[AMDGPU] Check for immediate SrcC in mfma in AsmParser
[llvm-core.git] / lib / Target / X86 / X86ISelLowering.h
blobc975fefd4692559ad82cd2e83b1c302718c0c926
1 //===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that X86 uses to lower LLVM code into a
10 // selection DAG.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
15 #define LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
17 #include "llvm/CodeGen/CallingConvLower.h"
18 #include "llvm/CodeGen/SelectionDAG.h"
19 #include "llvm/CodeGen/TargetLowering.h"
21 namespace llvm {
22 class X86Subtarget;
23 class X86TargetMachine;
25 namespace X86ISD {
26 // X86 Specific DAG Nodes
27 enum NodeType : unsigned {
28 // Start the numbering where the builtin ops leave off.
29 FIRST_NUMBER = ISD::BUILTIN_OP_END,
31 /// Bit scan forward.
32 BSF,
33 /// Bit scan reverse.
34 BSR,
36 /// Double shift instructions. These correspond to
37 /// X86::SHLDxx and X86::SHRDxx instructions.
38 SHLD,
39 SHRD,
41 /// Bitwise logical AND of floating point values. This corresponds
42 /// to X86::ANDPS or X86::ANDPD.
43 FAND,
45 /// Bitwise logical OR of floating point values. This corresponds
46 /// to X86::ORPS or X86::ORPD.
47 FOR,
49 /// Bitwise logical XOR of floating point values. This corresponds
50 /// to X86::XORPS or X86::XORPD.
51 FXOR,
53 /// Bitwise logical ANDNOT of floating point values. This
54 /// corresponds to X86::ANDNPS or X86::ANDNPD.
55 FANDN,
57 /// These operations represent an abstract X86 call
58 /// instruction, which includes a bunch of information. In particular the
59 /// operands of these node are:
60 ///
61 /// #0 - The incoming token chain
62 /// #1 - The callee
63 /// #2 - The number of arg bytes the caller pushes on the stack.
64 /// #3 - The number of arg bytes the callee pops off the stack.
65 /// #4 - The value to pass in AL/AX/EAX (optional)
66 /// #5 - The value to pass in DL/DX/EDX (optional)
67 ///
68 /// The result values of these nodes are:
69 ///
70 /// #0 - The outgoing token chain
71 /// #1 - The first register result value (optional)
72 /// #2 - The second register result value (optional)
73 ///
74 CALL,
76 /// Same as call except it adds the NoTrack prefix.
77 NT_CALL,
79 /// X86 compare and logical compare instructions.
80 CMP, COMI, UCOMI,
82 /// X86 bit-test instructions.
83 BT,
85 /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
86 /// operand, usually produced by a CMP instruction.
87 SETCC,
89 /// X86 Select
90 SELECTS,
92 // Same as SETCC except it's materialized with a sbb and the value is all
93 // one's or all zero's.
94 SETCC_CARRY, // R = carry_bit ? ~0 : 0
96 /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
97 /// Operands are two FP values to compare; result is a mask of
98 /// 0s or 1s. Generally DTRT for C/C++ with NaNs.
99 FSETCC,
101 /// X86 FP SETCC, similar to above, but with output as an i1 mask and
102 /// and a version with SAE.
103 FSETCCM, FSETCCM_SAE,
105 /// X86 conditional moves. Operand 0 and operand 1 are the two values
106 /// to select from. Operand 2 is the condition code, and operand 3 is the
107 /// flag operand produced by a CMP or TEST instruction.
108 CMOV,
110 /// X86 conditional branches. Operand 0 is the chain operand, operand 1
111 /// is the block to branch if condition is true, operand 2 is the
112 /// condition code, and operand 3 is the flag operand produced by a CMP
113 /// or TEST instruction.
114 BRCOND,
116 /// BRIND node with NoTrack prefix. Operand 0 is the chain operand and
117 /// operand 1 is the target address.
118 NT_BRIND,
120 /// Return with a flag operand. Operand 0 is the chain operand, operand
121 /// 1 is the number of bytes of stack to pop.
122 RET_FLAG,
124 /// Return from interrupt. Operand 0 is the number of bytes to pop.
125 IRET,
127 /// Repeat fill, corresponds to X86::REP_STOSx.
128 REP_STOS,
130 /// Repeat move, corresponds to X86::REP_MOVSx.
131 REP_MOVS,
133 /// On Darwin, this node represents the result of the popl
134 /// at function entry, used for PIC code.
135 GlobalBaseReg,
137 /// A wrapper node for TargetConstantPool, TargetJumpTable,
138 /// TargetExternalSymbol, TargetGlobalAddress, TargetGlobalTLSAddress,
139 /// MCSymbol and TargetBlockAddress.
140 Wrapper,
142 /// Special wrapper used under X86-64 PIC mode for RIP
143 /// relative displacements.
144 WrapperRIP,
146 /// Copies a 64-bit value from an MMX vector to the low word
147 /// of an XMM vector, with the high word zero filled.
148 MOVQ2DQ,
150 /// Copies a 64-bit value from the low word of an XMM vector
151 /// to an MMX vector.
152 MOVDQ2Q,
154 /// Copies a 32-bit value from the low word of a MMX
155 /// vector to a GPR.
156 MMX_MOVD2W,
158 /// Copies a GPR into the low 32-bit word of a MMX vector
159 /// and zero out the high word.
160 MMX_MOVW2D,
162 /// Extract an 8-bit value from a vector and zero extend it to
163 /// i32, corresponds to X86::PEXTRB.
164 PEXTRB,
166 /// Extract a 16-bit value from a vector and zero extend it to
167 /// i32, corresponds to X86::PEXTRW.
168 PEXTRW,
170 /// Insert any element of a 4 x float vector into any element
171 /// of a destination 4 x floatvector.
172 INSERTPS,
174 /// Insert the lower 8-bits of a 32-bit value to a vector,
175 /// corresponds to X86::PINSRB.
176 PINSRB,
178 /// Insert the lower 16-bits of a 32-bit value to a vector,
179 /// corresponds to X86::PINSRW.
180 PINSRW,
182 /// Shuffle 16 8-bit values within a vector.
183 PSHUFB,
185 /// Compute Sum of Absolute Differences.
186 PSADBW,
187 /// Compute Double Block Packed Sum-Absolute-Differences
188 DBPSADBW,
190 /// Bitwise Logical AND NOT of Packed FP values.
191 ANDNP,
193 /// Blend where the selector is an immediate.
194 BLENDI,
196 /// Dynamic (non-constant condition) vector blend where only the sign bits
197 /// of the condition elements are used. This is used to enforce that the
198 /// condition mask is not valid for generic VSELECT optimizations. This
199 /// is also used to implement the intrinsics.
200 /// Operands are in VSELECT order: MASK, TRUE, FALSE
201 BLENDV,
203 /// Combined add and sub on an FP vector.
204 ADDSUB,
206 // FP vector ops with rounding mode.
207 FADD_RND, FADDS, FADDS_RND,
208 FSUB_RND, FSUBS, FSUBS_RND,
209 FMUL_RND, FMULS, FMULS_RND,
210 FDIV_RND, FDIVS, FDIVS_RND,
211 FMAX_SAE, FMAXS_SAE,
212 FMIN_SAE, FMINS_SAE,
213 FSQRT_RND, FSQRTS, FSQRTS_RND,
215 // FP vector get exponent.
216 FGETEXP, FGETEXP_SAE, FGETEXPS, FGETEXPS_SAE,
217 // Extract Normalized Mantissas.
218 VGETMANT, VGETMANT_SAE, VGETMANTS, VGETMANTS_SAE,
219 // FP Scale.
220 SCALEF, SCALEF_RND,
221 SCALEFS, SCALEFS_RND,
223 // Unsigned Integer average.
224 AVG,
226 /// Integer horizontal add/sub.
227 HADD,
228 HSUB,
230 /// Floating point horizontal add/sub.
231 FHADD,
232 FHSUB,
234 // Detect Conflicts Within a Vector
235 CONFLICT,
237 /// Floating point max and min.
238 FMAX, FMIN,
240 /// Commutative FMIN and FMAX.
241 FMAXC, FMINC,
243 /// Scalar intrinsic floating point max and min.
244 FMAXS, FMINS,
246 /// Floating point reciprocal-sqrt and reciprocal approximation.
247 /// Note that these typically require refinement
248 /// in order to obtain suitable precision.
249 FRSQRT, FRCP,
251 // AVX-512 reciprocal approximations with a little more precision.
252 RSQRT14, RSQRT14S, RCP14, RCP14S,
254 // Thread Local Storage.
255 TLSADDR,
257 // Thread Local Storage. A call to get the start address
258 // of the TLS block for the current module.
259 TLSBASEADDR,
261 // Thread Local Storage. When calling to an OS provided
262 // thunk at the address from an earlier relocation.
263 TLSCALL,
265 // Exception Handling helpers.
266 EH_RETURN,
268 // SjLj exception handling setjmp.
269 EH_SJLJ_SETJMP,
271 // SjLj exception handling longjmp.
272 EH_SJLJ_LONGJMP,
274 // SjLj exception handling dispatch.
275 EH_SJLJ_SETUP_DISPATCH,
277 /// Tail call return. See X86TargetLowering::LowerCall for
278 /// the list of operands.
279 TC_RETURN,
281 // Vector move to low scalar and zero higher vector elements.
282 VZEXT_MOVL,
284 // Vector integer truncate.
285 VTRUNC,
286 // Vector integer truncate with unsigned/signed saturation.
287 VTRUNCUS, VTRUNCS,
289 // Masked version of the above. Used when less than a 128-bit result is
290 // produced since the mask only applies to the lower elements and can't
291 // be represented by a select.
292 // SRC, PASSTHRU, MASK
293 VMTRUNC, VMTRUNCUS, VMTRUNCS,
295 // Vector FP extend.
296 VFPEXT, VFPEXT_SAE, VFPEXTS, VFPEXTS_SAE,
298 // Vector FP round.
299 VFPROUND, VFPROUND_RND, VFPROUNDS, VFPROUNDS_RND,
301 // Masked version of above. Used for v2f64->v4f32.
302 // SRC, PASSTHRU, MASK
303 VMFPROUND,
305 // 128-bit vector logical left / right shift
306 VSHLDQ, VSRLDQ,
308 // Vector shift elements
309 VSHL, VSRL, VSRA,
311 // Vector variable shift
312 VSHLV, VSRLV, VSRAV,
314 // Vector shift elements by immediate
315 VSHLI, VSRLI, VSRAI,
317 // Shifts of mask registers.
318 KSHIFTL, KSHIFTR,
320 // Bit rotate by immediate
321 VROTLI, VROTRI,
323 // Vector packed double/float comparison.
324 CMPP,
326 // Vector integer comparisons.
327 PCMPEQ, PCMPGT,
329 // v8i16 Horizontal minimum and position.
330 PHMINPOS,
332 MULTISHIFT,
334 /// Vector comparison generating mask bits for fp and
335 /// integer signed and unsigned data types.
336 CMPM,
337 // Vector comparison with SAE for FP values
338 CMPM_SAE,
340 // Arithmetic operations with FLAGS results.
341 ADD, SUB, ADC, SBB, SMUL, UMUL,
342 OR, XOR, AND,
344 // Bit field extract.
345 BEXTR,
347 // Zero High Bits Starting with Specified Bit Position.
348 BZHI,
350 // X86-specific multiply by immediate.
351 MUL_IMM,
353 // Vector sign bit extraction.
354 MOVMSK,
356 // Vector bitwise comparisons.
357 PTEST,
359 // Vector packed fp sign bitwise comparisons.
360 TESTP,
362 // OR/AND test for masks.
363 KORTEST,
364 KTEST,
366 // ADD for masks.
367 KADD,
369 // Several flavors of instructions with vector shuffle behaviors.
370 // Saturated signed/unnsigned packing.
371 PACKSS,
372 PACKUS,
373 // Intra-lane alignr.
374 PALIGNR,
375 // AVX512 inter-lane alignr.
376 VALIGN,
377 PSHUFD,
378 PSHUFHW,
379 PSHUFLW,
380 SHUFP,
381 // VBMI2 Concat & Shift.
382 VSHLD,
383 VSHRD,
384 VSHLDV,
385 VSHRDV,
386 //Shuffle Packed Values at 128-bit granularity.
387 SHUF128,
388 MOVDDUP,
389 MOVSHDUP,
390 MOVSLDUP,
391 MOVLHPS,
392 MOVHLPS,
393 MOVSD,
394 MOVSS,
395 UNPCKL,
396 UNPCKH,
397 VPERMILPV,
398 VPERMILPI,
399 VPERMI,
400 VPERM2X128,
402 // Variable Permute (VPERM).
403 // Res = VPERMV MaskV, V0
404 VPERMV,
406 // 3-op Variable Permute (VPERMT2).
407 // Res = VPERMV3 V0, MaskV, V1
408 VPERMV3,
410 // Bitwise ternary logic.
411 VPTERNLOG,
412 // Fix Up Special Packed Float32/64 values.
413 VFIXUPIMM, VFIXUPIMM_SAE,
414 VFIXUPIMMS, VFIXUPIMMS_SAE,
415 // Range Restriction Calculation For Packed Pairs of Float32/64 values.
416 VRANGE, VRANGE_SAE, VRANGES, VRANGES_SAE,
417 // Reduce - Perform Reduction Transformation on scalar\packed FP.
418 VREDUCE, VREDUCE_SAE, VREDUCES, VREDUCES_SAE,
419 // RndScale - Round FP Values To Include A Given Number Of Fraction Bits.
420 // Also used by the legacy (V)ROUND intrinsics where we mask out the
421 // scaling part of the immediate.
422 VRNDSCALE, VRNDSCALE_SAE, VRNDSCALES, VRNDSCALES_SAE,
423 // Tests Types Of a FP Values for packed types.
424 VFPCLASS,
425 // Tests Types Of a FP Values for scalar types.
426 VFPCLASSS,
428 // Broadcast scalar to vector.
429 VBROADCAST,
430 // Broadcast mask to vector.
431 VBROADCASTM,
432 // Broadcast subvector to vector.
433 SUBV_BROADCAST,
435 /// SSE4A Extraction and Insertion.
436 EXTRQI, INSERTQI,
438 // XOP arithmetic/logical shifts.
439 VPSHA, VPSHL,
440 // XOP signed/unsigned integer comparisons.
441 VPCOM, VPCOMU,
442 // XOP packed permute bytes.
443 VPPERM,
444 // XOP two source permutation.
445 VPERMIL2,
447 // Vector multiply packed unsigned doubleword integers.
448 PMULUDQ,
449 // Vector multiply packed signed doubleword integers.
450 PMULDQ,
451 // Vector Multiply Packed UnsignedIntegers with Round and Scale.
452 MULHRS,
454 // Multiply and Add Packed Integers.
455 VPMADDUBSW, VPMADDWD,
457 // AVX512IFMA multiply and add.
458 // NOTE: These are different than the instruction and perform
459 // op0 x op1 + op2.
460 VPMADD52L, VPMADD52H,
462 // VNNI
463 VPDPBUSD,
464 VPDPBUSDS,
465 VPDPWSSD,
466 VPDPWSSDS,
468 // FMA nodes.
469 // We use the target independent ISD::FMA for the non-inverted case.
470 FNMADD,
471 FMSUB,
472 FNMSUB,
473 FMADDSUB,
474 FMSUBADD,
476 // FMA with rounding mode.
477 FMADD_RND,
478 FNMADD_RND,
479 FMSUB_RND,
480 FNMSUB_RND,
481 FMADDSUB_RND,
482 FMSUBADD_RND,
484 // Compress and expand.
485 COMPRESS,
486 EXPAND,
488 // Bits shuffle
489 VPSHUFBITQMB,
491 // Convert Unsigned/Integer to Floating-Point Value with rounding mode.
492 SINT_TO_FP_RND, UINT_TO_FP_RND,
493 SCALAR_SINT_TO_FP, SCALAR_UINT_TO_FP,
494 SCALAR_SINT_TO_FP_RND, SCALAR_UINT_TO_FP_RND,
496 // Vector float/double to signed/unsigned integer.
497 CVTP2SI, CVTP2UI, CVTP2SI_RND, CVTP2UI_RND,
498 // Scalar float/double to signed/unsigned integer.
499 CVTS2SI, CVTS2UI, CVTS2SI_RND, CVTS2UI_RND,
501 // Vector float/double to signed/unsigned integer with truncation.
502 CVTTP2SI, CVTTP2UI, CVTTP2SI_SAE, CVTTP2UI_SAE,
503 // Scalar float/double to signed/unsigned integer with truncation.
504 CVTTS2SI, CVTTS2UI, CVTTS2SI_SAE, CVTTS2UI_SAE,
506 // Vector signed/unsigned integer to float/double.
507 CVTSI2P, CVTUI2P,
509 // Masked versions of above. Used for v2f64->v4f32.
510 // SRC, PASSTHRU, MASK
511 MCVTP2SI, MCVTP2UI, MCVTTP2SI, MCVTTP2UI,
512 MCVTSI2P, MCVTUI2P,
514 // Vector float to bfloat16.
515 // Convert TWO packed single data to one packed BF16 data
516 CVTNE2PS2BF16,
517 // Convert packed single data to packed BF16 data
518 CVTNEPS2BF16,
519 // Masked version of above.
520 // SRC, PASSTHRU, MASK
521 MCVTNEPS2BF16,
523 // Dot product of BF16 pairs to accumulated into
524 // packed single precision.
525 DPBF16PS,
527 // Save xmm argument registers to the stack, according to %al. An operator
528 // is needed so that this can be expanded with control flow.
529 VASTART_SAVE_XMM_REGS,
531 // Windows's _chkstk call to do stack probing.
532 WIN_ALLOCA,
534 // For allocating variable amounts of stack space when using
535 // segmented stacks. Check if the current stacklet has enough space, and
536 // falls back to heap allocation if not.
537 SEG_ALLOCA,
539 // Memory barriers.
540 MEMBARRIER,
541 MFENCE,
543 // Store FP status word into i16 register.
544 FNSTSW16r,
546 // Store contents of %ah into %eflags.
547 SAHF,
549 // Get a random integer and indicate whether it is valid in CF.
550 RDRAND,
552 // Get a NIST SP800-90B & C compliant random integer and
553 // indicate whether it is valid in CF.
554 RDSEED,
556 // Protection keys
557 // RDPKRU - Operand 0 is chain. Operand 1 is value for ECX.
558 // WRPKRU - Operand 0 is chain. Operand 1 is value for EDX. Operand 2 is
559 // value for ECX.
560 RDPKRU, WRPKRU,
562 // SSE42 string comparisons.
563 // These nodes produce 3 results, index, mask, and flags. X86ISelDAGToDAG
564 // will emit one or two instructions based on which results are used. If
565 // flags and index/mask this allows us to use a single instruction since
566 // we won't have to pick and opcode for flags. Instead we can rely on the
567 // DAG to CSE everything and decide at isel.
568 PCMPISTR,
569 PCMPESTR,
571 // Test if in transactional execution.
572 XTEST,
574 // ERI instructions.
575 RSQRT28, RSQRT28_SAE, RSQRT28S, RSQRT28S_SAE,
576 RCP28, RCP28_SAE, RCP28S, RCP28S_SAE, EXP2, EXP2_SAE,
578 // Conversions between float and half-float.
579 CVTPS2PH, CVTPH2PS, CVTPH2PS_SAE,
581 // Masked version of above.
582 // SRC, RND, PASSTHRU, MASK
583 MCVTPS2PH,
585 // Galois Field Arithmetic Instructions
586 GF2P8AFFINEINVQB, GF2P8AFFINEQB, GF2P8MULB,
588 // LWP insert record.
589 LWPINS,
591 // User level wait
592 UMWAIT, TPAUSE,
594 // Enqueue Stores Instructions
595 ENQCMD, ENQCMDS,
597 // For avx512-vp2intersect
598 VP2INTERSECT,
600 // Compare and swap.
601 LCMPXCHG_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
602 LCMPXCHG8_DAG,
603 LCMPXCHG16_DAG,
604 LCMPXCHG8_SAVE_EBX_DAG,
605 LCMPXCHG16_SAVE_RBX_DAG,
607 /// LOCK-prefixed arithmetic read-modify-write instructions.
608 /// EFLAGS, OUTCHAIN = LADD(INCHAIN, PTR, RHS)
609 LADD, LSUB, LOR, LXOR, LAND,
611 // Load, scalar_to_vector, and zero extend.
612 VZEXT_LOAD,
614 // extract_vector_elt, store.
615 VEXTRACT_STORE,
617 // Store FP control world into i16 memory.
618 FNSTCW16m,
620 /// This instruction implements FP_TO_SINT with the
621 /// integer destination in memory and a FP reg source. This corresponds
622 /// to the X86::FIST*m instructions and the rounding mode change stuff. It
623 /// has two inputs (token chain and address) and two outputs (int value
624 /// and token chain). Memory VT specifies the type to store to.
625 FP_TO_INT_IN_MEM,
627 /// This instruction implements SINT_TO_FP with the
628 /// integer source in memory and FP reg result. This corresponds to the
629 /// X86::FILD*m instructions. It has two inputs (token chain and address)
630 /// and two outputs (FP value and token chain). FILD_FLAG also produces a
631 /// flag). The integer source type is specified by the memory VT.
632 FILD,
633 FILD_FLAG,
635 /// This instruction implements a fp->int store from FP stack
636 /// slots. This corresponds to the fist instruction. It takes a
637 /// chain operand, value to store, address, and glue. The memory VT
638 /// specifies the type to store as.
639 FIST,
641 /// This instruction implements an extending load to FP stack slots.
642 /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
643 /// operand, and ptr to load from. The memory VT specifies the type to
644 /// load from.
645 FLD,
647 /// This instruction implements a truncating store from FP stack
648 /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
649 /// chain operand, value to store, address, and glue. The memory VT
650 /// specifies the type to store as.
651 FST,
653 /// This instruction grabs the address of the next argument
654 /// from a va_list. (reads and modifies the va_list in memory)
655 VAARG_64,
657 // Vector truncating store with unsigned/signed saturation
658 VTRUNCSTOREUS, VTRUNCSTORES,
659 // Vector truncating masked store with unsigned/signed saturation
660 VMTRUNCSTOREUS, VMTRUNCSTORES,
662 // X86 specific gather and scatter
663 MGATHER, MSCATTER,
665 // WARNING: Do not add anything in the end unless you want the node to
666 // have memop! In fact, starting from FIRST_TARGET_MEMORY_OPCODE all
667 // opcodes will be thought as target memory ops!
669 } // end namespace X86ISD
671 /// Define some predicates that are used for node matching.
672 namespace X86 {
673 /// Returns true if Elt is a constant zero or floating point constant +0.0.
674 bool isZeroNode(SDValue Elt);
676 /// Returns true of the given offset can be
677 /// fit into displacement field of the instruction.
678 bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
679 bool hasSymbolicDisplacement = true);
681 /// Determines whether the callee is required to pop its
682 /// own arguments. Callee pop is necessary to support tail calls.
683 bool isCalleePop(CallingConv::ID CallingConv,
684 bool is64Bit, bool IsVarArg, bool GuaranteeTCO);
686 } // end namespace X86
688 //===--------------------------------------------------------------------===//
689 // X86 Implementation of the TargetLowering interface
690 class X86TargetLowering final : public TargetLowering {
691 public:
692 explicit X86TargetLowering(const X86TargetMachine &TM,
693 const X86Subtarget &STI);
695 unsigned getJumpTableEncoding() const override;
696 bool useSoftFloat() const override;
698 void markLibCallAttributes(MachineFunction *MF, unsigned CC,
699 ArgListTy &Args) const override;
701 MVT getScalarShiftAmountTy(const DataLayout &, EVT VT) const override {
702 return MVT::i8;
705 const MCExpr *
706 LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
707 const MachineBasicBlock *MBB, unsigned uid,
708 MCContext &Ctx) const override;
710 /// Returns relocation base for the given PIC jumptable.
711 SDValue getPICJumpTableRelocBase(SDValue Table,
712 SelectionDAG &DAG) const override;
713 const MCExpr *
714 getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
715 unsigned JTI, MCContext &Ctx) const override;
717 /// Return the desired alignment for ByVal aggregate
718 /// function arguments in the caller parameter area. For X86, aggregates
719 /// that contains are placed at 16-byte boundaries while the rest are at
720 /// 4-byte boundaries.
721 unsigned getByValTypeAlignment(Type *Ty,
722 const DataLayout &DL) const override;
724 /// Returns the target specific optimal type for load
725 /// and store operations as a result of memset, memcpy, and memmove
726 /// lowering. If DstAlign is zero that means it's safe to destination
727 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
728 /// means there isn't a need to check it against alignment requirement,
729 /// probably because the source does not need to be loaded. If 'IsMemset' is
730 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
731 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
732 /// source is constant so it does not need to be loaded.
733 /// It returns EVT::Other if the type should be determined using generic
734 /// target-independent logic.
735 EVT getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
736 bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
737 const AttributeList &FuncAttributes) const override;
739 /// Returns true if it's safe to use load / store of the
740 /// specified type to expand memcpy / memset inline. This is mostly true
741 /// for all types except for some special cases. For example, on X86
742 /// targets without SSE2 f64 load / store are done with fldl / fstpl which
743 /// also does type conversion. Note the specified type doesn't have to be
744 /// legal as the hook is used before type legalization.
745 bool isSafeMemOpType(MVT VT) const override;
747 /// Returns true if the target allows unaligned memory accesses of the
748 /// specified type. Returns whether it is "fast" in the last argument.
749 bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, unsigned Align,
750 MachineMemOperand::Flags Flags,
751 bool *Fast) const override;
753 /// Provide custom lowering hooks for some operations.
755 SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
757 /// Places new result values for the node in Results (their number
758 /// and types must exactly match those of the original return values of
759 /// the node), or leaves Results empty, which indicates that the node is not
760 /// to be custom lowered after all.
761 void LowerOperationWrapper(SDNode *N,
762 SmallVectorImpl<SDValue> &Results,
763 SelectionDAG &DAG) const override;
765 /// Replace the results of node with an illegal result
766 /// type with new values built out of custom code.
768 void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
769 SelectionDAG &DAG) const override;
771 SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
773 // Return true if it is profitable to combine a BUILD_VECTOR with a
774 // stride-pattern to a shuffle and a truncate.
775 // Example of such a combine:
776 // v4i32 build_vector((extract_elt V, 1),
777 // (extract_elt V, 3),
778 // (extract_elt V, 5),
779 // (extract_elt V, 7))
780 // -->
781 // v4i32 truncate (bitcast (shuffle<1,u,3,u,4,u,5,u,6,u,7,u> V, u) to
782 // v4i64)
783 bool isDesirableToCombineBuildVectorToShuffleTruncate(
784 ArrayRef<int> ShuffleMask, EVT SrcVT, EVT TruncVT) const override;
786 /// Return true if the target has native support for
787 /// the specified value type and it is 'desirable' to use the type for the
788 /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
789 /// instruction encodings are longer and some i16 instructions are slow.
790 bool isTypeDesirableForOp(unsigned Opc, EVT VT) const override;
792 /// Return true if the target has native support for the
793 /// specified value type and it is 'desirable' to use the type. e.g. On x86
794 /// i16 is legal, but undesirable since i16 instruction encodings are longer
795 /// and some i16 instructions are slow.
796 bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const override;
798 MachineBasicBlock *
799 EmitInstrWithCustomInserter(MachineInstr &MI,
800 MachineBasicBlock *MBB) const override;
802 /// This method returns the name of a target specific DAG node.
803 const char *getTargetNodeName(unsigned Opcode) const override;
805 /// Do not merge vector stores after legalization because that may conflict
806 /// with x86-specific store splitting optimizations.
807 bool mergeStoresAfterLegalization(EVT MemVT) const override {
808 return !MemVT.isVector();
811 bool canMergeStoresTo(unsigned AddressSpace, EVT MemVT,
812 const SelectionDAG &DAG) const override;
814 bool isCheapToSpeculateCttz() const override;
816 bool isCheapToSpeculateCtlz() const override;
818 bool isCtlzFast() const override;
820 bool hasBitPreservingFPLogic(EVT VT) const override {
821 return VT == MVT::f32 || VT == MVT::f64 || VT.isVector();
824 bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const override {
825 // If the pair to store is a mixture of float and int values, we will
826 // save two bitwise instructions and one float-to-int instruction and
827 // increase one store instruction. There is potentially a more
828 // significant benefit because it avoids the float->int domain switch
829 // for input value. So It is more likely a win.
830 if ((LTy.isFloatingPoint() && HTy.isInteger()) ||
831 (LTy.isInteger() && HTy.isFloatingPoint()))
832 return true;
833 // If the pair only contains int values, we will save two bitwise
834 // instructions and increase one store instruction (costing one more
835 // store buffer). Since the benefit is more blurred so we leave
836 // such pair out until we get testcase to prove it is a win.
837 return false;
840 bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override;
842 bool hasAndNotCompare(SDValue Y) const override;
844 bool hasAndNot(SDValue Y) const override;
846 bool hasBitTest(SDValue X, SDValue Y) const override;
848 bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
849 SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
850 unsigned OldShiftOpcode, unsigned NewShiftOpcode,
851 SelectionDAG &DAG) const override;
853 bool shouldFoldConstantShiftPairToMask(const SDNode *N,
854 CombineLevel Level) const override;
856 bool shouldFoldMaskToVariableShiftPair(SDValue Y) const override;
858 bool
859 shouldTransformSignedTruncationCheck(EVT XVT,
860 unsigned KeptBits) const override {
861 // For vectors, we don't have a preference..
862 if (XVT.isVector())
863 return false;
865 auto VTIsOk = [](EVT VT) -> bool {
866 return VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 ||
867 VT == MVT::i64;
870 // We are ok with KeptBitsVT being byte/word/dword, what MOVS supports.
871 // XVT will be larger than KeptBitsVT.
872 MVT KeptBitsVT = MVT::getIntegerVT(KeptBits);
873 return VTIsOk(XVT) && VTIsOk(KeptBitsVT);
876 bool shouldExpandShift(SelectionDAG &DAG, SDNode *N) const override {
877 if (DAG.getMachineFunction().getFunction().hasMinSize())
878 return false;
879 return true;
882 bool shouldSplatInsEltVarIndex(EVT VT) const override;
884 bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
885 return VT.isScalarInteger();
888 /// Vector-sized comparisons are fast using PCMPEQ + PMOVMSK or PTEST.
889 MVT hasFastEqualityCompare(unsigned NumBits) const override;
891 /// Return the value type to use for ISD::SETCC.
892 EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
893 EVT VT) const override;
895 bool targetShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
896 TargetLoweringOpt &TLO) const override;
898 /// Determine which of the bits specified in Mask are known to be either
899 /// zero or one and return them in the KnownZero/KnownOne bitsets.
900 void computeKnownBitsForTargetNode(const SDValue Op,
901 KnownBits &Known,
902 const APInt &DemandedElts,
903 const SelectionDAG &DAG,
904 unsigned Depth = 0) const override;
906 /// Determine the number of bits in the operation that are sign bits.
907 unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
908 const APInt &DemandedElts,
909 const SelectionDAG &DAG,
910 unsigned Depth) const override;
912 bool SimplifyDemandedVectorEltsForTargetNode(SDValue Op,
913 const APInt &DemandedElts,
914 APInt &KnownUndef,
915 APInt &KnownZero,
916 TargetLoweringOpt &TLO,
917 unsigned Depth) const override;
919 bool SimplifyDemandedBitsForTargetNode(SDValue Op,
920 const APInt &DemandedBits,
921 const APInt &DemandedElts,
922 KnownBits &Known,
923 TargetLoweringOpt &TLO,
924 unsigned Depth) const override;
926 SDValue SimplifyMultipleUseDemandedBitsForTargetNode(
927 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
928 SelectionDAG &DAG, unsigned Depth) const override;
930 const Constant *getTargetConstantFromLoad(LoadSDNode *LD) const override;
932 SDValue unwrapAddress(SDValue N) const override;
934 SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;
936 bool ExpandInlineAsm(CallInst *CI) const override;
938 ConstraintType getConstraintType(StringRef Constraint) const override;
940 /// Examine constraint string and operand type and determine a weight value.
941 /// The operand object must already have been set up with the operand type.
942 ConstraintWeight
943 getSingleConstraintMatchWeight(AsmOperandInfo &info,
944 const char *constraint) const override;
946 const char *LowerXConstraint(EVT ConstraintVT) const override;
948 /// Lower the specified operand into the Ops vector. If it is invalid, don't
949 /// add anything to Ops. If hasMemory is true it means one of the asm
950 /// constraint of the inline asm instruction being processed is 'm'.
951 void LowerAsmOperandForConstraint(SDValue Op,
952 std::string &Constraint,
953 std::vector<SDValue> &Ops,
954 SelectionDAG &DAG) const override;
956 unsigned
957 getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
958 if (ConstraintCode == "i")
959 return InlineAsm::Constraint_i;
960 else if (ConstraintCode == "o")
961 return InlineAsm::Constraint_o;
962 else if (ConstraintCode == "v")
963 return InlineAsm::Constraint_v;
964 else if (ConstraintCode == "X")
965 return InlineAsm::Constraint_X;
966 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
969 /// Handle Lowering flag assembly outputs.
970 SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Flag, SDLoc DL,
971 const AsmOperandInfo &Constraint,
972 SelectionDAG &DAG) const override;
974 /// Given a physical register constraint
975 /// (e.g. {edx}), return the register number and the register class for the
976 /// register. This should only be used for C_Register constraints. On
977 /// error, this returns a register number of 0.
978 std::pair<unsigned, const TargetRegisterClass *>
979 getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
980 StringRef Constraint, MVT VT) const override;
982 /// Return true if the addressing mode represented
983 /// by AM is legal for this target, for a load/store of the specified type.
984 bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
985 Type *Ty, unsigned AS,
986 Instruction *I = nullptr) const override;
988 /// Return true if the specified immediate is legal
989 /// icmp immediate, that is the target has icmp instructions which can
990 /// compare a register against the immediate without having to materialize
991 /// the immediate into a register.
992 bool isLegalICmpImmediate(int64_t Imm) const override;
994 /// Return true if the specified immediate is legal
995 /// add immediate, that is the target has add instructions which can
996 /// add a register and the immediate without having to materialize
997 /// the immediate into a register.
998 bool isLegalAddImmediate(int64_t Imm) const override;
1000 bool isLegalStoreImmediate(int64_t Imm) const override;
1002 /// Return the cost of the scaling factor used in the addressing
1003 /// mode represented by AM for this target, for a load/store
1004 /// of the specified type.
1005 /// If the AM is supported, the return value must be >= 0.
1006 /// If the AM is not supported, it returns a negative value.
1007 int getScalingFactorCost(const DataLayout &DL, const AddrMode &AM, Type *Ty,
1008 unsigned AS) const override;
1010 bool isVectorShiftByScalarCheap(Type *Ty) const override;
1012 /// Add x86-specific opcodes to the default list.
1013 bool isBinOp(unsigned Opcode) const override;
1015 /// Returns true if the opcode is a commutative binary operation.
1016 bool isCommutativeBinOp(unsigned Opcode) const override;
1018 /// Return true if it's free to truncate a value of
1019 /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1020 /// register EAX to i16 by referencing its sub-register AX.
1021 bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
1022 bool isTruncateFree(EVT VT1, EVT VT2) const override;
1024 bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override;
1026 /// Return true if any actual instruction that defines a
1027 /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
1028 /// register. This does not necessarily include registers defined in
1029 /// unknown ways, such as incoming arguments, or copies from unknown
1030 /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1031 /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1032 /// all instructions that define 32-bit values implicit zero-extend the
1033 /// result out to 64 bits.
1034 bool isZExtFree(Type *Ty1, Type *Ty2) const override;
1035 bool isZExtFree(EVT VT1, EVT VT2) const override;
1036 bool isZExtFree(SDValue Val, EVT VT2) const override;
1038 /// Return true if folding a vector load into ExtVal (a sign, zero, or any
1039 /// extend node) is profitable.
1040 bool isVectorLoadExtDesirable(SDValue) const override;
1042 /// Return true if an FMA operation is faster than a pair of fmul and fadd
1043 /// instructions. fmuladd intrinsics will be expanded to FMAs when this
1044 /// method returns true, otherwise fmuladd is expanded to fmul + fadd.
1045 bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
1047 /// Return true if it's profitable to narrow
1048 /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1049 /// from i32 to i8 but not from i32 to i16.
1050 bool isNarrowingProfitable(EVT VT1, EVT VT2) const override;
1052 /// Given an intrinsic, checks if on the target the intrinsic will need to map
1053 /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
1054 /// true and stores the intrinsic information into the IntrinsicInfo that was
1055 /// passed to the function.
1056 bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I,
1057 MachineFunction &MF,
1058 unsigned Intrinsic) const override;
1060 /// Returns true if the target can instruction select the
1061 /// specified FP immediate natively. If false, the legalizer will
1062 /// materialize the FP immediate as a load from a constant pool.
1063 bool isFPImmLegal(const APFloat &Imm, EVT VT,
1064 bool ForCodeSize) const override;
1066 /// Targets can use this to indicate that they only support *some*
1067 /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a
1068 /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to
1069 /// be legal.
1070 bool isShuffleMaskLegal(ArrayRef<int> Mask, EVT VT) const override;
1072 /// Similar to isShuffleMaskLegal. Targets can use this to indicate if there
1073 /// is a suitable VECTOR_SHUFFLE that can be used to replace a VAND with a
1074 /// constant pool entry.
1075 bool isVectorClearMaskLegal(ArrayRef<int> Mask, EVT VT) const override;
1077 /// Returns true if lowering to a jump table is allowed.
1078 bool areJTsAllowed(const Function *Fn) const override;
1080 /// If true, then instruction selection should
1081 /// seek to shrink the FP constant of the specified type to a smaller type
1082 /// in order to save space and / or reduce runtime.
1083 bool ShouldShrinkFPConstant(EVT VT) const override {
1084 // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
1085 // expensive than a straight movsd. On the other hand, it's important to
1086 // shrink long double fp constant since fldt is very slow.
1087 return !X86ScalarSSEf64 || VT == MVT::f80;
1090 /// Return true if we believe it is correct and profitable to reduce the
1091 /// load node to a smaller type.
1092 bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy,
1093 EVT NewVT) const override;
1095 /// Return true if the specified scalar FP type is computed in an SSE
1096 /// register, not on the X87 floating point stack.
1097 bool isScalarFPTypeInSSEReg(EVT VT) const {
1098 return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
1099 (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
1102 /// Returns true if it is beneficial to convert a load of a constant
1103 /// to just the constant itself.
1104 bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
1105 Type *Ty) const override;
1107 bool reduceSelectOfFPConstantLoads(bool IsFPSetCC) const override;
1109 bool convertSelectOfConstantsToMath(EVT VT) const override;
1111 bool decomposeMulByConstant(LLVMContext &Context, EVT VT,
1112 SDValue C) const override;
1114 bool shouldUseStrictFP_TO_INT(EVT FpVT, EVT IntVT,
1115 bool IsSigned) const override;
1117 /// Return true if EXTRACT_SUBVECTOR is cheap for this result type
1118 /// with this index.
1119 bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
1120 unsigned Index) const override;
1122 /// Scalar ops always have equal or better analysis/performance/power than
1123 /// the vector equivalent, so this always makes sense if the scalar op is
1124 /// supported.
1125 bool shouldScalarizeBinop(SDValue) const override;
1127 /// Extract of a scalar FP value from index 0 of a vector is free.
1128 bool isExtractVecEltCheap(EVT VT, unsigned Index) const override {
1129 EVT EltVT = VT.getScalarType();
1130 return (EltVT == MVT::f32 || EltVT == MVT::f64) && Index == 0;
1133 /// Overflow nodes should get combined/lowered to optimal instructions
1134 /// (they should allow eliminating explicit compares by getting flags from
1135 /// math ops).
1136 bool shouldFormOverflowOp(unsigned Opcode, EVT VT) const override;
1138 bool storeOfVectorConstantIsCheap(EVT MemVT, unsigned NumElem,
1139 unsigned AddrSpace) const override {
1140 // If we can replace more than 2 scalar stores, there will be a reduction
1141 // in instructions even after we add a vector constant load.
1142 return NumElem > 2;
1145 bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT,
1146 const SelectionDAG &DAG,
1147 const MachineMemOperand &MMO) const override;
1149 /// Intel processors have a unified instruction and data cache
1150 const char * getClearCacheBuiltinName() const override {
1151 return nullptr; // nothing to do, move along.
1154 unsigned getRegisterByName(const char* RegName, EVT VT,
1155 SelectionDAG &DAG) const override;
1157 /// If a physical register, this returns the register that receives the
1158 /// exception address on entry to an EH pad.
1159 unsigned
1160 getExceptionPointerRegister(const Constant *PersonalityFn) const override;
1162 /// If a physical register, this returns the register that receives the
1163 /// exception typeid on entry to a landing pad.
1164 unsigned
1165 getExceptionSelectorRegister(const Constant *PersonalityFn) const override;
1167 virtual bool needsFixedCatchObjects() const override;
1169 /// This method returns a target specific FastISel object,
1170 /// or null if the target does not support "fast" ISel.
1171 FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
1172 const TargetLibraryInfo *libInfo) const override;
1174 /// If the target has a standard location for the stack protector cookie,
1175 /// returns the address of that location. Otherwise, returns nullptr.
1176 Value *getIRStackGuard(IRBuilder<> &IRB) const override;
1178 bool useLoadStackGuardNode() const override;
1179 bool useStackGuardXorFP() const override;
1180 void insertSSPDeclarations(Module &M) const override;
1181 Value *getSDagStackGuard(const Module &M) const override;
1182 Function *getSSPStackGuardCheck(const Module &M) const override;
1183 SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val,
1184 const SDLoc &DL) const override;
1187 /// Return true if the target stores SafeStack pointer at a fixed offset in
1188 /// some non-standard address space, and populates the address space and
1189 /// offset as appropriate.
1190 Value *getSafeStackPointerLocation(IRBuilder<> &IRB) const override;
1192 SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
1193 SelectionDAG &DAG) const;
1195 bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override;
1197 /// Customize the preferred legalization strategy for certain types.
1198 LegalizeTypeAction getPreferredVectorAction(MVT VT) const override;
1200 MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC,
1201 EVT VT) const override;
1203 unsigned getNumRegistersForCallingConv(LLVMContext &Context,
1204 CallingConv::ID CC,
1205 EVT VT) const override;
1207 bool isIntDivCheap(EVT VT, AttributeList Attr) const override;
1209 bool supportSwiftError() const override;
1211 StringRef getStackProbeSymbolName(MachineFunction &MF) const override;
1213 unsigned getStackProbeSize(MachineFunction &MF) const;
1215 bool hasVectorBlend() const override { return true; }
1217 unsigned getMaxSupportedInterleaveFactor() const override { return 4; }
1219 /// Lower interleaved load(s) into target specific
1220 /// instructions/intrinsics.
1221 bool lowerInterleavedLoad(LoadInst *LI,
1222 ArrayRef<ShuffleVectorInst *> Shuffles,
1223 ArrayRef<unsigned> Indices,
1224 unsigned Factor) const override;
1226 /// Lower interleaved store(s) into target specific
1227 /// instructions/intrinsics.
1228 bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI,
1229 unsigned Factor) const override;
1231 SDValue expandIndirectJTBranch(const SDLoc& dl, SDValue Value,
1232 SDValue Addr, SelectionDAG &DAG)
1233 const override;
1235 protected:
1236 std::pair<const TargetRegisterClass *, uint8_t>
1237 findRepresentativeClass(const TargetRegisterInfo *TRI,
1238 MVT VT) const override;
1240 private:
1241 /// Keep a reference to the X86Subtarget around so that we can
1242 /// make the right decision when generating code for different targets.
1243 const X86Subtarget &Subtarget;
1245 /// Select between SSE or x87 floating point ops.
1246 /// When SSE is available, use it for f32 operations.
1247 /// When SSE2 is available, use it for f64 operations.
1248 bool X86ScalarSSEf32;
1249 bool X86ScalarSSEf64;
1251 /// A list of legal FP immediates.
1252 std::vector<APFloat> LegalFPImmediates;
1254 /// Indicate that this x86 target can instruction
1255 /// select the specified FP immediate natively.
1256 void addLegalFPImmediate(const APFloat& Imm) {
1257 LegalFPImmediates.push_back(Imm);
1260 SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
1261 CallingConv::ID CallConv, bool isVarArg,
1262 const SmallVectorImpl<ISD::InputArg> &Ins,
1263 const SDLoc &dl, SelectionDAG &DAG,
1264 SmallVectorImpl<SDValue> &InVals,
1265 uint32_t *RegMask) const;
1266 SDValue LowerMemArgument(SDValue Chain, CallingConv::ID CallConv,
1267 const SmallVectorImpl<ISD::InputArg> &ArgInfo,
1268 const SDLoc &dl, SelectionDAG &DAG,
1269 const CCValAssign &VA, MachineFrameInfo &MFI,
1270 unsigned i) const;
1271 SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
1272 const SDLoc &dl, SelectionDAG &DAG,
1273 const CCValAssign &VA,
1274 ISD::ArgFlagsTy Flags) const;
1276 // Call lowering helpers.
1278 /// Check whether the call is eligible for tail call optimization. Targets
1279 /// that want to do tail call optimization should implement this function.
1280 bool IsEligibleForTailCallOptimization(SDValue Callee,
1281 CallingConv::ID CalleeCC,
1282 bool isVarArg,
1283 bool isCalleeStructRet,
1284 bool isCallerStructRet,
1285 Type *RetTy,
1286 const SmallVectorImpl<ISD::OutputArg> &Outs,
1287 const SmallVectorImpl<SDValue> &OutVals,
1288 const SmallVectorImpl<ISD::InputArg> &Ins,
1289 SelectionDAG& DAG) const;
1290 SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
1291 SDValue Chain, bool IsTailCall,
1292 bool Is64Bit, int FPDiff,
1293 const SDLoc &dl) const;
1295 unsigned GetAlignedArgumentStackSize(unsigned StackSize,
1296 SelectionDAG &DAG) const;
1298 unsigned getAddressSpace(void) const;
1300 SDValue FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool isSigned) const;
1302 SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
1303 SDValue LowerVSELECT(SDValue Op, SelectionDAG &DAG) const;
1304 SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
1305 SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
1307 unsigned getGlobalWrapperKind(const GlobalValue *GV = nullptr,
1308 const unsigned char OpFlags = 0) const;
1309 SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
1310 SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
1311 SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
1312 SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
1313 SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;
1315 /// Creates target global address or external symbol nodes for calls or
1316 /// other uses.
1317 SDValue LowerGlobalOrExternal(SDValue Op, SelectionDAG &DAG,
1318 bool ForCall) const;
1320 SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
1321 SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
1322 SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
1323 SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const;
1324 SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
1325 SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) const;
1326 SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
1327 SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
1328 SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
1329 SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
1330 SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
1331 SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
1332 SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
1333 SDValue LowerADDROFRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
1334 SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
1335 SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
1336 SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
1337 SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
1338 SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
1339 SDValue lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op, SelectionDAG &DAG) const;
1340 SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
1341 SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
1342 SDValue LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const;
1343 SDValue LowerGC_TRANSITION_START(SDValue Op, SelectionDAG &DAG) const;
1344 SDValue LowerGC_TRANSITION_END(SDValue Op, SelectionDAG &DAG) const;
1345 SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
1347 SDValue
1348 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1349 const SmallVectorImpl<ISD::InputArg> &Ins,
1350 const SDLoc &dl, SelectionDAG &DAG,
1351 SmallVectorImpl<SDValue> &InVals) const override;
1352 SDValue LowerCall(CallLoweringInfo &CLI,
1353 SmallVectorImpl<SDValue> &InVals) const override;
1355 SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1356 const SmallVectorImpl<ISD::OutputArg> &Outs,
1357 const SmallVectorImpl<SDValue> &OutVals,
1358 const SDLoc &dl, SelectionDAG &DAG) const override;
1360 bool supportSplitCSR(MachineFunction *MF) const override {
1361 return MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
1362 MF->getFunction().hasFnAttribute(Attribute::NoUnwind);
1364 void initializeSplitCSR(MachineBasicBlock *Entry) const override;
1365 void insertCopiesSplitCSR(
1366 MachineBasicBlock *Entry,
1367 const SmallVectorImpl<MachineBasicBlock *> &Exits) const override;
1369 bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override;
1371 bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
1373 EVT getTypeForExtReturn(LLVMContext &Context, EVT VT,
1374 ISD::NodeType ExtendKind) const override;
1376 bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1377 bool isVarArg,
1378 const SmallVectorImpl<ISD::OutputArg> &Outs,
1379 LLVMContext &Context) const override;
1381 const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
1383 TargetLoweringBase::AtomicExpansionKind
1384 shouldExpandAtomicLoadInIR(LoadInst *SI) const override;
1385 bool shouldExpandAtomicStoreInIR(StoreInst *SI) const override;
1386 TargetLoweringBase::AtomicExpansionKind
1387 shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;
1389 LoadInst *
1390 lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const override;
1392 bool needsCmpXchgNb(Type *MemType) const;
1394 void SetupEntryBlockForSjLj(MachineInstr &MI, MachineBasicBlock *MBB,
1395 MachineBasicBlock *DispatchBB, int FI) const;
1397 // Utility function to emit the low-level va_arg code for X86-64.
1398 MachineBasicBlock *
1399 EmitVAARG64WithCustomInserter(MachineInstr &MI,
1400 MachineBasicBlock *MBB) const;
1402 /// Utility function to emit the xmm reg save portion of va_start.
1403 MachineBasicBlock *
1404 EmitVAStartSaveXMMRegsWithCustomInserter(MachineInstr &BInstr,
1405 MachineBasicBlock *BB) const;
1407 MachineBasicBlock *EmitLoweredCascadedSelect(MachineInstr &MI1,
1408 MachineInstr &MI2,
1409 MachineBasicBlock *BB) const;
1411 MachineBasicBlock *EmitLoweredSelect(MachineInstr &I,
1412 MachineBasicBlock *BB) const;
1414 MachineBasicBlock *EmitLoweredAtomicFP(MachineInstr &I,
1415 MachineBasicBlock *BB) const;
1417 MachineBasicBlock *EmitLoweredCatchRet(MachineInstr &MI,
1418 MachineBasicBlock *BB) const;
1420 MachineBasicBlock *EmitLoweredCatchPad(MachineInstr &MI,
1421 MachineBasicBlock *BB) const;
1423 MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr &MI,
1424 MachineBasicBlock *BB) const;
1426 MachineBasicBlock *EmitLoweredTLSAddr(MachineInstr &MI,
1427 MachineBasicBlock *BB) const;
1429 MachineBasicBlock *EmitLoweredTLSCall(MachineInstr &MI,
1430 MachineBasicBlock *BB) const;
1432 MachineBasicBlock *EmitLoweredRetpoline(MachineInstr &MI,
1433 MachineBasicBlock *BB) const;
1435 MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr &MI,
1436 MachineBasicBlock *MBB) const;
1438 void emitSetJmpShadowStackFix(MachineInstr &MI,
1439 MachineBasicBlock *MBB) const;
1441 MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr &MI,
1442 MachineBasicBlock *MBB) const;
1444 MachineBasicBlock *emitLongJmpShadowStackFix(MachineInstr &MI,
1445 MachineBasicBlock *MBB) const;
1447 MachineBasicBlock *emitFMA3Instr(MachineInstr &MI,
1448 MachineBasicBlock *MBB) const;
1450 MachineBasicBlock *EmitSjLjDispatchBlock(MachineInstr &MI,
1451 MachineBasicBlock *MBB) const;
1453 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
1454 /// equivalent, for use with the given x86 condition code.
1455 SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, const SDLoc &dl,
1456 SelectionDAG &DAG) const;
1458 /// Convert a comparison if required by the subtarget.
1459 SDValue ConvertCmpIfNecessary(SDValue Cmp, SelectionDAG &DAG) const;
1461 /// Emit flags for the given setcc condition and operands. Also returns the
1462 /// corresponding X86 condition code constant in X86CC.
1463 SDValue emitFlagsForSetcc(SDValue Op0, SDValue Op1,
1464 ISD::CondCode CC, const SDLoc &dl,
1465 SelectionDAG &DAG,
1466 SDValue &X86CC) const;
1468 /// Check if replacement of SQRT with RSQRT should be disabled.
1469 bool isFsqrtCheap(SDValue Operand, SelectionDAG &DAG) const override;
1471 /// Use rsqrt* to speed up sqrt calculations.
1472 SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
1473 int &RefinementSteps, bool &UseOneConstNR,
1474 bool Reciprocal) const override;
1476 /// Use rcp* to speed up fdiv calculations.
1477 SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
1478 int &RefinementSteps) const override;
1480 /// Reassociate floating point divisions into multiply by reciprocal.
1481 unsigned combineRepeatedFPDivisors() const override;
1484 namespace X86 {
1485 FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
1486 const TargetLibraryInfo *libInfo);
1487 } // end namespace X86
1489 // Base class for all X86 non-masked store operations.
1490 class X86StoreSDNode : public MemSDNode {
1491 public:
1492 X86StoreSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl,
1493 SDVTList VTs, EVT MemVT,
1494 MachineMemOperand *MMO)
1495 :MemSDNode(Opcode, Order, dl, VTs, MemVT, MMO) {}
1496 const SDValue &getValue() const { return getOperand(1); }
1497 const SDValue &getBasePtr() const { return getOperand(2); }
1499 static bool classof(const SDNode *N) {
1500 return N->getOpcode() == X86ISD::VTRUNCSTORES ||
1501 N->getOpcode() == X86ISD::VTRUNCSTOREUS;
1505 // Base class for all X86 masked store operations.
1506 // The class has the same order of operands as MaskedStoreSDNode for
1507 // convenience.
1508 class X86MaskedStoreSDNode : public MemSDNode {
1509 public:
1510 X86MaskedStoreSDNode(unsigned Opcode, unsigned Order,
1511 const DebugLoc &dl, SDVTList VTs, EVT MemVT,
1512 MachineMemOperand *MMO)
1513 : MemSDNode(Opcode, Order, dl, VTs, MemVT, MMO) {}
1515 const SDValue &getValue() const { return getOperand(1); }
1516 const SDValue &getBasePtr() const { return getOperand(2); }
1517 const SDValue &getMask() const { return getOperand(3); }
1519 static bool classof(const SDNode *N) {
1520 return N->getOpcode() == X86ISD::VMTRUNCSTORES ||
1521 N->getOpcode() == X86ISD::VMTRUNCSTOREUS;
1525 // X86 Truncating Store with Signed saturation.
1526 class TruncSStoreSDNode : public X86StoreSDNode {
1527 public:
1528 TruncSStoreSDNode(unsigned Order, const DebugLoc &dl,
1529 SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
1530 : X86StoreSDNode(X86ISD::VTRUNCSTORES, Order, dl, VTs, MemVT, MMO) {}
1532 static bool classof(const SDNode *N) {
1533 return N->getOpcode() == X86ISD::VTRUNCSTORES;
1537 // X86 Truncating Store with Unsigned saturation.
1538 class TruncUSStoreSDNode : public X86StoreSDNode {
1539 public:
1540 TruncUSStoreSDNode(unsigned Order, const DebugLoc &dl,
1541 SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
1542 : X86StoreSDNode(X86ISD::VTRUNCSTOREUS, Order, dl, VTs, MemVT, MMO) {}
1544 static bool classof(const SDNode *N) {
1545 return N->getOpcode() == X86ISD::VTRUNCSTOREUS;
1549 // X86 Truncating Masked Store with Signed saturation.
1550 class MaskedTruncSStoreSDNode : public X86MaskedStoreSDNode {
1551 public:
1552 MaskedTruncSStoreSDNode(unsigned Order,
1553 const DebugLoc &dl, SDVTList VTs, EVT MemVT,
1554 MachineMemOperand *MMO)
1555 : X86MaskedStoreSDNode(X86ISD::VMTRUNCSTORES, Order, dl, VTs, MemVT, MMO) {}
1557 static bool classof(const SDNode *N) {
1558 return N->getOpcode() == X86ISD::VMTRUNCSTORES;
1562 // X86 Truncating Masked Store with Unsigned saturation.
1563 class MaskedTruncUSStoreSDNode : public X86MaskedStoreSDNode {
1564 public:
1565 MaskedTruncUSStoreSDNode(unsigned Order,
1566 const DebugLoc &dl, SDVTList VTs, EVT MemVT,
1567 MachineMemOperand *MMO)
1568 : X86MaskedStoreSDNode(X86ISD::VMTRUNCSTOREUS, Order, dl, VTs, MemVT, MMO) {}
1570 static bool classof(const SDNode *N) {
1571 return N->getOpcode() == X86ISD::VMTRUNCSTOREUS;
1575 // X86 specific Gather/Scatter nodes.
1576 // The class has the same order of operands as MaskedGatherScatterSDNode for
1577 // convenience.
1578 class X86MaskedGatherScatterSDNode : public MemSDNode {
1579 public:
1580 X86MaskedGatherScatterSDNode(unsigned Opc, unsigned Order,
1581 const DebugLoc &dl, SDVTList VTs, EVT MemVT,
1582 MachineMemOperand *MMO)
1583 : MemSDNode(Opc, Order, dl, VTs, MemVT, MMO) {}
1585 const SDValue &getBasePtr() const { return getOperand(3); }
1586 const SDValue &getIndex() const { return getOperand(4); }
1587 const SDValue &getMask() const { return getOperand(2); }
1588 const SDValue &getScale() const { return getOperand(5); }
1590 static bool classof(const SDNode *N) {
1591 return N->getOpcode() == X86ISD::MGATHER ||
1592 N->getOpcode() == X86ISD::MSCATTER;
1596 class X86MaskedGatherSDNode : public X86MaskedGatherScatterSDNode {
1597 public:
1598 X86MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
1599 EVT MemVT, MachineMemOperand *MMO)
1600 : X86MaskedGatherScatterSDNode(X86ISD::MGATHER, Order, dl, VTs, MemVT,
1601 MMO) {}
1603 const SDValue &getPassThru() const { return getOperand(1); }
1605 static bool classof(const SDNode *N) {
1606 return N->getOpcode() == X86ISD::MGATHER;
1610 class X86MaskedScatterSDNode : public X86MaskedGatherScatterSDNode {
1611 public:
1612 X86MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
1613 EVT MemVT, MachineMemOperand *MMO)
1614 : X86MaskedGatherScatterSDNode(X86ISD::MSCATTER, Order, dl, VTs, MemVT,
1615 MMO) {}
1617 const SDValue &getValue() const { return getOperand(1); }
1619 static bool classof(const SDNode *N) {
1620 return N->getOpcode() == X86ISD::MSCATTER;
1624 /// Generate unpacklo/unpackhi shuffle mask.
1625 template <typename T = int>
1626 void createUnpackShuffleMask(MVT VT, SmallVectorImpl<T> &Mask, bool Lo,
1627 bool Unary) {
1628 assert(Mask.empty() && "Expected an empty shuffle mask vector");
1629 int NumElts = VT.getVectorNumElements();
1630 int NumEltsInLane = 128 / VT.getScalarSizeInBits();
1631 for (int i = 0; i < NumElts; ++i) {
1632 unsigned LaneStart = (i / NumEltsInLane) * NumEltsInLane;
1633 int Pos = (i % NumEltsInLane) / 2 + LaneStart;
1634 Pos += (Unary ? 0 : NumElts * (i % 2));
1635 Pos += (Lo ? 0 : NumEltsInLane / 2);
1636 Mask.push_back(Pos);
1640 /// Helper function to scale a shuffle or target shuffle mask, replacing each
1641 /// mask index with the scaled sequential indices for an equivalent narrowed
1642 /// mask. This is the reverse process to canWidenShuffleElements, but can
1643 /// always succeed.
1644 template <typename T>
1645 void scaleShuffleMask(int Scale, ArrayRef<T> Mask,
1646 SmallVectorImpl<T> &ScaledMask) {
1647 assert(0 < Scale && "Unexpected scaling factor");
1648 size_t NumElts = Mask.size();
1649 ScaledMask.assign(NumElts * Scale, -1);
1651 for (int i = 0; i != (int)NumElts; ++i) {
1652 int M = Mask[i];
1654 // Repeat sentinel values in every mask element.
1655 if (M < 0) {
1656 for (int s = 0; s != Scale; ++s)
1657 ScaledMask[(Scale * i) + s] = M;
1658 continue;
1661 // Scale mask element and increment across each mask element.
1662 for (int s = 0; s != Scale; ++s)
1663 ScaledMask[(Scale * i) + s] = (Scale * M) + s;
1666 } // end namespace llvm
1668 #endif // LLVM_LIB_TARGET_X86_X86ISELLOWERING_H