIV_Windows(SDValue Op
, SelectionDAG
&DAG
,
8683 bool Signed
) const {
8684 assert(Op
.getValueType() == MVT::i32
&&
8685 "unexpected type for custom lowering DIV");
8688 SDValue DBZCHK
= DAG
.getNode(ARMISD::WIN__DBZCHK
, dl
, MVT::Other
,
8689 DAG
.getEntryNode(), Op
.getOperand(1));
8691 return LowerWindowsDIVLibCall(Op
, DAG
, Signed
, DBZCHK
);
8694 static SDValue
WinDBZCheckDenominator(SelectionDAG
&DAG
, SDNode
*N
, SDValue InChain
) {
8696 SDValue Op
= N
->getOperand(1);
8697 if (N
->getValueType(0) == MVT::i32
)
8698 return DAG
.getNode(ARMISD::WIN__DBZCHK
, DL
, MVT::Other
, InChain
, Op
);
8699 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, Op
,
8700 DAG
.getConstant(0, DL
, MVT::i32
));
8701 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, Op
,
8702 DAG
.getConstant(1, DL
, MVT::i32
));
8703 return DAG
.getNode(ARMISD::WIN__DBZCHK
, DL
, MVT::Other
, InChain
,
8704 DAG
.getNode(ISD::OR
, DL
, MVT::i32
, Lo
, Hi
));
8707 void ARMTargetLowering::ExpandDIV_Windows(
8708 SDValue Op
, SelectionDAG
&DAG
, bool Signed
,
8709 SmallVectorImpl
<SDValue
> &Results
) const {
8710 const auto &DL
= DAG
.getDataLayout();
8711 const auto &TLI
= DAG
.getTargetLoweringInfo();
8713 assert(Op
.getValueType() == MVT::i64
&&
8714 "unexpected type for custom lowering DIV");
8717 SDValue DBZCHK
= WinDBZCheckDenominator(DAG
, Op
.getNode(), DAG
.getEntryNode());
8719 SDValue Result
= LowerWindowsDIVLibCall(Op
, DAG
, Signed
, DBZCHK
);
8721 SDValue Lower
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Result
);
8722 SDValue Upper
= DAG
.getNode(ISD::SRL
, dl
, MVT::i64
, Result
,
8723 DAG
.getConstant(32, dl
, TLI
.getPointerTy(DL
)));
8724 Upper
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Upper
);
8726 Results
.push_back(Lower
);
8727 Results
.push_back(Upper
);
8730 static SDValue
LowerAtomicLoadStore(SDValue Op
, SelectionDAG
&DAG
) {
8731 if (isStrongerThanMonotonic(cast
<AtomicSDNode
>(Op
)->getOrdering()))
8732 // Acquire/Release load/store is not legal for targets without a dmb or
8733 // equivalent available.
8736 // Monotonic load/store is legal for all targets.
8740 static void ReplaceREADCYCLECOUNTER(SDNode
*N
,
8741 SmallVectorImpl
<SDValue
> &Results
,
8743 const ARMSubtarget
*Subtarget
) {
8745 // Under Power Management extensions, the cycle-count is:
8746 // mrc p15, #0, <Rt>, c9, c13, #0
8747 SDValue Ops
[] = { N
->getOperand(0), // Chain
8748 DAG
.getConstant(Intrinsic::arm_mrc
, DL
, MVT::i32
),
8749 DAG
.getConstant(15, DL
, MVT::i32
),
8750 DAG
.getConstant(0, DL
, MVT::i32
),
8751 DAG
.getConstant(9, DL
, MVT::i32
),
8752 DAG
.getConstant(13, DL
, MVT::i32
),
8753 DAG
.getConstant(0, DL
, MVT::i32
)
8756 SDValue Cycles32
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, DL
,
8757 DAG
.getVTList(MVT::i32
, MVT::Other
), Ops
);
8758 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, Cycles32
,
8759 DAG
.getConstant(0, DL
, MVT::i32
)));
8760 Results
.push_back(Cycles32
.getValue(1));
8763 static SDValue
createGPRPairNode(SelectionDAG
&DAG
, SDValue V
) {
8764 SDLoc
dl(V
.getNode());
8765 SDValue VLo
= DAG
.getAnyExtOrTrunc(V
, dl
, MVT::i32
);
8766 SDValue VHi
= DAG
.getAnyExtOrTrunc(
8767 DAG
.getNode(ISD::SRL
, dl
, MVT::i64
, V
, DAG
.getConstant(32, dl
, MVT::i32
)),
8769 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
8771 std::swap (VLo
, VHi
);
8773 DAG
.getTargetConstant(ARM::GPRPairRegClassID
, dl
, MVT::i32
);
8774 SDValue SubReg0
= DAG
.getTargetConstant(ARM::gsub_0
, dl
, MVT::i32
);
8775 SDValue SubReg1
= DAG
.getTargetConstant(ARM::gsub_1
, dl
, MVT::i32
);
8776 const SDValue Ops
[] = { RegClass
, VLo
, SubReg0
, VHi
, SubReg1
};
8778 DAG
.getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
, MVT::Untyped
, Ops
), 0);
8781 static void ReplaceCMP_SWAP_64Results(SDNode
*N
,
8782 SmallVectorImpl
<SDValue
> & Results
,
8783 SelectionDAG
&DAG
) {
8784 assert(N
->getValueType(0) == MVT::i64
&&
8785 "AtomicCmpSwap on types less than 64 should be legal");
8786 SDValue Ops
[] = {N
->getOperand(1),
8787 createGPRPairNode(DAG
, N
->getOperand(2)),
8788 createGPRPairNode(DAG
, N
->getOperand(3)),
8790 SDNode
*CmpSwap
= DAG
.getMachineNode(
8791 ARM::CMP_SWAP_64
, SDLoc(N
),
8792 DAG
.getVTList(MVT::Untyped
, MVT::i32
, MVT::Other
), Ops
);
8794 MachineMemOperand
*MemOp
= cast
<MemSDNode
>(N
)->getMemOperand();
8795 DAG
.setNodeMemRefs(cast
<MachineSDNode
>(CmpSwap
), {MemOp
});
8797 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
8800 DAG
.getTargetExtractSubreg(isBigEndian
? ARM::gsub_1
: ARM::gsub_0
,
8801 SDLoc(N
), MVT::i32
, SDValue(CmpSwap
, 0)));
8803 DAG
.getTargetExtractSubreg(isBigEndian
? ARM::gsub_0
: ARM::gsub_1
,
8804 SDLoc(N
), MVT::i32
, SDValue(CmpSwap
, 0)));
8805 Results
.push_back(SDValue(CmpSwap
, 2));
8808 static SDValue
LowerFPOWI(SDValue Op
, const ARMSubtarget
&Subtarget
,
8809 SelectionDAG
&DAG
) {
8810 const auto &TLI
= DAG
.getTargetLoweringInfo();
8812 assert(Subtarget
.getTargetTriple().isOSMSVCRT() &&
8813 "Custom lowering is MSVCRT specific!");
8816 SDValue Val
= Op
.getOperand(0);
8817 MVT Ty
= Val
->getSimpleValueType(0);
8818 SDValue Exponent
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, Ty
, Op
.getOperand(1));
8819 SDValue Callee
= DAG
.getExternalSymbol(Ty
== MVT::f32
? "powf" : "pow",
8820 TLI
.getPointerTy(DAG
.getDataLayout()));
8822 TargetLowering::ArgListTy Args
;
8823 TargetLowering::ArgListEntry Entry
;
8826 Entry
.Ty
= Val
.getValueType().getTypeForEVT(*DAG
.getContext());
8827 Entry
.IsZExt
= true;
8828 Args
.push_back(Entry
);
8830 Entry
.Node
= Exponent
;
8831 Entry
.Ty
= Exponent
.getValueType().getTypeForEVT(*DAG
.getContext());
8832 Entry
.IsZExt
= true;
8833 Args
.push_back(Entry
);
8835 Type
*LCRTy
= Val
.getValueType().getTypeForEVT(*DAG
.getContext());
8837 // In the in-chain to the call is the entry node If we are emitting a
8838 // tailcall, the chain will be mutated if the node has a non-entry input
8840 SDValue InChain
= DAG
.getEntryNode();
8841 SDValue TCChain
= InChain
;
8843 const Function
&F
= DAG
.getMachineFunction().getFunction();
8844 bool IsTC
= TLI
.isInTailCallPosition(DAG
, Op
.getNode(), TCChain
) &&
8845 F
.getReturnType() == LCRTy
;
8849 TargetLowering::CallLoweringInfo
CLI(DAG
);
8852 .setCallee(CallingConv::ARM_AAPCS_VFP
, LCRTy
, Callee
, std::move(Args
))
8854 std::pair
<SDValue
, SDValue
> CI
= TLI
.LowerCallTo(CLI
);
8856 // Return the chain (the DAG root) if it is a tail call
8857 return !CI
.second
.getNode() ? DAG
.getRoot() : CI
.first
;
8860 SDValue
ARMTargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const {
8861 LLVM_DEBUG(dbgs() << "Lowering node: "; Op
.dump());
8862 switch (Op
.getOpcode()) {
8863 default: llvm_unreachable("Don't know how to custom lower this!");
8864 case ISD::WRITE_REGISTER
: return LowerWRITE_REGISTER(Op
, DAG
);
8865 case ISD::ConstantPool
: return LowerConstantPool(Op
, DAG
);
8866 case ISD::BlockAddress
: return LowerBlockAddress(Op
, DAG
);
8867 case ISD::GlobalAddress
: return LowerGlobalAddress(Op
, DAG
);
8868 case ISD::GlobalTLSAddress
: return LowerGlobalTLSAddress(Op
, DAG
);
8869 case ISD::SELECT
: return LowerSELECT(Op
, DAG
);
8870 case ISD::SELECT_CC
: return LowerSELECT_CC(Op
, DAG
);
8871 case ISD::BRCOND
: return LowerBRCOND(Op
, DAG
);
8872 case ISD::BR_CC
: return LowerBR_CC(Op
, DAG
);
8873 case ISD::BR_JT
: return LowerBR_JT(Op
, DAG
);
8874 case ISD::VASTART
: return LowerVASTART(Op
, DAG
);
8875 case ISD::ATOMIC_FENCE
: return LowerATOMIC_FENCE(Op
, DAG
, Subtarget
);
8876 case ISD::PREFETCH
: return LowerPREFETCH(Op
, DAG
, Subtarget
);
8877 case ISD::SINT_TO_FP
:
8878 case ISD::UINT_TO_FP
: return LowerINT_TO_FP(Op
, DAG
);
8879 case ISD::FP_TO_SINT
:
8880 case ISD::FP_TO_UINT
: return LowerFP_TO_INT(Op
, DAG
);
8881 case ISD::FCOPYSIGN
: return LowerFCOPYSIGN(Op
, DAG
);
8882 case ISD::RETURNADDR
: return LowerRETURNADDR(Op
, DAG
);
8883 case ISD::FRAMEADDR
: return LowerFRAMEADDR(Op
, DAG
);
8884 case ISD::EH_SJLJ_SETJMP
: return LowerEH_SJLJ_SETJMP(Op
, DAG
);
8885 case ISD::EH_SJLJ_LONGJMP
: return LowerEH_SJLJ_LONGJMP(Op
, DAG
);
8886 case ISD::EH_SJLJ_SETUP_DISPATCH
: return LowerEH_SJLJ_SETUP_DISPATCH(Op
, DAG
);
8887 case ISD::INTRINSIC_VOID
: return LowerINTRINSIC_VOID(Op
, DAG
, Subtarget
);
8888 case ISD::INTRINSIC_WO_CHAIN
: return LowerINTRINSIC_WO_CHAIN(Op
, DAG
,
8890 case ISD::BITCAST
: return ExpandBITCAST(Op
.getNode(), DAG
, Subtarget
);
8893 case ISD::SRA
: return LowerShift(Op
.getNode(), DAG
, Subtarget
);
8894 case ISD::SREM
: return LowerREM(Op
.getNode(), DAG
);
8895 case ISD::UREM
: return LowerREM(Op
.getNode(), DAG
);
8896 case ISD::SHL_PARTS
: return LowerShiftLeftParts(Op
, DAG
);
8897 case ISD::SRL_PARTS
:
8898 case ISD::SRA_PARTS
: return LowerShiftRightParts(Op
, DAG
);
8900 case ISD::CTTZ_ZERO_UNDEF
: return LowerCTTZ(Op
.getNode(), DAG
, Subtarget
);
8901 case ISD::CTPOP
: return LowerCTPOP(Op
.getNode(), DAG
, Subtarget
);
8902 case ISD::SETCC
: return LowerVSETCC(Op
, DAG
, Subtarget
);
8903 case ISD::SETCCCARRY
: return LowerSETCCCARRY(Op
, DAG
);
8904 case ISD::ConstantFP
: return LowerConstantFP(Op
, DAG
, Subtarget
);
8905 case ISD::BUILD_VECTOR
: return LowerBUILD_VECTOR(Op
, DAG
, Subtarget
);
8906 case ISD::VECTOR_SHUFFLE
: return LowerVECTOR_SHUFFLE(Op
, DAG
, Subtarget
);
8907 case ISD::EXTRACT_SUBVECTOR
: return LowerEXTRACT_SUBVECTOR(Op
, DAG
, Subtarget
);
8908 case ISD::INSERT_VECTOR_ELT
: return LowerINSERT_VECTOR_ELT(Op
, DAG
);
8909 case ISD::EXTRACT_VECTOR_ELT
: return LowerEXTRACT_VECTOR_ELT(Op
, DAG
, Subtarget
);
8910 case ISD::CONCAT_VECTORS
: return LowerCONCAT_VECTORS(Op
, DAG
, Subtarget
);
8911 case ISD::FLT_ROUNDS_
: return LowerFLT_ROUNDS_(Op
, DAG
);
8912 case ISD::MUL
: return LowerMUL(Op
, DAG
);
8914 if (Subtarget
->isTargetWindows() && !Op
.getValueType().isVector())
8915 return LowerDIV_Windows(Op
, DAG
, /* Signed */ true);
8916 return LowerSDIV(Op
, DAG
, Subtarget
);
8918 if (Subtarget
->isTargetWindows() && !Op
.getValueType().isVector())
8919 return LowerDIV_Windows(Op
, DAG
, /* Signed */ false);
8920 return LowerUDIV(Op
, DAG
, Subtarget
);
8922 case ISD::SUBCARRY
: return LowerADDSUBCARRY(Op
, DAG
);
8925 return LowerSignedALUO(Op
, DAG
);
8928 return LowerUnsignedALUO(Op
, DAG
);
8929 case ISD::ATOMIC_LOAD
:
8930 case ISD::ATOMIC_STORE
: return LowerAtomicLoadStore(Op
, DAG
);
8931 case ISD::FSINCOS
: return LowerFSINCOS(Op
, DAG
);
8933 case ISD::UDIVREM
: return LowerDivRem(Op
, DAG
);
8934 case ISD::DYNAMIC_STACKALLOC
:
8935 if (Subtarget
->isTargetWindows())
8936 return LowerDYNAMIC_STACKALLOC(Op
, DAG
);
8937 llvm_unreachable("Don't know how to custom lower this!");
8938 case ISD::FP_ROUND
: return LowerFP_ROUND(Op
, DAG
);
8939 case ISD::FP_EXTEND
: return LowerFP_EXTEND(Op
, DAG
);
8940 case ISD::FPOWI
: return LowerFPOWI(Op
, *Subtarget
, DAG
);
8941 case ARMISD::WIN__DBZCHK
: return SDValue();
8945 static void ReplaceLongIntrinsic(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
8946 SelectionDAG
&DAG
) {
8947 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
8949 if (IntNo
== Intrinsic::arm_smlald
)
8950 Opc
= ARMISD::SMLALD
;
8951 else if (IntNo
== Intrinsic::arm_smlaldx
)
8952 Opc
= ARMISD::SMLALDX
;
8953 else if (IntNo
== Intrinsic::arm_smlsld
)
8954 Opc
= ARMISD::SMLSLD
;
8955 else if (IntNo
== Intrinsic::arm_smlsldx
)
8956 Opc
= ARMISD::SMLSLDX
;
8961 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
8963 DAG
.getConstant(0, dl
, MVT::i32
));
8964 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
8966 DAG
.getConstant(1, dl
, MVT::i32
));
8968 SDValue LongMul
= DAG
.getNode(Opc
, dl
,
8969 DAG
.getVTList(MVT::i32
, MVT::i32
),
8970 N
->getOperand(1), N
->getOperand(2),
8972 Results
.push_back(LongMul
.getValue(0));
8973 Results
.push_back(LongMul
.getValue(1));
8976 /// ReplaceNodeResults - Replace the results of node with an illegal result
8977 /// type with new values built out of custom code.
8978 void ARMTargetLowering::ReplaceNodeResults(SDNode
*N
,
8979 SmallVectorImpl
<SDValue
> &Results
,
8980 SelectionDAG
&DAG
) const {
8982 switch (N
->getOpcode()) {
8984 llvm_unreachable("Don't know how to custom expand this!");
8985 case ISD::READ_REGISTER
:
8986 ExpandREAD_REGISTER(N
, Results
, DAG
);
8989 Res
= ExpandBITCAST(N
, DAG
, Subtarget
);
8994 Res
= Expand64BitShift(N
, DAG
, Subtarget
);
8998 Res
= LowerREM(N
, DAG
);
9002 Res
= LowerDivRem(SDValue(N
, 0), DAG
);
9003 assert(Res
.getNumOperands() == 2 && "DivRem needs two values");
9004 Results
.push_back(Res
.getValue(0));
9005 Results
.push_back(Res
.getValue(1));
9007 case ISD::READCYCLECOUNTER
:
9008 ReplaceREADCYCLECOUNTER(N
, Results
, DAG
, Subtarget
);
9012 assert(Subtarget
->isTargetWindows() && "can only expand DIV on Windows");
9013 return ExpandDIV_Windows(SDValue(N
, 0), DAG
, N
->getOpcode() == ISD::SDIV
,
9015 case ISD::ATOMIC_CMP_SWAP
:
9016 ReplaceCMP_SWAP_64Results(N
, Results
, DAG
);
9018 case ISD::INTRINSIC_WO_CHAIN
:
9019 return ReplaceLongIntrinsic(N
, Results
, DAG
);
9021 lowerABS(N
, Results
, DAG
);
9026 Results
.push_back(Res
);
9029 //===----------------------------------------------------------------------===//
9030 // ARM Scheduler Hooks
9031 //===----------------------------------------------------------------------===//
9033 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
9034 /// registers the function context.
9035 void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr
&MI
,
9036 MachineBasicBlock
*MBB
,
9037 MachineBasicBlock
*DispatchBB
,
9039 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
9040 "ROPI/RWPI not currently supported with SjLj");
9041 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9042 DebugLoc dl
= MI
.getDebugLoc();
9043 MachineFunction
*MF
= MBB
->getParent();
9044 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
9045 MachineConstantPool
*MCP
= MF
->getConstantPool();
9046 ARMFunctionInfo
*AFI
= MF
->getInfo
<ARMFunctionInfo
>();
9047 const Function
&F
= MF
->getFunction();
9049 bool isThumb
= Subtarget
->isThumb();
9050 bool isThumb2
= Subtarget
->isThumb2();
9052 unsigned PCLabelId
= AFI
->createPICLabelUId();
9053 unsigned PCAdj
= (isThumb
|| isThumb2
) ? 4 : 8;
9054 ARMConstantPoolValue
*CPV
=
9055 ARMConstantPoolMBB::Create(F
.getContext(), DispatchBB
, PCLabelId
, PCAdj
);
9056 unsigned CPI
= MCP
->getConstantPoolIndex(CPV
, 4);
9058 const TargetRegisterClass
*TRC
= isThumb
? &ARM::tGPRRegClass
9059 : &ARM::GPRRegClass
;
9061 // Grab constant pool and fixed stack memory operands.
9062 MachineMemOperand
*CPMMO
=
9063 MF
->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF
),
9064 MachineMemOperand::MOLoad
, 4, 4);
9066 MachineMemOperand
*FIMMOSt
=
9067 MF
->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF
, FI
),
9068 MachineMemOperand::MOStore
, 4, 4);
9070 // Load the address of the dispatch MBB into the jump buffer.
9072 // Incoming value: jbuf
9073 // ldr.n r5, LCPI1_1
9076 // str r5, [$jbuf, #+4] ; &jbuf[1]
9077 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9078 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2LDRpci
), NewVReg1
)
9079 .addConstantPoolIndex(CPI
)
9080 .addMemOperand(CPMMO
)
9081 .add(predOps(ARMCC::AL
));
9082 // Set the low bit because of thumb mode.
9083 Register NewVReg2
= MRI
->createVirtualRegister(TRC
);
9084 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2ORRri
), NewVReg2
)
9085 .addReg(NewVReg1
, RegState::Kill
)
9087 .add(predOps(ARMCC::AL
))
9089 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9090 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tPICADD
), NewVReg3
)
9091 .addReg(NewVReg2
, RegState::Kill
)
9093 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2STRi12
))
9094 .addReg(NewVReg3
, RegState::Kill
)
9096 .addImm(36) // &jbuf[1] :: pc
9097 .addMemOperand(FIMMOSt
)
9098 .add(predOps(ARMCC::AL
));
9099 } else if (isThumb
) {
9100 // Incoming value: jbuf
9101 // ldr.n r1, LCPI1_4
9105 // add r2, $jbuf, #+4 ; &jbuf[1]
9107 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9108 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tLDRpci
), NewVReg1
)
9109 .addConstantPoolIndex(CPI
)
9110 .addMemOperand(CPMMO
)
9111 .add(predOps(ARMCC::AL
));
9112 Register NewVReg2
= MRI
->createVirtualRegister(TRC
);
9113 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tPICADD
), NewVReg2
)
9114 .addReg(NewVReg1
, RegState::Kill
)
9116 // Set the low bit because of thumb mode.
9117 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9118 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tMOVi8
), NewVReg3
)
9119 .addReg(ARM::CPSR
, RegState::Define
)
9121 .add(predOps(ARMCC::AL
));
9122 Register NewVReg4
= MRI
->createVirtualRegister(TRC
);
9123 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tORR
), NewVReg4
)
9124 .addReg(ARM::CPSR
, RegState::Define
)
9125 .addReg(NewVReg2
, RegState::Kill
)
9126 .addReg(NewVReg3
, RegState::Kill
)
9127 .add(predOps(ARMCC::AL
));
9128 Register NewVReg5
= MRI
->createVirtualRegister(TRC
);
9129 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tADDframe
), NewVReg5
)
9131 .addImm(36); // &jbuf[1] :: pc
9132 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tSTRi
))
9133 .addReg(NewVReg4
, RegState::Kill
)
9134 .addReg(NewVReg5
, RegState::Kill
)
9136 .addMemOperand(FIMMOSt
)
9137 .add(predOps(ARMCC::AL
));
9139 // Incoming value: jbuf
9142 // str r1, [$jbuf, #+4] ; &jbuf[1]
9143 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9144 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::LDRi12
), NewVReg1
)
9145 .addConstantPoolIndex(CPI
)
9147 .addMemOperand(CPMMO
)
9148 .add(predOps(ARMCC::AL
));
9149 Register NewVReg2
= MRI
->createVirtualRegister(TRC
);
9150 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::PICADD
), NewVReg2
)
9151 .addReg(NewVReg1
, RegState::Kill
)
9153 .add(predOps(ARMCC::AL
));
9154 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::STRi12
))
9155 .addReg(NewVReg2
, RegState::Kill
)
9157 .addImm(36) // &jbuf[1] :: pc
9158 .addMemOperand(FIMMOSt
)
9159 .add(predOps(ARMCC::AL
));
9163 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr
&MI
,
9164 MachineBasicBlock
*MBB
) const {
9165 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9166 DebugLoc dl
= MI
.getDebugLoc();
9167 MachineFunction
*MF
= MBB
->getParent();
9168 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
9169 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
9170 int FI
= MFI
.getFunctionContextIndex();
9172 const TargetRegisterClass
*TRC
= Subtarget
->isThumb() ? &ARM::tGPRRegClass
9173 : &ARM::GPRnopcRegClass
;
9175 // Get a mapping of the call site numbers to all of the landing pads they're
9177 DenseMap
<unsigned, SmallVector
<MachineBasicBlock
*, 2>> CallSiteNumToLPad
;
9178 unsigned MaxCSNum
= 0;
9179 for (MachineFunction::iterator BB
= MF
->begin(), E
= MF
->end(); BB
!= E
;
9181 if (!BB
->isEHPad()) continue;
9183 // FIXME: We should assert that the EH_LABEL is the first MI in the landing
9185 for (MachineBasicBlock::iterator
9186 II
= BB
->begin(), IE
= BB
->end(); II
!= IE
; ++II
) {
9187 if (!II
->isEHLabel()) continue;
9189 MCSymbol
*Sym
= II
->getOperand(0).getMCSymbol();
9190 if (!MF
->hasCallSiteLandingPad(Sym
)) continue;
9192 SmallVectorImpl
<unsigned> &CallSiteIdxs
= MF
->getCallSiteLandingPad(Sym
);
9193 for (SmallVectorImpl
<unsigned>::iterator
9194 CSI
= CallSiteIdxs
.begin(), CSE
= CallSiteIdxs
.end();
9195 CSI
!= CSE
; ++CSI
) {
9196 CallSiteNumToLPad
[*CSI
].push_back(&*BB
);
9197 MaxCSNum
= std::max(MaxCSNum
, *CSI
);
9203 // Get an ordered list of the machine basic blocks for the jump table.
9204 std::vector
<MachineBasicBlock
*> LPadList
;
9205 SmallPtrSet
<MachineBasicBlock
*, 32> InvokeBBs
;
9206 LPadList
.reserve(CallSiteNumToLPad
.size());
9207 for (unsigned I
= 1; I
<= MaxCSNum
; ++I
) {
9208 SmallVectorImpl
<MachineBasicBlock
*> &MBBList
= CallSiteNumToLPad
[I
];
9209 for (SmallVectorImpl
<MachineBasicBlock
*>::iterator
9210 II
= MBBList
.begin(), IE
= MBBList
.end(); II
!= IE
; ++II
) {
9211 LPadList
.push_back(*II
);
9212 InvokeBBs
.insert((*II
)->pred_begin(), (*II
)->pred_end());
9216 assert(!LPadList
.empty() &&
9217 "No landing pad destinations for the dispatch jump table!");
9219 // Create the jump table and associated information.
9220 MachineJumpTableInfo
*JTI
=
9221 MF
->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline
);
9222 unsigned MJTI
= JTI
->createJumpTableIndex(LPadList
);
9224 // Create the MBBs for the dispatch code.
9226 // Shove the dispatch's address into the return slot in the function context.
9227 MachineBasicBlock
*DispatchBB
= MF
->CreateMachineBasicBlock();
9228 DispatchBB
->setIsEHPad();
9230 MachineBasicBlock
*TrapBB
= MF
->CreateMachineBasicBlock();
9231 unsigned trap_opcode
;
9232 if (Subtarget
->isThumb())
9233 trap_opcode
= ARM::tTRAP
;
9235 trap_opcode
= Subtarget
->useNaClTrap() ? ARM::TRAPNaCl
: ARM::TRAP
;
9237 BuildMI(TrapBB
, dl
, TII
->get(trap_opcode
));
9238 DispatchBB
->addSuccessor(TrapBB
);
9240 MachineBasicBlock
*DispContBB
= MF
->CreateMachineBasicBlock();
9241 DispatchBB
->addSuccessor(DispContBB
);
9244 MF
->insert(MF
->end(), DispatchBB
);
9245 MF
->insert(MF
->end(), DispContBB
);
9246 MF
->insert(MF
->end(), TrapBB
);
9248 // Insert code into the entry block that creates and registers the function
9250 SetupEntryBlockForSjLj(MI
, MBB
, DispatchBB
, FI
);
9252 MachineMemOperand
*FIMMOLd
= MF
->getMachineMemOperand(
9253 MachinePointerInfo::getFixedStack(*MF
, FI
),
9254 MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
, 4, 4);
9256 MachineInstrBuilder MIB
;
9257 MIB
= BuildMI(DispatchBB
, dl
, TII
->get(ARM::Int_eh_sjlj_dispatchsetup
));
9259 const ARMBaseInstrInfo
*AII
= static_cast<const ARMBaseInstrInfo
*>(TII
);
9260 const ARMBaseRegisterInfo
&RI
= AII
->getRegisterInfo();
9262 // Add a register mask with no preserved registers. This results in all
9263 // registers being marked as clobbered. This can't work if the dispatch block
9264 // is in a Thumb1 function and is linked with ARM code which uses the FP
9265 // registers, as there is no way to preserve the FP registers in Thumb1 mode.
9266 MIB
.addRegMask(RI
.getSjLjDispatchPreservedMask(*MF
));
9268 bool IsPositionIndependent
= isPositionIndependent();
9269 unsigned NumLPads
= LPadList
.size();
9270 if (Subtarget
->isThumb2()) {
9271 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9272 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2LDRi12
), NewVReg1
)
9275 .addMemOperand(FIMMOLd
)
9276 .add(predOps(ARMCC::AL
));
9278 if (NumLPads
< 256) {
9279 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2CMPri
))
9281 .addImm(LPadList
.size())
9282 .add(predOps(ARMCC::AL
));
9284 Register VReg1
= MRI
->createVirtualRegister(TRC
);
9285 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2MOVi16
), VReg1
)
9286 .addImm(NumLPads
& 0xFFFF)
9287 .add(predOps(ARMCC::AL
));
9289 unsigned VReg2
= VReg1
;
9290 if ((NumLPads
& 0xFFFF0000) != 0) {
9291 VReg2
= MRI
->createVirtualRegister(TRC
);
9292 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2MOVTi16
), VReg2
)
9294 .addImm(NumLPads
>> 16)
9295 .add(predOps(ARMCC::AL
));
9298 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2CMPrr
))
9301 .add(predOps(ARMCC::AL
));
9304 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2Bcc
))
9309 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9310 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2LEApcrelJT
), NewVReg3
)
9311 .addJumpTableIndex(MJTI
)
9312 .add(predOps(ARMCC::AL
));
9314 Register NewVReg4
= MRI
->createVirtualRegister(TRC
);
9315 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2ADDrs
), NewVReg4
)
9316 .addReg(NewVReg3
, RegState::Kill
)
9318 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl
, 2))
9319 .add(predOps(ARMCC::AL
))
9322 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2BR_JT
))
9323 .addReg(NewVReg4
, RegState::Kill
)
9325 .addJumpTableIndex(MJTI
);
9326 } else if (Subtarget
->isThumb()) {
9327 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9328 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tLDRspi
), NewVReg1
)
9331 .addMemOperand(FIMMOLd
)
9332 .add(predOps(ARMCC::AL
));
9334 if (NumLPads
< 256) {
9335 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tCMPi8
))
9338 .add(predOps(ARMCC::AL
));
9340 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
9341 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
9342 const Constant
*C
= ConstantInt::get(Int32Ty
, NumLPads
);
9344 // MachineConstantPool wants an explicit alignment.
9345 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
9347 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
9348 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
9350 Register VReg1
= MRI
->createVirtualRegister(TRC
);
9351 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tLDRpci
))
9352 .addReg(VReg1
, RegState::Define
)
9353 .addConstantPoolIndex(Idx
)
9354 .add(predOps(ARMCC::AL
));
9355 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tCMPr
))
9358 .add(predOps(ARMCC::AL
));
9361 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tBcc
))
9366 Register NewVReg2
= MRI
->createVirtualRegister(TRC
);
9367 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLSLri
), NewVReg2
)
9368 .addReg(ARM::CPSR
, RegState::Define
)
9371 .add(predOps(ARMCC::AL
));
9373 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9374 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLEApcrelJT
), NewVReg3
)
9375 .addJumpTableIndex(MJTI
)
9376 .add(predOps(ARMCC::AL
));
9378 Register NewVReg4
= MRI
->createVirtualRegister(TRC
);
9379 BuildMI(DispContBB
, dl
, TII
->get(ARM::tADDrr
), NewVReg4
)
9380 .addReg(ARM::CPSR
, RegState::Define
)
9381 .addReg(NewVReg2
, RegState::Kill
)
9383 .add(predOps(ARMCC::AL
));
9385 MachineMemOperand
*JTMMOLd
= MF
->getMachineMemOperand(
9386 MachinePointerInfo::getJumpTable(*MF
), MachineMemOperand::MOLoad
, 4, 4);
9388 Register NewVReg5
= MRI
->createVirtualRegister(TRC
);
9389 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLDRi
), NewVReg5
)
9390 .addReg(NewVReg4
, RegState::Kill
)
9392 .addMemOperand(JTMMOLd
)
9393 .add(predOps(ARMCC::AL
));
9395 unsigned NewVReg6
= NewVReg5
;
9396 if (IsPositionIndependent
) {
9397 NewVReg6
= MRI
->createVirtualRegister(TRC
);
9398 BuildMI(DispContBB
, dl
, TII
->get(ARM::tADDrr
), NewVReg6
)
9399 .addReg(ARM::CPSR
, RegState::Define
)
9400 .addReg(NewVReg5
, RegState::Kill
)
9402 .add(predOps(ARMCC::AL
));
9405 BuildMI(DispContBB
, dl
, TII
->get(ARM::tBR_JTr
))
9406 .addReg(NewVReg6
, RegState::Kill
)
9407 .addJumpTableIndex(MJTI
);
9409 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9410 BuildMI(DispatchBB
, dl
, TII
->get(ARM::LDRi12
), NewVReg1
)
9413 .addMemOperand(FIMMOLd
)
9414 .add(predOps(ARMCC::AL
));
9416 if (NumLPads
< 256) {
9417 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPri
))
9420 .add(predOps(ARMCC::AL
));
9421 } else if (Subtarget
->hasV6T2Ops() && isUInt
<16>(NumLPads
)) {
9422 Register VReg1
= MRI
->createVirtualRegister(TRC
);
9423 BuildMI(DispatchBB
, dl
, TII
->get(ARM::MOVi16
), VReg1
)
9424 .addImm(NumLPads
& 0xFFFF)
9425 .add(predOps(ARMCC::AL
));
9427 unsigned VReg2
= VReg1
;
9428 if ((NumLPads
& 0xFFFF0000) != 0) {
9429 VReg2
= MRI
->createVirtualRegister(TRC
);
9430 BuildMI(DispatchBB
, dl
, TII
->get(ARM::MOVTi16
), VReg2
)
9432 .addImm(NumLPads
>> 16)
9433 .add(predOps(ARMCC::AL
));
9436 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPrr
))
9439 .add(predOps(ARMCC::AL
));
9441 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
9442 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
9443 const Constant
*C
= ConstantInt::get(Int32Ty
, NumLPads
);
9445 // MachineConstantPool wants an explicit alignment.
9446 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
9448 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
9449 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
9451 Register VReg1
= MRI
->createVirtualRegister(TRC
);
9452 BuildMI(DispatchBB
, dl
, TII
->get(ARM::LDRcp
))
9453 .addReg(VReg1
, RegState::Define
)
9454 .addConstantPoolIndex(Idx
)
9456 .add(predOps(ARMCC::AL
));
9457 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPrr
))
9459 .addReg(VReg1
, RegState::Kill
)
9460 .add(predOps(ARMCC::AL
));
9463 BuildMI(DispatchBB
, dl
, TII
->get(ARM::Bcc
))
9468 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9469 BuildMI(DispContBB
, dl
, TII
->get(ARM::MOVsi
), NewVReg3
)
9471 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl
, 2))
9472 .add(predOps(ARMCC::AL
))
9474 Register NewVReg4
= MRI
->createVirtualRegister(TRC
);
9475 BuildMI(DispContBB
, dl
, TII
->get(ARM::LEApcrelJT
), NewVReg4
)
9476 .addJumpTableIndex(MJTI
)
9477 .add(predOps(ARMCC::AL
));
9479 MachineMemOperand
*JTMMOLd
= MF
->getMachineMemOperand(
9480 MachinePointerInfo::getJumpTable(*MF
), MachineMemOperand::MOLoad
, 4, 4);
9481 Register NewVReg5
= MRI
->createVirtualRegister(TRC
);
9482 BuildMI(DispContBB
, dl
, TII
->get(ARM::LDRrs
), NewVReg5
)
9483 .addReg(NewVReg3
, RegState::Kill
)
9486 .addMemOperand(JTMMOLd
)
9487 .add(predOps(ARMCC::AL
));
9489 if (IsPositionIndependent
) {
9490 BuildMI(DispContBB
, dl
, TII
->get(ARM::BR_JTadd
))
9491 .addReg(NewVReg5
, RegState::Kill
)
9493 .addJumpTableIndex(MJTI
);
9495 BuildMI(DispContBB
, dl
, TII
->get(ARM::BR_JTr
))
9496 .addReg(NewVReg5
, RegState::Kill
)
9497 .addJumpTableIndex(MJTI
);
9501 // Add the jump table entries as successors to the MBB.
9502 SmallPtrSet
<MachineBasicBlock
*, 8> SeenMBBs
;
9503 for (std::vector
<MachineBasicBlock
*>::iterator
9504 I
= LPadList
.begin(), E
= LPadList
.end(); I
!= E
; ++I
) {
9505 MachineBasicBlock
*CurMBB
= *I
;
9506 if (SeenMBBs
.insert(CurMBB
).second
)
9507 DispContBB
->addSuccessor(CurMBB
);
9510 // N.B. the order the invoke BBs are processed in doesn't matter here.
9511 const MCPhysReg
*SavedRegs
= RI
.getCalleeSavedRegs(MF
);
9512 SmallVector
<MachineBasicBlock
*, 64> MBBLPads
;
9513 for (MachineBasicBlock
*BB
: InvokeBBs
) {
9515 // Remove the landing pad successor from the invoke block and replace it
9516 // with the new dispatch block.
9517 SmallVector
<MachineBasicBlock
*, 4> Successors(BB
->succ_begin(),
9519 while (!Successors
.empty()) {
9520 MachineBasicBlock
*SMBB
= Successors
.pop_back_val();
9521 if (SMBB
->isEHPad()) {
9522 BB
->removeSuccessor(SMBB
);
9523 MBBLPads
.push_back(SMBB
);
9527 BB
->addSuccessor(DispatchBB
, BranchProbability::getZero());
9528 BB
->normalizeSuccProbs();
9530 // Find the invoke call and mark all of the callee-saved registers as
9531 // 'implicit defined' so that they're spilled. This prevents code from
9532 // moving instructions to before the EH block, where they will never be
9534 for (MachineBasicBlock::reverse_iterator
9535 II
= BB
->rbegin(), IE
= BB
->rend(); II
!= IE
; ++II
) {
9536 if (!II
->isCall()) continue;
9538 DenseMap
<unsigned, bool> DefRegs
;
9539 for (MachineInstr::mop_iterator
9540 OI
= II
->operands_begin(), OE
= II
->operands_end();
9542 if (!OI
->isReg()) continue;
9543 DefRegs
[OI
->getReg()] = true;
9546 MachineInstrBuilder
MIB(*MF
, &*II
);
9548 for (unsigned i
= 0; SavedRegs
[i
] != 0; ++i
) {
9549 unsigned Reg
= SavedRegs
[i
];
9550 if (Subtarget
->isThumb2() &&
9551 !ARM::tGPRRegClass
.contains(Reg
) &&
9552 !ARM::hGPRRegClass
.contains(Reg
))
9554 if (Subtarget
->isThumb1Only() && !ARM::tGPRRegClass
.contains(Reg
))
9556 if (!Subtarget
->isThumb() && !ARM::GPRRegClass
.contains(Reg
))
9559 MIB
.addReg(Reg
, RegState::ImplicitDefine
| RegState::Dead
);
9566 // Mark all former landing pads as non-landing pads. The dispatch is the only
9568 for (SmallVectorImpl
<MachineBasicBlock
*>::iterator
9569 I
= MBBLPads
.begin(), E
= MBBLPads
.end(); I
!= E
; ++I
)
9570 (*I
)->setIsEHPad(false);
9572 // The instruction is gone now.
9573 MI
.eraseFromParent();
9577 MachineBasicBlock
*OtherSucc(MachineBasicBlock
*MBB
, MachineBasicBlock
*Succ
) {
9578 for (MachineBasicBlock::succ_iterator I
= MBB
->succ_begin(),
9579 E
= MBB
->succ_end(); I
!= E
; ++I
)
9582 llvm_unreachable("Expecting a BB with two successors!");
9585 /// Return the load opcode for a given load size. If load size >= 8,
9586 /// neon opcode will be returned.
9587 static unsigned getLdOpcode(unsigned LdSize
, bool IsThumb1
, bool IsThumb2
) {
9589 return LdSize
== 16 ? ARM::VLD1q32wb_fixed
9590 : LdSize
== 8 ? ARM::VLD1d32wb_fixed
: 0;
9592 return LdSize
== 4 ? ARM::tLDRi
9593 : LdSize
== 2 ? ARM::tLDRHi
9594 : LdSize
== 1 ? ARM::tLDRBi
: 0;
9596 return LdSize
== 4 ? ARM::t2LDR_POST
9597 : LdSize
== 2 ? ARM::t2LDRH_POST
9598 : LdSize
== 1 ? ARM::t2LDRB_POST
: 0;
9599 return LdSize
== 4 ? ARM::LDR_POST_IMM
9600 : LdSize
== 2 ? ARM::LDRH_POST
9601 : LdSize
== 1 ? ARM::LDRB_POST_IMM
: 0;
9604 /// Return the store opcode for a given store size. If store size >= 8,
9605 /// neon opcode will be returned.
9606 static unsigned getStOpcode(unsigned StSize
, bool IsThumb1
, bool IsThumb2
) {
9608 return StSize
== 16 ? ARM::VST1q32wb_fixed
9609 : StSize
== 8 ? ARM::VST1d32wb_fixed
: 0;
9611 return StSize
== 4 ? ARM::tSTRi
9612 : StSize
== 2 ? ARM::tSTRHi
9613 : StSize
== 1 ? ARM::tSTRBi
: 0;
9615 return StSize
== 4 ? ARM::t2STR_POST
9616 : StSize
== 2 ? ARM::t2STRH_POST
9617 : StSize
== 1 ? ARM::t2STRB_POST
: 0;
9618 return StSize
== 4 ? ARM::STR_POST_IMM
9619 : StSize
== 2 ? ARM::STRH_POST
9620 : StSize
== 1 ? ARM::STRB_POST_IMM
: 0;
9623 /// Emit a post-increment load operation with given size. The instructions
9624 /// will be added to BB at Pos.
9625 static void emitPostLd(MachineBasicBlock
*BB
, MachineBasicBlock::iterator Pos
,
9626 const TargetInstrInfo
*TII
, const DebugLoc
&dl
,
9627 unsigned LdSize
, unsigned Data
, unsigned AddrIn
,
9628 unsigned AddrOut
, bool IsThumb1
, bool IsThumb2
) {
9629 unsigned LdOpc
= getLdOpcode(LdSize
, IsThumb1
, IsThumb2
);
9630 assert(LdOpc
!= 0 && "Should have a load opcode");
9632 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9633 .addReg(AddrOut
, RegState::Define
)
9636 .add(predOps(ARMCC::AL
));
9637 } else if (IsThumb1
) {
9638 // load + update AddrIn
9639 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9642 .add(predOps(ARMCC::AL
));
9643 BuildMI(*BB
, Pos
, dl
, TII
->get(ARM::tADDi8
), AddrOut
)
9644 .add(t1CondCodeOp())
9647 .add(predOps(ARMCC::AL
));
9648 } else if (IsThumb2
) {
9649 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9650 .addReg(AddrOut
, RegState::Define
)
9653 .add(predOps(ARMCC::AL
));
9655 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9656 .addReg(AddrOut
, RegState::Define
)
9660 .add(predOps(ARMCC::AL
));
9664 /// Emit a post-increment store operation with given size. The instructions
9665 /// will be added to BB at Pos.
9666 static void emitPostSt(MachineBasicBlock
*BB
, MachineBasicBlock::iterator Pos
,
9667 const TargetInstrInfo
*TII
, const DebugLoc
&dl
,
9668 unsigned StSize
, unsigned Data
, unsigned AddrIn
,
9669 unsigned AddrOut
, bool IsThumb1
, bool IsThumb2
) {
9670 unsigned StOpc
= getStOpcode(StSize
, IsThumb1
, IsThumb2
);
9671 assert(StOpc
!= 0 && "Should have a store opcode");
9673 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9677 .add(predOps(ARMCC::AL
));
9678 } else if (IsThumb1
) {
9679 // store + update AddrIn
9680 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
))
9684 .add(predOps(ARMCC::AL
));
9685 BuildMI(*BB
, Pos
, dl
, TII
->get(ARM::tADDi8
), AddrOut
)
9686 .add(t1CondCodeOp())
9689 .add(predOps(ARMCC::AL
));
9690 } else if (IsThumb2
) {
9691 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9695 .add(predOps(ARMCC::AL
));
9697 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9702 .add(predOps(ARMCC::AL
));
9707 ARMTargetLowering::EmitStructByval(MachineInstr
&MI
,
9708 MachineBasicBlock
*BB
) const {
9709 // This pseudo instruction has 3 operands: dst, src, size
9710 // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
9711 // Otherwise, we will generate unrolled scalar copies.
9712 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9713 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
9714 MachineFunction::iterator It
= ++BB
->getIterator();
9716 Register dest
= MI
.getOperand(0).getReg();
9717 Register src
= MI
.getOperand(1).getReg();
9718 unsigned SizeVal
= MI
.getOperand(2).getImm();
9719 unsigned Align
= MI
.getOperand(3).getImm();
9720 DebugLoc dl
= MI
.getDebugLoc();
9722 MachineFunction
*MF
= BB
->getParent();
9723 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
9724 unsigned UnitSize
= 0;
9725 const TargetRegisterClass
*TRC
= nullptr;
9726 const TargetRegisterClass
*VecTRC
= nullptr;
9728 bool IsThumb1
= Subtarget
->isThumb1Only();
9729 bool IsThumb2
= Subtarget
->isThumb2();
9730 bool IsThumb
= Subtarget
->isThumb();
9734 } else if (Align
& 2) {
9737 // Check whether we can use NEON instructions.
9738 if (!MF
->getFunction().hasFnAttribute(Attribute::NoImplicitFloat
) &&
9739 Subtarget
->hasNEON()) {
9740 if ((Align
% 16 == 0) && SizeVal
>= 16)
9742 else if ((Align
% 8 == 0) && SizeVal
>= 8)
9745 // Can't use NEON instructions.
9750 // Select the correct opcode and register class for unit size load/store
9751 bool IsNeon
= UnitSize
>= 8;
9752 TRC
= IsThumb
? &ARM::tGPRRegClass
: &ARM::GPRRegClass
;
9754 VecTRC
= UnitSize
== 16 ? &ARM::DPairRegClass
9755 : UnitSize
== 8 ? &ARM::DPRRegClass
9758 unsigned BytesLeft
= SizeVal
% UnitSize
;
9759 unsigned LoopSize
= SizeVal
- BytesLeft
;
9761 if (SizeVal
<= Subtarget
->getMaxInlineSizeThreshold()) {
9762 // Use LDR and STR to copy.
9763 // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
9764 // [destOut] = STR_POST(scratch, destIn, UnitSize)
9765 unsigned srcIn
= src
;
9766 unsigned destIn
= dest
;
9767 for (unsigned i
= 0; i
< LoopSize
; i
+=UnitSize
) {
9768 Register srcOut
= MRI
.createVirtualRegister(TRC
);
9769 Register destOut
= MRI
.createVirtualRegister(TRC
);
9770 Register scratch
= MRI
.createVirtualRegister(IsNeon
? VecTRC
: TRC
);
9771 emitPostLd(BB
, MI
, TII
, dl
, UnitSize
, scratch
, srcIn
, srcOut
,
9772 IsThumb1
, IsThumb2
);
9773 emitPostSt(BB
, MI
, TII
, dl
, UnitSize
, scratch
, destIn
, destOut
,
9774 IsThumb1
, IsThumb2
);
9779 // Handle the leftover bytes with LDRB and STRB.
9780 // [scratch, srcOut] = LDRB_POST(srcIn, 1)
9781 // [destOut] = STRB_POST(scratch, destIn, 1)
9782 for (unsigned i
= 0; i
< BytesLeft
; i
++) {
9783 Register srcOut
= MRI
.createVirtualRegister(TRC
);
9784 Register destOut
= MRI
.createVirtualRegister(TRC
);
9785 Register scratch
= MRI
.createVirtualRegister(TRC
);
9786 emitPostLd(BB
, MI
, TII
, dl
, 1, scratch
, srcIn
, srcOut
,
9787 IsThumb1
, IsThumb2
);
9788 emitPostSt(BB
, MI
, TII
, dl
, 1, scratch
, destIn
, destOut
,
9789 IsThumb1
, IsThumb2
);
9793 MI
.eraseFromParent(); // The instruction is gone now.
9797 // Expand the pseudo op to a loop.
9800 // movw varEnd, # --> with thumb2
9802 // ldrcp varEnd, idx --> without thumb2
9803 // fallthrough --> loopMBB
9805 // PHI varPhi, varEnd, varLoop
9806 // PHI srcPhi, src, srcLoop
9807 // PHI destPhi, dst, destLoop
9808 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
9809 // [destLoop] = STR_POST(scratch, destPhi, UnitSize)
9810 // subs varLoop, varPhi, #UnitSize
9812 // fallthrough --> exitMBB
9814 // epilogue to handle left-over bytes
9815 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
9816 // [destOut] = STRB_POST(scratch, destLoop, 1)
9817 MachineBasicBlock
*loopMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
9818 MachineBasicBlock
*exitMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
9819 MF
->insert(It
, loopMBB
);
9820 MF
->insert(It
, exitMBB
);
9822 // Transfer the remainder of BB and its successor edges to exitMBB.
9823 exitMBB
->splice(exitMBB
->begin(), BB
,
9824 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
9825 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
9827 // Load an immediate to varEnd.
9828 Register varEnd
= MRI
.createVirtualRegister(TRC
);
9829 if (Subtarget
->useMovt()) {
9830 unsigned Vtmp
= varEnd
;
9831 if ((LoopSize
& 0xFFFF0000) != 0)
9832 Vtmp
= MRI
.createVirtualRegister(TRC
);
9833 BuildMI(BB
, dl
, TII
->get(IsThumb
? ARM::t2MOVi16
: ARM::MOVi16
), Vtmp
)
9834 .addImm(LoopSize
& 0xFFFF)
9835 .add(predOps(ARMCC::AL
));
9837 if ((LoopSize
& 0xFFFF0000) != 0)
9838 BuildMI(BB
, dl
, TII
->get(IsThumb
? ARM::t2MOVTi16
: ARM::MOVTi16
), varEnd
)
9840 .addImm(LoopSize
>> 16)
9841 .add(predOps(ARMCC::AL
));
9843 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
9844 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
9845 const Constant
*C
= ConstantInt::get(Int32Ty
, LoopSize
);
9847 // MachineConstantPool wants an explicit alignment.
9848 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
9850 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
9851 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
9852 MachineMemOperand
*CPMMO
=
9853 MF
->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF
),
9854 MachineMemOperand::MOLoad
, 4, 4);
9857 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::tLDRpci
))
9858 .addReg(varEnd
, RegState::Define
)
9859 .addConstantPoolIndex(Idx
)
9860 .add(predOps(ARMCC::AL
))
9861 .addMemOperand(CPMMO
);
9863 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::LDRcp
))
9864 .addReg(varEnd
, RegState::Define
)
9865 .addConstantPoolIndex(Idx
)
9867 .add(predOps(ARMCC::AL
))
9868 .addMemOperand(CPMMO
);
9870 BB
->addSuccessor(loopMBB
);
9872 // Generate the loop body:
9873 // varPhi = PHI(varLoop, varEnd)
9874 // srcPhi = PHI(srcLoop, src)
9875 // destPhi = PHI(destLoop, dst)
9876 MachineBasicBlock
*entryBB
= BB
;
9878 Register varLoop
= MRI
.createVirtualRegister(TRC
);
9879 Register varPhi
= MRI
.createVirtualRegister(TRC
);
9880 Register srcLoop
= MRI
.createVirtualRegister(TRC
);
9881 Register srcPhi
= MRI
.createVirtualRegister(TRC
);
9882 Register destLoop
= MRI
.createVirtualRegister(TRC
);
9883 Register destPhi
= MRI
.createVirtualRegister(TRC
);
9885 BuildMI(*BB
, BB
->begin(), dl
, TII
->get(ARM::PHI
), varPhi
)
9886 .addReg(varLoop
).addMBB(loopMBB
)
9887 .addReg(varEnd
).addMBB(entryBB
);
9888 BuildMI(BB
, dl
, TII
->get(ARM::PHI
), srcPhi
)
9889 .addReg(srcLoop
).addMBB(loopMBB
)
9890 .addReg(src
).addMBB(entryBB
);
9891 BuildMI(BB
, dl
, TII
->get(ARM::PHI
), destPhi
)
9892 .addReg(destLoop
).addMBB(loopMBB
)
9893 .addReg(dest
).addMBB(entryBB
);
9895 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
9896 // [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
9897 Register scratch
= MRI
.createVirtualRegister(IsNeon
? VecTRC
: TRC
);
9898 emitPostLd(BB
, BB
->end(), TII
, dl
, UnitSize
, scratch
, srcPhi
, srcLoop
,
9899 IsThumb1
, IsThumb2
);
9900 emitPostSt(BB
, BB
->end(), TII
, dl
, UnitSize
, scratch
, destPhi
, destLoop
,
9901 IsThumb1
, IsThumb2
);
9903 // Decrement loop variable by UnitSize.
9905 BuildMI(*BB
, BB
->end(), dl
, TII
->get(ARM::tSUBi8
), varLoop
)
9906 .add(t1CondCodeOp())
9909 .add(predOps(ARMCC::AL
));
9911 MachineInstrBuilder MIB
=
9912 BuildMI(*BB
, BB
->end(), dl
,
9913 TII
->get(IsThumb2
? ARM::t2SUBri
: ARM::SUBri
), varLoop
);
9916 .add(predOps(ARMCC::AL
))
9918 MIB
->getOperand(5).setReg(ARM::CPSR
);
9919 MIB
->getOperand(5).setIsDef(true);
9921 BuildMI(*BB
, BB
->end(), dl
,
9922 TII
->get(IsThumb1
? ARM::tBcc
: IsThumb2
? ARM::t2Bcc
: ARM::Bcc
))
9923 .addMBB(loopMBB
).addImm(ARMCC::NE
).addReg(ARM::CPSR
);
9925 // loopMBB can loop back to loopMBB or fall through to exitMBB.
9926 BB
->addSuccessor(loopMBB
);
9927 BB
->addSuccessor(exitMBB
);
9929 // Add epilogue to handle BytesLeft.
9931 auto StartOfExit
= exitMBB
->begin();
9933 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
9934 // [destOut] = STRB_POST(scratch, destLoop, 1)
9935 unsigned srcIn
= srcLoop
;
9936 unsigned destIn
= destLoop
;
9937 for (unsigned i
= 0; i
< BytesLeft
; i
++) {
9938 Register srcOut
= MRI
.createVirtualRegister(TRC
);
9939 Register destOut
= MRI
.createVirtualRegister(TRC
);
9940 Register scratch
= MRI
.createVirtualRegister(TRC
);
9941 emitPostLd(BB
, StartOfExit
, TII
, dl
, 1, scratch
, srcIn
, srcOut
,
9942 IsThumb1
, IsThumb2
);
9943 emitPostSt(BB
, StartOfExit
, TII
, dl
, 1, scratch
, destIn
, destOut
,
9944 IsThumb1
, IsThumb2
);
9949 MI
.eraseFromParent(); // The instruction is gone now.
9954 ARMTargetLowering::EmitLowered__chkstk(MachineInstr
&MI
,
9955 MachineBasicBlock
*MBB
) const {
9956 const TargetMachine
&TM
= getTargetMachine();
9957 const TargetInstrInfo
&TII
= *Subtarget
->getInstrInfo();
9958 DebugLoc DL
= MI
.getDebugLoc();
9960 assert(Subtarget
->isTargetWindows() &&
9961 "__chkstk is only supported on Windows");
9962 assert(Subtarget
->isThumb2() && "Windows on ARM requires Thumb-2 mode");
9964 // __chkstk takes the number of words to allocate on the stack in R4, and
9965 // returns the stack adjustment in number of bytes in R4. This will not
9966 // clober any other registers (other than the obvious lr).
9968 // Although, technically, IP should be considered a register which may be
9969 // clobbered, the call itself will not touch it. Windows on ARM is a pure
9970 // thumb-2 environment, so there is no interworking required. As a result, we
9971 // do not expect a veneer to be emitted by the linker, clobbering IP.
9973 // Each module receives its own copy of __chkstk, so no import thunk is
9974 // required, again, ensuring that IP is not clobbered.
9976 // Finally, although some linkers may theoretically provide a trampoline for
9977 // out of range calls (which is quite common due to a 32M range limitation of
9978 // branches for Thumb), we can generate the long-call version via
9979 // -mcmodel=large, alleviating the need for the trampoline which may clobber
9982 switch (TM
.getCodeModel()) {
9983 case CodeModel::Tiny
:
9984 llvm_unreachable("Tiny code model not available on ARM.");
9985 case CodeModel::Small
:
9986 case CodeModel::Medium
:
9987 case CodeModel::Kernel
:
9988 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::tBL
))
9989 .add(predOps(ARMCC::AL
))
9990 .addExternalSymbol("__chkstk")
9991 .addReg(ARM::R4
, RegState::Implicit
| RegState::Kill
)
9992 .addReg(ARM::R4
, RegState::Implicit
| RegState::Define
)
9994 RegState::Implicit
| RegState::Define
| RegState::Dead
)
9996 RegState::Implicit
| RegState::Define
| RegState::Dead
);
9998 case CodeModel::Large
: {
9999 MachineRegisterInfo
&MRI
= MBB
->getParent()->getRegInfo();
10000 Register Reg
= MRI
.createVirtualRegister(&ARM::rGPRRegClass
);
10002 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::t2MOVi32imm
), Reg
)
10003 .addExternalSymbol("__chkstk");
10004 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::tBLXr
))
10005 .add(predOps(ARMCC::AL
))
10006 .addReg(Reg
, RegState::Kill
)
10007 .addReg(ARM::R4
, RegState::Implicit
| RegState::Kill
)
10008 .addReg(ARM::R4
, RegState::Implicit
| RegState::Define
)
10010 RegState::Implicit
| RegState::Define
| RegState::Dead
)
10012 RegState::Implicit
| RegState::Define
| RegState::Dead
);
10017 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::t2SUBrr
), ARM::SP
)
10018 .addReg(ARM::SP
, RegState::Kill
)
10019 .addReg(ARM::R4
, RegState::Kill
)
10020 .setMIFlags(MachineInstr::FrameSetup
)
10021 .add(predOps(ARMCC::AL
))
10022 .add(condCodeOp());
10024 MI
.eraseFromParent();
10028 MachineBasicBlock
*
10029 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr
&MI
,
10030 MachineBasicBlock
*MBB
) const {
10031 DebugLoc DL
= MI
.getDebugLoc();
10032 MachineFunction
*MF
= MBB
->getParent();
10033 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
10035 MachineBasicBlock
*ContBB
= MF
->CreateMachineBasicBlock();
10036 MF
->insert(++MBB
->getIterator(), ContBB
);
10037 ContBB
->splice(ContBB
->begin(), MBB
,
10038 std::next(MachineBasicBlock::iterator(MI
)), MBB
->end());
10039 ContBB
->transferSuccessorsAndUpdatePHIs(MBB
);
10040 MBB
->addSuccessor(ContBB
);
10042 MachineBasicBlock
*TrapBB
= MF
->CreateMachineBasicBlock();
10043 BuildMI(TrapBB
, DL
, TII
->get(ARM::t__brkdiv0
));
10044 MF
->push_back(TrapBB
);
10045 MBB
->addSuccessor(TrapBB
);
10047 BuildMI(*MBB
, MI
, DL
, TII
->get(ARM::tCMPi8
))
10048 .addReg(MI
.getOperand(0).getReg())
10050 .add(predOps(ARMCC::AL
));
10051 BuildMI(*MBB
, MI
, DL
, TII
->get(ARM::t2Bcc
))
10054 .addReg(ARM::CPSR
);
10056 MI
.eraseFromParent();
10060 // The CPSR operand of SelectItr might be missing a kill marker
10061 // because there were multiple uses of CPSR, and ISel didn't know
10062 // which to mark. Figure out whether SelectItr should have had a
10063 // kill marker, and set it if it should. Returns the correct kill
10065 static bool checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr
,
10066 MachineBasicBlock
* BB
,
10067 const TargetRegisterInfo
* TRI
) {
10068 // Scan forward through BB for a use/def of CPSR.
10069 MachineBasicBlock::iterator
miI(std::next(SelectItr
));
10070 for (MachineBasicBlock::iterator miE
= BB
->end(); miI
!= miE
; ++miI
) {
10071 const MachineInstr
& mi
= *miI
;
10072 if (mi
.readsRegister(ARM::CPSR
))
10074 if (mi
.definesRegister(ARM::CPSR
))
10075 break; // Should have kill-flag - update below.
10078 // If we hit the end of the block, check whether CPSR is live into a
10080 if (miI
== BB
->end()) {
10081 for (MachineBasicBlock::succ_iterator sItr
= BB
->succ_begin(),
10082 sEnd
= BB
->succ_end();
10083 sItr
!= sEnd
; ++sItr
) {
10084 MachineBasicBlock
* succ
= *sItr
;
10085 if (succ
->isLiveIn(ARM::CPSR
))
10090 // We found a def, or hit the end of the basic block and CPSR wasn't live
10091 // out. SelectMI should have a kill flag on CPSR.
10092 SelectItr
->addRegisterKilled(ARM::CPSR
, TRI
);
10096 MachineBasicBlock
*
10097 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr
&MI
,
10098 MachineBasicBlock
*BB
) const {
10099 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
10100 DebugLoc dl
= MI
.getDebugLoc();
10101 bool isThumb2
= Subtarget
->isThumb2();
10102 switch (MI
.getOpcode()) {
10105 llvm_unreachable("Unexpected instr type to insert");
10108 // Thumb1 post-indexed loads are really just single-register LDMs.
10109 case ARM::tLDR_postidx
: {
10110 MachineOperand
Def(MI
.getOperand(1));
10111 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::tLDMIA_UPD
))
10113 .add(MI
.getOperand(2)) // Rn
10114 .add(MI
.getOperand(3)) // PredImm
10115 .add(MI
.getOperand(4)) // PredReg
10116 .add(MI
.getOperand(0)) // Rt
10118 MI
.eraseFromParent();
10122 // The Thumb2 pre-indexed stores have the same MI operands, they just
10123 // define them differently in the .td files from the isel patterns, so
10124 // they need pseudos.
10125 case ARM::t2STR_preidx
:
10126 MI
.setDesc(TII
->get(ARM::t2STR_PRE
));
10128 case ARM::t2STRB_preidx
:
10129 MI
.setDesc(TII
->get(ARM::t2STRB_PRE
));
10131 case ARM::t2STRH_preidx
:
10132 MI
.setDesc(TII
->get(ARM::t2STRH_PRE
));
10135 case ARM::STRi_preidx
:
10136 case ARM::STRBi_preidx
: {
10137 unsigned NewOpc
= MI
.getOpcode() == ARM::STRi_preidx
? ARM::STR_PRE_IMM
10138 : ARM::STRB_PRE_IMM
;
10139 // Decode the offset.
10140 unsigned Offset
= MI
.getOperand(4).getImm();
10141 bool isSub
= ARM_AM::getAM2Op(Offset
) == ARM_AM::sub
;
10142 Offset
= ARM_AM::getAM2Offset(Offset
);
10146 MachineMemOperand
*MMO
= *MI
.memoperands_begin();
10147 BuildMI(*BB
, MI
, dl
, TII
->get(NewOpc
))
10148 .add(MI
.getOperand(0)) // Rn_wb
10149 .add(MI
.getOperand(1)) // Rt
10150 .add(MI
.getOperand(2)) // Rn
10151 .addImm(Offset
) // offset (skip GPR==zero_reg)
10152 .add(MI
.getOperand(5)) // pred
10153 .add(MI
.getOperand(6))
10154 .addMemOperand(MMO
);
10155 MI
.eraseFromParent();
10158 case ARM::STRr_preidx
:
10159 case ARM::STRBr_preidx
:
10160 case ARM::STRH_preidx
: {
10162 switch (MI
.getOpcode()) {
10163 default: llvm_unreachable("unexpected opcode!");
10164 case ARM::STRr_preidx
: NewOpc
= ARM::STR_PRE_REG
; break;
10165 case ARM::STRBr_preidx
: NewOpc
= ARM::STRB_PRE_REG
; break;
10166 case ARM::STRH_preidx
: NewOpc
= ARM::STRH_PRE
; break;
10168 MachineInstrBuilder MIB
= BuildMI(*BB
, MI
, dl
, TII
->get(NewOpc
));
10169 for (unsigned i
= 0; i
< MI
.getNumOperands(); ++i
)
10170 MIB
.add(MI
.getOperand(i
));
10171 MI
.eraseFromParent();
10175 case ARM::tMOVCCr_pseudo
: {
10176 // To "insert" a SELECT_CC instruction, we actually have to insert the
10177 // diamond control-flow pattern. The incoming instruction knows the
10178 // destination vreg to set, the condition code register to branch on, the
10179 // true/false values to select between, and a branch opcode to use.
10180 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
10181 MachineFunction::iterator It
= ++BB
->getIterator();
10186 // cmpTY ccX, r1, r2
10188 // fallthrough --> copy0MBB
10189 MachineBasicBlock
*thisMBB
= BB
;
10190 MachineFunction
*F
= BB
->getParent();
10191 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
10192 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
10193 F
->insert(It
, copy0MBB
);
10194 F
->insert(It
, sinkMBB
);
10196 // Check whether CPSR is live past the tMOVCCr_pseudo.
10197 const TargetRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
10198 if (!MI
.killsRegister(ARM::CPSR
) &&
10199 !checkAndUpdateCPSRKill(MI
, thisMBB
, TRI
)) {
10200 copy0MBB
->addLiveIn(ARM::CPSR
);
10201 sinkMBB
->addLiveIn(ARM::CPSR
);
10204 // Transfer the remainder of BB and its successor edges to sinkMBB.
10205 sinkMBB
->splice(sinkMBB
->begin(), BB
,
10206 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10207 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
10209 BB
->addSuccessor(copy0MBB
);
10210 BB
->addSuccessor(sinkMBB
);
10212 BuildMI(BB
, dl
, TII
->get(ARM::tBcc
))
10214 .addImm(MI
.getOperand(3).getImm())
10215 .addReg(MI
.getOperand(4).getReg());
10218 // %FalseValue = ...
10219 // # fallthrough to sinkMBB
10222 // Update machine-CFG edges
10223 BB
->addSuccessor(sinkMBB
);
10226 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10229 BuildMI(*BB
, BB
->begin(), dl
, TII
->get(ARM::PHI
), MI
.getOperand(0).getReg())
10230 .addReg(MI
.getOperand(1).getReg())
10232 .addReg(MI
.getOperand(2).getReg())
10235 MI
.eraseFromParent(); // The pseudo instruction is gone now.
10240 case ARM::BCCZi64
: {
10241 // If there is an unconditional branch to the other successor, remove it.
10242 BB
->erase(std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10244 // Compare both parts that make up the double comparison separately for
10246 bool RHSisZero
= MI
.getOpcode() == ARM::BCCZi64
;
10248 Register LHS1
= MI
.getOperand(1).getReg();
10249 Register LHS2
= MI
.getOperand(2).getReg();
10251 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
10254 .add(predOps(ARMCC::AL
));
10255 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
10256 .addReg(LHS2
).addImm(0)
10257 .addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
10259 Register RHS1
= MI
.getOperand(3).getReg();
10260 Register RHS2
= MI
.getOperand(4).getReg();
10261 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPrr
: ARM::CMPrr
))
10264 .add(predOps(ARMCC::AL
));
10265 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPrr
: ARM::CMPrr
))
10266 .addReg(LHS2
).addReg(RHS2
)
10267 .addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
10270 MachineBasicBlock
*destMBB
= MI
.getOperand(RHSisZero
? 3 : 5).getMBB();
10271 MachineBasicBlock
*exitMBB
= OtherSucc(BB
, destMBB
);
10272 if (MI
.getOperand(0).getImm() == ARMCC::NE
)
10273 std::swap(destMBB
, exitMBB
);
10275 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2Bcc
: ARM::Bcc
))
10276 .addMBB(destMBB
).addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
10278 BuildMI(BB
, dl
, TII
->get(ARM::t2B
))
10280 .add(predOps(ARMCC::AL
));
10282 BuildMI(BB
, dl
, TII
->get(ARM::B
)) .addMBB(exitMBB
);
10284 MI
.eraseFromParent(); // The pseudo instruction is gone now.
10288 case ARM::Int_eh_sjlj_setjmp
:
10289 case ARM::Int_eh_sjlj_setjmp_nofp
:
10290 case ARM::tInt_eh_sjlj_setjmp
:
10291 case ARM::t2Int_eh_sjlj_setjmp
:
10292 case ARM::t2Int_eh_sjlj_setjmp_nofp
:
10295 case ARM::Int_eh_sjlj_setup_dispatch
:
10296 EmitSjLjDispatchBlock(MI
, BB
);
10301 // To insert an ABS instruction, we have to insert the
10302 // diamond control-flow pattern. The incoming instruction knows the
10303 // source vreg to test against 0, the destination vreg to set,
10304 // the condition code register to branch on, the
10305 // true/false values to select between, and a branch opcode to use.
10310 // BCC (branch to SinkBB if V0 >= 0)
10311 // RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0)
10312 // SinkBB: V1 = PHI(V2, V3)
10313 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
10314 MachineFunction::iterator BBI
= ++BB
->getIterator();
10315 MachineFunction
*Fn
= BB
->getParent();
10316 MachineBasicBlock
*RSBBB
= Fn
->CreateMachineBasicBlock(LLVM_BB
);
10317 MachineBasicBlock
*SinkBB
= Fn
->CreateMachineBasicBlock(LLVM_BB
);
10318 Fn
->insert(BBI
, RSBBB
);
10319 Fn
->insert(BBI
, SinkBB
);
10321 Register ABSSrcReg
= MI
.getOperand(1).getReg();
10322 Register ABSDstReg
= MI
.getOperand(0).getReg();
10323 bool ABSSrcKIll
= MI
.getOperand(1).isKill();
10324 bool isThumb2
= Subtarget
->isThumb2();
10325 MachineRegisterInfo
&MRI
= Fn
->getRegInfo();
10326 // In Thumb mode S must not be specified if source register is the SP or
10327 // PC and if destination register is the SP, so restrict register class
10328 Register NewRsbDstReg
= MRI
.createVirtualRegister(
10329 isThumb2
? &ARM::rGPRRegClass
: &ARM::GPRRegClass
);
10331 // Transfer the remainder of BB and its successor edges to sinkMBB.
10332 SinkBB
->splice(SinkBB
->begin(), BB
,
10333 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10334 SinkBB
->transferSuccessorsAndUpdatePHIs(BB
);
10336 BB
->addSuccessor(RSBBB
);
10337 BB
->addSuccessor(SinkBB
);
10339 // fall through to SinkMBB
10340 RSBBB
->addSuccessor(SinkBB
);
10342 // insert a cmp at the end of BB
10343 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
10346 .add(predOps(ARMCC::AL
));
10348 // insert a bcc with opposite CC to ARMCC::MI at the end of BB
10350 TII
->get(isThumb2
? ARM::t2Bcc
: ARM::Bcc
)).addMBB(SinkBB
)
10351 .addImm(ARMCC::getOppositeCondition(ARMCC::MI
)).addReg(ARM::CPSR
);
10353 // insert rsbri in RSBBB
10354 // Note: BCC and rsbri will be converted into predicated rsbmi
10355 // by if-conversion pass
10356 BuildMI(*RSBBB
, RSBBB
->begin(), dl
,
10357 TII
->get(isThumb2
? ARM::t2RSBri
: ARM::RSBri
), NewRsbDstReg
)
10358 .addReg(ABSSrcReg
, ABSSrcKIll
? RegState::Kill
: 0)
10360 .add(predOps(ARMCC::AL
))
10361 .add(condCodeOp());
10363 // insert PHI in SinkBB,
10364 // reuse ABSDstReg to not change uses of ABS instruction
10365 BuildMI(*SinkBB
, SinkBB
->begin(), dl
,
10366 TII
->get(ARM::PHI
), ABSDstReg
)
10367 .addReg(NewRsbDstReg
).addMBB(RSBBB
)
10368 .addReg(ABSSrcReg
).addMBB(BB
);
10370 // remove ABS instruction
10371 MI
.eraseFromParent();
10373 // return last added BB
10376 case ARM::COPY_STRUCT_BYVAL_I32
:
10378 return EmitStructByval(MI
, BB
);
10379 case ARM::WIN__CHKSTK
:
10380 return EmitLowered__chkstk(MI
, BB
);
10381 case ARM::WIN__DBZCHK
:
10382 return EmitLowered__dbzchk(MI
, BB
);
10386 /// Attaches vregs to MEMCPY that it will use as scratch registers
10387 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
10388 /// instead of as a custom inserter because we need the use list from the SDNode.
10389 static void attachMEMCPYScratchRegs(const ARMSubtarget
*Subtarget
,
10390 MachineInstr
&MI
, const SDNode
*Node
) {
10391 bool isThumb1
= Subtarget
->isThumb1Only();
10393 DebugLoc DL
= MI
.getDebugLoc();
10394 MachineFunction
*MF
= MI
.getParent()->getParent();
10395 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
10396 MachineInstrBuilder
MIB(*MF
, MI
);
10398 // If the new dst/src is unused mark it as dead.
10399 if (!Node
->hasAnyUseOfValue(0)) {
10400 MI
.getOperand(0).setIsDead(true);
10402 if (!Node
->hasAnyUseOfValue(1)) {
10403 MI
.getOperand(1).setIsDead(true);
10406 // The MEMCPY both defines and kills the scratch registers.
10407 for (unsigned I
= 0; I
!= MI
.getOperand(4).getImm(); ++I
) {
10408 Register TmpReg
= MRI
.createVirtualRegister(isThumb1
? &ARM::tGPRRegClass
10409 : &ARM::GPRRegClass
);
10410 MIB
.addReg(TmpReg
, RegState::Define
|RegState::Dead
);
10414 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr
&MI
,
10415 SDNode
*Node
) const {
10416 if (MI
.getOpcode() == ARM::MEMCPY
) {
10417 attachMEMCPYScratchRegs(Subtarget
, MI
, Node
);
10421 const MCInstrDesc
*MCID
= &MI
.getDesc();
10422 // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
10423 // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
10424 // operand is still set to noreg. If needed, set the optional operand's
10425 // register to CPSR, and remove the redundant implicit def.
10427 // e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR).
10429 // Rename pseudo opcodes.
10430 unsigned NewOpc
= convertAddSubFlagsOpcode(MI
.getOpcode());
10433 const ARMBaseInstrInfo
*TII
= Subtarget
->getInstrInfo();
10434 MCID
= &TII
->get(NewOpc
);
10436 assert(MCID
->getNumOperands() ==
10437 MI
.getDesc().getNumOperands() + 5 - MI
.getDesc().getSize()
10438 && "converted opcode should be the same except for cc_out"
10439 " (and, on Thumb1, pred)");
10443 // Add the optional cc_out operand
10444 MI
.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
10446 // On Thumb1, move all input operands to the end, then add the predicate
10447 if (Subtarget
->isThumb1Only()) {
10448 for (unsigned c
= MCID
->getNumOperands() - 4; c
--;) {
10449 MI
.addOperand(MI
.getOperand(1));
10450 MI
.RemoveOperand(1);
10453 // Restore the ties
10454 for (unsigned i
= MI
.getNumOperands(); i
--;) {
10455 const MachineOperand
& op
= MI
.getOperand(i
);
10456 if (op
.isReg() && op
.isUse()) {
10457 int DefIdx
= MCID
->getOperandConstraint(i
, MCOI::TIED_TO
);
10459 MI
.tieOperands(DefIdx
, i
);
10463 MI
.addOperand(MachineOperand::CreateImm(ARMCC::AL
));
10464 MI
.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false));
10467 ccOutIdx
= MCID
->getNumOperands() - 1;
10469 ccOutIdx
= MCID
->getNumOperands() - 1;
10471 // Any ARM instruction that sets the 's' bit should specify an optional
10472 // "cc_out" operand in the last operand position.
10473 if (!MI
.hasOptionalDef() || !MCID
->OpInfo
[ccOutIdx
].isOptionalDef()) {
10474 assert(!NewOpc
&& "Optional cc_out operand required");
10477 // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
10478 // since we already have an optional CPSR def.
10479 bool definesCPSR
= false;
10480 bool deadCPSR
= false;
10481 for (unsigned i
= MCID
->getNumOperands(), e
= MI
.getNumOperands(); i
!= e
;
10483 const MachineOperand
&MO
= MI
.getOperand(i
);
10484 if (MO
.isReg() && MO
.isDef() && MO
.getReg() == ARM::CPSR
) {
10485 definesCPSR
= true;
10488 MI
.RemoveOperand(i
);
10492 if (!definesCPSR
) {
10493 assert(!NewOpc
&& "Optional cc_out operand required");
10496 assert(deadCPSR
== !Node
->hasAnyUseOfValue(1) && "inconsistent dead flag");
10498 assert(!MI
.getOperand(ccOutIdx
).getReg() &&
10499 "expect uninitialized optional cc_out operand");
10500 // Thumb1 instructions must have the S bit even if the CPSR is dead.
10501 if (!Subtarget
->isThumb1Only())
10505 // If this instruction was defined with an optional CPSR def and its dag node
10506 // had a live implicit CPSR def, then activate the optional CPSR def.
10507 MachineOperand
&MO
= MI
.getOperand(ccOutIdx
);
10508 MO
.setReg(ARM::CPSR
);
10512 //===----------------------------------------------------------------------===//
10513 // ARM Optimization Hooks
10514 //===----------------------------------------------------------------------===//
10516 // Helper function that checks if N is a null or all ones constant.
10517 static inline bool isZeroOrAllOnes(SDValue N
, bool AllOnes
) {
10518 return AllOnes
? isAllOnesConstant(N
) : isNullConstant(N
);
10521 // Return true if N is conditionally 0 or all ones.
10522 // Detects these expressions where cc is an i1 value:
10524 // (select cc 0, y) [AllOnes=0]
10525 // (select cc y, 0) [AllOnes=0]
10526 // (zext cc) [AllOnes=0]
10527 // (sext cc) [AllOnes=0/1]
10528 // (select cc -1, y) [AllOnes=1]
10529 // (select cc y, -1) [AllOnes=1]
10531 // Invert is set when N is the null/all ones constant when CC is false.
10532 // OtherOp is set to the alternative value of N.
10533 static bool isConditionalZeroOrAllOnes(SDNode
*N
, bool AllOnes
,
10534 SDValue
&CC
, bool &Invert
,
10536 SelectionDAG
&DAG
) {
10537 switch (N
->getOpcode()) {
10538 default: return false;
10539 case ISD::SELECT
: {
10540 CC
= N
->getOperand(0);
10541 SDValue N1
= N
->getOperand(1);
10542 SDValue N2
= N
->getOperand(2);
10543 if (isZeroOrAllOnes(N1
, AllOnes
)) {
10548 if (isZeroOrAllOnes(N2
, AllOnes
)) {
10555 case ISD::ZERO_EXTEND
:
10556 // (zext cc) can never be the all ones value.
10560 case ISD::SIGN_EXTEND
: {
10562 EVT VT
= N
->getValueType(0);
10563 CC
= N
->getOperand(0);
10564 if (CC
.getValueType() != MVT::i1
|| CC
.getOpcode() != ISD::SETCC
)
10568 // When looking for an AllOnes constant, N is an sext, and the 'other'
10570 OtherOp
= DAG
.getConstant(0, dl
, VT
);
10571 else if (N
->getOpcode() == ISD::ZERO_EXTEND
)
10572 // When looking for a 0 constant, N can be zext or sext.
10573 OtherOp
= DAG
.getConstant(1, dl
, VT
);
10575 OtherOp
= DAG
.getConstant(APInt::getAllOnesValue(VT
.getSizeInBits()), dl
,
10582 // Combine a constant select operand into its use:
10584 // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
10585 // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
10586 // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1]
10587 // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
10588 // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
10590 // The transform is rejected if the select doesn't have a constant operand that
10591 // is null, or all ones when AllOnes is set.
10593 // Also recognize sext/zext from i1:
10595 // (add (zext cc), x) -> (select cc (add x, 1), x)
10596 // (add (sext cc), x) -> (select cc (add x, -1), x)
10598 // These transformations eventually create predicated instructions.
10600 // @param N The node to transform.
10601 // @param Slct The N operand that is a select.
10602 // @param OtherOp The other N operand (x above).
10603 // @param DCI Context.
10604 // @param AllOnes Require the select constant to be all ones instead of null.
10605 // @returns The new node, or SDValue() on failure.
10607 SDValue
combineSelectAndUse(SDNode
*N
, SDValue Slct
, SDValue OtherOp
,
10608 TargetLowering::DAGCombinerInfo
&DCI
,
10609 bool AllOnes
= false) {
10610 SelectionDAG
&DAG
= DCI
.DAG
;
10611 EVT VT
= N
->getValueType(0);
10612 SDValue NonConstantVal
;
10614 bool SwapSelectOps
;
10615 if (!isConditionalZeroOrAllOnes(Slct
.getNode(), AllOnes
, CCOp
, SwapSelectOps
,
10616 NonConstantVal
, DAG
))
10619 // Slct is now know to be the desired identity constant when CC is true.
10620 SDValue TrueVal
= OtherOp
;
10621 SDValue FalseVal
= DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
,
10622 OtherOp
, NonConstantVal
);
10623 // Unless SwapSelectOps says CC should be false.
10625 std::swap(TrueVal
, FalseVal
);
10627 return DAG
.getNode(ISD::SELECT
, SDLoc(N
), VT
,
10628 CCOp
, TrueVal
, FalseVal
);
10631 // Attempt combineSelectAndUse on each operand of a commutative operator N.
10633 SDValue
combineSelectAndUseCommutative(SDNode
*N
, bool AllOnes
,
10634 TargetLowering::DAGCombinerInfo
&DCI
) {
10635 SDValue N0
= N
->getOperand(0);
10636 SDValue N1
= N
->getOperand(1);
10637 if (N0
.getNode()->hasOneUse())
10638 if (SDValue Result
= combineSelectAndUse(N
, N0
, N1
, DCI
, AllOnes
))
10640 if (N1
.getNode()->hasOneUse())
10641 if (SDValue Result
= combineSelectAndUse(N
, N1
, N0
, DCI
, AllOnes
))
10646 static bool IsVUZPShuffleNode(SDNode
*N
) {
10647 // VUZP shuffle node.
10648 if (N
->getOpcode() == ARMISD::VUZP
)
10651 // "VUZP" on i32 is an alias for VTRN.
10652 if (N
->getOpcode() == ARMISD::VTRN
&& N
->getValueType(0) == MVT::v2i32
)
10658 static SDValue
AddCombineToVPADD(SDNode
*N
, SDValue N0
, SDValue N1
,
10659 TargetLowering::DAGCombinerInfo
&DCI
,
10660 const ARMSubtarget
*Subtarget
) {
10661 // Look for ADD(VUZP.0, VUZP.1).
10662 if (!IsVUZPShuffleNode(N0
.getNode()) || N0
.getNode() != N1
.getNode() ||
10666 // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
10667 if (!N
->getValueType(0).is64BitVector())
10671 SelectionDAG
&DAG
= DCI
.DAG
;
10672 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10674 SDNode
*Unzip
= N0
.getNode();
10675 EVT VT
= N
->getValueType(0);
10677 SmallVector
<SDValue
, 8> Ops
;
10678 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpadd
, dl
,
10679 TLI
.getPointerTy(DAG
.getDataLayout())));
10680 Ops
.push_back(Unzip
->getOperand(0));
10681 Ops
.push_back(Unzip
->getOperand(1));
10683 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
, Ops
);
10686 static SDValue
AddCombineVUZPToVPADDL(SDNode
*N
, SDValue N0
, SDValue N1
,
10687 TargetLowering::DAGCombinerInfo
&DCI
,
10688 const ARMSubtarget
*Subtarget
) {
10689 // Check for two extended operands.
10690 if (!(N0
.getOpcode() == ISD::SIGN_EXTEND
&&
10691 N1
.getOpcode() == ISD::SIGN_EXTEND
) &&
10692 !(N0
.getOpcode() == ISD::ZERO_EXTEND
&&
10693 N1
.getOpcode() == ISD::ZERO_EXTEND
))
10696 SDValue N00
= N0
.getOperand(0);
10697 SDValue N10
= N1
.getOperand(0);
10699 // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
10700 if (!IsVUZPShuffleNode(N00
.getNode()) || N00
.getNode() != N10
.getNode() ||
10704 // We only recognize Q register paddl here; this can't be reached until
10705 // after type legalization.
10706 if (!N00
.getValueType().is64BitVector() ||
10707 !N0
.getValueType().is128BitVector())
10710 // Generate vpaddl.
10711 SelectionDAG
&DAG
= DCI
.DAG
;
10712 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10714 EVT VT
= N
->getValueType(0);
10716 SmallVector
<SDValue
, 8> Ops
;
10717 // Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
10719 if (N0
.getOpcode() == ISD::SIGN_EXTEND
)
10720 Opcode
= Intrinsic::arm_neon_vpaddls
;
10722 Opcode
= Intrinsic::arm_neon_vpaddlu
;
10723 Ops
.push_back(DAG
.getConstant(Opcode
, dl
,
10724 TLI
.getPointerTy(DAG
.getDataLayout())));
10725 EVT ElemTy
= N00
.getValueType().getVectorElementType();
10726 unsigned NumElts
= VT
.getVectorNumElements();
10727 EVT ConcatVT
= EVT::getVectorVT(*DAG
.getContext(), ElemTy
, NumElts
* 2);
10728 SDValue Concat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), ConcatVT
,
10729 N00
.getOperand(0), N00
.getOperand(1));
10730 Ops
.push_back(Concat
);
10732 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
, Ops
);
10735 // FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
10736 // an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
10737 // much easier to match.
10739 AddCombineBUILD_VECTORToVPADDL(SDNode
*N
, SDValue N0
, SDValue N1
,
10740 TargetLowering::DAGCombinerInfo
&DCI
,
10741 const ARMSubtarget
*Subtarget
) {
10742 // Only perform optimization if after legalize, and if NEON is available. We
10743 // also expected both operands to be BUILD_VECTORs.
10744 if (DCI
.isBeforeLegalize() || !Subtarget
->hasNEON()
10745 || N0
.getOpcode() != ISD::BUILD_VECTOR
10746 || N1
.getOpcode() != ISD::BUILD_VECTOR
)
10749 // Check output type since VPADDL operand elements can only be 8, 16, or 32.
10750 EVT VT
= N
->getValueType(0);
10751 if (!VT
.isInteger() || VT
.getVectorElementType() == MVT::i64
)
10754 // Check that the vector operands are of the right form.
10755 // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
10756 // operands, where N is the size of the formed vector.
10757 // Each EXTRACT_VECTOR should have the same input vector and odd or even
10758 // index such that we have a pair wise add pattern.
10760 // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
10761 if (N0
->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT
)
10763 SDValue Vec
= N0
->getOperand(0)->getOperand(0);
10764 SDNode
*V
= Vec
.getNode();
10765 unsigned nextIndex
= 0;
10767 // For each operands to the ADD which are BUILD_VECTORs,
10768 // check to see if each of their operands are an EXTRACT_VECTOR with
10769 // the same vector and appropriate index.
10770 for (unsigned i
= 0, e
= N0
->getNumOperands(); i
!= e
; ++i
) {
10771 if (N0
->getOperand(i
)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
10772 && N1
->getOperand(i
)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
10774 SDValue ExtVec0
= N0
->getOperand(i
);
10775 SDValue ExtVec1
= N1
->getOperand(i
);
10777 // First operand is the vector, verify its the same.
10778 if (V
!= ExtVec0
->getOperand(0).getNode() ||
10779 V
!= ExtVec1
->getOperand(0).getNode())
10782 // Second is the constant, verify its correct.
10783 ConstantSDNode
*C0
= dyn_cast
<ConstantSDNode
>(ExtVec0
->getOperand(1));
10784 ConstantSDNode
*C1
= dyn_cast
<ConstantSDNode
>(ExtVec1
->getOperand(1));
10786 // For the constant, we want to see all the even or all the odd.
10787 if (!C0
|| !C1
|| C0
->getZExtValue() != nextIndex
10788 || C1
->getZExtValue() != nextIndex
+1)
10791 // Increment index.
10797 // Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure
10798 // we're using the entire input vector, otherwise there's a size/legality
10799 // mismatch somewhere.
10800 if (nextIndex
!= Vec
.getValueType().getVectorNumElements() ||
10801 Vec
.getValueType().getVectorElementType() == VT
.getVectorElementType())
10804 // Create VPADDL node.
10805 SelectionDAG
&DAG
= DCI
.DAG
;
10806 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10810 // Build operand list.
10811 SmallVector
<SDValue
, 8> Ops
;
10812 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpaddls
, dl
,
10813 TLI
.getPointerTy(DAG
.getDataLayout())));
10815 // Input is the vector.
10816 Ops
.push_back(Vec
);
10818 // Get widened type and narrowed type.
10820 unsigned numElem
= VT
.getVectorNumElements();
10822 EVT inputLaneType
= Vec
.getValueType().getVectorElementType();
10823 switch (inputLaneType
.getSimpleVT().SimpleTy
) {
10824 case MVT::i8
: widenType
= MVT::getVectorVT(MVT::i16
, numElem
); break;
10825 case MVT::i16
: widenType
= MVT::getVectorVT(MVT::i32
, numElem
); break;
10826 case MVT::i32
: widenType
= MVT::getVectorVT(MVT::i64
, numElem
); break;
10828 llvm_unreachable("Invalid vector element type for padd optimization.");
10831 SDValue tmp
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, widenType
, Ops
);
10832 unsigned ExtOp
= VT
.bitsGT(tmp
.getValueType()) ? ISD::ANY_EXTEND
: ISD::TRUNCATE
;
10833 return DAG
.getNode(ExtOp
, dl
, VT
, tmp
);
10836 static SDValue
findMUL_LOHI(SDValue V
) {
10837 if (V
->getOpcode() == ISD::UMUL_LOHI
||
10838 V
->getOpcode() == ISD::SMUL_LOHI
)
10843 static SDValue
AddCombineTo64BitSMLAL16(SDNode
*AddcNode
, SDNode
*AddeNode
,
10844 TargetLowering::DAGCombinerInfo
&DCI
,
10845 const ARMSubtarget
*Subtarget
) {
10846 if (Subtarget
->isThumb()) {
10847 if (!Subtarget
->hasDSP())
10849 } else if (!Subtarget
->hasV5TEOps())
10852 // SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and
10853 // accumulates the product into a 64-bit value. The 16-bit values will
10854 // be sign extended somehow or SRA'd into 32-bit values
10855 // (addc (adde (mul 16bit, 16bit), lo), hi)
10856 SDValue Mul
= AddcNode
->getOperand(0);
10857 SDValue Lo
= AddcNode
->getOperand(1);
10858 if (Mul
.getOpcode() != ISD::MUL
) {
10859 Lo
= AddcNode
->getOperand(0);
10860 Mul
= AddcNode
->getOperand(1);
10861 if (Mul
.getOpcode() != ISD::MUL
)
10865 SDValue SRA
= AddeNode
->getOperand(0);
10866 SDValue Hi
= AddeNode
->getOperand(1);
10867 if (SRA
.getOpcode() != ISD::SRA
) {
10868 SRA
= AddeNode
->getOperand(1);
10869 Hi
= AddeNode
->getOperand(0);
10870 if (SRA
.getOpcode() != ISD::SRA
)
10873 if (auto Const
= dyn_cast
<ConstantSDNode
>(SRA
.getOperand(1))) {
10874 if (Const
->getZExtValue() != 31)
10879 if (SRA
.getOperand(0) != Mul
)
10882 SelectionDAG
&DAG
= DCI
.DAG
;
10883 SDLoc
dl(AddcNode
);
10884 unsigned Opcode
= 0;
10888 if (isS16(Mul
.getOperand(0), DAG
) && isS16(Mul
.getOperand(1), DAG
)) {
10889 Opcode
= ARMISD::SMLALBB
;
10890 Op0
= Mul
.getOperand(0);
10891 Op1
= Mul
.getOperand(1);
10892 } else if (isS16(Mul
.getOperand(0), DAG
) && isSRA16(Mul
.getOperand(1))) {
10893 Opcode
= ARMISD::SMLALBT
;
10894 Op0
= Mul
.getOperand(0);
10895 Op1
= Mul
.getOperand(1).getOperand(0);
10896 } else if (isSRA16(Mul
.getOperand(0)) && isS16(Mul
.getOperand(1), DAG
)) {
10897 Opcode
= ARMISD::SMLALTB
;
10898 Op0
= Mul
.getOperand(0).getOperand(0);
10899 Op1
= Mul
.getOperand(1);
10900 } else if (isSRA16(Mul
.getOperand(0)) && isSRA16(Mul
.getOperand(1))) {
10901 Opcode
= ARMISD::SMLALTT
;
10902 Op0
= Mul
->getOperand(0).getOperand(0);
10903 Op1
= Mul
->getOperand(1).getOperand(0);
10909 SDValue SMLAL
= DAG
.getNode(Opcode
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
10911 // Replace the ADDs' nodes uses by the MLA node's values.
10912 SDValue
HiMLALResult(SMLAL
.getNode(), 1);
10913 SDValue
LoMLALResult(SMLAL
.getNode(), 0);
10915 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcNode
, 0), LoMLALResult
);
10916 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeNode
, 0), HiMLALResult
);
10918 // Return original node to notify the driver to stop replacing.
10919 SDValue
resNode(AddcNode
, 0);
10923 static SDValue
AddCombineTo64bitMLAL(SDNode
*AddeSubeNode
,
10924 TargetLowering::DAGCombinerInfo
&DCI
,
10925 const ARMSubtarget
*Subtarget
) {
10926 // Look for multiply add opportunities.
10927 // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
10928 // each add nodes consumes a value from ISD::UMUL_LOHI and there is
10929 // a glue link from the first add to the second add.
10930 // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
10931 // a S/UMLAL instruction.
10934 // V \ [no multiline comment]
10940 // In the special case where only the higher part of a signed result is used
10941 // and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts
10942 // a constant with the exact value of 0x80000000, we recognize we are dealing
10943 // with a "rounded multiply and add" (or subtract) and transform it into
10944 // either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively.
10946 assert((AddeSubeNode
->getOpcode() == ARMISD::ADDE
||
10947 AddeSubeNode
->getOpcode() == ARMISD::SUBE
) &&
10948 "Expect an ADDE or SUBE");
10950 assert(AddeSubeNode
->getNumOperands() == 3 &&
10951 AddeSubeNode
->getOperand(2).getValueType() == MVT::i32
&&
10952 "ADDE node has the wrong inputs");
10954 // Check that we are chained to the right ADDC or SUBC node.
10955 SDNode
*AddcSubcNode
= AddeSubeNode
->getOperand(2).getNode();
10956 if ((AddeSubeNode
->getOpcode() == ARMISD::ADDE
&&
10957 AddcSubcNode
->getOpcode() != ARMISD::ADDC
) ||
10958 (AddeSubeNode
->getOpcode() == ARMISD::SUBE
&&
10959 AddcSubcNode
->getOpcode() != ARMISD::SUBC
))
10962 SDValue AddcSubcOp0
= AddcSubcNode
->getOperand(0);
10963 SDValue AddcSubcOp1
= AddcSubcNode
->getOperand(1);
10965 // Check if the two operands are from the same mul_lohi node.
10966 if (AddcSubcOp0
.getNode() == AddcSubcOp1
.getNode())
10969 assert(AddcSubcNode
->getNumValues() == 2 &&
10970 AddcSubcNode
->getValueType(0) == MVT::i32
&&
10971 "Expect ADDC with two result values. First: i32");
10973 // Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it
10974 // maybe a SMLAL which multiplies two 16-bit values.
10975 if (AddeSubeNode
->getOpcode() == ARMISD::ADDE
&&
10976 AddcSubcOp0
->getOpcode() != ISD::UMUL_LOHI
&&
10977 AddcSubcOp0
->getOpcode() != ISD::SMUL_LOHI
&&
10978 AddcSubcOp1
->getOpcode() != ISD::UMUL_LOHI
&&
10979 AddcSubcOp1
->getOpcode() != ISD::SMUL_LOHI
)
10980 return AddCombineTo64BitSMLAL16(AddcSubcNode
, AddeSubeNode
, DCI
, Subtarget
);
10982 // Check for the triangle shape.
10983 SDValue AddeSubeOp0
= AddeSubeNode
->getOperand(0);
10984 SDValue AddeSubeOp1
= AddeSubeNode
->getOperand(1);
10986 // Make sure that the ADDE/SUBE operands are not coming from the same node.
10987 if (AddeSubeOp0
.getNode() == AddeSubeOp1
.getNode())
10990 // Find the MUL_LOHI node walking up ADDE/SUBE's operands.
10991 bool IsLeftOperandMUL
= false;
10992 SDValue MULOp
= findMUL_LOHI(AddeSubeOp0
);
10993 if (MULOp
== SDValue())
10994 MULOp
= findMUL_LOHI(AddeSubeOp1
);
10996 IsLeftOperandMUL
= true;
10997 if (MULOp
== SDValue())
11000 // Figure out the right opcode.
11001 unsigned Opc
= MULOp
->getOpcode();
11002 unsigned FinalOpc
= (Opc
== ISD::SMUL_LOHI
) ? ARMISD::SMLAL
: ARMISD::UMLAL
;
11004 // Figure out the high and low input values to the MLAL node.
11005 SDValue
*HiAddSub
= nullptr;
11006 SDValue
*LoMul
= nullptr;
11007 SDValue
*LowAddSub
= nullptr;
11009 // Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI.
11010 if ((AddeSubeOp0
!= MULOp
.getValue(1)) && (AddeSubeOp1
!= MULOp
.getValue(1)))
11013 if (IsLeftOperandMUL
)
11014 HiAddSub
= &AddeSubeOp1
;
11016 HiAddSub
= &AddeSubeOp0
;
11018 // Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node
11019 // whose low result is fed to the ADDC/SUBC we are checking.
11021 if (AddcSubcOp0
== MULOp
.getValue(0)) {
11022 LoMul
= &AddcSubcOp0
;
11023 LowAddSub
= &AddcSubcOp1
;
11025 if (AddcSubcOp1
== MULOp
.getValue(0)) {
11026 LoMul
= &AddcSubcOp1
;
11027 LowAddSub
= &AddcSubcOp0
;
11033 // If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC
11034 // the replacement below will create a cycle.
11035 if (AddcSubcNode
== HiAddSub
->getNode() ||
11036 AddcSubcNode
->isPredecessorOf(HiAddSub
->getNode()))
11039 // Create the merged node.
11040 SelectionDAG
&DAG
= DCI
.DAG
;
11042 // Start building operand list.
11043 SmallVector
<SDValue
, 8> Ops
;
11044 Ops
.push_back(LoMul
->getOperand(0));
11045 Ops
.push_back(LoMul
->getOperand(1));
11047 // Check whether we can use SMMLAR, SMMLSR or SMMULR instead. For this to be
11048 // the case, we must be doing signed multiplication and only use the higher
11049 // part of the result of the MLAL, furthermore the LowAddSub must be a constant
11050 // addition or subtraction with the value of 0x800000.
11051 if (Subtarget
->hasV6Ops() && Subtarget
->hasDSP() && Subtarget
->useMulOps() &&
11052 FinalOpc
== ARMISD::SMLAL
&& !AddeSubeNode
->hasAnyUseOfValue(1) &&
11053 LowAddSub
->getNode()->getOpcode() == ISD::Constant
&&
11054 static_cast<ConstantSDNode
*>(LowAddSub
->getNode())->getZExtValue() ==
11056 Ops
.push_back(*HiAddSub
);
11057 if (AddcSubcNode
->getOpcode() == ARMISD::SUBC
) {
11058 FinalOpc
= ARMISD::SMMLSR
;
11060 FinalOpc
= ARMISD::SMMLAR
;
11062 SDValue NewNode
= DAG
.getNode(FinalOpc
, SDLoc(AddcSubcNode
), MVT::i32
, Ops
);
11063 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode
, 0), NewNode
);
11065 return SDValue(AddeSubeNode
, 0);
11066 } else if (AddcSubcNode
->getOpcode() == ARMISD::SUBC
)
11067 // SMMLS is generated during instruction selection and the rest of this
11068 // function can not handle the case where AddcSubcNode is a SUBC.
11071 // Finish building the operand list for {U/S}MLAL
11072 Ops
.push_back(*LowAddSub
);
11073 Ops
.push_back(*HiAddSub
);
11075 SDValue MLALNode
= DAG
.getNode(FinalOpc
, SDLoc(AddcSubcNode
),
11076 DAG
.getVTList(MVT::i32
, MVT::i32
), Ops
);
11078 // Replace the ADDs' nodes uses by the MLA node's values.
11079 SDValue
HiMLALResult(MLALNode
.getNode(), 1);
11080 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode
, 0), HiMLALResult
);
11082 SDValue
LoMLALResult(MLALNode
.getNode(), 0);
11083 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode
, 0), LoMLALResult
);
11085 // Return original node to notify the driver to stop replacing.
11086 return SDValue(AddeSubeNode
, 0);
11089 static SDValue
AddCombineTo64bitUMAAL(SDNode
*AddeNode
,
11090 TargetLowering::DAGCombinerInfo
&DCI
,
11091 const ARMSubtarget
*Subtarget
) {
11092 // UMAAL is similar to UMLAL except that it adds two unsigned values.
11093 // While trying to combine for the other MLAL nodes, first search for the
11094 // chance to use UMAAL. Check if Addc uses a node which has already
11095 // been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde
11096 // as the addend, and it's handled in PerformUMLALCombine.
11098 if (!Subtarget
->hasV6Ops() || !Subtarget
->hasDSP())
11099 return AddCombineTo64bitMLAL(AddeNode
, DCI
, Subtarget
);
11101 // Check that we have a glued ADDC node.
11102 SDNode
* AddcNode
= AddeNode
->getOperand(2).getNode();
11103 if (AddcNode
->getOpcode() != ARMISD::ADDC
)
11106 // Find the converted UMAAL or quit if it doesn't exist.
11107 SDNode
*UmlalNode
= nullptr;
11109 if (AddcNode
->getOperand(0).getOpcode() == ARMISD::UMLAL
) {
11110 UmlalNode
= AddcNode
->getOperand(0).getNode();
11111 AddHi
= AddcNode
->getOperand(1);
11112 } else if (AddcNode
->getOperand(1).getOpcode() == ARMISD::UMLAL
) {
11113 UmlalNode
= AddcNode
->getOperand(1).getNode();
11114 AddHi
= AddcNode
->getOperand(0);
11116 return AddCombineTo64bitMLAL(AddeNode
, DCI
, Subtarget
);
11119 // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
11120 // the ADDC as well as Zero.
11121 if (!isNullConstant(UmlalNode
->getOperand(3)))
11124 if ((isNullConstant(AddeNode
->getOperand(0)) &&
11125 AddeNode
->getOperand(1).getNode() == UmlalNode
) ||
11126 (AddeNode
->getOperand(0).getNode() == UmlalNode
&&
11127 isNullConstant(AddeNode
->getOperand(1)))) {
11128 SelectionDAG
&DAG
= DCI
.DAG
;
11129 SDValue Ops
[] = { UmlalNode
->getOperand(0), UmlalNode
->getOperand(1),
11130 UmlalNode
->getOperand(2), AddHi
};
11131 SDValue UMAAL
= DAG
.getNode(ARMISD::UMAAL
, SDLoc(AddcNode
),
11132 DAG
.getVTList(MVT::i32
, MVT::i32
), Ops
);
11134 // Replace the ADDs' nodes uses by the UMAAL node's values.
11135 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeNode
, 0), SDValue(UMAAL
.getNode(), 1));
11136 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcNode
, 0), SDValue(UMAAL
.getNode(), 0));
11138 // Return original node to notify the driver to stop replacing.
11139 return SDValue(AddeNode
, 0);
11144 static SDValue
PerformUMLALCombine(SDNode
*N
, SelectionDAG
&DAG
,
11145 const ARMSubtarget
*Subtarget
) {
11146 if (!Subtarget
->hasV6Ops() || !Subtarget
->hasDSP())
11149 // Check that we have a pair of ADDC and ADDE as operands.
11150 // Both addends of the ADDE must be zero.
11151 SDNode
* AddcNode
= N
->getOperand(2).getNode();
11152 SDNode
* AddeNode
= N
->getOperand(3).getNode();
11153 if ((AddcNode
->getOpcode() == ARMISD::ADDC
) &&
11154 (AddeNode
->getOpcode() == ARMISD::ADDE
) &&
11155 isNullConstant(AddeNode
->getOperand(0)) &&
11156 isNullConstant(AddeNode
->getOperand(1)) &&
11157 (AddeNode
->getOperand(2).getNode() == AddcNode
))
11158 return DAG
.getNode(ARMISD::UMAAL
, SDLoc(N
),
11159 DAG
.getVTList(MVT::i32
, MVT::i32
),
11160 {N
->getOperand(0), N
->getOperand(1),
11161 AddcNode
->getOperand(0), AddcNode
->getOperand(1)});
11166 static SDValue
PerformAddcSubcCombine(SDNode
*N
,
11167 TargetLowering::DAGCombinerInfo
&DCI
,
11168 const ARMSubtarget
*Subtarget
) {
11169 SelectionDAG
&DAG(DCI
.DAG
);
11171 if (N
->getOpcode() == ARMISD::SUBC
) {
11172 // (SUBC (ADDE 0, 0, C), 1) -> C
11173 SDValue LHS
= N
->getOperand(0);
11174 SDValue RHS
= N
->getOperand(1);
11175 if (LHS
->getOpcode() == ARMISD::ADDE
&&
11176 isNullConstant(LHS
->getOperand(0)) &&
11177 isNullConstant(LHS
->getOperand(1)) && isOneConstant(RHS
)) {
11178 return DCI
.CombineTo(N
, SDValue(N
, 0), LHS
->getOperand(2));
11182 if (Subtarget
->isThumb1Only()) {
11183 SDValue RHS
= N
->getOperand(1);
11184 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(RHS
)) {
11185 int32_t imm
= C
->getSExtValue();
11186 if (imm
< 0 && imm
> std::numeric_limits
<int>::min()) {
11188 RHS
= DAG
.getConstant(-imm
, DL
, MVT::i32
);
11189 unsigned Opcode
= (N
->getOpcode() == ARMISD::ADDC
) ? ARMISD::SUBC
11191 return DAG
.getNode(Opcode
, DL
, N
->getVTList(), N
->getOperand(0), RHS
);
11199 static SDValue
PerformAddeSubeCombine(SDNode
*N
,
11200 TargetLowering::DAGCombinerInfo
&DCI
,
11201 const ARMSubtarget
*Subtarget
) {
11202 if (Subtarget
->isThumb1Only()) {
11203 SelectionDAG
&DAG
= DCI
.DAG
;
11204 SDValue RHS
= N
->getOperand(1);
11205 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(RHS
)) {
11206 int64_t imm
= C
->getSExtValue();
11210 // The with-carry-in form matches bitwise not instead of the negation.
11211 // Effectively, the inverse interpretation of the carry flag already
11212 // accounts for part of the negation.
11213 RHS
= DAG
.getConstant(~imm
, DL
, MVT::i32
);
11215 unsigned Opcode
= (N
->getOpcode() == ARMISD::ADDE
) ? ARMISD::SUBE
11217 return DAG
.getNode(Opcode
, DL
, N
->getVTList(),
11218 N
->getOperand(0), RHS
, N
->getOperand(2));
11221 } else if (N
->getOperand(1)->getOpcode() == ISD::SMUL_LOHI
) {
11222 return AddCombineTo64bitMLAL(N
, DCI
, Subtarget
);
11227 static SDValue
PerformABSCombine(SDNode
*N
,
11228 TargetLowering::DAGCombinerInfo
&DCI
,
11229 const ARMSubtarget
*Subtarget
) {
11231 SelectionDAG
&DAG
= DCI
.DAG
;
11232 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
11234 if (TLI
.isOperationLegal(N
->getOpcode(), N
->getValueType(0)))
11237 if (!TLI
.expandABS(N
, res
, DAG
))
11243 /// PerformADDECombine - Target-specific dag combine transform from
11244 /// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or
11245 /// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
11246 static SDValue
PerformADDECombine(SDNode
*N
,
11247 TargetLowering::DAGCombinerInfo
&DCI
,
11248 const ARMSubtarget
*Subtarget
) {
11249 // Only ARM and Thumb2 support UMLAL/SMLAL.
11250 if (Subtarget
->isThumb1Only())
11251 return PerformAddeSubeCombine(N
, DCI
, Subtarget
);
11253 // Only perform the checks after legalize when the pattern is available.
11254 if (DCI
.isBeforeLegalize()) return SDValue();
11256 return AddCombineTo64bitUMAAL(N
, DCI
, Subtarget
);
11259 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
11260 /// operands N0 and N1. This is a helper for PerformADDCombine that is
11261 /// called with the default operands, and if that fails, with commuted
11263 static SDValue
PerformADDCombineWithOperands(SDNode
*N
, SDValue N0
, SDValue N1
,
11264 TargetLowering::DAGCombinerInfo
&DCI
,
11265 const ARMSubtarget
*Subtarget
){
11266 // Attempt to create vpadd for this add.
11267 if (SDValue Result
= AddCombineToVPADD(N
, N0
, N1
, DCI
, Subtarget
))
11270 // Attempt to create vpaddl for this add.
11271 if (SDValue Result
= AddCombineVUZPToVPADDL(N
, N0
, N1
, DCI
, Subtarget
))
11273 if (SDValue Result
= AddCombineBUILD_VECTORToVPADDL(N
, N0
, N1
, DCI
,
11277 // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
11278 if (N0
.getNode()->hasOneUse())
11279 if (SDValue Result
= combineSelectAndUse(N
, N0
, N1
, DCI
))
11285 ARMTargetLowering::isDesirableToCommuteWithShift(const SDNode
*N
,
11286 CombineLevel Level
) const {
11287 if (Level
== BeforeLegalizeTypes
)
11290 if (N
->getOpcode() != ISD::SHL
)
11293 if (Subtarget
->isThumb1Only()) {
11294 // Avoid making expensive immediates by commuting shifts. (This logic
11295 // only applies to Thumb1 because ARM and Thumb2 immediates can be shifted
11297 if (N
->getOpcode() != ISD::SHL
)
11299 SDValue N1
= N
->getOperand(0);
11300 if (N1
->getOpcode() != ISD::ADD
&& N1
->getOpcode() != ISD::AND
&&
11301 N1
->getOpcode() != ISD::OR
&& N1
->getOpcode() != ISD::XOR
)
11303 if (auto *Const
= dyn_cast
<ConstantSDNode
>(N1
->getOperand(1))) {
11304 if (Const
->getAPIntValue().ult(256))
11306 if (N1
->getOpcode() == ISD::ADD
&& Const
->getAPIntValue().slt(0) &&
11307 Const
->getAPIntValue().sgt(-256))
11313 // Turn off commute-with-shift transform after legalization, so it doesn't
11314 // conflict with PerformSHLSimplify. (We could try to detect when
11315 // PerformSHLSimplify would trigger more precisely, but it isn't
11316 // really necessary.)
11320 bool ARMTargetLowering::shouldFoldConstantShiftPairToMask(
11321 const SDNode
*N
, CombineLevel Level
) const {
11322 if (!Subtarget
->isThumb1Only())
11325 if (Level
== BeforeLegalizeTypes
)
11331 bool ARMTargetLowering::preferIncOfAddToSubOfNot(EVT VT
) const {
11332 if (!Subtarget
->hasNEON()) {
11333 if (Subtarget
->isThumb1Only())
11334 return VT
.getScalarSizeInBits() <= 32;
11337 return VT
.isScalarInteger();
11340 static SDValue
PerformSHLSimplify(SDNode
*N
,
11341 TargetLowering::DAGCombinerInfo
&DCI
,
11342 const ARMSubtarget
*ST
) {
11343 // Allow the generic combiner to identify potential bswaps.
11344 if (DCI
.isBeforeLegalize())
11347 // DAG combiner will fold:
11348 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
11349 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2
11350 // Other code patterns that can be also be modified have the following form:
11351 // b + ((a << 1) | 510)
11352 // b + ((a << 1) & 510)
11353 // b + ((a << 1) ^ 510)
11354 // b + ((a << 1) + 510)
11356 // Many instructions can perform the shift for free, but it requires both
11357 // the operands to be registers. If c1 << c2 is too large, a mov immediate
11358 // instruction will needed. So, unfold back to the original pattern if:
11359 // - if c1 and c2 are small enough that they don't require mov imms.
11360 // - the user(s) of the node can perform an shl
11362 // No shifted operands for 16-bit instructions.
11363 if (ST
->isThumb() && ST
->isThumb1Only())
11366 // Check that all the users could perform the shl themselves.
11367 for (auto U
: N
->uses()) {
11368 switch(U
->getOpcode()) {
11378 // Check that the user isn't already using a constant because there
11379 // aren't any instructions that support an immediate operand and a
11380 // shifted operand.
11381 if (isa
<ConstantSDNode
>(U
->getOperand(0)) ||
11382 isa
<ConstantSDNode
>(U
->getOperand(1)))
11385 // Check that it's not already using a shift.
11386 if (U
->getOperand(0).getOpcode() == ISD::SHL
||
11387 U
->getOperand(1).getOpcode() == ISD::SHL
)
11393 if (N
->getOpcode() != ISD::ADD
&& N
->getOpcode() != ISD::OR
&&
11394 N
->getOpcode() != ISD::XOR
&& N
->getOpcode() != ISD::AND
)
11397 if (N
->getOperand(0).getOpcode() != ISD::SHL
)
11400 SDValue SHL
= N
->getOperand(0);
11402 auto *C1ShlC2
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11403 auto *C2
= dyn_cast
<ConstantSDNode
>(SHL
.getOperand(1));
11404 if (!C1ShlC2
|| !C2
)
11407 APInt C2Int
= C2
->getAPIntValue();
11408 APInt C1Int
= C1ShlC2
->getAPIntValue();
11410 // Check that performing a lshr will not lose any information.
11411 APInt Mask
= APInt::getHighBitsSet(C2Int
.getBitWidth(),
11412 C2Int
.getBitWidth() - C2
->getZExtValue());
11413 if ((C1Int
& Mask
) != C1Int
)
11416 // Shift the first constant.
11417 C1Int
.lshrInPlace(C2Int
);
11419 // The immediates are encoded as an 8-bit value that can be rotated.
11420 auto LargeImm
= [](const APInt
&Imm
) {
11421 unsigned Zeros
= Imm
.countLeadingZeros() + Imm
.countTrailingZeros();
11422 return Imm
.getBitWidth() - Zeros
> 8;
11425 if (LargeImm(C1Int
) || LargeImm(C2Int
))
11428 SelectionDAG
&DAG
= DCI
.DAG
;
11430 SDValue X
= SHL
.getOperand(0);
11431 SDValue BinOp
= DAG
.getNode(N
->getOpcode(), dl
, MVT::i32
, X
,
11432 DAG
.getConstant(C1Int
, dl
, MVT::i32
));
11433 // Shift left to compensate for the lshr of C1Int.
11434 SDValue Res
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, BinOp
, SHL
.getOperand(1));
11436 LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL
.getOperand(0).dump();
11437 SHL
.dump(); N
->dump());
11438 LLVM_DEBUG(dbgs() << "Into:\n"; X
.dump(); BinOp
.dump(); Res
.dump());
11443 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
11445 static SDValue
PerformADDCombine(SDNode
*N
,
11446 TargetLowering::DAGCombinerInfo
&DCI
,
11447 const ARMSubtarget
*Subtarget
) {
11448 SDValue N0
= N
->getOperand(0);
11449 SDValue N1
= N
->getOperand(1);
11451 // Only works one way, because it needs an immediate operand.
11452 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
11455 // First try with the default operand order.
11456 if (SDValue Result
= PerformADDCombineWithOperands(N
, N0
, N1
, DCI
, Subtarget
))
11459 // If that didn't work, try again with the operands commuted.
11460 return PerformADDCombineWithOperands(N
, N1
, N0
, DCI
, Subtarget
);
11463 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
11465 static SDValue
PerformSUBCombine(SDNode
*N
,
11466 TargetLowering::DAGCombinerInfo
&DCI
) {
11467 SDValue N0
= N
->getOperand(0);
11468 SDValue N1
= N
->getOperand(1);
11470 // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
11471 if (N1
.getNode()->hasOneUse())
11472 if (SDValue Result
= combineSelectAndUse(N
, N1
, N0
, DCI
))
11478 /// PerformVMULCombine
11479 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
11480 /// special multiplier accumulator forwarding.
11481 /// vmul d3, d0, d2
11482 /// vmla d3, d1, d2
11484 /// vadd d3, d0, d1
11485 /// vmul d3, d3, d2
11486 // However, for (A + B) * (A + B),
11493 static SDValue
PerformVMULCombine(SDNode
*N
,
11494 TargetLowering::DAGCombinerInfo
&DCI
,
11495 const ARMSubtarget
*Subtarget
) {
11496 if (!Subtarget
->hasVMLxForwarding())
11499 SelectionDAG
&DAG
= DCI
.DAG
;
11500 SDValue N0
= N
->getOperand(0);
11501 SDValue N1
= N
->getOperand(1);
11502 unsigned Opcode
= N0
.getOpcode();
11503 if (Opcode
!= ISD::ADD
&& Opcode
!= ISD::SUB
&&
11504 Opcode
!= ISD::FADD
&& Opcode
!= ISD::FSUB
) {
11505 Opcode
= N1
.getOpcode();
11506 if (Opcode
!= ISD::ADD
&& Opcode
!= ISD::SUB
&&
11507 Opcode
!= ISD::FADD
&& Opcode
!= ISD::FSUB
)
11515 EVT VT
= N
->getValueType(0);
11517 SDValue N00
= N0
->getOperand(0);
11518 SDValue N01
= N0
->getOperand(1);
11519 return DAG
.getNode(Opcode
, DL
, VT
,
11520 DAG
.getNode(ISD::MUL
, DL
, VT
, N00
, N1
),
11521 DAG
.getNode(ISD::MUL
, DL
, VT
, N01
, N1
));
11524 static SDValue
PerformMULCombine(SDNode
*N
,
11525 TargetLowering::DAGCombinerInfo
&DCI
,
11526 const ARMSubtarget
*Subtarget
) {
11527 SelectionDAG
&DAG
= DCI
.DAG
;
11529 if (Subtarget
->isThumb1Only())
11532 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
11535 EVT VT
= N
->getValueType(0);
11536 if (VT
.is64BitVector() || VT
.is128BitVector())
11537 return PerformVMULCombine(N
, DCI
, Subtarget
);
11538 if (VT
!= MVT::i32
)
11541 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11545 int64_t MulAmt
= C
->getSExtValue();
11546 unsigned ShiftAmt
= countTrailingZeros
<uint64_t>(MulAmt
);
11548 ShiftAmt
= ShiftAmt
& (32 - 1);
11549 SDValue V
= N
->getOperand(0);
11553 MulAmt
>>= ShiftAmt
;
11556 if (isPowerOf2_32(MulAmt
- 1)) {
11557 // (mul x, 2^N + 1) => (add (shl x, N), x)
11558 Res
= DAG
.getNode(ISD::ADD
, DL
, VT
,
11560 DAG
.getNode(ISD::SHL
, DL
, VT
,
11562 DAG
.getConstant(Log2_32(MulAmt
- 1), DL
,
11564 } else if (isPowerOf2_32(MulAmt
+ 1)) {
11565 // (mul x, 2^N - 1) => (sub (shl x, N), x)
11566 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11567 DAG
.getNode(ISD::SHL
, DL
, VT
,
11569 DAG
.getConstant(Log2_32(MulAmt
+ 1), DL
,
11575 uint64_t MulAmtAbs
= -MulAmt
;
11576 if (isPowerOf2_32(MulAmtAbs
+ 1)) {
11577 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
11578 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11580 DAG
.getNode(ISD::SHL
, DL
, VT
,
11582 DAG
.getConstant(Log2_32(MulAmtAbs
+ 1), DL
,
11584 } else if (isPowerOf2_32(MulAmtAbs
- 1)) {
11585 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
11586 Res
= DAG
.getNode(ISD::ADD
, DL
, VT
,
11588 DAG
.getNode(ISD::SHL
, DL
, VT
,
11590 DAG
.getConstant(Log2_32(MulAmtAbs
- 1), DL
,
11592 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11593 DAG
.getConstant(0, DL
, MVT::i32
), Res
);
11599 Res
= DAG
.getNode(ISD::SHL
, DL
, VT
,
11600 Res
, DAG
.getConstant(ShiftAmt
, DL
, MVT::i32
));
11602 // Do not add new nodes to DAG combiner worklist.
11603 DCI
.CombineTo(N
, Res
, false);
11607 static SDValue
CombineANDShift(SDNode
*N
,
11608 TargetLowering::DAGCombinerInfo
&DCI
,
11609 const ARMSubtarget
*Subtarget
) {
11610 // Allow DAGCombine to pattern-match before we touch the canonical form.
11611 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
11614 if (N
->getValueType(0) != MVT::i32
)
11617 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11621 uint32_t C1
= (uint32_t)N1C
->getZExtValue();
11622 // Don't transform uxtb/uxth.
11623 if (C1
== 255 || C1
== 65535)
11626 SDNode
*N0
= N
->getOperand(0).getNode();
11627 if (!N0
->hasOneUse())
11630 if (N0
->getOpcode() != ISD::SHL
&& N0
->getOpcode() != ISD::SRL
)
11633 bool LeftShift
= N0
->getOpcode() == ISD::SHL
;
11635 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1));
11639 uint32_t C2
= (uint32_t)N01C
->getZExtValue();
11640 if (!C2
|| C2
>= 32)
11643 // Clear irrelevant bits in the mask.
11649 SelectionDAG
&DAG
= DCI
.DAG
;
11652 // We have a pattern of the form "(and (shl x, c2) c1)" or
11653 // "(and (srl x, c2) c1)", where c1 is a shifted mask. Try to
11654 // transform to a pair of shifts, to save materializing c1.
11656 // First pattern: right shift, then mask off leading bits.
11657 // FIXME: Use demanded bits?
11658 if (!LeftShift
&& isMask_32(C1
)) {
11659 uint32_t C3
= countLeadingZeros(C1
);
11661 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
11662 DAG
.getConstant(C3
- C2
, DL
, MVT::i32
));
11663 return DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SHL
,
11664 DAG
.getConstant(C3
, DL
, MVT::i32
));
11668 // First pattern, reversed: left shift, then mask off trailing bits.
11669 if (LeftShift
&& isMask_32(~C1
)) {
11670 uint32_t C3
= countTrailingZeros(C1
);
11672 SDValue SHL
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, N0
->getOperand(0),
11673 DAG
.getConstant(C3
- C2
, DL
, MVT::i32
));
11674 return DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, SHL
,
11675 DAG
.getConstant(C3
, DL
, MVT::i32
));
11679 // Second pattern: left shift, then mask off leading bits.
11680 // FIXME: Use demanded bits?
11681 if (LeftShift
&& isShiftedMask_32(C1
)) {
11682 uint32_t Trailing
= countTrailingZeros(C1
);
11683 uint32_t C3
= countLeadingZeros(C1
);
11684 if (Trailing
== C2
&& C2
+ C3
< 32) {
11685 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
11686 DAG
.getConstant(C2
+ C3
, DL
, MVT::i32
));
11687 return DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SHL
,
11688 DAG
.getConstant(C3
, DL
, MVT::i32
));
11692 // Second pattern, reversed: right shift, then mask off trailing bits.
11693 // FIXME: Handle other patterns of known/demanded bits.
11694 if (!LeftShift
&& isShiftedMask_32(C1
)) {
11695 uint32_t Leading
= countLeadingZeros(C1
);
11696 uint32_t C3
= countTrailingZeros(C1
);
11697 if (Leading
== C2
&& C2
+ C3
< 32) {
11698 SDValue SHL
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, N0
->getOperand(0),
11699 DAG
.getConstant(C2
+ C3
, DL
, MVT::i32
));
11700 return DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, SHL
,
11701 DAG
.getConstant(C3
, DL
, MVT::i32
));
11705 // FIXME: Transform "(and (shl x, c2) c1)" ->
11706 // "(shl (and x, c1>>c2), c2)" if "c1 >> c2" is a cheaper immediate than
11711 static SDValue
PerformANDCombine(SDNode
*N
,
11712 TargetLowering::DAGCombinerInfo
&DCI
,
11713 const ARMSubtarget
*Subtarget
) {
11714 // Attempt to use immediate-form VBIC
11715 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(N
->getOperand(1));
11717 EVT VT
= N
->getValueType(0);
11718 SelectionDAG
&DAG
= DCI
.DAG
;
11720 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
11723 APInt SplatBits
, SplatUndef
;
11724 unsigned SplatBitSize
;
11726 if (BVN
&& Subtarget
->hasNEON() &&
11727 BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
11728 if (SplatBitSize
<= 64) {
11730 SDValue Val
= isVMOVModifiedImm((~SplatBits
).getZExtValue(),
11731 SplatUndef
.getZExtValue(), SplatBitSize
,
11732 DAG
, dl
, VbicVT
, VT
.is128BitVector(),
11734 if (Val
.getNode()) {
11736 DAG
.getNode(ISD::BITCAST
, dl
, VbicVT
, N
->getOperand(0));
11737 SDValue Vbic
= DAG
.getNode(ARMISD::VBICIMM
, dl
, VbicVT
, Input
, Val
);
11738 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vbic
);
11743 if (!Subtarget
->isThumb1Only()) {
11744 // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
11745 if (SDValue Result
= combineSelectAndUseCommutative(N
, true, DCI
))
11748 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
11752 if (Subtarget
->isThumb1Only())
11753 if (SDValue Result
= CombineANDShift(N
, DCI
, Subtarget
))
11759 // Try combining OR nodes to SMULWB, SMULWT.
11760 static SDValue
PerformORCombineToSMULWBT(SDNode
*OR
,
11761 TargetLowering::DAGCombinerInfo
&DCI
,
11762 const ARMSubtarget
*Subtarget
) {
11763 if (!Subtarget
->hasV6Ops() ||
11764 (Subtarget
->isThumb() &&
11765 (!Subtarget
->hasThumb2() || !Subtarget
->hasDSP())))
11768 SDValue SRL
= OR
->getOperand(0);
11769 SDValue SHL
= OR
->getOperand(1);
11771 if (SRL
.getOpcode() != ISD::SRL
|| SHL
.getOpcode() != ISD::SHL
) {
11772 SRL
= OR
->getOperand(1);
11773 SHL
= OR
->getOperand(0);
11775 if (!isSRL16(SRL
) || !isSHL16(SHL
))
11778 // The first operands to the shifts need to be the two results from the
11779 // same smul_lohi node.
11780 if ((SRL
.getOperand(0).getNode() != SHL
.getOperand(0).getNode()) ||
11781 SRL
.getOperand(0).getOpcode() != ISD::SMUL_LOHI
)
11784 SDNode
*SMULLOHI
= SRL
.getOperand(0).getNode();
11785 if (SRL
.getOperand(0) != SDValue(SMULLOHI
, 0) ||
11786 SHL
.getOperand(0) != SDValue(SMULLOHI
, 1))
11790 // (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
11791 // For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
11792 // For SMUWB the 16-bit value will signed extended somehow.
11793 // For SMULWT only the SRA is required.
11794 // Check both sides of SMUL_LOHI
11795 SDValue OpS16
= SMULLOHI
->getOperand(0);
11796 SDValue OpS32
= SMULLOHI
->getOperand(1);
11798 SelectionDAG
&DAG
= DCI
.DAG
;
11799 if (!isS16(OpS16
, DAG
) && !isSRA16(OpS16
)) {
11801 OpS32
= SMULLOHI
->getOperand(0);
11805 unsigned Opcode
= 0;
11806 if (isS16(OpS16
, DAG
))
11807 Opcode
= ARMISD::SMULWB
;
11808 else if (isSRA16(OpS16
)) {
11809 Opcode
= ARMISD::SMULWT
;
11810 OpS16
= OpS16
->getOperand(0);
11815 SDValue Res
= DAG
.getNode(Opcode
, dl
, MVT::i32
, OpS32
, OpS16
);
11816 DAG
.ReplaceAllUsesOfValueWith(SDValue(OR
, 0), Res
);
11817 return SDValue(OR
, 0);
11820 static SDValue
PerformORCombineToBFI(SDNode
*N
,
11821 TargetLowering::DAGCombinerInfo
&DCI
,
11822 const ARMSubtarget
*Subtarget
) {
11823 // BFI is only available on V6T2+
11824 if (Subtarget
->isThumb1Only() || !Subtarget
->hasV6T2Ops())
11827 EVT VT
= N
->getValueType(0);
11828 SDValue N0
= N
->getOperand(0);
11829 SDValue N1
= N
->getOperand(1);
11830 SelectionDAG
&DAG
= DCI
.DAG
;
11832 // 1) or (and A, mask), val => ARMbfi A, val, mask
11833 // iff (val & mask) == val
11835 // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
11836 // 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
11837 // && mask == ~mask2
11838 // 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
11839 // && ~mask == mask2
11840 // (i.e., copy a bitfield value into another bitfield of the same width)
11842 if (VT
!= MVT::i32
)
11845 SDValue N00
= N0
.getOperand(0);
11847 // The value and the mask need to be constants so we can verify this is
11848 // actually a bitfield set. If the mask is 0xffff, we can do better
11849 // via a movt instruction, so don't use BFI in that case.
11850 SDValue MaskOp
= N0
.getOperand(1);
11851 ConstantSDNode
*MaskC
= dyn_cast
<ConstantSDNode
>(MaskOp
);
11854 unsigned Mask
= MaskC
->getZExtValue();
11855 if (Mask
== 0xffff)
11858 // Case (1): or (and A, mask), val => ARMbfi A, val, mask
11859 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
11861 unsigned Val
= N1C
->getZExtValue();
11862 if ((Val
& ~Mask
) != Val
)
11865 if (ARM::isBitFieldInvertedMask(Mask
)) {
11866 Val
>>= countTrailingZeros(~Mask
);
11868 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N00
,
11869 DAG
.getConstant(Val
, DL
, MVT::i32
),
11870 DAG
.getConstant(Mask
, DL
, MVT::i32
));
11872 DCI
.CombineTo(N
, Res
, false);
11873 // Return value from the original node to inform the combiner than N is
11875 return SDValue(N
, 0);
11877 } else if (N1
.getOpcode() == ISD::AND
) {
11878 // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
11879 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
11882 unsigned Mask2
= N11C
->getZExtValue();
11884 // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
11886 if (ARM::isBitFieldInvertedMask(Mask
) &&
11887 (Mask
== ~Mask2
)) {
11888 // The pack halfword instruction works better for masks that fit it,
11889 // so use that when it's available.
11890 if (Subtarget
->hasDSP() &&
11891 (Mask
== 0xffff || Mask
== 0xffff0000))
11894 unsigned amt
= countTrailingZeros(Mask2
);
11895 Res
= DAG
.getNode(ISD::SRL
, DL
, VT
, N1
.getOperand(0),
11896 DAG
.getConstant(amt
, DL
, MVT::i32
));
11897 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N00
, Res
,
11898 DAG
.getConstant(Mask
, DL
, MVT::i32
));
11899 DCI
.CombineTo(N
, Res
, false);
11900 // Return value from the original node to inform the combiner than N is
11902 return SDValue(N
, 0);
11903 } else if (ARM::isBitFieldInvertedMask(~Mask
) &&
11904 (~Mask
== Mask2
)) {
11905 // The pack halfword instruction works better for masks that fit it,
11906 // so use that when it's available.
11907 if (Subtarget
->hasDSP() &&
11908 (Mask2
== 0xffff || Mask2
== 0xffff0000))
11911 unsigned lsb
= countTrailingZeros(Mask
);
11912 Res
= DAG
.getNode(ISD::SRL
, DL
, VT
, N00
,
11913 DAG
.getConstant(lsb
, DL
, MVT::i32
));
11914 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N1
.getOperand(0), Res
,
11915 DAG
.getConstant(Mask2
, DL
, MVT::i32
));
11916 DCI
.CombineTo(N
, Res
, false);
11917 // Return value from the original node to inform the combiner than N is
11919 return SDValue(N
, 0);
11923 if (DAG
.MaskedValueIsZero(N1
, MaskC
->getAPIntValue()) &&
11924 N00
.getOpcode() == ISD::SHL
&& isa
<ConstantSDNode
>(N00
.getOperand(1)) &&
11925 ARM::isBitFieldInvertedMask(~Mask
)) {
11926 // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
11927 // where lsb(mask) == #shamt and masked bits of B are known zero.
11928 SDValue ShAmt
= N00
.getOperand(1);
11929 unsigned ShAmtC
= cast
<ConstantSDNode
>(ShAmt
)->getZExtValue();
11930 unsigned LSB
= countTrailingZeros(Mask
);
11934 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N1
, N00
.getOperand(0),
11935 DAG
.getConstant(~Mask
, DL
, MVT::i32
));
11937 DCI
.CombineTo(N
, Res
, false);
11938 // Return value from the original node to inform the combiner than N is
11940 return SDValue(N
, 0);
11946 static bool isValidMVECond(unsigned CC
, bool IsFloat
) {
11963 static SDValue
PerformORCombine_i1(SDNode
*N
,
11964 TargetLowering::DAGCombinerInfo
&DCI
,
11965 const ARMSubtarget
*Subtarget
) {
11966 // Try to invert "or A, B" -> "and ~A, ~B", as the "and" is easier to chain
11967 // together with predicates
11968 EVT VT
= N
->getValueType(0);
11969 SDValue N0
= N
->getOperand(0);
11970 SDValue N1
= N
->getOperand(1);
11972 ARMCC::CondCodes CondCode0
= ARMCC::AL
;
11973 ARMCC::CondCodes CondCode1
= ARMCC::AL
;
11974 if (N0
->getOpcode() == ARMISD::VCMP
)
11975 CondCode0
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N0
->getOperand(2))
11977 else if (N0
->getOpcode() == ARMISD::VCMPZ
)
11978 CondCode0
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N0
->getOperand(1))
11980 if (N1
->getOpcode() == ARMISD::VCMP
)
11981 CondCode1
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N1
->getOperand(2))
11983 else if (N1
->getOpcode() == ARMISD::VCMPZ
)
11984 CondCode1
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N1
->getOperand(1))
11987 if (CondCode0
== ARMCC::AL
|| CondCode1
== ARMCC::AL
)
11990 unsigned Opposite0
= ARMCC::getOppositeCondition(CondCode0
);
11991 unsigned Opposite1
= ARMCC::getOppositeCondition(CondCode1
);
11993 if (!isValidMVECond(Opposite0
,
11994 N0
->getOperand(0)->getValueType(0).isFloatingPoint()) ||
11995 !isValidMVECond(Opposite1
,
11996 N1
->getOperand(0)->getValueType(0).isFloatingPoint()))
11999 SmallVector
<SDValue
, 4> Ops0
;
12000 Ops0
.push_back(N0
->getOperand(0));
12001 if (N0
->getOpcode() == ARMISD::VCMP
)
12002 Ops0
.push_back(N0
->getOperand(1));
12003 Ops0
.push_back(DCI
.DAG
.getConstant(Opposite0
, SDLoc(N0
), MVT::i32
));
12004 SmallVector
<SDValue
, 4> Ops1
;
12005 Ops1
.push_back(N1
->getOperand(0));
12006 if (N1
->getOpcode() == ARMISD::VCMP
)
12007 Ops1
.push_back(N1
->getOperand(1));
12008 Ops1
.push_back(DCI
.DAG
.getConstant(Opposite1
, SDLoc(N1
), MVT::i32
));
12010 SDValue NewN0
= DCI
.DAG
.getNode(N0
->getOpcode(), SDLoc(N0
), VT
, Ops0
);
12011 SDValue NewN1
= DCI
.DAG
.getNode(N1
->getOpcode(), SDLoc(N1
), VT
, Ops1
);
12012 SDValue And
= DCI
.DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, NewN0
, NewN1
);
12013 return DCI
.DAG
.getNode(ISD::XOR
, SDLoc(N
), VT
, And
,
12014 DCI
.DAG
.getAllOnesConstant(SDLoc(N
), VT
));
12017 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
12018 static SDValue
PerformORCombine(SDNode
*N
,
12019 TargetLowering::DAGCombinerInfo
&DCI
,
12020 const ARMSubtarget
*Subtarget
) {
12021 // Attempt to use immediate-form VORR
12022 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(N
->getOperand(1));
12024 EVT VT
= N
->getValueType(0);
12025 SelectionDAG
&DAG
= DCI
.DAG
;
12027 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
12030 APInt SplatBits
, SplatUndef
;
12031 unsigned SplatBitSize
;
12033 if (BVN
&& Subtarget
->hasNEON() &&
12034 BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
12035 if (SplatBitSize
<= 64) {
12037 SDValue Val
= isVMOVModifiedImm(SplatBits
.getZExtValue(),
12038 SplatUndef
.getZExtValue(), SplatBitSize
,
12039 DAG
, dl
, VorrVT
, VT
.is128BitVector(),
12041 if (Val
.getNode()) {
12043 DAG
.getNode(ISD::BITCAST
, dl
, VorrVT
, N
->getOperand(0));
12044 SDValue Vorr
= DAG
.getNode(ARMISD::VORRIMM
, dl
, VorrVT
, Input
, Val
);
12045 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vorr
);
12050 if (!Subtarget
->isThumb1Only()) {
12051 // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
12052 if (SDValue Result
= combineSelectAndUseCommutative(N
, false, DCI
))
12054 if (SDValue Result
= PerformORCombineToSMULWBT(N
, DCI
, Subtarget
))
12058 SDValue N0
= N
->getOperand(0);
12059 SDValue N1
= N
->getOperand(1);
12061 // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
12062 if (Subtarget
->hasNEON() && N1
.getOpcode() == ISD::AND
&& VT
.isVector() &&
12063 DAG
.getTargetLoweringInfo().isTypeLegal(VT
)) {
12065 // The code below optimizes (or (and X, Y), Z).
12066 // The AND operand needs to have a single user to make these optimizations
12068 if (N0
.getOpcode() != ISD::AND
|| !N0
.hasOneUse())
12072 unsigned SplatBitSize
;
12075 APInt SplatBits0
, SplatBits1
;
12076 BuildVectorSDNode
*BVN0
= dyn_cast
<BuildVectorSDNode
>(N0
->getOperand(1));
12077 BuildVectorSDNode
*BVN1
= dyn_cast
<BuildVectorSDNode
>(N1
->getOperand(1));
12078 // Ensure that the second operand of both ands are constants
12079 if (BVN0
&& BVN0
->isConstantSplat(SplatBits0
, SplatUndef
, SplatBitSize
,
12080 HasAnyUndefs
) && !HasAnyUndefs
) {
12081 if (BVN1
&& BVN1
->isConstantSplat(SplatBits1
, SplatUndef
, SplatBitSize
,
12082 HasAnyUndefs
) && !HasAnyUndefs
) {
12083 // Ensure that the bit width of the constants are the same and that
12084 // the splat arguments are logical inverses as per the pattern we
12085 // are trying to simplify.
12086 if (SplatBits0
.getBitWidth() == SplatBits1
.getBitWidth() &&
12087 SplatBits0
== ~SplatBits1
) {
12088 // Canonicalize the vector type to make instruction selection
12090 EVT CanonicalVT
= VT
.is128BitVector() ? MVT::v4i32
: MVT::v2i32
;
12091 SDValue Result
= DAG
.getNode(ARMISD::VBSL
, dl
, CanonicalVT
,
12094 N1
->getOperand(0));
12095 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Result
);
12101 if (Subtarget
->hasMVEIntegerOps() &&
12102 (VT
== MVT::v4i1
|| VT
== MVT::v8i1
|| VT
== MVT::v16i1
))
12103 return PerformORCombine_i1(N
, DCI
, Subtarget
);
12105 // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
12107 if (N0
.getOpcode() == ISD::AND
&& N0
.hasOneUse()) {
12108 if (SDValue Res
= PerformORCombineToBFI(N
, DCI
, Subtarget
))
12112 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
12118 static SDValue
PerformXORCombine(SDNode
*N
,
12119 TargetLowering::DAGCombinerInfo
&DCI
,
12120 const ARMSubtarget
*Subtarget
) {
12121 EVT VT
= N
->getValueType(0);
12122 SelectionDAG
&DAG
= DCI
.DAG
;
12124 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
12127 if (!Subtarget
->isThumb1Only()) {
12128 // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
12129 if (SDValue Result
= combineSelectAndUseCommutative(N
, false, DCI
))
12132 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
12139 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
12140 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
12141 // their position in "to" (Rd).
12142 static SDValue
ParseBFI(SDNode
*N
, APInt
&ToMask
, APInt
&FromMask
) {
12143 assert(N
->getOpcode() == ARMISD::BFI
);
12145 SDValue From
= N
->getOperand(1);
12146 ToMask
= ~cast
<ConstantSDNode
>(N
->getOperand(2))->getAPIntValue();
12147 FromMask
= APInt::getLowBitsSet(ToMask
.getBitWidth(), ToMask
.countPopulation());
12149 // If the Base came from a SHR #C, we can deduce that it is really testing bit
12150 // #C in the base of the SHR.
12151 if (From
->getOpcode() == ISD::SRL
&&
12152 isa
<ConstantSDNode
>(From
->getOperand(1))) {
12153 APInt Shift
= cast
<ConstantSDNode
>(From
->getOperand(1))->getAPIntValue();
12154 assert(Shift
.getLimitedValue() < 32 && "Shift too large!");
12155 FromMask
<<= Shift
.getLimitedValue(31);
12156 From
= From
->getOperand(0);
12162 // If A and B contain one contiguous set of bits, does A | B == A . B?
12164 // Neither A nor B must be zero.
12165 static bool BitsProperlyConcatenate(const APInt
&A
, const APInt
&B
) {
12166 unsigned LastActiveBitInA
= A
.countTrailingZeros();
12167 unsigned FirstActiveBitInB
= B
.getBitWidth() - B
.countLeadingZeros() - 1;
12168 return LastActiveBitInA
- 1 == FirstActiveBitInB
;
12171 static SDValue
FindBFIToCombineWith(SDNode
*N
) {
12172 // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
12174 APInt ToMask
, FromMask
;
12175 SDValue From
= ParseBFI(N
, ToMask
, FromMask
);
12176 SDValue To
= N
->getOperand(0);
12178 // Now check for a compatible BFI to merge with. We can pass through BFIs that
12179 // aren't compatible, but not if they set the same bit in their destination as
12180 // we do (or that of any BFI we're going to combine with).
12182 APInt CombinedToMask
= ToMask
;
12183 while (V
.getOpcode() == ARMISD::BFI
) {
12184 APInt NewToMask
, NewFromMask
;
12185 SDValue NewFrom
= ParseBFI(V
.getNode(), NewToMask
, NewFromMask
);
12186 if (NewFrom
!= From
) {
12187 // This BFI has a different base. Keep going.
12188 CombinedToMask
|= NewToMask
;
12189 V
= V
.getOperand(0);
12193 // Do the written bits conflict with any we've seen so far?
12194 if ((NewToMask
& CombinedToMask
).getBoolValue())
12195 // Conflicting bits - bail out because going further is unsafe.
12198 // Are the new bits contiguous when combined with the old bits?
12199 if (BitsProperlyConcatenate(ToMask
, NewToMask
) &&
12200 BitsProperlyConcatenate(FromMask
, NewFromMask
))
12202 if (BitsProperlyConcatenate(NewToMask
, ToMask
) &&
12203 BitsProperlyConcatenate(NewFromMask
, FromMask
))
12206 // We've seen a write to some bits, so track it.
12207 CombinedToMask
|= NewToMask
;
12209 V
= V
.getOperand(0);
12215 static SDValue
PerformBFICombine(SDNode
*N
,
12216 TargetLowering::DAGCombinerInfo
&DCI
) {
12217 SDValue N1
= N
->getOperand(1);
12218 if (N1
.getOpcode() == ISD::AND
) {
12219 // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
12220 // the bits being cleared by the AND are not demanded by the BFI.
12221 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
12224 unsigned InvMask
= cast
<ConstantSDNode
>(N
->getOperand(2))->getZExtValue();
12225 unsigned LSB
= countTrailingZeros(~InvMask
);
12226 unsigned Width
= (32 - countLeadingZeros(~InvMask
)) - LSB
;
12228 static_cast<unsigned>(std::numeric_limits
<unsigned>::digits
) &&
12229 "undefined behavior");
12230 unsigned Mask
= (1u << Width
) - 1;
12231 unsigned Mask2
= N11C
->getZExtValue();
12232 if ((Mask
& (~Mask2
)) == 0)
12233 return DCI
.DAG
.getNode(ARMISD::BFI
, SDLoc(N
), N
->getValueType(0),
12234 N
->getOperand(0), N1
.getOperand(0),
12236 } else if (N
->getOperand(0).getOpcode() == ARMISD::BFI
) {
12237 // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
12238 // Keep track of any consecutive bits set that all come from the same base
12239 // value. We can combine these together into a single BFI.
12240 SDValue CombineBFI
= FindBFIToCombineWith(N
);
12241 if (CombineBFI
== SDValue())
12244 // We've found a BFI.
12245 APInt ToMask1
, FromMask1
;
12246 SDValue From1
= ParseBFI(N
, ToMask1
, FromMask1
);
12248 APInt ToMask2
, FromMask2
;
12249 SDValue From2
= ParseBFI(CombineBFI
.getNode(), ToMask2
, FromMask2
);
12250 assert(From1
== From2
);
12253 // First, unlink CombineBFI.
12254 DCI
.DAG
.ReplaceAllUsesWith(CombineBFI
, CombineBFI
.getOperand(0));
12255 // Then create a new BFI, combining the two together.
12256 APInt NewFromMask
= FromMask1
| FromMask2
;
12257 APInt NewToMask
= ToMask1
| ToMask2
;
12259 EVT VT
= N
->getValueType(0);
12262 if (NewFromMask
[0] == 0)
12263 From1
= DCI
.DAG
.getNode(
12264 ISD::SRL
, dl
, VT
, From1
,
12265 DCI
.DAG
.getConstant(NewFromMask
.countTrailingZeros(), dl
, VT
));
12266 return DCI
.DAG
.getNode(ARMISD::BFI
, dl
, VT
, N
->getOperand(0), From1
,
12267 DCI
.DAG
.getConstant(~NewToMask
, dl
, VT
));
12272 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
12273 /// ARMISD::VMOVRRD.
12274 static SDValue
PerformVMOVRRDCombine(SDNode
*N
,
12275 TargetLowering::DAGCombinerInfo
&DCI
,
12276 const ARMSubtarget
*Subtarget
) {
12277 // vmovrrd(vmovdrr x, y) -> x,y
12278 SDValue InDouble
= N
->getOperand(0);
12279 if (InDouble
.getOpcode() == ARMISD::VMOVDRR
&& Subtarget
->hasFP64())
12280 return DCI
.CombineTo(N
, InDouble
.getOperand(0), InDouble
.getOperand(1));
12282 // vmovrrd(load f64) -> (load i32), (load i32)
12283 SDNode
*InNode
= InDouble
.getNode();
12284 if (ISD::isNormalLoad(InNode
) && InNode
->hasOneUse() &&
12285 InNode
->getValueType(0) == MVT::f64
&&
12286 InNode
->getOperand(1).getOpcode() == ISD::FrameIndex
&&
12287 !cast
<LoadSDNode
>(InNode
)->isVolatile()) {
12288 // TODO: Should this be done for non-FrameIndex operands?
12289 LoadSDNode
*LD
= cast
<LoadSDNode
>(InNode
);
12291 SelectionDAG
&DAG
= DCI
.DAG
;
12293 SDValue BasePtr
= LD
->getBasePtr();
12295 DAG
.getLoad(MVT::i32
, DL
, LD
->getChain(), BasePtr
, LD
->getPointerInfo(),
12296 LD
->getAlignment(), LD
->getMemOperand()->getFlags());
12298 SDValue OffsetPtr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, BasePtr
,
12299 DAG
.getConstant(4, DL
, MVT::i32
));
12301 SDValue NewLD2
= DAG
.getLoad(MVT::i32
, DL
, LD
->getChain(), OffsetPtr
,
12302 LD
->getPointerInfo().getWithOffset(4),
12303 std::min(4U, LD
->getAlignment()),
12304 LD
->getMemOperand()->getFlags());
12306 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), NewLD2
.getValue(1));
12307 if (DCI
.DAG
.getDataLayout().isBigEndian())
12308 std::swap (NewLD1
, NewLD2
);
12309 SDValue Result
= DCI
.CombineTo(N
, NewLD1
, NewLD2
);
12316 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
12317 /// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands.
12318 static SDValue
PerformVMOVDRRCombine(SDNode
*N
, SelectionDAG
&DAG
) {
12319 // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
12320 SDValue Op0
= N
->getOperand(0);
12321 SDValue Op1
= N
->getOperand(1);
12322 if (Op0
.getOpcode() == ISD::BITCAST
)
12323 Op0
= Op0
.getOperand(0);
12324 if (Op1
.getOpcode() == ISD::BITCAST
)
12325 Op1
= Op1
.getOperand(0);
12326 if (Op0
.getOpcode() == ARMISD::VMOVRRD
&&
12327 Op0
.getNode() == Op1
.getNode() &&
12328 Op0
.getResNo() == 0 && Op1
.getResNo() == 1)
12329 return DAG
.getNode(ISD::BITCAST
, SDLoc(N
),
12330 N
->getValueType(0), Op0
.getOperand(0));
12334 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
12335 /// are normal, non-volatile loads. If so, it is profitable to bitcast an
12336 /// i64 vector to have f64 elements, since the value can then be loaded
12337 /// directly into a VFP register.
12338 static bool hasNormalLoadOperand(SDNode
*N
) {
12339 unsigned NumElts
= N
->getValueType(0).getVectorNumElements();
12340 for (unsigned i
= 0; i
< NumElts
; ++i
) {
12341 SDNode
*Elt
= N
->getOperand(i
).getNode();
12342 if (ISD::isNormalLoad(Elt
) && !cast
<LoadSDNode
>(Elt
)->isVolatile())
12348 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
12349 /// ISD::BUILD_VECTOR.
12350 static SDValue
PerformBUILD_VECTORCombine(SDNode
*N
,
12351 TargetLowering::DAGCombinerInfo
&DCI
,
12352 const ARMSubtarget
*Subtarget
) {
12353 // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
12354 // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value
12355 // into a pair of GPRs, which is fine when the value is used as a scalar,
12356 // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
12357 SelectionDAG
&DAG
= DCI
.DAG
;
12358 if (N
->getNumOperands() == 2)
12359 if (SDValue RV
= PerformVMOVDRRCombine(N
, DAG
))
12362 // Load i64 elements as f64 values so that type legalization does not split
12363 // them up into i32 values.
12364 EVT VT
= N
->getValueType(0);
12365 if (VT
.getVectorElementType() != MVT::i64
|| !hasNormalLoadOperand(N
))
12368 SmallVector
<SDValue
, 8> Ops
;
12369 unsigned NumElts
= VT
.getVectorNumElements();
12370 for (unsigned i
= 0; i
< NumElts
; ++i
) {
12371 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, N
->getOperand(i
));
12373 // Make the DAGCombiner fold the bitcast.
12374 DCI
.AddToWorklist(V
.getNode());
12376 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
, NumElts
);
12377 SDValue BV
= DAG
.getBuildVector(FloatVT
, dl
, Ops
);
12378 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, BV
);
12381 /// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
12383 PerformARMBUILD_VECTORCombine(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
) {
12384 // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
12385 // At that time, we may have inserted bitcasts from integer to float.
12386 // If these bitcasts have survived DAGCombine, change the lowering of this
12387 // BUILD_VECTOR in something more vector friendly, i.e., that does not
12388 // force to use floating point types.
12390 // Make sure we can change the type of the vector.
12391 // This is possible iff:
12392 // 1. The vector is only used in a bitcast to a integer type. I.e.,
12393 // 1.1. Vector is used only once.
12394 // 1.2. Use is a bit convert to an integer type.
12395 // 2. The size of its operands are 32-bits (64-bits are not legal).
12396 EVT VT
= N
->getValueType(0);
12397 EVT EltVT
= VT
.getVectorElementType();
12399 // Check 1.1. and 2.
12400 if (EltVT
.getSizeInBits() != 32 || !N
->hasOneUse())
12403 // By construction, the input type must be float.
12404 assert(EltVT
== MVT::f32
&& "Unexpected type!");
12407 SDNode
*Use
= *N
->use_begin();
12408 if (Use
->getOpcode() != ISD::BITCAST
||
12409 Use
->getValueType(0).isFloatingPoint())
12412 // Check profitability.
12413 // Model is, if more than half of the relevant operands are bitcast from
12414 // i32, turn the build_vector into a sequence of insert_vector_elt.
12415 // Relevant operands are everything that is not statically
12416 // (i.e., at compile time) bitcasted.
12417 unsigned NumOfBitCastedElts
= 0;
12418 unsigned NumElts
= VT
.getVectorNumElements();
12419 unsigned NumOfRelevantElts
= NumElts
;
12420 for (unsigned Idx
= 0; Idx
< NumElts
; ++Idx
) {
12421 SDValue Elt
= N
->getOperand(Idx
);
12422 if (Elt
->getOpcode() == ISD::BITCAST
) {
12423 // Assume only bit cast to i32 will go away.
12424 if (Elt
->getOperand(0).getValueType() == MVT::i32
)
12425 ++NumOfBitCastedElts
;
12426 } else if (Elt
.isUndef() || isa
<ConstantSDNode
>(Elt
))
12427 // Constants are statically casted, thus do not count them as
12428 // relevant operands.
12429 --NumOfRelevantElts
;
12432 // Check if more than half of the elements require a non-free bitcast.
12433 if (NumOfBitCastedElts
<= NumOfRelevantElts
/ 2)
12436 SelectionDAG
&DAG
= DCI
.DAG
;
12437 // Create the new vector type.
12438 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::i32
, NumElts
);
12439 // Check if the type is legal.
12440 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
12441 if (!TLI
.isTypeLegal(VecVT
))
12445 // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
12446 // => BITCAST INSERT_VECTOR_ELT
12447 // (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
12448 // (BITCAST EN), N.
12449 SDValue Vec
= DAG
.getUNDEF(VecVT
);
12451 for (unsigned Idx
= 0 ; Idx
< NumElts
; ++Idx
) {
12452 SDValue V
= N
->getOperand(Idx
);
12455 if (V
.getOpcode() == ISD::BITCAST
&&
12456 V
->getOperand(0).getValueType() == MVT::i32
)
12457 // Fold obvious case.
12458 V
= V
.getOperand(0);
12460 V
= DAG
.getNode(ISD::BITCAST
, SDLoc(V
), MVT::i32
, V
);
12461 // Make the DAGCombiner fold the bitcasts.
12462 DCI
.AddToWorklist(V
.getNode());
12464 SDValue LaneIdx
= DAG
.getConstant(Idx
, dl
, MVT::i32
);
12465 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VecVT
, Vec
, V
, LaneIdx
);
12467 Vec
= DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vec
);
12468 // Make the DAGCombiner fold the bitcasts.
12469 DCI
.AddToWorklist(Vec
.getNode());
12473 /// PerformInsertEltCombine - Target-specific dag combine xforms for
12474 /// ISD::INSERT_VECTOR_ELT.
12475 static SDValue
PerformInsertEltCombine(SDNode
*N
,
12476 TargetLowering::DAGCombinerInfo
&DCI
) {
12477 // Bitcast an i64 load inserted into a vector to f64.
12478 // Otherwise, the i64 value will be legalized to a pair of i32 values.
12479 EVT VT
= N
->getValueType(0);
12480 SDNode
*Elt
= N
->getOperand(1).getNode();
12481 if (VT
.getVectorElementType() != MVT::i64
||
12482 !ISD::isNormalLoad(Elt
) || cast
<LoadSDNode
>(Elt
)->isVolatile())
12485 SelectionDAG
&DAG
= DCI
.DAG
;
12487 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
,
12488 VT
.getVectorNumElements());
12489 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, dl
, FloatVT
, N
->getOperand(0));
12490 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, N
->getOperand(1));
12491 // Make the DAGCombiner fold the bitcasts.
12492 DCI
.AddToWorklist(Vec
.getNode());
12493 DCI
.AddToWorklist(V
.getNode());
12494 SDValue InsElt
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, FloatVT
,
12495 Vec
, V
, N
->getOperand(2));
12496 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, InsElt
);
12499 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
12500 /// ISD::VECTOR_SHUFFLE.
12501 static SDValue
PerformVECTOR_SHUFFLECombine(SDNode
*N
, SelectionDAG
&DAG
) {
12502 // The LLVM shufflevector instruction does not require the shuffle mask
12503 // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
12504 // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the
12505 // operands do not match the mask length, they are extended by concatenating
12506 // them with undef vectors. That is probably the right thing for other
12507 // targets, but for NEON it is better to concatenate two double-register
12508 // size vector operands into a single quad-register size vector. Do that
12509 // transformation here:
12510 // shuffle(concat(v1, undef), concat(v2, undef)) ->
12511 // shuffle(concat(v1, v2), undef)
12512 SDValue Op0
= N
->getOperand(0);
12513 SDValue Op1
= N
->getOperand(1);
12514 if (Op0
.getOpcode() != ISD::CONCAT_VECTORS
||
12515 Op1
.getOpcode() != ISD::CONCAT_VECTORS
||
12516 Op0
.getNumOperands() != 2 ||
12517 Op1
.getNumOperands() != 2)
12519 SDValue Concat0Op1
= Op0
.getOperand(1);
12520 SDValue Concat1Op1
= Op1
.getOperand(1);
12521 if (!Concat0Op1
.isUndef() || !Concat1Op1
.isUndef())
12523 // Skip the transformation if any of the types are illegal.
12524 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
12525 EVT VT
= N
->getValueType(0);
12526 if (!TLI
.isTypeLegal(VT
) ||
12527 !TLI
.isTypeLegal(Concat0Op1
.getValueType()) ||
12528 !TLI
.isTypeLegal(Concat1Op1
.getValueType()))
12531 SDValue NewConcat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
,
12532 Op0
.getOperand(0), Op1
.getOperand(0));
12533 // Translate the shuffle mask.
12534 SmallVector
<int, 16> NewMask
;
12535 unsigned NumElts
= VT
.getVectorNumElements();
12536 unsigned HalfElts
= NumElts
/2;
12537 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
12538 for (unsigned n
= 0; n
< NumElts
; ++n
) {
12539 int MaskElt
= SVN
->getMaskElt(n
);
12541 if (MaskElt
< (int)HalfElts
)
12543 else if (MaskElt
>= (int)NumElts
&& MaskElt
< (int)(NumElts
+ HalfElts
))
12544 NewElt
= HalfElts
+ MaskElt
- NumElts
;
12545 NewMask
.push_back(NewElt
);
12547 return DAG
.getVectorShuffle(VT
, SDLoc(N
), NewConcat
,
12548 DAG
.getUNDEF(VT
), NewMask
);
12551 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
12552 /// NEON load/store intrinsics, and generic vector load/stores, to merge
12553 /// base address updates.
12554 /// For generic load/stores, the memory type is assumed to be a vector.
12555 /// The caller is assumed to have checked legality.
12556 static SDValue
CombineBaseUpdate(SDNode
*N
,
12557 TargetLowering::DAGCombinerInfo
&DCI
) {
12558 SelectionDAG
&DAG
= DCI
.DAG
;
12559 const bool isIntrinsic
= (N
->getOpcode() == ISD::INTRINSIC_VOID
||
12560 N
->getOpcode() == ISD::INTRINSIC_W_CHAIN
);
12561 const bool isStore
= N
->getOpcode() == ISD::STORE
;
12562 const unsigned AddrOpIdx
= ((isIntrinsic
|| isStore
) ? 2 : 1);
12563 SDValue Addr
= N
->getOperand(AddrOpIdx
);
12564 MemSDNode
*MemN
= cast
<MemSDNode
>(N
);
12567 // Search for a use of the address operand that is an increment.
12568 for (SDNode::use_iterator UI
= Addr
.getNode()->use_begin(),
12569 UE
= Addr
.getNode()->use_end(); UI
!= UE
; ++UI
) {
12570 SDNode
*User
= *UI
;
12571 if (User
->getOpcode() != ISD::ADD
||
12572 UI
.getUse().getResNo() != Addr
.getResNo())
12575 // Check that the add is independent of the load/store. Otherwise, folding
12576 // it would create a cycle. We can avoid searching through Addr as it's a
12577 // predecessor to both.
12578 SmallPtrSet
<const SDNode
*, 32> Visited
;
12579 SmallVector
<const SDNode
*, 16> Worklist
;
12580 Visited
.insert(Addr
.getNode());
12581 Worklist
.push_back(N
);
12582 Worklist
.push_back(User
);
12583 if (SDNode::hasPredecessorHelper(N
, Visited
, Worklist
) ||
12584 SDNode::hasPredecessorHelper(User
, Visited
, Worklist
))
12587 // Find the new opcode for the updating load/store.
12588 bool isLoadOp
= true;
12589 bool isLaneOp
= false;
12590 unsigned NewOpc
= 0;
12591 unsigned NumVecs
= 0;
12593 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue();
12595 default: llvm_unreachable("unexpected intrinsic for Neon base update");
12596 case Intrinsic::arm_neon_vld1
: NewOpc
= ARMISD::VLD1_UPD
;
12597 NumVecs
= 1; break;
12598 case Intrinsic::arm_neon_vld2
: NewOpc
= ARMISD::VLD2_UPD
;
12599 NumVecs
= 2; break;
12600 case Intrinsic::arm_neon_vld3
: NewOpc
= ARMISD::VLD3_UPD
;
12601 NumVecs
= 3; break;
12602 case Intrinsic::arm_neon_vld4
: NewOpc
= ARMISD::VLD4_UPD
;
12603 NumVecs
= 4; break;
12604 case Intrinsic::arm_neon_vld2dup
:
12605 case Intrinsic::arm_neon_vld3dup
:
12606 case Intrinsic::arm_neon_vld4dup
:
12607 // TODO: Support updating VLDxDUP nodes. For now, we just skip
12608 // combining base updates for such intrinsics.
12610 case Intrinsic::arm_neon_vld2lane
: NewOpc
= ARMISD::VLD2LN_UPD
;
12611 NumVecs
= 2; isLaneOp
= true; break;
12612 case Intrinsic::arm_neon_vld3lane
: NewOpc
= ARMISD::VLD3LN_UPD
;
12613 NumVecs
= 3; isLaneOp
= true; break;
12614 case Intrinsic::arm_neon_vld4lane
: NewOpc
= ARMISD::VLD4LN_UPD
;
12615 NumVecs
= 4; isLaneOp
= true; break;
12616 case Intrinsic::arm_neon_vst1
: NewOpc
= ARMISD::VST1_UPD
;
12617 NumVecs
= 1; isLoadOp
= false; break;
12618 case Intrinsic::arm_neon_vst2
: NewOpc
= ARMISD::VST2_UPD
;
12619 NumVecs
= 2; isLoadOp
= false; break;
12620 case Intrinsic::arm_neon_vst3
: NewOpc
= ARMISD::VST3_UPD
;
12621 NumVecs
= 3; isLoadOp
= false; break;
12622 case Intrinsic::arm_neon_vst4
: NewOpc
= ARMISD::VST4_UPD
;
12623 NumVecs
= 4; isLoadOp
= false; break;
12624 case Intrinsic::arm_neon_vst2lane
: NewOpc
= ARMISD::VST2LN_UPD
;
12625 NumVecs
= 2; isLoadOp
= false; isLaneOp
= true; break;
12626 case Intrinsic::arm_neon_vst3lane
: NewOpc
= ARMISD::VST3LN_UPD
;
12627 NumVecs
= 3; isLoadOp
= false; isLaneOp
= true; break;
12628 case Intrinsic::arm_neon_vst4lane
: NewOpc
= ARMISD::VST4LN_UPD
;
12629 NumVecs
= 4; isLoadOp
= false; isLaneOp
= true; break;
12633 switch (N
->getOpcode()) {
12634 default: llvm_unreachable("unexpected opcode for Neon base update");
12635 case ARMISD::VLD1DUP
: NewOpc
= ARMISD::VLD1DUP_UPD
; NumVecs
= 1; break;
12636 case ARMISD::VLD2DUP
: NewOpc
= ARMISD::VLD2DUP_UPD
; NumVecs
= 2; break;
12637 case ARMISD::VLD3DUP
: NewOpc
= ARMISD::VLD3DUP_UPD
; NumVecs
= 3; break;
12638 case ARMISD::VLD4DUP
: NewOpc
= ARMISD::VLD4DUP_UPD
; NumVecs
= 4; break;
12639 case ISD::LOAD
: NewOpc
= ARMISD::VLD1_UPD
;
12640 NumVecs
= 1; isLaneOp
= false; break;
12641 case ISD::STORE
: NewOpc
= ARMISD::VST1_UPD
;
12642 NumVecs
= 1; isLaneOp
= false; isLoadOp
= false; break;
12646 // Find the size of memory referenced by the load/store.
12649 VecTy
= N
->getValueType(0);
12650 } else if (isIntrinsic
) {
12651 VecTy
= N
->getOperand(AddrOpIdx
+1).getValueType();
12653 assert(isStore
&& "Node has to be a load, a store, or an intrinsic!");
12654 VecTy
= N
->getOperand(1).getValueType();
12657 unsigned NumBytes
= NumVecs
* VecTy
.getSizeInBits() / 8;
12659 NumBytes
/= VecTy
.getVectorNumElements();
12661 // If the increment is a constant, it must match the memory ref size.
12662 SDValue Inc
= User
->getOperand(User
->getOperand(0) == Addr
? 1 : 0);
12663 ConstantSDNode
*CInc
= dyn_cast
<ConstantSDNode
>(Inc
.getNode());
12664 if (NumBytes
>= 3 * 16 && (!CInc
|| CInc
->getZExtValue() != NumBytes
)) {
12665 // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
12666 // separate instructions that make it harder to use a non-constant update.
12670 // OK, we found an ADD we can fold into the base update.
12671 // Now, create a _UPD node, taking care of not breaking alignment.
12673 EVT AlignedVecTy
= VecTy
;
12674 unsigned Alignment
= MemN
->getAlignment();
12676 // If this is a less-than-standard-aligned load/store, change the type to
12677 // match the standard alignment.
12678 // The alignment is overlooked when selecting _UPD variants; and it's
12679 // easier to introduce bitcasts here than fix that.
12680 // There are 3 ways to get to this base-update combine:
12681 // - intrinsics: they are assumed to be properly aligned (to the standard
12682 // alignment of the memory type), so we don't need to do anything.
12683 // - ARMISD::VLDx nodes: they are only generated from the aforementioned
12684 // intrinsics, so, likewise, there's nothing to do.
12685 // - generic load/store instructions: the alignment is specified as an
12686 // explicit operand, rather than implicitly as the standard alignment
12687 // of the memory type (like the intrisics). We need to change the
12688 // memory type to match the explicit alignment. That way, we don't
12689 // generate non-standard-aligned ARMISD::VLDx nodes.
12690 if (isa
<LSBaseSDNode
>(N
)) {
12691 if (Alignment
== 0)
12693 if (Alignment
< VecTy
.getScalarSizeInBits() / 8) {
12694 MVT EltTy
= MVT::getIntegerVT(Alignment
* 8);
12695 assert(NumVecs
== 1 && "Unexpected multi-element generic load/store.");
12696 assert(!isLaneOp
&& "Unexpected generic load/store lane.");
12697 unsigned NumElts
= NumBytes
/ (EltTy
.getSizeInBits() / 8);
12698 AlignedVecTy
= MVT::getVectorVT(EltTy
, NumElts
);
12700 // Don't set an explicit alignment on regular load/stores that we want
12701 // to transform to VLD/VST 1_UPD nodes.
12702 // This matches the behavior of regular load/stores, which only get an
12703 // explicit alignment if the MMO alignment is larger than the standard
12704 // alignment of the memory type.
12705 // Intrinsics, however, always get an explicit alignment, set to the
12706 // alignment of the MMO.
12710 // Create the new updating load/store node.
12711 // First, create an SDVTList for the new updating node's results.
12713 unsigned NumResultVecs
= (isLoadOp
? NumVecs
: 0);
12715 for (n
= 0; n
< NumResultVecs
; ++n
)
12716 Tys
[n
] = AlignedVecTy
;
12717 Tys
[n
++] = MVT::i32
;
12718 Tys
[n
] = MVT::Other
;
12719 SDVTList SDTys
= DAG
.getVTList(makeArrayRef(Tys
, NumResultVecs
+2));
12721 // Then, gather the new node's operands.
12722 SmallVector
<SDValue
, 8> Ops
;
12723 Ops
.push_back(N
->getOperand(0)); // incoming chain
12724 Ops
.push_back(N
->getOperand(AddrOpIdx
));
12725 Ops
.push_back(Inc
);
12727 if (StoreSDNode
*StN
= dyn_cast
<StoreSDNode
>(N
)) {
12728 // Try to match the intrinsic's signature
12729 Ops
.push_back(StN
->getValue());
12731 // Loads (and of course intrinsics) match the intrinsics' signature,
12732 // so just add all but the alignment operand.
12733 for (unsigned i
= AddrOpIdx
+ 1; i
< N
->getNumOperands() - 1; ++i
)
12734 Ops
.push_back(N
->getOperand(i
));
12737 // For all node types, the alignment operand is always the last one.
12738 Ops
.push_back(DAG
.getConstant(Alignment
, dl
, MVT::i32
));
12740 // If this is a non-standard-aligned STORE, the penultimate operand is the
12741 // stored value. Bitcast it to the aligned type.
12742 if (AlignedVecTy
!= VecTy
&& N
->getOpcode() == ISD::STORE
) {
12743 SDValue
&StVal
= Ops
[Ops
.size()-2];
12744 StVal
= DAG
.getNode(ISD::BITCAST
, dl
, AlignedVecTy
, StVal
);
12747 EVT LoadVT
= isLaneOp
? VecTy
.getVectorElementType() : AlignedVecTy
;
12748 SDValue UpdN
= DAG
.getMemIntrinsicNode(NewOpc
, dl
, SDTys
, Ops
, LoadVT
,
12749 MemN
->getMemOperand());
12751 // Update the uses.
12752 SmallVector
<SDValue
, 5> NewResults
;
12753 for (unsigned i
= 0; i
< NumResultVecs
; ++i
)
12754 NewResults
.push_back(SDValue(UpdN
.getNode(), i
));
12756 // If this is an non-standard-aligned LOAD, the first result is the loaded
12757 // value. Bitcast it to the expected result type.
12758 if (AlignedVecTy
!= VecTy
&& N
->getOpcode() == ISD::LOAD
) {
12759 SDValue
&LdVal
= NewResults
[0];
12760 LdVal
= DAG
.getNode(ISD::BITCAST
, dl
, VecTy
, LdVal
);
12763 NewResults
.push_back(SDValue(UpdN
.getNode(), NumResultVecs
+1)); // chain
12764 DCI
.CombineTo(N
, NewResults
);
12765 DCI
.CombineTo(User
, SDValue(UpdN
.getNode(), NumResultVecs
));
12772 static SDValue
PerformVLDCombine(SDNode
*N
,
12773 TargetLowering::DAGCombinerInfo
&DCI
) {
12774 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
12777 return CombineBaseUpdate(N
, DCI
);
12780 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
12781 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
12782 /// are also VDUPLANEs. If so, combine them to a vldN-dup operation and
12784 static bool CombineVLDDUP(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
) {
12785 SelectionDAG
&DAG
= DCI
.DAG
;
12786 EVT VT
= N
->getValueType(0);
12787 // vldN-dup instructions only support 64-bit vectors for N > 1.
12788 if (!VT
.is64BitVector())
12791 // Check if the VDUPLANE operand is a vldN-dup intrinsic.
12792 SDNode
*VLD
= N
->getOperand(0).getNode();
12793 if (VLD
->getOpcode() != ISD::INTRINSIC_W_CHAIN
)
12795 unsigned NumVecs
= 0;
12796 unsigned NewOpc
= 0;
12797 unsigned IntNo
= cast
<ConstantSDNode
>(VLD
->getOperand(1))->getZExtValue();
12798 if (IntNo
== Intrinsic::arm_neon_vld2lane
) {
12800 NewOpc
= ARMISD::VLD2DUP
;
12801 } else if (IntNo
== Intrinsic::arm_neon_vld3lane
) {
12803 NewOpc
= ARMISD::VLD3DUP
;
12804 } else if (IntNo
== Intrinsic::arm_neon_vld4lane
) {
12806 NewOpc
= ARMISD::VLD4DUP
;
12811 // First check that all the vldN-lane uses are VDUPLANEs and that the lane
12812 // numbers match the load.
12813 unsigned VLDLaneNo
=
12814 cast
<ConstantSDNode
>(VLD
->getOperand(NumVecs
+3))->getZExtValue();
12815 for (SDNode::use_iterator UI
= VLD
->use_begin(), UE
= VLD
->use_end();
12817 // Ignore uses of the chain result.
12818 if (UI
.getUse().getResNo() == NumVecs
)
12820 SDNode
*User
= *UI
;
12821 if (User
->getOpcode() != ARMISD::VDUPLANE
||
12822 VLDLaneNo
!= cast
<ConstantSDNode
>(User
->getOperand(1))->getZExtValue())
12826 // Create the vldN-dup node.
12829 for (n
= 0; n
< NumVecs
; ++n
)
12831 Tys
[n
] = MVT::Other
;
12832 SDVTList SDTys
= DAG
.getVTList(makeArrayRef(Tys
, NumVecs
+1));
12833 SDValue Ops
[] = { VLD
->getOperand(0), VLD
->getOperand(2) };
12834 MemIntrinsicSDNode
*VLDMemInt
= cast
<MemIntrinsicSDNode
>(VLD
);
12835 SDValue VLDDup
= DAG
.getMemIntrinsicNode(NewOpc
, SDLoc(VLD
), SDTys
,
12836 Ops
, VLDMemInt
->getMemoryVT(),
12837 VLDMemInt
->getMemOperand());
12839 // Update the uses.
12840 for (SDNode::use_iterator UI
= VLD
->use_begin(), UE
= VLD
->use_end();
12842 unsigned ResNo
= UI
.getUse().getResNo();
12843 // Ignore uses of the chain result.
12844 if (ResNo
== NumVecs
)
12846 SDNode
*User
= *UI
;
12847 DCI
.CombineTo(User
, SDValue(VLDDup
.getNode(), ResNo
));
12850 // Now the vldN-lane intrinsic is dead except for its chain result.
12851 // Update uses of the chain.
12852 std::vector
<SDValue
> VLDDupResults
;
12853 for (unsigned n
= 0; n
< NumVecs
; ++n
)
12854 VLDDupResults
.push_back(SDValue(VLDDup
.getNode(), n
));
12855 VLDDupResults
.push_back(SDValue(VLDDup
.getNode(), NumVecs
));
12856 DCI
.CombineTo(VLD
, VLDDupResults
);
12861 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
12862 /// ARMISD::VDUPLANE.
12863 static SDValue
PerformVDUPLANECombine(SDNode
*N
,
12864 TargetLowering::DAGCombinerInfo
&DCI
) {
12865 SDValue Op
= N
->getOperand(0);
12867 // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
12868 // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
12869 if (CombineVLDDUP(N
, DCI
))
12870 return SDValue(N
, 0);
12872 // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
12873 // redundant. Ignore bit_converts for now; element sizes are checked below.
12874 while (Op
.getOpcode() == ISD::BITCAST
)
12875 Op
= Op
.getOperand(0);
12876 if (Op
.getOpcode() != ARMISD::VMOVIMM
&& Op
.getOpcode() != ARMISD::VMVNIMM
)
12879 // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
12880 unsigned EltSize
= Op
.getScalarValueSizeInBits();
12881 // The canonical VMOV for a zero vector uses a 32-bit element size.
12882 unsigned Imm
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
12884 if (ARM_AM::decodeVMOVModImm(Imm
, EltBits
) == 0)
12886 EVT VT
= N
->getValueType(0);
12887 if (EltSize
> VT
.getScalarSizeInBits())
12890 return DCI
.DAG
.getNode(ISD::BITCAST
, SDLoc(N
), VT
, Op
);
12893 /// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
12894 static SDValue
PerformVDUPCombine(SDNode
*N
,
12895 TargetLowering::DAGCombinerInfo
&DCI
,
12896 const ARMSubtarget
*Subtarget
) {
12897 SelectionDAG
&DAG
= DCI
.DAG
;
12898 SDValue Op
= N
->getOperand(0);
12900 if (!Subtarget
->hasNEON())
12903 // Match VDUP(LOAD) -> VLD1DUP.
12904 // We match this pattern here rather than waiting for isel because the
12905 // transform is only legal for unindexed loads.
12906 LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(Op
.getNode());
12907 if (LD
&& Op
.hasOneUse() && LD
->isUnindexed() &&
12908 LD
->getMemoryVT() == N
->getValueType(0).getVectorElementType()) {
12909 SDValue Ops
[] = { LD
->getOperand(0), LD
->getOperand(1),
12910 DAG
.getConstant(LD
->getAlignment(), SDLoc(N
), MVT::i32
) };
12911 SDVTList SDTys
= DAG
.getVTList(N
->getValueType(0), MVT::Other
);
12912 SDValue VLDDup
= DAG
.getMemIntrinsicNode(ARMISD::VLD1DUP
, SDLoc(N
), SDTys
,
12913 Ops
, LD
->getMemoryVT(),
12914 LD
->getMemOperand());
12915 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), VLDDup
.getValue(1));
12922 static SDValue
PerformLOADCombine(SDNode
*N
,
12923 TargetLowering::DAGCombinerInfo
&DCI
) {
12924 EVT VT
= N
->getValueType(0);
12926 // If this is a legal vector load, try to combine it into a VLD1_UPD.
12927 if (ISD::isNormalLoad(N
) && VT
.isVector() &&
12928 DCI
.DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
12929 return CombineBaseUpdate(N
, DCI
);
12934 /// PerformSTORECombine - Target-specific dag combine xforms for
12936 static SDValue
PerformSTORECombine(SDNode
*N
,
12937 TargetLowering::DAGCombinerInfo
&DCI
) {
12938 StoreSDNode
*St
= cast
<StoreSDNode
>(N
);
12939 if (St
->isVolatile())
12942 // Optimize trunc store (of multiple scalars) to shuffle and store. First,
12943 // pack all of the elements in one place. Next, store to memory in fewer
12945 SDValue StVal
= St
->getValue();
12946 EVT VT
= StVal
.getValueType();
12947 if (St
->isTruncatingStore() && VT
.isVector()) {
12948 SelectionDAG
&DAG
= DCI
.DAG
;
12949 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
12950 EVT StVT
= St
->getMemoryVT();
12951 unsigned NumElems
= VT
.getVectorNumElements();
12952 assert(StVT
!= VT
&& "Cannot truncate to the same type");
12953 unsigned FromEltSz
= VT
.getScalarSizeInBits();
12954 unsigned ToEltSz
= StVT
.getScalarSizeInBits();
12956 // From, To sizes and ElemCount must be pow of two
12957 if (!isPowerOf2_32(NumElems
* FromEltSz
* ToEltSz
)) return SDValue();
12959 // We are going to use the original vector elt for storing.
12960 // Accumulated smaller vector elements must be a multiple of the store size.
12961 if (0 != (NumElems
* FromEltSz
) % ToEltSz
) return SDValue();
12963 unsigned SizeRatio
= FromEltSz
/ ToEltSz
;
12964 assert(SizeRatio
* NumElems
* ToEltSz
== VT
.getSizeInBits());
12966 // Create a type on which we perform the shuffle.
12967 EVT WideVecVT
= EVT::getVectorVT(*DAG
.getContext(), StVT
.getScalarType(),
12968 NumElems
*SizeRatio
);
12969 assert(WideVecVT
.getSizeInBits() == VT
.getSizeInBits());
12972 SDValue WideVec
= DAG
.getNode(ISD::BITCAST
, DL
, WideVecVT
, StVal
);
12973 SmallVector
<int, 8> ShuffleVec(NumElems
* SizeRatio
, -1);
12974 for (unsigned i
= 0; i
< NumElems
; ++i
)
12975 ShuffleVec
[i
] = DAG
.getDataLayout().isBigEndian()
12976 ? (i
+ 1) * SizeRatio
- 1
12979 // Can't shuffle using an illegal type.
12980 if (!TLI
.isTypeLegal(WideVecVT
)) return SDValue();
12982 SDValue Shuff
= DAG
.getVectorShuffle(WideVecVT
, DL
, WideVec
,
12983 DAG
.getUNDEF(WideVec
.getValueType()),
12985 // At this point all of the data is stored at the bottom of the
12986 // register. We now need to save it to mem.
12988 // Find the largest store unit
12989 MVT StoreType
= MVT::i8
;
12990 for (MVT Tp
: MVT::integer_valuetypes()) {
12991 if (TLI
.isTypeLegal(Tp
) && Tp
.getSizeInBits() <= NumElems
* ToEltSz
)
12994 // Didn't find a legal store type.
12995 if (!TLI
.isTypeLegal(StoreType
))
12998 // Bitcast the original vector into a vector of store-size units
12999 EVT StoreVecVT
= EVT::getVectorVT(*DAG
.getContext(),
13000 StoreType
, VT
.getSizeInBits()/EVT(StoreType
).getSizeInBits());
13001 assert(StoreVecVT
.getSizeInBits() == VT
.getSizeInBits());
13002 SDValue ShuffWide
= DAG
.getNode(ISD::BITCAST
, DL
, StoreVecVT
, Shuff
);
13003 SmallVector
<SDValue
, 8> Chains
;
13004 SDValue Increment
= DAG
.getConstant(StoreType
.getSizeInBits() / 8, DL
,
13005 TLI
.getPointerTy(DAG
.getDataLayout()));
13006 SDValue BasePtr
= St
->getBasePtr();
13008 // Perform one or more big stores into memory.
13009 unsigned E
= (ToEltSz
*NumElems
)/StoreType
.getSizeInBits();
13010 for (unsigned I
= 0; I
< E
; I
++) {
13011 SDValue SubVec
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
,
13012 StoreType
, ShuffWide
,
13013 DAG
.getIntPtrConstant(I
, DL
));
13014 SDValue Ch
= DAG
.getStore(St
->getChain(), DL
, SubVec
, BasePtr
,
13015 St
->getPointerInfo(), St
->getAlignment(),
13016 St
->getMemOperand()->getFlags());
13017 BasePtr
= DAG
.getNode(ISD::ADD
, DL
, BasePtr
.getValueType(), BasePtr
,
13019 Chains
.push_back(Ch
);
13021 return DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Chains
);
13024 if (!ISD::isNormalStore(St
))
13027 // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
13028 // ARM stores of arguments in the same cache line.
13029 if (StVal
.getNode()->getOpcode() == ARMISD::VMOVDRR
&&
13030 StVal
.getNode()->hasOneUse()) {
13031 SelectionDAG
&DAG
= DCI
.DAG
;
13032 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
13034 SDValue BasePtr
= St
->getBasePtr();
13035 SDValue NewST1
= DAG
.getStore(
13036 St
->getChain(), DL
, StVal
.getNode()->getOperand(isBigEndian
? 1 : 0),
13037 BasePtr
, St
->getPointerInfo(), St
->getAlignment(),
13038 St
->getMemOperand()->getFlags());
13040 SDValue OffsetPtr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, BasePtr
,
13041 DAG
.getConstant(4, DL
, MVT::i32
));
13042 return DAG
.getStore(NewST1
.getValue(0), DL
,
13043 StVal
.getNode()->getOperand(isBigEndian
? 0 : 1),
13044 OffsetPtr
, St
->getPointerInfo(),
13045 std::min(4U, St
->getAlignment() / 2),
13046 St
->getMemOperand()->getFlags());
13049 if (StVal
.getValueType() == MVT::i64
&&
13050 StVal
.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
13052 // Bitcast an i64 store extracted from a vector to f64.
13053 // Otherwise, the i64 value will be legalized to a pair of i32 values.
13054 SelectionDAG
&DAG
= DCI
.DAG
;
13056 SDValue IntVec
= StVal
.getOperand(0);
13057 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
,
13058 IntVec
.getValueType().getVectorNumElements());
13059 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, dl
, FloatVT
, IntVec
);
13060 SDValue ExtElt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
,
13061 Vec
, StVal
.getOperand(1));
13063 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i64
, ExtElt
);
13064 // Make the DAGCombiner fold the bitcasts.
13065 DCI
.AddToWorklist(Vec
.getNode());
13066 DCI
.AddToWorklist(ExtElt
.getNode());
13067 DCI
.AddToWorklist(V
.getNode());
13068 return DAG
.getStore(St
->getChain(), dl
, V
, St
->getBasePtr(),
13069 St
->getPointerInfo(), St
->getAlignment(),
13070 St
->getMemOperand()->getFlags(), St
->getAAInfo());
13073 // If this is a legal vector store, try to combine it into a VST1_UPD.
13074 if (ISD::isNormalStore(N
) && VT
.isVector() &&
13075 DCI
.DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
13076 return CombineBaseUpdate(N
, DCI
);
13081 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
13082 /// can replace combinations of VMUL and VCVT (floating-point to integer)
13083 /// when the VMUL has a constant operand that is a power of 2.
13085 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
13086 /// vmul.f32 d16, d17, d16
13087 /// vcvt.s32.f32 d16, d16
13089 /// vcvt.s32.f32 d16, d16, #3
13090 static SDValue
PerformVCVTCombine(SDNode
*N
, SelectionDAG
&DAG
,
13091 const ARMSubtarget
*Subtarget
) {
13092 if (!Subtarget
->hasNEON())
13095 SDValue Op
= N
->getOperand(0);
13096 if (!Op
.getValueType().isVector() || !Op
.getValueType().isSimple() ||
13097 Op
.getOpcode() != ISD::FMUL
)
13100 SDValue ConstVec
= Op
->getOperand(1);
13101 if (!isa
<BuildVectorSDNode
>(ConstVec
))
13104 MVT FloatTy
= Op
.getSimpleValueType().getVectorElementType();
13105 uint32_t FloatBits
= FloatTy
.getSizeInBits();
13106 MVT IntTy
= N
->getSimpleValueType(0).getVectorElementType();
13107 uint32_t IntBits
= IntTy
.getSizeInBits();
13108 unsigned NumLanes
= Op
.getValueType().getVectorNumElements();
13109 if (FloatBits
!= 32 || IntBits
> 32 || (NumLanes
!= 4 && NumLanes
!= 2)) {
13110 // These instructions only exist converting from f32 to i32. We can handle
13111 // smaller integers by generating an extra truncate, but larger ones would
13112 // be lossy. We also can't handle anything other than 2 or 4 lanes, since
13113 // these intructions only support v2i32/v4i32 types.
13117 BitVector UndefElements
;
13118 BuildVectorSDNode
*BV
= cast
<BuildVectorSDNode
>(ConstVec
);
13119 int32_t C
= BV
->getConstantFPSplatPow2ToLog2Int(&UndefElements
, 33);
13120 if (C
== -1 || C
== 0 || C
> 32)
13124 bool isSigned
= N
->getOpcode() == ISD::FP_TO_SINT
;
13125 unsigned IntrinsicOpcode
= isSigned
? Intrinsic::arm_neon_vcvtfp2fxs
:
13126 Intrinsic::arm_neon_vcvtfp2fxu
;
13127 SDValue FixConv
= DAG
.getNode(
13128 ISD::INTRINSIC_WO_CHAIN
, dl
, NumLanes
== 2 ? MVT::v2i32
: MVT::v4i32
,
13129 DAG
.getConstant(IntrinsicOpcode
, dl
, MVT::i32
), Op
->getOperand(0),
13130 DAG
.getConstant(C
, dl
, MVT::i32
));
13132 if (IntBits
< FloatBits
)
13133 FixConv
= DAG
.getNode(ISD::TRUNCATE
, dl
, N
->getValueType(0), FixConv
);
13138 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
13139 /// can replace combinations of VCVT (integer to floating-point) and VDIV
13140 /// when the VDIV has a constant operand that is a power of 2.
13142 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
13143 /// vcvt.f32.s32 d16, d16
13144 /// vdiv.f32 d16, d17, d16
13146 /// vcvt.f32.s32 d16, d16, #3
13147 static SDValue
PerformVDIVCombine(SDNode
*N
, SelectionDAG
&DAG
,
13148 const ARMSubtarget
*Subtarget
) {
13149 if (!Subtarget
->hasNEON())
13152 SDValue Op
= N
->getOperand(0);
13153 unsigned OpOpcode
= Op
.getNode()->getOpcode();
13154 if (!N
->getValueType(0).isVector() || !N
->getValueType(0).isSimple() ||
13155 (OpOpcode
!= ISD::SINT_TO_FP
&& OpOpcode
!= ISD::UINT_TO_FP
))
13158 SDValue ConstVec
= N
->getOperand(1);
13159 if (!isa
<BuildVectorSDNode
>(ConstVec
))
13162 MVT FloatTy
= N
->getSimpleValueType(0).getVectorElementType();
13163 uint32_t FloatBits
= FloatTy
.getSizeInBits();
13164 MVT IntTy
= Op
.getOperand(0).getSimpleValueType().getVectorElementType();
13165 uint32_t IntBits
= IntTy
.getSizeInBits();
13166 unsigned NumLanes
= Op
.getValueType().getVectorNumElements();
13167 if (FloatBits
!= 32 || IntBits
> 32 || (NumLanes
!= 4 && NumLanes
!= 2)) {
13168 // These instructions only exist converting from i32 to f32. We can handle
13169 // smaller integers by generating an extra extend, but larger ones would
13170 // be lossy. We also can't handle anything other than 2 or 4 lanes, since
13171 // these intructions only support v2i32/v4i32 types.
13175 BitVector UndefElements
;
13176 BuildVectorSDNode
*BV
= cast
<BuildVectorSDNode
>(ConstVec
);
13177 int32_t C
= BV
->getConstantFPSplatPow2ToLog2Int(&UndefElements
, 33);
13178 if (C
== -1 || C
== 0 || C
> 32)
13182 bool isSigned
= OpOpcode
== ISD::SINT_TO_FP
;
13183 SDValue ConvInput
= Op
.getOperand(0);
13184 if (IntBits
< FloatBits
)
13185 ConvInput
= DAG
.getNode(isSigned
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
,
13186 dl
, NumLanes
== 2 ? MVT::v2i32
: MVT::v4i32
,
13189 unsigned IntrinsicOpcode
= isSigned
? Intrinsic::arm_neon_vcvtfxs2fp
:
13190 Intrinsic::arm_neon_vcvtfxu2fp
;
13191 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
,
13193 DAG
.getConstant(IntrinsicOpcode
, dl
, MVT::i32
),
13194 ConvInput
, DAG
.getConstant(C
, dl
, MVT::i32
));
13197 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
13198 static SDValue
PerformIntrinsicCombine(SDNode
*N
, SelectionDAG
&DAG
) {
13199 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
13202 // Don't do anything for most intrinsics.
13205 // Vector shifts: check for immediate versions and lower them.
13206 // Note: This is done during DAG combining instead of DAG legalizing because
13207 // the build_vectors for 64-bit vector element shift counts are generally
13208 // not legal, and it is hard to see their values after they get legalized to
13209 // loads from a constant pool.
13210 case Intrinsic::arm_neon_vshifts
:
13211 case Intrinsic::arm_neon_vshiftu
:
13212 case Intrinsic::arm_neon_vrshifts
:
13213 case Intrinsic::arm_neon_vrshiftu
:
13214 case Intrinsic::arm_neon_vrshiftn
:
13215 case Intrinsic::arm_neon_vqshifts
:
13216 case Intrinsic::arm_neon_vqshiftu
:
13217 case Intrinsic::arm_neon_vqshiftsu
:
13218 case Intrinsic::arm_neon_vqshiftns
:
13219 case Intrinsic::arm_neon_vqshiftnu
:
13220 case Intrinsic::arm_neon_vqshiftnsu
:
13221 case Intrinsic::arm_neon_vqrshiftns
:
13222 case Intrinsic::arm_neon_vqrshiftnu
:
13223 case Intrinsic::arm_neon_vqrshiftnsu
: {
13224 EVT VT
= N
->getOperand(1).getValueType();
13226 unsigned VShiftOpc
= 0;
13229 case Intrinsic::arm_neon_vshifts
:
13230 case Intrinsic::arm_neon_vshiftu
:
13231 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
)) {
13232 VShiftOpc
= ARMISD::VSHLIMM
;
13235 if (isVShiftRImm(N
->getOperand(2), VT
, false, true, Cnt
)) {
13236 VShiftOpc
= (IntNo
== Intrinsic::arm_neon_vshifts
? ARMISD::VSHRsIMM
13237 : ARMISD::VSHRuIMM
);
13242 case Intrinsic::arm_neon_vrshifts
:
13243 case Intrinsic::arm_neon_vrshiftu
:
13244 if (isVShiftRImm(N
->getOperand(2), VT
, false, true, Cnt
))
13248 case Intrinsic::arm_neon_vqshifts
:
13249 case Intrinsic::arm_neon_vqshiftu
:
13250 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
))
13254 case Intrinsic::arm_neon_vqshiftsu
:
13255 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
))
13257 llvm_unreachable("invalid shift count for vqshlu intrinsic");
13259 case Intrinsic::arm_neon_vrshiftn
:
13260 case Intrinsic::arm_neon_vqshiftns
:
13261 case Intrinsic::arm_neon_vqshiftnu
:
13262 case Intrinsic::arm_neon_vqshiftnsu
:
13263 case Intrinsic::arm_neon_vqrshiftns
:
13264 case Intrinsic::arm_neon_vqrshiftnu
:
13265 case Intrinsic::arm_neon_vqrshiftnsu
:
13266 // Narrowing shifts require an immediate right shift.
13267 if (isVShiftRImm(N
->getOperand(2), VT
, true, true, Cnt
))
13269 llvm_unreachable("invalid shift count for narrowing vector shift "
13273 llvm_unreachable("unhandled vector shift");
13277 case Intrinsic::arm_neon_vshifts
:
13278 case Intrinsic::arm_neon_vshiftu
:
13279 // Opcode already set above.
13281 case Intrinsic::arm_neon_vrshifts
:
13282 VShiftOpc
= ARMISD::VRSHRsIMM
;
13284 case Intrinsic::arm_neon_vrshiftu
:
13285 VShiftOpc
= ARMISD::VRSHRuIMM
;
13287 case Intrinsic::arm_neon_vrshiftn
:
13288 VShiftOpc
= ARMISD::VRSHRNIMM
;
13290 case Intrinsic::arm_neon_vqshifts
:
13291 VShiftOpc
= ARMISD::VQSHLsIMM
;
13293 case Intrinsic::arm_neon_vqshiftu
:
13294 VShiftOpc
= ARMISD::VQSHLuIMM
;
13296 case Intrinsic::arm_neon_vqshiftsu
:
13297 VShiftOpc
= ARMISD::VQSHLsuIMM
;
13299 case Intrinsic::arm_neon_vqshiftns
:
13300 VShiftOpc
= ARMISD::VQSHRNsIMM
;
13302 case Intrinsic::arm_neon_vqshiftnu
:
13303 VShiftOpc
= ARMISD::VQSHRNuIMM
;
13305 case Intrinsic::arm_neon_vqshiftnsu
:
13306 VShiftOpc
= ARMISD::VQSHRNsuIMM
;
13308 case Intrinsic::arm_neon_vqrshiftns
:
13309 VShiftOpc
= ARMISD::VQRSHRNsIMM
;
13311 case Intrinsic::arm_neon_vqrshiftnu
:
13312 VShiftOpc
= ARMISD::VQRSHRNuIMM
;
13314 case Intrinsic::arm_neon_vqrshiftnsu
:
13315 VShiftOpc
= ARMISD::VQRSHRNsuIMM
;
13320 return DAG
.getNode(VShiftOpc
, dl
, N
->getValueType(0),
13321 N
->getOperand(1), DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13324 case Intrinsic::arm_neon_vshiftins
: {
13325 EVT VT
= N
->getOperand(1).getValueType();
13327 unsigned VShiftOpc
= 0;
13329 if (isVShiftLImm(N
->getOperand(3), VT
, false, Cnt
))
13330 VShiftOpc
= ARMISD::VSLIIMM
;
13331 else if (isVShiftRImm(N
->getOperand(3), VT
, false, true, Cnt
))
13332 VShiftOpc
= ARMISD::VSRIIMM
;
13334 llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
13338 return DAG
.getNode(VShiftOpc
, dl
, N
->getValueType(0),
13339 N
->getOperand(1), N
->getOperand(2),
13340 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13343 case Intrinsic::arm_neon_vqrshifts
:
13344 case Intrinsic::arm_neon_vqrshiftu
:
13345 // No immediate versions of these to check for.
13352 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
13353 /// lowers them. As with the vector shift intrinsics, this is done during DAG
13354 /// combining instead of DAG legalizing because the build_vectors for 64-bit
13355 /// vector element shift counts are generally not legal, and it is hard to see
13356 /// their values after they get legalized to loads from a constant pool.
13357 static SDValue
PerformShiftCombine(SDNode
*N
,
13358 TargetLowering::DAGCombinerInfo
&DCI
,
13359 const ARMSubtarget
*ST
) {
13360 SelectionDAG
&DAG
= DCI
.DAG
;
13361 EVT VT
= N
->getValueType(0);
13362 if (N
->getOpcode() == ISD::SRL
&& VT
== MVT::i32
&& ST
->hasV6Ops()) {
13363 // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
13364 // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
13365 SDValue N1
= N
->getOperand(1);
13366 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N1
)) {
13367 SDValue N0
= N
->getOperand(0);
13368 if (C
->getZExtValue() == 16 && N0
.getOpcode() == ISD::BSWAP
&&
13369 DAG
.MaskedValueIsZero(N0
.getOperand(0),
13370 APInt::getHighBitsSet(32, 16)))
13371 return DAG
.getNode(ISD::ROTR
, SDLoc(N
), VT
, N0
, N1
);
13375 if (ST
->isThumb1Only() && N
->getOpcode() == ISD::SHL
&& VT
== MVT::i32
&&
13376 N
->getOperand(0)->getOpcode() == ISD::AND
&&
13377 N
->getOperand(0)->hasOneUse()) {
13378 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
13380 // Look for the pattern (shl (and x, AndMask), ShiftAmt). This doesn't
13381 // usually show up because instcombine prefers to canonicalize it to
13382 // (and (shl x, ShiftAmt) (shl AndMask, ShiftAmt)), but the shift can come
13383 // out of GEP lowering in some cases.
13384 SDValue N0
= N
->getOperand(0);
13385 ConstantSDNode
*ShiftAmtNode
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
13388 uint32_t ShiftAmt
= static_cast<uint32_t>(ShiftAmtNode
->getZExtValue());
13389 ConstantSDNode
*AndMaskNode
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1));
13392 uint32_t AndMask
= static_cast<uint32_t>(AndMaskNode
->getZExtValue());
13393 // Don't transform uxtb/uxth.
13394 if (AndMask
== 255 || AndMask
== 65535)
13396 if (isMask_32(AndMask
)) {
13397 uint32_t MaskedBits
= countLeadingZeros(AndMask
);
13398 if (MaskedBits
> ShiftAmt
) {
13400 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
13401 DAG
.getConstant(MaskedBits
, DL
, MVT::i32
));
13402 return DAG
.getNode(
13403 ISD::SRL
, DL
, MVT::i32
, SHL
,
13404 DAG
.getConstant(MaskedBits
- ShiftAmt
, DL
, MVT::i32
));
13409 // Nothing to be done for scalar shifts.
13410 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
13411 if (!VT
.isVector() || !TLI
.isTypeLegal(VT
))
13413 if (ST
->hasMVEIntegerOps() && VT
== MVT::v2i64
)
13418 switch (N
->getOpcode()) {
13419 default: llvm_unreachable("unexpected shift opcode");
13422 if (isVShiftLImm(N
->getOperand(1), VT
, false, Cnt
)) {
13424 return DAG
.getNode(ARMISD::VSHLIMM
, dl
, VT
, N
->getOperand(0),
13425 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13431 if (isVShiftRImm(N
->getOperand(1), VT
, false, false, Cnt
)) {
13432 unsigned VShiftOpc
=
13433 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHRsIMM
: ARMISD::VSHRuIMM
);
13435 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0),
13436 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13442 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
13443 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
13444 static SDValue
PerformExtendCombine(SDNode
*N
, SelectionDAG
&DAG
,
13445 const ARMSubtarget
*ST
) {
13446 SDValue N0
= N
->getOperand(0);
13448 // Check for sign- and zero-extensions of vector extract operations of 8-
13449 // and 16-bit vector elements. NEON supports these directly. They are
13450 // handled during DAG combining because type legalization will promote them
13451 // to 32-bit types and it is messy to recognize the operations after that.
13452 if (ST
->hasNEON() && N0
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
13453 SDValue Vec
= N0
.getOperand(0);
13454 SDValue Lane
= N0
.getOperand(1);
13455 EVT VT
= N
->getValueType(0);
13456 EVT EltVT
= N0
.getValueType();
13457 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
13459 if (VT
== MVT::i32
&&
13460 (EltVT
== MVT::i8
|| EltVT
== MVT::i16
) &&
13461 TLI
.isTypeLegal(Vec
.getValueType()) &&
13462 isa
<ConstantSDNode
>(Lane
)) {
13465 switch (N
->getOpcode()) {
13466 default: llvm_unreachable("unexpected opcode");
13467 case ISD::SIGN_EXTEND
:
13468 Opc
= ARMISD::VGETLANEs
;
13470 case ISD::ZERO_EXTEND
:
13471 case ISD::ANY_EXTEND
:
13472 Opc
= ARMISD::VGETLANEu
;
13475 return DAG
.getNode(Opc
, SDLoc(N
), VT
, Vec
, Lane
);
13482 static const APInt
*isPowerOf2Constant(SDValue V
) {
13483 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(V
);
13486 const APInt
*CV
= &C
->getAPIntValue();
13487 return CV
->isPowerOf2() ? CV
: nullptr;
13490 SDValue
ARMTargetLowering::PerformCMOVToBFICombine(SDNode
*CMOV
, SelectionDAG
&DAG
) const {
13491 // If we have a CMOV, OR and AND combination such as:
13496 // * CN is a single bit;
13497 // * All bits covered by CM are known zero in y
13499 // Then we can convert this into a sequence of BFI instructions. This will
13500 // always be a win if CM is a single bit, will always be no worse than the
13501 // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
13502 // three bits (due to the extra IT instruction).
13504 SDValue Op0
= CMOV
->getOperand(0);
13505 SDValue Op1
= CMOV
->getOperand(1);
13506 auto CCNode
= cast
<ConstantSDNode
>(CMOV
->getOperand(2));
13507 auto CC
= CCNode
->getAPIntValue().getLimitedValue();
13508 SDValue CmpZ
= CMOV
->getOperand(4);
13510 // The compare must be against zero.
13511 if (!isNullConstant(CmpZ
->getOperand(1)))
13514 assert(CmpZ
->getOpcode() == ARMISD::CMPZ
);
13515 SDValue And
= CmpZ
->getOperand(0);
13516 if (And
->getOpcode() != ISD::AND
)
13518 const APInt
*AndC
= isPowerOf2Constant(And
->getOperand(1));
13521 SDValue X
= And
->getOperand(0);
13523 if (CC
== ARMCC::EQ
) {
13524 // We're performing an "equal to zero" compare. Swap the operands so we
13525 // canonicalize on a "not equal to zero" compare.
13526 std::swap(Op0
, Op1
);
13528 assert(CC
== ARMCC::NE
&& "How can a CMPZ node not be EQ or NE?");
13531 if (Op1
->getOpcode() != ISD::OR
)
13534 ConstantSDNode
*OrC
= dyn_cast
<ConstantSDNode
>(Op1
->getOperand(1));
13537 SDValue Y
= Op1
->getOperand(0);
13542 // Now, is it profitable to continue?
13543 APInt OrCI
= OrC
->getAPIntValue();
13544 unsigned Heuristic
= Subtarget
->isThumb() ? 3 : 2;
13545 if (OrCI
.countPopulation() > Heuristic
)
13548 // Lastly, can we determine that the bits defined by OrCI
13550 KnownBits Known
= DAG
.computeKnownBits(Y
);
13551 if ((OrCI
& Known
.Zero
) != OrCI
)
13554 // OK, we can do the combine.
13557 EVT VT
= X
.getValueType();
13558 unsigned BitInX
= AndC
->logBase2();
13561 // We must shift X first.
13562 X
= DAG
.getNode(ISD::SRL
, dl
, VT
, X
,
13563 DAG
.getConstant(BitInX
, dl
, VT
));
13566 for (unsigned BitInY
= 0, NumActiveBits
= OrCI
.getActiveBits();
13567 BitInY
< NumActiveBits
; ++BitInY
) {
13568 if (OrCI
[BitInY
] == 0)
13570 APInt
Mask(VT
.getSizeInBits(), 0);
13571 Mask
.setBit(BitInY
);
13572 V
= DAG
.getNode(ARMISD::BFI
, dl
, VT
, V
, X
,
13573 // Confusingly, the operand is an *inverted* mask.
13574 DAG
.getConstant(~Mask
, dl
, VT
));
13580 // Given N, the value controlling the conditional branch, search for the loop
13581 // intrinsic, returning it, along with how the value is used. We need to handle
13582 // patterns such as the following:
13583 // (brcond (xor (setcc (loop.decrement), 0, ne), 1), exit)
13584 // (brcond (setcc (loop.decrement), 0, eq), exit)
13585 // (brcond (setcc (loop.decrement), 0, ne), header)
13586 static SDValue
SearchLoopIntrinsic(SDValue N
, ISD::CondCode
&CC
, int &Imm
,
13588 switch (N
->getOpcode()) {
13592 if (!isa
<ConstantSDNode
>(N
.getOperand(1)))
13594 if (!cast
<ConstantSDNode
>(N
.getOperand(1))->isOne())
13597 return SearchLoopIntrinsic(N
.getOperand(0), CC
, Imm
, Negate
);
13600 auto *Const
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
13603 if (Const
->isNullValue())
13605 else if (Const
->isOne())
13609 CC
= cast
<CondCodeSDNode
>(N
.getOperand(2))->get();
13610 return SearchLoopIntrinsic(N
->getOperand(0), CC
, Imm
, Negate
);
13612 case ISD::INTRINSIC_W_CHAIN
: {
13613 unsigned IntOp
= cast
<ConstantSDNode
>(N
.getOperand(1))->getZExtValue();
13614 if (IntOp
!= Intrinsic::test_set_loop_iterations
&&
13615 IntOp
!= Intrinsic::loop_decrement_reg
)
13623 static SDValue
PerformHWLoopCombine(SDNode
*N
,
13624 TargetLowering::DAGCombinerInfo
&DCI
,
13625 const ARMSubtarget
*ST
) {
13627 // The hwloop intrinsics that we're interested are used for control-flow,
13628 // either for entering or exiting the loop:
13629 // - test.set.loop.iterations will test whether its operand is zero. If it
13630 // is zero, the proceeding branch should not enter the loop.
13631 // - loop.decrement.reg also tests whether its operand is zero. If it is
13632 // zero, the proceeding branch should not branch back to the beginning of
13634 // So here, we need to check that how the brcond is using the result of each
13635 // of the intrinsics to ensure that we're branching to the right place at the
13641 bool Negate
= false;
13642 SDValue Chain
= N
->getOperand(0);
13645 if (N
->getOpcode() == ISD::BRCOND
) {
13647 Cond
= N
->getOperand(1);
13648 Dest
= N
->getOperand(2);
13650 assert(N
->getOpcode() == ISD::BR_CC
&& "Expected BRCOND or BR_CC!");
13651 CC
= cast
<CondCodeSDNode
>(N
->getOperand(1))->get();
13652 Cond
= N
->getOperand(2);
13653 Dest
= N
->getOperand(4);
13654 if (auto *Const
= dyn_cast
<ConstantSDNode
>(N
->getOperand(3))) {
13655 if (!Const
->isOne() && !Const
->isNullValue())
13657 Imm
= Const
->getZExtValue();
13662 SDValue Int
= SearchLoopIntrinsic(Cond
, CC
, Imm
, Negate
);
13667 CC
= ISD::getSetCCInverse(CC
, true);
13669 auto IsTrueIfZero
= [](ISD::CondCode CC
, int Imm
) {
13670 return (CC
== ISD::SETEQ
&& Imm
== 0) ||
13671 (CC
== ISD::SETNE
&& Imm
== 1) ||
13672 (CC
== ISD::SETLT
&& Imm
== 1) ||
13673 (CC
== ISD::SETULT
&& Imm
== 1);
13676 auto IsFalseIfZero
= [](ISD::CondCode CC
, int Imm
) {
13677 return (CC
== ISD::SETEQ
&& Imm
== 1) ||
13678 (CC
== ISD::SETNE
&& Imm
== 0) ||
13679 (CC
== ISD::SETGT
&& Imm
== 0) ||
13680 (CC
== ISD::SETUGT
&& Imm
== 0) ||
13681 (CC
== ISD::SETGE
&& Imm
== 1) ||
13682 (CC
== ISD::SETUGE
&& Imm
== 1);
13685 assert((IsTrueIfZero(CC
, Imm
) || IsFalseIfZero(CC
, Imm
)) &&
13686 "unsupported condition");
13689 SelectionDAG
&DAG
= DCI
.DAG
;
13690 SDValue Elements
= Int
.getOperand(2);
13691 unsigned IntOp
= cast
<ConstantSDNode
>(Int
->getOperand(1))->getZExtValue();
13692 assert((N
->hasOneUse() && N
->use_begin()->getOpcode() == ISD::BR
)
13693 && "expected single br user");
13694 SDNode
*Br
= *N
->use_begin();
13695 SDValue OtherTarget
= Br
->getOperand(1);
13697 // Update the unconditional branch to branch to the given Dest.
13698 auto UpdateUncondBr
= [](SDNode
*Br
, SDValue Dest
, SelectionDAG
&DAG
) {
13699 SDValue NewBrOps
[] = { Br
->getOperand(0), Dest
};
13700 SDValue NewBr
= DAG
.getNode(ISD::BR
, SDLoc(Br
), MVT::Other
, NewBrOps
);
13701 DAG
.ReplaceAllUsesOfValueWith(SDValue(Br
, 0), NewBr
);
13704 if (IntOp
== Intrinsic::test_set_loop_iterations
) {
13706 // We expect this 'instruction' to branch when the counter is zero.
13707 if (IsTrueIfZero(CC
, Imm
)) {
13708 SDValue Ops
[] = { Chain
, Elements
, Dest
};
13709 Res
= DAG
.getNode(ARMISD::WLS
, dl
, MVT::Other
, Ops
);
13711 // The logic is the reverse of what we need for WLS, so find the other
13712 // basic block target: the target of the proceeding br.
13713 UpdateUncondBr(Br
, Dest
, DAG
);
13715 SDValue Ops
[] = { Chain
, Elements
, OtherTarget
};
13716 Res
= DAG
.getNode(ARMISD::WLS
, dl
, MVT::Other
, Ops
);
13718 DAG
.ReplaceAllUsesOfValueWith(Int
.getValue(1), Int
.getOperand(0));
13721 SDValue Size
= DAG
.getTargetConstant(
13722 cast
<ConstantSDNode
>(Int
.getOperand(3))->getZExtValue(), dl
, MVT::i32
);
13723 SDValue Args
[] = { Int
.getOperand(0), Elements
, Size
, };
13724 SDValue LoopDec
= DAG
.getNode(ARMISD::LOOP_DEC
, dl
,
13725 DAG
.getVTList(MVT::i32
, MVT::Other
), Args
);
13726 DAG
.ReplaceAllUsesWith(Int
.getNode(), LoopDec
.getNode());
13728 // We expect this instruction to branch when the count is not zero.
13729 SDValue Target
= IsFalseIfZero(CC
, Imm
) ? Dest
: OtherTarget
;
13731 // Update the unconditional branch to target the loop preheader if we've
13732 // found the condition has been reversed.
13733 if (Target
== OtherTarget
)
13734 UpdateUncondBr(Br
, Dest
, DAG
);
13736 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
13737 SDValue(LoopDec
.getNode(), 1), Chain
);
13739 SDValue EndArgs
[] = { Chain
, SDValue(LoopDec
.getNode(), 0), Target
};
13740 return DAG
.getNode(ARMISD::LE
, dl
, MVT::Other
, EndArgs
);
13745 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
13747 ARMTargetLowering::PerformBRCONDCombine(SDNode
*N
, SelectionDAG
&DAG
) const {
13748 SDValue Cmp
= N
->getOperand(4);
13749 if (Cmp
.getOpcode() != ARMISD::CMPZ
)
13750 // Only looking at NE cases.
13753 EVT VT
= N
->getValueType(0);
13755 SDValue LHS
= Cmp
.getOperand(0);
13756 SDValue RHS
= Cmp
.getOperand(1);
13757 SDValue Chain
= N
->getOperand(0);
13758 SDValue BB
= N
->getOperand(1);
13759 SDValue ARMcc
= N
->getOperand(2);
13760 ARMCC::CondCodes CC
=
13761 (ARMCC::CondCodes
)cast
<ConstantSDNode
>(ARMcc
)->getZExtValue();
13763 // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
13764 // -> (brcond Chain BB CC CPSR Cmp)
13765 if (CC
== ARMCC::NE
&& LHS
.getOpcode() == ISD::AND
&& LHS
->hasOneUse() &&
13766 LHS
->getOperand(0)->getOpcode() == ARMISD::CMOV
&&
13767 LHS
->getOperand(0)->hasOneUse()) {
13768 auto *LHS00C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0)->getOperand(0));
13769 auto *LHS01C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0)->getOperand(1));
13770 auto *LHS1C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(1));
13771 auto *RHSC
= dyn_cast
<ConstantSDNode
>(RHS
);
13772 if ((LHS00C
&& LHS00C
->getZExtValue() == 0) &&
13773 (LHS01C
&& LHS01C
->getZExtValue() == 1) &&
13774 (LHS1C
&& LHS1C
->getZExtValue() == 1) &&
13775 (RHSC
&& RHSC
->getZExtValue() == 0)) {
13776 return DAG
.getNode(
13777 ARMISD::BRCOND
, dl
, VT
, Chain
, BB
, LHS
->getOperand(0)->getOperand(2),
13778 LHS
->getOperand(0)->getOperand(3), LHS
->getOperand(0)->getOperand(4));
13785 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
13787 ARMTargetLowering::PerformCMOVCombine(SDNode
*N
, SelectionDAG
&DAG
) const {
13788 SDValue Cmp
= N
->getOperand(4);
13789 if (Cmp
.getOpcode() != ARMISD::CMPZ
)
13790 // Only looking at EQ and NE cases.
13793 EVT VT
= N
->getValueType(0);
13795 SDValue LHS
= Cmp
.getOperand(0);
13796 SDValue RHS
= Cmp
.getOperand(1);
13797 SDValue FalseVal
= N
->getOperand(0);
13798 SDValue TrueVal
= N
->getOperand(1);
13799 SDValue ARMcc
= N
->getOperand(2);
13800 ARMCC::CondCodes CC
=
13801 (ARMCC::CondCodes
)cast
<ConstantSDNode
>(ARMcc
)->getZExtValue();
13803 // BFI is only available on V6T2+.
13804 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV6T2Ops()) {
13805 SDValue R
= PerformCMOVToBFICombine(N
, DAG
);
13826 /// FIXME: Turn this into a target neutral optimization?
13828 if (CC
== ARMCC::NE
&& FalseVal
== RHS
&& FalseVal
!= LHS
) {
13829 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LHS
, TrueVal
, ARMcc
,
13830 N
->getOperand(3), Cmp
);
13831 } else if (CC
== ARMCC::EQ
&& TrueVal
== RHS
) {
13833 SDValue NewCmp
= getARMCmp(LHS
, RHS
, ISD::SETNE
, ARMcc
, DAG
, dl
);
13834 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LHS
, FalseVal
, ARMcc
,
13835 N
->getOperand(3), NewCmp
);
13838 // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
13839 // -> (cmov F T CC CPSR Cmp)
13840 if (CC
== ARMCC::NE
&& LHS
.getOpcode() == ARMISD::CMOV
&& LHS
->hasOneUse()) {
13841 auto *LHS0C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0));
13842 auto *LHS1C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(1));
13843 auto *RHSC
= dyn_cast
<ConstantSDNode
>(RHS
);
13844 if ((LHS0C
&& LHS0C
->getZExtValue() == 0) &&
13845 (LHS1C
&& LHS1C
->getZExtValue() == 1) &&
13846 (RHSC
&& RHSC
->getZExtValue() == 0)) {
13847 return DAG
.getNode(ARMISD::CMOV
, dl
, VT
, FalseVal
, TrueVal
,
13848 LHS
->getOperand(2), LHS
->getOperand(3),
13849 LHS
->getOperand(4));
13853 if (!VT
.isInteger())
13856 // Materialize a boolean comparison for integers so we can avoid branching.
13857 if (isNullConstant(FalseVal
)) {
13858 if (CC
== ARMCC::EQ
&& isOneConstant(TrueVal
)) {
13859 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV5TOps()) {
13860 // If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it
13861 // right 5 bits will make that 32 be 1, otherwise it will be 0.
13862 // CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5
13863 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, LHS
, RHS
);
13864 Res
= DAG
.getNode(ISD::SRL
, dl
, VT
, DAG
.getNode(ISD::CTLZ
, dl
, VT
, Sub
),
13865 DAG
.getConstant(5, dl
, MVT::i32
));
13867 // CMOV 0, 1, ==, (CMPZ x, y) ->
13868 // (ADDCARRY (SUB x, y), t:0, t:1)
13869 // where t = (SUBCARRY 0, (SUB x, y), 0)
13871 // The SUBCARRY computes 0 - (x - y) and this will give a borrow when
13872 // x != y. In other words, a carry C == 1 when x == y, C == 0
13874 // The final ADDCARRY computes
13875 // x - y + (0 - (x - y)) + C == C
13876 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, LHS
, RHS
);
13877 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
13878 SDValue Neg
= DAG
.getNode(ISD::USUBO
, dl
, VTs
, FalseVal
, Sub
);
13879 // ISD::SUBCARRY returns a borrow but we want the carry here
13882 DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
13883 DAG
.getConstant(1, dl
, MVT::i32
), Neg
.getValue(1));
13884 Res
= DAG
.getNode(ISD::ADDCARRY
, dl
, VTs
, Sub
, Neg
, Carry
);
13886 } else if (CC
== ARMCC::NE
&& !isNullConstant(RHS
) &&
13887 (!Subtarget
->isThumb1Only() || isPowerOf2Constant(TrueVal
))) {
13888 // This seems pointless but will allow us to combine it further below.
13889 // CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
13891 DAG
.getNode(ARMISD::SUBS
, dl
, DAG
.getVTList(VT
, MVT::i32
), LHS
, RHS
);
13892 SDValue CPSRGlue
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, ARM::CPSR
,
13893 Sub
.getValue(1), SDValue());
13894 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, Sub
, TrueVal
, ARMcc
,
13895 N
->getOperand(3), CPSRGlue
.getValue(1));
13898 } else if (isNullConstant(TrueVal
)) {
13899 if (CC
== ARMCC::EQ
&& !isNullConstant(RHS
) &&
13900 (!Subtarget
->isThumb1Only() || isPowerOf2Constant(FalseVal
))) {
13901 // This seems pointless but will allow us to combine it further below
13902 // Note that we change == for != as this is the dual for the case above.
13903 // CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
13905 DAG
.getNode(ARMISD::SUBS
, dl
, DAG
.getVTList(VT
, MVT::i32
), LHS
, RHS
);
13906 SDValue CPSRGlue
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, ARM::CPSR
,
13907 Sub
.getValue(1), SDValue());
13908 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, Sub
, FalseVal
,
13909 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
),
13910 N
->getOperand(3), CPSRGlue
.getValue(1));
13915 // On Thumb1, the DAG above may be further combined if z is a power of 2
13917 // CMOV (SUBS x, y), z, !=, (SUBS x, y):1 ->
13918 // t1 = (USUBO (SUB x, y), 1)
13919 // t2 = (SUBCARRY (SUB x, y), t1:0, t1:1)
13920 // Result = if K != 0 then (SHL t2:0, K) else t2:0
13922 // This also handles the special case of comparing against zero; it's
13923 // essentially, the same pattern, except there's no SUBS:
13924 // CMOV x, z, !=, (CMPZ x, 0) ->
13925 // t1 = (USUBO x, 1)
13926 // t2 = (SUBCARRY x, t1:0, t1:1)
13927 // Result = if K != 0 then (SHL t2:0, K) else t2:0
13928 const APInt
*TrueConst
;
13929 if (Subtarget
->isThumb1Only() && CC
== ARMCC::NE
&&
13930 ((FalseVal
.getOpcode() == ARMISD::SUBS
&&
13931 FalseVal
.getOperand(0) == LHS
&& FalseVal
.getOperand(1) == RHS
) ||
13932 (FalseVal
== LHS
&& isNullConstant(RHS
))) &&
13933 (TrueConst
= isPowerOf2Constant(TrueVal
))) {
13934 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
13935 unsigned ShiftAmount
= TrueConst
->logBase2();
13937 TrueVal
= DAG
.getConstant(1, dl
, VT
);
13938 SDValue Subc
= DAG
.getNode(ISD::USUBO
, dl
, VTs
, FalseVal
, TrueVal
);
13939 Res
= DAG
.getNode(ISD::SUBCARRY
, dl
, VTs
, FalseVal
, Subc
, Subc
.getValue(1));
13942 Res
= DAG
.getNode(ISD::SHL
, dl
, VT
, Res
,
13943 DAG
.getConstant(ShiftAmount
, dl
, MVT::i32
));
13946 if (Res
.getNode()) {
13947 KnownBits Known
= DAG
.computeKnownBits(SDValue(N
,0));
13948 // Capture demanded bits information that would be otherwise lost.
13949 if (Known
.Zero
== 0xfffffffe)
13950 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
13951 DAG
.getValueType(MVT::i1
));
13952 else if (Known
.Zero
== 0xffffff00)
13953 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
13954 DAG
.getValueType(MVT::i8
));
13955 else if (Known
.Zero
== 0xffff0000)
13956 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
13957 DAG
.getValueType(MVT::i16
));
13963 SDValue
ARMTargetLowering::PerformDAGCombine(SDNode
*N
,
13964 DAGCombinerInfo
&DCI
) const {
13965 switch (N
->getOpcode()) {
13967 case ISD::ABS
: return PerformABSCombine(N
, DCI
, Subtarget
);
13968 case ARMISD::ADDE
: return PerformADDECombine(N
, DCI
, Subtarget
);
13969 case ARMISD::UMLAL
: return PerformUMLALCombine(N
, DCI
.DAG
, Subtarget
);
13970 case ISD::ADD
: return PerformADDCombine(N
, DCI
, Subtarget
);
13971 case ISD::SUB
: return PerformSUBCombine(N
, DCI
);
13972 case ISD::MUL
: return PerformMULCombine(N
, DCI
, Subtarget
);
13973 case ISD::OR
: return PerformORCombine(N
, DCI
, Subtarget
);
13974 case ISD::XOR
: return PerformXORCombine(N
, DCI
, Subtarget
);
13975 case ISD::AND
: return PerformANDCombine(N
, DCI
, Subtarget
);
13977 case ISD::BR_CC
: return PerformHWLoopCombine(N
, DCI
, Subtarget
);
13979 case ARMISD::SUBC
: return PerformAddcSubcCombine(N
, DCI
, Subtarget
);
13980 case ARMISD::SUBE
: return PerformAddeSubeCombine(N
, DCI
, Subtarget
);
13981 case ARMISD::BFI
: return PerformBFICombine(N
, DCI
);
13982 case ARMISD::VMOVRRD
: return PerformVMOVRRDCombine(N
, DCI
, Subtarget
);
13983 case ARMISD::VMOVDRR
: return PerformVMOVDRRCombine(N
, DCI
.DAG
);
13984 case ISD::STORE
: return PerformSTORECombine(N
, DCI
);
13985 case ISD::BUILD_VECTOR
: return PerformBUILD_VECTORCombine(N
, DCI
, Subtarget
);
13986 case ISD::INSERT_VECTOR_ELT
: return PerformInsertEltCombine(N
, DCI
);
13987 case ISD::VECTOR_SHUFFLE
: return PerformVECTOR_SHUFFLECombine(N
, DCI
.DAG
);
13988 case ARMISD::VDUPLANE
: return PerformVDUPLANECombine(N
, DCI
);
13989 case ARMISD::VDUP
: return PerformVDUPCombine(N
, DCI
, Subtarget
);
13990 case ISD::FP_TO_SINT
:
13991 case ISD::FP_TO_UINT
:
13992 return PerformVCVTCombine(N
, DCI
.DAG
, Subtarget
);
13994 return PerformVDIVCombine(N
, DCI
.DAG
, Subtarget
);
13995 case ISD::INTRINSIC_WO_CHAIN
: return PerformIntrinsicCombine(N
, DCI
.DAG
);
13999 return PerformShiftCombine(N
, DCI
, Subtarget
);
14000 case ISD::SIGN_EXTEND
:
14001 case ISD::ZERO_EXTEND
:
14002 case ISD::ANY_EXTEND
: return PerformExtendCombine(N
, DCI
.DAG
, Subtarget
);
14003 case ARMISD::CMOV
: return PerformCMOVCombine(N
, DCI
.DAG
);
14004 case ARMISD::BRCOND
: return PerformBRCONDCombine(N
, DCI
.DAG
);
14005 case ISD::LOAD
: return PerformLOADCombine(N
, DCI
);
14006 case ARMISD::VLD1DUP
:
14007 case ARMISD::VLD2DUP
:
14008 case ARMISD::VLD3DUP
:
14009 case ARMISD::VLD4DUP
:
14010 return PerformVLDCombine(N
, DCI
);
14011 case ARMISD::BUILD_VECTOR
:
14012 return PerformARMBUILD_VECTORCombine(N
, DCI
);
14013 case ARMISD::SMULWB
: {
14014 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
14015 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, 16);
14016 if (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
))
14020 case ARMISD::SMULWT
: {
14021 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
14022 APInt DemandedMask
= APInt::getHighBitsSet(BitWidth
, 16);
14023 if (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
))
14027 case ARMISD::SMLALBB
: {
14028 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
14029 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, 16);
14030 if ((SimplifyDemandedBits(N
->getOperand(0), DemandedMask
, DCI
)) ||
14031 (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
)))
14035 case ARMISD::SMLALBT
: {
14036 unsigned LowWidth
= N
->getOperand(0).getValueType().getSizeInBits();
14037 APInt LowMask
= APInt::getLowBitsSet(LowWidth
, 16);
14038 unsigned HighWidth
= N
->getOperand(1).getValueType().getSizeInBits();
14039 APInt HighMask
= APInt::getHighBitsSet(HighWidth
, 16);
14040 if ((SimplifyDemandedBits(N
->getOperand(0), LowMask
, DCI
)) ||
14041 (SimplifyDemandedBits(N
->getOperand(1), HighMask
, DCI
)))
14045 case ARMISD::SMLALTB
: {
14046 unsigned HighWidth
= N
->getOperand(0).getValueType().getSizeInBits();
14047 APInt HighMask
= APInt::getHighBitsSet(HighWidth
, 16);
14048 unsigned LowWidth
= N
->getOperand(1).getValueType().getSizeInBits();
14049 APInt LowMask
= APInt::getLowBitsSet(LowWidth
, 16);
14050 if ((SimplifyDemandedBits(N
->getOperand(0), HighMask
, DCI
)) ||
14051 (SimplifyDemandedBits(N
->getOperand(1), LowMask
, DCI
)))
14055 case ARMISD::SMLALTT
: {
14056 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
14057 APInt DemandedMask
= APInt::getHighBitsSet(BitWidth
, 16);
14058 if ((SimplifyDemandedBits(N
->getOperand(0), DemandedMask
, DCI
)) ||
14059 (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
)))
14063 case ISD::INTRINSIC_VOID
:
14064 case ISD::INTRINSIC_W_CHAIN
:
14065 switch (cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue()) {
14066 case Intrinsic::arm_neon_vld1
:
14067 case Intrinsic::arm_neon_vld1x2
:
14068 case Intrinsic::arm_neon_vld1x3
:
14069 case Intrinsic::arm_neon_vld1x4
:
14070 case Intrinsic::arm_neon_vld2
:
14071 case Intrinsic::arm_neon_vld3
:
14072 case Intrinsic::arm_neon_vld4
:
14073 case Intrinsic::arm_neon_vld2lane
:
14074 case Intrinsic::arm_neon_vld3lane
:
14075 case Intrinsic::arm_neon_vld4lane
:
14076 case Intrinsic::arm_neon_vld2dup
:
14077 case Intrinsic::arm_neon_vld3dup
:
14078 case Intrinsic::arm_neon_vld4dup
:
14079 case Intrinsic::arm_neon_vst1
:
14080 case Intrinsic::arm_neon_vst1x2
:
14081 case Intrinsic::arm_neon_vst1x3
:
14082 case Intrinsic::arm_neon_vst1x4
:
14083 case Intrinsic::arm_neon_vst2
:
14084 case Intrinsic::arm_neon_vst3
:
14085 case Intrinsic::arm_neon_vst4
:
14086 case Intrinsic::arm_neon_vst2lane
:
14087 case Intrinsic::arm_neon_vst3lane
:
14088 case Intrinsic::arm_neon_vst4lane
:
14089 return PerformVLDCombine(N
, DCI
);
14097 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc
,
14099 return (VT
== MVT::f32
) && (Opc
== ISD::LOAD
|| Opc
== ISD::STORE
);
14102 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT
, unsigned,
14103 unsigned Alignment
,
14104 MachineMemOperand::Flags
,
14105 bool *Fast
) const {
14106 // Depends what it gets converted into if the type is weird.
14107 if (!VT
.isSimple())
14110 // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
14111 bool AllowsUnaligned
= Subtarget
->allowsUnalignedMem();
14112 auto Ty
= VT
.getSimpleVT().SimpleTy
;
14114 if (Ty
== MVT::i8
|| Ty
== MVT::i16
|| Ty
== MVT::i32
) {
14115 // Unaligned access can use (for example) LRDB, LRDH, LDR
14116 if (AllowsUnaligned
) {
14118 *Fast
= Subtarget
->hasV7Ops();
14123 if (Ty
== MVT::f64
|| Ty
== MVT::v2f64
) {
14124 // For any little-endian targets with neon, we can support unaligned ld/st
14125 // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
14126 // A big-endian target may also explicitly support unaligned accesses
14127 if (Subtarget
->hasNEON() && (AllowsUnaligned
|| Subtarget
->isLittle())) {
14134 if (!Subtarget
->hasMVEIntegerOps())
14137 // These are for predicates
14138 if ((Ty
== MVT::v16i1
|| Ty
== MVT::v8i1
|| Ty
== MVT::v4i1
)) {
14144 // These are for truncated stores/narrowing loads. They are fine so long as
14145 // the alignment is at least the size of the item being loaded
14146 if ((Ty
== MVT::v4i8
|| Ty
== MVT::v8i8
|| Ty
== MVT::v4i16
) &&
14147 Alignment
>= VT
.getScalarSizeInBits() / 8) {
14153 // In little-endian MVE, the store instructions VSTRB.U8, VSTRH.U16 and
14154 // VSTRW.U32 all store the vector register in exactly the same format, and
14155 // differ only in the range of their immediate offset field and the required
14156 // alignment. So there is always a store that can be used, regardless of
14159 // For big endian, that is not the case. But can still emit a (VSTRB.U8;
14160 // VREV64.8) pair and get the same effect. This will likely be better than
14161 // aligning the vector through the stack.
14162 if (Ty
== MVT::v16i8
|| Ty
== MVT::v8i16
|| Ty
== MVT::v8f16
||
14163 Ty
== MVT::v4i32
|| Ty
== MVT::v4f32
|| Ty
== MVT::v2i64
||
14164 Ty
== MVT::v2f64
) {
14173 static bool memOpAlign(unsigned DstAlign
, unsigned SrcAlign
,
14174 unsigned AlignCheck
) {
14175 return ((SrcAlign
== 0 || SrcAlign
% AlignCheck
== 0) &&
14176 (DstAlign
== 0 || DstAlign
% AlignCheck
== 0));
14179 EVT
ARMTargetLowering::getOptimalMemOpType(
14180 uint64_t Size
, unsigned DstAlign
, unsigned SrcAlign
, bool IsMemset
,
14181 bool ZeroMemset
, bool MemcpyStrSrc
,
14182 const AttributeList
&FuncAttributes
) const {
14183 // See if we can use NEON instructions for this...
14184 if ((!IsMemset
|| ZeroMemset
) && Subtarget
->hasNEON() &&
14185 !FuncAttributes
.hasFnAttribute(Attribute::NoImplicitFloat
)) {
14188 (memOpAlign(SrcAlign
, DstAlign
, 16) ||
14189 (allowsMisalignedMemoryAccesses(MVT::v2f64
, 0, 1,
14190 MachineMemOperand::MONone
, &Fast
) &&
14193 } else if (Size
>= 8 &&
14194 (memOpAlign(SrcAlign
, DstAlign
, 8) ||
14195 (allowsMisalignedMemoryAccesses(
14196 MVT::f64
, 0, 1, MachineMemOperand::MONone
, &Fast
) &&
14202 // Let the target-independent logic figure it out.
14206 // 64-bit integers are split into their high and low parts and held in two
14207 // different registers, so the trunc is free since the low register can just
14209 bool ARMTargetLowering::isTruncateFree(Type
*SrcTy
, Type
*DstTy
) const {
14210 if (!SrcTy
->isIntegerTy() || !DstTy
->isIntegerTy())
14212 unsigned SrcBits
= SrcTy
->getPrimitiveSizeInBits();
14213 unsigned DestBits
= DstTy
->getPrimitiveSizeInBits();
14214 return (SrcBits
== 64 && DestBits
== 32);
14217 bool ARMTargetLowering::isTruncateFree(EVT SrcVT
, EVT DstVT
) const {
14218 if (SrcVT
.isVector() || DstVT
.isVector() || !SrcVT
.isInteger() ||
14219 !DstVT
.isInteger())
14221 unsigned SrcBits
= SrcVT
.getSizeInBits();
14222 unsigned DestBits
= DstVT
.getSizeInBits();
14223 return (SrcBits
== 64 && DestBits
== 32);
14226 bool ARMTargetLowering::isZExtFree(SDValue Val
, EVT VT2
) const {
14227 if (Val
.getOpcode() != ISD::LOAD
)
14230 EVT VT1
= Val
.getValueType();
14231 if (!VT1
.isSimple() || !VT1
.isInteger() ||
14232 !VT2
.isSimple() || !VT2
.isInteger())
14235 switch (VT1
.getSimpleVT().SimpleTy
) {
14240 // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
14247 bool ARMTargetLowering::isFNegFree(EVT VT
) const {
14248 if (!VT
.isSimple())
14251 // There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that
14252 // negate values directly (fneg is free). So, we don't want to let the DAG
14253 // combiner rewrite fneg into xors and some other instructions. For f16 and
14254 // FullFP16 argument passing, some bitcast nodes may be introduced,
14255 // triggering this DAG combine rewrite, so we are avoiding that with this.
14256 switch (VT
.getSimpleVT().SimpleTy
) {
14259 return Subtarget
->hasFullFP16();
14265 /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
14266 /// of the vector elements.
14267 static bool areExtractExts(Value
*Ext1
, Value
*Ext2
) {
14268 auto areExtDoubled
= [](Instruction
*Ext
) {
14269 return Ext
->getType()->getScalarSizeInBits() ==
14270 2 * Ext
->getOperand(0)->getType()->getScalarSizeInBits();
14273 if (!match(Ext1
, m_ZExtOrSExt(m_Value())) ||
14274 !match(Ext2
, m_ZExtOrSExt(m_Value())) ||
14275 !areExtDoubled(cast
<Instruction
>(Ext1
)) ||
14276 !areExtDoubled(cast
<Instruction
>(Ext2
)))
14282 /// Check if sinking \p I's operands to I's basic block is profitable, because
14283 /// the operands can be folded into a target instruction, e.g.
14284 /// sext/zext can be folded into vsubl.
14285 bool ARMTargetLowering::shouldSinkOperands(Instruction
*I
,
14286 SmallVectorImpl
<Use
*> &Ops
) const {
14287 if (!Subtarget
->hasNEON() || !I
->getType()->isVectorTy())
14290 switch (I
->getOpcode()) {
14291 case Instruction::Sub
:
14292 case Instruction::Add
: {
14293 if (!areExtractExts(I
->getOperand(0), I
->getOperand(1)))
14295 Ops
.push_back(&I
->getOperandUse(0));
14296 Ops
.push_back(&I
->getOperandUse(1));
14305 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal
) const {
14306 EVT VT
= ExtVal
.getValueType();
14308 if (!isTypeLegal(VT
))
14311 // Don't create a loadext if we can fold the extension into a wide/long
14313 // If there's more than one user instruction, the loadext is desirable no
14314 // matter what. There can be two uses by the same instruction.
14315 if (ExtVal
->use_empty() ||
14316 !ExtVal
->use_begin()->isOnlyUserOf(ExtVal
.getNode()))
14319 SDNode
*U
= *ExtVal
->use_begin();
14320 if ((U
->getOpcode() == ISD::ADD
|| U
->getOpcode() == ISD::SUB
||
14321 U
->getOpcode() == ISD::SHL
|| U
->getOpcode() == ARMISD::VSHLIMM
))
14327 bool ARMTargetLowering::allowTruncateForTailCall(Type
*Ty1
, Type
*Ty2
) const {
14328 if (!Ty1
->isIntegerTy() || !Ty2
->isIntegerTy())
14331 if (!isTypeLegal(EVT::getEVT(Ty1
)))
14334 assert(Ty1
->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
14336 // Assuming the caller doesn't have a zeroext or signext return parameter,
14337 // truncation all the way down to i1 is valid.
14341 int ARMTargetLowering::getScalingFactorCost(const DataLayout
&DL
,
14342 const AddrMode
&AM
, Type
*Ty
,
14343 unsigned AS
) const {
14344 if (isLegalAddressingMode(DL
, AM
, Ty
, AS
)) {
14345 if (Subtarget
->hasFPAO())
14346 return AM
.Scale
< 0 ? 1 : 0; // positive offsets execute faster
14352 static bool isLegalT1AddressImmediate(int64_t V
, EVT VT
) {
14356 unsigned Scale
= 1;
14357 switch (VT
.getSimpleVT().SimpleTy
) {
14367 // On thumb1 we load most things (i32, i64, floats, etc) with a LDR
14373 if ((V
& (Scale
- 1)) != 0)
14375 return isUInt
<5>(V
/ Scale
);
14378 static bool isLegalT2AddressImmediate(int64_t V
, EVT VT
,
14379 const ARMSubtarget
*Subtarget
) {
14380 if (!VT
.isInteger() && !VT
.isFloatingPoint())
14382 if (VT
.isVector() && Subtarget
->hasNEON())
14384 if (VT
.isVector() && VT
.isFloatingPoint() && Subtarget
->hasMVEIntegerOps() &&
14385 !Subtarget
->hasMVEFloatOps())
14388 bool IsNeg
= false;
14394 unsigned NumBytes
= std::max(VT
.getSizeInBits() / 8, 1U);
14396 // MVE: size * imm7
14397 if (VT
.isVector() && Subtarget
->hasMVEIntegerOps()) {
14398 switch (VT
.getSimpleVT().getVectorElementType().SimpleTy
) {
14401 return isShiftedUInt
<7,2>(V
);
14404 return isShiftedUInt
<7,1>(V
);
14406 return isUInt
<7>(V
);
14412 // half VLDR: 2 * imm8
14413 if (VT
.isFloatingPoint() && NumBytes
== 2 && Subtarget
->hasFPRegs16())
14414 return isShiftedUInt
<8, 1>(V
);
14415 // VLDR and LDRD: 4 * imm8
14416 if ((VT
.isFloatingPoint() && Subtarget
->hasVFP2Base()) || NumBytes
== 8)
14417 return isShiftedUInt
<8, 2>(V
);
14419 if (NumBytes
== 1 || NumBytes
== 2 || NumBytes
== 4) {
14420 // + imm12 or - imm8
14422 return isUInt
<8>(V
);
14423 return isUInt
<12>(V
);
14429 /// isLegalAddressImmediate - Return true if the integer value can be used
14430 /// as the offset of the target addressing mode for load / store of the
14432 static bool isLegalAddressImmediate(int64_t V
, EVT VT
,
14433 const ARMSubtarget
*Subtarget
) {
14437 if (!VT
.isSimple())
14440 if (Subtarget
->isThumb1Only())
14441 return isLegalT1AddressImmediate(V
, VT
);
14442 else if (Subtarget
->isThumb2())
14443 return isLegalT2AddressImmediate(V
, VT
, Subtarget
);
14448 switch (VT
.getSimpleVT().SimpleTy
) {
14449 default: return false;
14454 return isUInt
<12>(V
);
14457 return isUInt
<8>(V
);
14460 if (!Subtarget
->hasVFP2Base()) // FIXME: NEON?
14462 return isShiftedUInt
<8, 2>(V
);
14466 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode
&AM
,
14468 int Scale
= AM
.Scale
;
14472 switch (VT
.getSimpleVT().SimpleTy
) {
14473 default: return false;
14481 Scale
= Scale
& ~1;
14482 return Scale
== 2 || Scale
== 4 || Scale
== 8;
14484 // FIXME: What are we trying to model here? ldrd doesn't have an r + r
14485 // version in Thumb mode.
14489 // r * 2 (this can be lowered to r + r).
14490 if (!AM
.HasBaseReg
&& Scale
== 2)
14494 // Note, we allow "void" uses (basically, uses that aren't loads or
14495 // stores), because arm allows folding a scale into many arithmetic
14496 // operations. This should be made more precise and revisited later.
14498 // Allow r << imm, but the imm has to be a multiple of two.
14499 if (Scale
& 1) return false;
14500 return isPowerOf2_32(Scale
);
14504 bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode
&AM
,
14506 const int Scale
= AM
.Scale
;
14508 // Negative scales are not supported in Thumb1.
14512 // Thumb1 addressing modes do not support register scaling excepting the
14513 // following cases:
14514 // 1. Scale == 1 means no scaling.
14515 // 2. Scale == 2 this can be lowered to r + r if there is no base register.
14516 return (Scale
== 1) || (!AM
.HasBaseReg
&& Scale
== 2);
14519 /// isLegalAddressingMode - Return true if the addressing mode represented
14520 /// by AM is legal for this target, for a load/store of the specified type.
14521 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout
&DL
,
14522 const AddrMode
&AM
, Type
*Ty
,
14523 unsigned AS
, Instruction
*I
) const {
14524 EVT VT
= getValueType(DL
, Ty
, true);
14525 if (!isLegalAddressImmediate(AM
.BaseOffs
, VT
, Subtarget
))
14528 // Can never fold addr of global into load/store.
14532 switch (AM
.Scale
) {
14533 case 0: // no scale reg, must be "r+i" or "r", or "i".
14536 // ARM doesn't support any R+R*scale+imm addr modes.
14540 if (!VT
.isSimple())
14543 if (Subtarget
->isThumb1Only())
14544 return isLegalT1ScaledAddressingMode(AM
, VT
);
14546 if (Subtarget
->isThumb2())
14547 return isLegalT2ScaledAddressingMode(AM
, VT
);
14549 int Scale
= AM
.Scale
;
14550 switch (VT
.getSimpleVT().SimpleTy
) {
14551 default: return false;
14555 if (Scale
< 0) Scale
= -Scale
;
14559 return isPowerOf2_32(Scale
& ~1);
14563 if (Scale
== 1 || (AM
.HasBaseReg
&& Scale
== -1))
14565 // r * 2 (this can be lowered to r + r).
14566 if (!AM
.HasBaseReg
&& Scale
== 2)
14571 // Note, we allow "void" uses (basically, uses that aren't loads or
14572 // stores), because arm allows folding a scale into many arithmetic
14573 // operations. This should be made more precise and revisited later.
14575 // Allow r << imm, but the imm has to be a multiple of two.
14576 if (Scale
& 1) return false;
14577 return isPowerOf2_32(Scale
);
14583 /// isLegalICmpImmediate - Return true if the specified immediate is legal
14584 /// icmp immediate, that is the target has icmp instructions which can compare
14585 /// a register against the immediate without having to materialize the
14586 /// immediate into a register.
14587 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm
) const {
14588 // Thumb2 and ARM modes can use cmn for negative immediates.
14589 if (!Subtarget
->isThumb())
14590 return ARM_AM::getSOImmVal((uint32_t)Imm
) != -1 ||
14591 ARM_AM::getSOImmVal(-(uint32_t)Imm
) != -1;
14592 if (Subtarget
->isThumb2())
14593 return ARM_AM::getT2SOImmVal((uint32_t)Imm
) != -1 ||
14594 ARM_AM::getT2SOImmVal(-(uint32_t)Imm
) != -1;
14595 // Thumb1 doesn't have cmn, and only 8-bit immediates.
14596 return Imm
>= 0 && Imm
<= 255;
14599 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
14600 /// *or sub* immediate, that is the target has add or sub instructions which can
14601 /// add a register with the immediate without having to materialize the
14602 /// immediate into a register.
14603 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm
) const {
14604 // Same encoding for add/sub, just flip the sign.
14605 int64_t AbsImm
= std::abs(Imm
);
14606 if (!Subtarget
->isThumb())
14607 return ARM_AM::getSOImmVal(AbsImm
) != -1;
14608 if (Subtarget
->isThumb2())
14609 return ARM_AM::getT2SOImmVal(AbsImm
) != -1;
14610 // Thumb1 only has 8-bit unsigned immediate.
14611 return AbsImm
>= 0 && AbsImm
<= 255;
14614 static bool getARMIndexedAddressParts(SDNode
*Ptr
, EVT VT
,
14615 bool isSEXTLoad
, SDValue
&Base
,
14616 SDValue
&Offset
, bool &isInc
,
14617 SelectionDAG
&DAG
) {
14618 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
14621 if (VT
== MVT::i16
|| ((VT
== MVT::i8
|| VT
== MVT::i1
) && isSEXTLoad
)) {
14622 // AddressingMode 3
14623 Base
= Ptr
->getOperand(0);
14624 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
14625 int RHSC
= (int)RHS
->getZExtValue();
14626 if (RHSC
< 0 && RHSC
> -256) {
14627 assert(Ptr
->getOpcode() == ISD::ADD
);
14629 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14633 isInc
= (Ptr
->getOpcode() == ISD::ADD
);
14634 Offset
= Ptr
->getOperand(1);
14636 } else if (VT
== MVT::i32
|| VT
== MVT::i8
|| VT
== MVT::i1
) {
14637 // AddressingMode 2
14638 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
14639 int RHSC
= (int)RHS
->getZExtValue();
14640 if (RHSC
< 0 && RHSC
> -0x1000) {
14641 assert(Ptr
->getOpcode() == ISD::ADD
);
14643 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14644 Base
= Ptr
->getOperand(0);
14649 if (Ptr
->getOpcode() == ISD::ADD
) {
14651 ARM_AM::ShiftOpc ShOpcVal
=
14652 ARM_AM::getShiftOpcForNode(Ptr
->getOperand(0).getOpcode());
14653 if (ShOpcVal
!= ARM_AM::no_shift
) {
14654 Base
= Ptr
->getOperand(1);
14655 Offset
= Ptr
->getOperand(0);
14657 Base
= Ptr
->getOperand(0);
14658 Offset
= Ptr
->getOperand(1);
14663 isInc
= (Ptr
->getOpcode() == ISD::ADD
);
14664 Base
= Ptr
->getOperand(0);
14665 Offset
= Ptr
->getOperand(1);
14669 // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
14673 static bool getT2IndexedAddressParts(SDNode
*Ptr
, EVT VT
,
14674 bool isSEXTLoad
, SDValue
&Base
,
14675 SDValue
&Offset
, bool &isInc
,
14676 SelectionDAG
&DAG
) {
14677 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
14680 Base
= Ptr
->getOperand(0);
14681 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
14682 int RHSC
= (int)RHS
->getZExtValue();
14683 if (RHSC
< 0 && RHSC
> -0x100) { // 8 bits.
14684 assert(Ptr
->getOpcode() == ISD::ADD
);
14686 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14688 } else if (RHSC
> 0 && RHSC
< 0x100) { // 8 bit, no zero.
14689 isInc
= Ptr
->getOpcode() == ISD::ADD
;
14690 Offset
= DAG
.getConstant(RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14698 static bool getMVEIndexedAddressParts(SDNode
*Ptr
, EVT VT
, unsigned Align
,
14699 bool isSEXTLoad
, bool isLE
, SDValue
&Base
,
14700 SDValue
&Offset
, bool &isInc
,
14701 SelectionDAG
&DAG
) {
14702 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
14704 if (!isa
<ConstantSDNode
>(Ptr
->getOperand(1)))
14707 ConstantSDNode
*RHS
= cast
<ConstantSDNode
>(Ptr
->getOperand(1));
14708 int RHSC
= (int)RHS
->getZExtValue();
14710 auto IsInRange
= [&](int RHSC
, int Limit
, int Scale
) {
14711 if (RHSC
< 0 && RHSC
> -Limit
* Scale
&& RHSC
% Scale
== 0) {
14712 assert(Ptr
->getOpcode() == ISD::ADD
);
14714 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14716 } else if (RHSC
> 0 && RHSC
< Limit
* Scale
&& RHSC
% Scale
== 0) {
14717 isInc
= Ptr
->getOpcode() == ISD::ADD
;
14718 Offset
= DAG
.getConstant(RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14724 // Try to find a matching instruction based on s/zext, Alignment, Offset and
14726 Base
= Ptr
->getOperand(0);
14727 if (VT
== MVT::v4i16
) {
14728 if (Align
>= 2 && IsInRange(RHSC
, 0x80, 2))
14730 } else if (VT
== MVT::v4i8
|| VT
== MVT::v8i8
) {
14731 if (IsInRange(RHSC
, 0x80, 1))
14733 } else if (Align
>= 4 && (isLE
|| VT
== MVT::v4i32
|| VT
== MVT::v4f32
) &&
14734 IsInRange(RHSC
, 0x80, 4))
14736 else if (Align
>= 2 && (isLE
|| VT
== MVT::v8i16
|| VT
== MVT::v8f16
) &&
14737 IsInRange(RHSC
, 0x80, 2))
14739 else if ((isLE
|| VT
== MVT::v16i8
) && IsInRange(RHSC
, 0x80, 1))
14744 /// getPreIndexedAddressParts - returns true by value, base pointer and
14745 /// offset pointer and addressing mode by reference if the node's address
14746 /// can be legally represented as pre-indexed load / store address.
14748 ARMTargetLowering::getPreIndexedAddressParts(SDNode
*N
, SDValue
&Base
,
14750 ISD::MemIndexedMode
&AM
,
14751 SelectionDAG
&DAG
) const {
14752 if (Subtarget
->isThumb1Only())
14758 bool isSEXTLoad
= false;
14759 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
14760 Ptr
= LD
->getBasePtr();
14761 VT
= LD
->getMemoryVT();
14762 Align
= LD
->getAlignment();
14763 isSEXTLoad
= LD
->getExtensionType() == ISD::SEXTLOAD
;
14764 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
14765 Ptr
= ST
->getBasePtr();
14766 VT
= ST
->getMemoryVT();
14767 Align
= ST
->getAlignment();
14772 bool isLegal
= false;
14774 isLegal
= Subtarget
->hasMVEIntegerOps() &&
14775 getMVEIndexedAddressParts(Ptr
.getNode(), VT
, Align
, isSEXTLoad
,
14776 Subtarget
->isLittle(), Base
, Offset
,
14779 if (Subtarget
->isThumb2())
14780 isLegal
= getT2IndexedAddressParts(Ptr
.getNode(), VT
, isSEXTLoad
, Base
,
14781 Offset
, isInc
, DAG
);
14783 isLegal
= getARMIndexedAddressParts(Ptr
.getNode(), VT
, isSEXTLoad
, Base
,
14784 Offset
, isInc
, DAG
);
14789 AM
= isInc
? ISD::PRE_INC
: ISD::PRE_DEC
;
14793 /// getPostIndexedAddressParts - returns true by value, base pointer and
14794 /// offset pointer and addressing mode by reference if this node can be
14795 /// combined with a load / store to form a post-indexed load / store.
14796 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode
*N
, SDNode
*Op
,
14799 ISD::MemIndexedMode
&AM
,
14800 SelectionDAG
&DAG
) const {
14804 bool isSEXTLoad
= false, isNonExt
;
14805 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
14806 VT
= LD
->getMemoryVT();
14807 Ptr
= LD
->getBasePtr();
14808 Align
= LD
->getAlignment();
14809 isSEXTLoad
= LD
->getExtensionType() == ISD::SEXTLOAD
;
14810 isNonExt
= LD
->getExtensionType() == ISD::NON_EXTLOAD
;
14811 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
14812 VT
= ST
->getMemoryVT();
14813 Ptr
= ST
->getBasePtr();
14814 Align
= ST
->getAlignment();
14815 isNonExt
= !ST
->isTruncatingStore();
14819 if (Subtarget
->isThumb1Only()) {
14820 // Thumb-1 can do a limited post-inc load or store as an updating LDM. It
14821 // must be non-extending/truncating, i32, with an offset of 4.
14822 assert(Op
->getValueType(0) == MVT::i32
&& "Non-i32 post-inc op?!");
14823 if (Op
->getOpcode() != ISD::ADD
|| !isNonExt
)
14825 auto *RHS
= dyn_cast
<ConstantSDNode
>(Op
->getOperand(1));
14826 if (!RHS
|| RHS
->getZExtValue() != 4)
14829 Offset
= Op
->getOperand(1);
14830 Base
= Op
->getOperand(0);
14831 AM
= ISD::POST_INC
;
14836 bool isLegal
= false;
14838 isLegal
= Subtarget
->hasMVEIntegerOps() &&
14839 getMVEIndexedAddressParts(Op
, VT
, Align
, isSEXTLoad
,
14840 Subtarget
->isLittle(), Base
, Offset
,
14843 if (Subtarget
->isThumb2())
14844 isLegal
= getT2IndexedAddressParts(Op
, VT
, isSEXTLoad
, Base
, Offset
,
14847 isLegal
= getARMIndexedAddressParts(Op
, VT
, isSEXTLoad
, Base
, Offset
,
14854 // Swap base ptr and offset to catch more post-index load / store when
14855 // it's legal. In Thumb2 mode, offset must be an immediate.
14856 if (Ptr
== Offset
&& Op
->getOpcode() == ISD::ADD
&&
14857 !Subtarget
->isThumb2())
14858 std::swap(Base
, Offset
);
14860 // Post-indexed load / store update the base pointer.
14865 AM
= isInc
? ISD::POST_INC
: ISD::POST_DEC
;
14869 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op
,
14871 const APInt
&DemandedElts
,
14872 const SelectionDAG
&DAG
,
14873 unsigned Depth
) const {
14874 unsigned BitWidth
= Known
.getBitWidth();
14876 switch (Op
.getOpcode()) {
14882 // Special cases when we convert a carry to a boolean.
14883 if (Op
.getResNo() == 0) {
14884 SDValue LHS
= Op
.getOperand(0);
14885 SDValue RHS
= Op
.getOperand(1);
14886 // (ADDE 0, 0, C) will give us a single bit.
14887 if (Op
->getOpcode() == ARMISD::ADDE
&& isNullConstant(LHS
) &&
14888 isNullConstant(RHS
)) {
14889 Known
.Zero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- 1);
14894 case ARMISD::CMOV
: {
14895 // Bits are known zero/one if known on the LHS and RHS.
14896 Known
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+1);
14897 if (Known
.isUnknown())
14900 KnownBits KnownRHS
= DAG
.computeKnownBits(Op
.getOperand(1), Depth
+1);
14901 Known
.Zero
&= KnownRHS
.Zero
;
14902 Known
.One
&= KnownRHS
.One
;
14905 case ISD::INTRINSIC_W_CHAIN
: {
14906 ConstantSDNode
*CN
= cast
<ConstantSDNode
>(Op
->getOperand(1));
14907 Intrinsic::ID IntID
= static_cast<Intrinsic::ID
>(CN
->getZExtValue());
14910 case Intrinsic::arm_ldaex
:
14911 case Intrinsic::arm_ldrex
: {
14912 EVT VT
= cast
<MemIntrinsicSDNode
>(Op
)->getMemoryVT();
14913 unsigned MemBits
= VT
.getScalarSizeInBits();
14914 Known
.Zero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- MemBits
);
14919 case ARMISD::BFI
: {
14920 // Conservatively, we can recurse down the first operand
14921 // and just mask out all affected bits.
14922 Known
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+ 1);
14924 // The operand to BFI is already a mask suitable for removing the bits it
14926 ConstantSDNode
*CI
= cast
<ConstantSDNode
>(Op
.getOperand(2));
14927 const APInt
&Mask
= CI
->getAPIntValue();
14928 Known
.Zero
&= Mask
;
14932 case ARMISD::VGETLANEs
:
14933 case ARMISD::VGETLANEu
: {
14934 const SDValue
&SrcSV
= Op
.getOperand(0);
14935 EVT VecVT
= SrcSV
.getValueType();
14936 assert(VecVT
.isVector() && "VGETLANE expected a vector type");
14937 const unsigned NumSrcElts
= VecVT
.getVectorNumElements();
14938 ConstantSDNode
*Pos
= cast
<ConstantSDNode
>(Op
.getOperand(1).getNode());
14939 assert(Pos
->getAPIntValue().ult(NumSrcElts
) &&
14940 "VGETLANE index out of bounds");
14941 unsigned Idx
= Pos
->getZExtValue();
14942 APInt DemandedElt
= APInt::getOneBitSet(NumSrcElts
, Idx
);
14943 Known
= DAG
.computeKnownBits(SrcSV
, DemandedElt
, Depth
+ 1);
14945 EVT VT
= Op
.getValueType();
14946 const unsigned DstSz
= VT
.getScalarSizeInBits();
14947 const unsigned SrcSz
= VecVT
.getVectorElementType().getSizeInBits();
14949 assert(SrcSz
== Known
.getBitWidth());
14950 assert(DstSz
> SrcSz
);
14951 if (Op
.getOpcode() == ARMISD::VGETLANEs
)
14952 Known
= Known
.sext(DstSz
);
14954 Known
= Known
.zext(DstSz
, true /* extended bits are known zero */);
14956 assert(DstSz
== Known
.getBitWidth());
14963 ARMTargetLowering::targetShrinkDemandedConstant(SDValue Op
,
14964 const APInt
&DemandedAPInt
,
14965 TargetLoweringOpt
&TLO
) const {
14966 // Delay optimization, so we don't have to deal with illegal types, or block
14971 // Only optimize AND for now.
14972 if (Op
.getOpcode() != ISD::AND
)
14975 EVT VT
= Op
.getValueType();
14981 assert(VT
== MVT::i32
&& "Unexpected integer type");
14983 // Make sure the RHS really is a constant.
14984 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
14988 unsigned Mask
= C
->getZExtValue();
14990 unsigned Demanded
= DemandedAPInt
.getZExtValue();
14991 unsigned ShrunkMask
= Mask
& Demanded
;
14992 unsigned ExpandedMask
= Mask
| ~Demanded
;
14994 // If the mask is all zeros, let the target-independent code replace the
14995 // result with zero.
14996 if (ShrunkMask
== 0)
14999 // If the mask is all ones, erase the AND. (Currently, the target-independent
15000 // code won't do this, so we have to do it explicitly to avoid an infinite
15001 // loop in obscure cases.)
15002 if (ExpandedMask
== ~0U)
15003 return TLO
.CombineTo(Op
, Op
.getOperand(0));
15005 auto IsLegalMask
= [ShrunkMask
, ExpandedMask
](unsigned Mask
) -> bool {
15006 return (ShrunkMask
& Mask
) == ShrunkMask
&& (~ExpandedMask
& Mask
) == 0;
15008 auto UseMask
= [Mask
, Op
, VT
, &TLO
](unsigned NewMask
) -> bool {
15009 if (NewMask
== Mask
)
15012 SDValue NewC
= TLO
.DAG
.getConstant(NewMask
, DL
, VT
);
15013 SDValue NewOp
= TLO
.DAG
.getNode(ISD::AND
, DL
, VT
, Op
.getOperand(0), NewC
);
15014 return TLO
.CombineTo(Op
, NewOp
);
15017 // Prefer uxtb mask.
15018 if (IsLegalMask(0xFF))
15019 return UseMask(0xFF);
15021 // Prefer uxth mask.
15022 if (IsLegalMask(0xFFFF))
15023 return UseMask(0xFFFF);
15025 // [1, 255] is Thumb1 movs+ands, legal immediate for ARM/Thumb2.
15026 // FIXME: Prefer a contiguous sequence of bits for other optimizations.
15027 if (ShrunkMask
< 256)
15028 return UseMask(ShrunkMask
);
15030 // [-256, -2] is Thumb1 movs+bics, legal immediate for ARM/Thumb2.
15031 // FIXME: Prefer a contiguous sequence of bits for other optimizations.
15032 if ((int)ExpandedMask
<= -2 && (int)ExpandedMask
>= -256)
15033 return UseMask(ExpandedMask
);
15035 // Potential improvements:
15037 // We could try to recognize lsls+lsrs or lsrs+lsls pairs here.
15038 // We could try to prefer Thumb1 immediates which can be lowered to a
15039 // two-instruction sequence.
15040 // We could try to recognize more legal ARM/Thumb2 immediates here.
15046 //===----------------------------------------------------------------------===//
15047 // ARM Inline Assembly Support
15048 //===----------------------------------------------------------------------===//
15050 bool ARMTargetLowering::ExpandInlineAsm(CallInst
*CI
) const {
15051 // Looking for "rev" which is V6+.
15052 if (!Subtarget
->hasV6Ops())
15055 InlineAsm
*IA
= cast
<InlineAsm
>(CI
->getCalledValue());
15056 std::string AsmStr
= IA
->getAsmString();
15057 SmallVector
<StringRef
, 4> AsmPieces
;
15058 SplitString(AsmStr
, AsmPieces
, ";\n");
15060 switch (AsmPieces
.size()) {
15061 default: return false;
15063 AsmStr
= AsmPieces
[0];
15065 SplitString(AsmStr
, AsmPieces
, " \t,");
15068 if (AsmPieces
.size() == 3 &&
15069 AsmPieces
[0] == "rev" && AsmPieces
[1] == "$0" && AsmPieces
[2] == "$1" &&
15070 IA
->getConstraintString().compare(0, 4, "=l,l") == 0) {
15071 IntegerType
*Ty
= dyn_cast
<IntegerType
>(CI
->getType());
15072 if (Ty
&& Ty
->getBitWidth() == 32)
15073 return IntrinsicLowering::LowerToByteSwap(CI
);
15081 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT
) const {
15082 // At this point, we have to lower this constraint to something else, so we
15083 // lower it to an "r" or "w". However, by doing this we will force the result
15084 // to be in register, while the X constraint is much more permissive.
15086 // Although we are correct (we are free to emit anything, without
15087 // constraints), we might break use cases that would expect us to be more
15088 // efficient and emit something else.
15089 if (!Subtarget
->hasVFP2Base())
15091 if (ConstraintVT
.isFloatingPoint())
15093 if (ConstraintVT
.isVector() && Subtarget
->hasNEON() &&
15094 (ConstraintVT
.getSizeInBits() == 64 ||
15095 ConstraintVT
.getSizeInBits() == 128))
15101 /// getConstraintType - Given a constraint letter, return the type of
15102 /// constraint it is for this target.
15103 ARMTargetLowering::ConstraintType
15104 ARMTargetLowering::getConstraintType(StringRef Constraint
) const {
15105 unsigned S
= Constraint
.size();
15107 switch (Constraint
[0]) {
15109 case 'l': return C_RegisterClass
;
15110 case 'w': return C_RegisterClass
;
15111 case 'h': return C_RegisterClass
;
15112 case 'x': return C_RegisterClass
;
15113 case 't': return C_RegisterClass
;
15114 case 'j': return C_Immediate
; // Constant for movw.
15115 // An address with a single base register. Due to the way we
15116 // currently handle addresses it is the same as an 'r' memory constraint.
15117 case 'Q': return C_Memory
;
15119 } else if (S
== 2) {
15120 switch (Constraint
[0]) {
15122 case 'T': return C_RegisterClass
;
15123 // All 'U+' constraints are addresses.
15124 case 'U': return C_Memory
;
15127 return TargetLowering::getConstraintType(Constraint
);
15130 /// Examine constraint type and operand type and determine a weight value.
15131 /// This object must already have been set up with the operand type
15132 /// and the current alternative constraint selected.
15133 TargetLowering::ConstraintWeight
15134 ARMTargetLowering::getSingleConstraintMatchWeight(
15135 AsmOperandInfo
&info
, const char *constraint
) const {
15136 ConstraintWeight weight
= CW_Invalid
;
15137 Value
*CallOperandVal
= info
.CallOperandVal
;
15138 // If we don't have a value, we can't do a match,
15139 // but allow it at the lowest weight.
15140 if (!CallOperandVal
)
15142 Type
*type
= CallOperandVal
->getType();
15143 // Look at the constraint type.
15144 switch (*constraint
) {
15146 weight
= TargetLowering::getSingleConstraintMatchWeight(info
, constraint
);
15149 if (type
->isIntegerTy()) {
15150 if (Subtarget
->isThumb())
15151 weight
= CW_SpecificReg
;
15153 weight
= CW_Register
;
15157 if (type
->isFloatingPointTy())
15158 weight
= CW_Register
;
15164 using RCPair
= std::pair
<unsigned, const TargetRegisterClass
*>;
15166 RCPair
ARMTargetLowering::getRegForInlineAsmConstraint(
15167 const TargetRegisterInfo
*TRI
, StringRef Constraint
, MVT VT
) const {
15168 switch (Constraint
.size()) {
15170 // GCC ARM Constraint Letters
15171 switch (Constraint
[0]) {
15172 case 'l': // Low regs or general regs.
15173 if (Subtarget
->isThumb())
15174 return RCPair(0U, &ARM::tGPRRegClass
);
15175 return RCPair(0U, &ARM::GPRRegClass
);
15176 case 'h': // High regs or no regs.
15177 if (Subtarget
->isThumb())
15178 return RCPair(0U, &ARM::hGPRRegClass
);
15181 if (Subtarget
->isThumb1Only())
15182 return RCPair(0U, &ARM::tGPRRegClass
);
15183 return RCPair(0U, &ARM::GPRRegClass
);
15185 if (VT
== MVT::Other
)
15187 if (VT
== MVT::f32
)
15188 return RCPair(0U, &ARM::SPRRegClass
);
15189 if (VT
.getSizeInBits() == 64)
15190 return RCPair(0U, &ARM::DPRRegClass
);
15191 if (VT
.getSizeInBits() == 128)
15192 return RCPair(0U, &ARM::QPRRegClass
);
15195 if (VT
== MVT::Other
)
15197 if (VT
== MVT::f32
)
15198 return RCPair(0U, &ARM::SPR_8RegClass
);
15199 if (VT
.getSizeInBits() == 64)
15200 return RCPair(0U, &ARM::DPR_8RegClass
);
15201 if (VT
.getSizeInBits() == 128)
15202 return RCPair(0U, &ARM::QPR_8RegClass
);
15205 if (VT
== MVT::Other
)
15207 if (VT
== MVT::f32
|| VT
== MVT::i32
)
15208 return RCPair(0U, &ARM::SPRRegClass
);
15209 if (VT
.getSizeInBits() == 64)
15210 return RCPair(0U, &ARM::DPR_VFP2RegClass
);
15211 if (VT
.getSizeInBits() == 128)
15212 return RCPair(0U, &ARM::QPR_VFP2RegClass
);
15218 if (Constraint
[0] == 'T') {
15219 switch (Constraint
[1]) {
15223 return RCPair(0U, &ARM::tGPREvenRegClass
);
15225 return RCPair(0U, &ARM::tGPROddRegClass
);
15234 if (StringRef("{cc}").equals_lower(Constraint
))
15235 return std::make_pair(unsigned(ARM::CPSR
), &ARM::CCRRegClass
);
15237 return TargetLowering::getRegForInlineAsmConstraint(TRI
, Constraint
, VT
);
15240 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15241 /// vector. If it is invalid, don't add anything to Ops.
15242 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
15243 std::string
&Constraint
,
15244 std::vector
<SDValue
>&Ops
,
15245 SelectionDAG
&DAG
) const {
15248 // Currently only support length 1 constraints.
15249 if (Constraint
.length() != 1) return;
15251 char ConstraintLetter
= Constraint
[0];
15252 switch (ConstraintLetter
) {
15255 case 'I': case 'J': case 'K': case 'L':
15256 case 'M': case 'N': case 'O':
15257 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
);
15261 int64_t CVal64
= C
->getSExtValue();
15262 int CVal
= (int) CVal64
;
15263 // None of these constraints allow values larger than 32 bits. Check
15264 // that the value fits in an int.
15265 if (CVal
!= CVal64
)
15268 switch (ConstraintLetter
) {
15270 // Constant suitable for movw, must be between 0 and
15272 if (Subtarget
->hasV6T2Ops())
15273 if (CVal
>= 0 && CVal
<= 65535)
15277 if (Subtarget
->isThumb1Only()) {
15278 // This must be a constant between 0 and 255, for ADD
15280 if (CVal
>= 0 && CVal
<= 255)
15282 } else if (Subtarget
->isThumb2()) {
15283 // A constant that can be used as an immediate value in a
15284 // data-processing instruction.
15285 if (ARM_AM::getT2SOImmVal(CVal
) != -1)
15288 // A constant that can be used as an immediate value in a
15289 // data-processing instruction.
15290 if (ARM_AM::getSOImmVal(CVal
) != -1)
15296 if (Subtarget
->isThumb1Only()) {
15297 // This must be a constant between -255 and -1, for negated ADD
15298 // immediates. This can be used in GCC with an "n" modifier that
15299 // prints the negated value, for use with SUB instructions. It is
15300 // not useful otherwise but is implemented for compatibility.
15301 if (CVal
>= -255 && CVal
<= -1)
15304 // This must be a constant between -4095 and 4095. It is not clear
15305 // what this constraint is intended for. Implemented for
15306 // compatibility with GCC.
15307 if (CVal
>= -4095 && CVal
<= 4095)
15313 if (Subtarget
->isThumb1Only()) {
15314 // A 32-bit value where only one byte has a nonzero value. Exclude
15315 // zero to match GCC. This constraint is used by GCC internally for
15316 // constants that can be loaded with a move/shift combination.
15317 // It is not useful otherwise but is implemented for compatibility.
15318 if (CVal
!= 0 && ARM_AM::isThumbImmShiftedVal(CVal
))
15320 } else if (Subtarget
->isThumb2()) {
15321 // A constant whose bitwise inverse can be used as an immediate
15322 // value in a data-processing instruction. This can be used in GCC
15323 // with a "B" modifier that prints the inverted value, for use with
15324 // BIC and MVN instructions. It is not useful otherwise but is
15325 // implemented for compatibility.
15326 if (ARM_AM::getT2SOImmVal(~CVal
) != -1)
15329 // A constant whose bitwise inverse can be used as an immediate
15330 // value in a data-processing instruction. This can be used in GCC
15331 // with a "B" modifier that prints the inverted value, for use with
15332 // BIC and MVN instructions. It is not useful otherwise but is
15333 // implemented for compatibility.
15334 if (ARM_AM::getSOImmVal(~CVal
) != -1)
15340 if (Subtarget
->isThumb1Only()) {
15341 // This must be a constant between -7 and 7,
15342 // for 3-operand ADD/SUB immediate instructions.
15343 if (CVal
>= -7 && CVal
< 7)
15345 } else if (Subtarget
->isThumb2()) {
15346 // A constant whose negation can be used as an immediate value in a
15347 // data-processing instruction. This can be used in GCC with an "n"
15348 // modifier that prints the negated value, for use with SUB
15349 // instructions. It is not useful otherwise but is implemented for
15351 if (ARM_AM::getT2SOImmVal(-CVal
) != -1)
15354 // A constant whose negation can be used as an immediate value in a
15355 // data-processing instruction. This can be used in GCC with an "n"
15356 // modifier that prints the negated value, for use with SUB
15357 // instructions. It is not useful otherwise but is implemented for
15359 if (ARM_AM::getSOImmVal(-CVal
) != -1)
15365 if (Subtarget
->isThumb1Only()) {
15366 // This must be a multiple of 4 between 0 and 1020, for
15367 // ADD sp + immediate.
15368 if ((CVal
>= 0 && CVal
<= 1020) && ((CVal
& 3) == 0))
15371 // A power of two or a constant between 0 and 32. This is used in
15372 // GCC for the shift amount on shifted register operands, but it is
15373 // useful in general for any shift amounts.
15374 if ((CVal
>= 0 && CVal
<= 32) || ((CVal
& (CVal
- 1)) == 0))
15380 if (Subtarget
->isThumb()) { // FIXME thumb2
15381 // This must be a constant between 0 and 31, for shift amounts.
15382 if (CVal
>= 0 && CVal
<= 31)
15388 if (Subtarget
->isThumb()) { // FIXME thumb2
15389 // This must be a multiple of 4 between -508 and 508, for
15390 // ADD/SUB sp = sp + immediate.
15391 if ((CVal
>= -508 && CVal
<= 508) && ((CVal
& 3) == 0))
15396 Result
= DAG
.getTargetConstant(CVal
, SDLoc(Op
), Op
.getValueType());
15400 if (Result
.getNode()) {
15401 Ops
.push_back(Result
);
15404 return TargetLowering::LowerAsmOperandForConstraint(Op
, Constraint
, Ops
, DAG
);
15407 static RTLIB::Libcall
getDivRemLibcall(
15408 const SDNode
*N
, MVT::SimpleValueType SVT
) {
15409 assert((N
->getOpcode() == ISD::SDIVREM
|| N
->getOpcode() == ISD::UDIVREM
||
15410 N
->getOpcode() == ISD::SREM
|| N
->getOpcode() == ISD::UREM
) &&
15411 "Unhandled Opcode in getDivRemLibcall");
15412 bool isSigned
= N
->getOpcode() == ISD::SDIVREM
||
15413 N
->getOpcode() == ISD::SREM
;
15416 default: llvm_unreachable("Unexpected request for libcall!");
15417 case MVT::i8
: LC
= isSigned
? RTLIB::SDIVREM_I8
: RTLIB::UDIVREM_I8
; break;
15418 case MVT::i16
: LC
= isSigned
? RTLIB::SDIVREM_I16
: RTLIB::UDIVREM_I16
; break;
15419 case MVT::i32
: LC
= isSigned
? RTLIB::SDIVREM_I32
: RTLIB::UDIVREM_I32
; break;
15420 case MVT::i64
: LC
= isSigned
? RTLIB::SDIVREM_I64
: RTLIB::UDIVREM_I64
; break;
15425 static TargetLowering::ArgListTy
getDivRemArgList(
15426 const SDNode
*N
, LLVMContext
*Context
, const ARMSubtarget
*Subtarget
) {
15427 assert((N
->getOpcode() == ISD::SDIVREM
|| N
->getOpcode() == ISD::UDIVREM
||
15428 N
->getOpcode() == ISD::SREM
|| N
->getOpcode() == ISD::UREM
) &&
15429 "Unhandled Opcode in getDivRemArgList");
15430 bool isSigned
= N
->getOpcode() == ISD::SDIVREM
||
15431 N
->getOpcode() == ISD::SREM
;
15432 TargetLowering::ArgListTy Args
;
15433 TargetLowering::ArgListEntry Entry
;
15434 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
15435 EVT ArgVT
= N
->getOperand(i
).getValueType();
15436 Type
*ArgTy
= ArgVT
.getTypeForEVT(*Context
);
15437 Entry
.Node
= N
->getOperand(i
);
15439 Entry
.IsSExt
= isSigned
;
15440 Entry
.IsZExt
= !isSigned
;
15441 Args
.push_back(Entry
);
15443 if (Subtarget
->isTargetWindows() && Args
.size() >= 2)
15444 std::swap(Args
[0], Args
[1]);
15448 SDValue
ARMTargetLowering::LowerDivRem(SDValue Op
, SelectionDAG
&DAG
) const {
15449 assert((Subtarget
->isTargetAEABI() || Subtarget
->isTargetAndroid() ||
15450 Subtarget
->isTargetGNUAEABI() || Subtarget
->isTargetMuslAEABI() ||
15451 Subtarget
->isTargetWindows()) &&
15452 "Register-based DivRem lowering only");
15453 unsigned Opcode
= Op
->getOpcode();
15454 assert((Opcode
== ISD::SDIVREM
|| Opcode
== ISD::UDIVREM
) &&
15455 "Invalid opcode for Div/Rem lowering");
15456 bool isSigned
= (Opcode
== ISD::SDIVREM
);
15457 EVT VT
= Op
->getValueType(0);
15458 Type
*Ty
= VT
.getTypeForEVT(*DAG
.getContext());
15461 // If the target has hardware divide, use divide + multiply + subtract:
15463 // rem = a - b * div
15464 // return {div, rem}
15465 // This should be lowered into UDIV/SDIV + MLS later on.
15466 bool hasDivide
= Subtarget
->isThumb() ? Subtarget
->hasDivideInThumbMode()
15467 : Subtarget
->hasDivideInARMMode();
15468 if (hasDivide
&& Op
->getValueType(0).isSimple() &&
15469 Op
->getSimpleValueType(0) == MVT::i32
) {
15470 unsigned DivOpcode
= isSigned
? ISD::SDIV
: ISD::UDIV
;
15471 const SDValue Dividend
= Op
->getOperand(0);
15472 const SDValue Divisor
= Op
->getOperand(1);
15473 SDValue Div
= DAG
.getNode(DivOpcode
, dl
, VT
, Dividend
, Divisor
);
15474 SDValue Mul
= DAG
.getNode(ISD::MUL
, dl
, VT
, Div
, Divisor
);
15475 SDValue Rem
= DAG
.getNode(ISD::SUB
, dl
, VT
, Dividend
, Mul
);
15477 SDValue Values
[2] = {Div
, Rem
};
15478 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, DAG
.getVTList(VT
, VT
), Values
);
15481 RTLIB::Libcall LC
= getDivRemLibcall(Op
.getNode(),
15482 VT
.getSimpleVT().SimpleTy
);
15483 SDValue InChain
= DAG
.getEntryNode();
15485 TargetLowering::ArgListTy Args
= getDivRemArgList(Op
.getNode(),
15489 SDValue Callee
= DAG
.getExternalSymbol(getLibcallName(LC
),
15490 getPointerTy(DAG
.getDataLayout()));
15492 Type
*RetTy
= StructType::get(Ty
, Ty
);
15494 if (Subtarget
->isTargetWindows())
15495 InChain
= WinDBZCheckDenominator(DAG
, Op
.getNode(), InChain
);
15497 TargetLowering::CallLoweringInfo
CLI(DAG
);
15498 CLI
.setDebugLoc(dl
).setChain(InChain
)
15499 .setCallee(getLibcallCallingConv(LC
), RetTy
, Callee
, std::move(Args
))
15500 .setInRegister().setSExtResult(isSigned
).setZExtResult(!isSigned
);
15502 std::pair
<SDValue
, SDValue
> CallInfo
= LowerCallTo(CLI
);
15503 return CallInfo
.first
;
15506 // Lowers REM using divmod helpers
15507 // see RTABI section 4.2/4.3
15508 SDValue
ARMTargetLowering::LowerREM(SDNode
*N
, SelectionDAG
&DAG
) const {
15509 // Build return types (div and rem)
15510 std::vector
<Type
*> RetTyParams
;
15511 Type
*RetTyElement
;
15513 switch (N
->getValueType(0).getSimpleVT().SimpleTy
) {
15514 default: llvm_unreachable("Unexpected request for libcall!");
15515 case MVT::i8
: RetTyElement
= Type::getInt8Ty(*DAG
.getContext()); break;
15516 case MVT::i16
: RetTyElement
= Type::getInt16Ty(*DAG
.getContext()); break;
15517 case MVT::i32
: RetTyElement
= Type::getInt32Ty(*DAG
.getContext()); break;
15518 case MVT::i64
: RetTyElement
= Type::getInt64Ty(*DAG
.getContext()); break;
15521 RetTyParams
.push_back(RetTyElement
);
15522 RetTyParams
.push_back(RetTyElement
);
15523 ArrayRef
<Type
*> ret
= ArrayRef
<Type
*>(RetTyParams
);
15524 Type
*RetTy
= StructType::get(*DAG
.getContext(), ret
);
15526 RTLIB::Libcall LC
= getDivRemLibcall(N
, N
->getValueType(0).getSimpleVT().
15528 SDValue InChain
= DAG
.getEntryNode();
15529 TargetLowering::ArgListTy Args
= getDivRemArgList(N
, DAG
.getContext(),
15531 bool isSigned
= N
->getOpcode() == ISD::SREM
;
15532 SDValue Callee
= DAG
.getExternalSymbol(getLibcallName(LC
),
15533 getPointerTy(DAG
.getDataLayout()));
15535 if (Subtarget
->isTargetWindows())
15536 InChain
= WinDBZCheckDenominator(DAG
, N
, InChain
);
15539 CallLoweringInfo
CLI(DAG
);
15540 CLI
.setChain(InChain
)
15541 .setCallee(CallingConv::ARM_AAPCS
, RetTy
, Callee
, std::move(Args
))
15542 .setSExtResult(isSigned
).setZExtResult(!isSigned
).setDebugLoc(SDLoc(N
));
15543 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
15545 // Return second (rem) result operand (first contains div)
15546 SDNode
*ResNode
= CallResult
.first
.getNode();
15547 assert(ResNode
->getNumOperands() == 2 && "divmod should return two operands");
15548 return ResNode
->getOperand(1);
15552 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op
, SelectionDAG
&DAG
) const {
15553 assert(Subtarget
->isTargetWindows() && "unsupported target platform");
15557 SDValue Chain
= Op
.getOperand(0);
15558 SDValue Size
= Op
.getOperand(1);
15560 if (DAG
.getMachineFunction().getFunction().hasFnAttribute(
15561 "no-stack-arg-probe")) {
15562 unsigned Align
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue();
15563 SDValue SP
= DAG
.getCopyFromReg(Chain
, DL
, ARM::SP
, MVT::i32
);
15564 Chain
= SP
.getValue(1);
15565 SP
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
, SP
, Size
);
15567 SP
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, SP
.getValue(0),
15568 DAG
.getConstant(-(uint64_t)Align
, DL
, MVT::i32
));
15569 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::SP
, SP
);
15570 SDValue Ops
[2] = { SP
, Chain
};
15571 return DAG
.getMergeValues(Ops
, DL
);
15574 SDValue Words
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, Size
,
15575 DAG
.getConstant(2, DL
, MVT::i32
));
15578 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::R4
, Words
, Flag
);
15579 Flag
= Chain
.getValue(1);
15581 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
15582 Chain
= DAG
.getNode(ARMISD::WIN__CHKSTK
, DL
, NodeTys
, Chain
, Flag
);
15584 SDValue NewSP
= DAG
.getCopyFromReg(Chain
, DL
, ARM::SP
, MVT::i32
);
15585 Chain
= NewSP
.getValue(1);
15587 SDValue Ops
[2] = { NewSP
, Chain
};
15588 return DAG
.getMergeValues(Ops
, DL
);
15591 SDValue
ARMTargetLowering::LowerFP_EXTEND(SDValue Op
, SelectionDAG
&DAG
) const {
15592 SDValue SrcVal
= Op
.getOperand(0);
15593 const unsigned DstSz
= Op
.getValueType().getSizeInBits();
15594 const unsigned SrcSz
= SrcVal
.getValueType().getSizeInBits();
15595 assert(DstSz
> SrcSz
&& DstSz
<= 64 && SrcSz
>= 16 &&
15596 "Unexpected type for custom-lowering FP_EXTEND");
15598 assert((!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()) &&
15599 "With both FP DP and 16, any FP conversion is legal!");
15601 assert(!(DstSz
== 32 && Subtarget
->hasFP16()) &&
15602 "With FP16, 16 to 32 conversion is legal!");
15604 // Either we are converting from 16 -> 64, without FP16 and/or
15605 // FP.double-precision or without Armv8-fp. So we must do it in two
15607 // Or we are converting from 32 -> 64 without fp.double-precision or 16 -> 32
15608 // without FP16. So we must do a function call.
15611 MakeLibCallOptions CallOptions
;
15613 // Instruction from 16 -> 32
15614 if (Subtarget
->hasFP16())
15615 SrcVal
= DAG
.getNode(ISD::FP_EXTEND
, Loc
, MVT::f32
, SrcVal
);
15616 // Lib call from 16 -> 32
15618 LC
= RTLIB::getFPEXT(MVT::f16
, MVT::f32
);
15619 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
15620 "Unexpected type for custom-lowering FP_EXTEND");
15622 makeLibCall(DAG
, LC
, MVT::f32
, SrcVal
, CallOptions
, Loc
).first
;
15628 // For sure now SrcVal is 32 bits
15629 if (Subtarget
->hasFP64()) // Instruction from 32 -> 64
15630 return DAG
.getNode(ISD::FP_EXTEND
, Loc
, MVT::f64
, SrcVal
);
15632 LC
= RTLIB::getFPEXT(MVT::f32
, MVT::f64
);
15633 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
15634 "Unexpected type for custom-lowering FP_EXTEND");
15635 return makeLibCall(DAG
, LC
, MVT::f64
, SrcVal
, CallOptions
, Loc
).first
;
15638 SDValue
ARMTargetLowering::LowerFP_ROUND(SDValue Op
, SelectionDAG
&DAG
) const {
15639 SDValue SrcVal
= Op
.getOperand(0);
15640 EVT SrcVT
= SrcVal
.getValueType();
15641 EVT DstVT
= Op
.getValueType();
15642 const unsigned DstSz
= Op
.getValueType().getSizeInBits();
15643 const unsigned SrcSz
= SrcVT
.getSizeInBits();
15645 assert(DstSz
< SrcSz
&& SrcSz
<= 64 && DstSz
>= 16 &&
15646 "Unexpected type for custom-lowering FP_ROUND");
15648 assert((!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()) &&
15649 "With both FP DP and 16, any FP conversion is legal!");
15653 // Instruction from 32 -> 16 if hasFP16 is valid
15654 if (SrcSz
== 32 && Subtarget
->hasFP16())
15657 // Lib call from 32 -> 16 / 64 -> [32, 16]
15658 RTLIB::Libcall LC
= RTLIB::getFPROUND(SrcVT
, DstVT
);
15659 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
15660 "Unexpected type for custom-lowering FP_ROUND");
15661 MakeLibCallOptions CallOptions
;
15662 return makeLibCall(DAG
, LC
, DstVT
, SrcVal
, CallOptions
, Loc
).first
;
15665 void ARMTargetLowering::lowerABS(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
15666 SelectionDAG
&DAG
) const {
15667 assert(N
->getValueType(0) == MVT::i64
&& "Unexpected type (!= i64) on ABS.");
15668 MVT HalfT
= MVT::i32
;
15670 SDValue Hi
, Lo
, Tmp
;
15672 if (!isOperationLegalOrCustom(ISD::ADDCARRY
, HalfT
) ||
15673 !isOperationLegalOrCustom(ISD::UADDO
, HalfT
))
15676 unsigned OpTypeBits
= HalfT
.getScalarSizeInBits();
15677 SDVTList VTList
= DAG
.getVTList(HalfT
, MVT::i1
);
15679 Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, HalfT
, N
->getOperand(0),
15680 DAG
.getConstant(0, dl
, HalfT
));
15681 Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, HalfT
, N
->getOperand(0),
15682 DAG
.getConstant(1, dl
, HalfT
));
15684 Tmp
= DAG
.getNode(ISD::SRA
, dl
, HalfT
, Hi
,
15685 DAG
.getConstant(OpTypeBits
- 1, dl
,
15686 getShiftAmountTy(HalfT
, DAG
.getDataLayout())));
15687 Lo
= DAG
.getNode(ISD::UADDO
, dl
, VTList
, Tmp
, Lo
);
15688 Hi
= DAG
.getNode(ISD::ADDCARRY
, dl
, VTList
, Tmp
, Hi
,
15689 SDValue(Lo
.getNode(), 1));
15690 Hi
= DAG
.getNode(ISD::XOR
, dl
, HalfT
, Tmp
, Hi
);
15691 Lo
= DAG
.getNode(ISD::XOR
, dl
, HalfT
, Tmp
, Lo
);
15693 Results
.push_back(Lo
);
15694 Results
.push_back(Hi
);
15698 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const {
15699 // The ARM target isn't yet aware of offsets.
15703 bool ARM::isBitFieldInvertedMask(unsigned v
) {
15704 if (v
== 0xffffffff)
15707 // there can be 1's on either or both "outsides", all the "inside"
15708 // bits must be 0's
15709 return isShiftedMask_32(~v
);
15712 /// isFPImmLegal - Returns true if the target can instruction select the
15713 /// specified FP immediate natively. If false, the legalizer will
15714 /// materialize the FP immediate as a load from a constant pool.
15715 bool ARMTargetLowering::isFPImmLegal(const APFloat
&Imm
, EVT VT
,
15716 bool ForCodeSize
) const {
15717 if (!Subtarget
->hasVFP3Base())
15719 if (VT
== MVT::f16
&& Subtarget
->hasFullFP16())
15720 return ARM_AM::getFP16Imm(Imm
) != -1;
15721 if (VT
== MVT::f32
)
15722 return ARM_AM::getFP32Imm(Imm
) != -1;
15723 if (VT
== MVT::f64
&& Subtarget
->hasFP64())
15724 return ARM_AM::getFP64Imm(Imm
) != -1;
15728 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
15729 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
15730 /// specified in the intrinsic calls.
15731 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo
&Info
,
15733 MachineFunction
&MF
,
15734 unsigned Intrinsic
) const {
15735 switch (Intrinsic
) {
15736 case Intrinsic::arm_neon_vld1
:
15737 case Intrinsic::arm_neon_vld2
:
15738 case Intrinsic::arm_neon_vld3
:
15739 case Intrinsic::arm_neon_vld4
:
15740 case Intrinsic::arm_neon_vld2lane
:
15741 case Intrinsic::arm_neon_vld3lane
:
15742 case Intrinsic::arm_neon_vld4lane
:
15743 case Intrinsic::arm_neon_vld2dup
:
15744 case Intrinsic::arm_neon_vld3dup
:
15745 case Intrinsic::arm_neon_vld4dup
: {
15746 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15747 // Conservatively set memVT to the entire set of vectors loaded.
15748 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15749 uint64_t NumElts
= DL
.getTypeSizeInBits(I
.getType()) / 64;
15750 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
15751 Info
.ptrVal
= I
.getArgOperand(0);
15753 Value
*AlignArg
= I
.getArgOperand(I
.getNumArgOperands() - 1);
15754 Info
.align
= MaybeAlign(cast
<ConstantInt
>(AlignArg
)->getZExtValue());
15755 // volatile loads with NEON intrinsics not supported
15756 Info
.flags
= MachineMemOperand::MOLoad
;
15759 case Intrinsic::arm_neon_vld1x2
:
15760 case Intrinsic::arm_neon_vld1x3
:
15761 case Intrinsic::arm_neon_vld1x4
: {
15762 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15763 // Conservatively set memVT to the entire set of vectors loaded.
15764 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15765 uint64_t NumElts
= DL
.getTypeSizeInBits(I
.getType()) / 64;
15766 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
15767 Info
.ptrVal
= I
.getArgOperand(I
.getNumArgOperands() - 1);
15769 Info
.align
.reset();
15770 // volatile loads with NEON intrinsics not supported
15771 Info
.flags
= MachineMemOperand::MOLoad
;
15774 case Intrinsic::arm_neon_vst1
:
15775 case Intrinsic::arm_neon_vst2
:
15776 case Intrinsic::arm_neon_vst3
:
15777 case Intrinsic::arm_neon_vst4
:
15778 case Intrinsic::arm_neon_vst2lane
:
15779 case Intrinsic::arm_neon_vst3lane
:
15780 case Intrinsic::arm_neon_vst4lane
: {
15781 Info
.opc
= ISD::INTRINSIC_VOID
;
15782 // Conservatively set memVT to the entire set of vectors stored.
15783 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15784 unsigned NumElts
= 0;
15785 for (unsigned ArgI
= 1, ArgE
= I
.getNumArgOperands(); ArgI
< ArgE
; ++ArgI
) {
15786 Type
*ArgTy
= I
.getArgOperand(ArgI
)->getType();
15787 if (!ArgTy
->isVectorTy())
15789 NumElts
+= DL
.getTypeSizeInBits(ArgTy
) / 64;
15791 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
15792 Info
.ptrVal
= I
.getArgOperand(0);
15794 Value
*AlignArg
= I
.getArgOperand(I
.getNumArgOperands() - 1);
15795 Info
.align
= MaybeAlign(cast
<ConstantInt
>(AlignArg
)->getZExtValue());
15796 // volatile stores with NEON intrinsics not supported
15797 Info
.flags
= MachineMemOperand::MOStore
;
15800 case Intrinsic::arm_neon_vst1x2
:
15801 case Intrinsic::arm_neon_vst1x3
:
15802 case Intrinsic::arm_neon_vst1x4
: {
15803 Info
.opc
= ISD::INTRINSIC_VOID
;
15804 // Conservatively set memVT to the entire set of vectors stored.
15805 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15806 unsigned NumElts
= 0;
15807 for (unsigned ArgI
= 1, ArgE
= I
.getNumArgOperands(); ArgI
< ArgE
; ++ArgI
) {
15808 Type
*ArgTy
= I
.getArgOperand(ArgI
)->getType();
15809 if (!ArgTy
->isVectorTy())
15811 NumElts
+= DL
.getTypeSizeInBits(ArgTy
) / 64;
15813 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
15814 Info
.ptrVal
= I
.getArgOperand(0);
15816 Info
.align
.reset();
15817 // volatile stores with NEON intrinsics not supported
15818 Info
.flags
= MachineMemOperand::MOStore
;
15821 case Intrinsic::arm_ldaex
:
15822 case Intrinsic::arm_ldrex
: {
15823 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15824 PointerType
*PtrTy
= cast
<PointerType
>(I
.getArgOperand(0)->getType());
15825 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15826 Info
.memVT
= MVT::getVT(PtrTy
->getElementType());
15827 Info
.ptrVal
= I
.getArgOperand(0);
15829 Info
.align
= MaybeAlign(DL
.getABITypeAlignment(PtrTy
->getElementType()));
15830 Info
.flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
;
15833 case Intrinsic::arm_stlex
:
15834 case Intrinsic::arm_strex
: {
15835 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15836 PointerType
*PtrTy
= cast
<PointerType
>(I
.getArgOperand(1)->getType());
15837 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15838 Info
.memVT
= MVT::getVT(PtrTy
->getElementType());
15839 Info
.ptrVal
= I
.getArgOperand(1);
15841 Info
.align
= MaybeAlign(DL
.getABITypeAlignment(PtrTy
->getElementType()));
15842 Info
.flags
= MachineMemOperand::MOStore
| MachineMemOperand::MOVolatile
;
15845 case Intrinsic::arm_stlexd
:
15846 case Intrinsic::arm_strexd
:
15847 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15848 Info
.memVT
= MVT::i64
;
15849 Info
.ptrVal
= I
.getArgOperand(2);
15851 Info
.align
= Align(8);
15852 Info
.flags
= MachineMemOperand::MOStore
| MachineMemOperand::MOVolatile
;
15855 case Intrinsic::arm_ldaexd
:
15856 case Intrinsic::arm_ldrexd
:
15857 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15858 Info
.memVT
= MVT::i64
;
15859 Info
.ptrVal
= I
.getArgOperand(0);
15861 Info
.align
= Align(8);
15862 Info
.flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
;
15872 /// Returns true if it is beneficial to convert a load of a constant
15873 /// to just the constant itself.
15874 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt
&Imm
,
15876 assert(Ty
->isIntegerTy());
15878 unsigned Bits
= Ty
->getPrimitiveSizeInBits();
15879 if (Bits
== 0 || Bits
> 32)
15884 bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT
, EVT SrcVT
,
15885 unsigned Index
) const {
15886 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR
, ResVT
))
15889 return (Index
== 0 || Index
== ResVT
.getVectorNumElements());
15892 Instruction
* ARMTargetLowering::makeDMB(IRBuilder
<> &Builder
,
15893 ARM_MB::MemBOpt Domain
) const {
15894 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
15896 // First, if the target has no DMB, see what fallback we can use.
15897 if (!Subtarget
->hasDataBarrier()) {
15898 // Some ARMv6 cpus can support data barriers with an mcr instruction.
15899 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
15901 if (Subtarget
->hasV6Ops() && !Subtarget
->isThumb()) {
15902 Function
*MCR
= Intrinsic::getDeclaration(M
, Intrinsic::arm_mcr
);
15903 Value
* args
[6] = {Builder
.getInt32(15), Builder
.getInt32(0),
15904 Builder
.getInt32(0), Builder
.getInt32(7),
15905 Builder
.getInt32(10), Builder
.getInt32(5)};
15906 return Builder
.CreateCall(MCR
, args
);
15908 // Instead of using barriers, atomic accesses on these subtargets use
15910 llvm_unreachable("makeDMB on a target so old that it has no barriers");
15913 Function
*DMB
= Intrinsic::getDeclaration(M
, Intrinsic::arm_dmb
);
15914 // Only a full system barrier exists in the M-class architectures.
15915 Domain
= Subtarget
->isMClass() ? ARM_MB::SY
: Domain
;
15916 Constant
*CDomain
= Builder
.getInt32(Domain
);
15917 return Builder
.CreateCall(DMB
, CDomain
);
15921 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
15922 Instruction
*ARMTargetLowering::emitLeadingFence(IRBuilder
<> &Builder
,
15924 AtomicOrdering Ord
) const {
15926 case AtomicOrdering::NotAtomic
:
15927 case AtomicOrdering::Unordered
:
15928 llvm_unreachable("Invalid fence: unordered/non-atomic");
15929 case AtomicOrdering::Monotonic
:
15930 case AtomicOrdering::Acquire
:
15931 return nullptr; // Nothing to do
15932 case AtomicOrdering::SequentiallyConsistent
:
15933 if (!Inst
->hasAtomicStore())
15934 return nullptr; // Nothing to do
15936 case AtomicOrdering::Release
:
15937 case AtomicOrdering::AcquireRelease
:
15938 if (Subtarget
->preferISHSTBarriers())
15939 return makeDMB(Builder
, ARM_MB::ISHST
);
15940 // FIXME: add a comment with a link to documentation justifying this.
15942 return makeDMB(Builder
, ARM_MB::ISH
);
15944 llvm_unreachable("Unknown fence ordering in emitLeadingFence");
15947 Instruction
*ARMTargetLowering::emitTrailingFence(IRBuilder
<> &Builder
,
15949 AtomicOrdering Ord
) const {
15951 case AtomicOrdering::NotAtomic
:
15952 case AtomicOrdering::Unordered
:
15953 llvm_unreachable("Invalid fence: unordered/not-atomic");
15954 case AtomicOrdering::Monotonic
:
15955 case AtomicOrdering::Release
:
15956 return nullptr; // Nothing to do
15957 case AtomicOrdering::Acquire
:
15958 case AtomicOrdering::AcquireRelease
:
15959 case AtomicOrdering::SequentiallyConsistent
:
15960 return makeDMB(Builder
, ARM_MB::ISH
);
15962 llvm_unreachable("Unknown fence ordering in emitTrailingFence");
15965 // Loads and stores less than 64-bits are already atomic; ones above that
15966 // are doomed anyway, so defer to the default libcall and blame the OS when
15967 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
15968 // anything for those.
15969 bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst
*SI
) const {
15970 unsigned Size
= SI
->getValueOperand()->getType()->getPrimitiveSizeInBits();
15971 return (Size
== 64) && !Subtarget
->isMClass();
15974 // Loads and stores less than 64-bits are already atomic; ones above that
15975 // are doomed anyway, so defer to the default libcall and blame the OS when
15976 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
15977 // anything for those.
15978 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
15979 // guarantee, see DDI0406C ARM architecture reference manual,
15980 // sections A8.8.72-74 LDRD)
15981 TargetLowering::AtomicExpansionKind
15982 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst
*LI
) const {
15983 unsigned Size
= LI
->getType()->getPrimitiveSizeInBits();
15984 return ((Size
== 64) && !Subtarget
->isMClass()) ? AtomicExpansionKind::LLOnly
15985 : AtomicExpansionKind::None
;
15988 // For the real atomic operations, we have ldrex/strex up to 32 bits,
15989 // and up to 64 bits on the non-M profiles
15990 TargetLowering::AtomicExpansionKind
15991 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst
*AI
) const {
15992 if (AI
->isFloatingPointOperation())
15993 return AtomicExpansionKind::CmpXChg
;
15995 unsigned Size
= AI
->getType()->getPrimitiveSizeInBits();
15996 bool hasAtomicRMW
= !Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps();
15997 return (Size
<= (Subtarget
->isMClass() ? 32U : 64U) && hasAtomicRMW
)
15998 ? AtomicExpansionKind::LLSC
15999 : AtomicExpansionKind::None
;
16002 TargetLowering::AtomicExpansionKind
16003 ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst
*AI
) const {
16004 // At -O0, fast-regalloc cannot cope with the live vregs necessary to
16005 // implement cmpxchg without spilling. If the address being exchanged is also
16006 // on the stack and close enough to the spill slot, this can lead to a
16007 // situation where the monitor always gets cleared and the atomic operation
16008 // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
16009 bool HasAtomicCmpXchg
=
16010 !Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps();
16011 if (getTargetMachine().getOptLevel() != 0 && HasAtomicCmpXchg
)
16012 return AtomicExpansionKind::LLSC
;
16013 return AtomicExpansionKind::None
;
16016 bool ARMTargetLowering::shouldInsertFencesForAtomic(
16017 const Instruction
*I
) const {
16018 return InsertFencesForAtomic
;
16021 // This has so far only been implemented for MachO.
16022 bool ARMTargetLowering::useLoadStackGuardNode() const {
16023 return Subtarget
->isTargetMachO();
16026 void ARMTargetLowering::insertSSPDeclarations(Module
&M
) const {
16027 if (!Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
16028 return TargetLowering::insertSSPDeclarations(M
);
16030 // MSVC CRT has a global variable holding security cookie.
16031 M
.getOrInsertGlobal("__security_cookie",
16032 Type::getInt8PtrTy(M
.getContext()));
16034 // MSVC CRT has a function to validate security cookie.
16035 FunctionCallee SecurityCheckCookie
= M
.getOrInsertFunction(
16036 "__security_check_cookie", Type::getVoidTy(M
.getContext()),
16037 Type::getInt8PtrTy(M
.getContext()));
16038 if (Function
*F
= dyn_cast
<Function
>(SecurityCheckCookie
.getCallee()))
16039 F
->addAttribute(1, Attribute::AttrKind::InReg
);
16042 Value
*ARMTargetLowering::getSDagStackGuard(const Module
&M
) const {
16043 // MSVC CRT has a global variable holding security cookie.
16044 if (Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
16045 return M
.getGlobalVariable("__security_cookie");
16046 return TargetLowering::getSDagStackGuard(M
);
16049 Function
*ARMTargetLowering::getSSPStackGuardCheck(const Module
&M
) const {
16050 // MSVC CRT has a function to validate security cookie.
16051 if (Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
16052 return M
.getFunction("__security_check_cookie");
16053 return TargetLowering::getSSPStackGuardCheck(M
);
16056 bool ARMTargetLowering::canCombineStoreAndExtract(Type
*VectorTy
, Value
*Idx
,
16057 unsigned &Cost
) const {
16058 // If we do not have NEON, vector types are not natively supported.
16059 if (!Subtarget
->hasNEON())
16062 // Floating point values and vector values map to the same register file.
16063 // Therefore, although we could do a store extract of a vector type, this is
16064 // better to leave at float as we have more freedom in the addressing mode for
16066 if (VectorTy
->isFPOrFPVectorTy())
16069 // If the index is unknown at compile time, this is very expensive to lower
16070 // and it is not possible to combine the store with the extract.
16071 if (!isa
<ConstantInt
>(Idx
))
16074 assert(VectorTy
->isVectorTy() && "VectorTy is not a vector type");
16075 unsigned BitWidth
= cast
<VectorType
>(VectorTy
)->getBitWidth();
16076 // We can do a store + vector extract on any vector that fits perfectly in a D
16078 if (BitWidth
== 64 || BitWidth
== 128) {
16085 bool ARMTargetLowering::isCheapToSpeculateCttz() const {
16086 return Subtarget
->hasV6T2Ops();
16089 bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
16090 return Subtarget
->hasV6T2Ops();
16093 bool ARMTargetLowering::shouldExpandShift(SelectionDAG
&DAG
, SDNode
*N
) const {
16094 return !Subtarget
->hasMinSize();
16097 Value
*ARMTargetLowering::emitLoadLinked(IRBuilder
<> &Builder
, Value
*Addr
,
16098 AtomicOrdering Ord
) const {
16099 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
16100 Type
*ValTy
= cast
<PointerType
>(Addr
->getType())->getElementType();
16101 bool IsAcquire
= isAcquireOrStronger(Ord
);
16103 // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
16104 // intrinsic must return {i32, i32} and we have to recombine them into a
16105 // single i64 here.
16106 if (ValTy
->getPrimitiveSizeInBits() == 64) {
16107 Intrinsic::ID Int
=
16108 IsAcquire
? Intrinsic::arm_ldaexd
: Intrinsic::arm_ldrexd
;
16109 Function
*Ldrex
= Intrinsic::getDeclaration(M
, Int
);
16111 Addr
= Builder
.CreateBitCast(Addr
, Type::getInt8PtrTy(M
->getContext()));
16112 Value
*LoHi
= Builder
.CreateCall(Ldrex
, Addr
, "lohi");
16114 Value
*Lo
= Builder
.CreateExtractValue(LoHi
, 0, "lo");
16115 Value
*Hi
= Builder
.CreateExtractValue(LoHi
, 1, "hi");
16116 if (!Subtarget
->isLittle())
16117 std::swap (Lo
, Hi
);
16118 Lo
= Builder
.CreateZExt(Lo
, ValTy
, "lo64");
16119 Hi
= Builder
.CreateZExt(Hi
, ValTy
, "hi64");
16120 return Builder
.CreateOr(
16121 Lo
, Builder
.CreateShl(Hi
, ConstantInt::get(ValTy
, 32)), "val64");
16124 Type
*Tys
[] = { Addr
->getType() };
16125 Intrinsic::ID Int
= IsAcquire
? Intrinsic::arm_ldaex
: Intrinsic::arm_ldrex
;
16126 Function
*Ldrex
= Intrinsic::getDeclaration(M
, Int
, Tys
);
16128 return Builder
.CreateTruncOrBitCast(
16129 Builder
.CreateCall(Ldrex
, Addr
),
16130 cast
<PointerType
>(Addr
->getType())->getElementType());
16133 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
16134 IRBuilder
<> &Builder
) const {
16135 if (!Subtarget
->hasV7Ops())
16137 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
16138 Builder
.CreateCall(Intrinsic::getDeclaration(M
, Intrinsic::arm_clrex
));
16141 Value
*ARMTargetLowering::emitStoreConditional(IRBuilder
<> &Builder
, Value
*Val
,
16143 AtomicOrdering Ord
) const {
16144 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
16145 bool IsRelease
= isReleaseOrStronger(Ord
);
16147 // Since the intrinsics must have legal type, the i64 intrinsics take two
16148 // parameters: "i32, i32". We must marshal Val into the appropriate form
16149 // before the call.
16150 if (Val
->getType()->getPrimitiveSizeInBits() == 64) {
16151 Intrinsic::ID Int
=
16152 IsRelease
? Intrinsic::arm_stlexd
: Intrinsic::arm_strexd
;
16153 Function
*Strex
= Intrinsic::getDeclaration(M
, Int
);
16154 Type
*Int32Ty
= Type::getInt32Ty(M
->getContext());
16156 Value
*Lo
= Builder
.CreateTrunc(Val
, Int32Ty
, "lo");
16157 Value
*Hi
= Builder
.CreateTrunc(Builder
.CreateLShr(Val
, 32), Int32Ty
, "hi");
16158 if (!Subtarget
->isLittle())
16160 Addr
= Builder
.CreateBitCast(Addr
, Type::getInt8PtrTy(M
->getContext()));
16161 return Builder
.CreateCall(Strex
, {Lo
, Hi
, Addr
});
16164 Intrinsic::ID Int
= IsRelease
? Intrinsic::arm_stlex
: Intrinsic::arm_strex
;
16165 Type
*Tys
[] = { Addr
->getType() };
16166 Function
*Strex
= Intrinsic::getDeclaration(M
, Int
, Tys
);
16168 return Builder
.CreateCall(
16169 Strex
, {Builder
.CreateZExtOrBitCast(
16170 Val
, Strex
->getFunctionType()->getParamType(0)),
16175 bool ARMTargetLowering::alignLoopsWithOptSize() const {
16176 return Subtarget
->isMClass();
16179 /// A helper function for determining the number of interleaved accesses we
16180 /// will generate when lowering accesses of the given type.
16182 ARMTargetLowering::getNumInterleavedAccesses(VectorType
*VecTy
,
16183 const DataLayout
&DL
) const {
16184 return (DL
.getTypeSizeInBits(VecTy
) + 127) / 128;
16187 bool ARMTargetLowering::isLegalInterleavedAccessType(
16188 VectorType
*VecTy
, const DataLayout
&DL
) const {
16190 unsigned VecSize
= DL
.getTypeSizeInBits(VecTy
);
16191 unsigned ElSize
= DL
.getTypeSizeInBits(VecTy
->getElementType());
16193 // Ensure the vector doesn't have f16 elements. Even though we could do an
16194 // i16 vldN, we can't hold the f16 vectors and will end up converting via
16196 if (VecTy
->getElementType()->isHalfTy())
16199 // Ensure the number of vector elements is greater than 1.
16200 if (VecTy
->getNumElements() < 2)
16203 // Ensure the element type is legal.
16204 if (ElSize
!= 8 && ElSize
!= 16 && ElSize
!= 32)
16207 // Ensure the total vector size is 64 or a multiple of 128. Types larger than
16208 // 128 will be split into multiple interleaved accesses.
16209 return VecSize
== 64 || VecSize
% 128 == 0;
16212 unsigned ARMTargetLowering::getMaxSupportedInterleaveFactor() const {
16213 if (Subtarget
->hasNEON())
16215 return TargetLoweringBase::getMaxSupportedInterleaveFactor();
16218 /// Lower an interleaved load into a vldN intrinsic.
16220 /// E.g. Lower an interleaved load (Factor = 2):
16221 /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
16222 /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
16223 /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
16226 /// %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
16227 /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
16228 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
16229 bool ARMTargetLowering::lowerInterleavedLoad(
16230 LoadInst
*LI
, ArrayRef
<ShuffleVectorInst
*> Shuffles
,
16231 ArrayRef
<unsigned> Indices
, unsigned Factor
) const {
16232 assert(Factor
>= 2 && Factor
<= getMaxSupportedInterleaveFactor() &&
16233 "Invalid interleave factor");
16234 assert(!Shuffles
.empty() && "Empty shufflevector input");
16235 assert(Shuffles
.size() == Indices
.size() &&
16236 "Unmatched number of shufflevectors and indices");
16238 VectorType
*VecTy
= Shuffles
[0]->getType();
16239 Type
*EltTy
= VecTy
->getVectorElementType();
16241 const DataLayout
&DL
= LI
->getModule()->getDataLayout();
16243 // Skip if we do not have NEON and skip illegal vector types. We can
16244 // "legalize" wide vector types into multiple interleaved accesses as long as
16245 // the vector types are divisible by 128.
16246 if (!Subtarget
->hasNEON() || !isLegalInterleavedAccessType(VecTy
, DL
))
16249 unsigned NumLoads
= getNumInterleavedAccesses(VecTy
, DL
);
16251 // A pointer vector can not be the return type of the ldN intrinsics. Need to
16252 // load integer vectors first and then convert to pointer vectors.
16253 if (EltTy
->isPointerTy())
16255 VectorType::get(DL
.getIntPtrType(EltTy
), VecTy
->getVectorNumElements());
16257 IRBuilder
<> Builder(LI
);
16259 // The base address of the load.
16260 Value
*BaseAddr
= LI
->getPointerOperand();
16262 if (NumLoads
> 1) {
16263 // If we're going to generate more than one load, reset the sub-vector type
16264 // to something legal.
16265 VecTy
= VectorType::get(VecTy
->getVectorElementType(),
16266 VecTy
->getVectorNumElements() / NumLoads
);
16268 // We will compute the pointer operand of each load from the original base
16269 // address using GEPs. Cast the base address to a pointer to the scalar
16271 BaseAddr
= Builder
.CreateBitCast(
16272 BaseAddr
, VecTy
->getVectorElementType()->getPointerTo(
16273 LI
->getPointerAddressSpace()));
16276 assert(isTypeLegal(EVT::getEVT(VecTy
)) && "Illegal vldN vector type!");
16278 Type
*Int8Ptr
= Builder
.getInt8PtrTy(LI
->getPointerAddressSpace());
16279 Type
*Tys
[] = {VecTy
, Int8Ptr
};
16280 static const Intrinsic::ID LoadInts
[3] = {Intrinsic::arm_neon_vld2
,
16281 Intrinsic::arm_neon_vld3
,
16282 Intrinsic::arm_neon_vld4
};
16283 Function
*VldnFunc
=
16284 Intrinsic::getDeclaration(LI
->getModule(), LoadInts
[Factor
- 2], Tys
);
16286 // Holds sub-vectors extracted from the load intrinsic return values. The
16287 // sub-vectors are associated with the shufflevector instructions they will
16289 DenseMap
<ShuffleVectorInst
*, SmallVector
<Value
*, 4>> SubVecs
;
16291 for (unsigned LoadCount
= 0; LoadCount
< NumLoads
; ++LoadCount
) {
16292 // If we're generating more than one load, compute the base address of
16293 // subsequent loads as an offset from the previous.
16296 Builder
.CreateConstGEP1_32(VecTy
->getVectorElementType(), BaseAddr
,
16297 VecTy
->getVectorNumElements() * Factor
);
16299 SmallVector
<Value
*, 2> Ops
;
16300 Ops
.push_back(Builder
.CreateBitCast(BaseAddr
, Int8Ptr
));
16301 Ops
.push_back(Builder
.getInt32(LI
->getAlignment()));
16303 CallInst
*VldN
= Builder
.CreateCall(VldnFunc
, Ops
, "vldN");
16305 // Replace uses of each shufflevector with the corresponding vector loaded
16307 for (unsigned i
= 0; i
< Shuffles
.size(); i
++) {
16308 ShuffleVectorInst
*SV
= Shuffles
[i
];
16309 unsigned Index
= Indices
[i
];
16311 Value
*SubVec
= Builder
.CreateExtractValue(VldN
, Index
);
16313 // Convert the integer vector to pointer vector if the element is pointer.
16314 if (EltTy
->isPointerTy())
16315 SubVec
= Builder
.CreateIntToPtr(
16316 SubVec
, VectorType::get(SV
->getType()->getVectorElementType(),
16317 VecTy
->getVectorNumElements()));
16319 SubVecs
[SV
].push_back(SubVec
);
16323 // Replace uses of the shufflevector instructions with the sub-vectors
16324 // returned by the load intrinsic. If a shufflevector instruction is
16325 // associated with more than one sub-vector, those sub-vectors will be
16326 // concatenated into a single wide vector.
16327 for (ShuffleVectorInst
*SVI
: Shuffles
) {
16328 auto &SubVec
= SubVecs
[SVI
];
16330 SubVec
.size() > 1 ? concatenateVectors(Builder
, SubVec
) : SubVec
[0];
16331 SVI
->replaceAllUsesWith(WideVec
);
16337 /// Lower an interleaved store into a vstN intrinsic.
16339 /// E.g. Lower an interleaved store (Factor = 3):
16340 /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
16341 /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
16342 /// store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
16345 /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
16346 /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
16347 /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
16348 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
16350 /// Note that the new shufflevectors will be removed and we'll only generate one
16351 /// vst3 instruction in CodeGen.
16353 /// Example for a more general valid mask (Factor 3). Lower:
16354 /// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
16355 /// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
16356 /// store <12 x i32> %i.vec, <12 x i32>* %ptr
16359 /// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
16360 /// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
16361 /// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
16362 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
16363 bool ARMTargetLowering::lowerInterleavedStore(StoreInst
*SI
,
16364 ShuffleVectorInst
*SVI
,
16365 unsigned Factor
) const {
16366 assert(Factor
>= 2 && Factor
<= getMaxSupportedInterleaveFactor() &&
16367 "Invalid interleave factor");
16369 VectorType
*VecTy
= SVI
->getType();
16370 assert(VecTy
->getVectorNumElements() % Factor
== 0 &&
16371 "Invalid interleaved store");
16373 unsigned LaneLen
= VecTy
->getVectorNumElements() / Factor
;
16374 Type
*EltTy
= VecTy
->getVectorElementType();
16375 VectorType
*SubVecTy
= VectorType::get(EltTy
, LaneLen
);
16377 const DataLayout
&DL
= SI
->getModule()->getDataLayout();
16379 // Skip if we do not have NEON and skip illegal vector types. We can
16380 // "legalize" wide vector types into multiple interleaved accesses as long as
16381 // the vector types are divisible by 128.
16382 if (!Subtarget
->hasNEON() || !isLegalInterleavedAccessType(SubVecTy
, DL
))
16385 unsigned NumStores
= getNumInterleavedAccesses(SubVecTy
, DL
);
16387 Value
*Op0
= SVI
->getOperand(0);
16388 Value
*Op1
= SVI
->getOperand(1);
16389 IRBuilder
<> Builder(SI
);
16391 // StN intrinsics don't support pointer vectors as arguments. Convert pointer
16392 // vectors to integer vectors.
16393 if (EltTy
->isPointerTy()) {
16394 Type
*IntTy
= DL
.getIntPtrType(EltTy
);
16396 // Convert to the corresponding integer vector.
16398 VectorType::get(IntTy
, Op0
->getType()->getVectorNumElements());
16399 Op0
= Builder
.CreatePtrToInt(Op0
, IntVecTy
);
16400 Op1
= Builder
.CreatePtrToInt(Op1
, IntVecTy
);
16402 SubVecTy
= VectorType::get(IntTy
, LaneLen
);
16405 // The base address of the store.
16406 Value
*BaseAddr
= SI
->getPointerOperand();
16408 if (NumStores
> 1) {
16409 // If we're going to generate more than one store, reset the lane length
16410 // and sub-vector type to something legal.
16411 LaneLen
/= NumStores
;
16412 SubVecTy
= VectorType::get(SubVecTy
->getVectorElementType(), LaneLen
);
16414 // We will compute the pointer operand of each store from the original base
16415 // address using GEPs. Cast the base address to a pointer to the scalar
16417 BaseAddr
= Builder
.CreateBitCast(
16418 BaseAddr
, SubVecTy
->getVectorElementType()->getPointerTo(
16419 SI
->getPointerAddressSpace()));
16422 assert(isTypeLegal(EVT::getEVT(SubVecTy
)) && "Illegal vstN vector type!");
16424 auto Mask
= SVI
->getShuffleMask();
16426 Type
*Int8Ptr
= Builder
.getInt8PtrTy(SI
->getPointerAddressSpace());
16427 Type
*Tys
[] = {Int8Ptr
, SubVecTy
};
16428 static const Intrinsic::ID StoreInts
[3] = {Intrinsic::arm_neon_vst2
,
16429 Intrinsic::arm_neon_vst3
,
16430 Intrinsic::arm_neon_vst4
};
16432 for (unsigned StoreCount
= 0; StoreCount
< NumStores
; ++StoreCount
) {
16433 // If we generating more than one store, we compute the base address of
16434 // subsequent stores as an offset from the previous.
16435 if (StoreCount
> 0)
16436 BaseAddr
= Builder
.CreateConstGEP1_32(SubVecTy
->getVectorElementType(),
16437 BaseAddr
, LaneLen
* Factor
);
16439 SmallVector
<Value
*, 6> Ops
;
16440 Ops
.push_back(Builder
.CreateBitCast(BaseAddr
, Int8Ptr
));
16442 Function
*VstNFunc
=
16443 Intrinsic::getDeclaration(SI
->getModule(), StoreInts
[Factor
- 2], Tys
);
16445 // Split the shufflevector operands into sub vectors for the new vstN call.
16446 for (unsigned i
= 0; i
< Factor
; i
++) {
16447 unsigned IdxI
= StoreCount
* LaneLen
* Factor
+ i
;
16448 if (Mask
[IdxI
] >= 0) {
16449 Ops
.push_back(Builder
.CreateShuffleVector(
16450 Op0
, Op1
, createSequentialMask(Builder
, Mask
[IdxI
], LaneLen
, 0)));
16452 unsigned StartMask
= 0;
16453 for (unsigned j
= 1; j
< LaneLen
; j
++) {
16454 unsigned IdxJ
= StoreCount
* LaneLen
* Factor
+ j
;
16455 if (Mask
[IdxJ
* Factor
+ IdxI
] >= 0) {
16456 StartMask
= Mask
[IdxJ
* Factor
+ IdxI
] - IdxJ
;
16460 // Note: If all elements in a chunk are undefs, StartMask=0!
16461 // Note: Filling undef gaps with random elements is ok, since
16462 // those elements were being written anyway (with undefs).
16463 // In the case of all undefs we're defaulting to using elems from 0
16464 // Note: StartMask cannot be negative, it's checked in
16465 // isReInterleaveMask
16466 Ops
.push_back(Builder
.CreateShuffleVector(
16467 Op0
, Op1
, createSequentialMask(Builder
, StartMask
, LaneLen
, 0)));
16471 Ops
.push_back(Builder
.getInt32(SI
->getAlignment()));
16472 Builder
.CreateCall(VstNFunc
, Ops
);
16485 static bool isHomogeneousAggregate(Type
*Ty
, HABaseType
&Base
,
16486 uint64_t &Members
) {
16487 if (auto *ST
= dyn_cast
<StructType
>(Ty
)) {
16488 for (unsigned i
= 0; i
< ST
->getNumElements(); ++i
) {
16489 uint64_t SubMembers
= 0;
16490 if (!isHomogeneousAggregate(ST
->getElementType(i
), Base
, SubMembers
))
16492 Members
+= SubMembers
;
16494 } else if (auto *AT
= dyn_cast
<ArrayType
>(Ty
)) {
16495 uint64_t SubMembers
= 0;
16496 if (!isHomogeneousAggregate(AT
->getElementType(), Base
, SubMembers
))
16498 Members
+= SubMembers
* AT
->getNumElements();
16499 } else if (Ty
->isFloatTy()) {
16500 if (Base
!= HA_UNKNOWN
&& Base
!= HA_FLOAT
)
16504 } else if (Ty
->isDoubleTy()) {
16505 if (Base
!= HA_UNKNOWN
&& Base
!= HA_DOUBLE
)
16509 } else if (auto *VT
= dyn_cast
<VectorType
>(Ty
)) {
16516 return VT
->getBitWidth() == 64;
16518 return VT
->getBitWidth() == 128;
16520 switch (VT
->getBitWidth()) {
16533 return (Members
> 0 && Members
<= 4);
16536 /// Return the correct alignment for the current calling convention.
16538 ARMTargetLowering::getABIAlignmentForCallingConv(Type
*ArgTy
,
16539 DataLayout DL
) const {
16540 if (!ArgTy
->isVectorTy())
16541 return DL
.getABITypeAlignment(ArgTy
);
16543 // Avoid over-aligning vector parameters. It would require realigning the
16544 // stack and waste space for no real benefit.
16545 return std::min(DL
.getABITypeAlignment(ArgTy
), DL
.getStackAlignment());
16548 /// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
16549 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
16550 /// passing according to AAPCS rules.
16551 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
16552 Type
*Ty
, CallingConv::ID CallConv
, bool isVarArg
) const {
16553 if (getEffectiveCallingConv(CallConv
, isVarArg
) !=
16554 CallingConv::ARM_AAPCS_VFP
)
16557 HABaseType Base
= HA_UNKNOWN
;
16558 uint64_t Members
= 0;
16559 bool IsHA
= isHomogeneousAggregate(Ty
, Base
, Members
);
16560 LLVM_DEBUG(dbgs() << "isHA: " << IsHA
<< " "; Ty
->dump());
16562 bool IsIntArray
= Ty
->isArrayTy() && Ty
->getArrayElementType()->isIntegerTy();
16563 return IsHA
|| IsIntArray
;
16566 unsigned ARMTargetLowering::getExceptionPointerRegister(
16567 const Constant
*PersonalityFn
) const {
16568 // Platforms which do not use SjLj EH may return values in these registers
16569 // via the personality function.
16570 return Subtarget
->useSjLjEH() ? ARM::NoRegister
: ARM::R0
;
16573 unsigned ARMTargetLowering::getExceptionSelectorRegister(
16574 const Constant
*PersonalityFn
) const {
16575 // Platforms which do not use SjLj EH may return values in these registers
16576 // via the personality function.
16577 return Subtarget
->useSjLjEH() ? ARM::NoRegister
: ARM::R1
;
16580 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock
*Entry
) const {
16581 // Update IsSplitCSR in ARMFunctionInfo.
16582 ARMFunctionInfo
*AFI
= Entry
->getParent()->getInfo
<ARMFunctionInfo
>();
16583 AFI
->setIsSplitCSR(true);
16586 void ARMTargetLowering::insertCopiesSplitCSR(
16587 MachineBasicBlock
*Entry
,
16588 const SmallVectorImpl
<MachineBasicBlock
*> &Exits
) const {
16589 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
16590 const MCPhysReg
*IStart
= TRI
->getCalleeSavedRegsViaCopy(Entry
->getParent());
16594 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
16595 MachineRegisterInfo
*MRI
= &Entry
->getParent()->getRegInfo();
16596 MachineBasicBlock::iterator MBBI
= Entry
->begin();
16597 for (const MCPhysReg
*I
= IStart
; *I
; ++I
) {
16598 const TargetRegisterClass
*RC
= nullptr;
16599 if (ARM::GPRRegClass
.contains(*I
))
16600 RC
= &ARM::GPRRegClass
;
16601 else if (ARM::DPRRegClass
.contains(*I
))
16602 RC
= &ARM::DPRRegClass
;
16604 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
16606 Register NewVR
= MRI
->createVirtualRegister(RC
);
16607 // Create copy from CSR to a virtual register.
16608 // FIXME: this currently does not emit CFI pseudo-instructions, it works
16609 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
16610 // nounwind. If we want to generalize this later, we may need to emit
16611 // CFI pseudo-instructions.
16612 assert(Entry
->getParent()->getFunction().hasFnAttribute(
16613 Attribute::NoUnwind
) &&
16614 "Function should be nounwind in insertCopiesSplitCSR!");
16615 Entry
->addLiveIn(*I
);
16616 BuildMI(*Entry
, MBBI
, DebugLoc(), TII
->get(TargetOpcode::COPY
), NewVR
)
16619 // Insert the copy-back instructions right before the terminator.
16620 for (auto *Exit
: Exits
)
16621 BuildMI(*Exit
, Exit
->getFirstTerminator(), DebugLoc(),
16622 TII
->get(TargetOpcode::COPY
), *I
)
16627 void ARMTargetLowering::finalizeLowering(MachineFunction
&MF
) const {
16628 MF
.getFrameInfo().computeMaxCallFrameSize(MF
);
16629 TargetLoweringBase::finalizeLowering(MF
);