1 //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the X86 implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "X86InstrInfo.h"
15 #include "X86InstrBuilder.h"
16 #include "X86InstrFoldTables.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Sequence.h"
22 #include "llvm/CodeGen/LivePhysRegs.h"
23 #include "llvm/CodeGen/LiveVariables.h"
24 #include "llvm/CodeGen/MachineConstantPool.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/StackMaps.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/DebugInfoMetadata.h"
34 #include "llvm/MC/MCAsmInfo.h"
35 #include "llvm/MC/MCExpr.h"
36 #include "llvm/MC/MCInst.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Target/TargetOptions.h"
45 #define DEBUG_TYPE "x86-instr-info"
47 #define GET_INSTRINFO_CTOR_DTOR
48 #include "X86GenInstrInfo.inc"
51 NoFusing("disable-spill-fusing",
52 cl::desc("Disable fusing of spill code into instructions"),
55 PrintFailedFusing("print-failed-fuse-candidates",
56 cl::desc("Print instructions that the allocator wants to"
57 " fuse, but the X86 backend currently can't"),
60 ReMatPICStubLoad("remat-pic-stub-load",
61 cl::desc("Re-materialize load from stub in PIC mode"),
62 cl::init(false), cl::Hidden
);
63 static cl::opt
<unsigned>
64 PartialRegUpdateClearance("partial-reg-update-clearance",
65 cl::desc("Clearance between two register writes "
66 "for inserting XOR to avoid partial "
68 cl::init(64), cl::Hidden
);
69 static cl::opt
<unsigned>
70 UndefRegClearance("undef-reg-clearance",
71 cl::desc("How many idle instructions we would like before "
72 "certain undef register reads"),
73 cl::init(128), cl::Hidden
);
76 // Pin the vtable to this file.
77 void X86InstrInfo::anchor() {}
79 X86InstrInfo::X86InstrInfo(X86Subtarget
&STI
)
80 : X86GenInstrInfo((STI
.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
81 : X86::ADJCALLSTACKDOWN32
),
82 (STI
.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
83 : X86::ADJCALLSTACKUP32
),
85 (STI
.is64Bit() ? X86::RETQ
: X86::RETL
)),
86 Subtarget(STI
), RI(STI
.getTargetTriple()) {
90 X86InstrInfo::isCoalescableExtInstr(const MachineInstr
&MI
,
91 unsigned &SrcReg
, unsigned &DstReg
,
92 unsigned &SubIdx
) const {
93 switch (MI
.getOpcode()) {
100 if (!Subtarget
.is64Bit())
101 // It's not always legal to reference the low 8-bit of the larger
102 // register in 32-bit mode.
105 case X86::MOVSX32rr16
:
106 case X86::MOVZX32rr16
:
107 case X86::MOVSX64rr16
:
108 case X86::MOVSX64rr32
: {
109 if (MI
.getOperand(0).getSubReg() || MI
.getOperand(1).getSubReg())
112 SrcReg
= MI
.getOperand(1).getReg();
113 DstReg
= MI
.getOperand(0).getReg();
114 switch (MI
.getOpcode()) {
115 default: llvm_unreachable("Unreachable!");
116 case X86::MOVSX16rr8
:
117 case X86::MOVZX16rr8
:
118 case X86::MOVSX32rr8
:
119 case X86::MOVZX32rr8
:
120 case X86::MOVSX64rr8
:
121 SubIdx
= X86::sub_8bit
;
123 case X86::MOVSX32rr16
:
124 case X86::MOVZX32rr16
:
125 case X86::MOVSX64rr16
:
126 SubIdx
= X86::sub_16bit
;
128 case X86::MOVSX64rr32
:
129 SubIdx
= X86::sub_32bit
;
138 int X86InstrInfo::getSPAdjust(const MachineInstr
&MI
) const {
139 const MachineFunction
*MF
= MI
.getParent()->getParent();
140 const TargetFrameLowering
*TFI
= MF
->getSubtarget().getFrameLowering();
142 if (isFrameInstr(MI
)) {
143 unsigned StackAlign
= TFI
->getStackAlignment();
144 int SPAdj
= alignTo(getFrameSize(MI
), StackAlign
);
145 SPAdj
-= getFrameAdjustment(MI
);
146 if (!isFrameSetup(MI
))
151 // To know whether a call adjusts the stack, we need information
152 // that is bound to the following ADJCALLSTACKUP pseudo.
153 // Look for the next ADJCALLSTACKUP that follows the call.
155 const MachineBasicBlock
*MBB
= MI
.getParent();
156 auto I
= ++MachineBasicBlock::const_iterator(MI
);
157 for (auto E
= MBB
->end(); I
!= E
; ++I
) {
158 if (I
->getOpcode() == getCallFrameDestroyOpcode() ||
163 // If we could not find a frame destroy opcode, then it has already
164 // been simplified, so we don't care.
165 if (I
->getOpcode() != getCallFrameDestroyOpcode())
168 return -(I
->getOperand(1).getImm());
171 // Currently handle only PUSHes we can reasonably expect to see
173 switch (MI
.getOpcode()) {
191 /// Return true and the FrameIndex if the specified
192 /// operand and follow operands form a reference to the stack frame.
193 bool X86InstrInfo::isFrameOperand(const MachineInstr
&MI
, unsigned int Op
,
194 int &FrameIndex
) const {
195 if (MI
.getOperand(Op
+ X86::AddrBaseReg
).isFI() &&
196 MI
.getOperand(Op
+ X86::AddrScaleAmt
).isImm() &&
197 MI
.getOperand(Op
+ X86::AddrIndexReg
).isReg() &&
198 MI
.getOperand(Op
+ X86::AddrDisp
).isImm() &&
199 MI
.getOperand(Op
+ X86::AddrScaleAmt
).getImm() == 1 &&
200 MI
.getOperand(Op
+ X86::AddrIndexReg
).getReg() == 0 &&
201 MI
.getOperand(Op
+ X86::AddrDisp
).getImm() == 0) {
202 FrameIndex
= MI
.getOperand(Op
+ X86::AddrBaseReg
).getIndex();
208 static bool isFrameLoadOpcode(int Opcode
, unsigned &MemBytes
) {
222 case X86::MOVSSrm_alt
:
224 case X86::VMOVSSrm_alt
:
226 case X86::VMOVSSZrm_alt
:
233 case X86::MOVSDrm_alt
:
235 case X86::VMOVSDrm_alt
:
237 case X86::VMOVSDZrm_alt
:
238 case X86::MMX_MOVD64rm
:
239 case X86::MMX_MOVQ64rm
:
255 case X86::VMOVAPSZ128rm
:
256 case X86::VMOVUPSZ128rm
:
257 case X86::VMOVAPSZ128rm_NOVLX
:
258 case X86::VMOVUPSZ128rm_NOVLX
:
259 case X86::VMOVAPDZ128rm
:
260 case X86::VMOVUPDZ128rm
:
261 case X86::VMOVDQU8Z128rm
:
262 case X86::VMOVDQU16Z128rm
:
263 case X86::VMOVDQA32Z128rm
:
264 case X86::VMOVDQU32Z128rm
:
265 case X86::VMOVDQA64Z128rm
:
266 case X86::VMOVDQU64Z128rm
:
269 case X86::VMOVAPSYrm
:
270 case X86::VMOVUPSYrm
:
271 case X86::VMOVAPDYrm
:
272 case X86::VMOVUPDYrm
:
273 case X86::VMOVDQAYrm
:
274 case X86::VMOVDQUYrm
:
275 case X86::VMOVAPSZ256rm
:
276 case X86::VMOVUPSZ256rm
:
277 case X86::VMOVAPSZ256rm_NOVLX
:
278 case X86::VMOVUPSZ256rm_NOVLX
:
279 case X86::VMOVAPDZ256rm
:
280 case X86::VMOVUPDZ256rm
:
281 case X86::VMOVDQU8Z256rm
:
282 case X86::VMOVDQU16Z256rm
:
283 case X86::VMOVDQA32Z256rm
:
284 case X86::VMOVDQU32Z256rm
:
285 case X86::VMOVDQA64Z256rm
:
286 case X86::VMOVDQU64Z256rm
:
289 case X86::VMOVAPSZrm
:
290 case X86::VMOVUPSZrm
:
291 case X86::VMOVAPDZrm
:
292 case X86::VMOVUPDZrm
:
293 case X86::VMOVDQU8Zrm
:
294 case X86::VMOVDQU16Zrm
:
295 case X86::VMOVDQA32Zrm
:
296 case X86::VMOVDQU32Zrm
:
297 case X86::VMOVDQA64Zrm
:
298 case X86::VMOVDQU64Zrm
:
304 static bool isFrameStoreOpcode(int Opcode
, unsigned &MemBytes
) {
328 case X86::MMX_MOVD64mr
:
329 case X86::MMX_MOVQ64mr
:
330 case X86::MMX_MOVNTQmr
:
346 case X86::VMOVUPSZ128mr
:
347 case X86::VMOVAPSZ128mr
:
348 case X86::VMOVUPSZ128mr_NOVLX
:
349 case X86::VMOVAPSZ128mr_NOVLX
:
350 case X86::VMOVUPDZ128mr
:
351 case X86::VMOVAPDZ128mr
:
352 case X86::VMOVDQA32Z128mr
:
353 case X86::VMOVDQU32Z128mr
:
354 case X86::VMOVDQA64Z128mr
:
355 case X86::VMOVDQU64Z128mr
:
356 case X86::VMOVDQU8Z128mr
:
357 case X86::VMOVDQU16Z128mr
:
360 case X86::VMOVUPSYmr
:
361 case X86::VMOVAPSYmr
:
362 case X86::VMOVUPDYmr
:
363 case X86::VMOVAPDYmr
:
364 case X86::VMOVDQUYmr
:
365 case X86::VMOVDQAYmr
:
366 case X86::VMOVUPSZ256mr
:
367 case X86::VMOVAPSZ256mr
:
368 case X86::VMOVUPSZ256mr_NOVLX
:
369 case X86::VMOVAPSZ256mr_NOVLX
:
370 case X86::VMOVUPDZ256mr
:
371 case X86::VMOVAPDZ256mr
:
372 case X86::VMOVDQU8Z256mr
:
373 case X86::VMOVDQU16Z256mr
:
374 case X86::VMOVDQA32Z256mr
:
375 case X86::VMOVDQU32Z256mr
:
376 case X86::VMOVDQA64Z256mr
:
377 case X86::VMOVDQU64Z256mr
:
380 case X86::VMOVUPSZmr
:
381 case X86::VMOVAPSZmr
:
382 case X86::VMOVUPDZmr
:
383 case X86::VMOVAPDZmr
:
384 case X86::VMOVDQU8Zmr
:
385 case X86::VMOVDQU16Zmr
:
386 case X86::VMOVDQA32Zmr
:
387 case X86::VMOVDQU32Zmr
:
388 case X86::VMOVDQA64Zmr
:
389 case X86::VMOVDQU64Zmr
:
396 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr
&MI
,
397 int &FrameIndex
) const {
399 return X86InstrInfo::isLoadFromStackSlot(MI
, FrameIndex
, Dummy
);
402 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr
&MI
,
404 unsigned &MemBytes
) const {
405 if (isFrameLoadOpcode(MI
.getOpcode(), MemBytes
))
406 if (MI
.getOperand(0).getSubReg() == 0 && isFrameOperand(MI
, 1, FrameIndex
))
407 return MI
.getOperand(0).getReg();
411 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr
&MI
,
412 int &FrameIndex
) const {
414 if (isFrameLoadOpcode(MI
.getOpcode(), Dummy
)) {
416 if ((Reg
= isLoadFromStackSlot(MI
, FrameIndex
)))
418 // Check for post-frame index elimination operations
419 SmallVector
<const MachineMemOperand
*, 1> Accesses
;
420 if (hasLoadFromStackSlot(MI
, Accesses
)) {
422 cast
<FixedStackPseudoSourceValue
>(Accesses
.front()->getPseudoValue())
430 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr
&MI
,
431 int &FrameIndex
) const {
433 return X86InstrInfo::isStoreToStackSlot(MI
, FrameIndex
, Dummy
);
436 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr
&MI
,
438 unsigned &MemBytes
) const {
439 if (isFrameStoreOpcode(MI
.getOpcode(), MemBytes
))
440 if (MI
.getOperand(X86::AddrNumOperands
).getSubReg() == 0 &&
441 isFrameOperand(MI
, 0, FrameIndex
))
442 return MI
.getOperand(X86::AddrNumOperands
).getReg();
446 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr
&MI
,
447 int &FrameIndex
) const {
449 if (isFrameStoreOpcode(MI
.getOpcode(), Dummy
)) {
451 if ((Reg
= isStoreToStackSlot(MI
, FrameIndex
)))
453 // Check for post-frame index elimination operations
454 SmallVector
<const MachineMemOperand
*, 1> Accesses
;
455 if (hasStoreToStackSlot(MI
, Accesses
)) {
457 cast
<FixedStackPseudoSourceValue
>(Accesses
.front()->getPseudoValue())
465 /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
466 static bool regIsPICBase(unsigned BaseReg
, const MachineRegisterInfo
&MRI
) {
467 // Don't waste compile time scanning use-def chains of physregs.
468 if (!Register::isVirtualRegister(BaseReg
))
470 bool isPICBase
= false;
471 for (MachineRegisterInfo::def_instr_iterator I
= MRI
.def_instr_begin(BaseReg
),
472 E
= MRI
.def_instr_end(); I
!= E
; ++I
) {
473 MachineInstr
*DefMI
= &*I
;
474 if (DefMI
->getOpcode() != X86::MOVPC32r
)
476 assert(!isPICBase
&& "More than one PIC base?");
482 bool X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr
&MI
,
483 AliasAnalysis
*AA
) const {
484 switch (MI
.getOpcode()) {
487 case X86::MOV8rm_NOREX
:
492 case X86::MOVSSrm_alt
:
494 case X86::MOVSDrm_alt
:
502 case X86::VMOVSSrm_alt
:
504 case X86::VMOVSDrm_alt
:
511 case X86::VMOVAPSYrm
:
512 case X86::VMOVUPSYrm
:
513 case X86::VMOVAPDYrm
:
514 case X86::VMOVUPDYrm
:
515 case X86::VMOVDQAYrm
:
516 case X86::VMOVDQUYrm
:
517 case X86::MMX_MOVD64rm
:
518 case X86::MMX_MOVQ64rm
:
521 case X86::VMOVSSZrm_alt
:
523 case X86::VMOVSDZrm_alt
:
524 case X86::VMOVAPDZ128rm
:
525 case X86::VMOVAPDZ256rm
:
526 case X86::VMOVAPDZrm
:
527 case X86::VMOVAPSZ128rm
:
528 case X86::VMOVAPSZ256rm
:
529 case X86::VMOVAPSZ128rm_NOVLX
:
530 case X86::VMOVAPSZ256rm_NOVLX
:
531 case X86::VMOVAPSZrm
:
532 case X86::VMOVDQA32Z128rm
:
533 case X86::VMOVDQA32Z256rm
:
534 case X86::VMOVDQA32Zrm
:
535 case X86::VMOVDQA64Z128rm
:
536 case X86::VMOVDQA64Z256rm
:
537 case X86::VMOVDQA64Zrm
:
538 case X86::VMOVDQU16Z128rm
:
539 case X86::VMOVDQU16Z256rm
:
540 case X86::VMOVDQU16Zrm
:
541 case X86::VMOVDQU32Z128rm
:
542 case X86::VMOVDQU32Z256rm
:
543 case X86::VMOVDQU32Zrm
:
544 case X86::VMOVDQU64Z128rm
:
545 case X86::VMOVDQU64Z256rm
:
546 case X86::VMOVDQU64Zrm
:
547 case X86::VMOVDQU8Z128rm
:
548 case X86::VMOVDQU8Z256rm
:
549 case X86::VMOVDQU8Zrm
:
550 case X86::VMOVUPDZ128rm
:
551 case X86::VMOVUPDZ256rm
:
552 case X86::VMOVUPDZrm
:
553 case X86::VMOVUPSZ128rm
:
554 case X86::VMOVUPSZ256rm
:
555 case X86::VMOVUPSZ128rm_NOVLX
:
556 case X86::VMOVUPSZ256rm_NOVLX
:
557 case X86::VMOVUPSZrm
: {
558 // Loads from constant pools are trivially rematerializable.
559 if (MI
.getOperand(1 + X86::AddrBaseReg
).isReg() &&
560 MI
.getOperand(1 + X86::AddrScaleAmt
).isImm() &&
561 MI
.getOperand(1 + X86::AddrIndexReg
).isReg() &&
562 MI
.getOperand(1 + X86::AddrIndexReg
).getReg() == 0 &&
563 MI
.isDereferenceableInvariantLoad(AA
)) {
564 Register BaseReg
= MI
.getOperand(1 + X86::AddrBaseReg
).getReg();
565 if (BaseReg
== 0 || BaseReg
== X86::RIP
)
567 // Allow re-materialization of PIC load.
568 if (!ReMatPICStubLoad
&& MI
.getOperand(1 + X86::AddrDisp
).isGlobal())
570 const MachineFunction
&MF
= *MI
.getParent()->getParent();
571 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
572 return regIsPICBase(BaseReg
, MRI
);
579 if (MI
.getOperand(1 + X86::AddrScaleAmt
).isImm() &&
580 MI
.getOperand(1 + X86::AddrIndexReg
).isReg() &&
581 MI
.getOperand(1 + X86::AddrIndexReg
).getReg() == 0 &&
582 !MI
.getOperand(1 + X86::AddrDisp
).isReg()) {
583 // lea fi#, lea GV, etc. are all rematerializable.
584 if (!MI
.getOperand(1 + X86::AddrBaseReg
).isReg())
586 Register BaseReg
= MI
.getOperand(1 + X86::AddrBaseReg
).getReg();
589 // Allow re-materialization of lea PICBase + x.
590 const MachineFunction
&MF
= *MI
.getParent()->getParent();
591 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
592 return regIsPICBase(BaseReg
, MRI
);
598 // All other instructions marked M_REMATERIALIZABLE are always trivially
603 void X86InstrInfo::reMaterialize(MachineBasicBlock
&MBB
,
604 MachineBasicBlock::iterator I
,
605 unsigned DestReg
, unsigned SubIdx
,
606 const MachineInstr
&Orig
,
607 const TargetRegisterInfo
&TRI
) const {
608 bool ClobbersEFLAGS
= Orig
.modifiesRegister(X86::EFLAGS
, &TRI
);
609 if (ClobbersEFLAGS
&& !isSafeToClobberEFLAGS(MBB
, I
)) {
610 // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
613 switch (Orig
.getOpcode()) {
614 case X86::MOV32r0
: Value
= 0; break;
615 case X86::MOV32r1
: Value
= 1; break;
616 case X86::MOV32r_1
: Value
= -1; break;
618 llvm_unreachable("Unexpected instruction!");
621 const DebugLoc
&DL
= Orig
.getDebugLoc();
622 BuildMI(MBB
, I
, DL
, get(X86::MOV32ri
))
623 .add(Orig
.getOperand(0))
626 MachineInstr
*MI
= MBB
.getParent()->CloneMachineInstr(&Orig
);
630 MachineInstr
&NewMI
= *std::prev(I
);
631 NewMI
.substituteRegister(Orig
.getOperand(0).getReg(), DestReg
, SubIdx
, TRI
);
634 /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
635 bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr
&MI
) const {
636 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
637 MachineOperand
&MO
= MI
.getOperand(i
);
638 if (MO
.isReg() && MO
.isDef() &&
639 MO
.getReg() == X86::EFLAGS
&& !MO
.isDead()) {
646 /// Check whether the shift count for a machine operand is non-zero.
647 inline static unsigned getTruncatedShiftCount(const MachineInstr
&MI
,
648 unsigned ShiftAmtOperandIdx
) {
649 // The shift count is six bits with the REX.W prefix and five bits without.
650 unsigned ShiftCountMask
= (MI
.getDesc().TSFlags
& X86II::REX_W
) ? 63 : 31;
651 unsigned Imm
= MI
.getOperand(ShiftAmtOperandIdx
).getImm();
652 return Imm
& ShiftCountMask
;
655 /// Check whether the given shift count is appropriate
656 /// can be represented by a LEA instruction.
657 inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt
) {
658 // Left shift instructions can be transformed into load-effective-address
659 // instructions if we can encode them appropriately.
660 // A LEA instruction utilizes a SIB byte to encode its scale factor.
661 // The SIB.scale field is two bits wide which means that we can encode any
662 // shift amount less than 4.
663 return ShAmt
< 4 && ShAmt
> 0;
666 bool X86InstrInfo::classifyLEAReg(MachineInstr
&MI
, const MachineOperand
&Src
,
667 unsigned Opc
, bool AllowSP
, Register
&NewSrc
,
668 bool &isKill
, MachineOperand
&ImplicitOp
,
669 LiveVariables
*LV
) const {
670 MachineFunction
&MF
= *MI
.getParent()->getParent();
671 const TargetRegisterClass
*RC
;
673 RC
= Opc
!= X86::LEA32r
? &X86::GR64RegClass
: &X86::GR32RegClass
;
675 RC
= Opc
!= X86::LEA32r
?
676 &X86::GR64_NOSPRegClass
: &X86::GR32_NOSPRegClass
;
678 Register SrcReg
= Src
.getReg();
680 // For both LEA64 and LEA32 the register already has essentially the right
681 // type (32-bit or 64-bit) we may just need to forbid SP.
682 if (Opc
!= X86::LEA64_32r
) {
684 isKill
= Src
.isKill();
685 assert(!Src
.isUndef() && "Undef op doesn't need optimization");
687 if (Register::isVirtualRegister(NewSrc
) &&
688 !MF
.getRegInfo().constrainRegClass(NewSrc
, RC
))
694 // This is for an LEA64_32r and incoming registers are 32-bit. One way or
695 // another we need to add 64-bit registers to the final MI.
696 if (Register::isPhysicalRegister(SrcReg
)) {
698 ImplicitOp
.setImplicit();
700 NewSrc
= getX86SubSuperRegister(Src
.getReg(), 64);
701 isKill
= Src
.isKill();
702 assert(!Src
.isUndef() && "Undef op doesn't need optimization");
704 // Virtual register of the wrong class, we have to create a temporary 64-bit
705 // vreg to feed into the LEA.
706 NewSrc
= MF
.getRegInfo().createVirtualRegister(RC
);
708 BuildMI(*MI
.getParent(), MI
, MI
.getDebugLoc(), get(TargetOpcode::COPY
))
709 .addReg(NewSrc
, RegState::Define
| RegState::Undef
, X86::sub_32bit
)
712 // Which is obviously going to be dead after we're done with it.
716 LV
->replaceKillInstruction(SrcReg
, MI
, *Copy
);
719 // We've set all the parameters without issue.
723 MachineInstr
*X86InstrInfo::convertToThreeAddressWithLEA(
724 unsigned MIOpc
, MachineFunction::iterator
&MFI
, MachineInstr
&MI
,
725 LiveVariables
*LV
, bool Is8BitOp
) const {
726 // We handle 8-bit adds and various 16-bit opcodes in the switch below.
727 MachineRegisterInfo
&RegInfo
= MFI
->getParent()->getRegInfo();
728 assert((Is8BitOp
|| RegInfo
.getTargetRegisterInfo()->getRegSizeInBits(
729 *RegInfo
.getRegClass(MI
.getOperand(0).getReg())) == 16) &&
730 "Unexpected type for LEA transform");
732 // TODO: For a 32-bit target, we need to adjust the LEA variables with
733 // something like this:
734 // Opcode = X86::LEA32r;
735 // InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
737 // Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass)
738 // : RegInfo.createVirtualRegister(&X86::GR32RegClass);
739 if (!Subtarget
.is64Bit())
742 unsigned Opcode
= X86::LEA64_32r
;
743 Register InRegLEA
= RegInfo
.createVirtualRegister(&X86::GR64_NOSPRegClass
);
744 Register OutRegLEA
= RegInfo
.createVirtualRegister(&X86::GR32RegClass
);
746 // Build and insert into an implicit UNDEF value. This is OK because
747 // we will be shifting and then extracting the lower 8/16-bits.
748 // This has the potential to cause partial register stall. e.g.
749 // movw (%rbp,%rcx,2), %dx
750 // leal -65(%rdx), %esi
751 // But testing has shown this *does* help performance in 64-bit mode (at
752 // least on modern x86 machines).
753 MachineBasicBlock::iterator MBBI
= MI
.getIterator();
754 Register Dest
= MI
.getOperand(0).getReg();
755 Register Src
= MI
.getOperand(1).getReg();
756 bool IsDead
= MI
.getOperand(0).isDead();
757 bool IsKill
= MI
.getOperand(1).isKill();
758 unsigned SubReg
= Is8BitOp
? X86::sub_8bit
: X86::sub_16bit
;
759 assert(!MI
.getOperand(1).isUndef() && "Undef op doesn't need optimization");
760 BuildMI(*MFI
, MBBI
, MI
.getDebugLoc(), get(X86::IMPLICIT_DEF
), InRegLEA
);
761 MachineInstr
*InsMI
=
762 BuildMI(*MFI
, MBBI
, MI
.getDebugLoc(), get(TargetOpcode::COPY
))
763 .addReg(InRegLEA
, RegState::Define
, SubReg
)
764 .addReg(Src
, getKillRegState(IsKill
));
766 MachineInstrBuilder MIB
=
767 BuildMI(*MFI
, MBBI
, MI
.getDebugLoc(), get(Opcode
), OutRegLEA
);
769 default: llvm_unreachable("Unreachable!");
772 unsigned ShAmt
= MI
.getOperand(2).getImm();
773 MIB
.addReg(0).addImm(1ULL << ShAmt
)
774 .addReg(InRegLEA
, RegState::Kill
).addImm(0).addReg(0);
779 addRegOffset(MIB
, InRegLEA
, true, 1);
783 addRegOffset(MIB
, InRegLEA
, true, -1);
789 case X86::ADD16ri_DB
:
790 case X86::ADD16ri8_DB
:
791 addRegOffset(MIB
, InRegLEA
, true, MI
.getOperand(2).getImm());
796 case X86::ADD16rr_DB
: {
797 Register Src2
= MI
.getOperand(2).getReg();
798 bool IsKill2
= MI
.getOperand(2).isKill();
799 assert(!MI
.getOperand(2).isUndef() && "Undef op doesn't need optimization");
800 unsigned InRegLEA2
= 0;
801 MachineInstr
*InsMI2
= nullptr;
803 // ADD8rr/ADD16rr killed %reg1028, %reg1028
804 // just a single insert_subreg.
805 addRegReg(MIB
, InRegLEA
, true, InRegLEA
, false);
807 if (Subtarget
.is64Bit())
808 InRegLEA2
= RegInfo
.createVirtualRegister(&X86::GR64_NOSPRegClass
);
810 InRegLEA2
= RegInfo
.createVirtualRegister(&X86::GR32_NOSPRegClass
);
811 // Build and insert into an implicit UNDEF value. This is OK because
812 // we will be shifting and then extracting the lower 8/16-bits.
813 BuildMI(*MFI
, &*MIB
, MI
.getDebugLoc(), get(X86::IMPLICIT_DEF
), InRegLEA2
);
814 InsMI2
= BuildMI(*MFI
, &*MIB
, MI
.getDebugLoc(), get(TargetOpcode::COPY
))
815 .addReg(InRegLEA2
, RegState::Define
, SubReg
)
816 .addReg(Src2
, getKillRegState(IsKill2
));
817 addRegReg(MIB
, InRegLEA
, true, InRegLEA2
, true);
819 if (LV
&& IsKill2
&& InsMI2
)
820 LV
->replaceKillInstruction(Src2
, MI
, *InsMI2
);
825 MachineInstr
*NewMI
= MIB
;
826 MachineInstr
*ExtMI
=
827 BuildMI(*MFI
, MBBI
, MI
.getDebugLoc(), get(TargetOpcode::COPY
))
828 .addReg(Dest
, RegState::Define
| getDeadRegState(IsDead
))
829 .addReg(OutRegLEA
, RegState::Kill
, SubReg
);
832 // Update live variables.
833 LV
->getVarInfo(InRegLEA
).Kills
.push_back(NewMI
);
834 LV
->getVarInfo(OutRegLEA
).Kills
.push_back(ExtMI
);
836 LV
->replaceKillInstruction(Src
, MI
, *InsMI
);
838 LV
->replaceKillInstruction(Dest
, MI
, *ExtMI
);
844 /// This method must be implemented by targets that
845 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
846 /// may be able to convert a two-address instruction into a true
847 /// three-address instruction on demand. This allows the X86 target (for
848 /// example) to convert ADD and SHL instructions into LEA instructions if they
849 /// would require register copies due to two-addressness.
851 /// This method returns a null pointer if the transformation cannot be
852 /// performed, otherwise it returns the new instruction.
855 X86InstrInfo::convertToThreeAddress(MachineFunction::iterator
&MFI
,
856 MachineInstr
&MI
, LiveVariables
*LV
) const {
857 // The following opcodes also sets the condition code register(s). Only
858 // convert them to equivalent lea if the condition code register def's
860 if (hasLiveCondCodeDef(MI
))
863 MachineFunction
&MF
= *MI
.getParent()->getParent();
864 // All instructions input are two-addr instructions. Get the known operands.
865 const MachineOperand
&Dest
= MI
.getOperand(0);
866 const MachineOperand
&Src
= MI
.getOperand(1);
868 // Ideally, operations with undef should be folded before we get here, but we
869 // can't guarantee it. Bail out because optimizing undefs is a waste of time.
870 // Without this, we have to forward undef state to new register operands to
871 // avoid machine verifier errors.
874 if (MI
.getNumOperands() > 2)
875 if (MI
.getOperand(2).isReg() && MI
.getOperand(2).isUndef())
878 MachineInstr
*NewMI
= nullptr;
879 bool Is64Bit
= Subtarget
.is64Bit();
881 bool Is8BitOp
= false;
882 unsigned MIOpc
= MI
.getOpcode();
884 default: llvm_unreachable("Unreachable!");
886 assert(MI
.getNumOperands() >= 3 && "Unknown shift instruction!");
887 unsigned ShAmt
= getTruncatedShiftCount(MI
, 2);
888 if (!isTruncatedShiftCountForLEA(ShAmt
)) return nullptr;
890 // LEA can't handle RSP.
891 if (Register::isVirtualRegister(Src
.getReg()) &&
892 !MF
.getRegInfo().constrainRegClass(Src
.getReg(),
893 &X86::GR64_NOSPRegClass
))
896 NewMI
= BuildMI(MF
, MI
.getDebugLoc(), get(X86::LEA64r
))
899 .addImm(1ULL << ShAmt
)
906 assert(MI
.getNumOperands() >= 3 && "Unknown shift instruction!");
907 unsigned ShAmt
= getTruncatedShiftCount(MI
, 2);
908 if (!isTruncatedShiftCountForLEA(ShAmt
)) return nullptr;
910 unsigned Opc
= Is64Bit
? X86::LEA64_32r
: X86::LEA32r
;
912 // LEA can't handle ESP.
915 MachineOperand ImplicitOp
= MachineOperand::CreateReg(0, false);
916 if (!classifyLEAReg(MI
, Src
, Opc
, /*AllowSP=*/ false,
917 SrcReg
, isKill
, ImplicitOp
, LV
))
920 MachineInstrBuilder MIB
=
921 BuildMI(MF
, MI
.getDebugLoc(), get(Opc
))
924 .addImm(1ULL << ShAmt
)
925 .addReg(SrcReg
, getKillRegState(isKill
))
928 if (ImplicitOp
.getReg() != 0)
938 assert(MI
.getNumOperands() >= 3 && "Unknown shift instruction!");
939 unsigned ShAmt
= getTruncatedShiftCount(MI
, 2);
940 if (!isTruncatedShiftCountForLEA(ShAmt
))
942 return convertToThreeAddressWithLEA(MIOpc
, MFI
, MI
, LV
, Is8BitOp
);
946 assert(MI
.getNumOperands() >= 2 && "Unknown inc instruction!");
947 unsigned Opc
= MIOpc
== X86::INC64r
? X86::LEA64r
:
948 (Is64Bit
? X86::LEA64_32r
: X86::LEA32r
);
951 MachineOperand ImplicitOp
= MachineOperand::CreateReg(0, false);
952 if (!classifyLEAReg(MI
, Src
, Opc
, /*AllowSP=*/ false, SrcReg
, isKill
,
956 MachineInstrBuilder MIB
=
957 BuildMI(MF
, MI
.getDebugLoc(), get(Opc
))
959 .addReg(SrcReg
, getKillRegState(isKill
));
960 if (ImplicitOp
.getReg() != 0)
963 NewMI
= addOffset(MIB
, 1);
968 assert(MI
.getNumOperands() >= 2 && "Unknown dec instruction!");
969 unsigned Opc
= MIOpc
== X86::DEC64r
? X86::LEA64r
970 : (Is64Bit
? X86::LEA64_32r
: X86::LEA32r
);
974 MachineOperand ImplicitOp
= MachineOperand::CreateReg(0, false);
975 if (!classifyLEAReg(MI
, Src
, Opc
, /*AllowSP=*/ false, SrcReg
, isKill
,
979 MachineInstrBuilder MIB
= BuildMI(MF
, MI
.getDebugLoc(), get(Opc
))
981 .addReg(SrcReg
, getKillRegState(isKill
));
982 if (ImplicitOp
.getReg() != 0)
985 NewMI
= addOffset(MIB
, -1);
995 return convertToThreeAddressWithLEA(MIOpc
, MFI
, MI
, LV
, Is8BitOp
);
997 case X86::ADD64rr_DB
:
999 case X86::ADD32rr_DB
: {
1000 assert(MI
.getNumOperands() >= 3 && "Unknown add instruction!");
1002 if (MIOpc
== X86::ADD64rr
|| MIOpc
== X86::ADD64rr_DB
)
1005 Opc
= Is64Bit
? X86::LEA64_32r
: X86::LEA32r
;
1009 MachineOperand ImplicitOp
= MachineOperand::CreateReg(0, false);
1010 if (!classifyLEAReg(MI
, Src
, Opc
, /*AllowSP=*/ true,
1011 SrcReg
, isKill
, ImplicitOp
, LV
))
1014 const MachineOperand
&Src2
= MI
.getOperand(2);
1017 MachineOperand ImplicitOp2
= MachineOperand::CreateReg(0, false);
1018 if (!classifyLEAReg(MI
, Src2
, Opc
, /*AllowSP=*/ false,
1019 SrcReg2
, isKill2
, ImplicitOp2
, LV
))
1022 MachineInstrBuilder MIB
= BuildMI(MF
, MI
.getDebugLoc(), get(Opc
)).add(Dest
);
1023 if (ImplicitOp
.getReg() != 0)
1024 MIB
.add(ImplicitOp
);
1025 if (ImplicitOp2
.getReg() != 0)
1026 MIB
.add(ImplicitOp2
);
1028 NewMI
= addRegReg(MIB
, SrcReg
, isKill
, SrcReg2
, isKill2
);
1029 if (LV
&& Src2
.isKill())
1030 LV
->replaceKillInstruction(SrcReg2
, MI
, *NewMI
);
1034 case X86::ADD8rr_DB
:
1038 case X86::ADD16rr_DB
:
1039 return convertToThreeAddressWithLEA(MIOpc
, MFI
, MI
, LV
, Is8BitOp
);
1040 case X86::ADD64ri32
:
1042 case X86::ADD64ri32_DB
:
1043 case X86::ADD64ri8_DB
:
1044 assert(MI
.getNumOperands() >= 3 && "Unknown add instruction!");
1046 BuildMI(MF
, MI
.getDebugLoc(), get(X86::LEA64r
)).add(Dest
).add(Src
),
1051 case X86::ADD32ri_DB
:
1052 case X86::ADD32ri8_DB
: {
1053 assert(MI
.getNumOperands() >= 3 && "Unknown add instruction!");
1054 unsigned Opc
= Is64Bit
? X86::LEA64_32r
: X86::LEA32r
;
1058 MachineOperand ImplicitOp
= MachineOperand::CreateReg(0, false);
1059 if (!classifyLEAReg(MI
, Src
, Opc
, /*AllowSP=*/ true,
1060 SrcReg
, isKill
, ImplicitOp
, LV
))
1063 MachineInstrBuilder MIB
= BuildMI(MF
, MI
.getDebugLoc(), get(Opc
))
1065 .addReg(SrcReg
, getKillRegState(isKill
));
1066 if (ImplicitOp
.getReg() != 0)
1067 MIB
.add(ImplicitOp
);
1069 NewMI
= addOffset(MIB
, MI
.getOperand(2));
1073 case X86::ADD8ri_DB
:
1078 case X86::ADD16ri_DB
:
1079 case X86::ADD16ri8_DB
:
1080 return convertToThreeAddressWithLEA(MIOpc
, MFI
, MI
, LV
, Is8BitOp
);
1084 /// FIXME: Support these similar to ADD8ri/ADD16ri*.
1087 case X86::SUB32ri
: {
1088 int64_t Imm
= MI
.getOperand(2).getImm();
1089 if (!isInt
<32>(-Imm
))
1092 assert(MI
.getNumOperands() >= 3 && "Unknown add instruction!");
1093 unsigned Opc
= Is64Bit
? X86::LEA64_32r
: X86::LEA32r
;
1097 MachineOperand ImplicitOp
= MachineOperand::CreateReg(0, false);
1098 if (!classifyLEAReg(MI
, Src
, Opc
, /*AllowSP=*/ true,
1099 SrcReg
, isKill
, ImplicitOp
, LV
))
1102 MachineInstrBuilder MIB
= BuildMI(MF
, MI
.getDebugLoc(), get(Opc
))
1104 .addReg(SrcReg
, getKillRegState(isKill
));
1105 if (ImplicitOp
.getReg() != 0)
1106 MIB
.add(ImplicitOp
);
1108 NewMI
= addOffset(MIB
, -Imm
);
1113 case X86::SUB64ri32
: {
1114 int64_t Imm
= MI
.getOperand(2).getImm();
1115 if (!isInt
<32>(-Imm
))
1118 assert(MI
.getNumOperands() >= 3 && "Unknown sub instruction!");
1120 MachineInstrBuilder MIB
= BuildMI(MF
, MI
.getDebugLoc(),
1121 get(X86::LEA64r
)).add(Dest
).add(Src
);
1122 NewMI
= addOffset(MIB
, -Imm
);
1126 case X86::VMOVDQU8Z128rmk
:
1127 case X86::VMOVDQU8Z256rmk
:
1128 case X86::VMOVDQU8Zrmk
:
1129 case X86::VMOVDQU16Z128rmk
:
1130 case X86::VMOVDQU16Z256rmk
:
1131 case X86::VMOVDQU16Zrmk
:
1132 case X86::VMOVDQU32Z128rmk
: case X86::VMOVDQA32Z128rmk
:
1133 case X86::VMOVDQU32Z256rmk
: case X86::VMOVDQA32Z256rmk
:
1134 case X86::VMOVDQU32Zrmk
: case X86::VMOVDQA32Zrmk
:
1135 case X86::VMOVDQU64Z128rmk
: case X86::VMOVDQA64Z128rmk
:
1136 case X86::VMOVDQU64Z256rmk
: case X86::VMOVDQA64Z256rmk
:
1137 case X86::VMOVDQU64Zrmk
: case X86::VMOVDQA64Zrmk
:
1138 case X86::VMOVUPDZ128rmk
: case X86::VMOVAPDZ128rmk
:
1139 case X86::VMOVUPDZ256rmk
: case X86::VMOVAPDZ256rmk
:
1140 case X86::VMOVUPDZrmk
: case X86::VMOVAPDZrmk
:
1141 case X86::VMOVUPSZ128rmk
: case X86::VMOVAPSZ128rmk
:
1142 case X86::VMOVUPSZ256rmk
: case X86::VMOVAPSZ256rmk
:
1143 case X86::VMOVUPSZrmk
: case X86::VMOVAPSZrmk
: {
1146 default: llvm_unreachable("Unreachable!");
1147 case X86::VMOVDQU8Z128rmk
: Opc
= X86::VPBLENDMBZ128rmk
; break;
1148 case X86::VMOVDQU8Z256rmk
: Opc
= X86::VPBLENDMBZ256rmk
; break;
1149 case X86::VMOVDQU8Zrmk
: Opc
= X86::VPBLENDMBZrmk
; break;
1150 case X86::VMOVDQU16Z128rmk
: Opc
= X86::VPBLENDMWZ128rmk
; break;
1151 case X86::VMOVDQU16Z256rmk
: Opc
= X86::VPBLENDMWZ256rmk
; break;
1152 case X86::VMOVDQU16Zrmk
: Opc
= X86::VPBLENDMWZrmk
; break;
1153 case X86::VMOVDQU32Z128rmk
: Opc
= X86::VPBLENDMDZ128rmk
; break;
1154 case X86::VMOVDQU32Z256rmk
: Opc
= X86::VPBLENDMDZ256rmk
; break;
1155 case X86::VMOVDQU32Zrmk
: Opc
= X86::VPBLENDMDZrmk
; break;
1156 case X86::VMOVDQU64Z128rmk
: Opc
= X86::VPBLENDMQZ128rmk
; break;
1157 case X86::VMOVDQU64Z256rmk
: Opc
= X86::VPBLENDMQZ256rmk
; break;
1158 case X86::VMOVDQU64Zrmk
: Opc
= X86::VPBLENDMQZrmk
; break;
1159 case X86::VMOVUPDZ128rmk
: Opc
= X86::VBLENDMPDZ128rmk
; break;
1160 case X86::VMOVUPDZ256rmk
: Opc
= X86::VBLENDMPDZ256rmk
; break;
1161 case X86::VMOVUPDZrmk
: Opc
= X86::VBLENDMPDZrmk
; break;
1162 case X86::VMOVUPSZ128rmk
: Opc
= X86::VBLENDMPSZ128rmk
; break;
1163 case X86::VMOVUPSZ256rmk
: Opc
= X86::VBLENDMPSZ256rmk
; break;
1164 case X86::VMOVUPSZrmk
: Opc
= X86::VBLENDMPSZrmk
; break;
1165 case X86::VMOVDQA32Z128rmk
: Opc
= X86::VPBLENDMDZ128rmk
; break;
1166 case X86::VMOVDQA32Z256rmk
: Opc
= X86::VPBLENDMDZ256rmk
; break;
1167 case X86::VMOVDQA32Zrmk
: Opc
= X86::VPBLENDMDZrmk
; break;
1168 case X86::VMOVDQA64Z128rmk
: Opc
= X86::VPBLENDMQZ128rmk
; break;
1169 case X86::VMOVDQA64Z256rmk
: Opc
= X86::VPBLENDMQZ256rmk
; break;
1170 case X86::VMOVDQA64Zrmk
: Opc
= X86::VPBLENDMQZrmk
; break;
1171 case X86::VMOVAPDZ128rmk
: Opc
= X86::VBLENDMPDZ128rmk
; break;
1172 case X86::VMOVAPDZ256rmk
: Opc
= X86::VBLENDMPDZ256rmk
; break;
1173 case X86::VMOVAPDZrmk
: Opc
= X86::VBLENDMPDZrmk
; break;
1174 case X86::VMOVAPSZ128rmk
: Opc
= X86::VBLENDMPSZ128rmk
; break;
1175 case X86::VMOVAPSZ256rmk
: Opc
= X86::VBLENDMPSZ256rmk
; break;
1176 case X86::VMOVAPSZrmk
: Opc
= X86::VBLENDMPSZrmk
; break;
1179 NewMI
= BuildMI(MF
, MI
.getDebugLoc(), get(Opc
))
1181 .add(MI
.getOperand(2))
1183 .add(MI
.getOperand(3))
1184 .add(MI
.getOperand(4))
1185 .add(MI
.getOperand(5))
1186 .add(MI
.getOperand(6))
1187 .add(MI
.getOperand(7));
1190 case X86::VMOVDQU8Z128rrk
:
1191 case X86::VMOVDQU8Z256rrk
:
1192 case X86::VMOVDQU8Zrrk
:
1193 case X86::VMOVDQU16Z128rrk
:
1194 case X86::VMOVDQU16Z256rrk
:
1195 case X86::VMOVDQU16Zrrk
:
1196 case X86::VMOVDQU32Z128rrk
: case X86::VMOVDQA32Z128rrk
:
1197 case X86::VMOVDQU32Z256rrk
: case X86::VMOVDQA32Z256rrk
:
1198 case X86::VMOVDQU32Zrrk
: case X86::VMOVDQA32Zrrk
:
1199 case X86::VMOVDQU64Z128rrk
: case X86::VMOVDQA64Z128rrk
:
1200 case X86::VMOVDQU64Z256rrk
: case X86::VMOVDQA64Z256rrk
:
1201 case X86::VMOVDQU64Zrrk
: case X86::VMOVDQA64Zrrk
:
1202 case X86::VMOVUPDZ128rrk
: case X86::VMOVAPDZ128rrk
:
1203 case X86::VMOVUPDZ256rrk
: case X86::VMOVAPDZ256rrk
:
1204 case X86::VMOVUPDZrrk
: case X86::VMOVAPDZrrk
:
1205 case X86::VMOVUPSZ128rrk
: case X86::VMOVAPSZ128rrk
:
1206 case X86::VMOVUPSZ256rrk
: case X86::VMOVAPSZ256rrk
:
1207 case X86::VMOVUPSZrrk
: case X86::VMOVAPSZrrk
: {
1210 default: llvm_unreachable("Unreachable!");
1211 case X86::VMOVDQU8Z128rrk
: Opc
= X86::VPBLENDMBZ128rrk
; break;
1212 case X86::VMOVDQU8Z256rrk
: Opc
= X86::VPBLENDMBZ256rrk
; break;
1213 case X86::VMOVDQU8Zrrk
: Opc
= X86::VPBLENDMBZrrk
; break;
1214 case X86::VMOVDQU16Z128rrk
: Opc
= X86::VPBLENDMWZ128rrk
; break;
1215 case X86::VMOVDQU16Z256rrk
: Opc
= X86::VPBLENDMWZ256rrk
; break;
1216 case X86::VMOVDQU16Zrrk
: Opc
= X86::VPBLENDMWZrrk
; break;
1217 case X86::VMOVDQU32Z128rrk
: Opc
= X86::VPBLENDMDZ128rrk
; break;
1218 case X86::VMOVDQU32Z256rrk
: Opc
= X86::VPBLENDMDZ256rrk
; break;
1219 case X86::VMOVDQU32Zrrk
: Opc
= X86::VPBLENDMDZrrk
; break;
1220 case X86::VMOVDQU64Z128rrk
: Opc
= X86::VPBLENDMQZ128rrk
; break;
1221 case X86::VMOVDQU64Z256rrk
: Opc
= X86::VPBLENDMQZ256rrk
; break;
1222 case X86::VMOVDQU64Zrrk
: Opc
= X86::VPBLENDMQZrrk
; break;
1223 case X86::VMOVUPDZ128rrk
: Opc
= X86::VBLENDMPDZ128rrk
; break;
1224 case X86::VMOVUPDZ256rrk
: Opc
= X86::VBLENDMPDZ256rrk
; break;
1225 case X86::VMOVUPDZrrk
: Opc
= X86::VBLENDMPDZrrk
; break;
1226 case X86::VMOVUPSZ128rrk
: Opc
= X86::VBLENDMPSZ128rrk
; break;
1227 case X86::VMOVUPSZ256rrk
: Opc
= X86::VBLENDMPSZ256rrk
; break;
1228 case X86::VMOVUPSZrrk
: Opc
= X86::VBLENDMPSZrrk
; break;
1229 case X86::VMOVDQA32Z128rrk
: Opc
= X86::VPBLENDMDZ128rrk
; break;
1230 case X86::VMOVDQA32Z256rrk
: Opc
= X86::VPBLENDMDZ256rrk
; break;
1231 case X86::VMOVDQA32Zrrk
: Opc
= X86::VPBLENDMDZrrk
; break;
1232 case X86::VMOVDQA64Z128rrk
: Opc
= X86::VPBLENDMQZ128rrk
; break;
1233 case X86::VMOVDQA64Z256rrk
: Opc
= X86::VPBLENDMQZ256rrk
; break;
1234 case X86::VMOVDQA64Zrrk
: Opc
= X86::VPBLENDMQZrrk
; break;
1235 case X86::VMOVAPDZ128rrk
: Opc
= X86::VBLENDMPDZ128rrk
; break;
1236 case X86::VMOVAPDZ256rrk
: Opc
= X86::VBLENDMPDZ256rrk
; break;
1237 case X86::VMOVAPDZrrk
: Opc
= X86::VBLENDMPDZrrk
; break;
1238 case X86::VMOVAPSZ128rrk
: Opc
= X86::VBLENDMPSZ128rrk
; break;
1239 case X86::VMOVAPSZ256rrk
: Opc
= X86::VBLENDMPSZ256rrk
; break;
1240 case X86::VMOVAPSZrrk
: Opc
= X86::VBLENDMPSZrrk
; break;
1243 NewMI
= BuildMI(MF
, MI
.getDebugLoc(), get(Opc
))
1245 .add(MI
.getOperand(2))
1247 .add(MI
.getOperand(3));
1252 if (!NewMI
) return nullptr;
1254 if (LV
) { // Update live variables
1256 LV
->replaceKillInstruction(Src
.getReg(), MI
, *NewMI
);
1258 LV
->replaceKillInstruction(Dest
.getReg(), MI
, *NewMI
);
1261 MFI
->insert(MI
.getIterator(), NewMI
); // Insert the new inst
1265 /// This determines which of three possible cases of a three source commute
1266 /// the source indexes correspond to taking into account any mask operands.
1267 /// All prevents commuting a passthru operand. Returns -1 if the commute isn't
1269 /// Case 0 - Possible to commute the first and second operands.
1270 /// Case 1 - Possible to commute the first and third operands.
1271 /// Case 2 - Possible to commute the second and third operands.
1272 static unsigned getThreeSrcCommuteCase(uint64_t TSFlags
, unsigned SrcOpIdx1
,
1273 unsigned SrcOpIdx2
) {
1274 // Put the lowest index to SrcOpIdx1 to simplify the checks below.
1275 if (SrcOpIdx1
> SrcOpIdx2
)
1276 std::swap(SrcOpIdx1
, SrcOpIdx2
);
1278 unsigned Op1
= 1, Op2
= 2, Op3
= 3;
1279 if (X86II::isKMasked(TSFlags
)) {
1284 if (SrcOpIdx1
== Op1
&& SrcOpIdx2
== Op2
)
1286 if (SrcOpIdx1
== Op1
&& SrcOpIdx2
== Op3
)
1288 if (SrcOpIdx1
== Op2
&& SrcOpIdx2
== Op3
)
1290 llvm_unreachable("Unknown three src commute case.");
1293 unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands(
1294 const MachineInstr
&MI
, unsigned SrcOpIdx1
, unsigned SrcOpIdx2
,
1295 const X86InstrFMA3Group
&FMA3Group
) const {
1297 unsigned Opc
= MI
.getOpcode();
1299 // TODO: Commuting the 1st operand of FMA*_Int requires some additional
1300 // analysis. The commute optimization is legal only if all users of FMA*_Int
1301 // use only the lowest element of the FMA*_Int instruction. Such analysis are
1302 // not implemented yet. So, just return 0 in that case.
1303 // When such analysis are available this place will be the right place for
1305 assert(!(FMA3Group
.isIntrinsic() && (SrcOpIdx1
== 1 || SrcOpIdx2
== 1)) &&
1306 "Intrinsic instructions can't commute operand 1");
1308 // Determine which case this commute is or if it can't be done.
1309 unsigned Case
= getThreeSrcCommuteCase(MI
.getDesc().TSFlags
, SrcOpIdx1
,
1311 assert(Case
< 3 && "Unexpected case number!");
1313 // Define the FMA forms mapping array that helps to map input FMA form
1314 // to output FMA form to preserve the operation semantics after
1315 // commuting the operands.
1316 const unsigned Form132Index
= 0;
1317 const unsigned Form213Index
= 1;
1318 const unsigned Form231Index
= 2;
1319 static const unsigned FormMapping
[][3] = {
1320 // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
1321 // FMA132 A, C, b; ==> FMA231 C, A, b;
1322 // FMA213 B, A, c; ==> FMA213 A, B, c;
1323 // FMA231 C, A, b; ==> FMA132 A, C, b;
1324 { Form231Index
, Form213Index
, Form132Index
},
1325 // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
1326 // FMA132 A, c, B; ==> FMA132 B, c, A;
1327 // FMA213 B, a, C; ==> FMA231 C, a, B;
1328 // FMA231 C, a, B; ==> FMA213 B, a, C;
1329 { Form132Index
, Form231Index
, Form213Index
},
1330 // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
1331 // FMA132 a, C, B; ==> FMA213 a, B, C;
1332 // FMA213 b, A, C; ==> FMA132 b, C, A;
1333 // FMA231 c, A, B; ==> FMA231 c, B, A;
1334 { Form213Index
, Form132Index
, Form231Index
}
1337 unsigned FMAForms
[3];
1338 FMAForms
[0] = FMA3Group
.get132Opcode();
1339 FMAForms
[1] = FMA3Group
.get213Opcode();
1340 FMAForms
[2] = FMA3Group
.get231Opcode();
1342 for (FormIndex
= 0; FormIndex
< 3; FormIndex
++)
1343 if (Opc
== FMAForms
[FormIndex
])
1346 // Everything is ready, just adjust the FMA opcode and return it.
1347 FormIndex
= FormMapping
[Case
][FormIndex
];
1348 return FMAForms
[FormIndex
];
1351 static void commuteVPTERNLOG(MachineInstr
&MI
, unsigned SrcOpIdx1
,
1352 unsigned SrcOpIdx2
) {
1353 // Determine which case this commute is or if it can't be done.
1354 unsigned Case
= getThreeSrcCommuteCase(MI
.getDesc().TSFlags
, SrcOpIdx1
,
1356 assert(Case
< 3 && "Unexpected case value!");
1358 // For each case we need to swap two pairs of bits in the final immediate.
1359 static const uint8_t SwapMasks
[3][4] = {
1360 { 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5.
1361 { 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6.
1362 { 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6.
1365 uint8_t Imm
= MI
.getOperand(MI
.getNumOperands()-1).getImm();
1366 // Clear out the bits we are swapping.
1367 uint8_t NewImm
= Imm
& ~(SwapMasks
[Case
][0] | SwapMasks
[Case
][1] |
1368 SwapMasks
[Case
][2] | SwapMasks
[Case
][3]);
1369 // If the immediate had a bit of the pair set, then set the opposite bit.
1370 if (Imm
& SwapMasks
[Case
][0]) NewImm
|= SwapMasks
[Case
][1];
1371 if (Imm
& SwapMasks
[Case
][1]) NewImm
|= SwapMasks
[Case
][0];
1372 if (Imm
& SwapMasks
[Case
][2]) NewImm
|= SwapMasks
[Case
][3];
1373 if (Imm
& SwapMasks
[Case
][3]) NewImm
|= SwapMasks
[Case
][2];
1374 MI
.getOperand(MI
.getNumOperands()-1).setImm(NewImm
);
1377 // Returns true if this is a VPERMI2 or VPERMT2 instruction that can be
1379 static bool isCommutableVPERMV3Instruction(unsigned Opcode
) {
1380 #define VPERM_CASES(Suffix) \
1381 case X86::VPERMI2##Suffix##128rr: case X86::VPERMT2##Suffix##128rr: \
1382 case X86::VPERMI2##Suffix##256rr: case X86::VPERMT2##Suffix##256rr: \
1383 case X86::VPERMI2##Suffix##rr: case X86::VPERMT2##Suffix##rr: \
1384 case X86::VPERMI2##Suffix##128rm: case X86::VPERMT2##Suffix##128rm: \
1385 case X86::VPERMI2##Suffix##256rm: case X86::VPERMT2##Suffix##256rm: \
1386 case X86::VPERMI2##Suffix##rm: case X86::VPERMT2##Suffix##rm: \
1387 case X86::VPERMI2##Suffix##128rrkz: case X86::VPERMT2##Suffix##128rrkz: \
1388 case X86::VPERMI2##Suffix##256rrkz: case X86::VPERMT2##Suffix##256rrkz: \
1389 case X86::VPERMI2##Suffix##rrkz: case X86::VPERMT2##Suffix##rrkz: \
1390 case X86::VPERMI2##Suffix##128rmkz: case X86::VPERMT2##Suffix##128rmkz: \
1391 case X86::VPERMI2##Suffix##256rmkz: case X86::VPERMT2##Suffix##256rmkz: \
1392 case X86::VPERMI2##Suffix##rmkz: case X86::VPERMT2##Suffix##rmkz:
1394 #define VPERM_CASES_BROADCAST(Suffix) \
1395 VPERM_CASES(Suffix) \
1396 case X86::VPERMI2##Suffix##128rmb: case X86::VPERMT2##Suffix##128rmb: \
1397 case X86::VPERMI2##Suffix##256rmb: case X86::VPERMT2##Suffix##256rmb: \
1398 case X86::VPERMI2##Suffix##rmb: case X86::VPERMT2##Suffix##rmb: \
1399 case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \
1400 case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \
1401 case X86::VPERMI2##Suffix##rmbkz: case X86::VPERMT2##Suffix##rmbkz:
1404 default: return false;
1406 VPERM_CASES_BROADCAST(D
)
1407 VPERM_CASES_BROADCAST(PD
)
1408 VPERM_CASES_BROADCAST(PS
)
1409 VPERM_CASES_BROADCAST(Q
)
1413 #undef VPERM_CASES_BROADCAST
1417 // Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching
1418 // from the I opcode to the T opcode and vice versa.
1419 static unsigned getCommutedVPERMV3Opcode(unsigned Opcode
) {
1420 #define VPERM_CASES(Orig, New) \
1421 case X86::Orig##128rr: return X86::New##128rr; \
1422 case X86::Orig##128rrkz: return X86::New##128rrkz; \
1423 case X86::Orig##128rm: return X86::New##128rm; \
1424 case X86::Orig##128rmkz: return X86::New##128rmkz; \
1425 case X86::Orig##256rr: return X86::New##256rr; \
1426 case X86::Orig##256rrkz: return X86::New##256rrkz; \
1427 case X86::Orig##256rm: return X86::New##256rm; \
1428 case X86::Orig##256rmkz: return X86::New##256rmkz; \
1429 case X86::Orig##rr: return X86::New##rr; \
1430 case X86::Orig##rrkz: return X86::New##rrkz; \
1431 case X86::Orig##rm: return X86::New##rm; \
1432 case X86::Orig##rmkz: return X86::New##rmkz;
1434 #define VPERM_CASES_BROADCAST(Orig, New) \
1435 VPERM_CASES(Orig, New) \
1436 case X86::Orig##128rmb: return X86::New##128rmb; \
1437 case X86::Orig##128rmbkz: return X86::New##128rmbkz; \
1438 case X86::Orig##256rmb: return X86::New##256rmb; \
1439 case X86::Orig##256rmbkz: return X86::New##256rmbkz; \
1440 case X86::Orig##rmb: return X86::New##rmb; \
1441 case X86::Orig##rmbkz: return X86::New##rmbkz;
1444 VPERM_CASES(VPERMI2B
, VPERMT2B
)
1445 VPERM_CASES_BROADCAST(VPERMI2D
, VPERMT2D
)
1446 VPERM_CASES_BROADCAST(VPERMI2PD
, VPERMT2PD
)
1447 VPERM_CASES_BROADCAST(VPERMI2PS
, VPERMT2PS
)
1448 VPERM_CASES_BROADCAST(VPERMI2Q
, VPERMT2Q
)
1449 VPERM_CASES(VPERMI2W
, VPERMT2W
)
1450 VPERM_CASES(VPERMT2B
, VPERMI2B
)
1451 VPERM_CASES_BROADCAST(VPERMT2D
, VPERMI2D
)
1452 VPERM_CASES_BROADCAST(VPERMT2PD
, VPERMI2PD
)
1453 VPERM_CASES_BROADCAST(VPERMT2PS
, VPERMI2PS
)
1454 VPERM_CASES_BROADCAST(VPERMT2Q
, VPERMI2Q
)
1455 VPERM_CASES(VPERMT2W
, VPERMI2W
)
1458 llvm_unreachable("Unreachable!");
1459 #undef VPERM_CASES_BROADCAST
1463 MachineInstr
*X86InstrInfo::commuteInstructionImpl(MachineInstr
&MI
, bool NewMI
,
1465 unsigned OpIdx2
) const {
1466 auto cloneIfNew
= [NewMI
](MachineInstr
&MI
) -> MachineInstr
& {
1468 return *MI
.getParent()->getParent()->CloneMachineInstr(&MI
);
1472 switch (MI
.getOpcode()) {
1473 case X86::SHRD16rri8
: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1474 case X86::SHLD16rri8
: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1475 case X86::SHRD32rri8
: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1476 case X86::SHLD32rri8
: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1477 case X86::SHRD64rri8
: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1478 case X86::SHLD64rri8
:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1481 switch (MI
.getOpcode()) {
1482 default: llvm_unreachable("Unreachable!");
1483 case X86::SHRD16rri8
: Size
= 16; Opc
= X86::SHLD16rri8
; break;
1484 case X86::SHLD16rri8
: Size
= 16; Opc
= X86::SHRD16rri8
; break;
1485 case X86::SHRD32rri8
: Size
= 32; Opc
= X86::SHLD32rri8
; break;
1486 case X86::SHLD32rri8
: Size
= 32; Opc
= X86::SHRD32rri8
; break;
1487 case X86::SHRD64rri8
: Size
= 64; Opc
= X86::SHLD64rri8
; break;
1488 case X86::SHLD64rri8
: Size
= 64; Opc
= X86::SHRD64rri8
; break;
1490 unsigned Amt
= MI
.getOperand(3).getImm();
1491 auto &WorkingMI
= cloneIfNew(MI
);
1492 WorkingMI
.setDesc(get(Opc
));
1493 WorkingMI
.getOperand(3).setImm(Size
- Amt
);
1494 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1498 case X86::PFSUBRrr
: {
1499 // PFSUB x, y: x = x - y
1500 // PFSUBR x, y: x = y - x
1502 (X86::PFSUBRrr
== MI
.getOpcode() ? X86::PFSUBrr
: X86::PFSUBRrr
);
1503 auto &WorkingMI
= cloneIfNew(MI
);
1504 WorkingMI
.setDesc(get(Opc
));
1505 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1508 case X86::BLENDPDrri
:
1509 case X86::BLENDPSrri
:
1510 case X86::VBLENDPDrri
:
1511 case X86::VBLENDPSrri
:
1512 // If we're optimizing for size, try to use MOVSD/MOVSS.
1513 if (MI
.getParent()->getParent()->getFunction().hasOptSize()) {
1515 switch (MI
.getOpcode()) {
1516 default: llvm_unreachable("Unreachable!");
1517 case X86::BLENDPDrri
: Opc
= X86::MOVSDrr
; Mask
= 0x03; break;
1518 case X86::BLENDPSrri
: Opc
= X86::MOVSSrr
; Mask
= 0x0F; break;
1519 case X86::VBLENDPDrri
: Opc
= X86::VMOVSDrr
; Mask
= 0x03; break;
1520 case X86::VBLENDPSrri
: Opc
= X86::VMOVSSrr
; Mask
= 0x0F; break;
1522 if ((MI
.getOperand(3).getImm() ^ Mask
) == 1) {
1523 auto &WorkingMI
= cloneIfNew(MI
);
1524 WorkingMI
.setDesc(get(Opc
));
1525 WorkingMI
.RemoveOperand(3);
1526 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
,
1532 case X86::PBLENDWrri
:
1533 case X86::VBLENDPDYrri
:
1534 case X86::VBLENDPSYrri
:
1535 case X86::VPBLENDDrri
:
1536 case X86::VPBLENDWrri
:
1537 case X86::VPBLENDDYrri
:
1538 case X86::VPBLENDWYrri
:{
1540 switch (MI
.getOpcode()) {
1541 default: llvm_unreachable("Unreachable!");
1542 case X86::BLENDPDrri
: Mask
= (int8_t)0x03; break;
1543 case X86::BLENDPSrri
: Mask
= (int8_t)0x0F; break;
1544 case X86::PBLENDWrri
: Mask
= (int8_t)0xFF; break;
1545 case X86::VBLENDPDrri
: Mask
= (int8_t)0x03; break;
1546 case X86::VBLENDPSrri
: Mask
= (int8_t)0x0F; break;
1547 case X86::VBLENDPDYrri
: Mask
= (int8_t)0x0F; break;
1548 case X86::VBLENDPSYrri
: Mask
= (int8_t)0xFF; break;
1549 case X86::VPBLENDDrri
: Mask
= (int8_t)0x0F; break;
1550 case X86::VPBLENDWrri
: Mask
= (int8_t)0xFF; break;
1551 case X86::VPBLENDDYrri
: Mask
= (int8_t)0xFF; break;
1552 case X86::VPBLENDWYrri
: Mask
= (int8_t)0xFF; break;
1554 // Only the least significant bits of Imm are used.
1555 // Using int8_t to ensure it will be sign extended to the int64_t that
1556 // setImm takes in order to match isel behavior.
1557 int8_t Imm
= MI
.getOperand(3).getImm() & Mask
;
1558 auto &WorkingMI
= cloneIfNew(MI
);
1559 WorkingMI
.getOperand(3).setImm(Mask
^ Imm
);
1560 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1563 case X86::INSERTPSrr
:
1564 case X86::VINSERTPSrr
:
1565 case X86::VINSERTPSZrr
: {
1566 unsigned Imm
= MI
.getOperand(MI
.getNumOperands() - 1).getImm();
1567 unsigned ZMask
= Imm
& 15;
1568 unsigned DstIdx
= (Imm
>> 4) & 3;
1569 unsigned SrcIdx
= (Imm
>> 6) & 3;
1571 // We can commute insertps if we zero 2 of the elements, the insertion is
1572 // "inline" and we don't override the insertion with a zero.
1573 if (DstIdx
== SrcIdx
&& (ZMask
& (1 << DstIdx
)) == 0 &&
1574 countPopulation(ZMask
) == 2) {
1575 unsigned AltIdx
= findFirstSet((ZMask
| (1 << DstIdx
)) ^ 15);
1576 assert(AltIdx
< 4 && "Illegal insertion index");
1577 unsigned AltImm
= (AltIdx
<< 6) | (AltIdx
<< 4) | ZMask
;
1578 auto &WorkingMI
= cloneIfNew(MI
);
1579 WorkingMI
.getOperand(MI
.getNumOperands() - 1).setImm(AltImm
);
1580 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1588 case X86::VMOVSSrr
:{
1589 // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD.
1590 if (Subtarget
.hasSSE41()) {
1592 switch (MI
.getOpcode()) {
1593 default: llvm_unreachable("Unreachable!");
1594 case X86::MOVSDrr
: Opc
= X86::BLENDPDrri
; Mask
= 0x02; break;
1595 case X86::MOVSSrr
: Opc
= X86::BLENDPSrri
; Mask
= 0x0E; break;
1596 case X86::VMOVSDrr
: Opc
= X86::VBLENDPDrri
; Mask
= 0x02; break;
1597 case X86::VMOVSSrr
: Opc
= X86::VBLENDPSrri
; Mask
= 0x0E; break;
1600 auto &WorkingMI
= cloneIfNew(MI
);
1601 WorkingMI
.setDesc(get(Opc
));
1602 WorkingMI
.addOperand(MachineOperand::CreateImm(Mask
));
1603 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1607 // Convert to SHUFPD.
1608 assert(MI
.getOpcode() == X86::MOVSDrr
&&
1609 "Can only commute MOVSDrr without SSE4.1");
1611 auto &WorkingMI
= cloneIfNew(MI
);
1612 WorkingMI
.setDesc(get(X86::SHUFPDrri
));
1613 WorkingMI
.addOperand(MachineOperand::CreateImm(0x02));
1614 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1617 case X86::SHUFPDrri
: {
1618 // Commute to MOVSD.
1619 assert(MI
.getOperand(3).getImm() == 0x02 && "Unexpected immediate!");
1620 auto &WorkingMI
= cloneIfNew(MI
);
1621 WorkingMI
.setDesc(get(X86::MOVSDrr
));
1622 WorkingMI
.RemoveOperand(3);
1623 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1626 case X86::PCLMULQDQrr
:
1627 case X86::VPCLMULQDQrr
:
1628 case X86::VPCLMULQDQYrr
:
1629 case X86::VPCLMULQDQZrr
:
1630 case X86::VPCLMULQDQZ128rr
:
1631 case X86::VPCLMULQDQZ256rr
: {
1632 // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
1633 // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
1634 unsigned Imm
= MI
.getOperand(3).getImm();
1635 unsigned Src1Hi
= Imm
& 0x01;
1636 unsigned Src2Hi
= Imm
& 0x10;
1637 auto &WorkingMI
= cloneIfNew(MI
);
1638 WorkingMI
.getOperand(3).setImm((Src1Hi
<< 4) | (Src2Hi
>> 4));
1639 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1642 case X86::VPCMPBZ128rri
: case X86::VPCMPUBZ128rri
:
1643 case X86::VPCMPBZ256rri
: case X86::VPCMPUBZ256rri
:
1644 case X86::VPCMPBZrri
: case X86::VPCMPUBZrri
:
1645 case X86::VPCMPDZ128rri
: case X86::VPCMPUDZ128rri
:
1646 case X86::VPCMPDZ256rri
: case X86::VPCMPUDZ256rri
:
1647 case X86::VPCMPDZrri
: case X86::VPCMPUDZrri
:
1648 case X86::VPCMPQZ128rri
: case X86::VPCMPUQZ128rri
:
1649 case X86::VPCMPQZ256rri
: case X86::VPCMPUQZ256rri
:
1650 case X86::VPCMPQZrri
: case X86::VPCMPUQZrri
:
1651 case X86::VPCMPWZ128rri
: case X86::VPCMPUWZ128rri
:
1652 case X86::VPCMPWZ256rri
: case X86::VPCMPUWZ256rri
:
1653 case X86::VPCMPWZrri
: case X86::VPCMPUWZrri
:
1654 case X86::VPCMPBZ128rrik
: case X86::VPCMPUBZ128rrik
:
1655 case X86::VPCMPBZ256rrik
: case X86::VPCMPUBZ256rrik
:
1656 case X86::VPCMPBZrrik
: case X86::VPCMPUBZrrik
:
1657 case X86::VPCMPDZ128rrik
: case X86::VPCMPUDZ128rrik
:
1658 case X86::VPCMPDZ256rrik
: case X86::VPCMPUDZ256rrik
:
1659 case X86::VPCMPDZrrik
: case X86::VPCMPUDZrrik
:
1660 case X86::VPCMPQZ128rrik
: case X86::VPCMPUQZ128rrik
:
1661 case X86::VPCMPQZ256rrik
: case X86::VPCMPUQZ256rrik
:
1662 case X86::VPCMPQZrrik
: case X86::VPCMPUQZrrik
:
1663 case X86::VPCMPWZ128rrik
: case X86::VPCMPUWZ128rrik
:
1664 case X86::VPCMPWZ256rrik
: case X86::VPCMPUWZ256rrik
:
1665 case X86::VPCMPWZrrik
: case X86::VPCMPUWZrrik
: {
1666 // Flip comparison mode immediate (if necessary).
1667 unsigned Imm
= MI
.getOperand(MI
.getNumOperands() - 1).getImm() & 0x7;
1668 Imm
= X86::getSwappedVPCMPImm(Imm
);
1669 auto &WorkingMI
= cloneIfNew(MI
);
1670 WorkingMI
.getOperand(MI
.getNumOperands() - 1).setImm(Imm
);
1671 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1674 case X86::VPCOMBri
: case X86::VPCOMUBri
:
1675 case X86::VPCOMDri
: case X86::VPCOMUDri
:
1676 case X86::VPCOMQri
: case X86::VPCOMUQri
:
1677 case X86::VPCOMWri
: case X86::VPCOMUWri
: {
1678 // Flip comparison mode immediate (if necessary).
1679 unsigned Imm
= MI
.getOperand(3).getImm() & 0x7;
1680 Imm
= X86::getSwappedVPCOMImm(Imm
);
1681 auto &WorkingMI
= cloneIfNew(MI
);
1682 WorkingMI
.getOperand(3).setImm(Imm
);
1683 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1686 case X86::VPERM2F128rr
:
1687 case X86::VPERM2I128rr
: {
1688 // Flip permute source immediate.
1689 // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi.
1690 // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi.
1691 int8_t Imm
= MI
.getOperand(3).getImm() & 0xFF;
1692 auto &WorkingMI
= cloneIfNew(MI
);
1693 WorkingMI
.getOperand(3).setImm(Imm
^ 0x22);
1694 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1697 case X86::MOVHLPSrr
:
1698 case X86::UNPCKHPDrr
:
1699 case X86::VMOVHLPSrr
:
1700 case X86::VUNPCKHPDrr
:
1701 case X86::VMOVHLPSZrr
:
1702 case X86::VUNPCKHPDZ128rr
: {
1703 assert(Subtarget
.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!");
1705 unsigned Opc
= MI
.getOpcode();
1707 default: llvm_unreachable("Unreachable!");
1708 case X86::MOVHLPSrr
: Opc
= X86::UNPCKHPDrr
; break;
1709 case X86::UNPCKHPDrr
: Opc
= X86::MOVHLPSrr
; break;
1710 case X86::VMOVHLPSrr
: Opc
= X86::VUNPCKHPDrr
; break;
1711 case X86::VUNPCKHPDrr
: Opc
= X86::VMOVHLPSrr
; break;
1712 case X86::VMOVHLPSZrr
: Opc
= X86::VUNPCKHPDZ128rr
; break;
1713 case X86::VUNPCKHPDZ128rr
: Opc
= X86::VMOVHLPSZrr
; break;
1715 auto &WorkingMI
= cloneIfNew(MI
);
1716 WorkingMI
.setDesc(get(Opc
));
1717 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1720 case X86::CMOV16rr
: case X86::CMOV32rr
: case X86::CMOV64rr
: {
1721 auto &WorkingMI
= cloneIfNew(MI
);
1722 unsigned OpNo
= MI
.getDesc().getNumOperands() - 1;
1723 X86::CondCode CC
= static_cast<X86::CondCode
>(MI
.getOperand(OpNo
).getImm());
1724 WorkingMI
.getOperand(OpNo
).setImm(X86::GetOppositeBranchCondition(CC
));
1725 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1728 case X86::VPTERNLOGDZrri
: case X86::VPTERNLOGDZrmi
:
1729 case X86::VPTERNLOGDZ128rri
: case X86::VPTERNLOGDZ128rmi
:
1730 case X86::VPTERNLOGDZ256rri
: case X86::VPTERNLOGDZ256rmi
:
1731 case X86::VPTERNLOGQZrri
: case X86::VPTERNLOGQZrmi
:
1732 case X86::VPTERNLOGQZ128rri
: case X86::VPTERNLOGQZ128rmi
:
1733 case X86::VPTERNLOGQZ256rri
: case X86::VPTERNLOGQZ256rmi
:
1734 case X86::VPTERNLOGDZrrik
:
1735 case X86::VPTERNLOGDZ128rrik
:
1736 case X86::VPTERNLOGDZ256rrik
:
1737 case X86::VPTERNLOGQZrrik
:
1738 case X86::VPTERNLOGQZ128rrik
:
1739 case X86::VPTERNLOGQZ256rrik
:
1740 case X86::VPTERNLOGDZrrikz
: case X86::VPTERNLOGDZrmikz
:
1741 case X86::VPTERNLOGDZ128rrikz
: case X86::VPTERNLOGDZ128rmikz
:
1742 case X86::VPTERNLOGDZ256rrikz
: case X86::VPTERNLOGDZ256rmikz
:
1743 case X86::VPTERNLOGQZrrikz
: case X86::VPTERNLOGQZrmikz
:
1744 case X86::VPTERNLOGQZ128rrikz
: case X86::VPTERNLOGQZ128rmikz
:
1745 case X86::VPTERNLOGQZ256rrikz
: case X86::VPTERNLOGQZ256rmikz
:
1746 case X86::VPTERNLOGDZ128rmbi
:
1747 case X86::VPTERNLOGDZ256rmbi
:
1748 case X86::VPTERNLOGDZrmbi
:
1749 case X86::VPTERNLOGQZ128rmbi
:
1750 case X86::VPTERNLOGQZ256rmbi
:
1751 case X86::VPTERNLOGQZrmbi
:
1752 case X86::VPTERNLOGDZ128rmbikz
:
1753 case X86::VPTERNLOGDZ256rmbikz
:
1754 case X86::VPTERNLOGDZrmbikz
:
1755 case X86::VPTERNLOGQZ128rmbikz
:
1756 case X86::VPTERNLOGQZ256rmbikz
:
1757 case X86::VPTERNLOGQZrmbikz
: {
1758 auto &WorkingMI
= cloneIfNew(MI
);
1759 commuteVPTERNLOG(WorkingMI
, OpIdx1
, OpIdx2
);
1760 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1764 if (isCommutableVPERMV3Instruction(MI
.getOpcode())) {
1765 unsigned Opc
= getCommutedVPERMV3Opcode(MI
.getOpcode());
1766 auto &WorkingMI
= cloneIfNew(MI
);
1767 WorkingMI
.setDesc(get(Opc
));
1768 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1772 const X86InstrFMA3Group
*FMA3Group
= getFMA3Group(MI
.getOpcode(),
1773 MI
.getDesc().TSFlags
);
1776 getFMA3OpcodeToCommuteOperands(MI
, OpIdx1
, OpIdx2
, *FMA3Group
);
1777 auto &WorkingMI
= cloneIfNew(MI
);
1778 WorkingMI
.setDesc(get(Opc
));
1779 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1783 return TargetInstrInfo::commuteInstructionImpl(MI
, NewMI
, OpIdx1
, OpIdx2
);
1789 X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr
&MI
,
1790 unsigned &SrcOpIdx1
,
1791 unsigned &SrcOpIdx2
,
1792 bool IsIntrinsic
) const {
1793 uint64_t TSFlags
= MI
.getDesc().TSFlags
;
1795 unsigned FirstCommutableVecOp
= 1;
1796 unsigned LastCommutableVecOp
= 3;
1797 unsigned KMaskOp
= -1U;
1798 if (X86II::isKMasked(TSFlags
)) {
1799 // For k-zero-masked operations it is Ok to commute the first vector
1801 // For regular k-masked operations a conservative choice is done as the
1802 // elements of the first vector operand, for which the corresponding bit
1803 // in the k-mask operand is set to 0, are copied to the result of the
1805 // TODO/FIXME: The commute still may be legal if it is known that the
1806 // k-mask operand is set to either all ones or all zeroes.
1807 // It is also Ok to commute the 1st operand if all users of MI use only
1808 // the elements enabled by the k-mask operand. For example,
1809 // v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i]
1811 // VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 ->
1812 // // Ok, to commute v1 in FMADD213PSZrk.
1814 // The k-mask operand has index = 2 for masked and zero-masked operations.
1817 // The operand with index = 1 is used as a source for those elements for
1818 // which the corresponding bit in the k-mask is set to 0.
1819 if (X86II::isKMergeMasked(TSFlags
))
1820 FirstCommutableVecOp
= 3;
1822 LastCommutableVecOp
++;
1823 } else if (IsIntrinsic
) {
1824 // Commuting the first operand of an intrinsic instruction isn't possible
1825 // unless we can prove that only the lowest element of the result is used.
1826 FirstCommutableVecOp
= 2;
1829 if (isMem(MI
, LastCommutableVecOp
))
1830 LastCommutableVecOp
--;
1832 // Only the first RegOpsNum operands are commutable.
1833 // Also, the value 'CommuteAnyOperandIndex' is valid here as it means
1834 // that the operand is not specified/fixed.
1835 if (SrcOpIdx1
!= CommuteAnyOperandIndex
&&
1836 (SrcOpIdx1
< FirstCommutableVecOp
|| SrcOpIdx1
> LastCommutableVecOp
||
1837 SrcOpIdx1
== KMaskOp
))
1839 if (SrcOpIdx2
!= CommuteAnyOperandIndex
&&
1840 (SrcOpIdx2
< FirstCommutableVecOp
|| SrcOpIdx2
> LastCommutableVecOp
||
1841 SrcOpIdx2
== KMaskOp
))
1844 // Look for two different register operands assumed to be commutable
1845 // regardless of the FMA opcode. The FMA opcode is adjusted later.
1846 if (SrcOpIdx1
== CommuteAnyOperandIndex
||
1847 SrcOpIdx2
== CommuteAnyOperandIndex
) {
1848 unsigned CommutableOpIdx2
= SrcOpIdx2
;
1850 // At least one of operands to be commuted is not specified and
1851 // this method is free to choose appropriate commutable operands.
1852 if (SrcOpIdx1
== SrcOpIdx2
)
1853 // Both of operands are not fixed. By default set one of commutable
1854 // operands to the last register operand of the instruction.
1855 CommutableOpIdx2
= LastCommutableVecOp
;
1856 else if (SrcOpIdx2
== CommuteAnyOperandIndex
)
1857 // Only one of operands is not fixed.
1858 CommutableOpIdx2
= SrcOpIdx1
;
1860 // CommutableOpIdx2 is well defined now. Let's choose another commutable
1861 // operand and assign its index to CommutableOpIdx1.
1862 Register Op2Reg
= MI
.getOperand(CommutableOpIdx2
).getReg();
1864 unsigned CommutableOpIdx1
;
1865 for (CommutableOpIdx1
= LastCommutableVecOp
;
1866 CommutableOpIdx1
>= FirstCommutableVecOp
; CommutableOpIdx1
--) {
1867 // Just ignore and skip the k-mask operand.
1868 if (CommutableOpIdx1
== KMaskOp
)
1871 // The commuted operands must have different registers.
1872 // Otherwise, the commute transformation does not change anything and
1874 if (Op2Reg
!= MI
.getOperand(CommutableOpIdx1
).getReg())
1878 // No appropriate commutable operands were found.
1879 if (CommutableOpIdx1
< FirstCommutableVecOp
)
1882 // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
1883 // to return those values.
1884 if (!fixCommutedOpIndices(SrcOpIdx1
, SrcOpIdx2
,
1885 CommutableOpIdx1
, CommutableOpIdx2
))
1892 bool X86InstrInfo::findCommutedOpIndices(MachineInstr
&MI
, unsigned &SrcOpIdx1
,
1893 unsigned &SrcOpIdx2
) const {
1894 const MCInstrDesc
&Desc
= MI
.getDesc();
1895 if (!Desc
.isCommutable())
1898 switch (MI
.getOpcode()) {
1905 case X86::VCMPPDrri
:
1906 case X86::VCMPPSrri
:
1907 case X86::VCMPPDYrri
:
1908 case X86::VCMPPSYrri
:
1909 case X86::VCMPSDZrr
:
1910 case X86::VCMPSSZrr
:
1911 case X86::VCMPPDZrri
:
1912 case X86::VCMPPSZrri
:
1913 case X86::VCMPPDZ128rri
:
1914 case X86::VCMPPSZ128rri
:
1915 case X86::VCMPPDZ256rri
:
1916 case X86::VCMPPSZ256rri
:
1917 case X86::VCMPPDZrrik
:
1918 case X86::VCMPPSZrrik
:
1919 case X86::VCMPPDZ128rrik
:
1920 case X86::VCMPPSZ128rrik
:
1921 case X86::VCMPPDZ256rrik
:
1922 case X86::VCMPPSZ256rrik
: {
1923 unsigned OpOffset
= X86II::isKMasked(Desc
.TSFlags
) ? 1 : 0;
1925 // Float comparison can be safely commuted for
1926 // Ordered/Unordered/Equal/NotEqual tests
1927 unsigned Imm
= MI
.getOperand(3 + OpOffset
).getImm() & 0x7;
1930 case 0x03: // UNORDERED
1931 case 0x04: // NOT EQUAL
1932 case 0x07: // ORDERED
1933 // The indices of the commutable operands are 1 and 2 (or 2 and 3
1935 // Assign them to the returned operand indices here.
1936 return fixCommutedOpIndices(SrcOpIdx1
, SrcOpIdx2
, 1 + OpOffset
,
1942 // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can
1943 // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since
1944 // AVX implies sse4.1.
1945 if (Subtarget
.hasSSE41())
1946 return TargetInstrInfo::findCommutedOpIndices(MI
, SrcOpIdx1
, SrcOpIdx2
);
1948 case X86::SHUFPDrri
:
1949 // We can commute this to MOVSD.
1950 if (MI
.getOperand(3).getImm() == 0x02)
1951 return TargetInstrInfo::findCommutedOpIndices(MI
, SrcOpIdx1
, SrcOpIdx2
);
1953 case X86::MOVHLPSrr
:
1954 case X86::UNPCKHPDrr
:
1955 case X86::VMOVHLPSrr
:
1956 case X86::VUNPCKHPDrr
:
1957 case X86::VMOVHLPSZrr
:
1958 case X86::VUNPCKHPDZ128rr
:
1959 if (Subtarget
.hasSSE2())
1960 return TargetInstrInfo::findCommutedOpIndices(MI
, SrcOpIdx1
, SrcOpIdx2
);
1962 case X86::VPTERNLOGDZrri
: case X86::VPTERNLOGDZrmi
:
1963 case X86::VPTERNLOGDZ128rri
: case X86::VPTERNLOGDZ128rmi
:
1964 case X86::VPTERNLOGDZ256rri
: case X86::VPTERNLOGDZ256rmi
:
1965 case X86::VPTERNLOGQZrri
: case X86::VPTERNLOGQZrmi
:
1966 case X86::VPTERNLOGQZ128rri
: case X86::VPTERNLOGQZ128rmi
:
1967 case X86::VPTERNLOGQZ256rri
: case X86::VPTERNLOGQZ256rmi
:
1968 case X86::VPTERNLOGDZrrik
:
1969 case X86::VPTERNLOGDZ128rrik
:
1970 case X86::VPTERNLOGDZ256rrik
:
1971 case X86::VPTERNLOGQZrrik
:
1972 case X86::VPTERNLOGQZ128rrik
:
1973 case X86::VPTERNLOGQZ256rrik
:
1974 case X86::VPTERNLOGDZrrikz
: case X86::VPTERNLOGDZrmikz
:
1975 case X86::VPTERNLOGDZ128rrikz
: case X86::VPTERNLOGDZ128rmikz
:
1976 case X86::VPTERNLOGDZ256rrikz
: case X86::VPTERNLOGDZ256rmikz
:
1977 case X86::VPTERNLOGQZrrikz
: case X86::VPTERNLOGQZrmikz
:
1978 case X86::VPTERNLOGQZ128rrikz
: case X86::VPTERNLOGQZ128rmikz
:
1979 case X86::VPTERNLOGQZ256rrikz
: case X86::VPTERNLOGQZ256rmikz
:
1980 case X86::VPTERNLOGDZ128rmbi
:
1981 case X86::VPTERNLOGDZ256rmbi
:
1982 case X86::VPTERNLOGDZrmbi
:
1983 case X86::VPTERNLOGQZ128rmbi
:
1984 case X86::VPTERNLOGQZ256rmbi
:
1985 case X86::VPTERNLOGQZrmbi
:
1986 case X86::VPTERNLOGDZ128rmbikz
:
1987 case X86::VPTERNLOGDZ256rmbikz
:
1988 case X86::VPTERNLOGDZrmbikz
:
1989 case X86::VPTERNLOGQZ128rmbikz
:
1990 case X86::VPTERNLOGQZ256rmbikz
:
1991 case X86::VPTERNLOGQZrmbikz
:
1992 return findThreeSrcCommutedOpIndices(MI
, SrcOpIdx1
, SrcOpIdx2
);
1993 case X86::VPDPWSSDZ128r
:
1994 case X86::VPDPWSSDZ128rk
:
1995 case X86::VPDPWSSDZ128rkz
:
1996 case X86::VPDPWSSDZ256r
:
1997 case X86::VPDPWSSDZ256rk
:
1998 case X86::VPDPWSSDZ256rkz
:
1999 case X86::VPDPWSSDZr
:
2000 case X86::VPDPWSSDZrk
:
2001 case X86::VPDPWSSDZrkz
:
2002 case X86::VPDPWSSDSZ128r
:
2003 case X86::VPDPWSSDSZ128rk
:
2004 case X86::VPDPWSSDSZ128rkz
:
2005 case X86::VPDPWSSDSZ256r
:
2006 case X86::VPDPWSSDSZ256rk
:
2007 case X86::VPDPWSSDSZ256rkz
:
2008 case X86::VPDPWSSDSZr
:
2009 case X86::VPDPWSSDSZrk
:
2010 case X86::VPDPWSSDSZrkz
:
2011 case X86::VPMADD52HUQZ128r
:
2012 case X86::VPMADD52HUQZ128rk
:
2013 case X86::VPMADD52HUQZ128rkz
:
2014 case X86::VPMADD52HUQZ256r
:
2015 case X86::VPMADD52HUQZ256rk
:
2016 case X86::VPMADD52HUQZ256rkz
:
2017 case X86::VPMADD52HUQZr
:
2018 case X86::VPMADD52HUQZrk
:
2019 case X86::VPMADD52HUQZrkz
:
2020 case X86::VPMADD52LUQZ128r
:
2021 case X86::VPMADD52LUQZ128rk
:
2022 case X86::VPMADD52LUQZ128rkz
:
2023 case X86::VPMADD52LUQZ256r
:
2024 case X86::VPMADD52LUQZ256rk
:
2025 case X86::VPMADD52LUQZ256rkz
:
2026 case X86::VPMADD52LUQZr
:
2027 case X86::VPMADD52LUQZrk
:
2028 case X86::VPMADD52LUQZrkz
: {
2029 unsigned CommutableOpIdx1
= 2;
2030 unsigned CommutableOpIdx2
= 3;
2031 if (X86II::isKMasked(Desc
.TSFlags
)) {
2032 // Skip the mask register.
2036 if (!fixCommutedOpIndices(SrcOpIdx1
, SrcOpIdx2
,
2037 CommutableOpIdx1
, CommutableOpIdx2
))
2039 if (!MI
.getOperand(SrcOpIdx1
).isReg() ||
2040 !MI
.getOperand(SrcOpIdx2
).isReg())
2047 const X86InstrFMA3Group
*FMA3Group
= getFMA3Group(MI
.getOpcode(),
2048 MI
.getDesc().TSFlags
);
2050 return findThreeSrcCommutedOpIndices(MI
, SrcOpIdx1
, SrcOpIdx2
,
2051 FMA3Group
->isIntrinsic());
2053 // Handled masked instructions since we need to skip over the mask input
2054 // and the preserved input.
2055 if (X86II::isKMasked(Desc
.TSFlags
)) {
2056 // First assume that the first input is the mask operand and skip past it.
2057 unsigned CommutableOpIdx1
= Desc
.getNumDefs() + 1;
2058 unsigned CommutableOpIdx2
= Desc
.getNumDefs() + 2;
2059 // Check if the first input is tied. If there isn't one then we only
2060 // need to skip the mask operand which we did above.
2061 if ((MI
.getDesc().getOperandConstraint(Desc
.getNumDefs(),
2062 MCOI::TIED_TO
) != -1)) {
2063 // If this is zero masking instruction with a tied operand, we need to
2064 // move the first index back to the first input since this must
2065 // be a 3 input instruction and we want the first two non-mask inputs.
2066 // Otherwise this is a 2 input instruction with a preserved input and
2067 // mask, so we need to move the indices to skip one more input.
2068 if (X86II::isKMergeMasked(Desc
.TSFlags
)) {
2076 if (!fixCommutedOpIndices(SrcOpIdx1
, SrcOpIdx2
,
2077 CommutableOpIdx1
, CommutableOpIdx2
))
2080 if (!MI
.getOperand(SrcOpIdx1
).isReg() ||
2081 !MI
.getOperand(SrcOpIdx2
).isReg())
2087 return TargetInstrInfo::findCommutedOpIndices(MI
, SrcOpIdx1
, SrcOpIdx2
);
2092 X86::CondCode
X86::getCondFromBranch(const MachineInstr
&MI
) {
2093 switch (MI
.getOpcode()) {
2094 default: return X86::COND_INVALID
;
2096 return static_cast<X86::CondCode
>(
2097 MI
.getOperand(MI
.getDesc().getNumOperands() - 1).getImm());
2101 /// Return condition code of a SETCC opcode.
2102 X86::CondCode
X86::getCondFromSETCC(const MachineInstr
&MI
) {
2103 switch (MI
.getOpcode()) {
2104 default: return X86::COND_INVALID
;
2105 case X86::SETCCr
: case X86::SETCCm
:
2106 return static_cast<X86::CondCode
>(
2107 MI
.getOperand(MI
.getDesc().getNumOperands() - 1).getImm());
2111 /// Return condition code of a CMov opcode.
2112 X86::CondCode
X86::getCondFromCMov(const MachineInstr
&MI
) {
2113 switch (MI
.getOpcode()) {
2114 default: return X86::COND_INVALID
;
2115 case X86::CMOV16rr
: case X86::CMOV32rr
: case X86::CMOV64rr
:
2116 case X86::CMOV16rm
: case X86::CMOV32rm
: case X86::CMOV64rm
:
2117 return static_cast<X86::CondCode
>(
2118 MI
.getOperand(MI
.getDesc().getNumOperands() - 1).getImm());
2122 /// Return the inverse of the specified condition,
2123 /// e.g. turning COND_E to COND_NE.
2124 X86::CondCode
X86::GetOppositeBranchCondition(X86::CondCode CC
) {
2126 default: llvm_unreachable("Illegal condition code!");
2127 case X86::COND_E
: return X86::COND_NE
;
2128 case X86::COND_NE
: return X86::COND_E
;
2129 case X86::COND_L
: return X86::COND_GE
;
2130 case X86::COND_LE
: return X86::COND_G
;
2131 case X86::COND_G
: return X86::COND_LE
;
2132 case X86::COND_GE
: return X86::COND_L
;
2133 case X86::COND_B
: return X86::COND_AE
;
2134 case X86::COND_BE
: return X86::COND_A
;
2135 case X86::COND_A
: return X86::COND_BE
;
2136 case X86::COND_AE
: return X86::COND_B
;
2137 case X86::COND_S
: return X86::COND_NS
;
2138 case X86::COND_NS
: return X86::COND_S
;
2139 case X86::COND_P
: return X86::COND_NP
;
2140 case X86::COND_NP
: return X86::COND_P
;
2141 case X86::COND_O
: return X86::COND_NO
;
2142 case X86::COND_NO
: return X86::COND_O
;
2143 case X86::COND_NE_OR_P
: return X86::COND_E_AND_NP
;
2144 case X86::COND_E_AND_NP
: return X86::COND_NE_OR_P
;
2148 /// Assuming the flags are set by MI(a,b), return the condition code if we
2149 /// modify the instructions such that flags are set by MI(b,a).
2150 static X86::CondCode
getSwappedCondition(X86::CondCode CC
) {
2152 default: return X86::COND_INVALID
;
2153 case X86::COND_E
: return X86::COND_E
;
2154 case X86::COND_NE
: return X86::COND_NE
;
2155 case X86::COND_L
: return X86::COND_G
;
2156 case X86::COND_LE
: return X86::COND_GE
;
2157 case X86::COND_G
: return X86::COND_L
;
2158 case X86::COND_GE
: return X86::COND_LE
;
2159 case X86::COND_B
: return X86::COND_A
;
2160 case X86::COND_BE
: return X86::COND_AE
;
2161 case X86::COND_A
: return X86::COND_B
;
2162 case X86::COND_AE
: return X86::COND_BE
;
2166 std::pair
<X86::CondCode
, bool>
2167 X86::getX86ConditionCode(CmpInst::Predicate Predicate
) {
2168 X86::CondCode CC
= X86::COND_INVALID
;
2169 bool NeedSwap
= false;
2170 switch (Predicate
) {
2172 // Floating-point Predicates
2173 case CmpInst::FCMP_UEQ
: CC
= X86::COND_E
; break;
2174 case CmpInst::FCMP_OLT
: NeedSwap
= true; LLVM_FALLTHROUGH
;
2175 case CmpInst::FCMP_OGT
: CC
= X86::COND_A
; break;
2176 case CmpInst::FCMP_OLE
: NeedSwap
= true; LLVM_FALLTHROUGH
;
2177 case CmpInst::FCMP_OGE
: CC
= X86::COND_AE
; break;
2178 case CmpInst::FCMP_UGT
: NeedSwap
= true; LLVM_FALLTHROUGH
;
2179 case CmpInst::FCMP_ULT
: CC
= X86::COND_B
; break;
2180 case CmpInst::FCMP_UGE
: NeedSwap
= true; LLVM_FALLTHROUGH
;
2181 case CmpInst::FCMP_ULE
: CC
= X86::COND_BE
; break;
2182 case CmpInst::FCMP_ONE
: CC
= X86::COND_NE
; break;
2183 case CmpInst::FCMP_UNO
: CC
= X86::COND_P
; break;
2184 case CmpInst::FCMP_ORD
: CC
= X86::COND_NP
; break;
2185 case CmpInst::FCMP_OEQ
: LLVM_FALLTHROUGH
;
2186 case CmpInst::FCMP_UNE
: CC
= X86::COND_INVALID
; break;
2188 // Integer Predicates
2189 case CmpInst::ICMP_EQ
: CC
= X86::COND_E
; break;
2190 case CmpInst::ICMP_NE
: CC
= X86::COND_NE
; break;
2191 case CmpInst::ICMP_UGT
: CC
= X86::COND_A
; break;
2192 case CmpInst::ICMP_UGE
: CC
= X86::COND_AE
; break;
2193 case CmpInst::ICMP_ULT
: CC
= X86::COND_B
; break;
2194 case CmpInst::ICMP_ULE
: CC
= X86::COND_BE
; break;
2195 case CmpInst::ICMP_SGT
: CC
= X86::COND_G
; break;
2196 case CmpInst::ICMP_SGE
: CC
= X86::COND_GE
; break;
2197 case CmpInst::ICMP_SLT
: CC
= X86::COND_L
; break;
2198 case CmpInst::ICMP_SLE
: CC
= X86::COND_LE
; break;
2201 return std::make_pair(CC
, NeedSwap
);
2204 /// Return a setcc opcode based on whether it has memory operand.
2205 unsigned X86::getSETOpc(bool HasMemoryOperand
) {
2206 return HasMemoryOperand
? X86::SETCCr
: X86::SETCCm
;
2209 /// Return a cmov opcode for the given register size in bytes, and operand type.
2210 unsigned X86::getCMovOpcode(unsigned RegBytes
, bool HasMemoryOperand
) {
2212 default: llvm_unreachable("Illegal register size!");
2213 case 2: return HasMemoryOperand
? X86::CMOV16rm
: X86::CMOV16rr
;
2214 case 4: return HasMemoryOperand
? X86::CMOV32rm
: X86::CMOV32rr
;
2215 case 8: return HasMemoryOperand
? X86::CMOV32rm
: X86::CMOV64rr
;
2219 /// Get the VPCMP immediate for the given condition.
2220 unsigned X86::getVPCMPImmForCond(ISD::CondCode CC
) {
2222 default: llvm_unreachable("Unexpected SETCC condition");
2223 case ISD::SETNE
: return 4;
2224 case ISD::SETEQ
: return 0;
2226 case ISD::SETLT
: return 1;
2228 case ISD::SETGT
: return 6;
2230 case ISD::SETGE
: return 5;
2232 case ISD::SETLE
: return 2;
2236 /// Get the VPCMP immediate if the opcodes are swapped.
2237 unsigned X86::getSwappedVPCMPImm(unsigned Imm
) {
2239 default: llvm_unreachable("Unreachable!");
2240 case 0x01: Imm
= 0x06; break; // LT -> NLE
2241 case 0x02: Imm
= 0x05; break; // LE -> NLT
2242 case 0x05: Imm
= 0x02; break; // NLT -> LE
2243 case 0x06: Imm
= 0x01; break; // NLE -> LT
2254 /// Get the VPCOM immediate if the opcodes are swapped.
2255 unsigned X86::getSwappedVPCOMImm(unsigned Imm
) {
2257 default: llvm_unreachable("Unreachable!");
2258 case 0x00: Imm
= 0x02; break; // LT -> GT
2259 case 0x01: Imm
= 0x03; break; // LE -> GE
2260 case 0x02: Imm
= 0x00; break; // GT -> LT
2261 case 0x03: Imm
= 0x01; break; // GE -> LE
2272 bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr
&MI
) const {
2273 if (!MI
.isTerminator()) return false;
2275 // Conditional branch is a special case.
2276 if (MI
.isBranch() && !MI
.isBarrier())
2278 if (!MI
.isPredicable())
2280 return !isPredicated(MI
);
2283 bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr
&MI
) const {
2284 switch (MI
.getOpcode()) {
2285 case X86::TCRETURNdi
:
2286 case X86::TCRETURNri
:
2287 case X86::TCRETURNmi
:
2288 case X86::TCRETURNdi64
:
2289 case X86::TCRETURNri64
:
2290 case X86::TCRETURNmi64
:
2297 bool X86InstrInfo::canMakeTailCallConditional(
2298 SmallVectorImpl
<MachineOperand
> &BranchCond
,
2299 const MachineInstr
&TailCall
) const {
2300 if (TailCall
.getOpcode() != X86::TCRETURNdi
&&
2301 TailCall
.getOpcode() != X86::TCRETURNdi64
) {
2302 // Only direct calls can be done with a conditional branch.
2306 const MachineFunction
*MF
= TailCall
.getParent()->getParent();
2307 if (Subtarget
.isTargetWin64() && MF
->hasWinCFI()) {
2308 // Conditional tail calls confuse the Win64 unwinder.
2312 assert(BranchCond
.size() == 1);
2313 if (BranchCond
[0].getImm() > X86::LAST_VALID_COND
) {
2314 // Can't make a conditional tail call with this condition.
2318 const X86MachineFunctionInfo
*X86FI
= MF
->getInfo
<X86MachineFunctionInfo
>();
2319 if (X86FI
->getTCReturnAddrDelta() != 0 ||
2320 TailCall
.getOperand(1).getImm() != 0) {
2321 // A conditional tail call cannot do any stack adjustment.
2328 void X86InstrInfo::replaceBranchWithTailCall(
2329 MachineBasicBlock
&MBB
, SmallVectorImpl
<MachineOperand
> &BranchCond
,
2330 const MachineInstr
&TailCall
) const {
2331 assert(canMakeTailCallConditional(BranchCond
, TailCall
));
2333 MachineBasicBlock::iterator I
= MBB
.end();
2334 while (I
!= MBB
.begin()) {
2336 if (I
->isDebugInstr())
2339 assert(0 && "Can't find the branch to replace!");
2341 X86::CondCode CC
= X86::getCondFromBranch(*I
);
2342 assert(BranchCond
.size() == 1);
2343 if (CC
!= BranchCond
[0].getImm())
2349 unsigned Opc
= TailCall
.getOpcode() == X86::TCRETURNdi
? X86::TCRETURNdicc
2350 : X86::TCRETURNdi64cc
;
2352 auto MIB
= BuildMI(MBB
, I
, MBB
.findDebugLoc(I
), get(Opc
));
2353 MIB
->addOperand(TailCall
.getOperand(0)); // Destination.
2354 MIB
.addImm(0); // Stack offset (not used).
2355 MIB
->addOperand(BranchCond
[0]); // Condition.
2356 MIB
.copyImplicitOps(TailCall
); // Regmask and (imp-used) parameters.
2358 // Add implicit uses and defs of all live regs potentially clobbered by the
2359 // call. This way they still appear live across the call.
2360 LivePhysRegs
LiveRegs(getRegisterInfo());
2361 LiveRegs
.addLiveOuts(MBB
);
2362 SmallVector
<std::pair
<MCPhysReg
, const MachineOperand
*>, 8> Clobbers
;
2363 LiveRegs
.stepForward(*MIB
, Clobbers
);
2364 for (const auto &C
: Clobbers
) {
2365 MIB
.addReg(C
.first
, RegState::Implicit
);
2366 MIB
.addReg(C
.first
, RegState::Implicit
| RegState::Define
);
2369 I
->eraseFromParent();
2372 // Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may
2373 // not be a fallthrough MBB now due to layout changes). Return nullptr if the
2374 // fallthrough MBB cannot be identified.
2375 static MachineBasicBlock
*getFallThroughMBB(MachineBasicBlock
*MBB
,
2376 MachineBasicBlock
*TBB
) {
2377 // Look for non-EHPad successors other than TBB. If we find exactly one, it
2378 // is the fallthrough MBB. If we find zero, then TBB is both the target MBB
2379 // and fallthrough MBB. If we find more than one, we cannot identify the
2380 // fallthrough MBB and should return nullptr.
2381 MachineBasicBlock
*FallthroughBB
= nullptr;
2382 for (auto SI
= MBB
->succ_begin(), SE
= MBB
->succ_end(); SI
!= SE
; ++SI
) {
2383 if ((*SI
)->isEHPad() || (*SI
== TBB
&& FallthroughBB
))
2385 // Return a nullptr if we found more than one fallthrough successor.
2386 if (FallthroughBB
&& FallthroughBB
!= TBB
)
2388 FallthroughBB
= *SI
;
2390 return FallthroughBB
;
2393 bool X86InstrInfo::AnalyzeBranchImpl(
2394 MachineBasicBlock
&MBB
, MachineBasicBlock
*&TBB
, MachineBasicBlock
*&FBB
,
2395 SmallVectorImpl
<MachineOperand
> &Cond
,
2396 SmallVectorImpl
<MachineInstr
*> &CondBranches
, bool AllowModify
) const {
2398 // Start from the bottom of the block and work up, examining the
2399 // terminator instructions.
2400 MachineBasicBlock::iterator I
= MBB
.end();
2401 MachineBasicBlock::iterator UnCondBrIter
= MBB
.end();
2402 while (I
!= MBB
.begin()) {
2404 if (I
->isDebugInstr())
2407 // Working from the bottom, when we see a non-terminator instruction, we're
2409 if (!isUnpredicatedTerminator(*I
))
2412 // A terminator that isn't a branch can't easily be handled by this
2417 // Handle unconditional branches.
2418 if (I
->getOpcode() == X86::JMP_1
) {
2422 TBB
= I
->getOperand(0).getMBB();
2426 // If the block has any instructions after a JMP, delete them.
2427 while (std::next(I
) != MBB
.end())
2428 std::next(I
)->eraseFromParent();
2433 // Delete the JMP if it's equivalent to a fall-through.
2434 if (MBB
.isLayoutSuccessor(I
->getOperand(0).getMBB())) {
2436 I
->eraseFromParent();
2438 UnCondBrIter
= MBB
.end();
2442 // TBB is used to indicate the unconditional destination.
2443 TBB
= I
->getOperand(0).getMBB();
2447 // Handle conditional branches.
2448 X86::CondCode BranchCode
= X86::getCondFromBranch(*I
);
2449 if (BranchCode
== X86::COND_INVALID
)
2450 return true; // Can't handle indirect branch.
2452 // In practice we should never have an undef eflags operand, if we do
2453 // abort here as we are not prepared to preserve the flag.
2454 if (I
->findRegisterUseOperand(X86::EFLAGS
)->isUndef())
2457 // Working from the bottom, handle the first conditional branch.
2459 MachineBasicBlock
*TargetBB
= I
->getOperand(0).getMBB();
2460 if (AllowModify
&& UnCondBrIter
!= MBB
.end() &&
2461 MBB
.isLayoutSuccessor(TargetBB
)) {
2462 // If we can modify the code and it ends in something like:
2470 // Then we can change this to:
2477 // Which is a bit more efficient.
2478 // We conditionally jump to the fall-through block.
2479 BranchCode
= GetOppositeBranchCondition(BranchCode
);
2480 MachineBasicBlock::iterator OldInst
= I
;
2482 BuildMI(MBB
, UnCondBrIter
, MBB
.findDebugLoc(I
), get(X86::JCC_1
))
2483 .addMBB(UnCondBrIter
->getOperand(0).getMBB())
2484 .addImm(BranchCode
);
2485 BuildMI(MBB
, UnCondBrIter
, MBB
.findDebugLoc(I
), get(X86::JMP_1
))
2488 OldInst
->eraseFromParent();
2489 UnCondBrIter
->eraseFromParent();
2491 // Restart the analysis.
2492 UnCondBrIter
= MBB
.end();
2498 TBB
= I
->getOperand(0).getMBB();
2499 Cond
.push_back(MachineOperand::CreateImm(BranchCode
));
2500 CondBranches
.push_back(&*I
);
2504 // Handle subsequent conditional branches. Only handle the case where all
2505 // conditional branches branch to the same destination and their condition
2506 // opcodes fit one of the special multi-branch idioms.
2507 assert(Cond
.size() == 1);
2510 // If the conditions are the same, we can leave them alone.
2511 X86::CondCode OldBranchCode
= (X86::CondCode
)Cond
[0].getImm();
2512 auto NewTBB
= I
->getOperand(0).getMBB();
2513 if (OldBranchCode
== BranchCode
&& TBB
== NewTBB
)
2516 // If they differ, see if they fit one of the known patterns. Theoretically,
2517 // we could handle more patterns here, but we shouldn't expect to see them
2518 // if instruction selection has done a reasonable job.
2519 if (TBB
== NewTBB
&&
2520 ((OldBranchCode
== X86::COND_P
&& BranchCode
== X86::COND_NE
) ||
2521 (OldBranchCode
== X86::COND_NE
&& BranchCode
== X86::COND_P
))) {
2522 BranchCode
= X86::COND_NE_OR_P
;
2523 } else if ((OldBranchCode
== X86::COND_NP
&& BranchCode
== X86::COND_NE
) ||
2524 (OldBranchCode
== X86::COND_E
&& BranchCode
== X86::COND_P
)) {
2525 if (NewTBB
!= (FBB
? FBB
: getFallThroughMBB(&MBB
, TBB
)))
2528 // X86::COND_E_AND_NP usually has two different branch destinations.
2536 // Here this condition branches to B2 only if NP && E. It has another
2545 // Similarly it branches to B2 only if E && NP. That is why this condition
2546 // is named with COND_E_AND_NP.
2547 BranchCode
= X86::COND_E_AND_NP
;
2551 // Update the MachineOperand.
2552 Cond
[0].setImm(BranchCode
);
2553 CondBranches
.push_back(&*I
);
2559 bool X86InstrInfo::analyzeBranch(MachineBasicBlock
&MBB
,
2560 MachineBasicBlock
*&TBB
,
2561 MachineBasicBlock
*&FBB
,
2562 SmallVectorImpl
<MachineOperand
> &Cond
,
2563 bool AllowModify
) const {
2564 SmallVector
<MachineInstr
*, 4> CondBranches
;
2565 return AnalyzeBranchImpl(MBB
, TBB
, FBB
, Cond
, CondBranches
, AllowModify
);
2568 bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock
&MBB
,
2569 MachineBranchPredicate
&MBP
,
2570 bool AllowModify
) const {
2571 using namespace std::placeholders
;
2573 SmallVector
<MachineOperand
, 4> Cond
;
2574 SmallVector
<MachineInstr
*, 4> CondBranches
;
2575 if (AnalyzeBranchImpl(MBB
, MBP
.TrueDest
, MBP
.FalseDest
, Cond
, CondBranches
,
2579 if (Cond
.size() != 1)
2582 assert(MBP
.TrueDest
&& "expected!");
2585 MBP
.FalseDest
= MBB
.getNextNode();
2587 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
2589 MachineInstr
*ConditionDef
= nullptr;
2590 bool SingleUseCondition
= true;
2592 for (auto I
= std::next(MBB
.rbegin()), E
= MBB
.rend(); I
!= E
; ++I
) {
2593 if (I
->modifiesRegister(X86::EFLAGS
, TRI
)) {
2598 if (I
->readsRegister(X86::EFLAGS
, TRI
))
2599 SingleUseCondition
= false;
2605 if (SingleUseCondition
) {
2606 for (auto *Succ
: MBB
.successors())
2607 if (Succ
->isLiveIn(X86::EFLAGS
))
2608 SingleUseCondition
= false;
2611 MBP
.ConditionDef
= ConditionDef
;
2612 MBP
.SingleUseCondition
= SingleUseCondition
;
2614 // Currently we only recognize the simple pattern:
2619 const unsigned TestOpcode
=
2620 Subtarget
.is64Bit() ? X86::TEST64rr
: X86::TEST32rr
;
2622 if (ConditionDef
->getOpcode() == TestOpcode
&&
2623 ConditionDef
->getNumOperands() == 3 &&
2624 ConditionDef
->getOperand(0).isIdenticalTo(ConditionDef
->getOperand(1)) &&
2625 (Cond
[0].getImm() == X86::COND_NE
|| Cond
[0].getImm() == X86::COND_E
)) {
2626 MBP
.LHS
= ConditionDef
->getOperand(0);
2627 MBP
.RHS
= MachineOperand::CreateImm(0);
2628 MBP
.Predicate
= Cond
[0].getImm() == X86::COND_NE
2629 ? MachineBranchPredicate::PRED_NE
2630 : MachineBranchPredicate::PRED_EQ
;
2637 unsigned X86InstrInfo::removeBranch(MachineBasicBlock
&MBB
,
2638 int *BytesRemoved
) const {
2639 assert(!BytesRemoved
&& "code size not handled");
2641 MachineBasicBlock::iterator I
= MBB
.end();
2644 while (I
!= MBB
.begin()) {
2646 if (I
->isDebugInstr())
2648 if (I
->getOpcode() != X86::JMP_1
&&
2649 X86::getCondFromBranch(*I
) == X86::COND_INVALID
)
2651 // Remove the branch.
2652 I
->eraseFromParent();
2660 unsigned X86InstrInfo::insertBranch(MachineBasicBlock
&MBB
,
2661 MachineBasicBlock
*TBB
,
2662 MachineBasicBlock
*FBB
,
2663 ArrayRef
<MachineOperand
> Cond
,
2665 int *BytesAdded
) const {
2666 // Shouldn't be a fall through.
2667 assert(TBB
&& "insertBranch must not be told to insert a fallthrough");
2668 assert((Cond
.size() == 1 || Cond
.size() == 0) &&
2669 "X86 branch conditions have one component!");
2670 assert(!BytesAdded
&& "code size not handled");
2673 // Unconditional branch?
2674 assert(!FBB
&& "Unconditional branch with multiple successors!");
2675 BuildMI(&MBB
, DL
, get(X86::JMP_1
)).addMBB(TBB
);
2679 // If FBB is null, it is implied to be a fall-through block.
2680 bool FallThru
= FBB
== nullptr;
2682 // Conditional branch.
2684 X86::CondCode CC
= (X86::CondCode
)Cond
[0].getImm();
2686 case X86::COND_NE_OR_P
:
2687 // Synthesize NE_OR_P with two branches.
2688 BuildMI(&MBB
, DL
, get(X86::JCC_1
)).addMBB(TBB
).addImm(X86::COND_NE
);
2690 BuildMI(&MBB
, DL
, get(X86::JCC_1
)).addMBB(TBB
).addImm(X86::COND_P
);
2693 case X86::COND_E_AND_NP
:
2694 // Use the next block of MBB as FBB if it is null.
2695 if (FBB
== nullptr) {
2696 FBB
= getFallThroughMBB(&MBB
, TBB
);
2697 assert(FBB
&& "MBB cannot be the last block in function when the false "
2698 "body is a fall-through.");
2700 // Synthesize COND_E_AND_NP with two branches.
2701 BuildMI(&MBB
, DL
, get(X86::JCC_1
)).addMBB(FBB
).addImm(X86::COND_NE
);
2703 BuildMI(&MBB
, DL
, get(X86::JCC_1
)).addMBB(TBB
).addImm(X86::COND_NP
);
2707 BuildMI(&MBB
, DL
, get(X86::JCC_1
)).addMBB(TBB
).addImm(CC
);
2712 // Two-way Conditional branch. Insert the second branch.
2713 BuildMI(&MBB
, DL
, get(X86::JMP_1
)).addMBB(FBB
);
2720 canInsertSelect(const MachineBasicBlock
&MBB
,
2721 ArrayRef
<MachineOperand
> Cond
,
2722 unsigned TrueReg
, unsigned FalseReg
,
2723 int &CondCycles
, int &TrueCycles
, int &FalseCycles
) const {
2724 // Not all subtargets have cmov instructions.
2725 if (!Subtarget
.hasCMov())
2727 if (Cond
.size() != 1)
2729 // We cannot do the composite conditions, at least not in SSA form.
2730 if ((X86::CondCode
)Cond
[0].getImm() > X86::LAST_VALID_COND
)
2733 // Check register classes.
2734 const MachineRegisterInfo
&MRI
= MBB
.getParent()->getRegInfo();
2735 const TargetRegisterClass
*RC
=
2736 RI
.getCommonSubClass(MRI
.getRegClass(TrueReg
), MRI
.getRegClass(FalseReg
));
2740 // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
2741 if (X86::GR16RegClass
.hasSubClassEq(RC
) ||
2742 X86::GR32RegClass
.hasSubClassEq(RC
) ||
2743 X86::GR64RegClass
.hasSubClassEq(RC
)) {
2744 // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
2745 // Bridge. Probably Ivy Bridge as well.
2752 // Can't do vectors.
2756 void X86InstrInfo::insertSelect(MachineBasicBlock
&MBB
,
2757 MachineBasicBlock::iterator I
,
2758 const DebugLoc
&DL
, unsigned DstReg
,
2759 ArrayRef
<MachineOperand
> Cond
, unsigned TrueReg
,
2760 unsigned FalseReg
) const {
2761 MachineRegisterInfo
&MRI
= MBB
.getParent()->getRegInfo();
2762 const TargetRegisterInfo
&TRI
= *MRI
.getTargetRegisterInfo();
2763 const TargetRegisterClass
&RC
= *MRI
.getRegClass(DstReg
);
2764 assert(Cond
.size() == 1 && "Invalid Cond array");
2765 unsigned Opc
= X86::getCMovOpcode(TRI
.getRegSizeInBits(RC
) / 8,
2766 false /*HasMemoryOperand*/);
2767 BuildMI(MBB
, I
, DL
, get(Opc
), DstReg
)
2770 .addImm(Cond
[0].getImm());
2773 /// Test if the given register is a physical h register.
2774 static bool isHReg(unsigned Reg
) {
2775 return X86::GR8_ABCD_HRegClass
.contains(Reg
);
2778 // Try and copy between VR128/VR64 and GR64 registers.
2779 static unsigned CopyToFromAsymmetricReg(unsigned DestReg
, unsigned SrcReg
,
2780 const X86Subtarget
&Subtarget
) {
2781 bool HasAVX
= Subtarget
.hasAVX();
2782 bool HasAVX512
= Subtarget
.hasAVX512();
2784 // SrcReg(MaskReg) -> DestReg(GR64)
2785 // SrcReg(MaskReg) -> DestReg(GR32)
2787 // All KMASK RegClasses hold the same k registers, can be tested against anyone.
2788 if (X86::VK16RegClass
.contains(SrcReg
)) {
2789 if (X86::GR64RegClass
.contains(DestReg
)) {
2790 assert(Subtarget
.hasBWI());
2791 return X86::KMOVQrk
;
2793 if (X86::GR32RegClass
.contains(DestReg
))
2794 return Subtarget
.hasBWI() ? X86::KMOVDrk
: X86::KMOVWrk
;
2797 // SrcReg(GR64) -> DestReg(MaskReg)
2798 // SrcReg(GR32) -> DestReg(MaskReg)
2800 // All KMASK RegClasses hold the same k registers, can be tested against anyone.
2801 if (X86::VK16RegClass
.contains(DestReg
)) {
2802 if (X86::GR64RegClass
.contains(SrcReg
)) {
2803 assert(Subtarget
.hasBWI());
2804 return X86::KMOVQkr
;
2806 if (X86::GR32RegClass
.contains(SrcReg
))
2807 return Subtarget
.hasBWI() ? X86::KMOVDkr
: X86::KMOVWkr
;
2811 // SrcReg(VR128) -> DestReg(GR64)
2812 // SrcReg(VR64) -> DestReg(GR64)
2813 // SrcReg(GR64) -> DestReg(VR128)
2814 // SrcReg(GR64) -> DestReg(VR64)
2816 if (X86::GR64RegClass
.contains(DestReg
)) {
2817 if (X86::VR128XRegClass
.contains(SrcReg
))
2818 // Copy from a VR128 register to a GR64 register.
2819 return HasAVX512
? X86::VMOVPQIto64Zrr
:
2820 HasAVX
? X86::VMOVPQIto64rr
:
2822 if (X86::VR64RegClass
.contains(SrcReg
))
2823 // Copy from a VR64 register to a GR64 register.
2824 return X86::MMX_MOVD64from64rr
;
2825 } else if (X86::GR64RegClass
.contains(SrcReg
)) {
2826 // Copy from a GR64 register to a VR128 register.
2827 if (X86::VR128XRegClass
.contains(DestReg
))
2828 return HasAVX512
? X86::VMOV64toPQIZrr
:
2829 HasAVX
? X86::VMOV64toPQIrr
:
2831 // Copy from a GR64 register to a VR64 register.
2832 if (X86::VR64RegClass
.contains(DestReg
))
2833 return X86::MMX_MOVD64to64rr
;
2836 // SrcReg(VR128) -> DestReg(GR32)
2837 // SrcReg(GR32) -> DestReg(VR128)
2839 if (X86::GR32RegClass
.contains(DestReg
) &&
2840 X86::VR128XRegClass
.contains(SrcReg
))
2841 // Copy from a VR128 register to a GR32 register.
2842 return HasAVX512
? X86::VMOVPDI2DIZrr
:
2843 HasAVX
? X86::VMOVPDI2DIrr
:
2846 if (X86::VR128XRegClass
.contains(DestReg
) &&
2847 X86::GR32RegClass
.contains(SrcReg
))
2848 // Copy from a VR128 register to a VR128 register.
2849 return HasAVX512
? X86::VMOVDI2PDIZrr
:
2850 HasAVX
? X86::VMOVDI2PDIrr
:
2855 void X86InstrInfo::copyPhysReg(MachineBasicBlock
&MBB
,
2856 MachineBasicBlock::iterator MI
,
2857 const DebugLoc
&DL
, unsigned DestReg
,
2858 unsigned SrcReg
, bool KillSrc
) const {
2859 // First deal with the normal symmetric copies.
2860 bool HasAVX
= Subtarget
.hasAVX();
2861 bool HasVLX
= Subtarget
.hasVLX();
2863 if (X86::GR64RegClass
.contains(DestReg
, SrcReg
))
2865 else if (X86::GR32RegClass
.contains(DestReg
, SrcReg
))
2867 else if (X86::GR16RegClass
.contains(DestReg
, SrcReg
))
2869 else if (X86::GR8RegClass
.contains(DestReg
, SrcReg
)) {
2870 // Copying to or from a physical H register on x86-64 requires a NOREX
2871 // move. Otherwise use a normal move.
2872 if ((isHReg(DestReg
) || isHReg(SrcReg
)) &&
2873 Subtarget
.is64Bit()) {
2874 Opc
= X86::MOV8rr_NOREX
;
2875 // Both operands must be encodable without an REX prefix.
2876 assert(X86::GR8_NOREXRegClass
.contains(SrcReg
, DestReg
) &&
2877 "8-bit H register can not be copied outside GR8_NOREX");
2881 else if (X86::VR64RegClass
.contains(DestReg
, SrcReg
))
2882 Opc
= X86::MMX_MOVQ64rr
;
2883 else if (X86::VR128XRegClass
.contains(DestReg
, SrcReg
)) {
2885 Opc
= X86::VMOVAPSZ128rr
;
2886 else if (X86::VR128RegClass
.contains(DestReg
, SrcReg
))
2887 Opc
= HasAVX
? X86::VMOVAPSrr
: X86::MOVAPSrr
;
2889 // If this an extended register and we don't have VLX we need to use a
2891 Opc
= X86::VMOVAPSZrr
;
2892 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
2893 DestReg
= TRI
->getMatchingSuperReg(DestReg
, X86::sub_xmm
,
2894 &X86::VR512RegClass
);
2895 SrcReg
= TRI
->getMatchingSuperReg(SrcReg
, X86::sub_xmm
,
2896 &X86::VR512RegClass
);
2898 } else if (X86::VR256XRegClass
.contains(DestReg
, SrcReg
)) {
2900 Opc
= X86::VMOVAPSZ256rr
;
2901 else if (X86::VR256RegClass
.contains(DestReg
, SrcReg
))
2902 Opc
= X86::VMOVAPSYrr
;
2904 // If this an extended register and we don't have VLX we need to use a
2906 Opc
= X86::VMOVAPSZrr
;
2907 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
2908 DestReg
= TRI
->getMatchingSuperReg(DestReg
, X86::sub_ymm
,
2909 &X86::VR512RegClass
);
2910 SrcReg
= TRI
->getMatchingSuperReg(SrcReg
, X86::sub_ymm
,
2911 &X86::VR512RegClass
);
2913 } else if (X86::VR512RegClass
.contains(DestReg
, SrcReg
))
2914 Opc
= X86::VMOVAPSZrr
;
2915 // All KMASK RegClasses hold the same k registers, can be tested against anyone.
2916 else if (X86::VK16RegClass
.contains(DestReg
, SrcReg
))
2917 Opc
= Subtarget
.hasBWI() ? X86::KMOVQkk
: X86::KMOVWkk
;
2919 Opc
= CopyToFromAsymmetricReg(DestReg
, SrcReg
, Subtarget
);
2922 BuildMI(MBB
, MI
, DL
, get(Opc
), DestReg
)
2923 .addReg(SrcReg
, getKillRegState(KillSrc
));
2927 if (SrcReg
== X86::EFLAGS
|| DestReg
== X86::EFLAGS
) {
2928 // FIXME: We use a fatal error here because historically LLVM has tried
2929 // lower some of these physreg copies and we want to ensure we get
2930 // reasonable bug reports if someone encounters a case no other testing
2931 // found. This path should be removed after the LLVM 7 release.
2932 report_fatal_error("Unable to copy EFLAGS physical register!");
2935 LLVM_DEBUG(dbgs() << "Cannot copy " << RI
.getName(SrcReg
) << " to "
2936 << RI
.getName(DestReg
) << '\n');
2937 report_fatal_error("Cannot emit physreg copy instruction");
2940 bool X86InstrInfo::isCopyInstrImpl(const MachineInstr
&MI
,
2941 const MachineOperand
*&Src
,
2942 const MachineOperand
*&Dest
) const {
2943 if (MI
.isMoveReg()) {
2944 Dest
= &MI
.getOperand(0);
2945 Src
= &MI
.getOperand(1);
2951 static unsigned getLoadStoreRegOpcode(unsigned Reg
,
2952 const TargetRegisterClass
*RC
,
2953 bool isStackAligned
,
2954 const X86Subtarget
&STI
,
2956 bool HasAVX
= STI
.hasAVX();
2957 bool HasAVX512
= STI
.hasAVX512();
2958 bool HasVLX
= STI
.hasVLX();
2960 switch (STI
.getRegisterInfo()->getSpillSize(*RC
)) {
2962 llvm_unreachable("Unknown spill size");
2964 assert(X86::GR8RegClass
.hasSubClassEq(RC
) && "Unknown 1-byte regclass");
2966 // Copying to or from a physical H register on x86-64 requires a NOREX
2967 // move. Otherwise use a normal move.
2968 if (isHReg(Reg
) || X86::GR8_ABCD_HRegClass
.hasSubClassEq(RC
))
2969 return load
? X86::MOV8rm_NOREX
: X86::MOV8mr_NOREX
;
2970 return load
? X86::MOV8rm
: X86::MOV8mr
;
2972 if (X86::VK16RegClass
.hasSubClassEq(RC
))
2973 return load
? X86::KMOVWkm
: X86::KMOVWmk
;
2974 assert(X86::GR16RegClass
.hasSubClassEq(RC
) && "Unknown 2-byte regclass");
2975 return load
? X86::MOV16rm
: X86::MOV16mr
;
2977 if (X86::GR32RegClass
.hasSubClassEq(RC
))
2978 return load
? X86::MOV32rm
: X86::MOV32mr
;
2979 if (X86::FR32XRegClass
.hasSubClassEq(RC
))
2981 (HasAVX512
? X86::VMOVSSZrm_alt
:
2982 HasAVX
? X86::VMOVSSrm_alt
:
2984 (HasAVX512
? X86::VMOVSSZmr
:
2985 HasAVX
? X86::VMOVSSmr
:
2987 if (X86::RFP32RegClass
.hasSubClassEq(RC
))
2988 return load
? X86::LD_Fp32m
: X86::ST_Fp32m
;
2989 if (X86::VK32RegClass
.hasSubClassEq(RC
)) {
2990 assert(STI
.hasBWI() && "KMOVD requires BWI");
2991 return load
? X86::KMOVDkm
: X86::KMOVDmk
;
2993 // All of these mask pair classes have the same spill size, the same kind
2994 // of kmov instructions can be used with all of them.
2995 if (X86::VK1PAIRRegClass
.hasSubClassEq(RC
) ||
2996 X86::VK2PAIRRegClass
.hasSubClassEq(RC
) ||
2997 X86::VK4PAIRRegClass
.hasSubClassEq(RC
) ||
2998 X86::VK8PAIRRegClass
.hasSubClassEq(RC
) ||
2999 X86::VK16PAIRRegClass
.hasSubClassEq(RC
))
3000 return load
? X86::MASKPAIR16LOAD
: X86::MASKPAIR16STORE
;
3001 llvm_unreachable("Unknown 4-byte regclass");
3003 if (X86::GR64RegClass
.hasSubClassEq(RC
))
3004 return load
? X86::MOV64rm
: X86::MOV64mr
;
3005 if (X86::FR64XRegClass
.hasSubClassEq(RC
))
3007 (HasAVX512
? X86::VMOVSDZrm_alt
:
3008 HasAVX
? X86::VMOVSDrm_alt
:
3010 (HasAVX512
? X86::VMOVSDZmr
:
3011 HasAVX
? X86::VMOVSDmr
:
3013 if (X86::VR64RegClass
.hasSubClassEq(RC
))
3014 return load
? X86::MMX_MOVQ64rm
: X86::MMX_MOVQ64mr
;
3015 if (X86::RFP64RegClass
.hasSubClassEq(RC
))
3016 return load
? X86::LD_Fp64m
: X86::ST_Fp64m
;
3017 if (X86::VK64RegClass
.hasSubClassEq(RC
)) {
3018 assert(STI
.hasBWI() && "KMOVQ requires BWI");
3019 return load
? X86::KMOVQkm
: X86::KMOVQmk
;
3021 llvm_unreachable("Unknown 8-byte regclass");
3023 assert(X86::RFP80RegClass
.hasSubClassEq(RC
) && "Unknown 10-byte regclass");
3024 return load
? X86::LD_Fp80m
: X86::ST_FpP80m
;
3026 if (X86::VR128XRegClass
.hasSubClassEq(RC
)) {
3027 // If stack is realigned we can use aligned stores.
3030 (HasVLX
? X86::VMOVAPSZ128rm
:
3031 HasAVX512
? X86::VMOVAPSZ128rm_NOVLX
:
3032 HasAVX
? X86::VMOVAPSrm
:
3034 (HasVLX
? X86::VMOVAPSZ128mr
:
3035 HasAVX512
? X86::VMOVAPSZ128mr_NOVLX
:
3036 HasAVX
? X86::VMOVAPSmr
:
3040 (HasVLX
? X86::VMOVUPSZ128rm
:
3041 HasAVX512
? X86::VMOVUPSZ128rm_NOVLX
:
3042 HasAVX
? X86::VMOVUPSrm
:
3044 (HasVLX
? X86::VMOVUPSZ128mr
:
3045 HasAVX512
? X86::VMOVUPSZ128mr_NOVLX
:
3046 HasAVX
? X86::VMOVUPSmr
:
3049 if (X86::BNDRRegClass
.hasSubClassEq(RC
)) {
3051 return load
? X86::BNDMOV64rm
: X86::BNDMOV64mr
;
3053 return load
? X86::BNDMOV32rm
: X86::BNDMOV32mr
;
3055 llvm_unreachable("Unknown 16-byte regclass");
3058 assert(X86::VR256XRegClass
.hasSubClassEq(RC
) && "Unknown 32-byte regclass");
3059 // If stack is realigned we can use aligned stores.
3062 (HasVLX
? X86::VMOVAPSZ256rm
:
3063 HasAVX512
? X86::VMOVAPSZ256rm_NOVLX
:
3065 (HasVLX
? X86::VMOVAPSZ256mr
:
3066 HasAVX512
? X86::VMOVAPSZ256mr_NOVLX
:
3070 (HasVLX
? X86::VMOVUPSZ256rm
:
3071 HasAVX512
? X86::VMOVUPSZ256rm_NOVLX
:
3073 (HasVLX
? X86::VMOVUPSZ256mr
:
3074 HasAVX512
? X86::VMOVUPSZ256mr_NOVLX
:
3077 assert(X86::VR512RegClass
.hasSubClassEq(RC
) && "Unknown 64-byte regclass");
3078 assert(STI
.hasAVX512() && "Using 512-bit register requires AVX512");
3080 return load
? X86::VMOVAPSZrm
: X86::VMOVAPSZmr
;
3082 return load
? X86::VMOVUPSZrm
: X86::VMOVUPSZmr
;
3086 bool X86InstrInfo::getMemOperandWithOffset(
3087 const MachineInstr
&MemOp
, const MachineOperand
*&BaseOp
, int64_t &Offset
,
3088 const TargetRegisterInfo
*TRI
) const {
3089 const MCInstrDesc
&Desc
= MemOp
.getDesc();
3090 int MemRefBegin
= X86II::getMemoryOperandNo(Desc
.TSFlags
);
3091 if (MemRefBegin
< 0)
3094 MemRefBegin
+= X86II::getOperandBias(Desc
);
3096 BaseOp
= &MemOp
.getOperand(MemRefBegin
+ X86::AddrBaseReg
);
3097 if (!BaseOp
->isReg()) // Can be an MO_FrameIndex
3100 if (MemOp
.getOperand(MemRefBegin
+ X86::AddrScaleAmt
).getImm() != 1)
3103 if (MemOp
.getOperand(MemRefBegin
+ X86::AddrIndexReg
).getReg() !=
3107 const MachineOperand
&DispMO
= MemOp
.getOperand(MemRefBegin
+ X86::AddrDisp
);
3109 // Displacement can be symbolic
3110 if (!DispMO
.isImm())
3113 Offset
= DispMO
.getImm();
3115 assert(BaseOp
->isReg() && "getMemOperandWithOffset only supports base "
3116 "operands of type register.");
3120 static unsigned getStoreRegOpcode(unsigned SrcReg
,
3121 const TargetRegisterClass
*RC
,
3122 bool isStackAligned
,
3123 const X86Subtarget
&STI
) {
3124 return getLoadStoreRegOpcode(SrcReg
, RC
, isStackAligned
, STI
, false);
3128 static unsigned getLoadRegOpcode(unsigned DestReg
,
3129 const TargetRegisterClass
*RC
,
3130 bool isStackAligned
,
3131 const X86Subtarget
&STI
) {
3132 return getLoadStoreRegOpcode(DestReg
, RC
, isStackAligned
, STI
, true);
3135 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock
&MBB
,
3136 MachineBasicBlock::iterator MI
,
3137 unsigned SrcReg
, bool isKill
, int FrameIdx
,
3138 const TargetRegisterClass
*RC
,
3139 const TargetRegisterInfo
*TRI
) const {
3140 const MachineFunction
&MF
= *MBB
.getParent();
3141 assert(MF
.getFrameInfo().getObjectSize(FrameIdx
) >= TRI
->getSpillSize(*RC
) &&
3142 "Stack slot too small for store");
3143 unsigned Alignment
= std::max
<uint32_t>(TRI
->getSpillSize(*RC
), 16);
3145 (Subtarget
.getFrameLowering()->getStackAlignment() >= Alignment
) ||
3146 RI
.canRealignStack(MF
);
3147 unsigned Opc
= getStoreRegOpcode(SrcReg
, RC
, isAligned
, Subtarget
);
3148 addFrameReference(BuildMI(MBB
, MI
, DebugLoc(), get(Opc
)), FrameIdx
)
3149 .addReg(SrcReg
, getKillRegState(isKill
));
3152 void X86InstrInfo::storeRegToAddr(
3153 MachineFunction
&MF
, unsigned SrcReg
, bool isKill
,
3154 SmallVectorImpl
<MachineOperand
> &Addr
, const TargetRegisterClass
*RC
,
3155 ArrayRef
<MachineMemOperand
*> MMOs
,
3156 SmallVectorImpl
<MachineInstr
*> &NewMIs
) const {
3157 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
3158 unsigned Alignment
= std::max
<uint32_t>(TRI
.getSpillSize(*RC
), 16);
3159 bool isAligned
= !MMOs
.empty() && MMOs
.front()->getAlignment() >= Alignment
;
3160 unsigned Opc
= getStoreRegOpcode(SrcReg
, RC
, isAligned
, Subtarget
);
3162 MachineInstrBuilder MIB
= BuildMI(MF
, DL
, get(Opc
));
3163 for (unsigned i
= 0, e
= Addr
.size(); i
!= e
; ++i
)
3165 MIB
.addReg(SrcReg
, getKillRegState(isKill
));
3166 MIB
.setMemRefs(MMOs
);
3167 NewMIs
.push_back(MIB
);
3171 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock
&MBB
,
3172 MachineBasicBlock::iterator MI
,
3173 unsigned DestReg
, int FrameIdx
,
3174 const TargetRegisterClass
*RC
,
3175 const TargetRegisterInfo
*TRI
) const {
3176 const MachineFunction
&MF
= *MBB
.getParent();
3177 unsigned Alignment
= std::max
<uint32_t>(TRI
->getSpillSize(*RC
), 16);
3179 (Subtarget
.getFrameLowering()->getStackAlignment() >= Alignment
) ||
3180 RI
.canRealignStack(MF
);
3181 unsigned Opc
= getLoadRegOpcode(DestReg
, RC
, isAligned
, Subtarget
);
3182 addFrameReference(BuildMI(MBB
, MI
, DebugLoc(), get(Opc
), DestReg
), FrameIdx
);
3185 void X86InstrInfo::loadRegFromAddr(
3186 MachineFunction
&MF
, unsigned DestReg
,
3187 SmallVectorImpl
<MachineOperand
> &Addr
, const TargetRegisterClass
*RC
,
3188 ArrayRef
<MachineMemOperand
*> MMOs
,
3189 SmallVectorImpl
<MachineInstr
*> &NewMIs
) const {
3190 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
3191 unsigned Alignment
= std::max
<uint32_t>(TRI
.getSpillSize(*RC
), 16);
3192 bool isAligned
= !MMOs
.empty() && MMOs
.front()->getAlignment() >= Alignment
;
3193 unsigned Opc
= getLoadRegOpcode(DestReg
, RC
, isAligned
, Subtarget
);
3195 MachineInstrBuilder MIB
= BuildMI(MF
, DL
, get(Opc
), DestReg
);
3196 for (unsigned i
= 0, e
= Addr
.size(); i
!= e
; ++i
)
3198 MIB
.setMemRefs(MMOs
);
3199 NewMIs
.push_back(MIB
);
3202 bool X86InstrInfo::analyzeCompare(const MachineInstr
&MI
, unsigned &SrcReg
,
3203 unsigned &SrcReg2
, int &CmpMask
,
3204 int &CmpValue
) const {
3205 switch (MI
.getOpcode()) {
3207 case X86::CMP64ri32
:
3214 SrcReg
= MI
.getOperand(0).getReg();
3216 if (MI
.getOperand(1).isImm()) {
3218 CmpValue
= MI
.getOperand(1).getImm();
3220 CmpMask
= CmpValue
= 0;
3223 // A SUB can be used to perform comparison.
3228 SrcReg
= MI
.getOperand(1).getReg();
3237 SrcReg
= MI
.getOperand(1).getReg();
3238 SrcReg2
= MI
.getOperand(2).getReg();
3242 case X86::SUB64ri32
:
3249 SrcReg
= MI
.getOperand(1).getReg();
3251 if (MI
.getOperand(2).isImm()) {
3253 CmpValue
= MI
.getOperand(2).getImm();
3255 CmpMask
= CmpValue
= 0;
3262 SrcReg
= MI
.getOperand(0).getReg();
3263 SrcReg2
= MI
.getOperand(1).getReg();
3271 SrcReg
= MI
.getOperand(0).getReg();
3272 if (MI
.getOperand(1).getReg() != SrcReg
)
3274 // Compare against zero.
3283 /// Check whether the first instruction, whose only
3284 /// purpose is to update flags, can be made redundant.
3285 /// CMPrr can be made redundant by SUBrr if the operands are the same.
3286 /// This function can be extended later on.
3287 /// SrcReg, SrcRegs: register operands for FlagI.
3288 /// ImmValue: immediate for FlagI if it takes an immediate.
3289 inline static bool isRedundantFlagInstr(const MachineInstr
&FlagI
,
3290 unsigned SrcReg
, unsigned SrcReg2
,
3291 int ImmMask
, int ImmValue
,
3292 const MachineInstr
&OI
) {
3293 if (((FlagI
.getOpcode() == X86::CMP64rr
&& OI
.getOpcode() == X86::SUB64rr
) ||
3294 (FlagI
.getOpcode() == X86::CMP32rr
&& OI
.getOpcode() == X86::SUB32rr
) ||
3295 (FlagI
.getOpcode() == X86::CMP16rr
&& OI
.getOpcode() == X86::SUB16rr
) ||
3296 (FlagI
.getOpcode() == X86::CMP8rr
&& OI
.getOpcode() == X86::SUB8rr
)) &&
3297 ((OI
.getOperand(1).getReg() == SrcReg
&&
3298 OI
.getOperand(2).getReg() == SrcReg2
) ||
3299 (OI
.getOperand(1).getReg() == SrcReg2
&&
3300 OI
.getOperand(2).getReg() == SrcReg
)))
3304 ((FlagI
.getOpcode() == X86::CMP64ri32
&&
3305 OI
.getOpcode() == X86::SUB64ri32
) ||
3306 (FlagI
.getOpcode() == X86::CMP64ri8
&&
3307 OI
.getOpcode() == X86::SUB64ri8
) ||
3308 (FlagI
.getOpcode() == X86::CMP32ri
&& OI
.getOpcode() == X86::SUB32ri
) ||
3309 (FlagI
.getOpcode() == X86::CMP32ri8
&&
3310 OI
.getOpcode() == X86::SUB32ri8
) ||
3311 (FlagI
.getOpcode() == X86::CMP16ri
&& OI
.getOpcode() == X86::SUB16ri
) ||
3312 (FlagI
.getOpcode() == X86::CMP16ri8
&&
3313 OI
.getOpcode() == X86::SUB16ri8
) ||
3314 (FlagI
.getOpcode() == X86::CMP8ri
&& OI
.getOpcode() == X86::SUB8ri
)) &&
3315 OI
.getOperand(1).getReg() == SrcReg
&&
3316 OI
.getOperand(2).getImm() == ImmValue
)
3321 /// Check whether the definition can be converted
3322 /// to remove a comparison against zero.
3323 inline static bool isDefConvertible(const MachineInstr
&MI
, bool &NoSignFlag
) {
3326 switch (MI
.getOpcode()) {
3327 default: return false;
3329 // The shift instructions only modify ZF if their shift count is non-zero.
3330 // N.B.: The processor truncates the shift count depending on the encoding.
3331 case X86::SAR8ri
: case X86::SAR16ri
: case X86::SAR32ri
:case X86::SAR64ri
:
3332 case X86::SHR8ri
: case X86::SHR16ri
: case X86::SHR32ri
:case X86::SHR64ri
:
3333 return getTruncatedShiftCount(MI
, 2) != 0;
3335 // Some left shift instructions can be turned into LEA instructions but only
3336 // if their flags aren't used. Avoid transforming such instructions.
3337 case X86::SHL8ri
: case X86::SHL16ri
: case X86::SHL32ri
:case X86::SHL64ri
:{
3338 unsigned ShAmt
= getTruncatedShiftCount(MI
, 2);
3339 if (isTruncatedShiftCountForLEA(ShAmt
)) return false;
3343 case X86::SHRD16rri8
:case X86::SHRD32rri8
:case X86::SHRD64rri8
:
3344 case X86::SHLD16rri8
:case X86::SHLD32rri8
:case X86::SHLD64rri8
:
3345 return getTruncatedShiftCount(MI
, 3) != 0;
3347 case X86::SUB64ri32
: case X86::SUB64ri8
: case X86::SUB32ri
:
3348 case X86::SUB32ri8
: case X86::SUB16ri
: case X86::SUB16ri8
:
3349 case X86::SUB8ri
: case X86::SUB64rr
: case X86::SUB32rr
:
3350 case X86::SUB16rr
: case X86::SUB8rr
: case X86::SUB64rm
:
3351 case X86::SUB32rm
: case X86::SUB16rm
: case X86::SUB8rm
:
3352 case X86::DEC64r
: case X86::DEC32r
: case X86::DEC16r
: case X86::DEC8r
:
3353 case X86::ADD64ri32
: case X86::ADD64ri8
: case X86::ADD32ri
:
3354 case X86::ADD32ri8
: case X86::ADD16ri
: case X86::ADD16ri8
:
3355 case X86::ADD8ri
: case X86::ADD64rr
: case X86::ADD32rr
:
3356 case X86::ADD16rr
: case X86::ADD8rr
: case X86::ADD64rm
:
3357 case X86::ADD32rm
: case X86::ADD16rm
: case X86::ADD8rm
:
3358 case X86::INC64r
: case X86::INC32r
: case X86::INC16r
: case X86::INC8r
:
3359 case X86::AND64ri32
: case X86::AND64ri8
: case X86::AND32ri
:
3360 case X86::AND32ri8
: case X86::AND16ri
: case X86::AND16ri8
:
3361 case X86::AND8ri
: case X86::AND64rr
: case X86::AND32rr
:
3362 case X86::AND16rr
: case X86::AND8rr
: case X86::AND64rm
:
3363 case X86::AND32rm
: case X86::AND16rm
: case X86::AND8rm
:
3364 case X86::XOR64ri32
: case X86::XOR64ri8
: case X86::XOR32ri
:
3365 case X86::XOR32ri8
: case X86::XOR16ri
: case X86::XOR16ri8
:
3366 case X86::XOR8ri
: case X86::XOR64rr
: case X86::XOR32rr
:
3367 case X86::XOR16rr
: case X86::XOR8rr
: case X86::XOR64rm
:
3368 case X86::XOR32rm
: case X86::XOR16rm
: case X86::XOR8rm
:
3369 case X86::OR64ri32
: case X86::OR64ri8
: case X86::OR32ri
:
3370 case X86::OR32ri8
: case X86::OR16ri
: case X86::OR16ri8
:
3371 case X86::OR8ri
: case X86::OR64rr
: case X86::OR32rr
:
3372 case X86::OR16rr
: case X86::OR8rr
: case X86::OR64rm
:
3373 case X86::OR32rm
: case X86::OR16rm
: case X86::OR8rm
:
3374 case X86::ADC64ri32
: case X86::ADC64ri8
: case X86::ADC32ri
:
3375 case X86::ADC32ri8
: case X86::ADC16ri
: case X86::ADC16ri8
:
3376 case X86::ADC8ri
: case X86::ADC64rr
: case X86::ADC32rr
:
3377 case X86::ADC16rr
: case X86::ADC8rr
: case X86::ADC64rm
:
3378 case X86::ADC32rm
: case X86::ADC16rm
: case X86::ADC8rm
:
3379 case X86::SBB64ri32
: case X86::SBB64ri8
: case X86::SBB32ri
:
3380 case X86::SBB32ri8
: case X86::SBB16ri
: case X86::SBB16ri8
:
3381 case X86::SBB8ri
: case X86::SBB64rr
: case X86::SBB32rr
:
3382 case X86::SBB16rr
: case X86::SBB8rr
: case X86::SBB64rm
:
3383 case X86::SBB32rm
: case X86::SBB16rm
: case X86::SBB8rm
:
3384 case X86::NEG8r
: case X86::NEG16r
: case X86::NEG32r
: case X86::NEG64r
:
3385 case X86::SAR8r1
: case X86::SAR16r1
: case X86::SAR32r1
:case X86::SAR64r1
:
3386 case X86::SHR8r1
: case X86::SHR16r1
: case X86::SHR32r1
:case X86::SHR64r1
:
3387 case X86::SHL8r1
: case X86::SHL16r1
: case X86::SHL32r1
:case X86::SHL64r1
:
3388 case X86::ANDN32rr
: case X86::ANDN32rm
:
3389 case X86::ANDN64rr
: case X86::ANDN64rm
:
3390 case X86::BLSI32rr
: case X86::BLSI32rm
:
3391 case X86::BLSI64rr
: case X86::BLSI64rm
:
3392 case X86::BLSMSK32rr
:case X86::BLSMSK32rm
:
3393 case X86::BLSMSK64rr
:case X86::BLSMSK64rm
:
3394 case X86::BLSR32rr
: case X86::BLSR32rm
:
3395 case X86::BLSR64rr
: case X86::BLSR64rm
:
3396 case X86::BZHI32rr
: case X86::BZHI32rm
:
3397 case X86::BZHI64rr
: case X86::BZHI64rm
:
3398 case X86::LZCNT16rr
: case X86::LZCNT16rm
:
3399 case X86::LZCNT32rr
: case X86::LZCNT32rm
:
3400 case X86::LZCNT64rr
: case X86::LZCNT64rm
:
3401 case X86::POPCNT16rr
:case X86::POPCNT16rm
:
3402 case X86::POPCNT32rr
:case X86::POPCNT32rm
:
3403 case X86::POPCNT64rr
:case X86::POPCNT64rm
:
3404 case X86::TZCNT16rr
: case X86::TZCNT16rm
:
3405 case X86::TZCNT32rr
: case X86::TZCNT32rm
:
3406 case X86::TZCNT64rr
: case X86::TZCNT64rm
:
3407 case X86::BLCFILL32rr
: case X86::BLCFILL32rm
:
3408 case X86::BLCFILL64rr
: case X86::BLCFILL64rm
:
3409 case X86::BLCI32rr
: case X86::BLCI32rm
:
3410 case X86::BLCI64rr
: case X86::BLCI64rm
:
3411 case X86::BLCIC32rr
: case X86::BLCIC32rm
:
3412 case X86::BLCIC64rr
: case X86::BLCIC64rm
:
3413 case X86::BLCMSK32rr
: case X86::BLCMSK32rm
:
3414 case X86::BLCMSK64rr
: case X86::BLCMSK64rm
:
3415 case X86::BLCS32rr
: case X86::BLCS32rm
:
3416 case X86::BLCS64rr
: case X86::BLCS64rm
:
3417 case X86::BLSFILL32rr
: case X86::BLSFILL32rm
:
3418 case X86::BLSFILL64rr
: case X86::BLSFILL64rm
:
3419 case X86::BLSIC32rr
: case X86::BLSIC32rm
:
3420 case X86::BLSIC64rr
: case X86::BLSIC64rm
:
3421 case X86::T1MSKC32rr
: case X86::T1MSKC32rm
:
3422 case X86::T1MSKC64rr
: case X86::T1MSKC64rm
:
3423 case X86::TZMSK32rr
: case X86::TZMSK32rm
:
3424 case X86::TZMSK64rr
: case X86::TZMSK64rm
:
3426 case X86::BEXTR32rr
: case X86::BEXTR64rr
:
3427 case X86::BEXTR32rm
: case X86::BEXTR64rm
:
3428 case X86::BEXTRI32ri
: case X86::BEXTRI32mi
:
3429 case X86::BEXTRI64ri
: case X86::BEXTRI64mi
:
3430 // BEXTR doesn't update the sign flag so we can't use it.
3436 /// Check whether the use can be converted to remove a comparison against zero.
3437 static X86::CondCode
isUseDefConvertible(const MachineInstr
&MI
) {
3438 switch (MI
.getOpcode()) {
3439 default: return X86::COND_INVALID
;
3444 return X86::COND_AE
;
3445 case X86::LZCNT16rr
:
3446 case X86::LZCNT32rr
:
3447 case X86::LZCNT64rr
:
3449 case X86::POPCNT16rr
:
3450 case X86::POPCNT32rr
:
3451 case X86::POPCNT64rr
:
3453 case X86::TZCNT16rr
:
3454 case X86::TZCNT32rr
:
3455 case X86::TZCNT64rr
:
3466 return X86::COND_AE
;
3469 case X86::BLSMSK32rr
:
3470 case X86::BLSMSK64rr
:
3472 // TODO: TBM instructions.
3476 /// Check if there exists an earlier instruction that
3477 /// operates on the same source operands and sets flags in the same way as
3478 /// Compare; remove Compare if possible.
3479 bool X86InstrInfo::optimizeCompareInstr(MachineInstr
&CmpInstr
, unsigned SrcReg
,
3480 unsigned SrcReg2
, int CmpMask
,
3482 const MachineRegisterInfo
*MRI
) const {
3483 // Check whether we can replace SUB with CMP.
3484 switch (CmpInstr
.getOpcode()) {
3486 case X86::SUB64ri32
:
3501 if (!MRI
->use_nodbg_empty(CmpInstr
.getOperand(0).getReg()))
3503 // There is no use of the destination register, we can replace SUB with CMP.
3504 unsigned NewOpcode
= 0;
3505 switch (CmpInstr
.getOpcode()) {
3506 default: llvm_unreachable("Unreachable!");
3507 case X86::SUB64rm
: NewOpcode
= X86::CMP64rm
; break;
3508 case X86::SUB32rm
: NewOpcode
= X86::CMP32rm
; break;
3509 case X86::SUB16rm
: NewOpcode
= X86::CMP16rm
; break;
3510 case X86::SUB8rm
: NewOpcode
= X86::CMP8rm
; break;
3511 case X86::SUB64rr
: NewOpcode
= X86::CMP64rr
; break;
3512 case X86::SUB32rr
: NewOpcode
= X86::CMP32rr
; break;
3513 case X86::SUB16rr
: NewOpcode
= X86::CMP16rr
; break;
3514 case X86::SUB8rr
: NewOpcode
= X86::CMP8rr
; break;
3515 case X86::SUB64ri32
: NewOpcode
= X86::CMP64ri32
; break;
3516 case X86::SUB64ri8
: NewOpcode
= X86::CMP64ri8
; break;
3517 case X86::SUB32ri
: NewOpcode
= X86::CMP32ri
; break;
3518 case X86::SUB32ri8
: NewOpcode
= X86::CMP32ri8
; break;
3519 case X86::SUB16ri
: NewOpcode
= X86::CMP16ri
; break;
3520 case X86::SUB16ri8
: NewOpcode
= X86::CMP16ri8
; break;
3521 case X86::SUB8ri
: NewOpcode
= X86::CMP8ri
; break;
3523 CmpInstr
.setDesc(get(NewOpcode
));
3524 CmpInstr
.RemoveOperand(0);
3525 // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
3526 if (NewOpcode
== X86::CMP64rm
|| NewOpcode
== X86::CMP32rm
||
3527 NewOpcode
== X86::CMP16rm
|| NewOpcode
== X86::CMP8rm
)
3532 // Get the unique definition of SrcReg.
3533 MachineInstr
*MI
= MRI
->getUniqueVRegDef(SrcReg
);
3534 if (!MI
) return false;
3536 // CmpInstr is the first instruction of the BB.
3537 MachineBasicBlock::iterator I
= CmpInstr
, Def
= MI
;
3539 // If we are comparing against zero, check whether we can use MI to update
3540 // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
3541 bool IsCmpZero
= (CmpMask
!= 0 && CmpValue
== 0);
3542 if (IsCmpZero
&& MI
->getParent() != CmpInstr
.getParent())
3545 // If we have a use of the source register between the def and our compare
3546 // instruction we can eliminate the compare iff the use sets EFLAGS in the
3548 bool ShouldUpdateCC
= false;
3549 bool NoSignFlag
= false;
3550 X86::CondCode NewCC
= X86::COND_INVALID
;
3551 if (IsCmpZero
&& !isDefConvertible(*MI
, NoSignFlag
)) {
3552 // Scan forward from the use until we hit the use we're looking for or the
3553 // compare instruction.
3554 for (MachineBasicBlock::iterator J
= MI
;; ++J
) {
3555 // Do we have a convertible instruction?
3556 NewCC
= isUseDefConvertible(*J
);
3557 if (NewCC
!= X86::COND_INVALID
&& J
->getOperand(1).isReg() &&
3558 J
->getOperand(1).getReg() == SrcReg
) {
3559 assert(J
->definesRegister(X86::EFLAGS
) && "Must be an EFLAGS def!");
3560 ShouldUpdateCC
= true; // Update CC later on.
3561 // This is not a def of SrcReg, but still a def of EFLAGS. Keep going
3562 // with the new def.
3573 // We are searching for an earlier instruction that can make CmpInstr
3574 // redundant and that instruction will be saved in Sub.
3575 MachineInstr
*Sub
= nullptr;
3576 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
3578 // We iterate backward, starting from the instruction before CmpInstr and
3579 // stop when reaching the definition of a source register or done with the BB.
3580 // RI points to the instruction before CmpInstr.
3581 // If the definition is in this basic block, RE points to the definition;
3582 // otherwise, RE is the rend of the basic block.
3583 MachineBasicBlock::reverse_iterator
3584 RI
= ++I
.getReverse(),
3585 RE
= CmpInstr
.getParent() == MI
->getParent()
3586 ? Def
.getReverse() /* points to MI */
3587 : CmpInstr
.getParent()->rend();
3588 MachineInstr
*Movr0Inst
= nullptr;
3589 for (; RI
!= RE
; ++RI
) {
3590 MachineInstr
&Instr
= *RI
;
3591 // Check whether CmpInstr can be made redundant by the current instruction.
3592 if (!IsCmpZero
&& isRedundantFlagInstr(CmpInstr
, SrcReg
, SrcReg2
, CmpMask
,
3598 if (Instr
.modifiesRegister(X86::EFLAGS
, TRI
) ||
3599 Instr
.readsRegister(X86::EFLAGS
, TRI
)) {
3600 // This instruction modifies or uses EFLAGS.
3602 // MOV32r0 etc. are implemented with xor which clobbers condition code.
3603 // They are safe to move up, if the definition to EFLAGS is dead and
3604 // earlier instructions do not read or write EFLAGS.
3605 if (!Movr0Inst
&& Instr
.getOpcode() == X86::MOV32r0
&&
3606 Instr
.registerDefIsDead(X86::EFLAGS
, TRI
)) {
3611 // We can't remove CmpInstr.
3616 // Return false if no candidates exist.
3617 if (!IsCmpZero
&& !Sub
)
3620 bool IsSwapped
= (SrcReg2
!= 0 && Sub
->getOperand(1).getReg() == SrcReg2
&&
3621 Sub
->getOperand(2).getReg() == SrcReg
);
3623 // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
3624 // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
3625 // If we are done with the basic block, we need to check whether EFLAGS is
3627 bool IsSafe
= false;
3628 SmallVector
<std::pair
<MachineInstr
*, X86::CondCode
>, 4> OpsToUpdate
;
3629 MachineBasicBlock::iterator E
= CmpInstr
.getParent()->end();
3630 for (++I
; I
!= E
; ++I
) {
3631 const MachineInstr
&Instr
= *I
;
3632 bool ModifyEFLAGS
= Instr
.modifiesRegister(X86::EFLAGS
, TRI
);
3633 bool UseEFLAGS
= Instr
.readsRegister(X86::EFLAGS
, TRI
);
3634 // We should check the usage if this instruction uses and updates EFLAGS.
3635 if (!UseEFLAGS
&& ModifyEFLAGS
) {
3636 // It is safe to remove CmpInstr if EFLAGS is updated again.
3640 if (!UseEFLAGS
&& !ModifyEFLAGS
)
3643 // EFLAGS is used by this instruction.
3644 X86::CondCode OldCC
= X86::COND_INVALID
;
3645 if (IsCmpZero
|| IsSwapped
) {
3646 // We decode the condition code from opcode.
3647 if (Instr
.isBranch())
3648 OldCC
= X86::getCondFromBranch(Instr
);
3650 OldCC
= X86::getCondFromSETCC(Instr
);
3651 if (OldCC
== X86::COND_INVALID
)
3652 OldCC
= X86::getCondFromCMov(Instr
);
3654 if (OldCC
== X86::COND_INVALID
) return false;
3656 X86::CondCode ReplacementCC
= X86::COND_INVALID
;
3660 case X86::COND_A
: case X86::COND_AE
:
3661 case X86::COND_B
: case X86::COND_BE
:
3662 case X86::COND_G
: case X86::COND_GE
:
3663 case X86::COND_L
: case X86::COND_LE
:
3664 case X86::COND_O
: case X86::COND_NO
:
3665 // CF and OF are used, we can't perform this optimization.
3667 case X86::COND_S
: case X86::COND_NS
:
3668 // If SF is used, but the instruction doesn't update the SF, then we
3669 // can't do the optimization.
3675 // If we're updating the condition code check if we have to reverse the
3682 ReplacementCC
= NewCC
;
3685 ReplacementCC
= GetOppositeBranchCondition(NewCC
);
3688 } else if (IsSwapped
) {
3689 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
3690 // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3691 // We swap the condition code and synthesize the new opcode.
3692 ReplacementCC
= getSwappedCondition(OldCC
);
3693 if (ReplacementCC
== X86::COND_INVALID
) return false;
3696 if ((ShouldUpdateCC
|| IsSwapped
) && ReplacementCC
!= OldCC
) {
3697 // Push the MachineInstr to OpsToUpdate.
3698 // If it is safe to remove CmpInstr, the condition code of these
3699 // instructions will be modified.
3700 OpsToUpdate
.push_back(std::make_pair(&*I
, ReplacementCC
));
3702 if (ModifyEFLAGS
|| Instr
.killsRegister(X86::EFLAGS
, TRI
)) {
3703 // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
3709 // If EFLAGS is not killed nor re-defined, we should check whether it is
3710 // live-out. If it is live-out, do not optimize.
3711 if ((IsCmpZero
|| IsSwapped
) && !IsSafe
) {
3712 MachineBasicBlock
*MBB
= CmpInstr
.getParent();
3713 for (MachineBasicBlock
*Successor
: MBB
->successors())
3714 if (Successor
->isLiveIn(X86::EFLAGS
))
3718 // The instruction to be updated is either Sub or MI.
3719 Sub
= IsCmpZero
? MI
: Sub
;
3720 // Move Movr0Inst to the appropriate place before Sub.
3722 // Look backwards until we find a def that doesn't use the current EFLAGS.
3724 MachineBasicBlock::reverse_iterator InsertI
= Def
.getReverse(),
3725 InsertE
= Sub
->getParent()->rend();
3726 for (; InsertI
!= InsertE
; ++InsertI
) {
3727 MachineInstr
*Instr
= &*InsertI
;
3728 if (!Instr
->readsRegister(X86::EFLAGS
, TRI
) &&
3729 Instr
->modifiesRegister(X86::EFLAGS
, TRI
)) {
3730 Sub
->getParent()->remove(Movr0Inst
);
3731 Instr
->getParent()->insert(MachineBasicBlock::iterator(Instr
),
3736 if (InsertI
== InsertE
)
3740 // Make sure Sub instruction defines EFLAGS and mark the def live.
3741 MachineOperand
*FlagDef
= Sub
->findRegisterDefOperand(X86::EFLAGS
);
3742 assert(FlagDef
&& "Unable to locate a def EFLAGS operand");
3743 FlagDef
->setIsDead(false);
3745 CmpInstr
.eraseFromParent();
3747 // Modify the condition code of instructions in OpsToUpdate.
3748 for (auto &Op
: OpsToUpdate
) {
3749 Op
.first
->getOperand(Op
.first
->getDesc().getNumOperands() - 1)
3755 /// Try to remove the load by folding it to a register
3756 /// operand at the use. We fold the load instructions if load defines a virtual
3757 /// register, the virtual register is used once in the same BB, and the
3758 /// instructions in-between do not load or store, and have no side effects.
3759 MachineInstr
*X86InstrInfo::optimizeLoadInstr(MachineInstr
&MI
,
3760 const MachineRegisterInfo
*MRI
,
3761 unsigned &FoldAsLoadDefReg
,
3762 MachineInstr
*&DefMI
) const {
3763 // Check whether we can move DefMI here.
3764 DefMI
= MRI
->getVRegDef(FoldAsLoadDefReg
);
3766 bool SawStore
= false;
3767 if (!DefMI
->isSafeToMove(nullptr, SawStore
))
3770 // Collect information about virtual register operands of MI.
3771 SmallVector
<unsigned, 1> SrcOperandIds
;
3772 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
3773 MachineOperand
&MO
= MI
.getOperand(i
);
3776 Register Reg
= MO
.getReg();
3777 if (Reg
!= FoldAsLoadDefReg
)
3779 // Do not fold if we have a subreg use or a def.
3780 if (MO
.getSubReg() || MO
.isDef())
3782 SrcOperandIds
.push_back(i
);
3784 if (SrcOperandIds
.empty())
3787 // Check whether we can fold the def into SrcOperandId.
3788 if (MachineInstr
*FoldMI
= foldMemoryOperand(MI
, SrcOperandIds
, *DefMI
)) {
3789 FoldAsLoadDefReg
= 0;
3796 /// Expand a single-def pseudo instruction to a two-addr
3797 /// instruction with two undef reads of the register being defined.
3798 /// This is used for mapping:
3801 /// %xmm4 = PXORrr undef %xmm4, undef %xmm4
3803 static bool Expand2AddrUndef(MachineInstrBuilder
&MIB
,
3804 const MCInstrDesc
&Desc
) {
3805 assert(Desc
.getNumOperands() == 3 && "Expected two-addr instruction.");
3806 Register Reg
= MIB
->getOperand(0).getReg();
3809 // MachineInstr::addOperand() will insert explicit operands before any
3810 // implicit operands.
3811 MIB
.addReg(Reg
, RegState::Undef
).addReg(Reg
, RegState::Undef
);
3812 // But we don't trust that.
3813 assert(MIB
->getOperand(1).getReg() == Reg
&&
3814 MIB
->getOperand(2).getReg() == Reg
&& "Misplaced operand");
3818 /// Expand a single-def pseudo instruction to a two-addr
3819 /// instruction with two %k0 reads.
3820 /// This is used for mapping:
3823 /// %k4 = KXNORrr %k0, %k0
3824 static bool Expand2AddrKreg(MachineInstrBuilder
&MIB
,
3825 const MCInstrDesc
&Desc
, unsigned Reg
) {
3826 assert(Desc
.getNumOperands() == 3 && "Expected two-addr instruction.");
3828 MIB
.addReg(Reg
, RegState::Undef
).addReg(Reg
, RegState::Undef
);
3832 static bool expandMOV32r1(MachineInstrBuilder
&MIB
, const TargetInstrInfo
&TII
,
3834 MachineBasicBlock
&MBB
= *MIB
->getParent();
3835 DebugLoc DL
= MIB
->getDebugLoc();
3836 Register Reg
= MIB
->getOperand(0).getReg();
3839 BuildMI(MBB
, MIB
.getInstr(), DL
, TII
.get(X86::XOR32rr
), Reg
)
3840 .addReg(Reg
, RegState::Undef
)
3841 .addReg(Reg
, RegState::Undef
);
3843 // Turn the pseudo into an INC or DEC.
3844 MIB
->setDesc(TII
.get(MinusOne
? X86::DEC32r
: X86::INC32r
));
3850 static bool ExpandMOVImmSExti8(MachineInstrBuilder
&MIB
,
3851 const TargetInstrInfo
&TII
,
3852 const X86Subtarget
&Subtarget
) {
3853 MachineBasicBlock
&MBB
= *MIB
->getParent();
3854 DebugLoc DL
= MIB
->getDebugLoc();
3855 int64_t Imm
= MIB
->getOperand(1).getImm();
3856 assert(Imm
!= 0 && "Using push/pop for 0 is not efficient.");
3857 MachineBasicBlock::iterator I
= MIB
.getInstr();
3859 int StackAdjustment
;
3861 if (Subtarget
.is64Bit()) {
3862 assert(MIB
->getOpcode() == X86::MOV64ImmSExti8
||
3863 MIB
->getOpcode() == X86::MOV32ImmSExti8
);
3865 // Can't use push/pop lowering if the function might write to the red zone.
3866 X86MachineFunctionInfo
*X86FI
=
3867 MBB
.getParent()->getInfo
<X86MachineFunctionInfo
>();
3868 if (X86FI
->getUsesRedZone()) {
3869 MIB
->setDesc(TII
.get(MIB
->getOpcode() ==
3870 X86::MOV32ImmSExti8
? X86::MOV32ri
: X86::MOV64ri
));
3874 // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and
3875 // widen the register if necessary.
3876 StackAdjustment
= 8;
3877 BuildMI(MBB
, I
, DL
, TII
.get(X86::PUSH64i8
)).addImm(Imm
);
3878 MIB
->setDesc(TII
.get(X86::POP64r
));
3880 .setReg(getX86SubSuperRegister(MIB
->getOperand(0).getReg(), 64));
3882 assert(MIB
->getOpcode() == X86::MOV32ImmSExti8
);
3883 StackAdjustment
= 4;
3884 BuildMI(MBB
, I
, DL
, TII
.get(X86::PUSH32i8
)).addImm(Imm
);
3885 MIB
->setDesc(TII
.get(X86::POP32r
));
3888 // Build CFI if necessary.
3889 MachineFunction
&MF
= *MBB
.getParent();
3890 const X86FrameLowering
*TFL
= Subtarget
.getFrameLowering();
3891 bool IsWin64Prologue
= MF
.getTarget().getMCAsmInfo()->usesWindowsCFI();
3892 bool NeedsDwarfCFI
=
3894 (MF
.getMMI().hasDebugInfo() || MF
.getFunction().needsUnwindTableEntry());
3895 bool EmitCFI
= !TFL
->hasFP(MF
) && NeedsDwarfCFI
;
3897 TFL
->BuildCFI(MBB
, I
, DL
,
3898 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment
));
3899 TFL
->BuildCFI(MBB
, std::next(I
), DL
,
3900 MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment
));
3906 // LoadStackGuard has so far only been implemented for 64-bit MachO. Different
3907 // code sequence is needed for other targets.
3908 static void expandLoadStackGuard(MachineInstrBuilder
&MIB
,
3909 const TargetInstrInfo
&TII
) {
3910 MachineBasicBlock
&MBB
= *MIB
->getParent();
3911 DebugLoc DL
= MIB
->getDebugLoc();
3912 Register Reg
= MIB
->getOperand(0).getReg();
3913 const GlobalValue
*GV
=
3914 cast
<GlobalValue
>((*MIB
->memoperands_begin())->getValue());
3915 auto Flags
= MachineMemOperand::MOLoad
|
3916 MachineMemOperand::MODereferenceable
|
3917 MachineMemOperand::MOInvariant
;
3918 MachineMemOperand
*MMO
= MBB
.getParent()->getMachineMemOperand(
3919 MachinePointerInfo::getGOT(*MBB
.getParent()), Flags
, 8, 8);
3920 MachineBasicBlock::iterator I
= MIB
.getInstr();
3922 BuildMI(MBB
, I
, DL
, TII
.get(X86::MOV64rm
), Reg
).addReg(X86::RIP
).addImm(1)
3923 .addReg(0).addGlobalAddress(GV
, 0, X86II::MO_GOTPCREL
).addReg(0)
3924 .addMemOperand(MMO
);
3925 MIB
->setDebugLoc(DL
);
3926 MIB
->setDesc(TII
.get(X86::MOV64rm
));
3927 MIB
.addReg(Reg
, RegState::Kill
).addImm(1).addReg(0).addImm(0).addReg(0);
3930 static bool expandXorFP(MachineInstrBuilder
&MIB
, const TargetInstrInfo
&TII
) {
3931 MachineBasicBlock
&MBB
= *MIB
->getParent();
3932 MachineFunction
&MF
= *MBB
.getParent();
3933 const X86Subtarget
&Subtarget
= MF
.getSubtarget
<X86Subtarget
>();
3934 const X86RegisterInfo
*TRI
= Subtarget
.getRegisterInfo();
3936 MIB
->getOpcode() == X86::XOR64_FP
? X86::XOR64rr
: X86::XOR32rr
;
3937 MIB
->setDesc(TII
.get(XorOp
));
3938 MIB
.addReg(TRI
->getFrameRegister(MF
), RegState::Undef
);
3942 // This is used to handle spills for 128/256-bit registers when we have AVX512,
3943 // but not VLX. If it uses an extended register we need to use an instruction
3944 // that loads the lower 128/256-bit, but is available with only AVX512F.
3945 static bool expandNOVLXLoad(MachineInstrBuilder
&MIB
,
3946 const TargetRegisterInfo
*TRI
,
3947 const MCInstrDesc
&LoadDesc
,
3948 const MCInstrDesc
&BroadcastDesc
,
3950 Register DestReg
= MIB
->getOperand(0).getReg();
3951 // Check if DestReg is XMM16-31 or YMM16-31.
3952 if (TRI
->getEncodingValue(DestReg
) < 16) {
3953 // We can use a normal VEX encoded load.
3954 MIB
->setDesc(LoadDesc
);
3956 // Use a 128/256-bit VBROADCAST instruction.
3957 MIB
->setDesc(BroadcastDesc
);
3958 // Change the destination to a 512-bit register.
3959 DestReg
= TRI
->getMatchingSuperReg(DestReg
, SubIdx
, &X86::VR512RegClass
);
3960 MIB
->getOperand(0).setReg(DestReg
);
3965 // This is used to handle spills for 128/256-bit registers when we have AVX512,
3966 // but not VLX. If it uses an extended register we need to use an instruction
3967 // that stores the lower 128/256-bit, but is available with only AVX512F.
3968 static bool expandNOVLXStore(MachineInstrBuilder
&MIB
,
3969 const TargetRegisterInfo
*TRI
,
3970 const MCInstrDesc
&StoreDesc
,
3971 const MCInstrDesc
&ExtractDesc
,
3973 Register SrcReg
= MIB
->getOperand(X86::AddrNumOperands
).getReg();
3974 // Check if DestReg is XMM16-31 or YMM16-31.
3975 if (TRI
->getEncodingValue(SrcReg
) < 16) {
3976 // We can use a normal VEX encoded store.
3977 MIB
->setDesc(StoreDesc
);
3979 // Use a VEXTRACTF instruction.
3980 MIB
->setDesc(ExtractDesc
);
3981 // Change the destination to a 512-bit register.
3982 SrcReg
= TRI
->getMatchingSuperReg(SrcReg
, SubIdx
, &X86::VR512RegClass
);
3983 MIB
->getOperand(X86::AddrNumOperands
).setReg(SrcReg
);
3984 MIB
.addImm(0x0); // Append immediate to extract from the lower bits.
3990 static bool expandSHXDROT(MachineInstrBuilder
&MIB
, const MCInstrDesc
&Desc
) {
3992 int64_t ShiftAmt
= MIB
->getOperand(2).getImm();
3993 // Temporarily remove the immediate so we can add another source register.
3994 MIB
->RemoveOperand(2);
3995 // Add the register. Don't copy the kill flag if there is one.
3996 MIB
.addReg(MIB
->getOperand(1).getReg(),
3997 getUndefRegState(MIB
->getOperand(1).isUndef()));
3998 // Add back the immediate.
3999 MIB
.addImm(ShiftAmt
);
4003 bool X86InstrInfo::expandPostRAPseudo(MachineInstr
&MI
) const {
4004 bool HasAVX
= Subtarget
.hasAVX();
4005 MachineInstrBuilder
MIB(*MI
.getParent()->getParent(), MI
);
4006 switch (MI
.getOpcode()) {
4008 return Expand2AddrUndef(MIB
, get(X86::XOR32rr
));
4010 return expandMOV32r1(MIB
, *this, /*MinusOne=*/ false);
4012 return expandMOV32r1(MIB
, *this, /*MinusOne=*/ true);
4013 case X86::MOV32ImmSExti8
:
4014 case X86::MOV64ImmSExti8
:
4015 return ExpandMOVImmSExti8(MIB
, *this, Subtarget
);
4017 return Expand2AddrUndef(MIB
, get(X86::SBB8rr
));
4018 case X86::SETB_C16r
:
4019 return Expand2AddrUndef(MIB
, get(X86::SBB16rr
));
4020 case X86::SETB_C32r
:
4021 return Expand2AddrUndef(MIB
, get(X86::SBB32rr
));
4022 case X86::SETB_C64r
:
4023 return Expand2AddrUndef(MIB
, get(X86::SBB64rr
));
4025 return Expand2AddrUndef(MIB
, get(X86::MMX_PXORirr
));
4029 return Expand2AddrUndef(MIB
, get(HasAVX
? X86::VXORPSrr
: X86::XORPSrr
));
4030 case X86::AVX_SET0
: {
4031 assert(HasAVX
&& "AVX not supported");
4032 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
4033 Register SrcReg
= MIB
->getOperand(0).getReg();
4034 Register XReg
= TRI
->getSubReg(SrcReg
, X86::sub_xmm
);
4035 MIB
->getOperand(0).setReg(XReg
);
4036 Expand2AddrUndef(MIB
, get(X86::VXORPSrr
));
4037 MIB
.addReg(SrcReg
, RegState::ImplicitDefine
);
4040 case X86::AVX512_128_SET0
:
4041 case X86::AVX512_FsFLD0SS
:
4042 case X86::AVX512_FsFLD0SD
: {
4043 bool HasVLX
= Subtarget
.hasVLX();
4044 Register SrcReg
= MIB
->getOperand(0).getReg();
4045 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
4046 if (HasVLX
|| TRI
->getEncodingValue(SrcReg
) < 16)
4047 return Expand2AddrUndef(MIB
,
4048 get(HasVLX
? X86::VPXORDZ128rr
: X86::VXORPSrr
));
4049 // Extended register without VLX. Use a larger XOR.
4051 TRI
->getMatchingSuperReg(SrcReg
, X86::sub_xmm
, &X86::VR512RegClass
);
4052 MIB
->getOperand(0).setReg(SrcReg
);
4053 return Expand2AddrUndef(MIB
, get(X86::VPXORDZrr
));
4055 case X86::AVX512_256_SET0
:
4056 case X86::AVX512_512_SET0
: {
4057 bool HasVLX
= Subtarget
.hasVLX();
4058 Register SrcReg
= MIB
->getOperand(0).getReg();
4059 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
4060 if (HasVLX
|| TRI
->getEncodingValue(SrcReg
) < 16) {
4061 Register XReg
= TRI
->getSubReg(SrcReg
, X86::sub_xmm
);
4062 MIB
->getOperand(0).setReg(XReg
);
4063 Expand2AddrUndef(MIB
,
4064 get(HasVLX
? X86::VPXORDZ128rr
: X86::VXORPSrr
));
4065 MIB
.addReg(SrcReg
, RegState::ImplicitDefine
);
4068 if (MI
.getOpcode() == X86::AVX512_256_SET0
) {
4069 // No VLX so we must reference a zmm.
4071 TRI
->getMatchingSuperReg(SrcReg
, X86::sub_ymm
, &X86::VR512RegClass
);
4072 MIB
->getOperand(0).setReg(ZReg
);
4074 return Expand2AddrUndef(MIB
, get(X86::VPXORDZrr
));
4076 case X86::V_SETALLONES
:
4077 return Expand2AddrUndef(MIB
, get(HasAVX
? X86::VPCMPEQDrr
: X86::PCMPEQDrr
));
4078 case X86::AVX2_SETALLONES
:
4079 return Expand2AddrUndef(MIB
, get(X86::VPCMPEQDYrr
));
4080 case X86::AVX1_SETALLONES
: {
4081 Register Reg
= MIB
->getOperand(0).getReg();
4082 // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS.
4083 MIB
->setDesc(get(X86::VCMPPSYrri
));
4084 MIB
.addReg(Reg
, RegState::Undef
).addReg(Reg
, RegState::Undef
).addImm(0xf);
4087 case X86::AVX512_512_SETALLONES
: {
4088 Register Reg
= MIB
->getOperand(0).getReg();
4089 MIB
->setDesc(get(X86::VPTERNLOGDZrri
));
4090 // VPTERNLOGD needs 3 register inputs and an immediate.
4091 // 0xff will return 1s for any input.
4092 MIB
.addReg(Reg
, RegState::Undef
).addReg(Reg
, RegState::Undef
)
4093 .addReg(Reg
, RegState::Undef
).addImm(0xff);
4096 case X86::AVX512_512_SEXT_MASK_32
:
4097 case X86::AVX512_512_SEXT_MASK_64
: {
4098 Register Reg
= MIB
->getOperand(0).getReg();
4099 Register MaskReg
= MIB
->getOperand(1).getReg();
4100 unsigned MaskState
= getRegState(MIB
->getOperand(1));
4101 unsigned Opc
= (MI
.getOpcode() == X86::AVX512_512_SEXT_MASK_64
) ?
4102 X86::VPTERNLOGQZrrikz
: X86::VPTERNLOGDZrrikz
;
4103 MI
.RemoveOperand(1);
4104 MIB
->setDesc(get(Opc
));
4105 // VPTERNLOG needs 3 register inputs and an immediate.
4106 // 0xff will return 1s for any input.
4107 MIB
.addReg(Reg
, RegState::Undef
).addReg(MaskReg
, MaskState
)
4108 .addReg(Reg
, RegState::Undef
).addReg(Reg
, RegState::Undef
).addImm(0xff);
4111 case X86::VMOVAPSZ128rm_NOVLX
:
4112 return expandNOVLXLoad(MIB
, &getRegisterInfo(), get(X86::VMOVAPSrm
),
4113 get(X86::VBROADCASTF32X4rm
), X86::sub_xmm
);
4114 case X86::VMOVUPSZ128rm_NOVLX
:
4115 return expandNOVLXLoad(MIB
, &getRegisterInfo(), get(X86::VMOVUPSrm
),
4116 get(X86::VBROADCASTF32X4rm
), X86::sub_xmm
);
4117 case X86::VMOVAPSZ256rm_NOVLX
:
4118 return expandNOVLXLoad(MIB
, &getRegisterInfo(), get(X86::VMOVAPSYrm
),
4119 get(X86::VBROADCASTF64X4rm
), X86::sub_ymm
);
4120 case X86::VMOVUPSZ256rm_NOVLX
:
4121 return expandNOVLXLoad(MIB
, &getRegisterInfo(), get(X86::VMOVUPSYrm
),
4122 get(X86::VBROADCASTF64X4rm
), X86::sub_ymm
);
4123 case X86::VMOVAPSZ128mr_NOVLX
:
4124 return expandNOVLXStore(MIB
, &getRegisterInfo(), get(X86::VMOVAPSmr
),
4125 get(X86::VEXTRACTF32x4Zmr
), X86::sub_xmm
);
4126 case X86::VMOVUPSZ128mr_NOVLX
:
4127 return expandNOVLXStore(MIB
, &getRegisterInfo(), get(X86::VMOVUPSmr
),
4128 get(X86::VEXTRACTF32x4Zmr
), X86::sub_xmm
);
4129 case X86::VMOVAPSZ256mr_NOVLX
:
4130 return expandNOVLXStore(MIB
, &getRegisterInfo(), get(X86::VMOVAPSYmr
),
4131 get(X86::VEXTRACTF64x4Zmr
), X86::sub_ymm
);
4132 case X86::VMOVUPSZ256mr_NOVLX
:
4133 return expandNOVLXStore(MIB
, &getRegisterInfo(), get(X86::VMOVUPSYmr
),
4134 get(X86::VEXTRACTF64x4Zmr
), X86::sub_ymm
);
4135 case X86::MOV32ri64
: {
4136 Register Reg
= MIB
->getOperand(0).getReg();
4137 Register Reg32
= RI
.getSubReg(Reg
, X86::sub_32bit
);
4138 MI
.setDesc(get(X86::MOV32ri
));
4139 MIB
->getOperand(0).setReg(Reg32
);
4140 MIB
.addReg(Reg
, RegState::ImplicitDefine
);
4144 // KNL does not recognize dependency-breaking idioms for mask registers,
4145 // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
4146 // Using %k0 as the undef input register is a performance heuristic based
4147 // on the assumption that %k0 is used less frequently than the other mask
4148 // registers, since it is not usable as a write mask.
4149 // FIXME: A more advanced approach would be to choose the best input mask
4150 // register based on context.
4151 case X86::KSET0W
: return Expand2AddrKreg(MIB
, get(X86::KXORWrr
), X86::K0
);
4152 case X86::KSET0D
: return Expand2AddrKreg(MIB
, get(X86::KXORDrr
), X86::K0
);
4153 case X86::KSET0Q
: return Expand2AddrKreg(MIB
, get(X86::KXORQrr
), X86::K0
);
4154 case X86::KSET1W
: return Expand2AddrKreg(MIB
, get(X86::KXNORWrr
), X86::K0
);
4155 case X86::KSET1D
: return Expand2AddrKreg(MIB
, get(X86::KXNORDrr
), X86::K0
);
4156 case X86::KSET1Q
: return Expand2AddrKreg(MIB
, get(X86::KXNORQrr
), X86::K0
);
4157 case TargetOpcode::LOAD_STACK_GUARD
:
4158 expandLoadStackGuard(MIB
, *this);
4162 return expandXorFP(MIB
, *this);
4163 case X86::SHLDROT32ri
: return expandSHXDROT(MIB
, get(X86::SHLD32rri8
));
4164 case X86::SHLDROT64ri
: return expandSHXDROT(MIB
, get(X86::SHLD64rri8
));
4165 case X86::SHRDROT32ri
: return expandSHXDROT(MIB
, get(X86::SHRD32rri8
));
4166 case X86::SHRDROT64ri
: return expandSHXDROT(MIB
, get(X86::SHRD64rri8
));
4167 case X86::ADD8rr_DB
: MIB
->setDesc(get(X86::OR8rr
)); break;
4168 case X86::ADD16rr_DB
: MIB
->setDesc(get(X86::OR16rr
)); break;
4169 case X86::ADD32rr_DB
: MIB
->setDesc(get(X86::OR32rr
)); break;
4170 case X86::ADD64rr_DB
: MIB
->setDesc(get(X86::OR64rr
)); break;
4171 case X86::ADD8ri_DB
: MIB
->setDesc(get(X86::OR8ri
)); break;
4172 case X86::ADD16ri_DB
: MIB
->setDesc(get(X86::OR16ri
)); break;
4173 case X86::ADD32ri_DB
: MIB
->setDesc(get(X86::OR32ri
)); break;
4174 case X86::ADD64ri32_DB
: MIB
->setDesc(get(X86::OR64ri32
)); break;
4175 case X86::ADD16ri8_DB
: MIB
->setDesc(get(X86::OR16ri8
)); break;
4176 case X86::ADD32ri8_DB
: MIB
->setDesc(get(X86::OR32ri8
)); break;
4177 case X86::ADD64ri8_DB
: MIB
->setDesc(get(X86::OR64ri8
)); break;
4182 /// Return true for all instructions that only update
4183 /// the first 32 or 64-bits of the destination register and leave the rest
4184 /// unmodified. This can be used to avoid folding loads if the instructions
4185 /// only update part of the destination register, and the non-updated part is
4186 /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
4187 /// instructions breaks the partial register dependency and it can improve
4188 /// performance. e.g.:
4190 /// movss (%rdi), %xmm0
4191 /// cvtss2sd %xmm0, %xmm0
4194 /// cvtss2sd (%rdi), %xmm0
4196 /// FIXME: This should be turned into a TSFlags.
4198 static bool hasPartialRegUpdate(unsigned Opcode
,
4199 const X86Subtarget
&Subtarget
,
4200 bool ForLoadFold
= false) {
4202 case X86::CVTSI2SSrr
:
4203 case X86::CVTSI2SSrm
:
4204 case X86::CVTSI642SSrr
:
4205 case X86::CVTSI642SSrm
:
4206 case X86::CVTSI2SDrr
:
4207 case X86::CVTSI2SDrm
:
4208 case X86::CVTSI642SDrr
:
4209 case X86::CVTSI642SDrm
:
4210 // Load folding won't effect the undef register update since the input is
4212 return !ForLoadFold
;
4213 case X86::CVTSD2SSrr
:
4214 case X86::CVTSD2SSrm
:
4215 case X86::CVTSS2SDrr
:
4216 case X86::CVTSS2SDrm
:
4223 case X86::RCPSSr_Int
:
4224 case X86::RCPSSm_Int
:
4231 case X86::RSQRTSSr_Int
:
4232 case X86::RSQRTSSm_Int
:
4235 case X86::SQRTSSr_Int
:
4236 case X86::SQRTSSm_Int
:
4239 case X86::SQRTSDr_Int
:
4240 case X86::SQRTSDm_Int
:
4243 case X86::POPCNT32rm
:
4244 case X86::POPCNT32rr
:
4245 case X86::POPCNT64rm
:
4246 case X86::POPCNT64rr
:
4247 return Subtarget
.hasPOPCNTFalseDeps();
4248 case X86::LZCNT32rm
:
4249 case X86::LZCNT32rr
:
4250 case X86::LZCNT64rm
:
4251 case X86::LZCNT64rr
:
4252 case X86::TZCNT32rm
:
4253 case X86::TZCNT32rr
:
4254 case X86::TZCNT64rm
:
4255 case X86::TZCNT64rr
:
4256 return Subtarget
.hasLZCNTFalseDeps();
4262 /// Inform the BreakFalseDeps pass how many idle
4263 /// instructions we would like before a partial register update.
4264 unsigned X86InstrInfo::getPartialRegUpdateClearance(
4265 const MachineInstr
&MI
, unsigned OpNum
,
4266 const TargetRegisterInfo
*TRI
) const {
4267 if (OpNum
!= 0 || !hasPartialRegUpdate(MI
.getOpcode(), Subtarget
))
4270 // If MI is marked as reading Reg, the partial register update is wanted.
4271 const MachineOperand
&MO
= MI
.getOperand(0);
4272 Register Reg
= MO
.getReg();
4273 if (Register::isVirtualRegister(Reg
)) {
4274 if (MO
.readsReg() || MI
.readsVirtualRegister(Reg
))
4277 if (MI
.readsRegister(Reg
, TRI
))
4281 // If any instructions in the clearance range are reading Reg, insert a
4282 // dependency breaking instruction, which is inexpensive and is likely to
4283 // be hidden in other instruction's cycles.
4284 return PartialRegUpdateClearance
;
4287 // Return true for any instruction the copies the high bits of the first source
4288 // operand into the unused high bits of the destination operand.
4289 static bool hasUndefRegUpdate(unsigned Opcode
, bool ForLoadFold
= false) {
4291 case X86::VCVTSI2SSrr
:
4292 case X86::VCVTSI2SSrm
:
4293 case X86::VCVTSI2SSrr_Int
:
4294 case X86::VCVTSI2SSrm_Int
:
4295 case X86::VCVTSI642SSrr
:
4296 case X86::VCVTSI642SSrm
:
4297 case X86::VCVTSI642SSrr_Int
:
4298 case X86::VCVTSI642SSrm_Int
:
4299 case X86::VCVTSI2SDrr
:
4300 case X86::VCVTSI2SDrm
:
4301 case X86::VCVTSI2SDrr_Int
:
4302 case X86::VCVTSI2SDrm_Int
:
4303 case X86::VCVTSI642SDrr
:
4304 case X86::VCVTSI642SDrm
:
4305 case X86::VCVTSI642SDrr_Int
:
4306 case X86::VCVTSI642SDrm_Int
:
4308 case X86::VCVTSI2SSZrr
:
4309 case X86::VCVTSI2SSZrm
:
4310 case X86::VCVTSI2SSZrr_Int
:
4311 case X86::VCVTSI2SSZrrb_Int
:
4312 case X86::VCVTSI2SSZrm_Int
:
4313 case X86::VCVTSI642SSZrr
:
4314 case X86::VCVTSI642SSZrm
:
4315 case X86::VCVTSI642SSZrr_Int
:
4316 case X86::VCVTSI642SSZrrb_Int
:
4317 case X86::VCVTSI642SSZrm_Int
:
4318 case X86::VCVTSI2SDZrr
:
4319 case X86::VCVTSI2SDZrm
:
4320 case X86::VCVTSI2SDZrr_Int
:
4321 case X86::VCVTSI2SDZrm_Int
:
4322 case X86::VCVTSI642SDZrr
:
4323 case X86::VCVTSI642SDZrm
:
4324 case X86::VCVTSI642SDZrr_Int
:
4325 case X86::VCVTSI642SDZrrb_Int
:
4326 case X86::VCVTSI642SDZrm_Int
:
4327 case X86::VCVTUSI2SSZrr
:
4328 case X86::VCVTUSI2SSZrm
:
4329 case X86::VCVTUSI2SSZrr_Int
:
4330 case X86::VCVTUSI2SSZrrb_Int
:
4331 case X86::VCVTUSI2SSZrm_Int
:
4332 case X86::VCVTUSI642SSZrr
:
4333 case X86::VCVTUSI642SSZrm
:
4334 case X86::VCVTUSI642SSZrr_Int
:
4335 case X86::VCVTUSI642SSZrrb_Int
:
4336 case X86::VCVTUSI642SSZrm_Int
:
4337 case X86::VCVTUSI2SDZrr
:
4338 case X86::VCVTUSI2SDZrm
:
4339 case X86::VCVTUSI2SDZrr_Int
:
4340 case X86::VCVTUSI2SDZrm_Int
:
4341 case X86::VCVTUSI642SDZrr
:
4342 case X86::VCVTUSI642SDZrm
:
4343 case X86::VCVTUSI642SDZrr_Int
:
4344 case X86::VCVTUSI642SDZrrb_Int
:
4345 case X86::VCVTUSI642SDZrm_Int
:
4346 // Load folding won't effect the undef register update since the input is
4348 return !ForLoadFold
;
4349 case X86::VCVTSD2SSrr
:
4350 case X86::VCVTSD2SSrm
:
4351 case X86::VCVTSD2SSrr_Int
:
4352 case X86::VCVTSD2SSrm_Int
:
4353 case X86::VCVTSS2SDrr
:
4354 case X86::VCVTSS2SDrm
:
4355 case X86::VCVTSS2SDrr_Int
:
4356 case X86::VCVTSS2SDrm_Int
:
4358 case X86::VRCPSSr_Int
:
4360 case X86::VRCPSSm_Int
:
4361 case X86::VROUNDSDr
:
4362 case X86::VROUNDSDm
:
4363 case X86::VROUNDSDr_Int
:
4364 case X86::VROUNDSDm_Int
:
4365 case X86::VROUNDSSr
:
4366 case X86::VROUNDSSm
:
4367 case X86::VROUNDSSr_Int
:
4368 case X86::VROUNDSSm_Int
:
4369 case X86::VRSQRTSSr
:
4370 case X86::VRSQRTSSr_Int
:
4371 case X86::VRSQRTSSm
:
4372 case X86::VRSQRTSSm_Int
:
4374 case X86::VSQRTSSr_Int
:
4376 case X86::VSQRTSSm_Int
:
4378 case X86::VSQRTSDr_Int
:
4380 case X86::VSQRTSDm_Int
:
4382 case X86::VCVTSD2SSZrr
:
4383 case X86::VCVTSD2SSZrr_Int
:
4384 case X86::VCVTSD2SSZrrb_Int
:
4385 case X86::VCVTSD2SSZrm
:
4386 case X86::VCVTSD2SSZrm_Int
:
4387 case X86::VCVTSS2SDZrr
:
4388 case X86::VCVTSS2SDZrr_Int
:
4389 case X86::VCVTSS2SDZrrb_Int
:
4390 case X86::VCVTSS2SDZrm
:
4391 case X86::VCVTSS2SDZrm_Int
:
4392 case X86::VGETEXPSDZr
:
4393 case X86::VGETEXPSDZrb
:
4394 case X86::VGETEXPSDZm
:
4395 case X86::VGETEXPSSZr
:
4396 case X86::VGETEXPSSZrb
:
4397 case X86::VGETEXPSSZm
:
4398 case X86::VGETMANTSDZrri
:
4399 case X86::VGETMANTSDZrrib
:
4400 case X86::VGETMANTSDZrmi
:
4401 case X86::VGETMANTSSZrri
:
4402 case X86::VGETMANTSSZrrib
:
4403 case X86::VGETMANTSSZrmi
:
4404 case X86::VRNDSCALESDZr
:
4405 case X86::VRNDSCALESDZr_Int
:
4406 case X86::VRNDSCALESDZrb_Int
:
4407 case X86::VRNDSCALESDZm
:
4408 case X86::VRNDSCALESDZm_Int
:
4409 case X86::VRNDSCALESSZr
:
4410 case X86::VRNDSCALESSZr_Int
:
4411 case X86::VRNDSCALESSZrb_Int
:
4412 case X86::VRNDSCALESSZm
:
4413 case X86::VRNDSCALESSZm_Int
:
4414 case X86::VRCP14SDZrr
:
4415 case X86::VRCP14SDZrm
:
4416 case X86::VRCP14SSZrr
:
4417 case X86::VRCP14SSZrm
:
4418 case X86::VRCP28SDZr
:
4419 case X86::VRCP28SDZrb
:
4420 case X86::VRCP28SDZm
:
4421 case X86::VRCP28SSZr
:
4422 case X86::VRCP28SSZrb
:
4423 case X86::VRCP28SSZm
:
4424 case X86::VREDUCESSZrmi
:
4425 case X86::VREDUCESSZrri
:
4426 case X86::VREDUCESSZrrib
:
4427 case X86::VRSQRT14SDZrr
:
4428 case X86::VRSQRT14SDZrm
:
4429 case X86::VRSQRT14SSZrr
:
4430 case X86::VRSQRT14SSZrm
:
4431 case X86::VRSQRT28SDZr
:
4432 case X86::VRSQRT28SDZrb
:
4433 case X86::VRSQRT28SDZm
:
4434 case X86::VRSQRT28SSZr
:
4435 case X86::VRSQRT28SSZrb
:
4436 case X86::VRSQRT28SSZm
:
4437 case X86::VSQRTSSZr
:
4438 case X86::VSQRTSSZr_Int
:
4439 case X86::VSQRTSSZrb_Int
:
4440 case X86::VSQRTSSZm
:
4441 case X86::VSQRTSSZm_Int
:
4442 case X86::VSQRTSDZr
:
4443 case X86::VSQRTSDZr_Int
:
4444 case X86::VSQRTSDZrb_Int
:
4445 case X86::VSQRTSDZm
:
4446 case X86::VSQRTSDZm_Int
:
4453 /// Inform the BreakFalseDeps pass how many idle instructions we would like
4454 /// before certain undef register reads.
4456 /// This catches the VCVTSI2SD family of instructions:
4458 /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
4460 /// We should to be careful *not* to catch VXOR idioms which are presumably
4461 /// handled specially in the pipeline:
4463 /// vxorps undef %xmm1, undef %xmm1, %xmm1
4465 /// Like getPartialRegUpdateClearance, this makes a strong assumption that the
4466 /// high bits that are passed-through are not live.
4468 X86InstrInfo::getUndefRegClearance(const MachineInstr
&MI
, unsigned &OpNum
,
4469 const TargetRegisterInfo
*TRI
) const {
4470 if (!hasUndefRegUpdate(MI
.getOpcode()))
4473 // Set the OpNum parameter to the first source operand.
4476 const MachineOperand
&MO
= MI
.getOperand(OpNum
);
4477 if (MO
.isUndef() && Register::isPhysicalRegister(MO
.getReg())) {
4478 return UndefRegClearance
;
4483 void X86InstrInfo::breakPartialRegDependency(
4484 MachineInstr
&MI
, unsigned OpNum
, const TargetRegisterInfo
*TRI
) const {
4485 Register Reg
= MI
.getOperand(OpNum
).getReg();
4486 // If MI kills this register, the false dependence is already broken.
4487 if (MI
.killsRegister(Reg
, TRI
))
4490 if (X86::VR128RegClass
.contains(Reg
)) {
4491 // These instructions are all floating point domain, so xorps is the best
4493 unsigned Opc
= Subtarget
.hasAVX() ? X86::VXORPSrr
: X86::XORPSrr
;
4494 BuildMI(*MI
.getParent(), MI
, MI
.getDebugLoc(), get(Opc
), Reg
)
4495 .addReg(Reg
, RegState::Undef
)
4496 .addReg(Reg
, RegState::Undef
);
4497 MI
.addRegisterKilled(Reg
, TRI
, true);
4498 } else if (X86::VR256RegClass
.contains(Reg
)) {
4499 // Use vxorps to clear the full ymm register.
4500 // It wants to read and write the xmm sub-register.
4501 Register XReg
= TRI
->getSubReg(Reg
, X86::sub_xmm
);
4502 BuildMI(*MI
.getParent(), MI
, MI
.getDebugLoc(), get(X86::VXORPSrr
), XReg
)
4503 .addReg(XReg
, RegState::Undef
)
4504 .addReg(XReg
, RegState::Undef
)
4505 .addReg(Reg
, RegState::ImplicitDefine
);
4506 MI
.addRegisterKilled(Reg
, TRI
, true);
4507 } else if (X86::GR64RegClass
.contains(Reg
)) {
4508 // Using XOR32rr because it has shorter encoding and zeros up the upper bits
4510 Register XReg
= TRI
->getSubReg(Reg
, X86::sub_32bit
);
4511 BuildMI(*MI
.getParent(), MI
, MI
.getDebugLoc(), get(X86::XOR32rr
), XReg
)
4512 .addReg(XReg
, RegState::Undef
)
4513 .addReg(XReg
, RegState::Undef
)
4514 .addReg(Reg
, RegState::ImplicitDefine
);
4515 MI
.addRegisterKilled(Reg
, TRI
, true);
4516 } else if (X86::GR32RegClass
.contains(Reg
)) {
4517 BuildMI(*MI
.getParent(), MI
, MI
.getDebugLoc(), get(X86::XOR32rr
), Reg
)
4518 .addReg(Reg
, RegState::Undef
)
4519 .addReg(Reg
, RegState::Undef
);
4520 MI
.addRegisterKilled(Reg
, TRI
, true);
4524 static void addOperands(MachineInstrBuilder
&MIB
, ArrayRef
<MachineOperand
> MOs
,
4525 int PtrOffset
= 0) {
4526 unsigned NumAddrOps
= MOs
.size();
4528 if (NumAddrOps
< 4) {
4529 // FrameIndex only - add an immediate offset (whether its zero or not).
4530 for (unsigned i
= 0; i
!= NumAddrOps
; ++i
)
4532 addOffset(MIB
, PtrOffset
);
4534 // General Memory Addressing - we need to add any offset to an existing
4536 assert(MOs
.size() == 5 && "Unexpected memory operand list length");
4537 for (unsigned i
= 0; i
!= NumAddrOps
; ++i
) {
4538 const MachineOperand
&MO
= MOs
[i
];
4539 if (i
== 3 && PtrOffset
!= 0) {
4540 MIB
.addDisp(MO
, PtrOffset
);
4548 static void updateOperandRegConstraints(MachineFunction
&MF
,
4549 MachineInstr
&NewMI
,
4550 const TargetInstrInfo
&TII
) {
4551 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
4552 const TargetRegisterInfo
&TRI
= *MRI
.getTargetRegisterInfo();
4554 for (int Idx
: llvm::seq
<int>(0, NewMI
.getNumOperands())) {
4555 MachineOperand
&MO
= NewMI
.getOperand(Idx
);
4556 // We only need to update constraints on virtual register operands.
4559 Register Reg
= MO
.getReg();
4560 if (!Register::isVirtualRegister(Reg
))
4563 auto *NewRC
= MRI
.constrainRegClass(
4564 Reg
, TII
.getRegClass(NewMI
.getDesc(), Idx
, &TRI
, MF
));
4567 dbgs() << "WARNING: Unable to update register constraint for operand "
4568 << Idx
<< " of instruction:\n";
4569 NewMI
.dump(); dbgs() << "\n");
4574 static MachineInstr
*FuseTwoAddrInst(MachineFunction
&MF
, unsigned Opcode
,
4575 ArrayRef
<MachineOperand
> MOs
,
4576 MachineBasicBlock::iterator InsertPt
,
4578 const TargetInstrInfo
&TII
) {
4579 // Create the base instruction with the memory operand as the first part.
4580 // Omit the implicit operands, something BuildMI can't do.
4581 MachineInstr
*NewMI
=
4582 MF
.CreateMachineInstr(TII
.get(Opcode
), MI
.getDebugLoc(), true);
4583 MachineInstrBuilder
MIB(MF
, NewMI
);
4584 addOperands(MIB
, MOs
);
4586 // Loop over the rest of the ri operands, converting them over.
4587 unsigned NumOps
= MI
.getDesc().getNumOperands() - 2;
4588 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
4589 MachineOperand
&MO
= MI
.getOperand(i
+ 2);
4592 for (unsigned i
= NumOps
+ 2, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
4593 MachineOperand
&MO
= MI
.getOperand(i
);
4597 updateOperandRegConstraints(MF
, *NewMI
, TII
);
4599 MachineBasicBlock
*MBB
= InsertPt
->getParent();
4600 MBB
->insert(InsertPt
, NewMI
);
4605 static MachineInstr
*FuseInst(MachineFunction
&MF
, unsigned Opcode
,
4606 unsigned OpNo
, ArrayRef
<MachineOperand
> MOs
,
4607 MachineBasicBlock::iterator InsertPt
,
4608 MachineInstr
&MI
, const TargetInstrInfo
&TII
,
4609 int PtrOffset
= 0) {
4610 // Omit the implicit operands, something BuildMI can't do.
4611 MachineInstr
*NewMI
=
4612 MF
.CreateMachineInstr(TII
.get(Opcode
), MI
.getDebugLoc(), true);
4613 MachineInstrBuilder
MIB(MF
, NewMI
);
4615 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
4616 MachineOperand
&MO
= MI
.getOperand(i
);
4618 assert(MO
.isReg() && "Expected to fold into reg operand!");
4619 addOperands(MIB
, MOs
, PtrOffset
);
4625 updateOperandRegConstraints(MF
, *NewMI
, TII
);
4627 MachineBasicBlock
*MBB
= InsertPt
->getParent();
4628 MBB
->insert(InsertPt
, NewMI
);
4633 static MachineInstr
*MakeM0Inst(const TargetInstrInfo
&TII
, unsigned Opcode
,
4634 ArrayRef
<MachineOperand
> MOs
,
4635 MachineBasicBlock::iterator InsertPt
,
4637 MachineInstrBuilder MIB
= BuildMI(*InsertPt
->getParent(), InsertPt
,
4638 MI
.getDebugLoc(), TII
.get(Opcode
));
4639 addOperands(MIB
, MOs
);
4640 return MIB
.addImm(0);
4643 MachineInstr
*X86InstrInfo::foldMemoryOperandCustom(
4644 MachineFunction
&MF
, MachineInstr
&MI
, unsigned OpNum
,
4645 ArrayRef
<MachineOperand
> MOs
, MachineBasicBlock::iterator InsertPt
,
4646 unsigned Size
, unsigned Align
) const {
4647 switch (MI
.getOpcode()) {
4648 case X86::INSERTPSrr
:
4649 case X86::VINSERTPSrr
:
4650 case X86::VINSERTPSZrr
:
4651 // Attempt to convert the load of inserted vector into a fold load
4652 // of a single float.
4654 unsigned Imm
= MI
.getOperand(MI
.getNumOperands() - 1).getImm();
4655 unsigned ZMask
= Imm
& 15;
4656 unsigned DstIdx
= (Imm
>> 4) & 3;
4657 unsigned SrcIdx
= (Imm
>> 6) & 3;
4659 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
4660 const TargetRegisterClass
*RC
= getRegClass(MI
.getDesc(), OpNum
, &RI
, MF
);
4661 unsigned RCSize
= TRI
.getRegSizeInBits(*RC
) / 8;
4662 if ((Size
== 0 || Size
>= 16) && RCSize
>= 16 && 4 <= Align
) {
4663 int PtrOffset
= SrcIdx
* 4;
4664 unsigned NewImm
= (DstIdx
<< 4) | ZMask
;
4665 unsigned NewOpCode
=
4666 (MI
.getOpcode() == X86::VINSERTPSZrr
) ? X86::VINSERTPSZrm
:
4667 (MI
.getOpcode() == X86::VINSERTPSrr
) ? X86::VINSERTPSrm
:
4669 MachineInstr
*NewMI
=
4670 FuseInst(MF
, NewOpCode
, OpNum
, MOs
, InsertPt
, MI
, *this, PtrOffset
);
4671 NewMI
->getOperand(NewMI
->getNumOperands() - 1).setImm(NewImm
);
4676 case X86::MOVHLPSrr
:
4677 case X86::VMOVHLPSrr
:
4678 case X86::VMOVHLPSZrr
:
4679 // Move the upper 64-bits of the second operand to the lower 64-bits.
4680 // To fold the load, adjust the pointer to the upper and use (V)MOVLPS.
4681 // TODO: In most cases AVX doesn't have a 8-byte alignment requirement.
4683 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
4684 const TargetRegisterClass
*RC
= getRegClass(MI
.getDesc(), OpNum
, &RI
, MF
);
4685 unsigned RCSize
= TRI
.getRegSizeInBits(*RC
) / 8;
4686 if ((Size
== 0 || Size
>= 16) && RCSize
>= 16 && 8 <= Align
) {
4687 unsigned NewOpCode
=
4688 (MI
.getOpcode() == X86::VMOVHLPSZrr
) ? X86::VMOVLPSZ128rm
:
4689 (MI
.getOpcode() == X86::VMOVHLPSrr
) ? X86::VMOVLPSrm
:
4691 MachineInstr
*NewMI
=
4692 FuseInst(MF
, NewOpCode
, OpNum
, MOs
, InsertPt
, MI
, *this, 8);
4697 case X86::UNPCKLPDrr
:
4698 // If we won't be able to fold this to the memory form of UNPCKL, use
4699 // MOVHPD instead. Done as custom because we can't have this in the load
4702 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
4703 const TargetRegisterClass
*RC
= getRegClass(MI
.getDesc(), OpNum
, &RI
, MF
);
4704 unsigned RCSize
= TRI
.getRegSizeInBits(*RC
) / 8;
4705 if ((Size
== 0 || Size
>= 16) && RCSize
>= 16 && Align
< 16) {
4706 MachineInstr
*NewMI
=
4707 FuseInst(MF
, X86::MOVHPDrm
, OpNum
, MOs
, InsertPt
, MI
, *this);
4717 static bool shouldPreventUndefRegUpdateMemFold(MachineFunction
&MF
,
4719 if (!hasUndefRegUpdate(MI
.getOpcode(), /*ForLoadFold*/true) ||
4720 !MI
.getOperand(1).isReg())
4723 // The are two cases we need to handle depending on where in the pipeline
4724 // the folding attempt is being made.
4725 // -Register has the undef flag set.
4726 // -Register is produced by the IMPLICIT_DEF instruction.
4728 if (MI
.getOperand(1).isUndef())
4731 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
4732 MachineInstr
*VRegDef
= RegInfo
.getUniqueVRegDef(MI
.getOperand(1).getReg());
4733 return VRegDef
&& VRegDef
->isImplicitDef();
4737 MachineInstr
*X86InstrInfo::foldMemoryOperandImpl(
4738 MachineFunction
&MF
, MachineInstr
&MI
, unsigned OpNum
,
4739 ArrayRef
<MachineOperand
> MOs
, MachineBasicBlock::iterator InsertPt
,
4740 unsigned Size
, unsigned Align
, bool AllowCommute
) const {
4741 bool isSlowTwoMemOps
= Subtarget
.slowTwoMemOps();
4742 bool isTwoAddrFold
= false;
4744 // For CPUs that favor the register form of a call or push,
4745 // do not fold loads into calls or pushes, unless optimizing for size
4747 if (isSlowTwoMemOps
&& !MF
.getFunction().hasMinSize() &&
4748 (MI
.getOpcode() == X86::CALL32r
|| MI
.getOpcode() == X86::CALL64r
||
4749 MI
.getOpcode() == X86::PUSH16r
|| MI
.getOpcode() == X86::PUSH32r
||
4750 MI
.getOpcode() == X86::PUSH64r
))
4753 // Avoid partial and undef register update stalls unless optimizing for size.
4754 if (!MF
.getFunction().hasOptSize() &&
4755 (hasPartialRegUpdate(MI
.getOpcode(), Subtarget
, /*ForLoadFold*/true) ||
4756 shouldPreventUndefRegUpdateMemFold(MF
, MI
)))
4759 unsigned NumOps
= MI
.getDesc().getNumOperands();
4761 NumOps
> 1 && MI
.getDesc().getOperandConstraint(1, MCOI::TIED_TO
) != -1;
4763 // FIXME: AsmPrinter doesn't know how to handle
4764 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
4765 if (MI
.getOpcode() == X86::ADD32ri
&&
4766 MI
.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS
)
4769 // GOTTPOFF relocation loads can only be folded into add instructions.
4770 // FIXME: Need to exclude other relocations that only support specific
4772 if (MOs
.size() == X86::AddrNumOperands
&&
4773 MOs
[X86::AddrDisp
].getTargetFlags() == X86II::MO_GOTTPOFF
&&
4774 MI
.getOpcode() != X86::ADD64rr
)
4777 MachineInstr
*NewMI
= nullptr;
4779 // Attempt to fold any custom cases we have.
4780 if (MachineInstr
*CustomMI
=
4781 foldMemoryOperandCustom(MF
, MI
, OpNum
, MOs
, InsertPt
, Size
, Align
))
4784 const X86MemoryFoldTableEntry
*I
= nullptr;
4786 // Folding a memory location into the two-address part of a two-address
4787 // instruction is different than folding it other places. It requires
4788 // replacing the *two* registers with the memory location.
4789 if (isTwoAddr
&& NumOps
>= 2 && OpNum
< 2 && MI
.getOperand(0).isReg() &&
4790 MI
.getOperand(1).isReg() &&
4791 MI
.getOperand(0).getReg() == MI
.getOperand(1).getReg()) {
4792 I
= lookupTwoAddrFoldTable(MI
.getOpcode());
4793 isTwoAddrFold
= true;
4796 if (MI
.getOpcode() == X86::MOV32r0
) {
4797 NewMI
= MakeM0Inst(*this, X86::MOV32mi
, MOs
, InsertPt
, MI
);
4803 I
= lookupFoldTable(MI
.getOpcode(), OpNum
);
4807 unsigned Opcode
= I
->DstOp
;
4808 unsigned MinAlign
= (I
->Flags
& TB_ALIGN_MASK
) >> TB_ALIGN_SHIFT
;
4809 if (Align
< MinAlign
)
4811 bool NarrowToMOV32rm
= false;
4813 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
4814 const TargetRegisterClass
*RC
= getRegClass(MI
.getDesc(), OpNum
,
4816 unsigned RCSize
= TRI
.getRegSizeInBits(*RC
) / 8;
4817 if (Size
< RCSize
) {
4818 // FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int.
4819 // Check if it's safe to fold the load. If the size of the object is
4820 // narrower than the load width, then it's not.
4821 if (Opcode
!= X86::MOV64rm
|| RCSize
!= 8 || Size
!= 4)
4823 // If this is a 64-bit load, but the spill slot is 32, then we can do
4824 // a 32-bit load which is implicitly zero-extended. This likely is
4825 // due to live interval analysis remat'ing a load from stack slot.
4826 if (MI
.getOperand(0).getSubReg() || MI
.getOperand(1).getSubReg())
4828 Opcode
= X86::MOV32rm
;
4829 NarrowToMOV32rm
= true;
4834 NewMI
= FuseTwoAddrInst(MF
, Opcode
, MOs
, InsertPt
, MI
, *this);
4836 NewMI
= FuseInst(MF
, Opcode
, OpNum
, MOs
, InsertPt
, MI
, *this);
4838 if (NarrowToMOV32rm
) {
4839 // If this is the special case where we use a MOV32rm to load a 32-bit
4840 // value and zero-extend the top bits. Change the destination register
4842 Register DstReg
= NewMI
->getOperand(0).getReg();
4843 if (Register::isPhysicalRegister(DstReg
))
4844 NewMI
->getOperand(0).setReg(RI
.getSubReg(DstReg
, X86::sub_32bit
));
4846 NewMI
->getOperand(0).setSubReg(X86::sub_32bit
);
4851 // If the instruction and target operand are commutable, commute the
4852 // instruction and try again.
4854 unsigned CommuteOpIdx1
= OpNum
, CommuteOpIdx2
= CommuteAnyOperandIndex
;
4855 if (findCommutedOpIndices(MI
, CommuteOpIdx1
, CommuteOpIdx2
)) {
4856 bool HasDef
= MI
.getDesc().getNumDefs();
4857 Register Reg0
= HasDef
? MI
.getOperand(0).getReg() : Register();
4858 Register Reg1
= MI
.getOperand(CommuteOpIdx1
).getReg();
4859 Register Reg2
= MI
.getOperand(CommuteOpIdx2
).getReg();
4861 0 == MI
.getDesc().getOperandConstraint(CommuteOpIdx1
, MCOI::TIED_TO
);
4863 0 == MI
.getDesc().getOperandConstraint(CommuteOpIdx2
, MCOI::TIED_TO
);
4865 // If either of the commutable operands are tied to the destination
4866 // then we can not commute + fold.
4867 if ((HasDef
&& Reg0
== Reg1
&& Tied1
) ||
4868 (HasDef
&& Reg0
== Reg2
&& Tied2
))
4871 MachineInstr
*CommutedMI
=
4872 commuteInstruction(MI
, false, CommuteOpIdx1
, CommuteOpIdx2
);
4874 // Unable to commute.
4877 if (CommutedMI
!= &MI
) {
4878 // New instruction. We can't fold from this.
4879 CommutedMI
->eraseFromParent();
4883 // Attempt to fold with the commuted version of the instruction.
4884 NewMI
= foldMemoryOperandImpl(MF
, MI
, CommuteOpIdx2
, MOs
, InsertPt
,
4885 Size
, Align
, /*AllowCommute=*/false);
4889 // Folding failed again - undo the commute before returning.
4890 MachineInstr
*UncommutedMI
=
4891 commuteInstruction(MI
, false, CommuteOpIdx1
, CommuteOpIdx2
);
4892 if (!UncommutedMI
) {
4893 // Unable to commute.
4896 if (UncommutedMI
!= &MI
) {
4897 // New instruction. It doesn't need to be kept.
4898 UncommutedMI
->eraseFromParent();
4902 // Return here to prevent duplicate fuse failure report.
4908 if (PrintFailedFusing
&& !MI
.isCopy())
4909 dbgs() << "We failed to fuse operand " << OpNum
<< " in " << MI
;
4914 X86InstrInfo::foldMemoryOperandImpl(MachineFunction
&MF
, MachineInstr
&MI
,
4915 ArrayRef
<unsigned> Ops
,
4916 MachineBasicBlock::iterator InsertPt
,
4917 int FrameIndex
, LiveIntervals
*LIS
,
4918 VirtRegMap
*VRM
) const {
4919 // Check switch flag
4923 // Avoid partial and undef register update stalls unless optimizing for size.
4924 if (!MF
.getFunction().hasOptSize() &&
4925 (hasPartialRegUpdate(MI
.getOpcode(), Subtarget
, /*ForLoadFold*/true) ||
4926 shouldPreventUndefRegUpdateMemFold(MF
, MI
)))
4929 // Don't fold subreg spills, or reloads that use a high subreg.
4930 for (auto Op
: Ops
) {
4931 MachineOperand
&MO
= MI
.getOperand(Op
);
4932 auto SubReg
= MO
.getSubReg();
4933 if (SubReg
&& (MO
.isDef() || SubReg
== X86::sub_8bit_hi
))
4937 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
4938 unsigned Size
= MFI
.getObjectSize(FrameIndex
);
4939 unsigned Alignment
= MFI
.getObjectAlignment(FrameIndex
);
4940 // If the function stack isn't realigned we don't want to fold instructions
4941 // that need increased alignment.
4942 if (!RI
.needsStackRealignment(MF
))
4944 std::min(Alignment
, Subtarget
.getFrameLowering()->getStackAlignment());
4945 if (Ops
.size() == 2 && Ops
[0] == 0 && Ops
[1] == 1) {
4946 unsigned NewOpc
= 0;
4947 unsigned RCSize
= 0;
4948 switch (MI
.getOpcode()) {
4949 default: return nullptr;
4950 case X86::TEST8rr
: NewOpc
= X86::CMP8ri
; RCSize
= 1; break;
4951 case X86::TEST16rr
: NewOpc
= X86::CMP16ri8
; RCSize
= 2; break;
4952 case X86::TEST32rr
: NewOpc
= X86::CMP32ri8
; RCSize
= 4; break;
4953 case X86::TEST64rr
: NewOpc
= X86::CMP64ri8
; RCSize
= 8; break;
4955 // Check if it's safe to fold the load. If the size of the object is
4956 // narrower than the load width, then it's not.
4959 // Change to CMPXXri r, 0 first.
4960 MI
.setDesc(get(NewOpc
));
4961 MI
.getOperand(1).ChangeToImmediate(0);
4962 } else if (Ops
.size() != 1)
4965 return foldMemoryOperandImpl(MF
, MI
, Ops
[0],
4966 MachineOperand::CreateFI(FrameIndex
), InsertPt
,
4967 Size
, Alignment
, /*AllowCommute=*/true);
4970 /// Check if \p LoadMI is a partial register load that we can't fold into \p MI
4971 /// because the latter uses contents that wouldn't be defined in the folded
4972 /// version. For instance, this transformation isn't legal:
4973 /// movss (%rdi), %xmm0
4974 /// addps %xmm0, %xmm0
4976 /// addps (%rdi), %xmm0
4978 /// But this one is:
4979 /// movss (%rdi), %xmm0
4980 /// addss %xmm0, %xmm0
4982 /// addss (%rdi), %xmm0
4984 static bool isNonFoldablePartialRegisterLoad(const MachineInstr
&LoadMI
,
4985 const MachineInstr
&UserMI
,
4986 const MachineFunction
&MF
) {
4987 unsigned Opc
= LoadMI
.getOpcode();
4988 unsigned UserOpc
= UserMI
.getOpcode();
4989 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
4990 const TargetRegisterClass
*RC
=
4991 MF
.getRegInfo().getRegClass(LoadMI
.getOperand(0).getReg());
4992 unsigned RegSize
= TRI
.getRegSizeInBits(*RC
);
4994 if ((Opc
== X86::MOVSSrm
|| Opc
== X86::VMOVSSrm
|| Opc
== X86::VMOVSSZrm
||
4995 Opc
== X86::MOVSSrm_alt
|| Opc
== X86::VMOVSSrm_alt
||
4996 Opc
== X86::VMOVSSZrm_alt
) &&
4998 // These instructions only load 32 bits, we can't fold them if the
4999 // destination register is wider than 32 bits (4 bytes), and its user
5000 // instruction isn't scalar (SS).
5002 case X86::ADDSSrr_Int
: case X86::VADDSSrr_Int
: case X86::VADDSSZrr_Int
:
5003 case X86::CMPSSrr_Int
: case X86::VCMPSSrr_Int
: case X86::VCMPSSZrr_Int
:
5004 case X86::DIVSSrr_Int
: case X86::VDIVSSrr_Int
: case X86::VDIVSSZrr_Int
:
5005 case X86::MAXSSrr_Int
: case X86::VMAXSSrr_Int
: case X86::VMAXSSZrr_Int
:
5006 case X86::MINSSrr_Int
: case X86::VMINSSrr_Int
: case X86::VMINSSZrr_Int
:
5007 case X86::MULSSrr_Int
: case X86::VMULSSrr_Int
: case X86::VMULSSZrr_Int
:
5008 case X86::SUBSSrr_Int
: case X86::VSUBSSrr_Int
: case X86::VSUBSSZrr_Int
:
5009 case X86::VADDSSZrr_Intk
: case X86::VADDSSZrr_Intkz
:
5010 case X86::VCMPSSZrr_Intk
:
5011 case X86::VDIVSSZrr_Intk
: case X86::VDIVSSZrr_Intkz
:
5012 case X86::VMAXSSZrr_Intk
: case X86::VMAXSSZrr_Intkz
:
5013 case X86::VMINSSZrr_Intk
: case X86::VMINSSZrr_Intkz
:
5014 case X86::VMULSSZrr_Intk
: case X86::VMULSSZrr_Intkz
:
5015 case X86::VSUBSSZrr_Intk
: case X86::VSUBSSZrr_Intkz
:
5016 case X86::VFMADDSS4rr_Int
: case X86::VFNMADDSS4rr_Int
:
5017 case X86::VFMSUBSS4rr_Int
: case X86::VFNMSUBSS4rr_Int
:
5018 case X86::VFMADD132SSr_Int
: case X86::VFNMADD132SSr_Int
:
5019 case X86::VFMADD213SSr_Int
: case X86::VFNMADD213SSr_Int
:
5020 case X86::VFMADD231SSr_Int
: case X86::VFNMADD231SSr_Int
:
5021 case X86::VFMSUB132SSr_Int
: case X86::VFNMSUB132SSr_Int
:
5022 case X86::VFMSUB213SSr_Int
: case X86::VFNMSUB213SSr_Int
:
5023 case X86::VFMSUB231SSr_Int
: case X86::VFNMSUB231SSr_Int
:
5024 case X86::VFMADD132SSZr_Int
: case X86::VFNMADD132SSZr_Int
:
5025 case X86::VFMADD213SSZr_Int
: case X86::VFNMADD213SSZr_Int
:
5026 case X86::VFMADD231SSZr_Int
: case X86::VFNMADD231SSZr_Int
:
5027 case X86::VFMSUB132SSZr_Int
: case X86::VFNMSUB132SSZr_Int
:
5028 case X86::VFMSUB213SSZr_Int
: case X86::VFNMSUB213SSZr_Int
:
5029 case X86::VFMSUB231SSZr_Int
: case X86::VFNMSUB231SSZr_Int
:
5030 case X86::VFMADD132SSZr_Intk
: case X86::VFNMADD132SSZr_Intk
:
5031 case X86::VFMADD213SSZr_Intk
: case X86::VFNMADD213SSZr_Intk
:
5032 case X86::VFMADD231SSZr_Intk
: case X86::VFNMADD231SSZr_Intk
:
5033 case X86::VFMSUB132SSZr_Intk
: case X86::VFNMSUB132SSZr_Intk
:
5034 case X86::VFMSUB213SSZr_Intk
: case X86::VFNMSUB213SSZr_Intk
:
5035 case X86::VFMSUB231SSZr_Intk
: case X86::VFNMSUB231SSZr_Intk
:
5036 case X86::VFMADD132SSZr_Intkz
: case X86::VFNMADD132SSZr_Intkz
:
5037 case X86::VFMADD213SSZr_Intkz
: case X86::VFNMADD213SSZr_Intkz
:
5038 case X86::VFMADD231SSZr_Intkz
: case X86::VFNMADD231SSZr_Intkz
:
5039 case X86::VFMSUB132SSZr_Intkz
: case X86::VFNMSUB132SSZr_Intkz
:
5040 case X86::VFMSUB213SSZr_Intkz
: case X86::VFNMSUB213SSZr_Intkz
:
5041 case X86::VFMSUB231SSZr_Intkz
: case X86::VFNMSUB231SSZr_Intkz
:
5048 if ((Opc
== X86::MOVSDrm
|| Opc
== X86::VMOVSDrm
|| Opc
== X86::VMOVSDZrm
||
5049 Opc
== X86::MOVSDrm_alt
|| Opc
== X86::VMOVSDrm_alt
||
5050 Opc
== X86::VMOVSDZrm_alt
) &&
5052 // These instructions only load 64 bits, we can't fold them if the
5053 // destination register is wider than 64 bits (8 bytes), and its user
5054 // instruction isn't scalar (SD).
5056 case X86::ADDSDrr_Int
: case X86::VADDSDrr_Int
: case X86::VADDSDZrr_Int
:
5057 case X86::CMPSDrr_Int
: case X86::VCMPSDrr_Int
: case X86::VCMPSDZrr_Int
:
5058 case X86::DIVSDrr_Int
: case X86::VDIVSDrr_Int
: case X86::VDIVSDZrr_Int
:
5059 case X86::MAXSDrr_Int
: case X86::VMAXSDrr_Int
: case X86::VMAXSDZrr_Int
:
5060 case X86::MINSDrr_Int
: case X86::VMINSDrr_Int
: case X86::VMINSDZrr_Int
:
5061 case X86::MULSDrr_Int
: case X86::VMULSDrr_Int
: case X86::VMULSDZrr_Int
:
5062 case X86::SUBSDrr_Int
: case X86::VSUBSDrr_Int
: case X86::VSUBSDZrr_Int
:
5063 case X86::VADDSDZrr_Intk
: case X86::VADDSDZrr_Intkz
:
5064 case X86::VCMPSDZrr_Intk
:
5065 case X86::VDIVSDZrr_Intk
: case X86::VDIVSDZrr_Intkz
:
5066 case X86::VMAXSDZrr_Intk
: case X86::VMAXSDZrr_Intkz
:
5067 case X86::VMINSDZrr_Intk
: case X86::VMINSDZrr_Intkz
:
5068 case X86::VMULSDZrr_Intk
: case X86::VMULSDZrr_Intkz
:
5069 case X86::VSUBSDZrr_Intk
: case X86::VSUBSDZrr_Intkz
:
5070 case X86::VFMADDSD4rr_Int
: case X86::VFNMADDSD4rr_Int
:
5071 case X86::VFMSUBSD4rr_Int
: case X86::VFNMSUBSD4rr_Int
:
5072 case X86::VFMADD132SDr_Int
: case X86::VFNMADD132SDr_Int
:
5073 case X86::VFMADD213SDr_Int
: case X86::VFNMADD213SDr_Int
:
5074 case X86::VFMADD231SDr_Int
: case X86::VFNMADD231SDr_Int
:
5075 case X86::VFMSUB132SDr_Int
: case X86::VFNMSUB132SDr_Int
:
5076 case X86::VFMSUB213SDr_Int
: case X86::VFNMSUB213SDr_Int
:
5077 case X86::VFMSUB231SDr_Int
: case X86::VFNMSUB231SDr_Int
:
5078 case X86::VFMADD132SDZr_Int
: case X86::VFNMADD132SDZr_Int
:
5079 case X86::VFMADD213SDZr_Int
: case X86::VFNMADD213SDZr_Int
:
5080 case X86::VFMADD231SDZr_Int
: case X86::VFNMADD231SDZr_Int
:
5081 case X86::VFMSUB132SDZr_Int
: case X86::VFNMSUB132SDZr_Int
:
5082 case X86::VFMSUB213SDZr_Int
: case X86::VFNMSUB213SDZr_Int
:
5083 case X86::VFMSUB231SDZr_Int
: case X86::VFNMSUB231SDZr_Int
:
5084 case X86::VFMADD132SDZr_Intk
: case X86::VFNMADD132SDZr_Intk
:
5085 case X86::VFMADD213SDZr_Intk
: case X86::VFNMADD213SDZr_Intk
:
5086 case X86::VFMADD231SDZr_Intk
: case X86::VFNMADD231SDZr_Intk
:
5087 case X86::VFMSUB132SDZr_Intk
: case X86::VFNMSUB132SDZr_Intk
:
5088 case X86::VFMSUB213SDZr_Intk
: case X86::VFNMSUB213SDZr_Intk
:
5089 case X86::VFMSUB231SDZr_Intk
: case X86::VFNMSUB231SDZr_Intk
:
5090 case X86::VFMADD132SDZr_Intkz
: case X86::VFNMADD132SDZr_Intkz
:
5091 case X86::VFMADD213SDZr_Intkz
: case X86::VFNMADD213SDZr_Intkz
:
5092 case X86::VFMADD231SDZr_Intkz
: case X86::VFNMADD231SDZr_Intkz
:
5093 case X86::VFMSUB132SDZr_Intkz
: case X86::VFNMSUB132SDZr_Intkz
:
5094 case X86::VFMSUB213SDZr_Intkz
: case X86::VFNMSUB213SDZr_Intkz
:
5095 case X86::VFMSUB231SDZr_Intkz
: case X86::VFNMSUB231SDZr_Intkz
:
5105 MachineInstr
*X86InstrInfo::foldMemoryOperandImpl(
5106 MachineFunction
&MF
, MachineInstr
&MI
, ArrayRef
<unsigned> Ops
,
5107 MachineBasicBlock::iterator InsertPt
, MachineInstr
&LoadMI
,
5108 LiveIntervals
*LIS
) const {
5110 // TODO: Support the case where LoadMI loads a wide register, but MI
5111 // only uses a subreg.
5112 for (auto Op
: Ops
) {
5113 if (MI
.getOperand(Op
).getSubReg())
5117 // If loading from a FrameIndex, fold directly from the FrameIndex.
5118 unsigned NumOps
= LoadMI
.getDesc().getNumOperands();
5120 if (isLoadFromStackSlot(LoadMI
, FrameIndex
)) {
5121 if (isNonFoldablePartialRegisterLoad(LoadMI
, MI
, MF
))
5123 return foldMemoryOperandImpl(MF
, MI
, Ops
, InsertPt
, FrameIndex
, LIS
);
5126 // Check switch flag
5127 if (NoFusing
) return nullptr;
5129 // Avoid partial and undef register update stalls unless optimizing for size.
5130 if (!MF
.getFunction().hasOptSize() &&
5131 (hasPartialRegUpdate(MI
.getOpcode(), Subtarget
, /*ForLoadFold*/true) ||
5132 shouldPreventUndefRegUpdateMemFold(MF
, MI
)))
5135 // Determine the alignment of the load.
5136 unsigned Alignment
= 0;
5137 if (LoadMI
.hasOneMemOperand())
5138 Alignment
= (*LoadMI
.memoperands_begin())->getAlignment();
5140 switch (LoadMI
.getOpcode()) {
5141 case X86::AVX512_512_SET0
:
5142 case X86::AVX512_512_SETALLONES
:
5145 case X86::AVX2_SETALLONES
:
5146 case X86::AVX1_SETALLONES
:
5148 case X86::AVX512_256_SET0
:
5152 case X86::V_SETALLONES
:
5153 case X86::AVX512_128_SET0
:
5158 case X86::AVX512_FsFLD0SD
:
5162 case X86::AVX512_FsFLD0SS
:
5168 if (Ops
.size() == 2 && Ops
[0] == 0 && Ops
[1] == 1) {
5169 unsigned NewOpc
= 0;
5170 switch (MI
.getOpcode()) {
5171 default: return nullptr;
5172 case X86::TEST8rr
: NewOpc
= X86::CMP8ri
; break;
5173 case X86::TEST16rr
: NewOpc
= X86::CMP16ri8
; break;
5174 case X86::TEST32rr
: NewOpc
= X86::CMP32ri8
; break;
5175 case X86::TEST64rr
: NewOpc
= X86::CMP64ri8
; break;
5177 // Change to CMPXXri r, 0 first.
5178 MI
.setDesc(get(NewOpc
));
5179 MI
.getOperand(1).ChangeToImmediate(0);
5180 } else if (Ops
.size() != 1)
5183 // Make sure the subregisters match.
5184 // Otherwise we risk changing the size of the load.
5185 if (LoadMI
.getOperand(0).getSubReg() != MI
.getOperand(Ops
[0]).getSubReg())
5188 SmallVector
<MachineOperand
,X86::AddrNumOperands
> MOs
;
5189 switch (LoadMI
.getOpcode()) {
5192 case X86::V_SETALLONES
:
5193 case X86::AVX2_SETALLONES
:
5194 case X86::AVX1_SETALLONES
:
5196 case X86::AVX512_128_SET0
:
5197 case X86::AVX512_256_SET0
:
5198 case X86::AVX512_512_SET0
:
5199 case X86::AVX512_512_SETALLONES
:
5201 case X86::AVX512_FsFLD0SD
:
5203 case X86::AVX512_FsFLD0SS
: {
5204 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
5205 // Create a constant-pool entry and operands to load from it.
5207 // Medium and large mode can't fold loads this way.
5208 if (MF
.getTarget().getCodeModel() != CodeModel::Small
&&
5209 MF
.getTarget().getCodeModel() != CodeModel::Kernel
)
5212 // x86-32 PIC requires a PIC base register for constant pools.
5213 unsigned PICBase
= 0;
5214 if (MF
.getTarget().isPositionIndependent()) {
5215 if (Subtarget
.is64Bit())
5218 // FIXME: PICBase = getGlobalBaseReg(&MF);
5219 // This doesn't work for several reasons.
5220 // 1. GlobalBaseReg may have been spilled.
5221 // 2. It may not be live at MI.
5225 // Create a constant-pool entry.
5226 MachineConstantPool
&MCP
= *MF
.getConstantPool();
5228 unsigned Opc
= LoadMI
.getOpcode();
5229 if (Opc
== X86::FsFLD0SS
|| Opc
== X86::AVX512_FsFLD0SS
)
5230 Ty
= Type::getFloatTy(MF
.getFunction().getContext());
5231 else if (Opc
== X86::FsFLD0SD
|| Opc
== X86::AVX512_FsFLD0SD
)
5232 Ty
= Type::getDoubleTy(MF
.getFunction().getContext());
5233 else if (Opc
== X86::AVX512_512_SET0
|| Opc
== X86::AVX512_512_SETALLONES
)
5234 Ty
= VectorType::get(Type::getInt32Ty(MF
.getFunction().getContext()),16);
5235 else if (Opc
== X86::AVX2_SETALLONES
|| Opc
== X86::AVX_SET0
||
5236 Opc
== X86::AVX512_256_SET0
|| Opc
== X86::AVX1_SETALLONES
)
5237 Ty
= VectorType::get(Type::getInt32Ty(MF
.getFunction().getContext()), 8);
5238 else if (Opc
== X86::MMX_SET0
)
5239 Ty
= VectorType::get(Type::getInt32Ty(MF
.getFunction().getContext()), 2);
5241 Ty
= VectorType::get(Type::getInt32Ty(MF
.getFunction().getContext()), 4);
5243 bool IsAllOnes
= (Opc
== X86::V_SETALLONES
|| Opc
== X86::AVX2_SETALLONES
||
5244 Opc
== X86::AVX512_512_SETALLONES
||
5245 Opc
== X86::AVX1_SETALLONES
);
5246 const Constant
*C
= IsAllOnes
? Constant::getAllOnesValue(Ty
) :
5247 Constant::getNullValue(Ty
);
5248 unsigned CPI
= MCP
.getConstantPoolIndex(C
, Alignment
);
5250 // Create operands to load from the constant pool entry.
5251 MOs
.push_back(MachineOperand::CreateReg(PICBase
, false));
5252 MOs
.push_back(MachineOperand::CreateImm(1));
5253 MOs
.push_back(MachineOperand::CreateReg(0, false));
5254 MOs
.push_back(MachineOperand::CreateCPI(CPI
, 0));
5255 MOs
.push_back(MachineOperand::CreateReg(0, false));
5259 if (isNonFoldablePartialRegisterLoad(LoadMI
, MI
, MF
))
5262 // Folding a normal load. Just copy the load's address operands.
5263 MOs
.append(LoadMI
.operands_begin() + NumOps
- X86::AddrNumOperands
,
5264 LoadMI
.operands_begin() + NumOps
);
5268 return foldMemoryOperandImpl(MF
, MI
, Ops
[0], MOs
, InsertPt
,
5269 /*Size=*/0, Alignment
, /*AllowCommute=*/true);
5272 static SmallVector
<MachineMemOperand
*, 2>
5273 extractLoadMMOs(ArrayRef
<MachineMemOperand
*> MMOs
, MachineFunction
&MF
) {
5274 SmallVector
<MachineMemOperand
*, 2> LoadMMOs
;
5276 for (MachineMemOperand
*MMO
: MMOs
) {
5280 if (!MMO
->isStore()) {
5282 LoadMMOs
.push_back(MMO
);
5284 // Clone the MMO and unset the store flag.
5285 LoadMMOs
.push_back(MF
.getMachineMemOperand(
5286 MMO
, MMO
->getFlags() & ~MachineMemOperand::MOStore
));
5293 static SmallVector
<MachineMemOperand
*, 2>
5294 extractStoreMMOs(ArrayRef
<MachineMemOperand
*> MMOs
, MachineFunction
&MF
) {
5295 SmallVector
<MachineMemOperand
*, 2> StoreMMOs
;
5297 for (MachineMemOperand
*MMO
: MMOs
) {
5298 if (!MMO
->isStore())
5301 if (!MMO
->isLoad()) {
5303 StoreMMOs
.push_back(MMO
);
5305 // Clone the MMO and unset the load flag.
5306 StoreMMOs
.push_back(MF
.getMachineMemOperand(
5307 MMO
, MMO
->getFlags() & ~MachineMemOperand::MOLoad
));
5314 bool X86InstrInfo::unfoldMemoryOperand(
5315 MachineFunction
&MF
, MachineInstr
&MI
, unsigned Reg
, bool UnfoldLoad
,
5316 bool UnfoldStore
, SmallVectorImpl
<MachineInstr
*> &NewMIs
) const {
5317 const X86MemoryFoldTableEntry
*I
= lookupUnfoldTable(MI
.getOpcode());
5320 unsigned Opc
= I
->DstOp
;
5321 unsigned Index
= I
->Flags
& TB_INDEX_MASK
;
5322 bool FoldedLoad
= I
->Flags
& TB_FOLDED_LOAD
;
5323 bool FoldedStore
= I
->Flags
& TB_FOLDED_STORE
;
5324 if (UnfoldLoad
&& !FoldedLoad
)
5326 UnfoldLoad
&= FoldedLoad
;
5327 if (UnfoldStore
&& !FoldedStore
)
5329 UnfoldStore
&= FoldedStore
;
5331 const MCInstrDesc
&MCID
= get(Opc
);
5332 const TargetRegisterClass
*RC
= getRegClass(MCID
, Index
, &RI
, MF
);
5333 // TODO: Check if 32-byte or greater accesses are slow too?
5334 if (!MI
.hasOneMemOperand() && RC
== &X86::VR128RegClass
&&
5335 Subtarget
.isUnalignedMem16Slow())
5336 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
5337 // conservatively assume the address is unaligned. That's bad for
5340 SmallVector
<MachineOperand
, X86::AddrNumOperands
> AddrOps
;
5341 SmallVector
<MachineOperand
,2> BeforeOps
;
5342 SmallVector
<MachineOperand
,2> AfterOps
;
5343 SmallVector
<MachineOperand
,4> ImpOps
;
5344 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
5345 MachineOperand
&Op
= MI
.getOperand(i
);
5346 if (i
>= Index
&& i
< Index
+ X86::AddrNumOperands
)
5347 AddrOps
.push_back(Op
);
5348 else if (Op
.isReg() && Op
.isImplicit())
5349 ImpOps
.push_back(Op
);
5351 BeforeOps
.push_back(Op
);
5353 AfterOps
.push_back(Op
);
5356 // Emit the load instruction.
5358 auto MMOs
= extractLoadMMOs(MI
.memoperands(), MF
);
5359 loadRegFromAddr(MF
, Reg
, AddrOps
, RC
, MMOs
, NewMIs
);
5361 // Address operands cannot be marked isKill.
5362 for (unsigned i
= 1; i
!= 1 + X86::AddrNumOperands
; ++i
) {
5363 MachineOperand
&MO
= NewMIs
[0]->getOperand(i
);
5365 MO
.setIsKill(false);
5370 // Emit the data processing instruction.
5371 MachineInstr
*DataMI
= MF
.CreateMachineInstr(MCID
, MI
.getDebugLoc(), true);
5372 MachineInstrBuilder
MIB(MF
, DataMI
);
5375 MIB
.addReg(Reg
, RegState::Define
);
5376 for (MachineOperand
&BeforeOp
: BeforeOps
)
5380 for (MachineOperand
&AfterOp
: AfterOps
)
5382 for (MachineOperand
&ImpOp
: ImpOps
) {
5383 MIB
.addReg(ImpOp
.getReg(),
5384 getDefRegState(ImpOp
.isDef()) |
5385 RegState::Implicit
|
5386 getKillRegState(ImpOp
.isKill()) |
5387 getDeadRegState(ImpOp
.isDead()) |
5388 getUndefRegState(ImpOp
.isUndef()));
5390 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
5391 switch (DataMI
->getOpcode()) {
5393 case X86::CMP64ri32
:
5400 MachineOperand
&MO0
= DataMI
->getOperand(0);
5401 MachineOperand
&MO1
= DataMI
->getOperand(1);
5402 if (MO1
.getImm() == 0) {
5404 switch (DataMI
->getOpcode()) {
5405 default: llvm_unreachable("Unreachable!");
5407 case X86::CMP64ri32
: NewOpc
= X86::TEST64rr
; break;
5409 case X86::CMP32ri
: NewOpc
= X86::TEST32rr
; break;
5411 case X86::CMP16ri
: NewOpc
= X86::TEST16rr
; break;
5412 case X86::CMP8ri
: NewOpc
= X86::TEST8rr
; break;
5414 DataMI
->setDesc(get(NewOpc
));
5415 MO1
.ChangeToRegister(MO0
.getReg(), false);
5419 NewMIs
.push_back(DataMI
);
5421 // Emit the store instruction.
5423 const TargetRegisterClass
*DstRC
= getRegClass(MCID
, 0, &RI
, MF
);
5424 auto MMOs
= extractStoreMMOs(MI
.memoperands(), MF
);
5425 storeRegToAddr(MF
, Reg
, true, AddrOps
, DstRC
, MMOs
, NewMIs
);
5432 X86InstrInfo::unfoldMemoryOperand(SelectionDAG
&DAG
, SDNode
*N
,
5433 SmallVectorImpl
<SDNode
*> &NewNodes
) const {
5434 if (!N
->isMachineOpcode())
5437 const X86MemoryFoldTableEntry
*I
= lookupUnfoldTable(N
->getMachineOpcode());
5440 unsigned Opc
= I
->DstOp
;
5441 unsigned Index
= I
->Flags
& TB_INDEX_MASK
;
5442 bool FoldedLoad
= I
->Flags
& TB_FOLDED_LOAD
;
5443 bool FoldedStore
= I
->Flags
& TB_FOLDED_STORE
;
5444 const MCInstrDesc
&MCID
= get(Opc
);
5445 MachineFunction
&MF
= DAG
.getMachineFunction();
5446 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
5447 const TargetRegisterClass
*RC
= getRegClass(MCID
, Index
, &RI
, MF
);
5448 unsigned NumDefs
= MCID
.NumDefs
;
5449 std::vector
<SDValue
> AddrOps
;
5450 std::vector
<SDValue
> BeforeOps
;
5451 std::vector
<SDValue
> AfterOps
;
5453 unsigned NumOps
= N
->getNumOperands();
5454 for (unsigned i
= 0; i
!= NumOps
-1; ++i
) {
5455 SDValue Op
= N
->getOperand(i
);
5456 if (i
>= Index
-NumDefs
&& i
< Index
-NumDefs
+ X86::AddrNumOperands
)
5457 AddrOps
.push_back(Op
);
5458 else if (i
< Index
-NumDefs
)
5459 BeforeOps
.push_back(Op
);
5460 else if (i
> Index
-NumDefs
)
5461 AfterOps
.push_back(Op
);
5463 SDValue Chain
= N
->getOperand(NumOps
-1);
5464 AddrOps
.push_back(Chain
);
5466 // Emit the load instruction.
5467 SDNode
*Load
= nullptr;
5469 EVT VT
= *TRI
.legalclasstypes_begin(*RC
);
5470 auto MMOs
= extractLoadMMOs(cast
<MachineSDNode
>(N
)->memoperands(), MF
);
5471 if (MMOs
.empty() && RC
== &X86::VR128RegClass
&&
5472 Subtarget
.isUnalignedMem16Slow())
5473 // Do not introduce a slow unaligned load.
5475 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
5476 // memory access is slow above.
5477 unsigned Alignment
= std::max
<uint32_t>(TRI
.getSpillSize(*RC
), 16);
5478 bool isAligned
= !MMOs
.empty() && MMOs
.front()->getAlignment() >= Alignment
;
5479 Load
= DAG
.getMachineNode(getLoadRegOpcode(0, RC
, isAligned
, Subtarget
), dl
,
5480 VT
, MVT::Other
, AddrOps
);
5481 NewNodes
.push_back(Load
);
5483 // Preserve memory reference information.
5484 DAG
.setNodeMemRefs(cast
<MachineSDNode
>(Load
), MMOs
);
5487 // Emit the data processing instruction.
5488 std::vector
<EVT
> VTs
;
5489 const TargetRegisterClass
*DstRC
= nullptr;
5490 if (MCID
.getNumDefs() > 0) {
5491 DstRC
= getRegClass(MCID
, 0, &RI
, MF
);
5492 VTs
.push_back(*TRI
.legalclasstypes_begin(*DstRC
));
5494 for (unsigned i
= 0, e
= N
->getNumValues(); i
!= e
; ++i
) {
5495 EVT VT
= N
->getValueType(i
);
5496 if (VT
!= MVT::Other
&& i
>= (unsigned)MCID
.getNumDefs())
5500 BeforeOps
.push_back(SDValue(Load
, 0));
5501 BeforeOps
.insert(BeforeOps
.end(), AfterOps
.begin(), AfterOps
.end());
5502 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
5505 case X86::CMP64ri32
:
5512 if (isNullConstant(BeforeOps
[1])) {
5514 default: llvm_unreachable("Unreachable!");
5516 case X86::CMP64ri32
: Opc
= X86::TEST64rr
; break;
5518 case X86::CMP32ri
: Opc
= X86::TEST32rr
; break;
5520 case X86::CMP16ri
: Opc
= X86::TEST16rr
; break;
5521 case X86::CMP8ri
: Opc
= X86::TEST8rr
; break;
5523 BeforeOps
[1] = BeforeOps
[0];
5526 SDNode
*NewNode
= DAG
.getMachineNode(Opc
, dl
, VTs
, BeforeOps
);
5527 NewNodes
.push_back(NewNode
);
5529 // Emit the store instruction.
5532 AddrOps
.push_back(SDValue(NewNode
, 0));
5533 AddrOps
.push_back(Chain
);
5534 auto MMOs
= extractStoreMMOs(cast
<MachineSDNode
>(N
)->memoperands(), MF
);
5535 if (MMOs
.empty() && RC
== &X86::VR128RegClass
&&
5536 Subtarget
.isUnalignedMem16Slow())
5537 // Do not introduce a slow unaligned store.
5539 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
5540 // memory access is slow above.
5541 unsigned Alignment
= std::max
<uint32_t>(TRI
.getSpillSize(*RC
), 16);
5542 bool isAligned
= !MMOs
.empty() && MMOs
.front()->getAlignment() >= Alignment
;
5544 DAG
.getMachineNode(getStoreRegOpcode(0, DstRC
, isAligned
, Subtarget
),
5545 dl
, MVT::Other
, AddrOps
);
5546 NewNodes
.push_back(Store
);
5548 // Preserve memory reference information.
5549 DAG
.setNodeMemRefs(cast
<MachineSDNode
>(Store
), MMOs
);
5555 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc
,
5556 bool UnfoldLoad
, bool UnfoldStore
,
5557 unsigned *LoadRegIndex
) const {
5558 const X86MemoryFoldTableEntry
*I
= lookupUnfoldTable(Opc
);
5561 bool FoldedLoad
= I
->Flags
& TB_FOLDED_LOAD
;
5562 bool FoldedStore
= I
->Flags
& TB_FOLDED_STORE
;
5563 if (UnfoldLoad
&& !FoldedLoad
)
5565 if (UnfoldStore
&& !FoldedStore
)
5568 *LoadRegIndex
= I
->Flags
& TB_INDEX_MASK
;
5573 X86InstrInfo::areLoadsFromSameBasePtr(SDNode
*Load1
, SDNode
*Load2
,
5574 int64_t &Offset1
, int64_t &Offset2
) const {
5575 if (!Load1
->isMachineOpcode() || !Load2
->isMachineOpcode())
5577 unsigned Opc1
= Load1
->getMachineOpcode();
5578 unsigned Opc2
= Load2
->getMachineOpcode();
5580 default: return false;
5589 case X86::MOVSSrm_alt
:
5591 case X86::MOVSDrm_alt
:
5592 case X86::MMX_MOVD64rm
:
5593 case X86::MMX_MOVQ64rm
:
5600 // AVX load instructions
5602 case X86::VMOVSSrm_alt
:
5604 case X86::VMOVSDrm_alt
:
5605 case X86::VMOVAPSrm
:
5606 case X86::VMOVUPSrm
:
5607 case X86::VMOVAPDrm
:
5608 case X86::VMOVUPDrm
:
5609 case X86::VMOVDQArm
:
5610 case X86::VMOVDQUrm
:
5611 case X86::VMOVAPSYrm
:
5612 case X86::VMOVUPSYrm
:
5613 case X86::VMOVAPDYrm
:
5614 case X86::VMOVUPDYrm
:
5615 case X86::VMOVDQAYrm
:
5616 case X86::VMOVDQUYrm
:
5617 // AVX512 load instructions
5618 case X86::VMOVSSZrm
:
5619 case X86::VMOVSSZrm_alt
:
5620 case X86::VMOVSDZrm
:
5621 case X86::VMOVSDZrm_alt
:
5622 case X86::VMOVAPSZ128rm
:
5623 case X86::VMOVUPSZ128rm
:
5624 case X86::VMOVAPSZ128rm_NOVLX
:
5625 case X86::VMOVUPSZ128rm_NOVLX
:
5626 case X86::VMOVAPDZ128rm
:
5627 case X86::VMOVUPDZ128rm
:
5628 case X86::VMOVDQU8Z128rm
:
5629 case X86::VMOVDQU16Z128rm
:
5630 case X86::VMOVDQA32Z128rm
:
5631 case X86::VMOVDQU32Z128rm
:
5632 case X86::VMOVDQA64Z128rm
:
5633 case X86::VMOVDQU64Z128rm
:
5634 case X86::VMOVAPSZ256rm
:
5635 case X86::VMOVUPSZ256rm
:
5636 case X86::VMOVAPSZ256rm_NOVLX
:
5637 case X86::VMOVUPSZ256rm_NOVLX
:
5638 case X86::VMOVAPDZ256rm
:
5639 case X86::VMOVUPDZ256rm
:
5640 case X86::VMOVDQU8Z256rm
:
5641 case X86::VMOVDQU16Z256rm
:
5642 case X86::VMOVDQA32Z256rm
:
5643 case X86::VMOVDQU32Z256rm
:
5644 case X86::VMOVDQA64Z256rm
:
5645 case X86::VMOVDQU64Z256rm
:
5646 case X86::VMOVAPSZrm
:
5647 case X86::VMOVUPSZrm
:
5648 case X86::VMOVAPDZrm
:
5649 case X86::VMOVUPDZrm
:
5650 case X86::VMOVDQU8Zrm
:
5651 case X86::VMOVDQU16Zrm
:
5652 case X86::VMOVDQA32Zrm
:
5653 case X86::VMOVDQU32Zrm
:
5654 case X86::VMOVDQA64Zrm
:
5655 case X86::VMOVDQU64Zrm
:
5663 default: return false;
5672 case X86::MOVSSrm_alt
:
5674 case X86::MOVSDrm_alt
:
5675 case X86::MMX_MOVD64rm
:
5676 case X86::MMX_MOVQ64rm
:
5683 // AVX load instructions
5685 case X86::VMOVSSrm_alt
:
5687 case X86::VMOVSDrm_alt
:
5688 case X86::VMOVAPSrm
:
5689 case X86::VMOVUPSrm
:
5690 case X86::VMOVAPDrm
:
5691 case X86::VMOVUPDrm
:
5692 case X86::VMOVDQArm
:
5693 case X86::VMOVDQUrm
:
5694 case X86::VMOVAPSYrm
:
5695 case X86::VMOVUPSYrm
:
5696 case X86::VMOVAPDYrm
:
5697 case X86::VMOVUPDYrm
:
5698 case X86::VMOVDQAYrm
:
5699 case X86::VMOVDQUYrm
:
5700 // AVX512 load instructions
5701 case X86::VMOVSSZrm
:
5702 case X86::VMOVSSZrm_alt
:
5703 case X86::VMOVSDZrm
:
5704 case X86::VMOVSDZrm_alt
:
5705 case X86::VMOVAPSZ128rm
:
5706 case X86::VMOVUPSZ128rm
:
5707 case X86::VMOVAPSZ128rm_NOVLX
:
5708 case X86::VMOVUPSZ128rm_NOVLX
:
5709 case X86::VMOVAPDZ128rm
:
5710 case X86::VMOVUPDZ128rm
:
5711 case X86::VMOVDQU8Z128rm
:
5712 case X86::VMOVDQU16Z128rm
:
5713 case X86::VMOVDQA32Z128rm
:
5714 case X86::VMOVDQU32Z128rm
:
5715 case X86::VMOVDQA64Z128rm
:
5716 case X86::VMOVDQU64Z128rm
:
5717 case X86::VMOVAPSZ256rm
:
5718 case X86::VMOVUPSZ256rm
:
5719 case X86::VMOVAPSZ256rm_NOVLX
:
5720 case X86::VMOVUPSZ256rm_NOVLX
:
5721 case X86::VMOVAPDZ256rm
:
5722 case X86::VMOVUPDZ256rm
:
5723 case X86::VMOVDQU8Z256rm
:
5724 case X86::VMOVDQU16Z256rm
:
5725 case X86::VMOVDQA32Z256rm
:
5726 case X86::VMOVDQU32Z256rm
:
5727 case X86::VMOVDQA64Z256rm
:
5728 case X86::VMOVDQU64Z256rm
:
5729 case X86::VMOVAPSZrm
:
5730 case X86::VMOVUPSZrm
:
5731 case X86::VMOVAPDZrm
:
5732 case X86::VMOVUPDZrm
:
5733 case X86::VMOVDQU8Zrm
:
5734 case X86::VMOVDQU16Zrm
:
5735 case X86::VMOVDQA32Zrm
:
5736 case X86::VMOVDQU32Zrm
:
5737 case X86::VMOVDQA64Zrm
:
5738 case X86::VMOVDQU64Zrm
:
5746 // Lambda to check if both the loads have the same value for an operand index.
5747 auto HasSameOp
= [&](int I
) {
5748 return Load1
->getOperand(I
) == Load2
->getOperand(I
);
5751 // All operands except the displacement should match.
5752 if (!HasSameOp(X86::AddrBaseReg
) || !HasSameOp(X86::AddrScaleAmt
) ||
5753 !HasSameOp(X86::AddrIndexReg
) || !HasSameOp(X86::AddrSegmentReg
))
5756 // Chain Operand must be the same.
5760 // Now let's examine if the displacements are constants.
5761 auto Disp1
= dyn_cast
<ConstantSDNode
>(Load1
->getOperand(X86::AddrDisp
));
5762 auto Disp2
= dyn_cast
<ConstantSDNode
>(Load2
->getOperand(X86::AddrDisp
));
5763 if (!Disp1
|| !Disp2
)
5766 Offset1
= Disp1
->getSExtValue();
5767 Offset2
= Disp2
->getSExtValue();
5771 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode
*Load1
, SDNode
*Load2
,
5772 int64_t Offset1
, int64_t Offset2
,
5773 unsigned NumLoads
) const {
5774 assert(Offset2
> Offset1
);
5775 if ((Offset2
- Offset1
) / 8 > 64)
5778 unsigned Opc1
= Load1
->getMachineOpcode();
5779 unsigned Opc2
= Load2
->getMachineOpcode();
5781 return false; // FIXME: overly conservative?
5788 case X86::MMX_MOVD64rm
:
5789 case X86::MMX_MOVQ64rm
:
5793 EVT VT
= Load1
->getValueType(0);
5794 switch (VT
.getSimpleVT().SimpleTy
) {
5796 // XMM registers. In 64-bit mode we can be a bit more aggressive since we
5797 // have 16 of them to play with.
5798 if (Subtarget
.is64Bit()) {
5801 } else if (NumLoads
) {
5820 reverseBranchCondition(SmallVectorImpl
<MachineOperand
> &Cond
) const {
5821 assert(Cond
.size() == 1 && "Invalid X86 branch condition!");
5822 X86::CondCode CC
= static_cast<X86::CondCode
>(Cond
[0].getImm());
5823 Cond
[0].setImm(GetOppositeBranchCondition(CC
));
5828 isSafeToMoveRegClassDefs(const TargetRegisterClass
*RC
) const {
5829 // FIXME: Return false for x87 stack register classes for now. We can't
5830 // allow any loads of these registers before FpGet_ST0_80.
5831 return !(RC
== &X86::CCRRegClass
|| RC
== &X86::DFCCRRegClass
||
5832 RC
== &X86::RFP32RegClass
|| RC
== &X86::RFP64RegClass
||
5833 RC
== &X86::RFP80RegClass
);
5836 /// Return a virtual register initialized with the
5837 /// the global base register value. Output instructions required to
5838 /// initialize the register in the function entry block, if necessary.
5840 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
5842 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction
*MF
) const {
5843 assert((!Subtarget
.is64Bit() ||
5844 MF
->getTarget().getCodeModel() == CodeModel::Medium
||
5845 MF
->getTarget().getCodeModel() == CodeModel::Large
) &&
5846 "X86-64 PIC uses RIP relative addressing");
5848 X86MachineFunctionInfo
*X86FI
= MF
->getInfo
<X86MachineFunctionInfo
>();
5849 unsigned GlobalBaseReg
= X86FI
->getGlobalBaseReg();
5850 if (GlobalBaseReg
!= 0)
5851 return GlobalBaseReg
;
5853 // Create the register. The code to initialize it is inserted
5854 // later, by the CGBR pass (below).
5855 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
5856 GlobalBaseReg
= RegInfo
.createVirtualRegister(
5857 Subtarget
.is64Bit() ? &X86::GR64_NOSPRegClass
: &X86::GR32_NOSPRegClass
);
5858 X86FI
->setGlobalBaseReg(GlobalBaseReg
);
5859 return GlobalBaseReg
;
5862 // These are the replaceable SSE instructions. Some of these have Int variants
5863 // that we don't include here. We don't want to replace instructions selected
5865 static const uint16_t ReplaceableInstrs
[][3] = {
5866 //PackedSingle PackedDouble PackedInt
5867 { X86::MOVAPSmr
, X86::MOVAPDmr
, X86::MOVDQAmr
},
5868 { X86::MOVAPSrm
, X86::MOVAPDrm
, X86::MOVDQArm
},
5869 { X86::MOVAPSrr
, X86::MOVAPDrr
, X86::MOVDQArr
},
5870 { X86::MOVUPSmr
, X86::MOVUPDmr
, X86::MOVDQUmr
},
5871 { X86::MOVUPSrm
, X86::MOVUPDrm
, X86::MOVDQUrm
},
5872 { X86::MOVLPSmr
, X86::MOVLPDmr
, X86::MOVPQI2QImr
},
5873 { X86::MOVSDmr
, X86::MOVSDmr
, X86::MOVPQI2QImr
},
5874 { X86::MOVSSmr
, X86::MOVSSmr
, X86::MOVPDI2DImr
},
5875 { X86::MOVSDrm
, X86::MOVSDrm
, X86::MOVQI2PQIrm
},
5876 { X86::MOVSDrm_alt
,X86::MOVSDrm_alt
,X86::MOVQI2PQIrm
},
5877 { X86::MOVSSrm
, X86::MOVSSrm
, X86::MOVDI2PDIrm
},
5878 { X86::MOVSSrm_alt
,X86::MOVSSrm_alt
,X86::MOVDI2PDIrm
},
5879 { X86::MOVNTPSmr
, X86::MOVNTPDmr
, X86::MOVNTDQmr
},
5880 { X86::ANDNPSrm
, X86::ANDNPDrm
, X86::PANDNrm
},
5881 { X86::ANDNPSrr
, X86::ANDNPDrr
, X86::PANDNrr
},
5882 { X86::ANDPSrm
, X86::ANDPDrm
, X86::PANDrm
},
5883 { X86::ANDPSrr
, X86::ANDPDrr
, X86::PANDrr
},
5884 { X86::ORPSrm
, X86::ORPDrm
, X86::PORrm
},
5885 { X86::ORPSrr
, X86::ORPDrr
, X86::PORrr
},
5886 { X86::XORPSrm
, X86::XORPDrm
, X86::PXORrm
},
5887 { X86::XORPSrr
, X86::XORPDrr
, X86::PXORrr
},
5888 { X86::UNPCKLPDrm
, X86::UNPCKLPDrm
, X86::PUNPCKLQDQrm
},
5889 { X86::MOVLHPSrr
, X86::UNPCKLPDrr
, X86::PUNPCKLQDQrr
},
5890 { X86::UNPCKHPDrm
, X86::UNPCKHPDrm
, X86::PUNPCKHQDQrm
},
5891 { X86::UNPCKHPDrr
, X86::UNPCKHPDrr
, X86::PUNPCKHQDQrr
},
5892 { X86::UNPCKLPSrm
, X86::UNPCKLPSrm
, X86::PUNPCKLDQrm
},
5893 { X86::UNPCKLPSrr
, X86::UNPCKLPSrr
, X86::PUNPCKLDQrr
},
5894 { X86::UNPCKHPSrm
, X86::UNPCKHPSrm
, X86::PUNPCKHDQrm
},
5895 { X86::UNPCKHPSrr
, X86::UNPCKHPSrr
, X86::PUNPCKHDQrr
},
5896 { X86::EXTRACTPSmr
, X86::EXTRACTPSmr
, X86::PEXTRDmr
},
5897 { X86::EXTRACTPSrr
, X86::EXTRACTPSrr
, X86::PEXTRDrr
},
5898 // AVX 128-bit support
5899 { X86::VMOVAPSmr
, X86::VMOVAPDmr
, X86::VMOVDQAmr
},
5900 { X86::VMOVAPSrm
, X86::VMOVAPDrm
, X86::VMOVDQArm
},
5901 { X86::VMOVAPSrr
, X86::VMOVAPDrr
, X86::VMOVDQArr
},
5902 { X86::VMOVUPSmr
, X86::VMOVUPDmr
, X86::VMOVDQUmr
},
5903 { X86::VMOVUPSrm
, X86::VMOVUPDrm
, X86::VMOVDQUrm
},
5904 { X86::VMOVLPSmr
, X86::VMOVLPDmr
, X86::VMOVPQI2QImr
},
5905 { X86::VMOVSDmr
, X86::VMOVSDmr
, X86::VMOVPQI2QImr
},
5906 { X86::VMOVSSmr
, X86::VMOVSSmr
, X86::VMOVPDI2DImr
},
5907 { X86::VMOVSDrm
, X86::VMOVSDrm
, X86::VMOVQI2PQIrm
},
5908 { X86::VMOVSDrm_alt
,X86::VMOVSDrm_alt
,X86::VMOVQI2PQIrm
},
5909 { X86::VMOVSSrm
, X86::VMOVSSrm
, X86::VMOVDI2PDIrm
},
5910 { X86::VMOVSSrm_alt
,X86::VMOVSSrm_alt
,X86::VMOVDI2PDIrm
},
5911 { X86::VMOVNTPSmr
, X86::VMOVNTPDmr
, X86::VMOVNTDQmr
},
5912 { X86::VANDNPSrm
, X86::VANDNPDrm
, X86::VPANDNrm
},
5913 { X86::VANDNPSrr
, X86::VANDNPDrr
, X86::VPANDNrr
},
5914 { X86::VANDPSrm
, X86::VANDPDrm
, X86::VPANDrm
},
5915 { X86::VANDPSrr
, X86::VANDPDrr
, X86::VPANDrr
},
5916 { X86::VORPSrm
, X86::VORPDrm
, X86::VPORrm
},
5917 { X86::VORPSrr
, X86::VORPDrr
, X86::VPORrr
},
5918 { X86::VXORPSrm
, X86::VXORPDrm
, X86::VPXORrm
},
5919 { X86::VXORPSrr
, X86::VXORPDrr
, X86::VPXORrr
},
5920 { X86::VUNPCKLPDrm
, X86::VUNPCKLPDrm
, X86::VPUNPCKLQDQrm
},
5921 { X86::VMOVLHPSrr
, X86::VUNPCKLPDrr
, X86::VPUNPCKLQDQrr
},
5922 { X86::VUNPCKHPDrm
, X86::VUNPCKHPDrm
, X86::VPUNPCKHQDQrm
},
5923 { X86::VUNPCKHPDrr
, X86::VUNPCKHPDrr
, X86::VPUNPCKHQDQrr
},
5924 { X86::VUNPCKLPSrm
, X86::VUNPCKLPSrm
, X86::VPUNPCKLDQrm
},
5925 { X86::VUNPCKLPSrr
, X86::VUNPCKLPSrr
, X86::VPUNPCKLDQrr
},
5926 { X86::VUNPCKHPSrm
, X86::VUNPCKHPSrm
, X86::VPUNPCKHDQrm
},
5927 { X86::VUNPCKHPSrr
, X86::VUNPCKHPSrr
, X86::VPUNPCKHDQrr
},
5928 { X86::VEXTRACTPSmr
, X86::VEXTRACTPSmr
, X86::VPEXTRDmr
},
5929 { X86::VEXTRACTPSrr
, X86::VEXTRACTPSrr
, X86::VPEXTRDrr
},
5930 // AVX 256-bit support
5931 { X86::VMOVAPSYmr
, X86::VMOVAPDYmr
, X86::VMOVDQAYmr
},
5932 { X86::VMOVAPSYrm
, X86::VMOVAPDYrm
, X86::VMOVDQAYrm
},
5933 { X86::VMOVAPSYrr
, X86::VMOVAPDYrr
, X86::VMOVDQAYrr
},
5934 { X86::VMOVUPSYmr
, X86::VMOVUPDYmr
, X86::VMOVDQUYmr
},
5935 { X86::VMOVUPSYrm
, X86::VMOVUPDYrm
, X86::VMOVDQUYrm
},
5936 { X86::VMOVNTPSYmr
, X86::VMOVNTPDYmr
, X86::VMOVNTDQYmr
},
5937 { X86::VPERMPSYrm
, X86::VPERMPSYrm
, X86::VPERMDYrm
},
5938 { X86::VPERMPSYrr
, X86::VPERMPSYrr
, X86::VPERMDYrr
},
5939 { X86::VPERMPDYmi
, X86::VPERMPDYmi
, X86::VPERMQYmi
},
5940 { X86::VPERMPDYri
, X86::VPERMPDYri
, X86::VPERMQYri
},
5942 { X86::VMOVLPSZ128mr
, X86::VMOVLPDZ128mr
, X86::VMOVPQI2QIZmr
},
5943 { X86::VMOVNTPSZ128mr
, X86::VMOVNTPDZ128mr
, X86::VMOVNTDQZ128mr
},
5944 { X86::VMOVNTPSZ256mr
, X86::VMOVNTPDZ256mr
, X86::VMOVNTDQZ256mr
},
5945 { X86::VMOVNTPSZmr
, X86::VMOVNTPDZmr
, X86::VMOVNTDQZmr
},
5946 { X86::VMOVSDZmr
, X86::VMOVSDZmr
, X86::VMOVPQI2QIZmr
},
5947 { X86::VMOVSSZmr
, X86::VMOVSSZmr
, X86::VMOVPDI2DIZmr
},
5948 { X86::VMOVSDZrm
, X86::VMOVSDZrm
, X86::VMOVQI2PQIZrm
},
5949 { X86::VMOVSDZrm_alt
, X86::VMOVSDZrm_alt
, X86::VMOVQI2PQIZrm
},
5950 { X86::VMOVSSZrm
, X86::VMOVSSZrm
, X86::VMOVDI2PDIZrm
},
5951 { X86::VMOVSSZrm_alt
, X86::VMOVSSZrm_alt
, X86::VMOVDI2PDIZrm
},
5952 { X86::VBROADCASTSSZ128r
, X86::VBROADCASTSSZ128r
, X86::VPBROADCASTDZ128r
},
5953 { X86::VBROADCASTSSZ128m
, X86::VBROADCASTSSZ128m
, X86::VPBROADCASTDZ128m
},
5954 { X86::VBROADCASTSSZ256r
, X86::VBROADCASTSSZ256r
, X86::VPBROADCASTDZ256r
},
5955 { X86::VBROADCASTSSZ256m
, X86::VBROADCASTSSZ256m
, X86::VPBROADCASTDZ256m
},
5956 { X86::VBROADCASTSSZr
, X86::VBROADCASTSSZr
, X86::VPBROADCASTDZr
},
5957 { X86::VBROADCASTSSZm
, X86::VBROADCASTSSZm
, X86::VPBROADCASTDZm
},
5958 { X86::VMOVDDUPZ128rr
, X86::VMOVDDUPZ128rr
, X86::VPBROADCASTQZ128r
},
5959 { X86::VMOVDDUPZ128rm
, X86::VMOVDDUPZ128rm
, X86::VPBROADCASTQZ128m
},
5960 { X86::VBROADCASTSDZ256r
, X86::VBROADCASTSDZ256r
, X86::VPBROADCASTQZ256r
},
5961 { X86::VBROADCASTSDZ256m
, X86::VBROADCASTSDZ256m
, X86::VPBROADCASTQZ256m
},
5962 { X86::VBROADCASTSDZr
, X86::VBROADCASTSDZr
, X86::VPBROADCASTQZr
},
5963 { X86::VBROADCASTSDZm
, X86::VBROADCASTSDZm
, X86::VPBROADCASTQZm
},
5964 { X86::VINSERTF32x4Zrr
, X86::VINSERTF32x4Zrr
, X86::VINSERTI32x4Zrr
},
5965 { X86::VINSERTF32x4Zrm
, X86::VINSERTF32x4Zrm
, X86::VINSERTI32x4Zrm
},
5966 { X86::VINSERTF32x8Zrr
, X86::VINSERTF32x8Zrr
, X86::VINSERTI32x8Zrr
},
5967 { X86::VINSERTF32x8Zrm
, X86::VINSERTF32x8Zrm
, X86::VINSERTI32x8Zrm
},
5968 { X86::VINSERTF64x2Zrr
, X86::VINSERTF64x2Zrr
, X86::VINSERTI64x2Zrr
},
5969 { X86::VINSERTF64x2Zrm
, X86::VINSERTF64x2Zrm
, X86::VINSERTI64x2Zrm
},
5970 { X86::VINSERTF64x4Zrr
, X86::VINSERTF64x4Zrr
, X86::VINSERTI64x4Zrr
},
5971 { X86::VINSERTF64x4Zrm
, X86::VINSERTF64x4Zrm
, X86::VINSERTI64x4Zrm
},
5972 { X86::VINSERTF32x4Z256rr
,X86::VINSERTF32x4Z256rr
,X86::VINSERTI32x4Z256rr
},
5973 { X86::VINSERTF32x4Z256rm
,X86::VINSERTF32x4Z256rm
,X86::VINSERTI32x4Z256rm
},
5974 { X86::VINSERTF64x2Z256rr
,X86::VINSERTF64x2Z256rr
,X86::VINSERTI64x2Z256rr
},
5975 { X86::VINSERTF64x2Z256rm
,X86::VINSERTF64x2Z256rm
,X86::VINSERTI64x2Z256rm
},
5976 { X86::VEXTRACTF32x4Zrr
, X86::VEXTRACTF32x4Zrr
, X86::VEXTRACTI32x4Zrr
},
5977 { X86::VEXTRACTF32x4Zmr
, X86::VEXTRACTF32x4Zmr
, X86::VEXTRACTI32x4Zmr
},
5978 { X86::VEXTRACTF32x8Zrr
, X86::VEXTRACTF32x8Zrr
, X86::VEXTRACTI32x8Zrr
},
5979 { X86::VEXTRACTF32x8Zmr
, X86::VEXTRACTF32x8Zmr
, X86::VEXTRACTI32x8Zmr
},
5980 { X86::VEXTRACTF64x2Zrr
, X86::VEXTRACTF64x2Zrr
, X86::VEXTRACTI64x2Zrr
},
5981 { X86::VEXTRACTF64x2Zmr
, X86::VEXTRACTF64x2Zmr
, X86::VEXTRACTI64x2Zmr
},
5982 { X86::VEXTRACTF64x4Zrr
, X86::VEXTRACTF64x4Zrr
, X86::VEXTRACTI64x4Zrr
},
5983 { X86::VEXTRACTF64x4Zmr
, X86::VEXTRACTF64x4Zmr
, X86::VEXTRACTI64x4Zmr
},
5984 { X86::VEXTRACTF32x4Z256rr
,X86::VEXTRACTF32x4Z256rr
,X86::VEXTRACTI32x4Z256rr
},
5985 { X86::VEXTRACTF32x4Z256mr
,X86::VEXTRACTF32x4Z256mr
,X86::VEXTRACTI32x4Z256mr
},
5986 { X86::VEXTRACTF64x2Z256rr
,X86::VEXTRACTF64x2Z256rr
,X86::VEXTRACTI64x2Z256rr
},
5987 { X86::VEXTRACTF64x2Z256mr
,X86::VEXTRACTF64x2Z256mr
,X86::VEXTRACTI64x2Z256mr
},
5988 { X86::VPERMILPSmi
, X86::VPERMILPSmi
, X86::VPSHUFDmi
},
5989 { X86::VPERMILPSri
, X86::VPERMILPSri
, X86::VPSHUFDri
},
5990 { X86::VPERMILPSZ128mi
, X86::VPERMILPSZ128mi
, X86::VPSHUFDZ128mi
},
5991 { X86::VPERMILPSZ128ri
, X86::VPERMILPSZ128ri
, X86::VPSHUFDZ128ri
},
5992 { X86::VPERMILPSZ256mi
, X86::VPERMILPSZ256mi
, X86::VPSHUFDZ256mi
},
5993 { X86::VPERMILPSZ256ri
, X86::VPERMILPSZ256ri
, X86::VPSHUFDZ256ri
},
5994 { X86::VPERMILPSZmi
, X86::VPERMILPSZmi
, X86::VPSHUFDZmi
},
5995 { X86::VPERMILPSZri
, X86::VPERMILPSZri
, X86::VPSHUFDZri
},
5996 { X86::VPERMPSZ256rm
, X86::VPERMPSZ256rm
, X86::VPERMDZ256rm
},
5997 { X86::VPERMPSZ256rr
, X86::VPERMPSZ256rr
, X86::VPERMDZ256rr
},
5998 { X86::VPERMPDZ256mi
, X86::VPERMPDZ256mi
, X86::VPERMQZ256mi
},
5999 { X86::VPERMPDZ256ri
, X86::VPERMPDZ256ri
, X86::VPERMQZ256ri
},
6000 { X86::VPERMPDZ256rm
, X86::VPERMPDZ256rm
, X86::VPERMQZ256rm
},
6001 { X86::VPERMPDZ256rr
, X86::VPERMPDZ256rr
, X86::VPERMQZ256rr
},
6002 { X86::VPERMPSZrm
, X86::VPERMPSZrm
, X86::VPERMDZrm
},
6003 { X86::VPERMPSZrr
, X86::VPERMPSZrr
, X86::VPERMDZrr
},
6004 { X86::VPERMPDZmi
, X86::VPERMPDZmi
, X86::VPERMQZmi
},
6005 { X86::VPERMPDZri
, X86::VPERMPDZri
, X86::VPERMQZri
},
6006 { X86::VPERMPDZrm
, X86::VPERMPDZrm
, X86::VPERMQZrm
},
6007 { X86::VPERMPDZrr
, X86::VPERMPDZrr
, X86::VPERMQZrr
},
6008 { X86::VUNPCKLPDZ256rm
, X86::VUNPCKLPDZ256rm
, X86::VPUNPCKLQDQZ256rm
},
6009 { X86::VUNPCKLPDZ256rr
, X86::VUNPCKLPDZ256rr
, X86::VPUNPCKLQDQZ256rr
},
6010 { X86::VUNPCKHPDZ256rm
, X86::VUNPCKHPDZ256rm
, X86::VPUNPCKHQDQZ256rm
},
6011 { X86::VUNPCKHPDZ256rr
, X86::VUNPCKHPDZ256rr
, X86::VPUNPCKHQDQZ256rr
},
6012 { X86::VUNPCKLPSZ256rm
, X86::VUNPCKLPSZ256rm
, X86::VPUNPCKLDQZ256rm
},
6013 { X86::VUNPCKLPSZ256rr
, X86::VUNPCKLPSZ256rr
, X86::VPUNPCKLDQZ256rr
},
6014 { X86::VUNPCKHPSZ256rm
, X86::VUNPCKHPSZ256rm
, X86::VPUNPCKHDQZ256rm
},
6015 { X86::VUNPCKHPSZ256rr
, X86::VUNPCKHPSZ256rr
, X86::VPUNPCKHDQZ256rr
},
6016 { X86::VUNPCKLPDZ128rm
, X86::VUNPCKLPDZ128rm
, X86::VPUNPCKLQDQZ128rm
},
6017 { X86::VMOVLHPSZrr
, X86::VUNPCKLPDZ128rr
, X86::VPUNPCKLQDQZ128rr
},
6018 { X86::VUNPCKHPDZ128rm
, X86::VUNPCKHPDZ128rm
, X86::VPUNPCKHQDQZ128rm
},
6019 { X86::VUNPCKHPDZ128rr
, X86::VUNPCKHPDZ128rr
, X86::VPUNPCKHQDQZ128rr
},
6020 { X86::VUNPCKLPSZ128rm
, X86::VUNPCKLPSZ128rm
, X86::VPUNPCKLDQZ128rm
},
6021 { X86::VUNPCKLPSZ128rr
, X86::VUNPCKLPSZ128rr
, X86::VPUNPCKLDQZ128rr
},
6022 { X86::VUNPCKHPSZ128rm
, X86::VUNPCKHPSZ128rm
, X86::VPUNPCKHDQZ128rm
},
6023 { X86::VUNPCKHPSZ128rr
, X86::VUNPCKHPSZ128rr
, X86::VPUNPCKHDQZ128rr
},
6024 { X86::VUNPCKLPDZrm
, X86::VUNPCKLPDZrm
, X86::VPUNPCKLQDQZrm
},
6025 { X86::VUNPCKLPDZrr
, X86::VUNPCKLPDZrr
, X86::VPUNPCKLQDQZrr
},
6026 { X86::VUNPCKHPDZrm
, X86::VUNPCKHPDZrm
, X86::VPUNPCKHQDQZrm
},
6027 { X86::VUNPCKHPDZrr
, X86::VUNPCKHPDZrr
, X86::VPUNPCKHQDQZrr
},
6028 { X86::VUNPCKLPSZrm
, X86::VUNPCKLPSZrm
, X86::VPUNPCKLDQZrm
},
6029 { X86::VUNPCKLPSZrr
, X86::VUNPCKLPSZrr
, X86::VPUNPCKLDQZrr
},
6030 { X86::VUNPCKHPSZrm
, X86::VUNPCKHPSZrm
, X86::VPUNPCKHDQZrm
},
6031 { X86::VUNPCKHPSZrr
, X86::VUNPCKHPSZrr
, X86::VPUNPCKHDQZrr
},
6032 { X86::VEXTRACTPSZmr
, X86::VEXTRACTPSZmr
, X86::VPEXTRDZmr
},
6033 { X86::VEXTRACTPSZrr
, X86::VEXTRACTPSZrr
, X86::VPEXTRDZrr
},
6036 static const uint16_t ReplaceableInstrsAVX2
[][3] = {
6037 //PackedSingle PackedDouble PackedInt
6038 { X86::VANDNPSYrm
, X86::VANDNPDYrm
, X86::VPANDNYrm
},
6039 { X86::VANDNPSYrr
, X86::VANDNPDYrr
, X86::VPANDNYrr
},
6040 { X86::VANDPSYrm
, X86::VANDPDYrm
, X86::VPANDYrm
},
6041 { X86::VANDPSYrr
, X86::VANDPDYrr
, X86::VPANDYrr
},
6042 { X86::VORPSYrm
, X86::VORPDYrm
, X86::VPORYrm
},
6043 { X86::VORPSYrr
, X86::VORPDYrr
, X86::VPORYrr
},
6044 { X86::VXORPSYrm
, X86::VXORPDYrm
, X86::VPXORYrm
},
6045 { X86::VXORPSYrr
, X86::VXORPDYrr
, X86::VPXORYrr
},
6046 { X86::VPERM2F128rm
, X86::VPERM2F128rm
, X86::VPERM2I128rm
},
6047 { X86::VPERM2F128rr
, X86::VPERM2F128rr
, X86::VPERM2I128rr
},
6048 { X86::VBROADCASTSSrm
, X86::VBROADCASTSSrm
, X86::VPBROADCASTDrm
},
6049 { X86::VBROADCASTSSrr
, X86::VBROADCASTSSrr
, X86::VPBROADCASTDrr
},
6050 { X86::VMOVDDUPrm
, X86::VMOVDDUPrm
, X86::VPBROADCASTQrm
},
6051 { X86::VMOVDDUPrr
, X86::VMOVDDUPrr
, X86::VPBROADCASTQrr
},
6052 { X86::VBROADCASTSSYrr
, X86::VBROADCASTSSYrr
, X86::VPBROADCASTDYrr
},
6053 { X86::VBROADCASTSSYrm
, X86::VBROADCASTSSYrm
, X86::VPBROADCASTDYrm
},
6054 { X86::VBROADCASTSDYrr
, X86::VBROADCASTSDYrr
, X86::VPBROADCASTQYrr
},
6055 { X86::VBROADCASTSDYrm
, X86::VBROADCASTSDYrm
, X86::VPBROADCASTQYrm
},
6056 { X86::VBROADCASTF128
, X86::VBROADCASTF128
, X86::VBROADCASTI128
},
6057 { X86::VBLENDPSYrri
, X86::VBLENDPSYrri
, X86::VPBLENDDYrri
},
6058 { X86::VBLENDPSYrmi
, X86::VBLENDPSYrmi
, X86::VPBLENDDYrmi
},
6059 { X86::VPERMILPSYmi
, X86::VPERMILPSYmi
, X86::VPSHUFDYmi
},
6060 { X86::VPERMILPSYri
, X86::VPERMILPSYri
, X86::VPSHUFDYri
},
6061 { X86::VUNPCKLPDYrm
, X86::VUNPCKLPDYrm
, X86::VPUNPCKLQDQYrm
},
6062 { X86::VUNPCKLPDYrr
, X86::VUNPCKLPDYrr
, X86::VPUNPCKLQDQYrr
},
6063 { X86::VUNPCKHPDYrm
, X86::VUNPCKHPDYrm
, X86::VPUNPCKHQDQYrm
},
6064 { X86::VUNPCKHPDYrr
, X86::VUNPCKHPDYrr
, X86::VPUNPCKHQDQYrr
},
6065 { X86::VUNPCKLPSYrm
, X86::VUNPCKLPSYrm
, X86::VPUNPCKLDQYrm
},
6066 { X86::VUNPCKLPSYrr
, X86::VUNPCKLPSYrr
, X86::VPUNPCKLDQYrr
},
6067 { X86::VUNPCKHPSYrm
, X86::VUNPCKHPSYrm
, X86::VPUNPCKHDQYrm
},
6068 { X86::VUNPCKHPSYrr
, X86::VUNPCKHPSYrr
, X86::VPUNPCKHDQYrr
},
6071 static const uint16_t ReplaceableInstrsFP
[][3] = {
6072 //PackedSingle PackedDouble
6073 { X86::MOVLPSrm
, X86::MOVLPDrm
, X86::INSTRUCTION_LIST_END
},
6074 { X86::MOVHPSrm
, X86::MOVHPDrm
, X86::INSTRUCTION_LIST_END
},
6075 { X86::MOVHPSmr
, X86::MOVHPDmr
, X86::INSTRUCTION_LIST_END
},
6076 { X86::VMOVLPSrm
, X86::VMOVLPDrm
, X86::INSTRUCTION_LIST_END
},
6077 { X86::VMOVHPSrm
, X86::VMOVHPDrm
, X86::INSTRUCTION_LIST_END
},
6078 { X86::VMOVHPSmr
, X86::VMOVHPDmr
, X86::INSTRUCTION_LIST_END
},
6079 { X86::VMOVLPSZ128rm
, X86::VMOVLPDZ128rm
, X86::INSTRUCTION_LIST_END
},
6080 { X86::VMOVHPSZ128rm
, X86::VMOVHPDZ128rm
, X86::INSTRUCTION_LIST_END
},
6081 { X86::VMOVHPSZ128mr
, X86::VMOVHPDZ128mr
, X86::INSTRUCTION_LIST_END
},
6084 static const uint16_t ReplaceableInstrsAVX2InsertExtract
[][3] = {
6085 //PackedSingle PackedDouble PackedInt
6086 { X86::VEXTRACTF128mr
, X86::VEXTRACTF128mr
, X86::VEXTRACTI128mr
},
6087 { X86::VEXTRACTF128rr
, X86::VEXTRACTF128rr
, X86::VEXTRACTI128rr
},
6088 { X86::VINSERTF128rm
, X86::VINSERTF128rm
, X86::VINSERTI128rm
},
6089 { X86::VINSERTF128rr
, X86::VINSERTF128rr
, X86::VINSERTI128rr
},
6092 static const uint16_t ReplaceableInstrsAVX512
[][4] = {
6093 // Two integer columns for 64-bit and 32-bit elements.
6094 //PackedSingle PackedDouble PackedInt PackedInt
6095 { X86::VMOVAPSZ128mr
, X86::VMOVAPDZ128mr
, X86::VMOVDQA64Z128mr
, X86::VMOVDQA32Z128mr
},
6096 { X86::VMOVAPSZ128rm
, X86::VMOVAPDZ128rm
, X86::VMOVDQA64Z128rm
, X86::VMOVDQA32Z128rm
},
6097 { X86::VMOVAPSZ128rr
, X86::VMOVAPDZ128rr
, X86::VMOVDQA64Z128rr
, X86::VMOVDQA32Z128rr
},
6098 { X86::VMOVUPSZ128mr
, X86::VMOVUPDZ128mr
, X86::VMOVDQU64Z128mr
, X86::VMOVDQU32Z128mr
},
6099 { X86::VMOVUPSZ128rm
, X86::VMOVUPDZ128rm
, X86::VMOVDQU64Z128rm
, X86::VMOVDQU32Z128rm
},
6100 { X86::VMOVAPSZ256mr
, X86::VMOVAPDZ256mr
, X86::VMOVDQA64Z256mr
, X86::VMOVDQA32Z256mr
},
6101 { X86::VMOVAPSZ256rm
, X86::VMOVAPDZ256rm
, X86::VMOVDQA64Z256rm
, X86::VMOVDQA32Z256rm
},
6102 { X86::VMOVAPSZ256rr
, X86::VMOVAPDZ256rr
, X86::VMOVDQA64Z256rr
, X86::VMOVDQA32Z256rr
},
6103 { X86::VMOVUPSZ256mr
, X86::VMOVUPDZ256mr
, X86::VMOVDQU64Z256mr
, X86::VMOVDQU32Z256mr
},
6104 { X86::VMOVUPSZ256rm
, X86::VMOVUPDZ256rm
, X86::VMOVDQU64Z256rm
, X86::VMOVDQU32Z256rm
},
6105 { X86::VMOVAPSZmr
, X86::VMOVAPDZmr
, X86::VMOVDQA64Zmr
, X86::VMOVDQA32Zmr
},
6106 { X86::VMOVAPSZrm
, X86::VMOVAPDZrm
, X86::VMOVDQA64Zrm
, X86::VMOVDQA32Zrm
},
6107 { X86::VMOVAPSZrr
, X86::VMOVAPDZrr
, X86::VMOVDQA64Zrr
, X86::VMOVDQA32Zrr
},
6108 { X86::VMOVUPSZmr
, X86::VMOVUPDZmr
, X86::VMOVDQU64Zmr
, X86::VMOVDQU32Zmr
},
6109 { X86::VMOVUPSZrm
, X86::VMOVUPDZrm
, X86::VMOVDQU64Zrm
, X86::VMOVDQU32Zrm
},
6112 static const uint16_t ReplaceableInstrsAVX512DQ
[][4] = {
6113 // Two integer columns for 64-bit and 32-bit elements.
6114 //PackedSingle PackedDouble PackedInt PackedInt
6115 { X86::VANDNPSZ128rm
, X86::VANDNPDZ128rm
, X86::VPANDNQZ128rm
, X86::VPANDNDZ128rm
},
6116 { X86::VANDNPSZ128rr
, X86::VANDNPDZ128rr
, X86::VPANDNQZ128rr
, X86::VPANDNDZ128rr
},
6117 { X86::VANDPSZ128rm
, X86::VANDPDZ128rm
, X86::VPANDQZ128rm
, X86::VPANDDZ128rm
},
6118 { X86::VANDPSZ128rr
, X86::VANDPDZ128rr
, X86::VPANDQZ128rr
, X86::VPANDDZ128rr
},
6119 { X86::VORPSZ128rm
, X86::VORPDZ128rm
, X86::VPORQZ128rm
, X86::VPORDZ128rm
},
6120 { X86::VORPSZ128rr
, X86::VORPDZ128rr
, X86::VPORQZ128rr
, X86::VPORDZ128rr
},
6121 { X86::VXORPSZ128rm
, X86::VXORPDZ128rm
, X86::VPXORQZ128rm
, X86::VPXORDZ128rm
},
6122 { X86::VXORPSZ128rr
, X86::VXORPDZ128rr
, X86::VPXORQZ128rr
, X86::VPXORDZ128rr
},
6123 { X86::VANDNPSZ256rm
, X86::VANDNPDZ256rm
, X86::VPANDNQZ256rm
, X86::VPANDNDZ256rm
},
6124 { X86::VANDNPSZ256rr
, X86::VANDNPDZ256rr
, X86::VPANDNQZ256rr
, X86::VPANDNDZ256rr
},
6125 { X86::VANDPSZ256rm
, X86::VANDPDZ256rm
, X86::VPANDQZ256rm
, X86::VPANDDZ256rm
},
6126 { X86::VANDPSZ256rr
, X86::VANDPDZ256rr
, X86::VPANDQZ256rr
, X86::VPANDDZ256rr
},
6127 { X86::VORPSZ256rm
, X86::VORPDZ256rm
, X86::VPORQZ256rm
, X86::VPORDZ256rm
},
6128 { X86::VORPSZ256rr
, X86::VORPDZ256rr
, X86::VPORQZ256rr
, X86::VPORDZ256rr
},
6129 { X86::VXORPSZ256rm
, X86::VXORPDZ256rm
, X86::VPXORQZ256rm
, X86::VPXORDZ256rm
},
6130 { X86::VXORPSZ256rr
, X86::VXORPDZ256rr
, X86::VPXORQZ256rr
, X86::VPXORDZ256rr
},
6131 { X86::VANDNPSZrm
, X86::VANDNPDZrm
, X86::VPANDNQZrm
, X86::VPANDNDZrm
},
6132 { X86::VANDNPSZrr
, X86::VANDNPDZrr
, X86::VPANDNQZrr
, X86::VPANDNDZrr
},
6133 { X86::VANDPSZrm
, X86::VANDPDZrm
, X86::VPANDQZrm
, X86::VPANDDZrm
},
6134 { X86::VANDPSZrr
, X86::VANDPDZrr
, X86::VPANDQZrr
, X86::VPANDDZrr
},
6135 { X86::VORPSZrm
, X86::VORPDZrm
, X86::VPORQZrm
, X86::VPORDZrm
},
6136 { X86::VORPSZrr
, X86::VORPDZrr
, X86::VPORQZrr
, X86::VPORDZrr
},
6137 { X86::VXORPSZrm
, X86::VXORPDZrm
, X86::VPXORQZrm
, X86::VPXORDZrm
},
6138 { X86::VXORPSZrr
, X86::VXORPDZrr
, X86::VPXORQZrr
, X86::VPXORDZrr
},
6141 static const uint16_t ReplaceableInstrsAVX512DQMasked
[][4] = {
6142 // Two integer columns for 64-bit and 32-bit elements.
6143 //PackedSingle PackedDouble
6144 //PackedInt PackedInt
6145 { X86::VANDNPSZ128rmk
, X86::VANDNPDZ128rmk
,
6146 X86::VPANDNQZ128rmk
, X86::VPANDNDZ128rmk
},
6147 { X86::VANDNPSZ128rmkz
, X86::VANDNPDZ128rmkz
,
6148 X86::VPANDNQZ128rmkz
, X86::VPANDNDZ128rmkz
},
6149 { X86::VANDNPSZ128rrk
, X86::VANDNPDZ128rrk
,
6150 X86::VPANDNQZ128rrk
, X86::VPANDNDZ128rrk
},
6151 { X86::VANDNPSZ128rrkz
, X86::VANDNPDZ128rrkz
,
6152 X86::VPANDNQZ128rrkz
, X86::VPANDNDZ128rrkz
},
6153 { X86::VANDPSZ128rmk
, X86::VANDPDZ128rmk
,
6154 X86::VPANDQZ128rmk
, X86::VPANDDZ128rmk
},
6155 { X86::VANDPSZ128rmkz
, X86::VANDPDZ128rmkz
,
6156 X86::VPANDQZ128rmkz
, X86::VPANDDZ128rmkz
},
6157 { X86::VANDPSZ128rrk
, X86::VANDPDZ128rrk
,
6158 X86::VPANDQZ128rrk
, X86::VPANDDZ128rrk
},
6159 { X86::VANDPSZ128rrkz
, X86::VANDPDZ128rrkz
,
6160 X86::VPANDQZ128rrkz
, X86::VPANDDZ128rrkz
},
6161 { X86::VORPSZ128rmk
, X86::VORPDZ128rmk
,
6162 X86::VPORQZ128rmk
, X86::VPORDZ128rmk
},
6163 { X86::VORPSZ128rmkz
, X86::VORPDZ128rmkz
,
6164 X86::VPORQZ128rmkz
, X86::VPORDZ128rmkz
},
6165 { X86::VORPSZ128rrk
, X86::VORPDZ128rrk
,
6166 X86::VPORQZ128rrk
, X86::VPORDZ128rrk
},
6167 { X86::VORPSZ128rrkz
, X86::VORPDZ128rrkz
,
6168 X86::VPORQZ128rrkz
, X86::VPORDZ128rrkz
},
6169 { X86::VXORPSZ128rmk
, X86::VXORPDZ128rmk
,
6170 X86::VPXORQZ128rmk
, X86::VPXORDZ128rmk
},
6171 { X86::VXORPSZ128rmkz
, X86::VXORPDZ128rmkz
,
6172 X86::VPXORQZ128rmkz
, X86::VPXORDZ128rmkz
},
6173 { X86::VXORPSZ128rrk
, X86::VXORPDZ128rrk
,
6174 X86::VPXORQZ128rrk
, X86::VPXORDZ128rrk
},
6175 { X86::VXORPSZ128rrkz
, X86::VXORPDZ128rrkz
,
6176 X86::VPXORQZ128rrkz
, X86::VPXORDZ128rrkz
},
6177 { X86::VANDNPSZ256rmk
, X86::VANDNPDZ256rmk
,
6178 X86::VPANDNQZ256rmk
, X86::VPANDNDZ256rmk
},
6179 { X86::VANDNPSZ256rmkz
, X86::VANDNPDZ256rmkz
,
6180 X86::VPANDNQZ256rmkz
, X86::VPANDNDZ256rmkz
},
6181 { X86::VANDNPSZ256rrk
, X86::VANDNPDZ256rrk
,
6182 X86::VPANDNQZ256rrk
, X86::VPANDNDZ256rrk
},
6183 { X86::VANDNPSZ256rrkz
, X86::VANDNPDZ256rrkz
,
6184 X86::VPANDNQZ256rrkz
, X86::VPANDNDZ256rrkz
},
6185 { X86::VANDPSZ256rmk
, X86::VANDPDZ256rmk
,
6186 X86::VPANDQZ256rmk
, X86::VPANDDZ256rmk
},
6187 { X86::VANDPSZ256rmkz
, X86::VANDPDZ256rmkz
,
6188 X86::VPANDQZ256rmkz
, X86::VPANDDZ256rmkz
},
6189 { X86::VANDPSZ256rrk
, X86::VANDPDZ256rrk
,
6190 X86::VPANDQZ256rrk
, X86::VPANDDZ256rrk
},
6191 { X86::VANDPSZ256rrkz
, X86::VANDPDZ256rrkz
,
6192 X86::VPANDQZ256rrkz
, X86::VPANDDZ256rrkz
},
6193 { X86::VORPSZ256rmk
, X86::VORPDZ256rmk
,
6194 X86::VPORQZ256rmk
, X86::VPORDZ256rmk
},
6195 { X86::VORPSZ256rmkz
, X86::VORPDZ256rmkz
,
6196 X86::VPORQZ256rmkz
, X86::VPORDZ256rmkz
},
6197 { X86::VORPSZ256rrk
, X86::VORPDZ256rrk
,
6198 X86::VPORQZ256rrk
, X86::VPORDZ256rrk
},
6199 { X86::VORPSZ256rrkz
, X86::VORPDZ256rrkz
,
6200 X86::VPORQZ256rrkz
, X86::VPORDZ256rrkz
},
6201 { X86::VXORPSZ256rmk
, X86::VXORPDZ256rmk
,
6202 X86::VPXORQZ256rmk
, X86::VPXORDZ256rmk
},
6203 { X86::VXORPSZ256rmkz
, X86::VXORPDZ256rmkz
,
6204 X86::VPXORQZ256rmkz
, X86::VPXORDZ256rmkz
},
6205 { X86::VXORPSZ256rrk
, X86::VXORPDZ256rrk
,
6206 X86::VPXORQZ256rrk
, X86::VPXORDZ256rrk
},
6207 { X86::VXORPSZ256rrkz
, X86::VXORPDZ256rrkz
,
6208 X86::VPXORQZ256rrkz
, X86::VPXORDZ256rrkz
},
6209 { X86::VANDNPSZrmk
, X86::VANDNPDZrmk
,
6210 X86::VPANDNQZrmk
, X86::VPANDNDZrmk
},
6211 { X86::VANDNPSZrmkz
, X86::VANDNPDZrmkz
,
6212 X86::VPANDNQZrmkz
, X86::VPANDNDZrmkz
},
6213 { X86::VANDNPSZrrk
, X86::VANDNPDZrrk
,
6214 X86::VPANDNQZrrk
, X86::VPANDNDZrrk
},
6215 { X86::VANDNPSZrrkz
, X86::VANDNPDZrrkz
,
6216 X86::VPANDNQZrrkz
, X86::VPANDNDZrrkz
},
6217 { X86::VANDPSZrmk
, X86::VANDPDZrmk
,
6218 X86::VPANDQZrmk
, X86::VPANDDZrmk
},
6219 { X86::VANDPSZrmkz
, X86::VANDPDZrmkz
,
6220 X86::VPANDQZrmkz
, X86::VPANDDZrmkz
},
6221 { X86::VANDPSZrrk
, X86::VANDPDZrrk
,
6222 X86::VPANDQZrrk
, X86::VPANDDZrrk
},
6223 { X86::VANDPSZrrkz
, X86::VANDPDZrrkz
,
6224 X86::VPANDQZrrkz
, X86::VPANDDZrrkz
},
6225 { X86::VORPSZrmk
, X86::VORPDZrmk
,
6226 X86::VPORQZrmk
, X86::VPORDZrmk
},
6227 { X86::VORPSZrmkz
, X86::VORPDZrmkz
,
6228 X86::VPORQZrmkz
, X86::VPORDZrmkz
},
6229 { X86::VORPSZrrk
, X86::VORPDZrrk
,
6230 X86::VPORQZrrk
, X86::VPORDZrrk
},
6231 { X86::VORPSZrrkz
, X86::VORPDZrrkz
,
6232 X86::VPORQZrrkz
, X86::VPORDZrrkz
},
6233 { X86::VXORPSZrmk
, X86::VXORPDZrmk
,
6234 X86::VPXORQZrmk
, X86::VPXORDZrmk
},
6235 { X86::VXORPSZrmkz
, X86::VXORPDZrmkz
,
6236 X86::VPXORQZrmkz
, X86::VPXORDZrmkz
},
6237 { X86::VXORPSZrrk
, X86::VXORPDZrrk
,
6238 X86::VPXORQZrrk
, X86::VPXORDZrrk
},
6239 { X86::VXORPSZrrkz
, X86::VXORPDZrrkz
,
6240 X86::VPXORQZrrkz
, X86::VPXORDZrrkz
},
6241 // Broadcast loads can be handled the same as masked operations to avoid
6242 // changing element size.
6243 { X86::VANDNPSZ128rmb
, X86::VANDNPDZ128rmb
,
6244 X86::VPANDNQZ128rmb
, X86::VPANDNDZ128rmb
},
6245 { X86::VANDPSZ128rmb
, X86::VANDPDZ128rmb
,
6246 X86::VPANDQZ128rmb
, X86::VPANDDZ128rmb
},
6247 { X86::VORPSZ128rmb
, X86::VORPDZ128rmb
,
6248 X86::VPORQZ128rmb
, X86::VPORDZ128rmb
},
6249 { X86::VXORPSZ128rmb
, X86::VXORPDZ128rmb
,
6250 X86::VPXORQZ128rmb
, X86::VPXORDZ128rmb
},
6251 { X86::VANDNPSZ256rmb
, X86::VANDNPDZ256rmb
,
6252 X86::VPANDNQZ256rmb
, X86::VPANDNDZ256rmb
},
6253 { X86::VANDPSZ256rmb
, X86::VANDPDZ256rmb
,
6254 X86::VPANDQZ256rmb
, X86::VPANDDZ256rmb
},
6255 { X86::VORPSZ256rmb
, X86::VORPDZ256rmb
,
6256 X86::VPORQZ256rmb
, X86::VPORDZ256rmb
},
6257 { X86::VXORPSZ256rmb
, X86::VXORPDZ256rmb
,
6258 X86::VPXORQZ256rmb
, X86::VPXORDZ256rmb
},
6259 { X86::VANDNPSZrmb
, X86::VANDNPDZrmb
,
6260 X86::VPANDNQZrmb
, X86::VPANDNDZrmb
},
6261 { X86::VANDPSZrmb
, X86::VANDPDZrmb
,
6262 X86::VPANDQZrmb
, X86::VPANDDZrmb
},
6263 { X86::VANDPSZrmb
, X86::VANDPDZrmb
,
6264 X86::VPANDQZrmb
, X86::VPANDDZrmb
},
6265 { X86::VORPSZrmb
, X86::VORPDZrmb
,
6266 X86::VPORQZrmb
, X86::VPORDZrmb
},
6267 { X86::VXORPSZrmb
, X86::VXORPDZrmb
,
6268 X86::VPXORQZrmb
, X86::VPXORDZrmb
},
6269 { X86::VANDNPSZ128rmbk
, X86::VANDNPDZ128rmbk
,
6270 X86::VPANDNQZ128rmbk
, X86::VPANDNDZ128rmbk
},
6271 { X86::VANDPSZ128rmbk
, X86::VANDPDZ128rmbk
,
6272 X86::VPANDQZ128rmbk
, X86::VPANDDZ128rmbk
},
6273 { X86::VORPSZ128rmbk
, X86::VORPDZ128rmbk
,
6274 X86::VPORQZ128rmbk
, X86::VPORDZ128rmbk
},
6275 { X86::VXORPSZ128rmbk
, X86::VXORPDZ128rmbk
,
6276 X86::VPXORQZ128rmbk
, X86::VPXORDZ128rmbk
},
6277 { X86::VANDNPSZ256rmbk
, X86::VANDNPDZ256rmbk
,
6278 X86::VPANDNQZ256rmbk
, X86::VPANDNDZ256rmbk
},
6279 { X86::VANDPSZ256rmbk
, X86::VANDPDZ256rmbk
,
6280 X86::VPANDQZ256rmbk
, X86::VPANDDZ256rmbk
},
6281 { X86::VORPSZ256rmbk
, X86::VORPDZ256rmbk
,
6282 X86::VPORQZ256rmbk
, X86::VPORDZ256rmbk
},
6283 { X86::VXORPSZ256rmbk
, X86::VXORPDZ256rmbk
,
6284 X86::VPXORQZ256rmbk
, X86::VPXORDZ256rmbk
},
6285 { X86::VANDNPSZrmbk
, X86::VANDNPDZrmbk
,
6286 X86::VPANDNQZrmbk
, X86::VPANDNDZrmbk
},
6287 { X86::VANDPSZrmbk
, X86::VANDPDZrmbk
,
6288 X86::VPANDQZrmbk
, X86::VPANDDZrmbk
},
6289 { X86::VANDPSZrmbk
, X86::VANDPDZrmbk
,
6290 X86::VPANDQZrmbk
, X86::VPANDDZrmbk
},
6291 { X86::VORPSZrmbk
, X86::VORPDZrmbk
,
6292 X86::VPORQZrmbk
, X86::VPORDZrmbk
},
6293 { X86::VXORPSZrmbk
, X86::VXORPDZrmbk
,
6294 X86::VPXORQZrmbk
, X86::VPXORDZrmbk
},
6295 { X86::VANDNPSZ128rmbkz
,X86::VANDNPDZ128rmbkz
,
6296 X86::VPANDNQZ128rmbkz
,X86::VPANDNDZ128rmbkz
},
6297 { X86::VANDPSZ128rmbkz
, X86::VANDPDZ128rmbkz
,
6298 X86::VPANDQZ128rmbkz
, X86::VPANDDZ128rmbkz
},
6299 { X86::VORPSZ128rmbkz
, X86::VORPDZ128rmbkz
,
6300 X86::VPORQZ128rmbkz
, X86::VPORDZ128rmbkz
},
6301 { X86::VXORPSZ128rmbkz
, X86::VXORPDZ128rmbkz
,
6302 X86::VPXORQZ128rmbkz
, X86::VPXORDZ128rmbkz
},
6303 { X86::VANDNPSZ256rmbkz
,X86::VANDNPDZ256rmbkz
,
6304 X86::VPANDNQZ256rmbkz
,X86::VPANDNDZ256rmbkz
},
6305 { X86::VANDPSZ256rmbkz
, X86::VANDPDZ256rmbkz
,
6306 X86::VPANDQZ256rmbkz
, X86::VPANDDZ256rmbkz
},
6307 { X86::VORPSZ256rmbkz
, X86::VORPDZ256rmbkz
,
6308 X86::VPORQZ256rmbkz
, X86::VPORDZ256rmbkz
},
6309 { X86::VXORPSZ256rmbkz
, X86::VXORPDZ256rmbkz
,
6310 X86::VPXORQZ256rmbkz
, X86::VPXORDZ256rmbkz
},
6311 { X86::VANDNPSZrmbkz
, X86::VANDNPDZrmbkz
,
6312 X86::VPANDNQZrmbkz
, X86::VPANDNDZrmbkz
},
6313 { X86::VANDPSZrmbkz
, X86::VANDPDZrmbkz
,
6314 X86::VPANDQZrmbkz
, X86::VPANDDZrmbkz
},
6315 { X86::VANDPSZrmbkz
, X86::VANDPDZrmbkz
,
6316 X86::VPANDQZrmbkz
, X86::VPANDDZrmbkz
},
6317 { X86::VORPSZrmbkz
, X86::VORPDZrmbkz
,
6318 X86::VPORQZrmbkz
, X86::VPORDZrmbkz
},
6319 { X86::VXORPSZrmbkz
, X86::VXORPDZrmbkz
,
6320 X86::VPXORQZrmbkz
, X86::VPXORDZrmbkz
},
6323 // NOTE: These should only be used by the custom domain methods.
6324 static const uint16_t ReplaceableBlendInstrs
[][3] = {
6325 //PackedSingle PackedDouble PackedInt
6326 { X86::BLENDPSrmi
, X86::BLENDPDrmi
, X86::PBLENDWrmi
},
6327 { X86::BLENDPSrri
, X86::BLENDPDrri
, X86::PBLENDWrri
},
6328 { X86::VBLENDPSrmi
, X86::VBLENDPDrmi
, X86::VPBLENDWrmi
},
6329 { X86::VBLENDPSrri
, X86::VBLENDPDrri
, X86::VPBLENDWrri
},
6330 { X86::VBLENDPSYrmi
, X86::VBLENDPDYrmi
, X86::VPBLENDWYrmi
},
6331 { X86::VBLENDPSYrri
, X86::VBLENDPDYrri
, X86::VPBLENDWYrri
},
6333 static const uint16_t ReplaceableBlendAVX2Instrs
[][3] = {
6334 //PackedSingle PackedDouble PackedInt
6335 { X86::VBLENDPSrmi
, X86::VBLENDPDrmi
, X86::VPBLENDDrmi
},
6336 { X86::VBLENDPSrri
, X86::VBLENDPDrri
, X86::VPBLENDDrri
},
6337 { X86::VBLENDPSYrmi
, X86::VBLENDPDYrmi
, X86::VPBLENDDYrmi
},
6338 { X86::VBLENDPSYrri
, X86::VBLENDPDYrri
, X86::VPBLENDDYrri
},
6341 // Special table for changing EVEX logic instructions to VEX.
6342 // TODO: Should we run EVEX->VEX earlier?
6343 static const uint16_t ReplaceableCustomAVX512LogicInstrs
[][4] = {
6344 // Two integer columns for 64-bit and 32-bit elements.
6345 //PackedSingle PackedDouble PackedInt PackedInt
6346 { X86::VANDNPSrm
, X86::VANDNPDrm
, X86::VPANDNQZ128rm
, X86::VPANDNDZ128rm
},
6347 { X86::VANDNPSrr
, X86::VANDNPDrr
, X86::VPANDNQZ128rr
, X86::VPANDNDZ128rr
},
6348 { X86::VANDPSrm
, X86::VANDPDrm
, X86::VPANDQZ128rm
, X86::VPANDDZ128rm
},
6349 { X86::VANDPSrr
, X86::VANDPDrr
, X86::VPANDQZ128rr
, X86::VPANDDZ128rr
},
6350 { X86::VORPSrm
, X86::VORPDrm
, X86::VPORQZ128rm
, X86::VPORDZ128rm
},
6351 { X86::VORPSrr
, X86::VORPDrr
, X86::VPORQZ128rr
, X86::VPORDZ128rr
},
6352 { X86::VXORPSrm
, X86::VXORPDrm
, X86::VPXORQZ128rm
, X86::VPXORDZ128rm
},
6353 { X86::VXORPSrr
, X86::VXORPDrr
, X86::VPXORQZ128rr
, X86::VPXORDZ128rr
},
6354 { X86::VANDNPSYrm
, X86::VANDNPDYrm
, X86::VPANDNQZ256rm
, X86::VPANDNDZ256rm
},
6355 { X86::VANDNPSYrr
, X86::VANDNPDYrr
, X86::VPANDNQZ256rr
, X86::VPANDNDZ256rr
},
6356 { X86::VANDPSYrm
, X86::VANDPDYrm
, X86::VPANDQZ256rm
, X86::VPANDDZ256rm
},
6357 { X86::VANDPSYrr
, X86::VANDPDYrr
, X86::VPANDQZ256rr
, X86::VPANDDZ256rr
},
6358 { X86::VORPSYrm
, X86::VORPDYrm
, X86::VPORQZ256rm
, X86::VPORDZ256rm
},
6359 { X86::VORPSYrr
, X86::VORPDYrr
, X86::VPORQZ256rr
, X86::VPORDZ256rr
},
6360 { X86::VXORPSYrm
, X86::VXORPDYrm
, X86::VPXORQZ256rm
, X86::VPXORDZ256rm
},
6361 { X86::VXORPSYrr
, X86::VXORPDYrr
, X86::VPXORQZ256rr
, X86::VPXORDZ256rr
},
6364 // FIXME: Some shuffle and unpack instructions have equivalents in different
6365 // domains, but they require a bit more work than just switching opcodes.
6367 static const uint16_t *lookup(unsigned opcode
, unsigned domain
,
6368 ArrayRef
<uint16_t[3]> Table
) {
6369 for (const uint16_t (&Row
)[3] : Table
)
6370 if (Row
[domain
-1] == opcode
)
6375 static const uint16_t *lookupAVX512(unsigned opcode
, unsigned domain
,
6376 ArrayRef
<uint16_t[4]> Table
) {
6377 // If this is the integer domain make sure to check both integer columns.
6378 for (const uint16_t (&Row
)[4] : Table
)
6379 if (Row
[domain
-1] == opcode
|| (domain
== 3 && Row
[3] == opcode
))
6384 // Helper to attempt to widen/narrow blend masks.
6385 static bool AdjustBlendMask(unsigned OldMask
, unsigned OldWidth
,
6386 unsigned NewWidth
, unsigned *pNewMask
= nullptr) {
6387 assert(((OldWidth
% NewWidth
) == 0 || (NewWidth
% OldWidth
) == 0) &&
6388 "Illegal blend mask scale");
6389 unsigned NewMask
= 0;
6391 if ((OldWidth
% NewWidth
) == 0) {
6392 unsigned Scale
= OldWidth
/ NewWidth
;
6393 unsigned SubMask
= (1u << Scale
) - 1;
6394 for (unsigned i
= 0; i
!= NewWidth
; ++i
) {
6395 unsigned Sub
= (OldMask
>> (i
* Scale
)) & SubMask
;
6397 NewMask
|= (1u << i
);
6398 else if (Sub
!= 0x0)
6402 unsigned Scale
= NewWidth
/ OldWidth
;
6403 unsigned SubMask
= (1u << Scale
) - 1;
6404 for (unsigned i
= 0; i
!= OldWidth
; ++i
) {
6405 if (OldMask
& (1 << i
)) {
6406 NewMask
|= (SubMask
<< (i
* Scale
));
6412 *pNewMask
= NewMask
;
6416 uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr
&MI
) const {
6417 unsigned Opcode
= MI
.getOpcode();
6418 unsigned NumOperands
= MI
.getDesc().getNumOperands();
6420 auto GetBlendDomains
= [&](unsigned ImmWidth
, bool Is256
) {
6421 uint16_t validDomains
= 0;
6422 if (MI
.getOperand(NumOperands
- 1).isImm()) {
6423 unsigned Imm
= MI
.getOperand(NumOperands
- 1).getImm();
6424 if (AdjustBlendMask(Imm
, ImmWidth
, Is256
? 8 : 4))
6425 validDomains
|= 0x2; // PackedSingle
6426 if (AdjustBlendMask(Imm
, ImmWidth
, Is256
? 4 : 2))
6427 validDomains
|= 0x4; // PackedDouble
6428 if (!Is256
|| Subtarget
.hasAVX2())
6429 validDomains
|= 0x8; // PackedInt
6431 return validDomains
;
6435 case X86::BLENDPDrmi
:
6436 case X86::BLENDPDrri
:
6437 case X86::VBLENDPDrmi
:
6438 case X86::VBLENDPDrri
:
6439 return GetBlendDomains(2, false);
6440 case X86::VBLENDPDYrmi
:
6441 case X86::VBLENDPDYrri
:
6442 return GetBlendDomains(4, true);
6443 case X86::BLENDPSrmi
:
6444 case X86::BLENDPSrri
:
6445 case X86::VBLENDPSrmi
:
6446 case X86::VBLENDPSrri
:
6447 case X86::VPBLENDDrmi
:
6448 case X86::VPBLENDDrri
:
6449 return GetBlendDomains(4, false);
6450 case X86::VBLENDPSYrmi
:
6451 case X86::VBLENDPSYrri
:
6452 case X86::VPBLENDDYrmi
:
6453 case X86::VPBLENDDYrri
:
6454 return GetBlendDomains(8, true);
6455 case X86::PBLENDWrmi
:
6456 case X86::PBLENDWrri
:
6457 case X86::VPBLENDWrmi
:
6458 case X86::VPBLENDWrri
:
6459 // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks.
6460 case X86::VPBLENDWYrmi
:
6461 case X86::VPBLENDWYrri
:
6462 return GetBlendDomains(8, false);
6463 case X86::VPANDDZ128rr
: case X86::VPANDDZ128rm
:
6464 case X86::VPANDDZ256rr
: case X86::VPANDDZ256rm
:
6465 case X86::VPANDQZ128rr
: case X86::VPANDQZ128rm
:
6466 case X86::VPANDQZ256rr
: case X86::VPANDQZ256rm
:
6467 case X86::VPANDNDZ128rr
: case X86::VPANDNDZ128rm
:
6468 case X86::VPANDNDZ256rr
: case X86::VPANDNDZ256rm
:
6469 case X86::VPANDNQZ128rr
: case X86::VPANDNQZ128rm
:
6470 case X86::VPANDNQZ256rr
: case X86::VPANDNQZ256rm
:
6471 case X86::VPORDZ128rr
: case X86::VPORDZ128rm
:
6472 case X86::VPORDZ256rr
: case X86::VPORDZ256rm
:
6473 case X86::VPORQZ128rr
: case X86::VPORQZ128rm
:
6474 case X86::VPORQZ256rr
: case X86::VPORQZ256rm
:
6475 case X86::VPXORDZ128rr
: case X86::VPXORDZ128rm
:
6476 case X86::VPXORDZ256rr
: case X86::VPXORDZ256rm
:
6477 case X86::VPXORQZ128rr
: case X86::VPXORQZ128rm
:
6478 case X86::VPXORQZ256rr
: case X86::VPXORQZ256rm
:
6479 // If we don't have DQI see if we can still switch from an EVEX integer
6480 // instruction to a VEX floating point instruction.
6481 if (Subtarget
.hasDQI())
6484 if (RI
.getEncodingValue(MI
.getOperand(0).getReg()) >= 16)
6486 if (RI
.getEncodingValue(MI
.getOperand(1).getReg()) >= 16)
6488 // Register forms will have 3 operands. Memory form will have more.
6489 if (NumOperands
== 3 &&
6490 RI
.getEncodingValue(MI
.getOperand(2).getReg()) >= 16)
6493 // All domains are valid.
6495 case X86::MOVHLPSrr
:
6496 // We can swap domains when both inputs are the same register.
6497 // FIXME: This doesn't catch all the cases we would like. If the input
6498 // register isn't KILLed by the instruction, the two address instruction
6499 // pass puts a COPY on one input. The other input uses the original
6500 // register. This prevents the same physical register from being used by
6502 if (MI
.getOperand(1).getReg() == MI
.getOperand(2).getReg() &&
6503 MI
.getOperand(0).getSubReg() == 0 &&
6504 MI
.getOperand(1).getSubReg() == 0 &&
6505 MI
.getOperand(2).getSubReg() == 0)
6508 case X86::SHUFPDrri
:
6514 bool X86InstrInfo::setExecutionDomainCustom(MachineInstr
&MI
,
6515 unsigned Domain
) const {
6516 assert(Domain
> 0 && Domain
< 4 && "Invalid execution domain");
6517 uint16_t dom
= (MI
.getDesc().TSFlags
>> X86II::SSEDomainShift
) & 3;
6518 assert(dom
&& "Not an SSE instruction");
6520 unsigned Opcode
= MI
.getOpcode();
6521 unsigned NumOperands
= MI
.getDesc().getNumOperands();
6523 auto SetBlendDomain
= [&](unsigned ImmWidth
, bool Is256
) {
6524 if (MI
.getOperand(NumOperands
- 1).isImm()) {
6525 unsigned Imm
= MI
.getOperand(NumOperands
- 1).getImm() & 255;
6526 Imm
= (ImmWidth
== 16 ? ((Imm
<< 8) | Imm
) : Imm
);
6527 unsigned NewImm
= Imm
;
6529 const uint16_t *table
= lookup(Opcode
, dom
, ReplaceableBlendInstrs
);
6531 table
= lookup(Opcode
, dom
, ReplaceableBlendAVX2Instrs
);
6533 if (Domain
== 1) { // PackedSingle
6534 AdjustBlendMask(Imm
, ImmWidth
, Is256
? 8 : 4, &NewImm
);
6535 } else if (Domain
== 2) { // PackedDouble
6536 AdjustBlendMask(Imm
, ImmWidth
, Is256
? 4 : 2, &NewImm
);
6537 } else if (Domain
== 3) { // PackedInt
6538 if (Subtarget
.hasAVX2()) {
6539 // If we are already VPBLENDW use that, else use VPBLENDD.
6540 if ((ImmWidth
/ (Is256
? 2 : 1)) != 8) {
6541 table
= lookup(Opcode
, dom
, ReplaceableBlendAVX2Instrs
);
6542 AdjustBlendMask(Imm
, ImmWidth
, Is256
? 8 : 4, &NewImm
);
6545 assert(!Is256
&& "128-bit vector expected");
6546 AdjustBlendMask(Imm
, ImmWidth
, 8, &NewImm
);
6550 assert(table
&& table
[Domain
- 1] && "Unknown domain op");
6551 MI
.setDesc(get(table
[Domain
- 1]));
6552 MI
.getOperand(NumOperands
- 1).setImm(NewImm
& 255);
6558 case X86::BLENDPDrmi
:
6559 case X86::BLENDPDrri
:
6560 case X86::VBLENDPDrmi
:
6561 case X86::VBLENDPDrri
:
6562 return SetBlendDomain(2, false);
6563 case X86::VBLENDPDYrmi
:
6564 case X86::VBLENDPDYrri
:
6565 return SetBlendDomain(4, true);
6566 case X86::BLENDPSrmi
:
6567 case X86::BLENDPSrri
:
6568 case X86::VBLENDPSrmi
:
6569 case X86::VBLENDPSrri
:
6570 case X86::VPBLENDDrmi
:
6571 case X86::VPBLENDDrri
:
6572 return SetBlendDomain(4, false);
6573 case X86::VBLENDPSYrmi
:
6574 case X86::VBLENDPSYrri
:
6575 case X86::VPBLENDDYrmi
:
6576 case X86::VPBLENDDYrri
:
6577 return SetBlendDomain(8, true);
6578 case X86::PBLENDWrmi
:
6579 case X86::PBLENDWrri
:
6580 case X86::VPBLENDWrmi
:
6581 case X86::VPBLENDWrri
:
6582 return SetBlendDomain(8, false);
6583 case X86::VPBLENDWYrmi
:
6584 case X86::VPBLENDWYrri
:
6585 return SetBlendDomain(16, true);
6586 case X86::VPANDDZ128rr
: case X86::VPANDDZ128rm
:
6587 case X86::VPANDDZ256rr
: case X86::VPANDDZ256rm
:
6588 case X86::VPANDQZ128rr
: case X86::VPANDQZ128rm
:
6589 case X86::VPANDQZ256rr
: case X86::VPANDQZ256rm
:
6590 case X86::VPANDNDZ128rr
: case X86::VPANDNDZ128rm
:
6591 case X86::VPANDNDZ256rr
: case X86::VPANDNDZ256rm
:
6592 case X86::VPANDNQZ128rr
: case X86::VPANDNQZ128rm
:
6593 case X86::VPANDNQZ256rr
: case X86::VPANDNQZ256rm
:
6594 case X86::VPORDZ128rr
: case X86::VPORDZ128rm
:
6595 case X86::VPORDZ256rr
: case X86::VPORDZ256rm
:
6596 case X86::VPORQZ128rr
: case X86::VPORQZ128rm
:
6597 case X86::VPORQZ256rr
: case X86::VPORQZ256rm
:
6598 case X86::VPXORDZ128rr
: case X86::VPXORDZ128rm
:
6599 case X86::VPXORDZ256rr
: case X86::VPXORDZ256rm
:
6600 case X86::VPXORQZ128rr
: case X86::VPXORQZ128rm
:
6601 case X86::VPXORQZ256rr
: case X86::VPXORQZ256rm
: {
6602 // Without DQI, convert EVEX instructions to VEX instructions.
6603 if (Subtarget
.hasDQI())
6606 const uint16_t *table
= lookupAVX512(MI
.getOpcode(), dom
,
6607 ReplaceableCustomAVX512LogicInstrs
);
6608 assert(table
&& "Instruction not found in table?");
6609 // Don't change integer Q instructions to D instructions and
6610 // use D intructions if we started with a PS instruction.
6611 if (Domain
== 3 && (dom
== 1 || table
[3] == MI
.getOpcode()))
6613 MI
.setDesc(get(table
[Domain
- 1]));
6616 case X86::UNPCKHPDrr
:
6617 case X86::MOVHLPSrr
:
6618 // We just need to commute the instruction which will switch the domains.
6619 if (Domain
!= dom
&& Domain
!= 3 &&
6620 MI
.getOperand(1).getReg() == MI
.getOperand(2).getReg() &&
6621 MI
.getOperand(0).getSubReg() == 0 &&
6622 MI
.getOperand(1).getSubReg() == 0 &&
6623 MI
.getOperand(2).getSubReg() == 0) {
6624 commuteInstruction(MI
, false);
6627 // We must always return true for MOVHLPSrr.
6628 if (Opcode
== X86::MOVHLPSrr
)
6631 case X86::SHUFPDrri
: {
6633 unsigned Imm
= MI
.getOperand(3).getImm();
6634 unsigned NewImm
= 0x44;
6635 if (Imm
& 1) NewImm
|= 0x0a;
6636 if (Imm
& 2) NewImm
|= 0xa0;
6637 MI
.getOperand(3).setImm(NewImm
);
6638 MI
.setDesc(get(X86::SHUFPSrri
));
6646 std::pair
<uint16_t, uint16_t>
6647 X86InstrInfo::getExecutionDomain(const MachineInstr
&MI
) const {
6648 uint16_t domain
= (MI
.getDesc().TSFlags
>> X86II::SSEDomainShift
) & 3;
6649 unsigned opcode
= MI
.getOpcode();
6650 uint16_t validDomains
= 0;
6652 // Attempt to match for custom instructions.
6653 validDomains
= getExecutionDomainCustom(MI
);
6655 return std::make_pair(domain
, validDomains
);
6657 if (lookup(opcode
, domain
, ReplaceableInstrs
)) {
6659 } else if (lookup(opcode
, domain
, ReplaceableInstrsAVX2
)) {
6660 validDomains
= Subtarget
.hasAVX2() ? 0xe : 0x6;
6661 } else if (lookup(opcode
, domain
, ReplaceableInstrsFP
)) {
6663 } else if (lookup(opcode
, domain
, ReplaceableInstrsAVX2InsertExtract
)) {
6664 // Insert/extract instructions should only effect domain if AVX2
6666 if (!Subtarget
.hasAVX2())
6667 return std::make_pair(0, 0);
6669 } else if (lookupAVX512(opcode
, domain
, ReplaceableInstrsAVX512
)) {
6671 } else if (Subtarget
.hasDQI() && lookupAVX512(opcode
, domain
,
6672 ReplaceableInstrsAVX512DQ
)) {
6674 } else if (Subtarget
.hasDQI()) {
6675 if (const uint16_t *table
= lookupAVX512(opcode
, domain
,
6676 ReplaceableInstrsAVX512DQMasked
)) {
6677 if (domain
== 1 || (domain
== 3 && table
[3] == opcode
))
6684 return std::make_pair(domain
, validDomains
);
6687 void X86InstrInfo::setExecutionDomain(MachineInstr
&MI
, unsigned Domain
) const {
6688 assert(Domain
>0 && Domain
<4 && "Invalid execution domain");
6689 uint16_t dom
= (MI
.getDesc().TSFlags
>> X86II::SSEDomainShift
) & 3;
6690 assert(dom
&& "Not an SSE instruction");
6692 // Attempt to match for custom instructions.
6693 if (setExecutionDomainCustom(MI
, Domain
))
6696 const uint16_t *table
= lookup(MI
.getOpcode(), dom
, ReplaceableInstrs
);
6697 if (!table
) { // try the other table
6698 assert((Subtarget
.hasAVX2() || Domain
< 3) &&
6699 "256-bit vector operations only available in AVX2");
6700 table
= lookup(MI
.getOpcode(), dom
, ReplaceableInstrsAVX2
);
6702 if (!table
) { // try the FP table
6703 table
= lookup(MI
.getOpcode(), dom
, ReplaceableInstrsFP
);
6704 assert((!table
|| Domain
< 3) &&
6705 "Can only select PackedSingle or PackedDouble");
6707 if (!table
) { // try the other table
6708 assert(Subtarget
.hasAVX2() &&
6709 "256-bit insert/extract only available in AVX2");
6710 table
= lookup(MI
.getOpcode(), dom
, ReplaceableInstrsAVX2InsertExtract
);
6712 if (!table
) { // try the AVX512 table
6713 assert(Subtarget
.hasAVX512() && "Requires AVX-512");
6714 table
= lookupAVX512(MI
.getOpcode(), dom
, ReplaceableInstrsAVX512
);
6715 // Don't change integer Q instructions to D instructions.
6716 if (table
&& Domain
== 3 && table
[3] == MI
.getOpcode())
6719 if (!table
) { // try the AVX512DQ table
6720 assert((Subtarget
.hasDQI() || Domain
>= 3) && "Requires AVX-512DQ");
6721 table
= lookupAVX512(MI
.getOpcode(), dom
, ReplaceableInstrsAVX512DQ
);
6722 // Don't change integer Q instructions to D instructions and
6723 // use D intructions if we started with a PS instruction.
6724 if (table
&& Domain
== 3 && (dom
== 1 || table
[3] == MI
.getOpcode()))
6727 if (!table
) { // try the AVX512DQMasked table
6728 assert((Subtarget
.hasDQI() || Domain
>= 3) && "Requires AVX-512DQ");
6729 table
= lookupAVX512(MI
.getOpcode(), dom
, ReplaceableInstrsAVX512DQMasked
);
6730 if (table
&& Domain
== 3 && (dom
== 1 || table
[3] == MI
.getOpcode()))
6733 assert(table
&& "Cannot change domain");
6734 MI
.setDesc(get(table
[Domain
- 1]));
6737 /// Return the noop instruction to use for a noop.
6738 void X86InstrInfo::getNoop(MCInst
&NopInst
) const {
6739 NopInst
.setOpcode(X86::NOOP
);
6742 bool X86InstrInfo::isHighLatencyDef(int opc
) const {
6744 default: return false;
6750 case X86::DIVSDrm_Int
:
6752 case X86::DIVSDrr_Int
:
6754 case X86::DIVSSrm_Int
:
6756 case X86::DIVSSrr_Int
:
6762 case X86::SQRTSDm_Int
:
6764 case X86::SQRTSDr_Int
:
6766 case X86::SQRTSSm_Int
:
6768 case X86::SQRTSSr_Int
:
6769 // AVX instructions with high latency
6772 case X86::VDIVPDYrm
:
6773 case X86::VDIVPDYrr
:
6776 case X86::VDIVPSYrm
:
6777 case X86::VDIVPSYrr
:
6779 case X86::VDIVSDrm_Int
:
6781 case X86::VDIVSDrr_Int
:
6783 case X86::VDIVSSrm_Int
:
6785 case X86::VDIVSSrr_Int
:
6788 case X86::VSQRTPDYm
:
6789 case X86::VSQRTPDYr
:
6792 case X86::VSQRTPSYm
:
6793 case X86::VSQRTPSYr
:
6795 case X86::VSQRTSDm_Int
:
6797 case X86::VSQRTSDr_Int
:
6799 case X86::VSQRTSSm_Int
:
6801 case X86::VSQRTSSr_Int
:
6802 // AVX512 instructions with high latency
6803 case X86::VDIVPDZ128rm
:
6804 case X86::VDIVPDZ128rmb
:
6805 case X86::VDIVPDZ128rmbk
:
6806 case X86::VDIVPDZ128rmbkz
:
6807 case X86::VDIVPDZ128rmk
:
6808 case X86::VDIVPDZ128rmkz
:
6809 case X86::VDIVPDZ128rr
:
6810 case X86::VDIVPDZ128rrk
:
6811 case X86::VDIVPDZ128rrkz
:
6812 case X86::VDIVPDZ256rm
:
6813 case X86::VDIVPDZ256rmb
:
6814 case X86::VDIVPDZ256rmbk
:
6815 case X86::VDIVPDZ256rmbkz
:
6816 case X86::VDIVPDZ256rmk
:
6817 case X86::VDIVPDZ256rmkz
:
6818 case X86::VDIVPDZ256rr
:
6819 case X86::VDIVPDZ256rrk
:
6820 case X86::VDIVPDZ256rrkz
:
6821 case X86::VDIVPDZrrb
:
6822 case X86::VDIVPDZrrbk
:
6823 case X86::VDIVPDZrrbkz
:
6824 case X86::VDIVPDZrm
:
6825 case X86::VDIVPDZrmb
:
6826 case X86::VDIVPDZrmbk
:
6827 case X86::VDIVPDZrmbkz
:
6828 case X86::VDIVPDZrmk
:
6829 case X86::VDIVPDZrmkz
:
6830 case X86::VDIVPDZrr
:
6831 case X86::VDIVPDZrrk
:
6832 case X86::VDIVPDZrrkz
:
6833 case X86::VDIVPSZ128rm
:
6834 case X86::VDIVPSZ128rmb
:
6835 case X86::VDIVPSZ128rmbk
:
6836 case X86::VDIVPSZ128rmbkz
:
6837 case X86::VDIVPSZ128rmk
:
6838 case X86::VDIVPSZ128rmkz
:
6839 case X86::VDIVPSZ128rr
:
6840 case X86::VDIVPSZ128rrk
:
6841 case X86::VDIVPSZ128rrkz
:
6842 case X86::VDIVPSZ256rm
:
6843 case X86::VDIVPSZ256rmb
:
6844 case X86::VDIVPSZ256rmbk
:
6845 case X86::VDIVPSZ256rmbkz
:
6846 case X86::VDIVPSZ256rmk
:
6847 case X86::VDIVPSZ256rmkz
:
6848 case X86::VDIVPSZ256rr
:
6849 case X86::VDIVPSZ256rrk
:
6850 case X86::VDIVPSZ256rrkz
:
6851 case X86::VDIVPSZrrb
:
6852 case X86::VDIVPSZrrbk
:
6853 case X86::VDIVPSZrrbkz
:
6854 case X86::VDIVPSZrm
:
6855 case X86::VDIVPSZrmb
:
6856 case X86::VDIVPSZrmbk
:
6857 case X86::VDIVPSZrmbkz
:
6858 case X86::VDIVPSZrmk
:
6859 case X86::VDIVPSZrmkz
:
6860 case X86::VDIVPSZrr
:
6861 case X86::VDIVPSZrrk
:
6862 case X86::VDIVPSZrrkz
:
6863 case X86::VDIVSDZrm
:
6864 case X86::VDIVSDZrr
:
6865 case X86::VDIVSDZrm_Int
:
6866 case X86::VDIVSDZrm_Intk
:
6867 case X86::VDIVSDZrm_Intkz
:
6868 case X86::VDIVSDZrr_Int
:
6869 case X86::VDIVSDZrr_Intk
:
6870 case X86::VDIVSDZrr_Intkz
:
6871 case X86::VDIVSDZrrb_Int
:
6872 case X86::VDIVSDZrrb_Intk
:
6873 case X86::VDIVSDZrrb_Intkz
:
6874 case X86::VDIVSSZrm
:
6875 case X86::VDIVSSZrr
:
6876 case X86::VDIVSSZrm_Int
:
6877 case X86::VDIVSSZrm_Intk
:
6878 case X86::VDIVSSZrm_Intkz
:
6879 case X86::VDIVSSZrr_Int
:
6880 case X86::VDIVSSZrr_Intk
:
6881 case X86::VDIVSSZrr_Intkz
:
6882 case X86::VDIVSSZrrb_Int
:
6883 case X86::VDIVSSZrrb_Intk
:
6884 case X86::VDIVSSZrrb_Intkz
:
6885 case X86::VSQRTPDZ128m
:
6886 case X86::VSQRTPDZ128mb
:
6887 case X86::VSQRTPDZ128mbk
:
6888 case X86::VSQRTPDZ128mbkz
:
6889 case X86::VSQRTPDZ128mk
:
6890 case X86::VSQRTPDZ128mkz
:
6891 case X86::VSQRTPDZ128r
:
6892 case X86::VSQRTPDZ128rk
:
6893 case X86::VSQRTPDZ128rkz
:
6894 case X86::VSQRTPDZ256m
:
6895 case X86::VSQRTPDZ256mb
:
6896 case X86::VSQRTPDZ256mbk
:
6897 case X86::VSQRTPDZ256mbkz
:
6898 case X86::VSQRTPDZ256mk
:
6899 case X86::VSQRTPDZ256mkz
:
6900 case X86::VSQRTPDZ256r
:
6901 case X86::VSQRTPDZ256rk
:
6902 case X86::VSQRTPDZ256rkz
:
6903 case X86::VSQRTPDZm
:
6904 case X86::VSQRTPDZmb
:
6905 case X86::VSQRTPDZmbk
:
6906 case X86::VSQRTPDZmbkz
:
6907 case X86::VSQRTPDZmk
:
6908 case X86::VSQRTPDZmkz
:
6909 case X86::VSQRTPDZr
:
6910 case X86::VSQRTPDZrb
:
6911 case X86::VSQRTPDZrbk
:
6912 case X86::VSQRTPDZrbkz
:
6913 case X86::VSQRTPDZrk
:
6914 case X86::VSQRTPDZrkz
:
6915 case X86::VSQRTPSZ128m
:
6916 case X86::VSQRTPSZ128mb
:
6917 case X86::VSQRTPSZ128mbk
:
6918 case X86::VSQRTPSZ128mbkz
:
6919 case X86::VSQRTPSZ128mk
:
6920 case X86::VSQRTPSZ128mkz
:
6921 case X86::VSQRTPSZ128r
:
6922 case X86::VSQRTPSZ128rk
:
6923 case X86::VSQRTPSZ128rkz
:
6924 case X86::VSQRTPSZ256m
:
6925 case X86::VSQRTPSZ256mb
:
6926 case X86::VSQRTPSZ256mbk
:
6927 case X86::VSQRTPSZ256mbkz
:
6928 case X86::VSQRTPSZ256mk
:
6929 case X86::VSQRTPSZ256mkz
:
6930 case X86::VSQRTPSZ256r
:
6931 case X86::VSQRTPSZ256rk
:
6932 case X86::VSQRTPSZ256rkz
:
6933 case X86::VSQRTPSZm
:
6934 case X86::VSQRTPSZmb
:
6935 case X86::VSQRTPSZmbk
:
6936 case X86::VSQRTPSZmbkz
:
6937 case X86::VSQRTPSZmk
:
6938 case X86::VSQRTPSZmkz
:
6939 case X86::VSQRTPSZr
:
6940 case X86::VSQRTPSZrb
:
6941 case X86::VSQRTPSZrbk
:
6942 case X86::VSQRTPSZrbkz
:
6943 case X86::VSQRTPSZrk
:
6944 case X86::VSQRTPSZrkz
:
6945 case X86::VSQRTSDZm
:
6946 case X86::VSQRTSDZm_Int
:
6947 case X86::VSQRTSDZm_Intk
:
6948 case X86::VSQRTSDZm_Intkz
:
6949 case X86::VSQRTSDZr
:
6950 case X86::VSQRTSDZr_Int
:
6951 case X86::VSQRTSDZr_Intk
:
6952 case X86::VSQRTSDZr_Intkz
:
6953 case X86::VSQRTSDZrb_Int
:
6954 case X86::VSQRTSDZrb_Intk
:
6955 case X86::VSQRTSDZrb_Intkz
:
6956 case X86::VSQRTSSZm
:
6957 case X86::VSQRTSSZm_Int
:
6958 case X86::VSQRTSSZm_Intk
:
6959 case X86::VSQRTSSZm_Intkz
:
6960 case X86::VSQRTSSZr
:
6961 case X86::VSQRTSSZr_Int
:
6962 case X86::VSQRTSSZr_Intk
:
6963 case X86::VSQRTSSZr_Intkz
:
6964 case X86::VSQRTSSZrb_Int
:
6965 case X86::VSQRTSSZrb_Intk
:
6966 case X86::VSQRTSSZrb_Intkz
:
6968 case X86::VGATHERDPDYrm
:
6969 case X86::VGATHERDPDZ128rm
:
6970 case X86::VGATHERDPDZ256rm
:
6971 case X86::VGATHERDPDZrm
:
6972 case X86::VGATHERDPDrm
:
6973 case X86::VGATHERDPSYrm
:
6974 case X86::VGATHERDPSZ128rm
:
6975 case X86::VGATHERDPSZ256rm
:
6976 case X86::VGATHERDPSZrm
:
6977 case X86::VGATHERDPSrm
:
6978 case X86::VGATHERPF0DPDm
:
6979 case X86::VGATHERPF0DPSm
:
6980 case X86::VGATHERPF0QPDm
:
6981 case X86::VGATHERPF0QPSm
:
6982 case X86::VGATHERPF1DPDm
:
6983 case X86::VGATHERPF1DPSm
:
6984 case X86::VGATHERPF1QPDm
:
6985 case X86::VGATHERPF1QPSm
:
6986 case X86::VGATHERQPDYrm
:
6987 case X86::VGATHERQPDZ128rm
:
6988 case X86::VGATHERQPDZ256rm
:
6989 case X86::VGATHERQPDZrm
:
6990 case X86::VGATHERQPDrm
:
6991 case X86::VGATHERQPSYrm
:
6992 case X86::VGATHERQPSZ128rm
:
6993 case X86::VGATHERQPSZ256rm
:
6994 case X86::VGATHERQPSZrm
:
6995 case X86::VGATHERQPSrm
:
6996 case X86::VPGATHERDDYrm
:
6997 case X86::VPGATHERDDZ128rm
:
6998 case X86::VPGATHERDDZ256rm
:
6999 case X86::VPGATHERDDZrm
:
7000 case X86::VPGATHERDDrm
:
7001 case X86::VPGATHERDQYrm
:
7002 case X86::VPGATHERDQZ128rm
:
7003 case X86::VPGATHERDQZ256rm
:
7004 case X86::VPGATHERDQZrm
:
7005 case X86::VPGATHERDQrm
:
7006 case X86::VPGATHERQDYrm
:
7007 case X86::VPGATHERQDZ128rm
:
7008 case X86::VPGATHERQDZ256rm
:
7009 case X86::VPGATHERQDZrm
:
7010 case X86::VPGATHERQDrm
:
7011 case X86::VPGATHERQQYrm
:
7012 case X86::VPGATHERQQZ128rm
:
7013 case X86::VPGATHERQQZ256rm
:
7014 case X86::VPGATHERQQZrm
:
7015 case X86::VPGATHERQQrm
:
7016 case X86::VSCATTERDPDZ128mr
:
7017 case X86::VSCATTERDPDZ256mr
:
7018 case X86::VSCATTERDPDZmr
:
7019 case X86::VSCATTERDPSZ128mr
:
7020 case X86::VSCATTERDPSZ256mr
:
7021 case X86::VSCATTERDPSZmr
:
7022 case X86::VSCATTERPF0DPDm
:
7023 case X86::VSCATTERPF0DPSm
:
7024 case X86::VSCATTERPF0QPDm
:
7025 case X86::VSCATTERPF0QPSm
:
7026 case X86::VSCATTERPF1DPDm
:
7027 case X86::VSCATTERPF1DPSm
:
7028 case X86::VSCATTERPF1QPDm
:
7029 case X86::VSCATTERPF1QPSm
:
7030 case X86::VSCATTERQPDZ128mr
:
7031 case X86::VSCATTERQPDZ256mr
:
7032 case X86::VSCATTERQPDZmr
:
7033 case X86::VSCATTERQPSZ128mr
:
7034 case X86::VSCATTERQPSZ256mr
:
7035 case X86::VSCATTERQPSZmr
:
7036 case X86::VPSCATTERDDZ128mr
:
7037 case X86::VPSCATTERDDZ256mr
:
7038 case X86::VPSCATTERDDZmr
:
7039 case X86::VPSCATTERDQZ128mr
:
7040 case X86::VPSCATTERDQZ256mr
:
7041 case X86::VPSCATTERDQZmr
:
7042 case X86::VPSCATTERQDZ128mr
:
7043 case X86::VPSCATTERQDZ256mr
:
7044 case X86::VPSCATTERQDZmr
:
7045 case X86::VPSCATTERQQZ128mr
:
7046 case X86::VPSCATTERQQZ256mr
:
7047 case X86::VPSCATTERQQZmr
:
7052 bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel
&SchedModel
,
7053 const MachineRegisterInfo
*MRI
,
7054 const MachineInstr
&DefMI
,
7056 const MachineInstr
&UseMI
,
7057 unsigned UseIdx
) const {
7058 return isHighLatencyDef(DefMI
.getOpcode());
7061 bool X86InstrInfo::hasReassociableOperands(const MachineInstr
&Inst
,
7062 const MachineBasicBlock
*MBB
) const {
7063 assert((Inst
.getNumOperands() == 3 || Inst
.getNumOperands() == 4) &&
7064 "Reassociation needs binary operators");
7066 // Integer binary math/logic instructions have a third source operand:
7067 // the EFLAGS register. That operand must be both defined here and never
7068 // used; ie, it must be dead. If the EFLAGS operand is live, then we can
7069 // not change anything because rearranging the operands could affect other
7070 // instructions that depend on the exact status flags (zero, sign, etc.)
7071 // that are set by using these particular operands with this operation.
7072 if (Inst
.getNumOperands() == 4) {
7073 assert(Inst
.getOperand(3).isReg() &&
7074 Inst
.getOperand(3).getReg() == X86::EFLAGS
&&
7075 "Unexpected operand in reassociable instruction");
7076 if (!Inst
.getOperand(3).isDead())
7080 return TargetInstrInfo::hasReassociableOperands(Inst
, MBB
);
7083 // TODO: There are many more machine instruction opcodes to match:
7084 // 1. Other data types (integer, vectors)
7085 // 2. Other math / logic operations (xor, or)
7086 // 3. Other forms of the same operation (intrinsics and other variants)
7087 bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr
&Inst
) const {
7088 switch (Inst
.getOpcode()) {
7133 case X86::VPANDDZ128rr
:
7134 case X86::VPANDDZ256rr
:
7135 case X86::VPANDDZrr
:
7136 case X86::VPANDQZ128rr
:
7137 case X86::VPANDQZ256rr
:
7138 case X86::VPANDQZrr
:
7141 case X86::VPORDZ128rr
:
7142 case X86::VPORDZ256rr
:
7144 case X86::VPORQZ128rr
:
7145 case X86::VPORQZ256rr
:
7149 case X86::VPXORDZ128rr
:
7150 case X86::VPXORDZ256rr
:
7151 case X86::VPXORDZrr
:
7152 case X86::VPXORQZ128rr
:
7153 case X86::VPXORQZ256rr
:
7154 case X86::VPXORQZrr
:
7157 case X86::VANDPDYrr
:
7158 case X86::VANDPSYrr
:
7159 case X86::VANDPDZ128rr
:
7160 case X86::VANDPSZ128rr
:
7161 case X86::VANDPDZ256rr
:
7162 case X86::VANDPSZ256rr
:
7163 case X86::VANDPDZrr
:
7164 case X86::VANDPSZrr
:
7169 case X86::VORPDZ128rr
:
7170 case X86::VORPSZ128rr
:
7171 case X86::VORPDZ256rr
:
7172 case X86::VORPSZ256rr
:
7177 case X86::VXORPDYrr
:
7178 case X86::VXORPSYrr
:
7179 case X86::VXORPDZ128rr
:
7180 case X86::VXORPSZ128rr
:
7181 case X86::VXORPDZ256rr
:
7182 case X86::VXORPSZ256rr
:
7183 case X86::VXORPDZrr
:
7184 case X86::VXORPSZrr
:
7205 case X86::VPADDBYrr
:
7206 case X86::VPADDWYrr
:
7207 case X86::VPADDDYrr
:
7208 case X86::VPADDQYrr
:
7209 case X86::VPADDBZ128rr
:
7210 case X86::VPADDWZ128rr
:
7211 case X86::VPADDDZ128rr
:
7212 case X86::VPADDQZ128rr
:
7213 case X86::VPADDBZ256rr
:
7214 case X86::VPADDWZ256rr
:
7215 case X86::VPADDDZ256rr
:
7216 case X86::VPADDQZ256rr
:
7217 case X86::VPADDBZrr
:
7218 case X86::VPADDWZrr
:
7219 case X86::VPADDDZrr
:
7220 case X86::VPADDQZrr
:
7221 case X86::VPMULLWrr
:
7222 case X86::VPMULLWYrr
:
7223 case X86::VPMULLWZ128rr
:
7224 case X86::VPMULLWZ256rr
:
7225 case X86::VPMULLWZrr
:
7226 case X86::VPMULLDrr
:
7227 case X86::VPMULLDYrr
:
7228 case X86::VPMULLDZ128rr
:
7229 case X86::VPMULLDZ256rr
:
7230 case X86::VPMULLDZrr
:
7231 case X86::VPMULLQZ128rr
:
7232 case X86::VPMULLQZ256rr
:
7233 case X86::VPMULLQZrr
:
7234 case X86::VPMAXSBrr
:
7235 case X86::VPMAXSBYrr
:
7236 case X86::VPMAXSBZ128rr
:
7237 case X86::VPMAXSBZ256rr
:
7238 case X86::VPMAXSBZrr
:
7239 case X86::VPMAXSDrr
:
7240 case X86::VPMAXSDYrr
:
7241 case X86::VPMAXSDZ128rr
:
7242 case X86::VPMAXSDZ256rr
:
7243 case X86::VPMAXSDZrr
:
7244 case X86::VPMAXSQZ128rr
:
7245 case X86::VPMAXSQZ256rr
:
7246 case X86::VPMAXSQZrr
:
7247 case X86::VPMAXSWrr
:
7248 case X86::VPMAXSWYrr
:
7249 case X86::VPMAXSWZ128rr
:
7250 case X86::VPMAXSWZ256rr
:
7251 case X86::VPMAXSWZrr
:
7252 case X86::VPMAXUBrr
:
7253 case X86::VPMAXUBYrr
:
7254 case X86::VPMAXUBZ128rr
:
7255 case X86::VPMAXUBZ256rr
:
7256 case X86::VPMAXUBZrr
:
7257 case X86::VPMAXUDrr
:
7258 case X86::VPMAXUDYrr
:
7259 case X86::VPMAXUDZ128rr
:
7260 case X86::VPMAXUDZ256rr
:
7261 case X86::VPMAXUDZrr
:
7262 case X86::VPMAXUQZ128rr
:
7263 case X86::VPMAXUQZ256rr
:
7264 case X86::VPMAXUQZrr
:
7265 case X86::VPMAXUWrr
:
7266 case X86::VPMAXUWYrr
:
7267 case X86::VPMAXUWZ128rr
:
7268 case X86::VPMAXUWZ256rr
:
7269 case X86::VPMAXUWZrr
:
7270 case X86::VPMINSBrr
:
7271 case X86::VPMINSBYrr
:
7272 case X86::VPMINSBZ128rr
:
7273 case X86::VPMINSBZ256rr
:
7274 case X86::VPMINSBZrr
:
7275 case X86::VPMINSDrr
:
7276 case X86::VPMINSDYrr
:
7277 case X86::VPMINSDZ128rr
:
7278 case X86::VPMINSDZ256rr
:
7279 case X86::VPMINSDZrr
:
7280 case X86::VPMINSQZ128rr
:
7281 case X86::VPMINSQZ256rr
:
7282 case X86::VPMINSQZrr
:
7283 case X86::VPMINSWrr
:
7284 case X86::VPMINSWYrr
:
7285 case X86::VPMINSWZ128rr
:
7286 case X86::VPMINSWZ256rr
:
7287 case X86::VPMINSWZrr
:
7288 case X86::VPMINUBrr
:
7289 case X86::VPMINUBYrr
:
7290 case X86::VPMINUBZ128rr
:
7291 case X86::VPMINUBZ256rr
:
7292 case X86::VPMINUBZrr
:
7293 case X86::VPMINUDrr
:
7294 case X86::VPMINUDYrr
:
7295 case X86::VPMINUDZ128rr
:
7296 case X86::VPMINUDZ256rr
:
7297 case X86::VPMINUDZrr
:
7298 case X86::VPMINUQZ128rr
:
7299 case X86::VPMINUQZ256rr
:
7300 case X86::VPMINUQZrr
:
7301 case X86::VPMINUWrr
:
7302 case X86::VPMINUWYrr
:
7303 case X86::VPMINUWZ128rr
:
7304 case X86::VPMINUWZ256rr
:
7305 case X86::VPMINUWZrr
:
7306 // Normal min/max instructions are not commutative because of NaN and signed
7307 // zero semantics, but these are. Thus, there's no need to check for global
7308 // relaxed math; the instructions themselves have the properties we need.
7317 case X86::VMAXCPDrr
:
7318 case X86::VMAXCPSrr
:
7319 case X86::VMAXCPDYrr
:
7320 case X86::VMAXCPSYrr
:
7321 case X86::VMAXCPDZ128rr
:
7322 case X86::VMAXCPSZ128rr
:
7323 case X86::VMAXCPDZ256rr
:
7324 case X86::VMAXCPSZ256rr
:
7325 case X86::VMAXCPDZrr
:
7326 case X86::VMAXCPSZrr
:
7327 case X86::VMAXCSDrr
:
7328 case X86::VMAXCSSrr
:
7329 case X86::VMAXCSDZrr
:
7330 case X86::VMAXCSSZrr
:
7331 case X86::VMINCPDrr
:
7332 case X86::VMINCPSrr
:
7333 case X86::VMINCPDYrr
:
7334 case X86::VMINCPSYrr
:
7335 case X86::VMINCPDZ128rr
:
7336 case X86::VMINCPSZ128rr
:
7337 case X86::VMINCPDZ256rr
:
7338 case X86::VMINCPSZ256rr
:
7339 case X86::VMINCPDZrr
:
7340 case X86::VMINCPSZrr
:
7341 case X86::VMINCSDrr
:
7342 case X86::VMINCSSrr
:
7343 case X86::VMINCSDZrr
:
7344 case X86::VMINCSSZrr
:
7356 case X86::VADDPDYrr
:
7357 case X86::VADDPSYrr
:
7358 case X86::VADDPDZ128rr
:
7359 case X86::VADDPSZ128rr
:
7360 case X86::VADDPDZ256rr
:
7361 case X86::VADDPSZ256rr
:
7362 case X86::VADDPDZrr
:
7363 case X86::VADDPSZrr
:
7366 case X86::VADDSDZrr
:
7367 case X86::VADDSSZrr
:
7370 case X86::VMULPDYrr
:
7371 case X86::VMULPSYrr
:
7372 case X86::VMULPDZ128rr
:
7373 case X86::VMULPSZ128rr
:
7374 case X86::VMULPDZ256rr
:
7375 case X86::VMULPSZ256rr
:
7376 case X86::VMULPDZrr
:
7377 case X86::VMULPSZrr
:
7380 case X86::VMULSDZrr
:
7381 case X86::VMULSSZrr
:
7382 return Inst
.getParent()->getParent()->getTarget().Options
.UnsafeFPMath
;
7388 Optional
<ParamLoadedValue
>
7389 X86InstrInfo::describeLoadedValue(const MachineInstr
&MI
) const {
7390 const MachineOperand
*Op
= nullptr;
7391 DIExpression
*Expr
= nullptr;
7393 switch (MI
.getOpcode()) {
7396 case X86::LEA64_32r
: {
7397 // Operand 4 could be global address. For now we do not support
7399 if (!MI
.getOperand(4).isImm() || !MI
.getOperand(2).isImm())
7402 const MachineOperand
&Op1
= MI
.getOperand(1);
7403 const MachineOperand
&Op2
= MI
.getOperand(3);
7404 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
7405 assert(Op2
.isReg() && (Op2
.getReg() == X86::NoRegister
||
7406 Register::isPhysicalRegister(Op2
.getReg())));
7408 // Omit situations like:
7409 // %rsi = lea %rsi, 4, ...
7410 if ((Op1
.isReg() && Op1
.getReg() == MI
.getOperand(0).getReg()) ||
7411 Op2
.getReg() == MI
.getOperand(0).getReg())
7413 else if ((Op1
.isReg() && Op1
.getReg() != X86::NoRegister
&&
7414 TRI
->regsOverlap(Op1
.getReg(), MI
.getOperand(0).getReg())) ||
7415 (Op2
.getReg() != X86::NoRegister
&&
7416 TRI
->regsOverlap(Op2
.getReg(), MI
.getOperand(0).getReg())))
7419 int64_t Coef
= MI
.getOperand(2).getImm();
7420 int64_t Offset
= MI
.getOperand(4).getImm();
7421 SmallVector
<uint64_t, 8> Ops
;
7423 if ((Op1
.isReg() && Op1
.getReg() != X86::NoRegister
)) {
7425 } else if (Op1
.isFI())
7428 if (Op
&& Op
->isReg() && Op
->getReg() == Op2
.getReg() && Coef
> 0) {
7429 Ops
.push_back(dwarf::DW_OP_constu
);
7430 Ops
.push_back(Coef
+ 1);
7431 Ops
.push_back(dwarf::DW_OP_mul
);
7433 if (Op
&& Op2
.getReg() != X86::NoRegister
) {
7434 int dwarfReg
= TRI
->getDwarfRegNum(Op2
.getReg(), false);
7437 else if (dwarfReg
< 32) {
7438 Ops
.push_back(dwarf::DW_OP_breg0
+ dwarfReg
);
7441 Ops
.push_back(dwarf::DW_OP_bregx
);
7442 Ops
.push_back(dwarfReg
);
7446 assert(Op2
.getReg() != X86::NoRegister
);
7451 assert(Op2
.getReg() != X86::NoRegister
);
7452 Ops
.push_back(dwarf::DW_OP_constu
);
7453 Ops
.push_back(Coef
);
7454 Ops
.push_back(dwarf::DW_OP_mul
);
7457 if (((Op1
.isReg() && Op1
.getReg() != X86::NoRegister
) || Op1
.isFI()) &&
7458 Op2
.getReg() != X86::NoRegister
) {
7459 Ops
.push_back(dwarf::DW_OP_plus
);
7463 DIExpression::appendOffset(Ops
, Offset
);
7464 Expr
= DIExpression::get(MI
.getMF()->getFunction().getContext(), Ops
);
7466 return ParamLoadedValue(Op
, Expr
);;
7469 return TargetInstrInfo::describeLoadedValue(MI
);
7473 /// This is an architecture-specific helper function of reassociateOps.
7474 /// Set special operand attributes for new instructions after reassociation.
7475 void X86InstrInfo::setSpecialOperandAttr(MachineInstr
&OldMI1
,
7476 MachineInstr
&OldMI2
,
7477 MachineInstr
&NewMI1
,
7478 MachineInstr
&NewMI2
) const {
7479 // Integer instructions define an implicit EFLAGS source register operand as
7480 // the third source (fourth total) operand.
7481 if (OldMI1
.getNumOperands() != 4 || OldMI2
.getNumOperands() != 4)
7484 assert(NewMI1
.getNumOperands() == 4 && NewMI2
.getNumOperands() == 4 &&
7485 "Unexpected instruction type for reassociation");
7487 MachineOperand
&OldOp1
= OldMI1
.getOperand(3);
7488 MachineOperand
&OldOp2
= OldMI2
.getOperand(3);
7489 MachineOperand
&NewOp1
= NewMI1
.getOperand(3);
7490 MachineOperand
&NewOp2
= NewMI2
.getOperand(3);
7492 assert(OldOp1
.isReg() && OldOp1
.getReg() == X86::EFLAGS
&& OldOp1
.isDead() &&
7493 "Must have dead EFLAGS operand in reassociable instruction");
7494 assert(OldOp2
.isReg() && OldOp2
.getReg() == X86::EFLAGS
&& OldOp2
.isDead() &&
7495 "Must have dead EFLAGS operand in reassociable instruction");
7500 assert(NewOp1
.isReg() && NewOp1
.getReg() == X86::EFLAGS
&&
7501 "Unexpected operand in reassociable instruction");
7502 assert(NewOp2
.isReg() && NewOp2
.getReg() == X86::EFLAGS
&&
7503 "Unexpected operand in reassociable instruction");
7505 // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations
7506 // of this pass or other passes. The EFLAGS operands must be dead in these new
7507 // instructions because the EFLAGS operands in the original instructions must
7508 // be dead in order for reassociation to occur.
7513 std::pair
<unsigned, unsigned>
7514 X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF
) const {
7515 return std::make_pair(TF
, 0u);
7518 ArrayRef
<std::pair
<unsigned, const char *>>
7519 X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
7520 using namespace X86II
;
7521 static const std::pair
<unsigned, const char *> TargetFlags
[] = {
7522 {MO_GOT_ABSOLUTE_ADDRESS
, "x86-got-absolute-address"},
7523 {MO_PIC_BASE_OFFSET
, "x86-pic-base-offset"},
7524 {MO_GOT
, "x86-got"},
7525 {MO_GOTOFF
, "x86-gotoff"},
7526 {MO_GOTPCREL
, "x86-gotpcrel"},
7527 {MO_PLT
, "x86-plt"},
7528 {MO_TLSGD
, "x86-tlsgd"},
7529 {MO_TLSLD
, "x86-tlsld"},
7530 {MO_TLSLDM
, "x86-tlsldm"},
7531 {MO_GOTTPOFF
, "x86-gottpoff"},
7532 {MO_INDNTPOFF
, "x86-indntpoff"},
7533 {MO_TPOFF
, "x86-tpoff"},
7534 {MO_DTPOFF
, "x86-dtpoff"},
7535 {MO_NTPOFF
, "x86-ntpoff"},
7536 {MO_GOTNTPOFF
, "x86-gotntpoff"},
7537 {MO_DLLIMPORT
, "x86-dllimport"},
7538 {MO_DARWIN_NONLAZY
, "x86-darwin-nonlazy"},
7539 {MO_DARWIN_NONLAZY_PIC_BASE
, "x86-darwin-nonlazy-pic-base"},
7540 {MO_TLVP
, "x86-tlvp"},
7541 {MO_TLVP_PIC_BASE
, "x86-tlvp-pic-base"},
7542 {MO_SECREL
, "x86-secrel"},
7543 {MO_COFFSTUB
, "x86-coffstub"}};
7544 return makeArrayRef(TargetFlags
);
7548 /// Create Global Base Reg pass. This initializes the PIC
7549 /// global base register for x86-32.
7550 struct CGBR
: public MachineFunctionPass
{
7552 CGBR() : MachineFunctionPass(ID
) {}
7554 bool runOnMachineFunction(MachineFunction
&MF
) override
{
7555 const X86TargetMachine
*TM
=
7556 static_cast<const X86TargetMachine
*>(&MF
.getTarget());
7557 const X86Subtarget
&STI
= MF
.getSubtarget
<X86Subtarget
>();
7559 // Don't do anything in the 64-bit small and kernel code models. They use
7560 // RIP-relative addressing for everything.
7561 if (STI
.is64Bit() && (TM
->getCodeModel() == CodeModel::Small
||
7562 TM
->getCodeModel() == CodeModel::Kernel
))
7565 // Only emit a global base reg in PIC mode.
7566 if (!TM
->isPositionIndependent())
7569 X86MachineFunctionInfo
*X86FI
= MF
.getInfo
<X86MachineFunctionInfo
>();
7570 unsigned GlobalBaseReg
= X86FI
->getGlobalBaseReg();
7572 // If we didn't need a GlobalBaseReg, don't insert code.
7573 if (GlobalBaseReg
== 0)
7576 // Insert the set of GlobalBaseReg into the first MBB of the function
7577 MachineBasicBlock
&FirstMBB
= MF
.front();
7578 MachineBasicBlock::iterator MBBI
= FirstMBB
.begin();
7579 DebugLoc DL
= FirstMBB
.findDebugLoc(MBBI
);
7580 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
7581 const X86InstrInfo
*TII
= STI
.getInstrInfo();
7584 if (STI
.isPICStyleGOT())
7585 PC
= RegInfo
.createVirtualRegister(&X86::GR32RegClass
);
7589 if (STI
.is64Bit()) {
7590 if (TM
->getCodeModel() == CodeModel::Medium
) {
7591 // In the medium code model, use a RIP-relative LEA to materialize the
7593 BuildMI(FirstMBB
, MBBI
, DL
, TII
->get(X86::LEA64r
), PC
)
7597 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_")
7599 } else if (TM
->getCodeModel() == CodeModel::Large
) {
7600 // In the large code model, we are aiming for this code, though the
7601 // register allocation may vary:
7602 // leaq .LN$pb(%rip), %rax
7603 // movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx
7605 // RAX now holds address of _GLOBAL_OFFSET_TABLE_.
7606 Register PBReg
= RegInfo
.createVirtualRegister(&X86::GR64RegClass
);
7607 Register GOTReg
= RegInfo
.createVirtualRegister(&X86::GR64RegClass
);
7608 BuildMI(FirstMBB
, MBBI
, DL
, TII
->get(X86::LEA64r
), PBReg
)
7612 .addSym(MF
.getPICBaseSymbol())
7614 std::prev(MBBI
)->setPreInstrSymbol(MF
, MF
.getPICBaseSymbol());
7615 BuildMI(FirstMBB
, MBBI
, DL
, TII
->get(X86::MOV64ri
), GOTReg
)
7616 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
7617 X86II::MO_PIC_BASE_OFFSET
);
7618 BuildMI(FirstMBB
, MBBI
, DL
, TII
->get(X86::ADD64rr
), PC
)
7619 .addReg(PBReg
, RegState::Kill
)
7620 .addReg(GOTReg
, RegState::Kill
);
7622 llvm_unreachable("unexpected code model");
7625 // Operand of MovePCtoStack is completely ignored by asm printer. It's
7626 // only used in JIT code emission as displacement to pc.
7627 BuildMI(FirstMBB
, MBBI
, DL
, TII
->get(X86::MOVPC32r
), PC
).addImm(0);
7629 // If we're using vanilla 'GOT' PIC style, we should use relative
7630 // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
7631 if (STI
.isPICStyleGOT()) {
7632 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel],
7634 BuildMI(FirstMBB
, MBBI
, DL
, TII
->get(X86::ADD32ri
), GlobalBaseReg
)
7636 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
7637 X86II::MO_GOT_ABSOLUTE_ADDRESS
);
7644 StringRef
getPassName() const override
{
7645 return "X86 PIC Global Base Reg Initialization";
7648 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
7649 AU
.setPreservesCFG();
7650 MachineFunctionPass::getAnalysisUsage(AU
);
7657 llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
7660 struct LDTLSCleanup
: public MachineFunctionPass
{
7662 LDTLSCleanup() : MachineFunctionPass(ID
) {}
7664 bool runOnMachineFunction(MachineFunction
&MF
) override
{
7665 if (skipFunction(MF
.getFunction()))
7668 X86MachineFunctionInfo
*MFI
= MF
.getInfo
<X86MachineFunctionInfo
>();
7669 if (MFI
->getNumLocalDynamicTLSAccesses() < 2) {
7670 // No point folding accesses if there isn't at least two.
7674 MachineDominatorTree
*DT
= &getAnalysis
<MachineDominatorTree
>();
7675 return VisitNode(DT
->getRootNode(), 0);
7678 // Visit the dominator subtree rooted at Node in pre-order.
7679 // If TLSBaseAddrReg is non-null, then use that to replace any
7680 // TLS_base_addr instructions. Otherwise, create the register
7681 // when the first such instruction is seen, and then use it
7682 // as we encounter more instructions.
7683 bool VisitNode(MachineDomTreeNode
*Node
, unsigned TLSBaseAddrReg
) {
7684 MachineBasicBlock
*BB
= Node
->getBlock();
7685 bool Changed
= false;
7687 // Traverse the current block.
7688 for (MachineBasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
;
7690 switch (I
->getOpcode()) {
7691 case X86::TLS_base_addr32
:
7692 case X86::TLS_base_addr64
:
7694 I
= ReplaceTLSBaseAddrCall(*I
, TLSBaseAddrReg
);
7696 I
= SetRegister(*I
, &TLSBaseAddrReg
);
7704 // Visit the children of this block in the dominator tree.
7705 for (MachineDomTreeNode::iterator I
= Node
->begin(), E
= Node
->end();
7707 Changed
|= VisitNode(*I
, TLSBaseAddrReg
);
7713 // Replace the TLS_base_addr instruction I with a copy from
7714 // TLSBaseAddrReg, returning the new instruction.
7715 MachineInstr
*ReplaceTLSBaseAddrCall(MachineInstr
&I
,
7716 unsigned TLSBaseAddrReg
) {
7717 MachineFunction
*MF
= I
.getParent()->getParent();
7718 const X86Subtarget
&STI
= MF
->getSubtarget
<X86Subtarget
>();
7719 const bool is64Bit
= STI
.is64Bit();
7720 const X86InstrInfo
*TII
= STI
.getInstrInfo();
7722 // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
7723 MachineInstr
*Copy
=
7724 BuildMI(*I
.getParent(), I
, I
.getDebugLoc(),
7725 TII
->get(TargetOpcode::COPY
), is64Bit
? X86::RAX
: X86::EAX
)
7726 .addReg(TLSBaseAddrReg
);
7728 // Erase the TLS_base_addr instruction.
7729 I
.eraseFromParent();
7734 // Create a virtual register in *TLSBaseAddrReg, and populate it by
7735 // inserting a copy instruction after I. Returns the new instruction.
7736 MachineInstr
*SetRegister(MachineInstr
&I
, unsigned *TLSBaseAddrReg
) {
7737 MachineFunction
*MF
= I
.getParent()->getParent();
7738 const X86Subtarget
&STI
= MF
->getSubtarget
<X86Subtarget
>();
7739 const bool is64Bit
= STI
.is64Bit();
7740 const X86InstrInfo
*TII
= STI
.getInstrInfo();
7742 // Create a virtual register for the TLS base address.
7743 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
7744 *TLSBaseAddrReg
= RegInfo
.createVirtualRegister(is64Bit
7745 ? &X86::GR64RegClass
7746 : &X86::GR32RegClass
);
7748 // Insert a copy from RAX/EAX to TLSBaseAddrReg.
7749 MachineInstr
*Next
= I
.getNextNode();
7750 MachineInstr
*Copy
=
7751 BuildMI(*I
.getParent(), Next
, I
.getDebugLoc(),
7752 TII
->get(TargetOpcode::COPY
), *TLSBaseAddrReg
)
7753 .addReg(is64Bit
? X86::RAX
: X86::EAX
);
7758 StringRef
getPassName() const override
{
7759 return "Local Dynamic TLS Access Clean-up";
7762 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
7763 AU
.setPreservesCFG();
7764 AU
.addRequired
<MachineDominatorTree
>();
7765 MachineFunctionPass::getAnalysisUsage(AU
);
7770 char LDTLSCleanup::ID
= 0;
7772 llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
7774 /// Constants defining how certain sequences should be outlined.
7776 /// \p MachineOutlinerDefault implies that the function is called with a call
7777 /// instruction, and a return must be emitted for the outlined function frame.
7781 /// I1 OUTLINED_FUNCTION:
7782 /// I2 --> call OUTLINED_FUNCTION I1
7787 /// * Call construction overhead: 1 (call instruction)
7788 /// * Frame construction overhead: 1 (return instruction)
7790 /// \p MachineOutlinerTailCall implies that the function is being tail called.
7791 /// A jump is emitted instead of a call, and the return is already present in
7792 /// the outlined sequence. That is,
7794 /// I1 OUTLINED_FUNCTION:
7795 /// I2 --> jmp OUTLINED_FUNCTION I1
7799 /// * Call construction overhead: 1 (jump instruction)
7800 /// * Frame construction overhead: 0 (don't need to return)
7802 enum MachineOutlinerClass
{
7803 MachineOutlinerDefault
,
7804 MachineOutlinerTailCall
7807 outliner::OutlinedFunction
X86InstrInfo::getOutliningCandidateInfo(
7808 std::vector
<outliner::Candidate
> &RepeatedSequenceLocs
) const {
7809 unsigned SequenceSize
=
7810 std::accumulate(RepeatedSequenceLocs
[0].front(),
7811 std::next(RepeatedSequenceLocs
[0].back()), 0,
7812 [](unsigned Sum
, const MachineInstr
&MI
) {
7813 // FIXME: x86 doesn't implement getInstSizeInBytes, so
7814 // we can't tell the cost. Just assume each instruction
7816 if (MI
.isDebugInstr() || MI
.isKill())
7821 // FIXME: Use real size in bytes for call and ret instructions.
7822 if (RepeatedSequenceLocs
[0].back()->isTerminator()) {
7823 for (outliner::Candidate
&C
: RepeatedSequenceLocs
)
7824 C
.setCallInfo(MachineOutlinerTailCall
, 1);
7826 return outliner::OutlinedFunction(RepeatedSequenceLocs
, SequenceSize
,
7827 0, // Number of bytes to emit frame.
7828 MachineOutlinerTailCall
// Type of frame.
7832 for (outliner::Candidate
&C
: RepeatedSequenceLocs
)
7833 C
.setCallInfo(MachineOutlinerDefault
, 1);
7835 return outliner::OutlinedFunction(RepeatedSequenceLocs
, SequenceSize
, 1,
7836 MachineOutlinerDefault
);
7839 bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction
&MF
,
7840 bool OutlineFromLinkOnceODRs
) const {
7841 const Function
&F
= MF
.getFunction();
7843 // Does the function use a red zone? If it does, then we can't risk messing
7845 if (Subtarget
.getFrameLowering()->has128ByteRedZone(MF
)) {
7846 // It could have a red zone. If it does, then we don't want to touch it.
7847 const X86MachineFunctionInfo
*X86FI
= MF
.getInfo
<X86MachineFunctionInfo
>();
7848 if (!X86FI
|| X86FI
->getUsesRedZone())
7852 // If we *don't* want to outline from things that could potentially be deduped
7853 // then return false.
7854 if (!OutlineFromLinkOnceODRs
&& F
.hasLinkOnceODRLinkage())
7857 // This function is viable for outlining, so return true.
7862 X86InstrInfo::getOutliningType(MachineBasicBlock::iterator
&MIT
, unsigned Flags
) const {
7863 MachineInstr
&MI
= *MIT
;
7864 // Don't allow debug values to impact outlining type.
7865 if (MI
.isDebugInstr() || MI
.isIndirectDebugValue())
7866 return outliner::InstrType::Invisible
;
7868 // At this point, KILL instructions don't really tell us much so we can go
7869 // ahead and skip over them.
7871 return outliner::InstrType::Invisible
;
7873 // Is this a tail call? If yes, we can outline as a tail call.
7875 return outliner::InstrType::Legal
;
7877 // Is this the terminator of a basic block?
7878 if (MI
.isTerminator() || MI
.isReturn()) {
7880 // Does its parent have any successors in its MachineFunction?
7881 if (MI
.getParent()->succ_empty())
7882 return outliner::InstrType::Legal
;
7884 // It does, so we can't tail call it.
7885 return outliner::InstrType::Illegal
;
7888 // Don't outline anything that modifies or reads from the stack pointer.
7890 // FIXME: There are instructions which are being manually built without
7891 // explicit uses/defs so we also have to check the MCInstrDesc. We should be
7892 // able to remove the extra checks once those are fixed up. For example,
7893 // sometimes we might get something like %rax = POP64r 1. This won't be
7894 // caught by modifiesRegister or readsRegister even though the instruction
7895 // really ought to be formed so that modifiesRegister/readsRegister would
7897 if (MI
.modifiesRegister(X86::RSP
, &RI
) || MI
.readsRegister(X86::RSP
, &RI
) ||
7898 MI
.getDesc().hasImplicitUseOfPhysReg(X86::RSP
) ||
7899 MI
.getDesc().hasImplicitDefOfPhysReg(X86::RSP
))
7900 return outliner::InstrType::Illegal
;
7902 // Outlined calls change the instruction pointer, so don't read from it.
7903 if (MI
.readsRegister(X86::RIP
, &RI
) ||
7904 MI
.getDesc().hasImplicitUseOfPhysReg(X86::RIP
) ||
7905 MI
.getDesc().hasImplicitDefOfPhysReg(X86::RIP
))
7906 return outliner::InstrType::Illegal
;
7908 // Positions can't safely be outlined.
7909 if (MI
.isPosition())
7910 return outliner::InstrType::Illegal
;
7912 // Make sure none of the operands of this instruction do anything tricky.
7913 for (const MachineOperand
&MOP
: MI
.operands())
7914 if (MOP
.isCPI() || MOP
.isJTI() || MOP
.isCFIIndex() || MOP
.isFI() ||
7915 MOP
.isTargetIndex())
7916 return outliner::InstrType::Illegal
;
7918 return outliner::InstrType::Legal
;
7921 void X86InstrInfo::buildOutlinedFrame(MachineBasicBlock
&MBB
,
7922 MachineFunction
&MF
,
7923 const outliner::OutlinedFunction
&OF
)
7925 // If we're a tail call, we already have a return, so don't do anything.
7926 if (OF
.FrameConstructionID
== MachineOutlinerTailCall
)
7929 // We're a normal call, so our sequence doesn't have a return instruction.
7931 MachineInstr
*retq
= BuildMI(MF
, DebugLoc(), get(X86::RETQ
));
7932 MBB
.insert(MBB
.end(), retq
);
7935 MachineBasicBlock::iterator
7936 X86InstrInfo::insertOutlinedCall(Module
&M
, MachineBasicBlock
&MBB
,
7937 MachineBasicBlock::iterator
&It
,
7938 MachineFunction
&MF
,
7939 const outliner::Candidate
&C
) const {
7940 // Is it a tail call?
7941 if (C
.CallConstructionID
== MachineOutlinerTailCall
) {
7942 // Yes, just insert a JMP.
7944 BuildMI(MF
, DebugLoc(), get(X86::TAILJMPd64
))
7945 .addGlobalAddress(M
.getNamedValue(MF
.getName())));
7947 // No, insert a call.
7949 BuildMI(MF
, DebugLoc(), get(X86::CALL64pcrel32
))
7950 .addGlobalAddress(M
.getNamedValue(MF
.getName())));
7956 #define GET_INSTRINFO_HELPERS
7957 #include "X86GenInstrInfo.inc"