[AMDGPU] Check for immediate SrcC in mfma in AsmParser
[llvm-core.git] / lib / Target / ARM / ARMSubtarget.h
blobdde9dcbdb1c39d1e958a1e336af089d0f013b628
1 //===-- ARMSubtarget.h - Define Subtarget for the ARM ----------*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the ARM specific subclass of TargetSubtargetInfo.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_LIB_TARGET_ARM_ARMSUBTARGET_H
14 #define LLVM_LIB_TARGET_ARM_ARMSUBTARGET_H
16 #include "ARMBaseInstrInfo.h"
17 #include "ARMBaseRegisterInfo.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMFrameLowering.h"
20 #include "ARMISelLowering.h"
21 #include "ARMSelectionDAGInfo.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
24 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
25 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
26 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/TargetSubtargetInfo.h"
29 #include "llvm/MC/MCInstrItineraries.h"
30 #include "llvm/MC/MCSchedule.h"
31 #include "llvm/Target/TargetOptions.h"
32 #include <memory>
33 #include <string>
35 #define GET_SUBTARGETINFO_HEADER
36 #include "ARMGenSubtargetInfo.inc"
38 namespace llvm {
40 class ARMBaseTargetMachine;
41 class GlobalValue;
42 class StringRef;
44 class ARMSubtarget : public ARMGenSubtargetInfo {
45 protected:
46 enum ARMProcFamilyEnum {
47 Others,
49 CortexA12,
50 CortexA15,
51 CortexA17,
52 CortexA32,
53 CortexA35,
54 CortexA5,
55 CortexA53,
56 CortexA55,
57 CortexA57,
58 CortexA7,
59 CortexA72,
60 CortexA73,
61 CortexA75,
62 CortexA76,
63 CortexA8,
64 CortexA9,
65 CortexM3,
66 CortexR4,
67 CortexR4F,
68 CortexR5,
69 CortexR52,
70 CortexR7,
71 Exynos,
72 Krait,
73 Kryo,
74 NeoverseN1,
75 Swift
77 enum ARMProcClassEnum {
78 None,
80 AClass,
81 MClass,
82 RClass
84 enum ARMArchEnum {
85 ARMv2,
86 ARMv2a,
87 ARMv3,
88 ARMv3m,
89 ARMv4,
90 ARMv4t,
91 ARMv5,
92 ARMv5t,
93 ARMv5te,
94 ARMv5tej,
95 ARMv6,
96 ARMv6k,
97 ARMv6kz,
98 ARMv6m,
99 ARMv6sm,
100 ARMv6t2,
101 ARMv7a,
102 ARMv7em,
103 ARMv7m,
104 ARMv7r,
105 ARMv7ve,
106 ARMv81a,
107 ARMv82a,
108 ARMv83a,
109 ARMv84a,
110 ARMv85a,
111 ARMv8a,
112 ARMv8mBaseline,
113 ARMv8mMainline,
114 ARMv8r,
115 ARMv81mMainline,
118 public:
119 /// What kind of timing do load multiple/store multiple instructions have.
120 enum ARMLdStMultipleTiming {
121 /// Can load/store 2 registers/cycle.
122 DoubleIssue,
123 /// Can load/store 2 registers/cycle, but needs an extra cycle if the access
124 /// is not 64-bit aligned.
125 DoubleIssueCheckUnalignedAccess,
126 /// Can load/store 1 register/cycle.
127 SingleIssue,
128 /// Can load/store 1 register/cycle, but needs an extra cycle for address
129 /// computation and potentially also for register writeback.
130 SingleIssuePlusExtras,
133 protected:
134 /// ARMProcFamily - ARM processor family: Cortex-A8, Cortex-A9, and others.
135 ARMProcFamilyEnum ARMProcFamily = Others;
137 /// ARMProcClass - ARM processor class: None, AClass, RClass or MClass.
138 ARMProcClassEnum ARMProcClass = None;
140 /// ARMArch - ARM architecture
141 ARMArchEnum ARMArch = ARMv4t;
143 /// HasV4TOps, HasV5TOps, HasV5TEOps,
144 /// HasV6Ops, HasV6MOps, HasV6KOps, HasV6T2Ops, HasV7Ops, HasV8Ops -
145 /// Specify whether target support specific ARM ISA variants.
146 bool HasV4TOps = false;
147 bool HasV5TOps = false;
148 bool HasV5TEOps = false;
149 bool HasV6Ops = false;
150 bool HasV6MOps = false;
151 bool HasV6KOps = false;
152 bool HasV6T2Ops = false;
153 bool HasV7Ops = false;
154 bool HasV8Ops = false;
155 bool HasV8_1aOps = false;
156 bool HasV8_2aOps = false;
157 bool HasV8_3aOps = false;
158 bool HasV8_4aOps = false;
159 bool HasV8_5aOps = false;
160 bool HasV8MBaselineOps = false;
161 bool HasV8MMainlineOps = false;
162 bool HasV8_1MMainlineOps = false;
163 bool HasMVEIntegerOps = false;
164 bool HasMVEFloatOps = false;
166 /// HasVFPv2, HasVFPv3, HasVFPv4, HasFPARMv8, HasNEON - Specify what
167 /// floating point ISAs are supported.
168 bool HasVFPv2 = false;
169 bool HasVFPv3 = false;
170 bool HasVFPv4 = false;
171 bool HasFPARMv8 = false;
172 bool HasNEON = false;
173 bool HasFPRegs = false;
174 bool HasFPRegs16 = false;
175 bool HasFPRegs64 = false;
177 /// Versions of the VFP flags restricted to single precision, or to
178 /// 16 d-registers, or both.
179 bool HasVFPv2SP = false;
180 bool HasVFPv3SP = false;
181 bool HasVFPv4SP = false;
182 bool HasFPARMv8SP = false;
183 bool HasVFPv2D16 = false;
184 bool HasVFPv3D16 = false;
185 bool HasVFPv4D16 = false;
186 bool HasFPARMv8D16 = false;
187 bool HasVFPv2D16SP = false;
188 bool HasVFPv3D16SP = false;
189 bool HasVFPv4D16SP = false;
190 bool HasFPARMv8D16SP = false;
192 /// HasDotProd - True if the ARMv8.2A dot product instructions are supported.
193 bool HasDotProd = false;
195 /// UseNEONForSinglePrecisionFP - if the NEONFP attribute has been
196 /// specified. Use the method useNEONForSinglePrecisionFP() to
197 /// determine if NEON should actually be used.
198 bool UseNEONForSinglePrecisionFP = false;
200 /// UseMulOps - True if non-microcoded fused integer multiply-add and
201 /// multiply-subtract instructions should be used.
202 bool UseMulOps = false;
204 /// SlowFPVMLx - If the VFP2 / NEON instructions are available, indicates
205 /// whether the FP VML[AS] instructions are slow (if so, don't use them).
206 bool SlowFPVMLx = false;
208 /// HasVMLxForwarding - If true, NEON has special multiplier accumulator
209 /// forwarding to allow mul + mla being issued back to back.
210 bool HasVMLxForwarding = false;
212 /// SlowFPBrcc - True if floating point compare + branch is slow.
213 bool SlowFPBrcc = false;
215 /// InThumbMode - True if compiling for Thumb, false for ARM.
216 bool InThumbMode = false;
218 /// UseSoftFloat - True if we're using software floating point features.
219 bool UseSoftFloat = false;
221 /// UseMISched - True if MachineScheduler should be used for this subtarget.
222 bool UseMISched = false;
224 /// DisablePostRAScheduler - False if scheduling should happen again after
225 /// register allocation.
226 bool DisablePostRAScheduler = false;
228 /// UseAA - True if using AA during codegen (DAGCombine, MISched, etc)
229 bool UseAA = false;
231 /// HasThumb2 - True if Thumb2 instructions are supported.
232 bool HasThumb2 = false;
234 /// NoARM - True if subtarget does not support ARM mode execution.
235 bool NoARM = false;
237 /// ReserveR9 - True if R9 is not available as a general purpose register.
238 bool ReserveR9 = false;
240 /// NoMovt - True if MOVT / MOVW pairs are not used for materialization of
241 /// 32-bit imms (including global addresses).
242 bool NoMovt = false;
244 /// SupportsTailCall - True if the OS supports tail call. The dynamic linker
245 /// must be able to synthesize call stubs for interworking between ARM and
246 /// Thumb.
247 bool SupportsTailCall = false;
249 /// HasFP16 - True if subtarget supports half-precision FP conversions
250 bool HasFP16 = false;
252 /// HasFullFP16 - True if subtarget supports half-precision FP operations
253 bool HasFullFP16 = false;
255 /// HasFP16FML - True if subtarget supports half-precision FP fml operations
256 bool HasFP16FML = false;
258 /// HasD32 - True if subtarget has the full 32 double precision
259 /// FP registers for VFPv3.
260 bool HasD32 = false;
262 /// HasHardwareDivide - True if subtarget supports [su]div in Thumb mode
263 bool HasHardwareDivideInThumb = false;
265 /// HasHardwareDivideInARM - True if subtarget supports [su]div in ARM mode
266 bool HasHardwareDivideInARM = false;
268 /// HasDataBarrier - True if the subtarget supports DMB / DSB data barrier
269 /// instructions.
270 bool HasDataBarrier = false;
272 /// HasFullDataBarrier - True if the subtarget supports DFB data barrier
273 /// instruction.
274 bool HasFullDataBarrier = false;
276 /// HasV7Clrex - True if the subtarget supports CLREX instructions
277 bool HasV7Clrex = false;
279 /// HasAcquireRelease - True if the subtarget supports v8 atomics (LDA/LDAEX etc)
280 /// instructions
281 bool HasAcquireRelease = false;
283 /// Pref32BitThumb - If true, codegen would prefer 32-bit Thumb instructions
284 /// over 16-bit ones.
285 bool Pref32BitThumb = false;
287 /// AvoidCPSRPartialUpdate - If true, codegen would avoid using instructions
288 /// that partially update CPSR and add false dependency on the previous
289 /// CPSR setting instruction.
290 bool AvoidCPSRPartialUpdate = false;
292 /// CheapPredicableCPSRDef - If true, disable +1 predication cost
293 /// for instructions updating CPSR. Enabled for Cortex-A57.
294 bool CheapPredicableCPSRDef = false;
296 /// AvoidMOVsShifterOperand - If true, codegen should avoid using flag setting
297 /// movs with shifter operand (i.e. asr, lsl, lsr).
298 bool AvoidMOVsShifterOperand = false;
300 /// HasRetAddrStack - Some processors perform return stack prediction. CodeGen should
301 /// avoid issue "normal" call instructions to callees which do not return.
302 bool HasRetAddrStack = false;
304 /// HasBranchPredictor - True if the subtarget has a branch predictor. Having
305 /// a branch predictor or not changes the expected cost of taking a branch
306 /// which affects the choice of whether to use predicated instructions.
307 bool HasBranchPredictor = true;
309 /// HasMPExtension - True if the subtarget supports Multiprocessing
310 /// extension (ARMv7 only).
311 bool HasMPExtension = false;
313 /// HasVirtualization - True if the subtarget supports the Virtualization
314 /// extension.
315 bool HasVirtualization = false;
317 /// HasFP64 - If true, the floating point unit supports double
318 /// precision.
319 bool HasFP64 = false;
321 /// If true, the processor supports the Performance Monitor Extensions. These
322 /// include a generic cycle-counter as well as more fine-grained (often
323 /// implementation-specific) events.
324 bool HasPerfMon = false;
326 /// HasTrustZone - if true, processor supports TrustZone security extensions
327 bool HasTrustZone = false;
329 /// Has8MSecExt - if true, processor supports ARMv8-M Security Extensions
330 bool Has8MSecExt = false;
332 /// HasSHA2 - if true, processor supports SHA1 and SHA256
333 bool HasSHA2 = false;
335 /// HasAES - if true, processor supports AES
336 bool HasAES = false;
338 /// HasCrypto - if true, processor supports Cryptography extensions
339 bool HasCrypto = false;
341 /// HasCRC - if true, processor supports CRC instructions
342 bool HasCRC = false;
344 /// HasRAS - if true, the processor supports RAS extensions
345 bool HasRAS = false;
347 /// HasLOB - if true, the processor supports the Low Overhead Branch extension
348 bool HasLOB = false;
350 /// If true, the instructions "vmov.i32 d0, #0" and "vmov.i32 q0, #0" are
351 /// particularly effective at zeroing a VFP register.
352 bool HasZeroCycleZeroing = false;
354 /// HasFPAO - if true, processor does positive address offset computation faster
355 bool HasFPAO = false;
357 /// HasFuseAES - if true, processor executes back to back AES instruction
358 /// pairs faster.
359 bool HasFuseAES = false;
361 /// HasFuseLiterals - if true, processor executes back to back
362 /// bottom and top halves of literal generation faster.
363 bool HasFuseLiterals = false;
365 /// If true, if conversion may decide to leave some instructions unpredicated.
366 bool IsProfitableToUnpredicate = false;
368 /// If true, VMOV will be favored over VGETLNi32.
369 bool HasSlowVGETLNi32 = false;
371 /// If true, VMOV will be favored over VDUP.
372 bool HasSlowVDUP32 = false;
374 /// If true, VMOVSR will be favored over VMOVDRR.
375 bool PreferVMOVSR = false;
377 /// If true, ISHST barriers will be used for Release semantics.
378 bool PreferISHST = false;
380 /// If true, a VLDM/VSTM starting with an odd register number is considered to
381 /// take more microops than single VLDRS/VSTRS.
382 bool SlowOddRegister = false;
384 /// If true, loading into a D subregister will be penalized.
385 bool SlowLoadDSubregister = false;
387 /// If true, use a wider stride when allocating VFP registers.
388 bool UseWideStrideVFP = false;
390 /// If true, the AGU and NEON/FPU units are multiplexed.
391 bool HasMuxedUnits = false;
393 /// If true, VMOVS will never be widened to VMOVD.
394 bool DontWidenVMOVS = false;
396 /// If true, splat a register between VFP and NEON instructions.
397 bool SplatVFPToNeon = false;
399 /// If true, run the MLx expansion pass.
400 bool ExpandMLx = false;
402 /// If true, VFP/NEON VMLA/VMLS have special RAW hazards.
403 bool HasVMLxHazards = false;
405 // If true, read thread pointer from coprocessor register.
406 bool ReadTPHard = false;
408 /// If true, VMOVRS, VMOVSR and VMOVS will be converted from VFP to NEON.
409 bool UseNEONForFPMovs = false;
411 /// If true, VLDn instructions take an extra cycle for unaligned accesses.
412 bool CheckVLDnAlign = false;
414 /// If true, VFP instructions are not pipelined.
415 bool NonpipelinedVFP = false;
417 /// StrictAlign - If true, the subtarget disallows unaligned memory
418 /// accesses for some types. For details, see
419 /// ARMTargetLowering::allowsMisalignedMemoryAccesses().
420 bool StrictAlign = false;
422 /// RestrictIT - If true, the subtarget disallows generation of deprecated IT
423 /// blocks to conform to ARMv8 rule.
424 bool RestrictIT = false;
426 /// HasDSP - If true, the subtarget supports the DSP (saturating arith
427 /// and such) instructions.
428 bool HasDSP = false;
430 /// NaCl TRAP instruction is generated instead of the regular TRAP.
431 bool UseNaClTrap = false;
433 /// Generate calls via indirect call instructions.
434 bool GenLongCalls = false;
436 /// Generate code that does not contain data access to code sections.
437 bool GenExecuteOnly = false;
439 /// Target machine allowed unsafe FP math (such as use of NEON fp)
440 bool UnsafeFPMath = false;
442 /// UseSjLjEH - If true, the target uses SjLj exception handling (e.g. iOS).
443 bool UseSjLjEH = false;
445 /// Has speculation barrier
446 bool HasSB = false;
448 /// Implicitly convert an instruction to a different one if its immediates
449 /// cannot be encoded. For example, ADD r0, r1, #FFFFFFFF -> SUB r0, r1, #1.
450 bool NegativeImmediates = true;
452 /// stackAlignment - The minimum alignment known to hold of the stack frame on
453 /// entry to the function and which must be maintained by every function.
454 unsigned stackAlignment = 4;
456 /// CPUString - String name of used CPU.
457 std::string CPUString;
459 unsigned MaxInterleaveFactor = 1;
461 /// Clearance before partial register updates (in number of instructions)
462 unsigned PartialUpdateClearance = 0;
464 /// What kind of timing do load multiple/store multiple have (double issue,
465 /// single issue etc).
466 ARMLdStMultipleTiming LdStMultipleTiming = SingleIssue;
468 /// The adjustment that we need to apply to get the operand latency from the
469 /// operand cycle returned by the itinerary data for pre-ISel operands.
470 int PreISelOperandLatencyAdjustment = 2;
472 /// What alignment is preferred for loop bodies, in log2(bytes).
473 unsigned PrefLoopAlignment = 0;
475 /// The cost factor for MVE instructions, representing the multiple beats an
476 // instruction can take. The default is 2, (set in initSubtargetFeatures so
477 // that we can use subtarget features less than 2).
478 unsigned MVEVectorCostFactor = 0;
480 /// OptMinSize - True if we're optimising for minimum code size, equal to
481 /// the function attribute.
482 bool OptMinSize = false;
484 /// IsLittle - The target is Little Endian
485 bool IsLittle;
487 /// TargetTriple - What processor and OS we're targeting.
488 Triple TargetTriple;
490 /// SchedModel - Processor specific instruction costs.
491 MCSchedModel SchedModel;
493 /// Selected instruction itineraries (one entry per itinerary class.)
494 InstrItineraryData InstrItins;
496 /// Options passed via command line that could influence the target
497 const TargetOptions &Options;
499 const ARMBaseTargetMachine &TM;
501 public:
502 /// This constructor initializes the data members to match that
503 /// of the specified triple.
505 ARMSubtarget(const Triple &TT, const std::string &CPU, const std::string &FS,
506 const ARMBaseTargetMachine &TM, bool IsLittle,
507 bool MinSize = false);
509 /// getMaxInlineSizeThreshold - Returns the maximum memset / memcpy size
510 /// that still makes it profitable to inline the call.
511 unsigned getMaxInlineSizeThreshold() const {
512 return 64;
515 /// ParseSubtargetFeatures - Parses features string setting specified
516 /// subtarget options. Definition of function is auto generated by tblgen.
517 void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
519 /// initializeSubtargetDependencies - Initializes using a CPU and feature string
520 /// so that we can use initializer lists for subtarget initialization.
521 ARMSubtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS);
523 const ARMSelectionDAGInfo *getSelectionDAGInfo() const override {
524 return &TSInfo;
527 const ARMBaseInstrInfo *getInstrInfo() const override {
528 return InstrInfo.get();
531 const ARMTargetLowering *getTargetLowering() const override {
532 return &TLInfo;
535 const ARMFrameLowering *getFrameLowering() const override {
536 return FrameLowering.get();
539 const ARMBaseRegisterInfo *getRegisterInfo() const override {
540 return &InstrInfo->getRegisterInfo();
543 const CallLowering *getCallLowering() const override;
544 InstructionSelector *getInstructionSelector() const override;
545 const LegalizerInfo *getLegalizerInfo() const override;
546 const RegisterBankInfo *getRegBankInfo() const override;
548 private:
549 ARMSelectionDAGInfo TSInfo;
550 // Either Thumb1FrameLowering or ARMFrameLowering.
551 std::unique_ptr<ARMFrameLowering> FrameLowering;
552 // Either Thumb1InstrInfo or Thumb2InstrInfo.
553 std::unique_ptr<ARMBaseInstrInfo> InstrInfo;
554 ARMTargetLowering TLInfo;
556 /// GlobalISel related APIs.
557 std::unique_ptr<CallLowering> CallLoweringInfo;
558 std::unique_ptr<InstructionSelector> InstSelector;
559 std::unique_ptr<LegalizerInfo> Legalizer;
560 std::unique_ptr<RegisterBankInfo> RegBankInfo;
562 void initializeEnvironment();
563 void initSubtargetFeatures(StringRef CPU, StringRef FS);
564 ARMFrameLowering *initializeFrameLowering(StringRef CPU, StringRef FS);
566 public:
567 void computeIssueWidth();
569 bool hasV4TOps() const { return HasV4TOps; }
570 bool hasV5TOps() const { return HasV5TOps; }
571 bool hasV5TEOps() const { return HasV5TEOps; }
572 bool hasV6Ops() const { return HasV6Ops; }
573 bool hasV6MOps() const { return HasV6MOps; }
574 bool hasV6KOps() const { return HasV6KOps; }
575 bool hasV6T2Ops() const { return HasV6T2Ops; }
576 bool hasV7Ops() const { return HasV7Ops; }
577 bool hasV8Ops() const { return HasV8Ops; }
578 bool hasV8_1aOps() const { return HasV8_1aOps; }
579 bool hasV8_2aOps() const { return HasV8_2aOps; }
580 bool hasV8_3aOps() const { return HasV8_3aOps; }
581 bool hasV8_4aOps() const { return HasV8_4aOps; }
582 bool hasV8_5aOps() const { return HasV8_5aOps; }
583 bool hasV8MBaselineOps() const { return HasV8MBaselineOps; }
584 bool hasV8MMainlineOps() const { return HasV8MMainlineOps; }
585 bool hasV8_1MMainlineOps() const { return HasV8_1MMainlineOps; }
586 bool hasMVEIntegerOps() const { return HasMVEIntegerOps; }
587 bool hasMVEFloatOps() const { return HasMVEFloatOps; }
588 bool hasFPRegs() const { return HasFPRegs; }
589 bool hasFPRegs16() const { return HasFPRegs16; }
590 bool hasFPRegs64() const { return HasFPRegs64; }
592 /// @{
593 /// These functions are obsolete, please consider adding subtarget features
594 /// or properties instead of calling them.
595 bool isCortexA5() const { return ARMProcFamily == CortexA5; }
596 bool isCortexA7() const { return ARMProcFamily == CortexA7; }
597 bool isCortexA8() const { return ARMProcFamily == CortexA8; }
598 bool isCortexA9() const { return ARMProcFamily == CortexA9; }
599 bool isCortexA15() const { return ARMProcFamily == CortexA15; }
600 bool isSwift() const { return ARMProcFamily == Swift; }
601 bool isCortexM3() const { return ARMProcFamily == CortexM3; }
602 bool isLikeA9() const { return isCortexA9() || isCortexA15() || isKrait(); }
603 bool isCortexR5() const { return ARMProcFamily == CortexR5; }
604 bool isKrait() const { return ARMProcFamily == Krait; }
605 /// @}
607 bool hasARMOps() const { return !NoARM; }
609 bool hasVFP2Base() const { return HasVFPv2D16SP; }
610 bool hasVFP3Base() const { return HasVFPv3D16SP; }
611 bool hasVFP4Base() const { return HasVFPv4D16SP; }
612 bool hasFPARMv8Base() const { return HasFPARMv8D16SP; }
613 bool hasNEON() const { return HasNEON; }
614 bool hasSHA2() const { return HasSHA2; }
615 bool hasAES() const { return HasAES; }
616 bool hasCrypto() const { return HasCrypto; }
617 bool hasDotProd() const { return HasDotProd; }
618 bool hasCRC() const { return HasCRC; }
619 bool hasRAS() const { return HasRAS; }
620 bool hasLOB() const { return HasLOB; }
621 bool hasVirtualization() const { return HasVirtualization; }
623 bool useNEONForSinglePrecisionFP() const {
624 return hasNEON() && UseNEONForSinglePrecisionFP;
627 bool hasDivideInThumbMode() const { return HasHardwareDivideInThumb; }
628 bool hasDivideInARMMode() const { return HasHardwareDivideInARM; }
629 bool hasDataBarrier() const { return HasDataBarrier; }
630 bool hasFullDataBarrier() const { return HasFullDataBarrier; }
631 bool hasV7Clrex() const { return HasV7Clrex; }
632 bool hasAcquireRelease() const { return HasAcquireRelease; }
634 bool hasAnyDataBarrier() const {
635 return HasDataBarrier || (hasV6Ops() && !isThumb());
638 bool useMulOps() const { return UseMulOps; }
639 bool useFPVMLx() const { return !SlowFPVMLx; }
640 bool hasVMLxForwarding() const { return HasVMLxForwarding; }
641 bool isFPBrccSlow() const { return SlowFPBrcc; }
642 bool hasFP64() const { return HasFP64; }
643 bool hasPerfMon() const { return HasPerfMon; }
644 bool hasTrustZone() const { return HasTrustZone; }
645 bool has8MSecExt() const { return Has8MSecExt; }
646 bool hasZeroCycleZeroing() const { return HasZeroCycleZeroing; }
647 bool hasFPAO() const { return HasFPAO; }
648 bool isProfitableToUnpredicate() const { return IsProfitableToUnpredicate; }
649 bool hasSlowVGETLNi32() const { return HasSlowVGETLNi32; }
650 bool hasSlowVDUP32() const { return HasSlowVDUP32; }
651 bool preferVMOVSR() const { return PreferVMOVSR; }
652 bool preferISHSTBarriers() const { return PreferISHST; }
653 bool expandMLx() const { return ExpandMLx; }
654 bool hasVMLxHazards() const { return HasVMLxHazards; }
655 bool hasSlowOddRegister() const { return SlowOddRegister; }
656 bool hasSlowLoadDSubregister() const { return SlowLoadDSubregister; }
657 bool useWideStrideVFP() const { return UseWideStrideVFP; }
658 bool hasMuxedUnits() const { return HasMuxedUnits; }
659 bool dontWidenVMOVS() const { return DontWidenVMOVS; }
660 bool useSplatVFPToNeon() const { return SplatVFPToNeon; }
661 bool useNEONForFPMovs() const { return UseNEONForFPMovs; }
662 bool checkVLDnAccessAlignment() const { return CheckVLDnAlign; }
663 bool nonpipelinedVFP() const { return NonpipelinedVFP; }
664 bool prefers32BitThumb() const { return Pref32BitThumb; }
665 bool avoidCPSRPartialUpdate() const { return AvoidCPSRPartialUpdate; }
666 bool cheapPredicableCPSRDef() const { return CheapPredicableCPSRDef; }
667 bool avoidMOVsShifterOperand() const { return AvoidMOVsShifterOperand; }
668 bool hasRetAddrStack() const { return HasRetAddrStack; }
669 bool hasBranchPredictor() const { return HasBranchPredictor; }
670 bool hasMPExtension() const { return HasMPExtension; }
671 bool hasDSP() const { return HasDSP; }
672 bool useNaClTrap() const { return UseNaClTrap; }
673 bool useSjLjEH() const { return UseSjLjEH; }
674 bool hasSB() const { return HasSB; }
675 bool genLongCalls() const { return GenLongCalls; }
676 bool genExecuteOnly() const { return GenExecuteOnly; }
678 bool hasFP16() const { return HasFP16; }
679 bool hasD32() const { return HasD32; }
680 bool hasFullFP16() const { return HasFullFP16; }
681 bool hasFP16FML() const { return HasFP16FML; }
683 bool hasFuseAES() const { return HasFuseAES; }
684 bool hasFuseLiterals() const { return HasFuseLiterals; }
685 /// Return true if the CPU supports any kind of instruction fusion.
686 bool hasFusion() const { return hasFuseAES() || hasFuseLiterals(); }
688 const Triple &getTargetTriple() const { return TargetTriple; }
690 bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); }
691 bool isTargetIOS() const { return TargetTriple.isiOS(); }
692 bool isTargetWatchOS() const { return TargetTriple.isWatchOS(); }
693 bool isTargetWatchABI() const { return TargetTriple.isWatchABI(); }
694 bool isTargetLinux() const { return TargetTriple.isOSLinux(); }
695 bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); }
696 bool isTargetNetBSD() const { return TargetTriple.isOSNetBSD(); }
697 bool isTargetWindows() const { return TargetTriple.isOSWindows(); }
699 bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); }
700 bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); }
701 bool isTargetMachO() const { return TargetTriple.isOSBinFormatMachO(); }
703 // ARM EABI is the bare-metal EABI described in ARM ABI documents and
704 // can be accessed via -target arm-none-eabi. This is NOT GNUEABI.
705 // FIXME: Add a flag for bare-metal for that target and set Triple::EABI
706 // even for GNUEABI, so we can make a distinction here and still conform to
707 // the EABI on GNU (and Android) mode. This requires change in Clang, too.
708 // FIXME: The Darwin exception is temporary, while we move users to
709 // "*-*-*-macho" triples as quickly as possible.
710 bool isTargetAEABI() const {
711 return (TargetTriple.getEnvironment() == Triple::EABI ||
712 TargetTriple.getEnvironment() == Triple::EABIHF) &&
713 !isTargetDarwin() && !isTargetWindows();
715 bool isTargetGNUAEABI() const {
716 return (TargetTriple.getEnvironment() == Triple::GNUEABI ||
717 TargetTriple.getEnvironment() == Triple::GNUEABIHF) &&
718 !isTargetDarwin() && !isTargetWindows();
720 bool isTargetMuslAEABI() const {
721 return (TargetTriple.getEnvironment() == Triple::MuslEABI ||
722 TargetTriple.getEnvironment() == Triple::MuslEABIHF) &&
723 !isTargetDarwin() && !isTargetWindows();
726 // ARM Targets that support EHABI exception handling standard
727 // Darwin uses SjLj. Other targets might need more checks.
728 bool isTargetEHABICompatible() const {
729 return (TargetTriple.getEnvironment() == Triple::EABI ||
730 TargetTriple.getEnvironment() == Triple::GNUEABI ||
731 TargetTriple.getEnvironment() == Triple::MuslEABI ||
732 TargetTriple.getEnvironment() == Triple::EABIHF ||
733 TargetTriple.getEnvironment() == Triple::GNUEABIHF ||
734 TargetTriple.getEnvironment() == Triple::MuslEABIHF ||
735 isTargetAndroid()) &&
736 !isTargetDarwin() && !isTargetWindows();
739 bool isTargetHardFloat() const;
741 bool isTargetAndroid() const { return TargetTriple.isAndroid(); }
743 bool isXRaySupported() const override;
745 bool isAPCS_ABI() const;
746 bool isAAPCS_ABI() const;
747 bool isAAPCS16_ABI() const;
749 bool isROPI() const;
750 bool isRWPI() const;
752 bool useMachineScheduler() const { return UseMISched; }
753 bool disablePostRAScheduler() const { return DisablePostRAScheduler; }
754 bool useSoftFloat() const { return UseSoftFloat; }
755 bool isThumb() const { return InThumbMode; }
756 bool hasMinSize() const { return OptMinSize; }
757 bool isThumb1Only() const { return InThumbMode && !HasThumb2; }
758 bool isThumb2() const { return InThumbMode && HasThumb2; }
759 bool hasThumb2() const { return HasThumb2; }
760 bool isMClass() const { return ARMProcClass == MClass; }
761 bool isRClass() const { return ARMProcClass == RClass; }
762 bool isAClass() const { return ARMProcClass == AClass; }
763 bool isReadTPHard() const { return ReadTPHard; }
765 bool isR9Reserved() const {
766 return isTargetMachO() ? (ReserveR9 || !HasV6Ops) : ReserveR9;
769 bool useR7AsFramePointer() const {
770 return isTargetDarwin() || (!isTargetWindows() && isThumb());
773 /// Returns true if the frame setup is split into two separate pushes (first
774 /// r0-r7,lr then r8-r11), principally so that the frame pointer is adjacent
775 /// to lr. This is always required on Thumb1-only targets, as the push and
776 /// pop instructions can't access the high registers.
777 bool splitFramePushPop(const MachineFunction &MF) const {
778 return (useR7AsFramePointer() &&
779 MF.getTarget().Options.DisableFramePointerElim(MF)) ||
780 isThumb1Only();
783 bool useStride4VFPs() const;
785 bool useMovt() const;
787 bool supportsTailCall() const { return SupportsTailCall; }
789 bool allowsUnalignedMem() const { return !StrictAlign; }
791 bool restrictIT() const { return RestrictIT; }
793 const std::string & getCPUString() const { return CPUString; }
795 bool isLittle() const { return IsLittle; }
797 unsigned getMispredictionPenalty() const;
799 /// Returns true if machine scheduler should be enabled.
800 bool enableMachineScheduler() const override;
802 /// True for some subtargets at > -O0.
803 bool enablePostRAScheduler() const override;
805 /// Enable use of alias analysis during code generation (during MI
806 /// scheduling, DAGCombine, etc.).
807 bool useAA() const override { return UseAA; }
809 // enableAtomicExpand- True if we need to expand our atomics.
810 bool enableAtomicExpand() const override;
812 /// getInstrItins - Return the instruction itineraries based on subtarget
813 /// selection.
814 const InstrItineraryData *getInstrItineraryData() const override {
815 return &InstrItins;
818 /// getStackAlignment - Returns the minimum alignment known to hold of the
819 /// stack frame on entry to the function and which must be maintained by every
820 /// function for this subtarget.
821 unsigned getStackAlignment() const { return stackAlignment; }
823 unsigned getMaxInterleaveFactor() const { return MaxInterleaveFactor; }
825 unsigned getPartialUpdateClearance() const { return PartialUpdateClearance; }
827 ARMLdStMultipleTiming getLdStMultipleTiming() const {
828 return LdStMultipleTiming;
831 int getPreISelOperandLatencyAdjustment() const {
832 return PreISelOperandLatencyAdjustment;
835 /// True if the GV will be accessed via an indirect symbol.
836 bool isGVIndirectSymbol(const GlobalValue *GV) const;
838 /// Returns the constant pool modifier needed to access the GV.
839 bool isGVInGOT(const GlobalValue *GV) const;
841 /// True if fast-isel is used.
842 bool useFastISel() const;
844 /// Returns the correct return opcode for the current feature set.
845 /// Use BX if available to allow mixing thumb/arm code, but fall back
846 /// to plain mov pc,lr on ARMv4.
847 unsigned getReturnOpcode() const {
848 if (isThumb())
849 return ARM::tBX_RET;
850 if (hasV4TOps())
851 return ARM::BX_RET;
852 return ARM::MOVPCLR;
855 /// Allow movt+movw for PIC global address calculation.
856 /// ELF does not have GOT relocations for movt+movw.
857 /// ROPI does not use GOT.
858 bool allowPositionIndependentMovt() const {
859 return isROPI() || !isTargetELF();
862 unsigned getPrefLoopAlignment() const {
863 return PrefLoopAlignment;
866 unsigned getMVEVectorCostFactor() const { return MVEVectorCostFactor; }
868 bool ignoreCSRForAllocationOrder(const MachineFunction &MF,
869 unsigned PhysReg) const override;
870 unsigned getGPRAllocationOrder(const MachineFunction &MF) const;
873 } // end namespace llvm
875 #endif // LLVM_LIB_TARGET_ARM_ARMSUBTARGET_H