1 //===-- X86FixupLEAs.cpp - use or replace LEA instructions -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the pass that finds instructions that can be
10 // re-written as LEA instructions in order to reduce pipeline delays.
11 // It replaces LEAs with ADD/INC/DEC when that is better for size/speed.
13 //===----------------------------------------------------------------------===//
16 #include "X86InstrInfo.h"
17 #include "X86Subtarget.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/MachineFunctionPass.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/Passes.h"
22 #include "llvm/CodeGen/TargetSchedule.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/raw_ostream.h"
27 #define FIXUPLEA_DESC "X86 LEA Fixup"
28 #define FIXUPLEA_NAME "x86-fixup-LEAs"
30 #define DEBUG_TYPE FIXUPLEA_NAME
32 STATISTIC(NumLEAs
, "Number of LEA instructions created");
35 class FixupLEAPass
: public MachineFunctionPass
{
36 enum RegUsageState
{ RU_NotUsed
, RU_Write
, RU_Read
};
38 /// Given a machine register, look for the instruction
39 /// which writes it in the current basic block. If found,
40 /// try to replace it with an equivalent LEA instruction.
41 /// If replacement succeeds, then also process the newly created
43 void seekLEAFixup(MachineOperand
&p
, MachineBasicBlock::iterator
&I
,
44 MachineBasicBlock
&MBB
);
46 /// Given a memory access or LEA instruction
47 /// whose address mode uses a base and/or index register, look for
48 /// an opportunity to replace the instruction which sets the base or index
49 /// register with an equivalent LEA instruction.
50 void processInstruction(MachineBasicBlock::iterator
&I
,
51 MachineBasicBlock
&MBB
);
53 /// Given a LEA instruction which is unprofitable
54 /// on SlowLEA targets try to replace it with an equivalent ADD instruction.
55 void processInstructionForSlowLEA(MachineBasicBlock::iterator
&I
,
56 MachineBasicBlock
&MBB
);
58 /// Given a LEA instruction which is unprofitable
59 /// on SNB+ try to replace it with other instructions.
60 /// According to Intel's Optimization Reference Manual:
61 /// " For LEA instructions with three source operands and some specific
62 /// situations, instruction latency has increased to 3 cycles, and must
63 /// dispatch via port 1:
64 /// - LEA that has all three source operands: base, index, and offset
65 /// - LEA that uses base and index registers where the base is EBP, RBP,
67 /// - LEA that uses RIP relative addressing mode
68 /// - LEA that uses 16-bit addressing mode "
69 /// This function currently handles the first 2 cases only.
70 MachineInstr
*processInstrForSlow3OpLEA(MachineInstr
&MI
,
71 MachineBasicBlock
&MBB
);
73 /// Look for LEAs that are really two address LEAs that we might be able to
74 /// turn into regular ADD instructions.
75 bool optTwoAddrLEA(MachineBasicBlock::iterator
&I
,
76 MachineBasicBlock
&MBB
, bool OptIncDec
,
77 bool UseLEAForSP
) const;
79 /// Determine if an instruction references a machine register
80 /// and, if so, whether it reads or writes the register.
81 RegUsageState
usesRegister(MachineOperand
&p
, MachineBasicBlock::iterator I
);
83 /// Step backwards through a basic block, looking
84 /// for an instruction which writes a register within
85 /// a maximum of INSTR_DISTANCE_THRESHOLD instruction latency cycles.
86 MachineBasicBlock::iterator
searchBackwards(MachineOperand
&p
,
87 MachineBasicBlock::iterator
&I
,
88 MachineBasicBlock
&MBB
);
90 /// if an instruction can be converted to an
91 /// equivalent LEA, insert the new instruction into the basic block
92 /// and return a pointer to it. Otherwise, return zero.
93 MachineInstr
*postRAConvertToLEA(MachineBasicBlock
&MBB
,
94 MachineBasicBlock::iterator
&MBBI
) const;
99 StringRef
getPassName() const override
{ return FIXUPLEA_DESC
; }
101 FixupLEAPass() : MachineFunctionPass(ID
) { }
103 /// Loop over all of the basic blocks,
104 /// replacing instructions by equivalent LEA instructions
105 /// if needed and when possible.
106 bool runOnMachineFunction(MachineFunction
&MF
) override
;
108 // This pass runs after regalloc and doesn't support VReg operands.
109 MachineFunctionProperties
getRequiredProperties() const override
{
110 return MachineFunctionProperties().set(
111 MachineFunctionProperties::Property::NoVRegs
);
115 TargetSchedModel TSM
;
116 const X86InstrInfo
*TII
;
117 const X86RegisterInfo
*TRI
;
121 char FixupLEAPass::ID
= 0;
123 INITIALIZE_PASS(FixupLEAPass
, FIXUPLEA_NAME
, FIXUPLEA_DESC
, false, false)
126 FixupLEAPass::postRAConvertToLEA(MachineBasicBlock
&MBB
,
127 MachineBasicBlock::iterator
&MBBI
) const {
128 MachineInstr
&MI
= *MBBI
;
129 switch (MI
.getOpcode()) {
132 const MachineOperand
&Src
= MI
.getOperand(1);
133 const MachineOperand
&Dest
= MI
.getOperand(0);
134 MachineInstr
*NewMI
=
135 BuildMI(MBB
, MBBI
, MI
.getDebugLoc(),
136 TII
->get(MI
.getOpcode() == X86::MOV32rr
? X86::LEA32r
148 if (!MI
.isConvertibleTo3Addr())
151 switch (MI
.getOpcode()) {
153 // Only convert instructions that we've verified are safe.
157 case X86::ADD64ri32_DB
:
158 case X86::ADD64ri8_DB
:
161 case X86::ADD32ri_DB
:
162 case X86::ADD32ri8_DB
:
163 if (!MI
.getOperand(2).isImm()) {
164 // convertToThreeAddress will call getImm()
165 // which requires isImm() to be true
176 case X86::ADD64rr_DB
:
178 case X86::ADD32rr_DB
:
179 // These instructions are all fine to convert.
182 MachineFunction::iterator MFI
= MBB
.getIterator();
183 return TII
->convertToThreeAddress(MFI
, MI
, nullptr);
186 FunctionPass
*llvm::createX86FixupLEAs() { return new FixupLEAPass(); }
188 static bool isLEA(unsigned Opcode
) {
189 return Opcode
== X86::LEA32r
|| Opcode
== X86::LEA64r
||
190 Opcode
== X86::LEA64_32r
;
193 bool FixupLEAPass::runOnMachineFunction(MachineFunction
&MF
) {
194 if (skipFunction(MF
.getFunction()))
197 const X86Subtarget
&ST
= MF
.getSubtarget
<X86Subtarget
>();
198 bool IsSlowLEA
= ST
.slowLEA();
199 bool IsSlow3OpsLEA
= ST
.slow3OpsLEA();
200 bool LEAUsesAG
= ST
.LEAusesAG();
202 bool OptIncDec
= !ST
.slowIncDec() || MF
.getFunction().hasOptSize();
203 bool UseLEAForSP
= ST
.useLeaForSP();
206 TII
= ST
.getInstrInfo();
207 TRI
= ST
.getRegisterInfo();
209 LLVM_DEBUG(dbgs() << "Start X86FixupLEAs\n";);
210 for (MachineBasicBlock
&MBB
: MF
) {
211 // First pass. Try to remove or optimize existing LEAs.
212 for (MachineBasicBlock::iterator I
= MBB
.begin(); I
!= MBB
.end(); ++I
) {
213 if (!isLEA(I
->getOpcode()))
216 if (optTwoAddrLEA(I
, MBB
, OptIncDec
, UseLEAForSP
))
220 processInstructionForSlowLEA(I
, MBB
);
221 } else if (IsSlow3OpsLEA
) {
222 if (auto *NewMI
= processInstrForSlow3OpLEA(*I
, MBB
)) {
229 // Second pass for creating LEAs. This may reverse some of the
230 // transformations above.
232 for (MachineBasicBlock::iterator I
= MBB
.begin(); I
!= MBB
.end(); ++I
)
233 processInstruction(I
, MBB
);
237 LLVM_DEBUG(dbgs() << "End X86FixupLEAs\n";);
242 FixupLEAPass::RegUsageState
243 FixupLEAPass::usesRegister(MachineOperand
&p
, MachineBasicBlock::iterator I
) {
244 RegUsageState RegUsage
= RU_NotUsed
;
245 MachineInstr
&MI
= *I
;
247 for (unsigned i
= 0; i
< MI
.getNumOperands(); ++i
) {
248 MachineOperand
&opnd
= MI
.getOperand(i
);
249 if (opnd
.isReg() && opnd
.getReg() == p
.getReg()) {
258 /// getPreviousInstr - Given a reference to an instruction in a basic
259 /// block, return a reference to the previous instruction in the block,
260 /// wrapping around to the last instruction of the block if the block
261 /// branches to itself.
262 static inline bool getPreviousInstr(MachineBasicBlock::iterator
&I
,
263 MachineBasicBlock
&MBB
) {
264 if (I
== MBB
.begin()) {
265 if (MBB
.isPredecessor(&MBB
)) {
275 MachineBasicBlock::iterator
276 FixupLEAPass::searchBackwards(MachineOperand
&p
, MachineBasicBlock::iterator
&I
,
277 MachineBasicBlock
&MBB
) {
278 int InstrDistance
= 1;
279 MachineBasicBlock::iterator CurInst
;
280 static const int INSTR_DISTANCE_THRESHOLD
= 5;
284 Found
= getPreviousInstr(CurInst
, MBB
);
285 while (Found
&& I
!= CurInst
) {
286 if (CurInst
->isCall() || CurInst
->isInlineAsm())
288 if (InstrDistance
> INSTR_DISTANCE_THRESHOLD
)
289 break; // too far back to make a difference
290 if (usesRegister(p
, CurInst
) == RU_Write
) {
293 InstrDistance
+= TSM
.computeInstrLatency(&*CurInst
);
294 Found
= getPreviousInstr(CurInst
, MBB
);
296 return MachineBasicBlock::iterator();
299 static inline bool isInefficientLEAReg(unsigned Reg
) {
300 return Reg
== X86::EBP
|| Reg
== X86::RBP
||
301 Reg
== X86::R13D
|| Reg
== X86::R13
;
304 static inline bool isRegOperand(const MachineOperand
&Op
) {
305 return Op
.isReg() && Op
.getReg() != X86::NoRegister
;
308 /// Returns true if this LEA uses base an index registers, and the base register
309 /// is known to be inefficient for the subtarget.
310 // TODO: use a variant scheduling class to model the latency profile
311 // of LEA instructions, and implement this logic as a scheduling predicate.
312 static inline bool hasInefficientLEABaseReg(const MachineOperand
&Base
,
313 const MachineOperand
&Index
) {
314 return Base
.isReg() && isInefficientLEAReg(Base
.getReg()) &&
318 static inline bool hasLEAOffset(const MachineOperand
&Offset
) {
319 return (Offset
.isImm() && Offset
.getImm() != 0) || Offset
.isGlobal();
322 static inline unsigned getADDrrFromLEA(unsigned LEAOpcode
) {
325 llvm_unreachable("Unexpected LEA instruction");
334 static inline unsigned getADDriFromLEA(unsigned LEAOpcode
,
335 const MachineOperand
&Offset
) {
336 bool IsInt8
= Offset
.isImm() && isInt
<8>(Offset
.getImm());
339 llvm_unreachable("Unexpected LEA instruction");
342 return IsInt8
? X86::ADD32ri8
: X86::ADD32ri
;
344 return IsInt8
? X86::ADD64ri8
: X86::ADD64ri32
;
348 static inline unsigned getINCDECFromLEA(unsigned LEAOpcode
, bool IsINC
) {
351 llvm_unreachable("Unexpected LEA instruction");
354 return IsINC
? X86::INC32r
: X86::DEC32r
;
356 return IsINC
? X86::INC64r
: X86::DEC64r
;
360 bool FixupLEAPass::optTwoAddrLEA(MachineBasicBlock::iterator
&I
,
361 MachineBasicBlock
&MBB
, bool OptIncDec
,
362 bool UseLEAForSP
) const {
363 MachineInstr
&MI
= *I
;
365 const MachineOperand
&Base
= MI
.getOperand(1 + X86::AddrBaseReg
);
366 const MachineOperand
&Scale
= MI
.getOperand(1 + X86::AddrScaleAmt
);
367 const MachineOperand
&Index
= MI
.getOperand(1 + X86::AddrIndexReg
);
368 const MachineOperand
&Disp
= MI
.getOperand(1 + X86::AddrDisp
);
369 const MachineOperand
&Segment
= MI
.getOperand(1 + X86::AddrSegmentReg
);
371 if (Segment
.getReg() != 0 || !Disp
.isImm() || Scale
.getImm() > 1 ||
372 !TII
->isSafeToClobberEFLAGS(MBB
, I
))
375 Register DestReg
= MI
.getOperand(0).getReg();
376 Register BaseReg
= Base
.getReg();
377 Register IndexReg
= Index
.getReg();
379 // Don't change stack adjustment LEAs.
380 if (UseLEAForSP
&& (DestReg
== X86::ESP
|| DestReg
== X86::RSP
))
383 // LEA64_32 has 64-bit operands but 32-bit result.
384 if (MI
.getOpcode() == X86::LEA64_32r
) {
386 BaseReg
= TRI
->getSubReg(BaseReg
, X86::sub_32bit
);
388 IndexReg
= TRI
->getSubReg(IndexReg
, X86::sub_32bit
);
391 MachineInstr
*NewMI
= nullptr;
393 // Look for lea(%reg1, %reg2), %reg1 or lea(%reg2, %reg1), %reg1
394 // which can be turned into add %reg2, %reg1
395 if (BaseReg
!= 0 && IndexReg
!= 0 && Disp
.getImm() == 0 &&
396 (DestReg
== BaseReg
|| DestReg
== IndexReg
)) {
397 unsigned NewOpcode
= getADDrrFromLEA(MI
.getOpcode());
398 if (DestReg
!= BaseReg
)
399 std::swap(BaseReg
, IndexReg
);
401 if (MI
.getOpcode() == X86::LEA64_32r
) {
402 // TODO: Do we need the super register implicit use?
403 NewMI
= BuildMI(MBB
, I
, MI
.getDebugLoc(), TII
->get(NewOpcode
), DestReg
)
404 .addReg(BaseReg
).addReg(IndexReg
)
405 .addReg(Base
.getReg(), RegState::Implicit
)
406 .addReg(Index
.getReg(), RegState::Implicit
);
408 NewMI
= BuildMI(MBB
, I
, MI
.getDebugLoc(), TII
->get(NewOpcode
), DestReg
)
409 .addReg(BaseReg
).addReg(IndexReg
);
411 } else if (DestReg
== BaseReg
&& IndexReg
== 0) {
412 // This is an LEA with only a base register and a displacement,
413 // We can use ADDri or INC/DEC.
415 // Does this LEA have one these forms:
417 // lea %reg, -1(%reg)
418 if (OptIncDec
&& (Disp
.getImm() == 1 || Disp
.getImm() == -1)) {
419 bool IsINC
= Disp
.getImm() == 1;
420 unsigned NewOpcode
= getINCDECFromLEA(MI
.getOpcode(), IsINC
);
422 if (MI
.getOpcode() == X86::LEA64_32r
) {
423 // TODO: Do we need the super register implicit use?
424 NewMI
= BuildMI(MBB
, I
, MI
.getDebugLoc(), TII
->get(NewOpcode
), DestReg
)
425 .addReg(BaseReg
).addReg(Base
.getReg(), RegState::Implicit
);
427 NewMI
= BuildMI(MBB
, I
, MI
.getDebugLoc(), TII
->get(NewOpcode
), DestReg
)
431 unsigned NewOpcode
= getADDriFromLEA(MI
.getOpcode(), Disp
);
432 if (MI
.getOpcode() == X86::LEA64_32r
) {
433 // TODO: Do we need the super register implicit use?
434 NewMI
= BuildMI(MBB
, I
, MI
.getDebugLoc(), TII
->get(NewOpcode
), DestReg
)
435 .addReg(BaseReg
).addImm(Disp
.getImm())
436 .addReg(Base
.getReg(), RegState::Implicit
);
438 NewMI
= BuildMI(MBB
, I
, MI
.getDebugLoc(), TII
->get(NewOpcode
), DestReg
)
439 .addReg(BaseReg
).addImm(Disp
.getImm());
450 void FixupLEAPass::processInstruction(MachineBasicBlock::iterator
&I
,
451 MachineBasicBlock
&MBB
) {
452 // Process a load, store, or LEA instruction.
453 MachineInstr
&MI
= *I
;
454 const MCInstrDesc
&Desc
= MI
.getDesc();
455 int AddrOffset
= X86II::getMemoryOperandNo(Desc
.TSFlags
);
456 if (AddrOffset
>= 0) {
457 AddrOffset
+= X86II::getOperandBias(Desc
);
458 MachineOperand
&p
= MI
.getOperand(AddrOffset
+ X86::AddrBaseReg
);
459 if (p
.isReg() && p
.getReg() != X86::ESP
) {
460 seekLEAFixup(p
, I
, MBB
);
462 MachineOperand
&q
= MI
.getOperand(AddrOffset
+ X86::AddrIndexReg
);
463 if (q
.isReg() && q
.getReg() != X86::ESP
) {
464 seekLEAFixup(q
, I
, MBB
);
469 void FixupLEAPass::seekLEAFixup(MachineOperand
&p
,
470 MachineBasicBlock::iterator
&I
,
471 MachineBasicBlock
&MBB
) {
472 MachineBasicBlock::iterator MBI
= searchBackwards(p
, I
, MBB
);
473 if (MBI
!= MachineBasicBlock::iterator()) {
474 MachineInstr
*NewMI
= postRAConvertToLEA(MBB
, MBI
);
477 LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MBI
->dump(););
478 // now to replace with an equivalent LEA...
479 LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: "; NewMI
->dump(););
481 MachineBasicBlock::iterator J
=
482 static_cast<MachineBasicBlock::iterator
>(NewMI
);
483 processInstruction(J
, MBB
);
488 void FixupLEAPass::processInstructionForSlowLEA(MachineBasicBlock::iterator
&I
,
489 MachineBasicBlock
&MBB
) {
490 MachineInstr
&MI
= *I
;
491 const unsigned Opcode
= MI
.getOpcode();
493 const MachineOperand
&Dst
= MI
.getOperand(0);
494 const MachineOperand
&Base
= MI
.getOperand(1 + X86::AddrBaseReg
);
495 const MachineOperand
&Scale
= MI
.getOperand(1 + X86::AddrScaleAmt
);
496 const MachineOperand
&Index
= MI
.getOperand(1 + X86::AddrIndexReg
);
497 const MachineOperand
&Offset
= MI
.getOperand(1 + X86::AddrDisp
);
498 const MachineOperand
&Segment
= MI
.getOperand(1 + X86::AddrSegmentReg
);
500 if (Segment
.getReg() != 0 || !Offset
.isImm() ||
501 !TII
->isSafeToClobberEFLAGS(MBB
, I
))
503 const Register DstR
= Dst
.getReg();
504 const Register SrcR1
= Base
.getReg();
505 const Register SrcR2
= Index
.getReg();
506 if ((SrcR1
== 0 || SrcR1
!= DstR
) && (SrcR2
== 0 || SrcR2
!= DstR
))
508 if (Scale
.getImm() > 1)
510 LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; I
->dump(););
511 LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: ";);
512 MachineInstr
*NewMI
= nullptr;
513 // Make ADD instruction for two registers writing to LEA's destination
514 if (SrcR1
!= 0 && SrcR2
!= 0) {
515 const MCInstrDesc
&ADDrr
= TII
->get(getADDrrFromLEA(Opcode
));
516 const MachineOperand
&Src
= SrcR1
== DstR
? Index
: Base
;
518 BuildMI(MBB
, I
, MI
.getDebugLoc(), ADDrr
, DstR
).addReg(DstR
).add(Src
);
519 LLVM_DEBUG(NewMI
->dump(););
521 // Make ADD instruction for immediate
522 if (Offset
.getImm() != 0) {
523 const MCInstrDesc
&ADDri
=
524 TII
->get(getADDriFromLEA(Opcode
, Offset
));
525 const MachineOperand
&SrcR
= SrcR1
== DstR
? Base
: Index
;
526 NewMI
= BuildMI(MBB
, I
, MI
.getDebugLoc(), ADDri
, DstR
)
528 .addImm(Offset
.getImm());
529 LLVM_DEBUG(NewMI
->dump(););
538 FixupLEAPass::processInstrForSlow3OpLEA(MachineInstr
&MI
,
539 MachineBasicBlock
&MBB
) {
540 const unsigned LEAOpcode
= MI
.getOpcode();
542 const MachineOperand
&Dst
= MI
.getOperand(0);
543 const MachineOperand
&Base
= MI
.getOperand(1 + X86::AddrBaseReg
);
544 const MachineOperand
&Scale
= MI
.getOperand(1 + X86::AddrScaleAmt
);
545 const MachineOperand
&Index
= MI
.getOperand(1 + X86::AddrIndexReg
);
546 const MachineOperand
&Offset
= MI
.getOperand(1 + X86::AddrDisp
);
547 const MachineOperand
&Segment
= MI
.getOperand(1 + X86::AddrSegmentReg
);
549 if (!(TII
->isThreeOperandsLEA(MI
) ||
550 hasInefficientLEABaseReg(Base
, Index
)) ||
551 !TII
->isSafeToClobberEFLAGS(MBB
, MI
) ||
552 Segment
.getReg() != X86::NoRegister
)
555 Register DstR
= Dst
.getReg();
556 Register BaseR
= Base
.getReg();
557 Register IndexR
= Index
.getReg();
559 (LEAOpcode
== X86::LEA64_32r
) ? Register(getX86SubSuperRegister(DstR
, 64))
561 bool IsScale1
= Scale
.getImm() == 1;
562 bool IsInefficientBase
= isInefficientLEAReg(BaseR
);
563 bool IsInefficientIndex
= isInefficientLEAReg(IndexR
);
565 // Skip these cases since it takes more than 2 instructions
566 // to replace the LEA instruction.
567 if (IsInefficientBase
&& SSDstR
== BaseR
&& !IsScale1
)
569 if (LEAOpcode
== X86::LEA64_32r
&& IsInefficientBase
&&
570 (IsInefficientIndex
|| !IsScale1
))
573 const DebugLoc DL
= MI
.getDebugLoc();
574 const MCInstrDesc
&ADDrr
= TII
->get(getADDrrFromLEA(LEAOpcode
));
575 const MCInstrDesc
&ADDri
= TII
->get(getADDriFromLEA(LEAOpcode
, Offset
));
577 LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MI
.dump(););
578 LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: ";);
580 // First try to replace LEA with one or two (for the 3-op LEA case)
582 // 1.lea (%base,%index,1), %base => add %index,%base
583 // 2.lea (%base,%index,1), %index => add %base,%index
584 if (IsScale1
&& (DstR
== BaseR
|| DstR
== IndexR
)) {
585 const MachineOperand
&Src
= DstR
== BaseR
? Index
: Base
;
586 MachineInstr
*NewMI
=
587 BuildMI(MBB
, MI
, DL
, ADDrr
, DstR
).addReg(DstR
).add(Src
);
588 LLVM_DEBUG(NewMI
->dump(););
589 // Create ADD instruction for the Offset in case of 3-Ops LEA.
590 if (hasLEAOffset(Offset
)) {
591 NewMI
= BuildMI(MBB
, MI
, DL
, ADDri
, DstR
).addReg(DstR
).add(Offset
);
592 LLVM_DEBUG(NewMI
->dump(););
596 // If the base is inefficient try switching the index and base operands,
597 // otherwise just break the 3-Ops LEA inst into 2-Ops LEA + ADD instruction:
598 // lea offset(%base,%index,scale),%dst =>
599 // lea (%base,%index,scale); add offset,%dst
600 if (!IsInefficientBase
|| (!IsInefficientIndex
&& IsScale1
)) {
601 MachineInstr
*NewMI
= BuildMI(MBB
, MI
, DL
, TII
->get(LEAOpcode
))
603 .add(IsInefficientBase
? Index
: Base
)
605 .add(IsInefficientBase
? Base
: Index
)
608 LLVM_DEBUG(NewMI
->dump(););
609 // Create ADD instruction for the Offset in case of 3-Ops LEA.
610 if (hasLEAOffset(Offset
)) {
611 NewMI
= BuildMI(MBB
, MI
, DL
, ADDri
, DstR
).addReg(DstR
).add(Offset
);
612 LLVM_DEBUG(NewMI
->dump(););
616 // Handle the rest of the cases with inefficient base register:
617 assert(SSDstR
!= BaseR
&& "SSDstR == BaseR should be handled already!");
618 assert(IsInefficientBase
&& "efficient base should be handled already!");
620 // lea (%base,%index,1), %dst => mov %base,%dst; add %index,%dst
621 if (IsScale1
&& !hasLEAOffset(Offset
)) {
622 bool BIK
= Base
.isKill() && BaseR
!= IndexR
;
623 TII
->copyPhysReg(MBB
, MI
, DL
, DstR
, BaseR
, BIK
);
624 LLVM_DEBUG(MI
.getPrevNode()->dump(););
626 MachineInstr
*NewMI
=
627 BuildMI(MBB
, MI
, DL
, ADDrr
, DstR
).addReg(DstR
).add(Index
);
628 LLVM_DEBUG(NewMI
->dump(););
631 // lea offset(%base,%index,scale), %dst =>
632 // lea offset( ,%index,scale), %dst; add %base,%dst
633 MachineInstr
*NewMI
= BuildMI(MBB
, MI
, DL
, TII
->get(LEAOpcode
))
640 LLVM_DEBUG(NewMI
->dump(););
642 NewMI
= BuildMI(MBB
, MI
, DL
, ADDrr
, DstR
).addReg(DstR
).add(Base
);
643 LLVM_DEBUG(NewMI
->dump(););