[Alignment][NFC] Remove LoadInst::setAlignment(unsigned)
[llvm-core.git] / include / llvm / IR / Instructions.h
blob93aaa51868d2ae00860955fe4cefafee18098c1b
1 //===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file exposes the class definitions of all of the subclasses of the
10 // Instruction class. This is meant to be an easy way to get access to all
11 // instruction subclasses.
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_IR_INSTRUCTIONS_H
16 #define LLVM_IR_INSTRUCTIONS_H
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/ADT/iterator.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/CallingConv.h"
29 #include "llvm/IR/Constant.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/InstrTypes.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/OperandTraits.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/Use.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/AtomicOrdering.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include <cassert>
43 #include <cstddef>
44 #include <cstdint>
45 #include <iterator>
47 namespace llvm {
49 class APInt;
50 class ConstantInt;
51 class DataLayout;
52 class LLVMContext;
54 //===----------------------------------------------------------------------===//
55 // AllocaInst Class
56 //===----------------------------------------------------------------------===//
58 /// an instruction to allocate memory on the stack
59 class AllocaInst : public UnaryInstruction {
60 Type *AllocatedType;
62 protected:
63 // Note: Instruction needs to be a friend here to call cloneImpl.
64 friend class Instruction;
66 AllocaInst *cloneImpl() const;
68 public:
69 explicit AllocaInst(Type *Ty, unsigned AddrSpace,
70 Value *ArraySize = nullptr,
71 const Twine &Name = "",
72 Instruction *InsertBefore = nullptr);
73 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
74 const Twine &Name, BasicBlock *InsertAtEnd);
76 AllocaInst(Type *Ty, unsigned AddrSpace,
77 const Twine &Name, Instruction *InsertBefore = nullptr);
78 AllocaInst(Type *Ty, unsigned AddrSpace,
79 const Twine &Name, BasicBlock *InsertAtEnd);
81 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, unsigned Align,
82 const Twine &Name = "", Instruction *InsertBefore = nullptr);
83 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, unsigned Align,
84 const Twine &Name, BasicBlock *InsertAtEnd);
86 /// Return true if there is an allocation size parameter to the allocation
87 /// instruction that is not 1.
88 bool isArrayAllocation() const;
90 /// Get the number of elements allocated. For a simple allocation of a single
91 /// element, this will return a constant 1 value.
92 const Value *getArraySize() const { return getOperand(0); }
93 Value *getArraySize() { return getOperand(0); }
95 /// Overload to return most specific pointer type.
96 PointerType *getType() const {
97 return cast<PointerType>(Instruction::getType());
100 /// Get allocation size in bits. Returns None if size can't be determined,
101 /// e.g. in case of a VLA.
102 Optional<uint64_t> getAllocationSizeInBits(const DataLayout &DL) const;
104 /// Return the type that is being allocated by the instruction.
105 Type *getAllocatedType() const { return AllocatedType; }
106 /// for use only in special circumstances that need to generically
107 /// transform a whole instruction (eg: IR linking and vectorization).
108 void setAllocatedType(Type *Ty) { AllocatedType = Ty; }
110 /// Return the alignment of the memory that is being allocated by the
111 /// instruction.
112 unsigned getAlignment() const {
113 if (const auto MA = decodeMaybeAlign(getSubclassDataFromInstruction() & 31))
114 return MA->value();
115 return 0;
117 // FIXME: Remove once migration to Align is over.
118 void setAlignment(unsigned Align);
119 void setAlignment(MaybeAlign Align);
121 /// Return true if this alloca is in the entry block of the function and is a
122 /// constant size. If so, the code generator will fold it into the
123 /// prolog/epilog code, so it is basically free.
124 bool isStaticAlloca() const;
126 /// Return true if this alloca is used as an inalloca argument to a call. Such
127 /// allocas are never considered static even if they are in the entry block.
128 bool isUsedWithInAlloca() const {
129 return getSubclassDataFromInstruction() & 32;
132 /// Specify whether this alloca is used to represent the arguments to a call.
133 void setUsedWithInAlloca(bool V) {
134 setInstructionSubclassData((getSubclassDataFromInstruction() & ~32) |
135 (V ? 32 : 0));
138 /// Return true if this alloca is used as a swifterror argument to a call.
139 bool isSwiftError() const {
140 return getSubclassDataFromInstruction() & 64;
143 /// Specify whether this alloca is used to represent a swifterror.
144 void setSwiftError(bool V) {
145 setInstructionSubclassData((getSubclassDataFromInstruction() & ~64) |
146 (V ? 64 : 0));
149 // Methods for support type inquiry through isa, cast, and dyn_cast:
150 static bool classof(const Instruction *I) {
151 return (I->getOpcode() == Instruction::Alloca);
153 static bool classof(const Value *V) {
154 return isa<Instruction>(V) && classof(cast<Instruction>(V));
157 private:
158 // Shadow Instruction::setInstructionSubclassData with a private forwarding
159 // method so that subclasses cannot accidentally use it.
160 void setInstructionSubclassData(unsigned short D) {
161 Instruction::setInstructionSubclassData(D);
165 //===----------------------------------------------------------------------===//
166 // LoadInst Class
167 //===----------------------------------------------------------------------===//
169 /// An instruction for reading from memory. This uses the SubclassData field in
170 /// Value to store whether or not the load is volatile.
171 class LoadInst : public UnaryInstruction {
172 void AssertOK();
174 protected:
175 // Note: Instruction needs to be a friend here to call cloneImpl.
176 friend class Instruction;
178 LoadInst *cloneImpl() const;
180 public:
181 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr = "",
182 Instruction *InsertBefore = nullptr);
183 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
184 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
185 Instruction *InsertBefore = nullptr);
186 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
187 BasicBlock *InsertAtEnd);
188 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
189 unsigned Align, Instruction *InsertBefore = nullptr);
190 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
191 unsigned Align, BasicBlock *InsertAtEnd);
192 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
193 unsigned Align, AtomicOrdering Order,
194 SyncScope::ID SSID = SyncScope::System,
195 Instruction *InsertBefore = nullptr);
196 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
197 unsigned Align, AtomicOrdering Order, SyncScope::ID SSID,
198 BasicBlock *InsertAtEnd);
200 // Deprecated [opaque pointer types]
201 explicit LoadInst(Value *Ptr, const Twine &NameStr = "",
202 Instruction *InsertBefore = nullptr)
203 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
204 InsertBefore) {}
205 LoadInst(Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd)
206 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
207 InsertAtEnd) {}
208 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
209 Instruction *InsertBefore = nullptr)
210 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
211 isVolatile, InsertBefore) {}
212 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
213 BasicBlock *InsertAtEnd)
214 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
215 isVolatile, InsertAtEnd) {}
216 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align,
217 Instruction *InsertBefore = nullptr)
218 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
219 isVolatile, Align, InsertBefore) {}
220 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align,
221 BasicBlock *InsertAtEnd)
222 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
223 isVolatile, Align, InsertAtEnd) {}
224 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align,
225 AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System,
226 Instruction *InsertBefore = nullptr)
227 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
228 isVolatile, Align, Order, SSID, InsertBefore) {}
229 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align,
230 AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd)
231 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
232 isVolatile, Align, Order, SSID, InsertAtEnd) {}
234 /// Return true if this is a load from a volatile memory location.
235 bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
237 /// Specify whether this is a volatile load or not.
238 void setVolatile(bool V) {
239 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
240 (V ? 1 : 0));
243 /// Return the alignment of the access that is being performed.
244 unsigned getAlignment() const {
245 if (const auto MA =
246 decodeMaybeAlign((getSubclassDataFromInstruction() >> 1) & 31))
247 return MA->value();
248 return 0;
251 void setAlignment(MaybeAlign Align);
253 /// Returns the ordering constraint of this load instruction.
254 AtomicOrdering getOrdering() const {
255 return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7);
258 /// Sets the ordering constraint of this load instruction. May not be Release
259 /// or AcquireRelease.
260 void setOrdering(AtomicOrdering Ordering) {
261 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) |
262 ((unsigned)Ordering << 7));
265 /// Returns the synchronization scope ID of this load instruction.
266 SyncScope::ID getSyncScopeID() const {
267 return SSID;
270 /// Sets the synchronization scope ID of this load instruction.
271 void setSyncScopeID(SyncScope::ID SSID) {
272 this->SSID = SSID;
275 /// Sets the ordering constraint and the synchronization scope ID of this load
276 /// instruction.
277 void setAtomic(AtomicOrdering Ordering,
278 SyncScope::ID SSID = SyncScope::System) {
279 setOrdering(Ordering);
280 setSyncScopeID(SSID);
283 bool isSimple() const { return !isAtomic() && !isVolatile(); }
285 bool isUnordered() const {
286 return (getOrdering() == AtomicOrdering::NotAtomic ||
287 getOrdering() == AtomicOrdering::Unordered) &&
288 !isVolatile();
291 Value *getPointerOperand() { return getOperand(0); }
292 const Value *getPointerOperand() const { return getOperand(0); }
293 static unsigned getPointerOperandIndex() { return 0U; }
294 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
296 /// Returns the address space of the pointer operand.
297 unsigned getPointerAddressSpace() const {
298 return getPointerOperandType()->getPointerAddressSpace();
301 // Methods for support type inquiry through isa, cast, and dyn_cast:
302 static bool classof(const Instruction *I) {
303 return I->getOpcode() == Instruction::Load;
305 static bool classof(const Value *V) {
306 return isa<Instruction>(V) && classof(cast<Instruction>(V));
309 private:
310 // Shadow Instruction::setInstructionSubclassData with a private forwarding
311 // method so that subclasses cannot accidentally use it.
312 void setInstructionSubclassData(unsigned short D) {
313 Instruction::setInstructionSubclassData(D);
316 /// The synchronization scope ID of this load instruction. Not quite enough
317 /// room in SubClassData for everything, so synchronization scope ID gets its
318 /// own field.
319 SyncScope::ID SSID;
322 //===----------------------------------------------------------------------===//
323 // StoreInst Class
324 //===----------------------------------------------------------------------===//
326 /// An instruction for storing to memory.
327 class StoreInst : public Instruction {
328 void AssertOK();
330 protected:
331 // Note: Instruction needs to be a friend here to call cloneImpl.
332 friend class Instruction;
334 StoreInst *cloneImpl() const;
336 public:
337 StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
338 StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
339 StoreInst(Value *Val, Value *Ptr, bool isVolatile = false,
340 Instruction *InsertBefore = nullptr);
341 StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
342 StoreInst(Value *Val, Value *Ptr, bool isVolatile,
343 unsigned Align, Instruction *InsertBefore = nullptr);
344 StoreInst(Value *Val, Value *Ptr, bool isVolatile,
345 unsigned Align, BasicBlock *InsertAtEnd);
346 StoreInst(Value *Val, Value *Ptr, bool isVolatile,
347 unsigned Align, AtomicOrdering Order,
348 SyncScope::ID SSID = SyncScope::System,
349 Instruction *InsertBefore = nullptr);
350 StoreInst(Value *Val, Value *Ptr, bool isVolatile,
351 unsigned Align, AtomicOrdering Order, SyncScope::ID SSID,
352 BasicBlock *InsertAtEnd);
354 // allocate space for exactly two operands
355 void *operator new(size_t s) {
356 return User::operator new(s, 2);
359 /// Return true if this is a store to a volatile memory location.
360 bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
362 /// Specify whether this is a volatile store or not.
363 void setVolatile(bool V) {
364 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
365 (V ? 1 : 0));
368 /// Transparently provide more efficient getOperand methods.
369 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
371 /// Return the alignment of the access that is being performed
372 unsigned getAlignment() const {
373 if (const auto MA =
374 decodeMaybeAlign((getSubclassDataFromInstruction() >> 1) & 31))
375 return MA->value();
376 return 0;
379 // FIXME: Remove once migration to Align is over.
380 void setAlignment(unsigned Align);
381 void setAlignment(MaybeAlign Align);
383 /// Returns the ordering constraint of this store instruction.
384 AtomicOrdering getOrdering() const {
385 return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7);
388 /// Sets the ordering constraint of this store instruction. May not be
389 /// Acquire or AcquireRelease.
390 void setOrdering(AtomicOrdering Ordering) {
391 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) |
392 ((unsigned)Ordering << 7));
395 /// Returns the synchronization scope ID of this store instruction.
396 SyncScope::ID getSyncScopeID() const {
397 return SSID;
400 /// Sets the synchronization scope ID of this store instruction.
401 void setSyncScopeID(SyncScope::ID SSID) {
402 this->SSID = SSID;
405 /// Sets the ordering constraint and the synchronization scope ID of this
406 /// store instruction.
407 void setAtomic(AtomicOrdering Ordering,
408 SyncScope::ID SSID = SyncScope::System) {
409 setOrdering(Ordering);
410 setSyncScopeID(SSID);
413 bool isSimple() const { return !isAtomic() && !isVolatile(); }
415 bool isUnordered() const {
416 return (getOrdering() == AtomicOrdering::NotAtomic ||
417 getOrdering() == AtomicOrdering::Unordered) &&
418 !isVolatile();
421 Value *getValueOperand() { return getOperand(0); }
422 const Value *getValueOperand() const { return getOperand(0); }
424 Value *getPointerOperand() { return getOperand(1); }
425 const Value *getPointerOperand() const { return getOperand(1); }
426 static unsigned getPointerOperandIndex() { return 1U; }
427 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
429 /// Returns the address space of the pointer operand.
430 unsigned getPointerAddressSpace() const {
431 return getPointerOperandType()->getPointerAddressSpace();
434 // Methods for support type inquiry through isa, cast, and dyn_cast:
435 static bool classof(const Instruction *I) {
436 return I->getOpcode() == Instruction::Store;
438 static bool classof(const Value *V) {
439 return isa<Instruction>(V) && classof(cast<Instruction>(V));
442 private:
443 // Shadow Instruction::setInstructionSubclassData with a private forwarding
444 // method so that subclasses cannot accidentally use it.
445 void setInstructionSubclassData(unsigned short D) {
446 Instruction::setInstructionSubclassData(D);
449 /// The synchronization scope ID of this store instruction. Not quite enough
450 /// room in SubClassData for everything, so synchronization scope ID gets its
451 /// own field.
452 SyncScope::ID SSID;
455 template <>
456 struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
459 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)
461 //===----------------------------------------------------------------------===//
462 // FenceInst Class
463 //===----------------------------------------------------------------------===//
465 /// An instruction for ordering other memory operations.
466 class FenceInst : public Instruction {
467 void Init(AtomicOrdering Ordering, SyncScope::ID SSID);
469 protected:
470 // Note: Instruction needs to be a friend here to call cloneImpl.
471 friend class Instruction;
473 FenceInst *cloneImpl() const;
475 public:
476 // Ordering may only be Acquire, Release, AcquireRelease, or
477 // SequentiallyConsistent.
478 FenceInst(LLVMContext &C, AtomicOrdering Ordering,
479 SyncScope::ID SSID = SyncScope::System,
480 Instruction *InsertBefore = nullptr);
481 FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID,
482 BasicBlock *InsertAtEnd);
484 // allocate space for exactly zero operands
485 void *operator new(size_t s) {
486 return User::operator new(s, 0);
489 /// Returns the ordering constraint of this fence instruction.
490 AtomicOrdering getOrdering() const {
491 return AtomicOrdering(getSubclassDataFromInstruction() >> 1);
494 /// Sets the ordering constraint of this fence instruction. May only be
495 /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
496 void setOrdering(AtomicOrdering Ordering) {
497 setInstructionSubclassData((getSubclassDataFromInstruction() & 1) |
498 ((unsigned)Ordering << 1));
501 /// Returns the synchronization scope ID of this fence instruction.
502 SyncScope::ID getSyncScopeID() const {
503 return SSID;
506 /// Sets the synchronization scope ID of this fence instruction.
507 void setSyncScopeID(SyncScope::ID SSID) {
508 this->SSID = SSID;
511 // Methods for support type inquiry through isa, cast, and dyn_cast:
512 static bool classof(const Instruction *I) {
513 return I->getOpcode() == Instruction::Fence;
515 static bool classof(const Value *V) {
516 return isa<Instruction>(V) && classof(cast<Instruction>(V));
519 private:
520 // Shadow Instruction::setInstructionSubclassData with a private forwarding
521 // method so that subclasses cannot accidentally use it.
522 void setInstructionSubclassData(unsigned short D) {
523 Instruction::setInstructionSubclassData(D);
526 /// The synchronization scope ID of this fence instruction. Not quite enough
527 /// room in SubClassData for everything, so synchronization scope ID gets its
528 /// own field.
529 SyncScope::ID SSID;
532 //===----------------------------------------------------------------------===//
533 // AtomicCmpXchgInst Class
534 //===----------------------------------------------------------------------===//
536 /// An instruction that atomically checks whether a
537 /// specified value is in a memory location, and, if it is, stores a new value
538 /// there. The value returned by this instruction is a pair containing the
539 /// original value as first element, and an i1 indicating success (true) or
540 /// failure (false) as second element.
542 class AtomicCmpXchgInst : public Instruction {
543 void Init(Value *Ptr, Value *Cmp, Value *NewVal,
544 AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
545 SyncScope::ID SSID);
547 protected:
548 // Note: Instruction needs to be a friend here to call cloneImpl.
549 friend class Instruction;
551 AtomicCmpXchgInst *cloneImpl() const;
553 public:
554 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
555 AtomicOrdering SuccessOrdering,
556 AtomicOrdering FailureOrdering,
557 SyncScope::ID SSID, Instruction *InsertBefore = nullptr);
558 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
559 AtomicOrdering SuccessOrdering,
560 AtomicOrdering FailureOrdering,
561 SyncScope::ID SSID, BasicBlock *InsertAtEnd);
563 // allocate space for exactly three operands
564 void *operator new(size_t s) {
565 return User::operator new(s, 3);
568 /// Return true if this is a cmpxchg from a volatile memory
569 /// location.
571 bool isVolatile() const {
572 return getSubclassDataFromInstruction() & 1;
575 /// Specify whether this is a volatile cmpxchg.
577 void setVolatile(bool V) {
578 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
579 (unsigned)V);
582 /// Return true if this cmpxchg may spuriously fail.
583 bool isWeak() const {
584 return getSubclassDataFromInstruction() & 0x100;
587 void setWeak(bool IsWeak) {
588 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x100) |
589 (IsWeak << 8));
592 /// Transparently provide more efficient getOperand methods.
593 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
595 /// Returns the success ordering constraint of this cmpxchg instruction.
596 AtomicOrdering getSuccessOrdering() const {
597 return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7);
600 /// Sets the success ordering constraint of this cmpxchg instruction.
601 void setSuccessOrdering(AtomicOrdering Ordering) {
602 assert(Ordering != AtomicOrdering::NotAtomic &&
603 "CmpXchg instructions can only be atomic.");
604 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x1c) |
605 ((unsigned)Ordering << 2));
608 /// Returns the failure ordering constraint of this cmpxchg instruction.
609 AtomicOrdering getFailureOrdering() const {
610 return AtomicOrdering((getSubclassDataFromInstruction() >> 5) & 7);
613 /// Sets the failure ordering constraint of this cmpxchg instruction.
614 void setFailureOrdering(AtomicOrdering Ordering) {
615 assert(Ordering != AtomicOrdering::NotAtomic &&
616 "CmpXchg instructions can only be atomic.");
617 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0xe0) |
618 ((unsigned)Ordering << 5));
621 /// Returns the synchronization scope ID of this cmpxchg instruction.
622 SyncScope::ID getSyncScopeID() const {
623 return SSID;
626 /// Sets the synchronization scope ID of this cmpxchg instruction.
627 void setSyncScopeID(SyncScope::ID SSID) {
628 this->SSID = SSID;
631 Value *getPointerOperand() { return getOperand(0); }
632 const Value *getPointerOperand() const { return getOperand(0); }
633 static unsigned getPointerOperandIndex() { return 0U; }
635 Value *getCompareOperand() { return getOperand(1); }
636 const Value *getCompareOperand() const { return getOperand(1); }
638 Value *getNewValOperand() { return getOperand(2); }
639 const Value *getNewValOperand() const { return getOperand(2); }
641 /// Returns the address space of the pointer operand.
642 unsigned getPointerAddressSpace() const {
643 return getPointerOperand()->getType()->getPointerAddressSpace();
646 /// Returns the strongest permitted ordering on failure, given the
647 /// desired ordering on success.
649 /// If the comparison in a cmpxchg operation fails, there is no atomic store
650 /// so release semantics cannot be provided. So this function drops explicit
651 /// Release requests from the AtomicOrdering. A SequentiallyConsistent
652 /// operation would remain SequentiallyConsistent.
653 static AtomicOrdering
654 getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) {
655 switch (SuccessOrdering) {
656 default:
657 llvm_unreachable("invalid cmpxchg success ordering");
658 case AtomicOrdering::Release:
659 case AtomicOrdering::Monotonic:
660 return AtomicOrdering::Monotonic;
661 case AtomicOrdering::AcquireRelease:
662 case AtomicOrdering::Acquire:
663 return AtomicOrdering::Acquire;
664 case AtomicOrdering::SequentiallyConsistent:
665 return AtomicOrdering::SequentiallyConsistent;
669 // Methods for support type inquiry through isa, cast, and dyn_cast:
670 static bool classof(const Instruction *I) {
671 return I->getOpcode() == Instruction::AtomicCmpXchg;
673 static bool classof(const Value *V) {
674 return isa<Instruction>(V) && classof(cast<Instruction>(V));
677 private:
678 // Shadow Instruction::setInstructionSubclassData with a private forwarding
679 // method so that subclasses cannot accidentally use it.
680 void setInstructionSubclassData(unsigned short D) {
681 Instruction::setInstructionSubclassData(D);
684 /// The synchronization scope ID of this cmpxchg instruction. Not quite
685 /// enough room in SubClassData for everything, so synchronization scope ID
686 /// gets its own field.
687 SyncScope::ID SSID;
690 template <>
691 struct OperandTraits<AtomicCmpXchgInst> :
692 public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
695 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)
697 //===----------------------------------------------------------------------===//
698 // AtomicRMWInst Class
699 //===----------------------------------------------------------------------===//
701 /// an instruction that atomically reads a memory location,
702 /// combines it with another value, and then stores the result back. Returns
703 /// the old value.
705 class AtomicRMWInst : public Instruction {
706 protected:
707 // Note: Instruction needs to be a friend here to call cloneImpl.
708 friend class Instruction;
710 AtomicRMWInst *cloneImpl() const;
712 public:
713 /// This enumeration lists the possible modifications atomicrmw can make. In
714 /// the descriptions, 'p' is the pointer to the instruction's memory location,
715 /// 'old' is the initial value of *p, and 'v' is the other value passed to the
716 /// instruction. These instructions always return 'old'.
717 enum BinOp {
718 /// *p = v
719 Xchg,
720 /// *p = old + v
721 Add,
722 /// *p = old - v
723 Sub,
724 /// *p = old & v
725 And,
726 /// *p = ~(old & v)
727 Nand,
728 /// *p = old | v
730 /// *p = old ^ v
731 Xor,
732 /// *p = old >signed v ? old : v
733 Max,
734 /// *p = old <signed v ? old : v
735 Min,
736 /// *p = old >unsigned v ? old : v
737 UMax,
738 /// *p = old <unsigned v ? old : v
739 UMin,
741 /// *p = old + v
742 FAdd,
744 /// *p = old - v
745 FSub,
747 FIRST_BINOP = Xchg,
748 LAST_BINOP = FSub,
749 BAD_BINOP
752 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
753 AtomicOrdering Ordering, SyncScope::ID SSID,
754 Instruction *InsertBefore = nullptr);
755 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
756 AtomicOrdering Ordering, SyncScope::ID SSID,
757 BasicBlock *InsertAtEnd);
759 // allocate space for exactly two operands
760 void *operator new(size_t s) {
761 return User::operator new(s, 2);
764 BinOp getOperation() const {
765 return static_cast<BinOp>(getSubclassDataFromInstruction() >> 5);
768 static StringRef getOperationName(BinOp Op);
770 static bool isFPOperation(BinOp Op) {
771 switch (Op) {
772 case AtomicRMWInst::FAdd:
773 case AtomicRMWInst::FSub:
774 return true;
775 default:
776 return false;
780 void setOperation(BinOp Operation) {
781 unsigned short SubclassData = getSubclassDataFromInstruction();
782 setInstructionSubclassData((SubclassData & 31) |
783 (Operation << 5));
786 /// Return true if this is a RMW on a volatile memory location.
788 bool isVolatile() const {
789 return getSubclassDataFromInstruction() & 1;
792 /// Specify whether this is a volatile RMW or not.
794 void setVolatile(bool V) {
795 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
796 (unsigned)V);
799 /// Transparently provide more efficient getOperand methods.
800 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
802 /// Returns the ordering constraint of this rmw instruction.
803 AtomicOrdering getOrdering() const {
804 return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7);
807 /// Sets the ordering constraint of this rmw instruction.
808 void setOrdering(AtomicOrdering Ordering) {
809 assert(Ordering != AtomicOrdering::NotAtomic &&
810 "atomicrmw instructions can only be atomic.");
811 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 2)) |
812 ((unsigned)Ordering << 2));
815 /// Returns the synchronization scope ID of this rmw instruction.
816 SyncScope::ID getSyncScopeID() const {
817 return SSID;
820 /// Sets the synchronization scope ID of this rmw instruction.
821 void setSyncScopeID(SyncScope::ID SSID) {
822 this->SSID = SSID;
825 Value *getPointerOperand() { return getOperand(0); }
826 const Value *getPointerOperand() const { return getOperand(0); }
827 static unsigned getPointerOperandIndex() { return 0U; }
829 Value *getValOperand() { return getOperand(1); }
830 const Value *getValOperand() const { return getOperand(1); }
832 /// Returns the address space of the pointer operand.
833 unsigned getPointerAddressSpace() const {
834 return getPointerOperand()->getType()->getPointerAddressSpace();
837 bool isFloatingPointOperation() const {
838 return isFPOperation(getOperation());
841 // Methods for support type inquiry through isa, cast, and dyn_cast:
842 static bool classof(const Instruction *I) {
843 return I->getOpcode() == Instruction::AtomicRMW;
845 static bool classof(const Value *V) {
846 return isa<Instruction>(V) && classof(cast<Instruction>(V));
849 private:
850 void Init(BinOp Operation, Value *Ptr, Value *Val,
851 AtomicOrdering Ordering, SyncScope::ID SSID);
853 // Shadow Instruction::setInstructionSubclassData with a private forwarding
854 // method so that subclasses cannot accidentally use it.
855 void setInstructionSubclassData(unsigned short D) {
856 Instruction::setInstructionSubclassData(D);
859 /// The synchronization scope ID of this rmw instruction. Not quite enough
860 /// room in SubClassData for everything, so synchronization scope ID gets its
861 /// own field.
862 SyncScope::ID SSID;
865 template <>
866 struct OperandTraits<AtomicRMWInst>
867 : public FixedNumOperandTraits<AtomicRMWInst,2> {
870 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)
872 //===----------------------------------------------------------------------===//
873 // GetElementPtrInst Class
874 //===----------------------------------------------------------------------===//
876 // checkGEPType - Simple wrapper function to give a better assertion failure
877 // message on bad indexes for a gep instruction.
879 inline Type *checkGEPType(Type *Ty) {
880 assert(Ty && "Invalid GetElementPtrInst indices for type!");
881 return Ty;
884 /// an instruction for type-safe pointer arithmetic to
885 /// access elements of arrays and structs
887 class GetElementPtrInst : public Instruction {
888 Type *SourceElementType;
889 Type *ResultElementType;
891 GetElementPtrInst(const GetElementPtrInst &GEPI);
893 /// Constructors - Create a getelementptr instruction with a base pointer an
894 /// list of indices. The first ctor can optionally insert before an existing
895 /// instruction, the second appends the new instruction to the specified
896 /// BasicBlock.
897 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
898 ArrayRef<Value *> IdxList, unsigned Values,
899 const Twine &NameStr, Instruction *InsertBefore);
900 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
901 ArrayRef<Value *> IdxList, unsigned Values,
902 const Twine &NameStr, BasicBlock *InsertAtEnd);
904 void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
906 protected:
907 // Note: Instruction needs to be a friend here to call cloneImpl.
908 friend class Instruction;
910 GetElementPtrInst *cloneImpl() const;
912 public:
913 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
914 ArrayRef<Value *> IdxList,
915 const Twine &NameStr = "",
916 Instruction *InsertBefore = nullptr) {
917 unsigned Values = 1 + unsigned(IdxList.size());
918 if (!PointeeType)
919 PointeeType =
920 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
921 else
922 assert(
923 PointeeType ==
924 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType());
925 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
926 NameStr, InsertBefore);
929 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
930 ArrayRef<Value *> IdxList,
931 const Twine &NameStr,
932 BasicBlock *InsertAtEnd) {
933 unsigned Values = 1 + unsigned(IdxList.size());
934 if (!PointeeType)
935 PointeeType =
936 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
937 else
938 assert(
939 PointeeType ==
940 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType());
941 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
942 NameStr, InsertAtEnd);
945 /// Create an "inbounds" getelementptr. See the documentation for the
946 /// "inbounds" flag in LangRef.html for details.
947 static GetElementPtrInst *CreateInBounds(Value *Ptr,
948 ArrayRef<Value *> IdxList,
949 const Twine &NameStr = "",
950 Instruction *InsertBefore = nullptr){
951 return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertBefore);
954 static GetElementPtrInst *
955 CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList,
956 const Twine &NameStr = "",
957 Instruction *InsertBefore = nullptr) {
958 GetElementPtrInst *GEP =
959 Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore);
960 GEP->setIsInBounds(true);
961 return GEP;
964 static GetElementPtrInst *CreateInBounds(Value *Ptr,
965 ArrayRef<Value *> IdxList,
966 const Twine &NameStr,
967 BasicBlock *InsertAtEnd) {
968 return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertAtEnd);
971 static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr,
972 ArrayRef<Value *> IdxList,
973 const Twine &NameStr,
974 BasicBlock *InsertAtEnd) {
975 GetElementPtrInst *GEP =
976 Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd);
977 GEP->setIsInBounds(true);
978 return GEP;
981 /// Transparently provide more efficient getOperand methods.
982 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
984 Type *getSourceElementType() const { return SourceElementType; }
986 void setSourceElementType(Type *Ty) { SourceElementType = Ty; }
987 void setResultElementType(Type *Ty) { ResultElementType = Ty; }
989 Type *getResultElementType() const {
990 assert(ResultElementType ==
991 cast<PointerType>(getType()->getScalarType())->getElementType());
992 return ResultElementType;
995 /// Returns the address space of this instruction's pointer type.
996 unsigned getAddressSpace() const {
997 // Note that this is always the same as the pointer operand's address space
998 // and that is cheaper to compute, so cheat here.
999 return getPointerAddressSpace();
1002 /// Returns the type of the element that would be loaded with
1003 /// a load instruction with the specified parameters.
1005 /// Null is returned if the indices are invalid for the specified
1006 /// pointer type.
1008 static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList);
1009 static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList);
1010 static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
1012 inline op_iterator idx_begin() { return op_begin()+1; }
1013 inline const_op_iterator idx_begin() const { return op_begin()+1; }
1014 inline op_iterator idx_end() { return op_end(); }
1015 inline const_op_iterator idx_end() const { return op_end(); }
1017 inline iterator_range<op_iterator> indices() {
1018 return make_range(idx_begin(), idx_end());
1021 inline iterator_range<const_op_iterator> indices() const {
1022 return make_range(idx_begin(), idx_end());
1025 Value *getPointerOperand() {
1026 return getOperand(0);
1028 const Value *getPointerOperand() const {
1029 return getOperand(0);
1031 static unsigned getPointerOperandIndex() {
1032 return 0U; // get index for modifying correct operand.
1035 /// Method to return the pointer operand as a
1036 /// PointerType.
1037 Type *getPointerOperandType() const {
1038 return getPointerOperand()->getType();
1041 /// Returns the address space of the pointer operand.
1042 unsigned getPointerAddressSpace() const {
1043 return getPointerOperandType()->getPointerAddressSpace();
1046 /// Returns the pointer type returned by the GEP
1047 /// instruction, which may be a vector of pointers.
1048 static Type *getGEPReturnType(Value *Ptr, ArrayRef<Value *> IdxList) {
1049 return getGEPReturnType(
1050 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType(),
1051 Ptr, IdxList);
1053 static Type *getGEPReturnType(Type *ElTy, Value *Ptr,
1054 ArrayRef<Value *> IdxList) {
1055 Type *PtrTy = PointerType::get(checkGEPType(getIndexedType(ElTy, IdxList)),
1056 Ptr->getType()->getPointerAddressSpace());
1057 // Vector GEP
1058 if (Ptr->getType()->isVectorTy()) {
1059 unsigned NumElem = Ptr->getType()->getVectorNumElements();
1060 return VectorType::get(PtrTy, NumElem);
1062 for (Value *Index : IdxList)
1063 if (Index->getType()->isVectorTy()) {
1064 unsigned NumElem = Index->getType()->getVectorNumElements();
1065 return VectorType::get(PtrTy, NumElem);
1067 // Scalar GEP
1068 return PtrTy;
1071 unsigned getNumIndices() const { // Note: always non-negative
1072 return getNumOperands() - 1;
1075 bool hasIndices() const {
1076 return getNumOperands() > 1;
1079 /// Return true if all of the indices of this GEP are
1080 /// zeros. If so, the result pointer and the first operand have the same
1081 /// value, just potentially different types.
1082 bool hasAllZeroIndices() const;
1084 /// Return true if all of the indices of this GEP are
1085 /// constant integers. If so, the result pointer and the first operand have
1086 /// a constant offset between them.
1087 bool hasAllConstantIndices() const;
1089 /// Set or clear the inbounds flag on this GEP instruction.
1090 /// See LangRef.html for the meaning of inbounds on a getelementptr.
1091 void setIsInBounds(bool b = true);
1093 /// Determine whether the GEP has the inbounds flag.
1094 bool isInBounds() const;
1096 /// Accumulate the constant address offset of this GEP if possible.
1098 /// This routine accepts an APInt into which it will accumulate the constant
1099 /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1100 /// all-constant, it returns false and the value of the offset APInt is
1101 /// undefined (it is *not* preserved!). The APInt passed into this routine
1102 /// must be at least as wide as the IntPtr type for the address space of
1103 /// the base GEP pointer.
1104 bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
1106 // Methods for support type inquiry through isa, cast, and dyn_cast:
1107 static bool classof(const Instruction *I) {
1108 return (I->getOpcode() == Instruction::GetElementPtr);
1110 static bool classof(const Value *V) {
1111 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1115 template <>
1116 struct OperandTraits<GetElementPtrInst> :
1117 public VariadicOperandTraits<GetElementPtrInst, 1> {
1120 GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1121 ArrayRef<Value *> IdxList, unsigned Values,
1122 const Twine &NameStr,
1123 Instruction *InsertBefore)
1124 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1125 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1126 Values, InsertBefore),
1127 SourceElementType(PointeeType),
1128 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1129 assert(ResultElementType ==
1130 cast<PointerType>(getType()->getScalarType())->getElementType());
1131 init(Ptr, IdxList, NameStr);
1134 GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1135 ArrayRef<Value *> IdxList, unsigned Values,
1136 const Twine &NameStr,
1137 BasicBlock *InsertAtEnd)
1138 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1139 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1140 Values, InsertAtEnd),
1141 SourceElementType(PointeeType),
1142 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1143 assert(ResultElementType ==
1144 cast<PointerType>(getType()->getScalarType())->getElementType());
1145 init(Ptr, IdxList, NameStr);
1148 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)
1150 //===----------------------------------------------------------------------===//
1151 // ICmpInst Class
1152 //===----------------------------------------------------------------------===//
1154 /// This instruction compares its operands according to the predicate given
1155 /// to the constructor. It only operates on integers or pointers. The operands
1156 /// must be identical types.
1157 /// Represent an integer comparison operator.
1158 class ICmpInst: public CmpInst {
1159 void AssertOK() {
1160 assert(isIntPredicate() &&
1161 "Invalid ICmp predicate value");
1162 assert(getOperand(0)->getType() == getOperand(1)->getType() &&
1163 "Both operands to ICmp instruction are not of the same type!");
1164 // Check that the operands are the right type
1165 assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||
1166 getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
1167 "Invalid operand types for ICmp instruction");
1170 protected:
1171 // Note: Instruction needs to be a friend here to call cloneImpl.
1172 friend class Instruction;
1174 /// Clone an identical ICmpInst
1175 ICmpInst *cloneImpl() const;
1177 public:
1178 /// Constructor with insert-before-instruction semantics.
1179 ICmpInst(
1180 Instruction *InsertBefore, ///< Where to insert
1181 Predicate pred, ///< The predicate to use for the comparison
1182 Value *LHS, ///< The left-hand-side of the expression
1183 Value *RHS, ///< The right-hand-side of the expression
1184 const Twine &NameStr = "" ///< Name of the instruction
1185 ) : CmpInst(makeCmpResultType(LHS->getType()),
1186 Instruction::ICmp, pred, LHS, RHS, NameStr,
1187 InsertBefore) {
1188 #ifndef NDEBUG
1189 AssertOK();
1190 #endif
1193 /// Constructor with insert-at-end semantics.
1194 ICmpInst(
1195 BasicBlock &InsertAtEnd, ///< Block to insert into.
1196 Predicate pred, ///< The predicate to use for the comparison
1197 Value *LHS, ///< The left-hand-side of the expression
1198 Value *RHS, ///< The right-hand-side of the expression
1199 const Twine &NameStr = "" ///< Name of the instruction
1200 ) : CmpInst(makeCmpResultType(LHS->getType()),
1201 Instruction::ICmp, pred, LHS, RHS, NameStr,
1202 &InsertAtEnd) {
1203 #ifndef NDEBUG
1204 AssertOK();
1205 #endif
1208 /// Constructor with no-insertion semantics
1209 ICmpInst(
1210 Predicate pred, ///< The predicate to use for the comparison
1211 Value *LHS, ///< The left-hand-side of the expression
1212 Value *RHS, ///< The right-hand-side of the expression
1213 const Twine &NameStr = "" ///< Name of the instruction
1214 ) : CmpInst(makeCmpResultType(LHS->getType()),
1215 Instruction::ICmp, pred, LHS, RHS, NameStr) {
1216 #ifndef NDEBUG
1217 AssertOK();
1218 #endif
1221 /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1222 /// @returns the predicate that would be the result if the operand were
1223 /// regarded as signed.
1224 /// Return the signed version of the predicate
1225 Predicate getSignedPredicate() const {
1226 return getSignedPredicate(getPredicate());
1229 /// This is a static version that you can use without an instruction.
1230 /// Return the signed version of the predicate.
1231 static Predicate getSignedPredicate(Predicate pred);
1233 /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1234 /// @returns the predicate that would be the result if the operand were
1235 /// regarded as unsigned.
1236 /// Return the unsigned version of the predicate
1237 Predicate getUnsignedPredicate() const {
1238 return getUnsignedPredicate(getPredicate());
1241 /// This is a static version that you can use without an instruction.
1242 /// Return the unsigned version of the predicate.
1243 static Predicate getUnsignedPredicate(Predicate pred);
1245 /// Return true if this predicate is either EQ or NE. This also
1246 /// tests for commutativity.
1247 static bool isEquality(Predicate P) {
1248 return P == ICMP_EQ || P == ICMP_NE;
1251 /// Return true if this predicate is either EQ or NE. This also
1252 /// tests for commutativity.
1253 bool isEquality() const {
1254 return isEquality(getPredicate());
1257 /// @returns true if the predicate of this ICmpInst is commutative
1258 /// Determine if this relation is commutative.
1259 bool isCommutative() const { return isEquality(); }
1261 /// Return true if the predicate is relational (not EQ or NE).
1263 bool isRelational() const {
1264 return !isEquality();
1267 /// Return true if the predicate is relational (not EQ or NE).
1269 static bool isRelational(Predicate P) {
1270 return !isEquality(P);
1273 /// Exchange the two operands to this instruction in such a way that it does
1274 /// not modify the semantics of the instruction. The predicate value may be
1275 /// changed to retain the same result if the predicate is order dependent
1276 /// (e.g. ult).
1277 /// Swap operands and adjust predicate.
1278 void swapOperands() {
1279 setPredicate(getSwappedPredicate());
1280 Op<0>().swap(Op<1>());
1283 // Methods for support type inquiry through isa, cast, and dyn_cast:
1284 static bool classof(const Instruction *I) {
1285 return I->getOpcode() == Instruction::ICmp;
1287 static bool classof(const Value *V) {
1288 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1292 //===----------------------------------------------------------------------===//
1293 // FCmpInst Class
1294 //===----------------------------------------------------------------------===//
1296 /// This instruction compares its operands according to the predicate given
1297 /// to the constructor. It only operates on floating point values or packed
1298 /// vectors of floating point values. The operands must be identical types.
1299 /// Represents a floating point comparison operator.
1300 class FCmpInst: public CmpInst {
1301 void AssertOK() {
1302 assert(isFPPredicate() && "Invalid FCmp predicate value");
1303 assert(getOperand(0)->getType() == getOperand(1)->getType() &&
1304 "Both operands to FCmp instruction are not of the same type!");
1305 // Check that the operands are the right type
1306 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
1307 "Invalid operand types for FCmp instruction");
1310 protected:
1311 // Note: Instruction needs to be a friend here to call cloneImpl.
1312 friend class Instruction;
1314 /// Clone an identical FCmpInst
1315 FCmpInst *cloneImpl() const;
1317 public:
1318 /// Constructor with insert-before-instruction semantics.
1319 FCmpInst(
1320 Instruction *InsertBefore, ///< Where to insert
1321 Predicate pred, ///< The predicate to use for the comparison
1322 Value *LHS, ///< The left-hand-side of the expression
1323 Value *RHS, ///< The right-hand-side of the expression
1324 const Twine &NameStr = "" ///< Name of the instruction
1325 ) : CmpInst(makeCmpResultType(LHS->getType()),
1326 Instruction::FCmp, pred, LHS, RHS, NameStr,
1327 InsertBefore) {
1328 AssertOK();
1331 /// Constructor with insert-at-end semantics.
1332 FCmpInst(
1333 BasicBlock &InsertAtEnd, ///< Block to insert into.
1334 Predicate pred, ///< The predicate to use for the comparison
1335 Value *LHS, ///< The left-hand-side of the expression
1336 Value *RHS, ///< The right-hand-side of the expression
1337 const Twine &NameStr = "" ///< Name of the instruction
1338 ) : CmpInst(makeCmpResultType(LHS->getType()),
1339 Instruction::FCmp, pred, LHS, RHS, NameStr,
1340 &InsertAtEnd) {
1341 AssertOK();
1344 /// Constructor with no-insertion semantics
1345 FCmpInst(
1346 Predicate Pred, ///< The predicate to use for the comparison
1347 Value *LHS, ///< The left-hand-side of the expression
1348 Value *RHS, ///< The right-hand-side of the expression
1349 const Twine &NameStr = "", ///< Name of the instruction
1350 Instruction *FlagsSource = nullptr
1351 ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS,
1352 RHS, NameStr, nullptr, FlagsSource) {
1353 AssertOK();
1356 /// @returns true if the predicate of this instruction is EQ or NE.
1357 /// Determine if this is an equality predicate.
1358 static bool isEquality(Predicate Pred) {
1359 return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ ||
1360 Pred == FCMP_UNE;
1363 /// @returns true if the predicate of this instruction is EQ or NE.
1364 /// Determine if this is an equality predicate.
1365 bool isEquality() const { return isEquality(getPredicate()); }
1367 /// @returns true if the predicate of this instruction is commutative.
1368 /// Determine if this is a commutative predicate.
1369 bool isCommutative() const {
1370 return isEquality() ||
1371 getPredicate() == FCMP_FALSE ||
1372 getPredicate() == FCMP_TRUE ||
1373 getPredicate() == FCMP_ORD ||
1374 getPredicate() == FCMP_UNO;
1377 /// @returns true if the predicate is relational (not EQ or NE).
1378 /// Determine if this a relational predicate.
1379 bool isRelational() const { return !isEquality(); }
1381 /// Exchange the two operands to this instruction in such a way that it does
1382 /// not modify the semantics of the instruction. The predicate value may be
1383 /// changed to retain the same result if the predicate is order dependent
1384 /// (e.g. ult).
1385 /// Swap operands and adjust predicate.
1386 void swapOperands() {
1387 setPredicate(getSwappedPredicate());
1388 Op<0>().swap(Op<1>());
1391 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1392 static bool classof(const Instruction *I) {
1393 return I->getOpcode() == Instruction::FCmp;
1395 static bool classof(const Value *V) {
1396 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1400 //===----------------------------------------------------------------------===//
1401 /// This class represents a function call, abstracting a target
1402 /// machine's calling convention. This class uses low bit of the SubClassData
1403 /// field to indicate whether or not this is a tail call. The rest of the bits
1404 /// hold the calling convention of the call.
1406 class CallInst : public CallBase {
1407 CallInst(const CallInst &CI);
1409 /// Construct a CallInst given a range of arguments.
1410 /// Construct a CallInst from a range of arguments
1411 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1412 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1413 Instruction *InsertBefore);
1415 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1416 const Twine &NameStr, Instruction *InsertBefore)
1417 : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {}
1419 /// Construct a CallInst given a range of arguments.
1420 /// Construct a CallInst from a range of arguments
1421 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1422 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1423 BasicBlock *InsertAtEnd);
1425 explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr,
1426 Instruction *InsertBefore);
1428 CallInst(FunctionType *ty, Value *F, const Twine &NameStr,
1429 BasicBlock *InsertAtEnd);
1431 void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
1432 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
1433 void init(FunctionType *FTy, Value *Func, const Twine &NameStr);
1435 /// Compute the number of operands to allocate.
1436 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
1437 // We need one operand for the called function, plus the input operand
1438 // counts provided.
1439 return 1 + NumArgs + NumBundleInputs;
1442 protected:
1443 // Note: Instruction needs to be a friend here to call cloneImpl.
1444 friend class Instruction;
1446 CallInst *cloneImpl() const;
1448 public:
1449 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "",
1450 Instruction *InsertBefore = nullptr) {
1451 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore);
1454 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1455 const Twine &NameStr,
1456 Instruction *InsertBefore = nullptr) {
1457 return new (ComputeNumOperands(Args.size()))
1458 CallInst(Ty, Func, Args, None, NameStr, InsertBefore);
1461 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1462 ArrayRef<OperandBundleDef> Bundles = None,
1463 const Twine &NameStr = "",
1464 Instruction *InsertBefore = nullptr) {
1465 const int NumOperands =
1466 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1467 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1469 return new (NumOperands, DescriptorBytes)
1470 CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore);
1473 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr,
1474 BasicBlock *InsertAtEnd) {
1475 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd);
1478 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1479 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1480 return new (ComputeNumOperands(Args.size()))
1481 CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd);
1484 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1485 ArrayRef<OperandBundleDef> Bundles,
1486 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1487 const int NumOperands =
1488 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1489 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1491 return new (NumOperands, DescriptorBytes)
1492 CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd);
1495 static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "",
1496 Instruction *InsertBefore = nullptr) {
1497 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1498 InsertBefore);
1501 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1502 ArrayRef<OperandBundleDef> Bundles = None,
1503 const Twine &NameStr = "",
1504 Instruction *InsertBefore = nullptr) {
1505 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1506 NameStr, InsertBefore);
1509 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1510 const Twine &NameStr,
1511 Instruction *InsertBefore = nullptr) {
1512 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1513 InsertBefore);
1516 static CallInst *Create(FunctionCallee Func, const Twine &NameStr,
1517 BasicBlock *InsertAtEnd) {
1518 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1519 InsertAtEnd);
1522 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1523 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1524 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1525 InsertAtEnd);
1528 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1529 ArrayRef<OperandBundleDef> Bundles,
1530 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1531 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1532 NameStr, InsertAtEnd);
1535 // Deprecated [opaque pointer types]
1536 static CallInst *Create(Value *Func, const Twine &NameStr = "",
1537 Instruction *InsertBefore = nullptr) {
1538 return Create(cast<FunctionType>(
1539 cast<PointerType>(Func->getType())->getElementType()),
1540 Func, NameStr, InsertBefore);
1543 // Deprecated [opaque pointer types]
1544 static CallInst *Create(Value *Func, ArrayRef<Value *> Args,
1545 const Twine &NameStr,
1546 Instruction *InsertBefore = nullptr) {
1547 return Create(cast<FunctionType>(
1548 cast<PointerType>(Func->getType())->getElementType()),
1549 Func, Args, NameStr, InsertBefore);
1552 // Deprecated [opaque pointer types]
1553 static CallInst *Create(Value *Func, ArrayRef<Value *> Args,
1554 ArrayRef<OperandBundleDef> Bundles = None,
1555 const Twine &NameStr = "",
1556 Instruction *InsertBefore = nullptr) {
1557 return Create(cast<FunctionType>(
1558 cast<PointerType>(Func->getType())->getElementType()),
1559 Func, Args, Bundles, NameStr, InsertBefore);
1562 // Deprecated [opaque pointer types]
1563 static CallInst *Create(Value *Func, const Twine &NameStr,
1564 BasicBlock *InsertAtEnd) {
1565 return Create(cast<FunctionType>(
1566 cast<PointerType>(Func->getType())->getElementType()),
1567 Func, NameStr, InsertAtEnd);
1570 // Deprecated [opaque pointer types]
1571 static CallInst *Create(Value *Func, ArrayRef<Value *> Args,
1572 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1573 return Create(cast<FunctionType>(
1574 cast<PointerType>(Func->getType())->getElementType()),
1575 Func, Args, NameStr, InsertAtEnd);
1578 // Deprecated [opaque pointer types]
1579 static CallInst *Create(Value *Func, ArrayRef<Value *> Args,
1580 ArrayRef<OperandBundleDef> Bundles,
1581 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1582 return Create(cast<FunctionType>(
1583 cast<PointerType>(Func->getType())->getElementType()),
1584 Func, Args, Bundles, NameStr, InsertAtEnd);
1587 /// Create a clone of \p CI with a different set of operand bundles and
1588 /// insert it before \p InsertPt.
1590 /// The returned call instruction is identical \p CI in every way except that
1591 /// the operand bundles for the new instruction are set to the operand bundles
1592 /// in \p Bundles.
1593 static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles,
1594 Instruction *InsertPt = nullptr);
1596 /// Generate the IR for a call to malloc:
1597 /// 1. Compute the malloc call's argument as the specified type's size,
1598 /// possibly multiplied by the array size if the array size is not
1599 /// constant 1.
1600 /// 2. Call malloc with that argument.
1601 /// 3. Bitcast the result of the malloc call to the specified type.
1602 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1603 Type *AllocTy, Value *AllocSize,
1604 Value *ArraySize = nullptr,
1605 Function *MallocF = nullptr,
1606 const Twine &Name = "");
1607 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1608 Type *AllocTy, Value *AllocSize,
1609 Value *ArraySize = nullptr,
1610 Function *MallocF = nullptr,
1611 const Twine &Name = "");
1612 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1613 Type *AllocTy, Value *AllocSize,
1614 Value *ArraySize = nullptr,
1615 ArrayRef<OperandBundleDef> Bundles = None,
1616 Function *MallocF = nullptr,
1617 const Twine &Name = "");
1618 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1619 Type *AllocTy, Value *AllocSize,
1620 Value *ArraySize = nullptr,
1621 ArrayRef<OperandBundleDef> Bundles = None,
1622 Function *MallocF = nullptr,
1623 const Twine &Name = "");
1624 /// Generate the IR for a call to the builtin free function.
1625 static Instruction *CreateFree(Value *Source, Instruction *InsertBefore);
1626 static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd);
1627 static Instruction *CreateFree(Value *Source,
1628 ArrayRef<OperandBundleDef> Bundles,
1629 Instruction *InsertBefore);
1630 static Instruction *CreateFree(Value *Source,
1631 ArrayRef<OperandBundleDef> Bundles,
1632 BasicBlock *InsertAtEnd);
1634 // Note that 'musttail' implies 'tail'.
1635 enum TailCallKind {
1636 TCK_None = 0,
1637 TCK_Tail = 1,
1638 TCK_MustTail = 2,
1639 TCK_NoTail = 3
1641 TailCallKind getTailCallKind() const {
1642 return TailCallKind(getSubclassDataFromInstruction() & 3);
1645 bool isTailCall() const {
1646 unsigned Kind = getSubclassDataFromInstruction() & 3;
1647 return Kind == TCK_Tail || Kind == TCK_MustTail;
1650 bool isMustTailCall() const {
1651 return (getSubclassDataFromInstruction() & 3) == TCK_MustTail;
1654 bool isNoTailCall() const {
1655 return (getSubclassDataFromInstruction() & 3) == TCK_NoTail;
1658 void setTailCall(bool isTC = true) {
1659 setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) |
1660 unsigned(isTC ? TCK_Tail : TCK_None));
1663 void setTailCallKind(TailCallKind TCK) {
1664 setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) |
1665 unsigned(TCK));
1668 /// Return true if the call can return twice
1669 bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); }
1670 void setCanReturnTwice() {
1671 addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice);
1674 // Methods for support type inquiry through isa, cast, and dyn_cast:
1675 static bool classof(const Instruction *I) {
1676 return I->getOpcode() == Instruction::Call;
1678 static bool classof(const Value *V) {
1679 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1682 /// Updates profile metadata by scaling it by \p S / \p T.
1683 void updateProfWeight(uint64_t S, uint64_t T);
1685 private:
1686 // Shadow Instruction::setInstructionSubclassData with a private forwarding
1687 // method so that subclasses cannot accidentally use it.
1688 void setInstructionSubclassData(unsigned short D) {
1689 Instruction::setInstructionSubclassData(D);
1693 CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1694 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1695 BasicBlock *InsertAtEnd)
1696 : CallBase(Ty->getReturnType(), Instruction::Call,
1697 OperandTraits<CallBase>::op_end(this) -
1698 (Args.size() + CountBundleInputs(Bundles) + 1),
1699 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1700 InsertAtEnd) {
1701 init(Ty, Func, Args, Bundles, NameStr);
1704 CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1705 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1706 Instruction *InsertBefore)
1707 : CallBase(Ty->getReturnType(), Instruction::Call,
1708 OperandTraits<CallBase>::op_end(this) -
1709 (Args.size() + CountBundleInputs(Bundles) + 1),
1710 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1711 InsertBefore) {
1712 init(Ty, Func, Args, Bundles, NameStr);
1715 //===----------------------------------------------------------------------===//
1716 // SelectInst Class
1717 //===----------------------------------------------------------------------===//
1719 /// This class represents the LLVM 'select' instruction.
1721 class SelectInst : public Instruction {
1722 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1723 Instruction *InsertBefore)
1724 : Instruction(S1->getType(), Instruction::Select,
1725 &Op<0>(), 3, InsertBefore) {
1726 init(C, S1, S2);
1727 setName(NameStr);
1730 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1731 BasicBlock *InsertAtEnd)
1732 : Instruction(S1->getType(), Instruction::Select,
1733 &Op<0>(), 3, InsertAtEnd) {
1734 init(C, S1, S2);
1735 setName(NameStr);
1738 void init(Value *C, Value *S1, Value *S2) {
1739 assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select");
1740 Op<0>() = C;
1741 Op<1>() = S1;
1742 Op<2>() = S2;
1745 protected:
1746 // Note: Instruction needs to be a friend here to call cloneImpl.
1747 friend class Instruction;
1749 SelectInst *cloneImpl() const;
1751 public:
1752 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1753 const Twine &NameStr = "",
1754 Instruction *InsertBefore = nullptr,
1755 Instruction *MDFrom = nullptr) {
1756 SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
1757 if (MDFrom)
1758 Sel->copyMetadata(*MDFrom);
1759 return Sel;
1762 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1763 const Twine &NameStr,
1764 BasicBlock *InsertAtEnd) {
1765 return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
1768 const Value *getCondition() const { return Op<0>(); }
1769 const Value *getTrueValue() const { return Op<1>(); }
1770 const Value *getFalseValue() const { return Op<2>(); }
1771 Value *getCondition() { return Op<0>(); }
1772 Value *getTrueValue() { return Op<1>(); }
1773 Value *getFalseValue() { return Op<2>(); }
1775 void setCondition(Value *V) { Op<0>() = V; }
1776 void setTrueValue(Value *V) { Op<1>() = V; }
1777 void setFalseValue(Value *V) { Op<2>() = V; }
1779 /// Swap the true and false values of the select instruction.
1780 /// This doesn't swap prof metadata.
1781 void swapValues() { Op<1>().swap(Op<2>()); }
1783 /// Return a string if the specified operands are invalid
1784 /// for a select operation, otherwise return null.
1785 static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
1787 /// Transparently provide more efficient getOperand methods.
1788 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1790 OtherOps getOpcode() const {
1791 return static_cast<OtherOps>(Instruction::getOpcode());
1794 // Methods for support type inquiry through isa, cast, and dyn_cast:
1795 static bool classof(const Instruction *I) {
1796 return I->getOpcode() == Instruction::Select;
1798 static bool classof(const Value *V) {
1799 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1803 template <>
1804 struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
1807 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)
1809 //===----------------------------------------------------------------------===//
1810 // VAArgInst Class
1811 //===----------------------------------------------------------------------===//
1813 /// This class represents the va_arg llvm instruction, which returns
1814 /// an argument of the specified type given a va_list and increments that list
1816 class VAArgInst : public UnaryInstruction {
1817 protected:
1818 // Note: Instruction needs to be a friend here to call cloneImpl.
1819 friend class Instruction;
1821 VAArgInst *cloneImpl() const;
1823 public:
1824 VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
1825 Instruction *InsertBefore = nullptr)
1826 : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
1827 setName(NameStr);
1830 VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
1831 BasicBlock *InsertAtEnd)
1832 : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
1833 setName(NameStr);
1836 Value *getPointerOperand() { return getOperand(0); }
1837 const Value *getPointerOperand() const { return getOperand(0); }
1838 static unsigned getPointerOperandIndex() { return 0U; }
1840 // Methods for support type inquiry through isa, cast, and dyn_cast:
1841 static bool classof(const Instruction *I) {
1842 return I->getOpcode() == VAArg;
1844 static bool classof(const Value *V) {
1845 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1849 //===----------------------------------------------------------------------===//
1850 // ExtractElementInst Class
1851 //===----------------------------------------------------------------------===//
1853 /// This instruction extracts a single (scalar)
1854 /// element from a VectorType value
1856 class ExtractElementInst : public Instruction {
1857 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
1858 Instruction *InsertBefore = nullptr);
1859 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
1860 BasicBlock *InsertAtEnd);
1862 protected:
1863 // Note: Instruction needs to be a friend here to call cloneImpl.
1864 friend class Instruction;
1866 ExtractElementInst *cloneImpl() const;
1868 public:
1869 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1870 const Twine &NameStr = "",
1871 Instruction *InsertBefore = nullptr) {
1872 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
1875 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1876 const Twine &NameStr,
1877 BasicBlock *InsertAtEnd) {
1878 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
1881 /// Return true if an extractelement instruction can be
1882 /// formed with the specified operands.
1883 static bool isValidOperands(const Value *Vec, const Value *Idx);
1885 Value *getVectorOperand() { return Op<0>(); }
1886 Value *getIndexOperand() { return Op<1>(); }
1887 const Value *getVectorOperand() const { return Op<0>(); }
1888 const Value *getIndexOperand() const { return Op<1>(); }
1890 VectorType *getVectorOperandType() const {
1891 return cast<VectorType>(getVectorOperand()->getType());
1894 /// Transparently provide more efficient getOperand methods.
1895 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1897 // Methods for support type inquiry through isa, cast, and dyn_cast:
1898 static bool classof(const Instruction *I) {
1899 return I->getOpcode() == Instruction::ExtractElement;
1901 static bool classof(const Value *V) {
1902 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1906 template <>
1907 struct OperandTraits<ExtractElementInst> :
1908 public FixedNumOperandTraits<ExtractElementInst, 2> {
1911 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)
1913 //===----------------------------------------------------------------------===//
1914 // InsertElementInst Class
1915 //===----------------------------------------------------------------------===//
1917 /// This instruction inserts a single (scalar)
1918 /// element into a VectorType value
1920 class InsertElementInst : public Instruction {
1921 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1922 const Twine &NameStr = "",
1923 Instruction *InsertBefore = nullptr);
1924 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr,
1925 BasicBlock *InsertAtEnd);
1927 protected:
1928 // Note: Instruction needs to be a friend here to call cloneImpl.
1929 friend class Instruction;
1931 InsertElementInst *cloneImpl() const;
1933 public:
1934 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1935 const Twine &NameStr = "",
1936 Instruction *InsertBefore = nullptr) {
1937 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
1940 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1941 const Twine &NameStr,
1942 BasicBlock *InsertAtEnd) {
1943 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
1946 /// Return true if an insertelement instruction can be
1947 /// formed with the specified operands.
1948 static bool isValidOperands(const Value *Vec, const Value *NewElt,
1949 const Value *Idx);
1951 /// Overload to return most specific vector type.
1953 VectorType *getType() const {
1954 return cast<VectorType>(Instruction::getType());
1957 /// Transparently provide more efficient getOperand methods.
1958 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1960 // Methods for support type inquiry through isa, cast, and dyn_cast:
1961 static bool classof(const Instruction *I) {
1962 return I->getOpcode() == Instruction::InsertElement;
1964 static bool classof(const Value *V) {
1965 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1969 template <>
1970 struct OperandTraits<InsertElementInst> :
1971 public FixedNumOperandTraits<InsertElementInst, 3> {
1974 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)
1976 //===----------------------------------------------------------------------===//
1977 // ShuffleVectorInst Class
1978 //===----------------------------------------------------------------------===//
1980 /// This instruction constructs a fixed permutation of two
1981 /// input vectors.
1983 class ShuffleVectorInst : public Instruction {
1984 protected:
1985 // Note: Instruction needs to be a friend here to call cloneImpl.
1986 friend class Instruction;
1988 ShuffleVectorInst *cloneImpl() const;
1990 public:
1991 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1992 const Twine &NameStr = "",
1993 Instruction *InsertBefor = nullptr);
1994 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1995 const Twine &NameStr, BasicBlock *InsertAtEnd);
1997 // allocate space for exactly three operands
1998 void *operator new(size_t s) {
1999 return User::operator new(s, 3);
2002 /// Swap the first 2 operands and adjust the mask to preserve the semantics
2003 /// of the instruction.
2004 void commute();
2006 /// Return true if a shufflevector instruction can be
2007 /// formed with the specified operands.
2008 static bool isValidOperands(const Value *V1, const Value *V2,
2009 const Value *Mask);
2011 /// Overload to return most specific vector type.
2013 VectorType *getType() const {
2014 return cast<VectorType>(Instruction::getType());
2017 /// Transparently provide more efficient getOperand methods.
2018 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2020 Constant *getMask() const {
2021 return cast<Constant>(getOperand(2));
2024 /// Return the shuffle mask value for the specified element of the mask.
2025 /// Return -1 if the element is undef.
2026 static int getMaskValue(const Constant *Mask, unsigned Elt);
2028 /// Return the shuffle mask value of this instruction for the given element
2029 /// index. Return -1 if the element is undef.
2030 int getMaskValue(unsigned Elt) const {
2031 return getMaskValue(getMask(), Elt);
2034 /// Convert the input shuffle mask operand to a vector of integers. Undefined
2035 /// elements of the mask are returned as -1.
2036 static void getShuffleMask(const Constant *Mask,
2037 SmallVectorImpl<int> &Result);
2039 /// Return the mask for this instruction as a vector of integers. Undefined
2040 /// elements of the mask are returned as -1.
2041 void getShuffleMask(SmallVectorImpl<int> &Result) const {
2042 return getShuffleMask(getMask(), Result);
2045 SmallVector<int, 16> getShuffleMask() const {
2046 SmallVector<int, 16> Mask;
2047 getShuffleMask(Mask);
2048 return Mask;
2051 /// Return true if this shuffle returns a vector with a different number of
2052 /// elements than its source vectors.
2053 /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
2054 /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
2055 bool changesLength() const {
2056 unsigned NumSourceElts = Op<0>()->getType()->getVectorNumElements();
2057 unsigned NumMaskElts = getMask()->getType()->getVectorNumElements();
2058 return NumSourceElts != NumMaskElts;
2061 /// Return true if this shuffle returns a vector with a greater number of
2062 /// elements than its source vectors.
2063 /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
2064 bool increasesLength() const {
2065 unsigned NumSourceElts = Op<0>()->getType()->getVectorNumElements();
2066 unsigned NumMaskElts = getMask()->getType()->getVectorNumElements();
2067 return NumSourceElts < NumMaskElts;
2070 /// Return true if this shuffle mask chooses elements from exactly one source
2071 /// vector.
2072 /// Example: <7,5,undef,7>
2073 /// This assumes that vector operands are the same length as the mask.
2074 static bool isSingleSourceMask(ArrayRef<int> Mask);
2075 static bool isSingleSourceMask(const Constant *Mask) {
2076 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2077 SmallVector<int, 16> MaskAsInts;
2078 getShuffleMask(Mask, MaskAsInts);
2079 return isSingleSourceMask(MaskAsInts);
2082 /// Return true if this shuffle chooses elements from exactly one source
2083 /// vector without changing the length of that vector.
2084 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
2085 /// TODO: Optionally allow length-changing shuffles.
2086 bool isSingleSource() const {
2087 return !changesLength() && isSingleSourceMask(getMask());
2090 /// Return true if this shuffle mask chooses elements from exactly one source
2091 /// vector without lane crossings. A shuffle using this mask is not
2092 /// necessarily a no-op because it may change the number of elements from its
2093 /// input vectors or it may provide demanded bits knowledge via undef lanes.
2094 /// Example: <undef,undef,2,3>
2095 static bool isIdentityMask(ArrayRef<int> Mask);
2096 static bool isIdentityMask(const Constant *Mask) {
2097 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2098 SmallVector<int, 16> MaskAsInts;
2099 getShuffleMask(Mask, MaskAsInts);
2100 return isIdentityMask(MaskAsInts);
2103 /// Return true if this shuffle chooses elements from exactly one source
2104 /// vector without lane crossings and does not change the number of elements
2105 /// from its input vectors.
2106 /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
2107 bool isIdentity() const {
2108 return !changesLength() && isIdentityMask(getShuffleMask());
2111 /// Return true if this shuffle lengthens exactly one source vector with
2112 /// undefs in the high elements.
2113 bool isIdentityWithPadding() const;
2115 /// Return true if this shuffle extracts the first N elements of exactly one
2116 /// source vector.
2117 bool isIdentityWithExtract() const;
2119 /// Return true if this shuffle concatenates its 2 source vectors. This
2120 /// returns false if either input is undefined. In that case, the shuffle is
2121 /// is better classified as an identity with padding operation.
2122 bool isConcat() const;
2124 /// Return true if this shuffle mask chooses elements from its source vectors
2125 /// without lane crossings. A shuffle using this mask would be
2126 /// equivalent to a vector select with a constant condition operand.
2127 /// Example: <4,1,6,undef>
2128 /// This returns false if the mask does not choose from both input vectors.
2129 /// In that case, the shuffle is better classified as an identity shuffle.
2130 /// This assumes that vector operands are the same length as the mask
2131 /// (a length-changing shuffle can never be equivalent to a vector select).
2132 static bool isSelectMask(ArrayRef<int> Mask);
2133 static bool isSelectMask(const Constant *Mask) {
2134 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2135 SmallVector<int, 16> MaskAsInts;
2136 getShuffleMask(Mask, MaskAsInts);
2137 return isSelectMask(MaskAsInts);
2140 /// Return true if this shuffle chooses elements from its source vectors
2141 /// without lane crossings and all operands have the same number of elements.
2142 /// In other words, this shuffle is equivalent to a vector select with a
2143 /// constant condition operand.
2144 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
2145 /// This returns false if the mask does not choose from both input vectors.
2146 /// In that case, the shuffle is better classified as an identity shuffle.
2147 /// TODO: Optionally allow length-changing shuffles.
2148 bool isSelect() const {
2149 return !changesLength() && isSelectMask(getMask());
2152 /// Return true if this shuffle mask swaps the order of elements from exactly
2153 /// one source vector.
2154 /// Example: <7,6,undef,4>
2155 /// This assumes that vector operands are the same length as the mask.
2156 static bool isReverseMask(ArrayRef<int> Mask);
2157 static bool isReverseMask(const Constant *Mask) {
2158 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2159 SmallVector<int, 16> MaskAsInts;
2160 getShuffleMask(Mask, MaskAsInts);
2161 return isReverseMask(MaskAsInts);
2164 /// Return true if this shuffle swaps the order of elements from exactly
2165 /// one source vector.
2166 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
2167 /// TODO: Optionally allow length-changing shuffles.
2168 bool isReverse() const {
2169 return !changesLength() && isReverseMask(getMask());
2172 /// Return true if this shuffle mask chooses all elements with the same value
2173 /// as the first element of exactly one source vector.
2174 /// Example: <4,undef,undef,4>
2175 /// This assumes that vector operands are the same length as the mask.
2176 static bool isZeroEltSplatMask(ArrayRef<int> Mask);
2177 static bool isZeroEltSplatMask(const Constant *Mask) {
2178 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2179 SmallVector<int, 16> MaskAsInts;
2180 getShuffleMask(Mask, MaskAsInts);
2181 return isZeroEltSplatMask(MaskAsInts);
2184 /// Return true if all elements of this shuffle are the same value as the
2185 /// first element of exactly one source vector without changing the length
2186 /// of that vector.
2187 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
2188 /// TODO: Optionally allow length-changing shuffles.
2189 /// TODO: Optionally allow splats from other elements.
2190 bool isZeroEltSplat() const {
2191 return !changesLength() && isZeroEltSplatMask(getMask());
2194 /// Return true if this shuffle mask is a transpose mask.
2195 /// Transpose vector masks transpose a 2xn matrix. They read corresponding
2196 /// even- or odd-numbered vector elements from two n-dimensional source
2197 /// vectors and write each result into consecutive elements of an
2198 /// n-dimensional destination vector. Two shuffles are necessary to complete
2199 /// the transpose, one for the even elements and another for the odd elements.
2200 /// This description closely follows how the TRN1 and TRN2 AArch64
2201 /// instructions operate.
2203 /// For example, a simple 2x2 matrix can be transposed with:
2205 /// ; Original matrix
2206 /// m0 = < a, b >
2207 /// m1 = < c, d >
2209 /// ; Transposed matrix
2210 /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
2211 /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
2213 /// For matrices having greater than n columns, the resulting nx2 transposed
2214 /// matrix is stored in two result vectors such that one vector contains
2215 /// interleaved elements from all the even-numbered rows and the other vector
2216 /// contains interleaved elements from all the odd-numbered rows. For example,
2217 /// a 2x4 matrix can be transposed with:
2219 /// ; Original matrix
2220 /// m0 = < a, b, c, d >
2221 /// m1 = < e, f, g, h >
2223 /// ; Transposed matrix
2224 /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
2225 /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
2226 static bool isTransposeMask(ArrayRef<int> Mask);
2227 static bool isTransposeMask(const Constant *Mask) {
2228 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2229 SmallVector<int, 16> MaskAsInts;
2230 getShuffleMask(Mask, MaskAsInts);
2231 return isTransposeMask(MaskAsInts);
2234 /// Return true if this shuffle transposes the elements of its inputs without
2235 /// changing the length of the vectors. This operation may also be known as a
2236 /// merge or interleave. See the description for isTransposeMask() for the
2237 /// exact specification.
2238 /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
2239 bool isTranspose() const {
2240 return !changesLength() && isTransposeMask(getMask());
2243 /// Return true if this shuffle mask is an extract subvector mask.
2244 /// A valid extract subvector mask returns a smaller vector from a single
2245 /// source operand. The base extraction index is returned as well.
2246 static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2247 int &Index);
2248 static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts,
2249 int &Index) {
2250 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2251 SmallVector<int, 16> MaskAsInts;
2252 getShuffleMask(Mask, MaskAsInts);
2253 return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index);
2256 /// Return true if this shuffle mask is an extract subvector mask.
2257 bool isExtractSubvectorMask(int &Index) const {
2258 int NumSrcElts = Op<0>()->getType()->getVectorNumElements();
2259 return isExtractSubvectorMask(getMask(), NumSrcElts, Index);
2262 /// Change values in a shuffle permute mask assuming the two vector operands
2263 /// of length InVecNumElts have swapped position.
2264 static void commuteShuffleMask(MutableArrayRef<int> Mask,
2265 unsigned InVecNumElts) {
2266 for (int &Idx : Mask) {
2267 if (Idx == -1)
2268 continue;
2269 Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts;
2270 assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&
2271 "shufflevector mask index out of range");
2275 // Methods for support type inquiry through isa, cast, and dyn_cast:
2276 static bool classof(const Instruction *I) {
2277 return I->getOpcode() == Instruction::ShuffleVector;
2279 static bool classof(const Value *V) {
2280 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2284 template <>
2285 struct OperandTraits<ShuffleVectorInst> :
2286 public FixedNumOperandTraits<ShuffleVectorInst, 3> {
2289 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)
2291 //===----------------------------------------------------------------------===//
2292 // ExtractValueInst Class
2293 //===----------------------------------------------------------------------===//
2295 /// This instruction extracts a struct member or array
2296 /// element value from an aggregate value.
2298 class ExtractValueInst : public UnaryInstruction {
2299 SmallVector<unsigned, 4> Indices;
2301 ExtractValueInst(const ExtractValueInst &EVI);
2303 /// Constructors - Create a extractvalue instruction with a base aggregate
2304 /// value and a list of indices. The first ctor can optionally insert before
2305 /// an existing instruction, the second appends the new instruction to the
2306 /// specified BasicBlock.
2307 inline ExtractValueInst(Value *Agg,
2308 ArrayRef<unsigned> Idxs,
2309 const Twine &NameStr,
2310 Instruction *InsertBefore);
2311 inline ExtractValueInst(Value *Agg,
2312 ArrayRef<unsigned> Idxs,
2313 const Twine &NameStr, BasicBlock *InsertAtEnd);
2315 void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
2317 protected:
2318 // Note: Instruction needs to be a friend here to call cloneImpl.
2319 friend class Instruction;
2321 ExtractValueInst *cloneImpl() const;
2323 public:
2324 static ExtractValueInst *Create(Value *Agg,
2325 ArrayRef<unsigned> Idxs,
2326 const Twine &NameStr = "",
2327 Instruction *InsertBefore = nullptr) {
2328 return new
2329 ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
2332 static ExtractValueInst *Create(Value *Agg,
2333 ArrayRef<unsigned> Idxs,
2334 const Twine &NameStr,
2335 BasicBlock *InsertAtEnd) {
2336 return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
2339 /// Returns the type of the element that would be extracted
2340 /// with an extractvalue instruction with the specified parameters.
2342 /// Null is returned if the indices are invalid for the specified type.
2343 static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
2345 using idx_iterator = const unsigned*;
2347 inline idx_iterator idx_begin() const { return Indices.begin(); }
2348 inline idx_iterator idx_end() const { return Indices.end(); }
2349 inline iterator_range<idx_iterator> indices() const {
2350 return make_range(idx_begin(), idx_end());
2353 Value *getAggregateOperand() {
2354 return getOperand(0);
2356 const Value *getAggregateOperand() const {
2357 return getOperand(0);
2359 static unsigned getAggregateOperandIndex() {
2360 return 0U; // get index for modifying correct operand
2363 ArrayRef<unsigned> getIndices() const {
2364 return Indices;
2367 unsigned getNumIndices() const {
2368 return (unsigned)Indices.size();
2371 bool hasIndices() const {
2372 return true;
2375 // Methods for support type inquiry through isa, cast, and dyn_cast:
2376 static bool classof(const Instruction *I) {
2377 return I->getOpcode() == Instruction::ExtractValue;
2379 static bool classof(const Value *V) {
2380 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2384 ExtractValueInst::ExtractValueInst(Value *Agg,
2385 ArrayRef<unsigned> Idxs,
2386 const Twine &NameStr,
2387 Instruction *InsertBefore)
2388 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2389 ExtractValue, Agg, InsertBefore) {
2390 init(Idxs, NameStr);
2393 ExtractValueInst::ExtractValueInst(Value *Agg,
2394 ArrayRef<unsigned> Idxs,
2395 const Twine &NameStr,
2396 BasicBlock *InsertAtEnd)
2397 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2398 ExtractValue, Agg, InsertAtEnd) {
2399 init(Idxs, NameStr);
2402 //===----------------------------------------------------------------------===//
2403 // InsertValueInst Class
2404 //===----------------------------------------------------------------------===//
2406 /// This instruction inserts a struct field of array element
2407 /// value into an aggregate value.
2409 class InsertValueInst : public Instruction {
2410 SmallVector<unsigned, 4> Indices;
2412 InsertValueInst(const InsertValueInst &IVI);
2414 /// Constructors - Create a insertvalue instruction with a base aggregate
2415 /// value, a value to insert, and a list of indices. The first ctor can
2416 /// optionally insert before an existing instruction, the second appends
2417 /// the new instruction to the specified BasicBlock.
2418 inline InsertValueInst(Value *Agg, Value *Val,
2419 ArrayRef<unsigned> Idxs,
2420 const Twine &NameStr,
2421 Instruction *InsertBefore);
2422 inline InsertValueInst(Value *Agg, Value *Val,
2423 ArrayRef<unsigned> Idxs,
2424 const Twine &NameStr, BasicBlock *InsertAtEnd);
2426 /// Constructors - These two constructors are convenience methods because one
2427 /// and two index insertvalue instructions are so common.
2428 InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
2429 const Twine &NameStr = "",
2430 Instruction *InsertBefore = nullptr);
2431 InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr,
2432 BasicBlock *InsertAtEnd);
2434 void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2435 const Twine &NameStr);
2437 protected:
2438 // Note: Instruction needs to be a friend here to call cloneImpl.
2439 friend class Instruction;
2441 InsertValueInst *cloneImpl() const;
2443 public:
2444 // allocate space for exactly two operands
2445 void *operator new(size_t s) {
2446 return User::operator new(s, 2);
2449 static InsertValueInst *Create(Value *Agg, Value *Val,
2450 ArrayRef<unsigned> Idxs,
2451 const Twine &NameStr = "",
2452 Instruction *InsertBefore = nullptr) {
2453 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
2456 static InsertValueInst *Create(Value *Agg, Value *Val,
2457 ArrayRef<unsigned> Idxs,
2458 const Twine &NameStr,
2459 BasicBlock *InsertAtEnd) {
2460 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
2463 /// Transparently provide more efficient getOperand methods.
2464 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2466 using idx_iterator = const unsigned*;
2468 inline idx_iterator idx_begin() const { return Indices.begin(); }
2469 inline idx_iterator idx_end() const { return Indices.end(); }
2470 inline iterator_range<idx_iterator> indices() const {
2471 return make_range(idx_begin(), idx_end());
2474 Value *getAggregateOperand() {
2475 return getOperand(0);
2477 const Value *getAggregateOperand() const {
2478 return getOperand(0);
2480 static unsigned getAggregateOperandIndex() {
2481 return 0U; // get index for modifying correct operand
2484 Value *getInsertedValueOperand() {
2485 return getOperand(1);
2487 const Value *getInsertedValueOperand() const {
2488 return getOperand(1);
2490 static unsigned getInsertedValueOperandIndex() {
2491 return 1U; // get index for modifying correct operand
2494 ArrayRef<unsigned> getIndices() const {
2495 return Indices;
2498 unsigned getNumIndices() const {
2499 return (unsigned)Indices.size();
2502 bool hasIndices() const {
2503 return true;
2506 // Methods for support type inquiry through isa, cast, and dyn_cast:
2507 static bool classof(const Instruction *I) {
2508 return I->getOpcode() == Instruction::InsertValue;
2510 static bool classof(const Value *V) {
2511 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2515 template <>
2516 struct OperandTraits<InsertValueInst> :
2517 public FixedNumOperandTraits<InsertValueInst, 2> {
2520 InsertValueInst::InsertValueInst(Value *Agg,
2521 Value *Val,
2522 ArrayRef<unsigned> Idxs,
2523 const Twine &NameStr,
2524 Instruction *InsertBefore)
2525 : Instruction(Agg->getType(), InsertValue,
2526 OperandTraits<InsertValueInst>::op_begin(this),
2527 2, InsertBefore) {
2528 init(Agg, Val, Idxs, NameStr);
2531 InsertValueInst::InsertValueInst(Value *Agg,
2532 Value *Val,
2533 ArrayRef<unsigned> Idxs,
2534 const Twine &NameStr,
2535 BasicBlock *InsertAtEnd)
2536 : Instruction(Agg->getType(), InsertValue,
2537 OperandTraits<InsertValueInst>::op_begin(this),
2538 2, InsertAtEnd) {
2539 init(Agg, Val, Idxs, NameStr);
2542 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)
2544 //===----------------------------------------------------------------------===//
2545 // PHINode Class
2546 //===----------------------------------------------------------------------===//
2548 // PHINode - The PHINode class is used to represent the magical mystical PHI
2549 // node, that can not exist in nature, but can be synthesized in a computer
2550 // scientist's overactive imagination.
2552 class PHINode : public Instruction {
2553 /// The number of operands actually allocated. NumOperands is
2554 /// the number actually in use.
2555 unsigned ReservedSpace;
2557 PHINode(const PHINode &PN);
2559 explicit PHINode(Type *Ty, unsigned NumReservedValues,
2560 const Twine &NameStr = "",
2561 Instruction *InsertBefore = nullptr)
2562 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore),
2563 ReservedSpace(NumReservedValues) {
2564 setName(NameStr);
2565 allocHungoffUses(ReservedSpace);
2568 PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
2569 BasicBlock *InsertAtEnd)
2570 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd),
2571 ReservedSpace(NumReservedValues) {
2572 setName(NameStr);
2573 allocHungoffUses(ReservedSpace);
2576 protected:
2577 // Note: Instruction needs to be a friend here to call cloneImpl.
2578 friend class Instruction;
2580 PHINode *cloneImpl() const;
2582 // allocHungoffUses - this is more complicated than the generic
2583 // User::allocHungoffUses, because we have to allocate Uses for the incoming
2584 // values and pointers to the incoming blocks, all in one allocation.
2585 void allocHungoffUses(unsigned N) {
2586 User::allocHungoffUses(N, /* IsPhi */ true);
2589 public:
2590 /// Constructors - NumReservedValues is a hint for the number of incoming
2591 /// edges that this phi node will have (use 0 if you really have no idea).
2592 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2593 const Twine &NameStr = "",
2594 Instruction *InsertBefore = nullptr) {
2595 return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
2598 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2599 const Twine &NameStr, BasicBlock *InsertAtEnd) {
2600 return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
2603 /// Provide fast operand accessors
2604 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2606 // Block iterator interface. This provides access to the list of incoming
2607 // basic blocks, which parallels the list of incoming values.
2609 using block_iterator = BasicBlock **;
2610 using const_block_iterator = BasicBlock * const *;
2612 block_iterator block_begin() {
2613 Use::UserRef *ref =
2614 reinterpret_cast<Use::UserRef*>(op_begin() + ReservedSpace);
2615 return reinterpret_cast<block_iterator>(ref + 1);
2618 const_block_iterator block_begin() const {
2619 const Use::UserRef *ref =
2620 reinterpret_cast<const Use::UserRef*>(op_begin() + ReservedSpace);
2621 return reinterpret_cast<const_block_iterator>(ref + 1);
2624 block_iterator block_end() {
2625 return block_begin() + getNumOperands();
2628 const_block_iterator block_end() const {
2629 return block_begin() + getNumOperands();
2632 iterator_range<block_iterator> blocks() {
2633 return make_range(block_begin(), block_end());
2636 iterator_range<const_block_iterator> blocks() const {
2637 return make_range(block_begin(), block_end());
2640 op_range incoming_values() { return operands(); }
2642 const_op_range incoming_values() const { return operands(); }
2644 /// Return the number of incoming edges
2646 unsigned getNumIncomingValues() const { return getNumOperands(); }
2648 /// Return incoming value number x
2650 Value *getIncomingValue(unsigned i) const {
2651 return getOperand(i);
2653 void setIncomingValue(unsigned i, Value *V) {
2654 assert(V && "PHI node got a null value!");
2655 assert(getType() == V->getType() &&
2656 "All operands to PHI node must be the same type as the PHI node!");
2657 setOperand(i, V);
2660 static unsigned getOperandNumForIncomingValue(unsigned i) {
2661 return i;
2664 static unsigned getIncomingValueNumForOperand(unsigned i) {
2665 return i;
2668 /// Return incoming basic block number @p i.
2670 BasicBlock *getIncomingBlock(unsigned i) const {
2671 return block_begin()[i];
2674 /// Return incoming basic block corresponding
2675 /// to an operand of the PHI.
2677 BasicBlock *getIncomingBlock(const Use &U) const {
2678 assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
2679 return getIncomingBlock(unsigned(&U - op_begin()));
2682 /// Return incoming basic block corresponding
2683 /// to value use iterator.
2685 BasicBlock *getIncomingBlock(Value::const_user_iterator I) const {
2686 return getIncomingBlock(I.getUse());
2689 void setIncomingBlock(unsigned i, BasicBlock *BB) {
2690 assert(BB && "PHI node got a null basic block!");
2691 block_begin()[i] = BB;
2694 /// Replace every incoming basic block \p Old to basic block \p New.
2695 void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) {
2696 assert(New && Old && "PHI node got a null basic block!");
2697 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2698 if (getIncomingBlock(Op) == Old)
2699 setIncomingBlock(Op, New);
2702 /// Add an incoming value to the end of the PHI list
2704 void addIncoming(Value *V, BasicBlock *BB) {
2705 if (getNumOperands() == ReservedSpace)
2706 growOperands(); // Get more space!
2707 // Initialize some new operands.
2708 setNumHungOffUseOperands(getNumOperands() + 1);
2709 setIncomingValue(getNumOperands() - 1, V);
2710 setIncomingBlock(getNumOperands() - 1, BB);
2713 /// Remove an incoming value. This is useful if a
2714 /// predecessor basic block is deleted. The value removed is returned.
2716 /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2717 /// is true), the PHI node is destroyed and any uses of it are replaced with
2718 /// dummy values. The only time there should be zero incoming values to a PHI
2719 /// node is when the block is dead, so this strategy is sound.
2721 Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
2723 Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
2724 int Idx = getBasicBlockIndex(BB);
2725 assert(Idx >= 0 && "Invalid basic block argument to remove!");
2726 return removeIncomingValue(Idx, DeletePHIIfEmpty);
2729 /// Return the first index of the specified basic
2730 /// block in the value list for this PHI. Returns -1 if no instance.
2732 int getBasicBlockIndex(const BasicBlock *BB) const {
2733 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2734 if (block_begin()[i] == BB)
2735 return i;
2736 return -1;
2739 Value *getIncomingValueForBlock(const BasicBlock *BB) const {
2740 int Idx = getBasicBlockIndex(BB);
2741 assert(Idx >= 0 && "Invalid basic block argument!");
2742 return getIncomingValue(Idx);
2745 /// Set every incoming value(s) for block \p BB to \p V.
2746 void setIncomingValueForBlock(const BasicBlock *BB, Value *V) {
2747 assert(BB && "PHI node got a null basic block!");
2748 bool Found = false;
2749 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2750 if (getIncomingBlock(Op) == BB) {
2751 Found = true;
2752 setIncomingValue(Op, V);
2754 (void)Found;
2755 assert(Found && "Invalid basic block argument to set!");
2758 /// If the specified PHI node always merges together the
2759 /// same value, return the value, otherwise return null.
2760 Value *hasConstantValue() const;
2762 /// Whether the specified PHI node always merges
2763 /// together the same value, assuming undefs are equal to a unique
2764 /// non-undef value.
2765 bool hasConstantOrUndefValue() const;
2767 /// Methods for support type inquiry through isa, cast, and dyn_cast:
2768 static bool classof(const Instruction *I) {
2769 return I->getOpcode() == Instruction::PHI;
2771 static bool classof(const Value *V) {
2772 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2775 private:
2776 void growOperands();
2779 template <>
2780 struct OperandTraits<PHINode> : public HungoffOperandTraits<2> {
2783 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)
2785 //===----------------------------------------------------------------------===//
2786 // LandingPadInst Class
2787 //===----------------------------------------------------------------------===//
2789 //===---------------------------------------------------------------------------
2790 /// The landingpad instruction holds all of the information
2791 /// necessary to generate correct exception handling. The landingpad instruction
2792 /// cannot be moved from the top of a landing pad block, which itself is
2793 /// accessible only from the 'unwind' edge of an invoke. This uses the
2794 /// SubclassData field in Value to store whether or not the landingpad is a
2795 /// cleanup.
2797 class LandingPadInst : public Instruction {
2798 /// The number of operands actually allocated. NumOperands is
2799 /// the number actually in use.
2800 unsigned ReservedSpace;
2802 LandingPadInst(const LandingPadInst &LP);
2804 public:
2805 enum ClauseType { Catch, Filter };
2807 private:
2808 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2809 const Twine &NameStr, Instruction *InsertBefore);
2810 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2811 const Twine &NameStr, BasicBlock *InsertAtEnd);
2813 // Allocate space for exactly zero operands.
2814 void *operator new(size_t s) {
2815 return User::operator new(s);
2818 void growOperands(unsigned Size);
2819 void init(unsigned NumReservedValues, const Twine &NameStr);
2821 protected:
2822 // Note: Instruction needs to be a friend here to call cloneImpl.
2823 friend class Instruction;
2825 LandingPadInst *cloneImpl() const;
2827 public:
2828 /// Constructors - NumReservedClauses is a hint for the number of incoming
2829 /// clauses that this landingpad will have (use 0 if you really have no idea).
2830 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2831 const Twine &NameStr = "",
2832 Instruction *InsertBefore = nullptr);
2833 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2834 const Twine &NameStr, BasicBlock *InsertAtEnd);
2836 /// Provide fast operand accessors
2837 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2839 /// Return 'true' if this landingpad instruction is a
2840 /// cleanup. I.e., it should be run when unwinding even if its landing pad
2841 /// doesn't catch the exception.
2842 bool isCleanup() const { return getSubclassDataFromInstruction() & 1; }
2844 /// Indicate that this landingpad instruction is a cleanup.
2845 void setCleanup(bool V) {
2846 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
2847 (V ? 1 : 0));
2850 /// Add a catch or filter clause to the landing pad.
2851 void addClause(Constant *ClauseVal);
2853 /// Get the value of the clause at index Idx. Use isCatch/isFilter to
2854 /// determine what type of clause this is.
2855 Constant *getClause(unsigned Idx) const {
2856 return cast<Constant>(getOperandList()[Idx]);
2859 /// Return 'true' if the clause and index Idx is a catch clause.
2860 bool isCatch(unsigned Idx) const {
2861 return !isa<ArrayType>(getOperandList()[Idx]->getType());
2864 /// Return 'true' if the clause and index Idx is a filter clause.
2865 bool isFilter(unsigned Idx) const {
2866 return isa<ArrayType>(getOperandList()[Idx]->getType());
2869 /// Get the number of clauses for this landing pad.
2870 unsigned getNumClauses() const { return getNumOperands(); }
2872 /// Grow the size of the operand list to accommodate the new
2873 /// number of clauses.
2874 void reserveClauses(unsigned Size) { growOperands(Size); }
2876 // Methods for support type inquiry through isa, cast, and dyn_cast:
2877 static bool classof(const Instruction *I) {
2878 return I->getOpcode() == Instruction::LandingPad;
2880 static bool classof(const Value *V) {
2881 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2885 template <>
2886 struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> {
2889 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)
2891 //===----------------------------------------------------------------------===//
2892 // ReturnInst Class
2893 //===----------------------------------------------------------------------===//
2895 //===---------------------------------------------------------------------------
2896 /// Return a value (possibly void), from a function. Execution
2897 /// does not continue in this function any longer.
2899 class ReturnInst : public Instruction {
2900 ReturnInst(const ReturnInst &RI);
2902 private:
2903 // ReturnInst constructors:
2904 // ReturnInst() - 'ret void' instruction
2905 // ReturnInst( null) - 'ret void' instruction
2906 // ReturnInst(Value* X) - 'ret X' instruction
2907 // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
2908 // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
2909 // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
2910 // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
2912 // NOTE: If the Value* passed is of type void then the constructor behaves as
2913 // if it was passed NULL.
2914 explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr,
2915 Instruction *InsertBefore = nullptr);
2916 ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
2917 explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
2919 protected:
2920 // Note: Instruction needs to be a friend here to call cloneImpl.
2921 friend class Instruction;
2923 ReturnInst *cloneImpl() const;
2925 public:
2926 static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr,
2927 Instruction *InsertBefore = nullptr) {
2928 return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
2931 static ReturnInst* Create(LLVMContext &C, Value *retVal,
2932 BasicBlock *InsertAtEnd) {
2933 return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
2936 static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
2937 return new(0) ReturnInst(C, InsertAtEnd);
2940 /// Provide fast operand accessors
2941 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2943 /// Convenience accessor. Returns null if there is no return value.
2944 Value *getReturnValue() const {
2945 return getNumOperands() != 0 ? getOperand(0) : nullptr;
2948 unsigned getNumSuccessors() const { return 0; }
2950 // Methods for support type inquiry through isa, cast, and dyn_cast:
2951 static bool classof(const Instruction *I) {
2952 return (I->getOpcode() == Instruction::Ret);
2954 static bool classof(const Value *V) {
2955 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2958 private:
2959 BasicBlock *getSuccessor(unsigned idx) const {
2960 llvm_unreachable("ReturnInst has no successors!");
2963 void setSuccessor(unsigned idx, BasicBlock *B) {
2964 llvm_unreachable("ReturnInst has no successors!");
2968 template <>
2969 struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {
2972 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)
2974 //===----------------------------------------------------------------------===//
2975 // BranchInst Class
2976 //===----------------------------------------------------------------------===//
2978 //===---------------------------------------------------------------------------
2979 /// Conditional or Unconditional Branch instruction.
2981 class BranchInst : public Instruction {
2982 /// Ops list - Branches are strange. The operands are ordered:
2983 /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
2984 /// they don't have to check for cond/uncond branchness. These are mostly
2985 /// accessed relative from op_end().
2986 BranchInst(const BranchInst &BI);
2987 // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
2988 // BranchInst(BB *B) - 'br B'
2989 // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
2990 // BranchInst(BB* B, Inst *I) - 'br B' insert before I
2991 // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
2992 // BranchInst(BB* B, BB *I) - 'br B' insert at end
2993 // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
2994 explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr);
2995 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
2996 Instruction *InsertBefore = nullptr);
2997 BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
2998 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
2999 BasicBlock *InsertAtEnd);
3001 void AssertOK();
3003 protected:
3004 // Note: Instruction needs to be a friend here to call cloneImpl.
3005 friend class Instruction;
3007 BranchInst *cloneImpl() const;
3009 public:
3010 /// Iterator type that casts an operand to a basic block.
3012 /// This only makes sense because the successors are stored as adjacent
3013 /// operands for branch instructions.
3014 struct succ_op_iterator
3015 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3016 std::random_access_iterator_tag, BasicBlock *,
3017 ptrdiff_t, BasicBlock *, BasicBlock *> {
3018 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3020 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3021 BasicBlock *operator->() const { return operator*(); }
3024 /// The const version of `succ_op_iterator`.
3025 struct const_succ_op_iterator
3026 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3027 std::random_access_iterator_tag,
3028 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3029 const BasicBlock *> {
3030 explicit const_succ_op_iterator(const_value_op_iterator I)
3031 : iterator_adaptor_base(I) {}
3033 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3034 const BasicBlock *operator->() const { return operator*(); }
3037 static BranchInst *Create(BasicBlock *IfTrue,
3038 Instruction *InsertBefore = nullptr) {
3039 return new(1) BranchInst(IfTrue, InsertBefore);
3042 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3043 Value *Cond, Instruction *InsertBefore = nullptr) {
3044 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
3047 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
3048 return new(1) BranchInst(IfTrue, InsertAtEnd);
3051 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3052 Value *Cond, BasicBlock *InsertAtEnd) {
3053 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
3056 /// Transparently provide more efficient getOperand methods.
3057 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
3059 bool isUnconditional() const { return getNumOperands() == 1; }
3060 bool isConditional() const { return getNumOperands() == 3; }
3062 Value *getCondition() const {
3063 assert(isConditional() && "Cannot get condition of an uncond branch!");
3064 return Op<-3>();
3067 void setCondition(Value *V) {
3068 assert(isConditional() && "Cannot set condition of unconditional branch!");
3069 Op<-3>() = V;
3072 unsigned getNumSuccessors() const { return 1+isConditional(); }
3074 BasicBlock *getSuccessor(unsigned i) const {
3075 assert(i < getNumSuccessors() && "Successor # out of range for Branch!");
3076 return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
3079 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3080 assert(idx < getNumSuccessors() && "Successor # out of range for Branch!");
3081 *(&Op<-1>() - idx) = NewSucc;
3084 /// Swap the successors of this branch instruction.
3086 /// Swaps the successors of the branch instruction. This also swaps any
3087 /// branch weight metadata associated with the instruction so that it
3088 /// continues to map correctly to each operand.
3089 void swapSuccessors();
3091 iterator_range<succ_op_iterator> successors() {
3092 return make_range(
3093 succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)),
3094 succ_op_iterator(value_op_end()));
3097 iterator_range<const_succ_op_iterator> successors() const {
3098 return make_range(const_succ_op_iterator(
3099 std::next(value_op_begin(), isConditional() ? 1 : 0)),
3100 const_succ_op_iterator(value_op_end()));
3103 // Methods for support type inquiry through isa, cast, and dyn_cast:
3104 static bool classof(const Instruction *I) {
3105 return (I->getOpcode() == Instruction::Br);
3107 static bool classof(const Value *V) {
3108 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3112 template <>
3113 struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> {
3116 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)
3118 //===----------------------------------------------------------------------===//
3119 // SwitchInst Class
3120 //===----------------------------------------------------------------------===//
3122 //===---------------------------------------------------------------------------
3123 /// Multiway switch
3125 class SwitchInst : public Instruction {
3126 unsigned ReservedSpace;
3128 // Operand[0] = Value to switch on
3129 // Operand[1] = Default basic block destination
3130 // Operand[2n ] = Value to match
3131 // Operand[2n+1] = BasicBlock to go to on match
3132 SwitchInst(const SwitchInst &SI);
3134 /// Create a new switch instruction, specifying a value to switch on and a
3135 /// default destination. The number of additional cases can be specified here
3136 /// to make memory allocation more efficient. This constructor can also
3137 /// auto-insert before another instruction.
3138 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3139 Instruction *InsertBefore);
3141 /// Create a new switch instruction, specifying a value to switch on and a
3142 /// default destination. The number of additional cases can be specified here
3143 /// to make memory allocation more efficient. This constructor also
3144 /// auto-inserts at the end of the specified BasicBlock.
3145 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3146 BasicBlock *InsertAtEnd);
3148 // allocate space for exactly zero operands
3149 void *operator new(size_t s) {
3150 return User::operator new(s);
3153 void init(Value *Value, BasicBlock *Default, unsigned NumReserved);
3154 void growOperands();
3156 protected:
3157 // Note: Instruction needs to be a friend here to call cloneImpl.
3158 friend class Instruction;
3160 SwitchInst *cloneImpl() const;
3162 public:
3163 // -2
3164 static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
3166 template <typename CaseHandleT> class CaseIteratorImpl;
3168 /// A handle to a particular switch case. It exposes a convenient interface
3169 /// to both the case value and the successor block.
3171 /// We define this as a template and instantiate it to form both a const and
3172 /// non-const handle.
3173 template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT>
3174 class CaseHandleImpl {
3175 // Directly befriend both const and non-const iterators.
3176 friend class SwitchInst::CaseIteratorImpl<
3177 CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>;
3179 protected:
3180 // Expose the switch type we're parameterized with to the iterator.
3181 using SwitchInstType = SwitchInstT;
3183 SwitchInstT *SI;
3184 ptrdiff_t Index;
3186 CaseHandleImpl() = default;
3187 CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {}
3189 public:
3190 /// Resolves case value for current case.
3191 ConstantIntT *getCaseValue() const {
3192 assert((unsigned)Index < SI->getNumCases() &&
3193 "Index out the number of cases.");
3194 return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2));
3197 /// Resolves successor for current case.
3198 BasicBlockT *getCaseSuccessor() const {
3199 assert(((unsigned)Index < SI->getNumCases() ||
3200 (unsigned)Index == DefaultPseudoIndex) &&
3201 "Index out the number of cases.");
3202 return SI->getSuccessor(getSuccessorIndex());
3205 /// Returns number of current case.
3206 unsigned getCaseIndex() const { return Index; }
3208 /// Returns successor index for current case successor.
3209 unsigned getSuccessorIndex() const {
3210 assert(((unsigned)Index == DefaultPseudoIndex ||
3211 (unsigned)Index < SI->getNumCases()) &&
3212 "Index out the number of cases.");
3213 return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0;
3216 bool operator==(const CaseHandleImpl &RHS) const {
3217 assert(SI == RHS.SI && "Incompatible operators.");
3218 return Index == RHS.Index;
3222 using ConstCaseHandle =
3223 CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>;
3225 class CaseHandle
3226 : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> {
3227 friend class SwitchInst::CaseIteratorImpl<CaseHandle>;
3229 public:
3230 CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {}
3232 /// Sets the new value for current case.
3233 void setValue(ConstantInt *V) {
3234 assert((unsigned)Index < SI->getNumCases() &&
3235 "Index out the number of cases.");
3236 SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V));
3239 /// Sets the new successor for current case.
3240 void setSuccessor(BasicBlock *S) {
3241 SI->setSuccessor(getSuccessorIndex(), S);
3245 template <typename CaseHandleT>
3246 class CaseIteratorImpl
3247 : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>,
3248 std::random_access_iterator_tag,
3249 CaseHandleT> {
3250 using SwitchInstT = typename CaseHandleT::SwitchInstType;
3252 CaseHandleT Case;
3254 public:
3255 /// Default constructed iterator is in an invalid state until assigned to
3256 /// a case for a particular switch.
3257 CaseIteratorImpl() = default;
3259 /// Initializes case iterator for given SwitchInst and for given
3260 /// case number.
3261 CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {}
3263 /// Initializes case iterator for given SwitchInst and for given
3264 /// successor index.
3265 static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI,
3266 unsigned SuccessorIndex) {
3267 assert(SuccessorIndex < SI->getNumSuccessors() &&
3268 "Successor index # out of range!");
3269 return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1)
3270 : CaseIteratorImpl(SI, DefaultPseudoIndex);
3273 /// Support converting to the const variant. This will be a no-op for const
3274 /// variant.
3275 operator CaseIteratorImpl<ConstCaseHandle>() const {
3276 return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index);
3279 CaseIteratorImpl &operator+=(ptrdiff_t N) {
3280 // Check index correctness after addition.
3281 // Note: Index == getNumCases() means end().
3282 assert(Case.Index + N >= 0 &&
3283 (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&
3284 "Case.Index out the number of cases.");
3285 Case.Index += N;
3286 return *this;
3288 CaseIteratorImpl &operator-=(ptrdiff_t N) {
3289 // Check index correctness after subtraction.
3290 // Note: Case.Index == getNumCases() means end().
3291 assert(Case.Index - N >= 0 &&
3292 (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&
3293 "Case.Index out the number of cases.");
3294 Case.Index -= N;
3295 return *this;
3297 ptrdiff_t operator-(const CaseIteratorImpl &RHS) const {
3298 assert(Case.SI == RHS.Case.SI && "Incompatible operators.");
3299 return Case.Index - RHS.Case.Index;
3301 bool operator==(const CaseIteratorImpl &RHS) const {
3302 return Case == RHS.Case;
3304 bool operator<(const CaseIteratorImpl &RHS) const {
3305 assert(Case.SI == RHS.Case.SI && "Incompatible operators.");
3306 return Case.Index < RHS.Case.Index;
3308 CaseHandleT &operator*() { return Case; }
3309 const CaseHandleT &operator*() const { return Case; }
3312 using CaseIt = CaseIteratorImpl<CaseHandle>;
3313 using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>;
3315 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3316 unsigned NumCases,
3317 Instruction *InsertBefore = nullptr) {
3318 return new SwitchInst(Value, Default, NumCases, InsertBefore);
3321 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3322 unsigned NumCases, BasicBlock *InsertAtEnd) {
3323 return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
3326 /// Provide fast operand accessors
3327 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
3329 // Accessor Methods for Switch stmt
3330 Value *getCondition() const { return getOperand(0); }
3331 void setCondition(Value *V) { setOperand(0, V); }
3333 BasicBlock *getDefaultDest() const {
3334 return cast<BasicBlock>(getOperand(1));
3337 void setDefaultDest(BasicBlock *DefaultCase) {
3338 setOperand(1, reinterpret_cast<Value*>(DefaultCase));
3341 /// Return the number of 'cases' in this switch instruction, excluding the
3342 /// default case.
3343 unsigned getNumCases() const {
3344 return getNumOperands()/2 - 1;
3347 /// Returns a read/write iterator that points to the first case in the
3348 /// SwitchInst.
3349 CaseIt case_begin() {
3350 return CaseIt(this, 0);
3353 /// Returns a read-only iterator that points to the first case in the
3354 /// SwitchInst.
3355 ConstCaseIt case_begin() const {
3356 return ConstCaseIt(this, 0);
3359 /// Returns a read/write iterator that points one past the last in the
3360 /// SwitchInst.
3361 CaseIt case_end() {
3362 return CaseIt(this, getNumCases());
3365 /// Returns a read-only iterator that points one past the last in the
3366 /// SwitchInst.
3367 ConstCaseIt case_end() const {
3368 return ConstCaseIt(this, getNumCases());
3371 /// Iteration adapter for range-for loops.
3372 iterator_range<CaseIt> cases() {
3373 return make_range(case_begin(), case_end());
3376 /// Constant iteration adapter for range-for loops.
3377 iterator_range<ConstCaseIt> cases() const {
3378 return make_range(case_begin(), case_end());
3381 /// Returns an iterator that points to the default case.
3382 /// Note: this iterator allows to resolve successor only. Attempt
3383 /// to resolve case value causes an assertion.
3384 /// Also note, that increment and decrement also causes an assertion and
3385 /// makes iterator invalid.
3386 CaseIt case_default() {
3387 return CaseIt(this, DefaultPseudoIndex);
3389 ConstCaseIt case_default() const {
3390 return ConstCaseIt(this, DefaultPseudoIndex);
3393 /// Search all of the case values for the specified constant. If it is
3394 /// explicitly handled, return the case iterator of it, otherwise return
3395 /// default case iterator to indicate that it is handled by the default
3396 /// handler.
3397 CaseIt findCaseValue(const ConstantInt *C) {
3398 CaseIt I = llvm::find_if(
3399 cases(), [C](CaseHandle &Case) { return Case.getCaseValue() == C; });
3400 if (I != case_end())
3401 return I;
3403 return case_default();
3405 ConstCaseIt findCaseValue(const ConstantInt *C) const {
3406 ConstCaseIt I = llvm::find_if(cases(), [C](ConstCaseHandle &Case) {
3407 return Case.getCaseValue() == C;
3409 if (I != case_end())
3410 return I;
3412 return case_default();
3415 /// Finds the unique case value for a given successor. Returns null if the
3416 /// successor is not found, not unique, or is the default case.
3417 ConstantInt *findCaseDest(BasicBlock *BB) {
3418 if (BB == getDefaultDest())
3419 return nullptr;
3421 ConstantInt *CI = nullptr;
3422 for (auto Case : cases()) {
3423 if (Case.getCaseSuccessor() != BB)
3424 continue;
3426 if (CI)
3427 return nullptr; // Multiple cases lead to BB.
3429 CI = Case.getCaseValue();
3432 return CI;
3435 /// Add an entry to the switch instruction.
3436 /// Note:
3437 /// This action invalidates case_end(). Old case_end() iterator will
3438 /// point to the added case.
3439 void addCase(ConstantInt *OnVal, BasicBlock *Dest);
3441 /// This method removes the specified case and its successor from the switch
3442 /// instruction. Note that this operation may reorder the remaining cases at
3443 /// index idx and above.
3444 /// Note:
3445 /// This action invalidates iterators for all cases following the one removed,
3446 /// including the case_end() iterator. It returns an iterator for the next
3447 /// case.
3448 CaseIt removeCase(CaseIt I);
3450 unsigned getNumSuccessors() const { return getNumOperands()/2; }
3451 BasicBlock *getSuccessor(unsigned idx) const {
3452 assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!");
3453 return cast<BasicBlock>(getOperand(idx*2+1));
3455 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3456 assert(idx < getNumSuccessors() && "Successor # out of range for switch!");
3457 setOperand(idx * 2 + 1, NewSucc);
3460 // Methods for support type inquiry through isa, cast, and dyn_cast:
3461 static bool classof(const Instruction *I) {
3462 return I->getOpcode() == Instruction::Switch;
3464 static bool classof(const Value *V) {
3465 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3469 /// A wrapper class to simplify modification of SwitchInst cases along with
3470 /// their prof branch_weights metadata.
3471 class SwitchInstProfUpdateWrapper {
3472 SwitchInst &SI;
3473 Optional<SmallVector<uint32_t, 8> > Weights = None;
3474 bool Changed = false;
3476 protected:
3477 static MDNode *getProfBranchWeightsMD(const SwitchInst &SI);
3479 MDNode *buildProfBranchWeightsMD();
3481 void init();
3483 public:
3484 using CaseWeightOpt = Optional<uint32_t>;
3485 SwitchInst *operator->() { return &SI; }
3486 SwitchInst &operator*() { return SI; }
3487 operator SwitchInst *() { return &SI; }
3489 SwitchInstProfUpdateWrapper(SwitchInst &SI) : SI(SI) { init(); }
3491 ~SwitchInstProfUpdateWrapper() {
3492 if (Changed)
3493 SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD());
3496 /// Delegate the call to the underlying SwitchInst::removeCase() and remove
3497 /// correspondent branch weight.
3498 SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I);
3500 /// Delegate the call to the underlying SwitchInst::addCase() and set the
3501 /// specified branch weight for the added case.
3502 void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W);
3504 /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark
3505 /// this object to not touch the underlying SwitchInst in destructor.
3506 SymbolTableList<Instruction>::iterator eraseFromParent();
3508 void setSuccessorWeight(unsigned idx, CaseWeightOpt W);
3509 CaseWeightOpt getSuccessorWeight(unsigned idx);
3511 static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx);
3514 template <>
3515 struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> {
3518 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)
3520 //===----------------------------------------------------------------------===//
3521 // IndirectBrInst Class
3522 //===----------------------------------------------------------------------===//
3524 //===---------------------------------------------------------------------------
3525 /// Indirect Branch Instruction.
3527 class IndirectBrInst : public Instruction {
3528 unsigned ReservedSpace;
3530 // Operand[0] = Address to jump to
3531 // Operand[n+1] = n-th destination
3532 IndirectBrInst(const IndirectBrInst &IBI);
3534 /// Create a new indirectbr instruction, specifying an
3535 /// Address to jump to. The number of expected destinations can be specified
3536 /// here to make memory allocation more efficient. This constructor can also
3537 /// autoinsert before another instruction.
3538 IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore);
3540 /// Create a new indirectbr instruction, specifying an
3541 /// Address to jump to. The number of expected destinations can be specified
3542 /// here to make memory allocation more efficient. This constructor also
3543 /// autoinserts at the end of the specified BasicBlock.
3544 IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd);
3546 // allocate space for exactly zero operands
3547 void *operator new(size_t s) {
3548 return User::operator new(s);
3551 void init(Value *Address, unsigned NumDests);
3552 void growOperands();
3554 protected:
3555 // Note: Instruction needs to be a friend here to call cloneImpl.
3556 friend class Instruction;
3558 IndirectBrInst *cloneImpl() const;
3560 public:
3561 /// Iterator type that casts an operand to a basic block.
3563 /// This only makes sense because the successors are stored as adjacent
3564 /// operands for indirectbr instructions.
3565 struct succ_op_iterator
3566 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3567 std::random_access_iterator_tag, BasicBlock *,
3568 ptrdiff_t, BasicBlock *, BasicBlock *> {
3569 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3571 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3572 BasicBlock *operator->() const { return operator*(); }
3575 /// The const version of `succ_op_iterator`.
3576 struct const_succ_op_iterator
3577 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3578 std::random_access_iterator_tag,
3579 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3580 const BasicBlock *> {
3581 explicit const_succ_op_iterator(const_value_op_iterator I)
3582 : iterator_adaptor_base(I) {}
3584 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3585 const BasicBlock *operator->() const { return operator*(); }
3588 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3589 Instruction *InsertBefore = nullptr) {
3590 return new IndirectBrInst(Address, NumDests, InsertBefore);
3593 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3594 BasicBlock *InsertAtEnd) {
3595 return new IndirectBrInst(Address, NumDests, InsertAtEnd);
3598 /// Provide fast operand accessors.
3599 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
3601 // Accessor Methods for IndirectBrInst instruction.
3602 Value *getAddress() { return getOperand(0); }
3603 const Value *getAddress() const { return getOperand(0); }
3604 void setAddress(Value *V) { setOperand(0, V); }
3606 /// return the number of possible destinations in this
3607 /// indirectbr instruction.
3608 unsigned getNumDestinations() const { return getNumOperands()-1; }
3610 /// Return the specified destination.
3611 BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
3612 const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
3614 /// Add a destination.
3616 void addDestination(BasicBlock *Dest);
3618 /// This method removes the specified successor from the
3619 /// indirectbr instruction.
3620 void removeDestination(unsigned i);
3622 unsigned getNumSuccessors() const { return getNumOperands()-1; }
3623 BasicBlock *getSuccessor(unsigned i) const {
3624 return cast<BasicBlock>(getOperand(i+1));
3626 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3627 setOperand(i + 1, NewSucc);
3630 iterator_range<succ_op_iterator> successors() {
3631 return make_range(succ_op_iterator(std::next(value_op_begin())),
3632 succ_op_iterator(value_op_end()));
3635 iterator_range<const_succ_op_iterator> successors() const {
3636 return make_range(const_succ_op_iterator(std::next(value_op_begin())),
3637 const_succ_op_iterator(value_op_end()));
3640 // Methods for support type inquiry through isa, cast, and dyn_cast:
3641 static bool classof(const Instruction *I) {
3642 return I->getOpcode() == Instruction::IndirectBr;
3644 static bool classof(const Value *V) {
3645 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3649 template <>
3650 struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> {
3653 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)
3655 //===----------------------------------------------------------------------===//
3656 // InvokeInst Class
3657 //===----------------------------------------------------------------------===//
3659 /// Invoke instruction. The SubclassData field is used to hold the
3660 /// calling convention of the call.
3662 class InvokeInst : public CallBase {
3663 /// The number of operands for this call beyond the called function,
3664 /// arguments, and operand bundles.
3665 static constexpr int NumExtraOperands = 2;
3667 /// The index from the end of the operand array to the normal destination.
3668 static constexpr int NormalDestOpEndIdx = -3;
3670 /// The index from the end of the operand array to the unwind destination.
3671 static constexpr int UnwindDestOpEndIdx = -2;
3673 InvokeInst(const InvokeInst &BI);
3675 /// Construct an InvokeInst given a range of arguments.
3677 /// Construct an InvokeInst from a range of arguments
3678 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3679 BasicBlock *IfException, ArrayRef<Value *> Args,
3680 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3681 const Twine &NameStr, Instruction *InsertBefore);
3683 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3684 BasicBlock *IfException, ArrayRef<Value *> Args,
3685 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3686 const Twine &NameStr, BasicBlock *InsertAtEnd);
3688 void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3689 BasicBlock *IfException, ArrayRef<Value *> Args,
3690 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3692 /// Compute the number of operands to allocate.
3693 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
3694 // We need one operand for the called function, plus our extra operands and
3695 // the input operand counts provided.
3696 return 1 + NumExtraOperands + NumArgs + NumBundleInputs;
3699 protected:
3700 // Note: Instruction needs to be a friend here to call cloneImpl.
3701 friend class Instruction;
3703 InvokeInst *cloneImpl() const;
3705 public:
3706 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3707 BasicBlock *IfException, ArrayRef<Value *> Args,
3708 const Twine &NameStr,
3709 Instruction *InsertBefore = nullptr) {
3710 int NumOperands = ComputeNumOperands(Args.size());
3711 return new (NumOperands)
3712 InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3713 NameStr, InsertBefore);
3716 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3717 BasicBlock *IfException, ArrayRef<Value *> Args,
3718 ArrayRef<OperandBundleDef> Bundles = None,
3719 const Twine &NameStr = "",
3720 Instruction *InsertBefore = nullptr) {
3721 int NumOperands =
3722 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3723 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3725 return new (NumOperands, DescriptorBytes)
3726 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3727 NameStr, InsertBefore);
3730 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3731 BasicBlock *IfException, ArrayRef<Value *> Args,
3732 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3733 int NumOperands = ComputeNumOperands(Args.size());
3734 return new (NumOperands)
3735 InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3736 NameStr, InsertAtEnd);
3739 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3740 BasicBlock *IfException, ArrayRef<Value *> Args,
3741 ArrayRef<OperandBundleDef> Bundles,
3742 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3743 int NumOperands =
3744 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3745 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3747 return new (NumOperands, DescriptorBytes)
3748 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3749 NameStr, InsertAtEnd);
3752 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3753 BasicBlock *IfException, ArrayRef<Value *> Args,
3754 const Twine &NameStr,
3755 Instruction *InsertBefore = nullptr) {
3756 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3757 IfException, Args, None, NameStr, InsertBefore);
3760 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3761 BasicBlock *IfException, ArrayRef<Value *> Args,
3762 ArrayRef<OperandBundleDef> Bundles = None,
3763 const Twine &NameStr = "",
3764 Instruction *InsertBefore = nullptr) {
3765 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3766 IfException, Args, Bundles, NameStr, InsertBefore);
3769 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3770 BasicBlock *IfException, ArrayRef<Value *> Args,
3771 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3772 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3773 IfException, Args, NameStr, InsertAtEnd);
3776 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3777 BasicBlock *IfException, ArrayRef<Value *> Args,
3778 ArrayRef<OperandBundleDef> Bundles,
3779 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3780 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3781 IfException, Args, Bundles, NameStr, InsertAtEnd);
3784 // Deprecated [opaque pointer types]
3785 static InvokeInst *Create(Value *Func, BasicBlock *IfNormal,
3786 BasicBlock *IfException, ArrayRef<Value *> Args,
3787 const Twine &NameStr,
3788 Instruction *InsertBefore = nullptr) {
3789 return Create(cast<FunctionType>(
3790 cast<PointerType>(Func->getType())->getElementType()),
3791 Func, IfNormal, IfException, Args, None, NameStr,
3792 InsertBefore);
3795 // Deprecated [opaque pointer types]
3796 static InvokeInst *Create(Value *Func, BasicBlock *IfNormal,
3797 BasicBlock *IfException, ArrayRef<Value *> Args,
3798 ArrayRef<OperandBundleDef> Bundles = None,
3799 const Twine &NameStr = "",
3800 Instruction *InsertBefore = nullptr) {
3801 return Create(cast<FunctionType>(
3802 cast<PointerType>(Func->getType())->getElementType()),
3803 Func, IfNormal, IfException, Args, Bundles, NameStr,
3804 InsertBefore);
3807 // Deprecated [opaque pointer types]
3808 static InvokeInst *Create(Value *Func, BasicBlock *IfNormal,
3809 BasicBlock *IfException, ArrayRef<Value *> Args,
3810 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3811 return Create(cast<FunctionType>(
3812 cast<PointerType>(Func->getType())->getElementType()),
3813 Func, IfNormal, IfException, Args, NameStr, InsertAtEnd);
3816 // Deprecated [opaque pointer types]
3817 static InvokeInst *Create(Value *Func, BasicBlock *IfNormal,
3818 BasicBlock *IfException, ArrayRef<Value *> Args,
3819 ArrayRef<OperandBundleDef> Bundles,
3820 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3821 return Create(cast<FunctionType>(
3822 cast<PointerType>(Func->getType())->getElementType()),
3823 Func, IfNormal, IfException, Args, Bundles, NameStr,
3824 InsertAtEnd);
3827 /// Create a clone of \p II with a different set of operand bundles and
3828 /// insert it before \p InsertPt.
3830 /// The returned invoke instruction is identical to \p II in every way except
3831 /// that the operand bundles for the new instruction are set to the operand
3832 /// bundles in \p Bundles.
3833 static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles,
3834 Instruction *InsertPt = nullptr);
3836 /// Determine if the call should not perform indirect branch tracking.
3837 bool doesNoCfCheck() const { return hasFnAttr(Attribute::NoCfCheck); }
3839 /// Determine if the call cannot unwind.
3840 bool doesNotThrow() const { return hasFnAttr(Attribute::NoUnwind); }
3841 void setDoesNotThrow() {
3842 addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind);
3845 // get*Dest - Return the destination basic blocks...
3846 BasicBlock *getNormalDest() const {
3847 return cast<BasicBlock>(Op<NormalDestOpEndIdx>());
3849 BasicBlock *getUnwindDest() const {
3850 return cast<BasicBlock>(Op<UnwindDestOpEndIdx>());
3852 void setNormalDest(BasicBlock *B) {
3853 Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3855 void setUnwindDest(BasicBlock *B) {
3856 Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3859 /// Get the landingpad instruction from the landing pad
3860 /// block (the unwind destination).
3861 LandingPadInst *getLandingPadInst() const;
3863 BasicBlock *getSuccessor(unsigned i) const {
3864 assert(i < 2 && "Successor # out of range for invoke!");
3865 return i == 0 ? getNormalDest() : getUnwindDest();
3868 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3869 assert(i < 2 && "Successor # out of range for invoke!");
3870 if (i == 0)
3871 setNormalDest(NewSucc);
3872 else
3873 setUnwindDest(NewSucc);
3876 unsigned getNumSuccessors() const { return 2; }
3878 // Methods for support type inquiry through isa, cast, and dyn_cast:
3879 static bool classof(const Instruction *I) {
3880 return (I->getOpcode() == Instruction::Invoke);
3882 static bool classof(const Value *V) {
3883 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3886 private:
3888 // Shadow Instruction::setInstructionSubclassData with a private forwarding
3889 // method so that subclasses cannot accidentally use it.
3890 void setInstructionSubclassData(unsigned short D) {
3891 Instruction::setInstructionSubclassData(D);
3895 InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3896 BasicBlock *IfException, ArrayRef<Value *> Args,
3897 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3898 const Twine &NameStr, Instruction *InsertBefore)
3899 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3900 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3901 InsertBefore) {
3902 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3905 InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3906 BasicBlock *IfException, ArrayRef<Value *> Args,
3907 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3908 const Twine &NameStr, BasicBlock *InsertAtEnd)
3909 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3910 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3911 InsertAtEnd) {
3912 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3915 //===----------------------------------------------------------------------===//
3916 // CallBrInst Class
3917 //===----------------------------------------------------------------------===//
3919 /// CallBr instruction, tracking function calls that may not return control but
3920 /// instead transfer it to a third location. The SubclassData field is used to
3921 /// hold the calling convention of the call.
3923 class CallBrInst : public CallBase {
3925 unsigned NumIndirectDests;
3927 CallBrInst(const CallBrInst &BI);
3929 /// Construct a CallBrInst given a range of arguments.
3931 /// Construct a CallBrInst from a range of arguments
3932 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3933 ArrayRef<BasicBlock *> IndirectDests,
3934 ArrayRef<Value *> Args,
3935 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3936 const Twine &NameStr, Instruction *InsertBefore);
3938 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3939 ArrayRef<BasicBlock *> IndirectDests,
3940 ArrayRef<Value *> Args,
3941 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3942 const Twine &NameStr, BasicBlock *InsertAtEnd);
3944 void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest,
3945 ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args,
3946 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3948 /// Should the Indirect Destinations change, scan + update the Arg list.
3949 void updateArgBlockAddresses(unsigned i, BasicBlock *B);
3951 /// Compute the number of operands to allocate.
3952 static int ComputeNumOperands(int NumArgs, int NumIndirectDests,
3953 int NumBundleInputs = 0) {
3954 // We need one operand for the called function, plus our extra operands and
3955 // the input operand counts provided.
3956 return 2 + NumIndirectDests + NumArgs + NumBundleInputs;
3959 protected:
3960 // Note: Instruction needs to be a friend here to call cloneImpl.
3961 friend class Instruction;
3963 CallBrInst *cloneImpl() const;
3965 public:
3966 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3967 BasicBlock *DefaultDest,
3968 ArrayRef<BasicBlock *> IndirectDests,
3969 ArrayRef<Value *> Args, const Twine &NameStr,
3970 Instruction *InsertBefore = nullptr) {
3971 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
3972 return new (NumOperands)
3973 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
3974 NumOperands, NameStr, InsertBefore);
3977 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3978 BasicBlock *DefaultDest,
3979 ArrayRef<BasicBlock *> IndirectDests,
3980 ArrayRef<Value *> Args,
3981 ArrayRef<OperandBundleDef> Bundles = None,
3982 const Twine &NameStr = "",
3983 Instruction *InsertBefore = nullptr) {
3984 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
3985 CountBundleInputs(Bundles));
3986 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3988 return new (NumOperands, DescriptorBytes)
3989 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
3990 NumOperands, NameStr, InsertBefore);
3993 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3994 BasicBlock *DefaultDest,
3995 ArrayRef<BasicBlock *> IndirectDests,
3996 ArrayRef<Value *> Args, const Twine &NameStr,
3997 BasicBlock *InsertAtEnd) {
3998 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
3999 return new (NumOperands)
4000 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
4001 NumOperands, NameStr, InsertAtEnd);
4004 static CallBrInst *Create(FunctionType *Ty, Value *Func,
4005 BasicBlock *DefaultDest,
4006 ArrayRef<BasicBlock *> IndirectDests,
4007 ArrayRef<Value *> Args,
4008 ArrayRef<OperandBundleDef> Bundles,
4009 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4010 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
4011 CountBundleInputs(Bundles));
4012 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
4014 return new (NumOperands, DescriptorBytes)
4015 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
4016 NumOperands, NameStr, InsertAtEnd);
4019 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4020 ArrayRef<BasicBlock *> IndirectDests,
4021 ArrayRef<Value *> Args, const Twine &NameStr,
4022 Instruction *InsertBefore = nullptr) {
4023 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4024 IndirectDests, Args, NameStr, InsertBefore);
4027 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4028 ArrayRef<BasicBlock *> IndirectDests,
4029 ArrayRef<Value *> Args,
4030 ArrayRef<OperandBundleDef> Bundles = None,
4031 const Twine &NameStr = "",
4032 Instruction *InsertBefore = nullptr) {
4033 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4034 IndirectDests, Args, Bundles, NameStr, InsertBefore);
4037 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4038 ArrayRef<BasicBlock *> IndirectDests,
4039 ArrayRef<Value *> Args, const Twine &NameStr,
4040 BasicBlock *InsertAtEnd) {
4041 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4042 IndirectDests, Args, NameStr, InsertAtEnd);
4045 static CallBrInst *Create(FunctionCallee Func,
4046 BasicBlock *DefaultDest,
4047 ArrayRef<BasicBlock *> IndirectDests,
4048 ArrayRef<Value *> Args,
4049 ArrayRef<OperandBundleDef> Bundles,
4050 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4051 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4052 IndirectDests, Args, Bundles, NameStr, InsertAtEnd);
4055 /// Create a clone of \p CBI with a different set of operand bundles and
4056 /// insert it before \p InsertPt.
4058 /// The returned callbr instruction is identical to \p CBI in every way
4059 /// except that the operand bundles for the new instruction are set to the
4060 /// operand bundles in \p Bundles.
4061 static CallBrInst *Create(CallBrInst *CBI,
4062 ArrayRef<OperandBundleDef> Bundles,
4063 Instruction *InsertPt = nullptr);
4065 /// Return the number of callbr indirect dest labels.
4067 unsigned getNumIndirectDests() const { return NumIndirectDests; }
4069 /// getIndirectDestLabel - Return the i-th indirect dest label.
4071 Value *getIndirectDestLabel(unsigned i) const {
4072 assert(i < getNumIndirectDests() && "Out of bounds!");
4073 return getOperand(i + getNumArgOperands() + getNumTotalBundleOperands() +
4077 Value *getIndirectDestLabelUse(unsigned i) const {
4078 assert(i < getNumIndirectDests() && "Out of bounds!");
4079 return getOperandUse(i + getNumArgOperands() + getNumTotalBundleOperands() +
4083 // Return the destination basic blocks...
4084 BasicBlock *getDefaultDest() const {
4085 return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1));
4087 BasicBlock *getIndirectDest(unsigned i) const {
4088 return cast_or_null<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i));
4090 SmallVector<BasicBlock *, 16> getIndirectDests() const {
4091 SmallVector<BasicBlock *, 16> IndirectDests;
4092 for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i)
4093 IndirectDests.push_back(getIndirectDest(i));
4094 return IndirectDests;
4096 void setDefaultDest(BasicBlock *B) {
4097 *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B);
4099 void setIndirectDest(unsigned i, BasicBlock *B) {
4100 updateArgBlockAddresses(i, B);
4101 *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B);
4104 BasicBlock *getSuccessor(unsigned i) const {
4105 assert(i < getNumSuccessors() + 1 &&
4106 "Successor # out of range for callbr!");
4107 return i == 0 ? getDefaultDest() : getIndirectDest(i - 1);
4110 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
4111 assert(i < getNumIndirectDests() + 1 &&
4112 "Successor # out of range for callbr!");
4113 return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc);
4116 unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; }
4118 // Methods for support type inquiry through isa, cast, and dyn_cast:
4119 static bool classof(const Instruction *I) {
4120 return (I->getOpcode() == Instruction::CallBr);
4122 static bool classof(const Value *V) {
4123 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4126 private:
4128 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4129 // method so that subclasses cannot accidentally use it.
4130 void setInstructionSubclassData(unsigned short D) {
4131 Instruction::setInstructionSubclassData(D);
4135 CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4136 ArrayRef<BasicBlock *> IndirectDests,
4137 ArrayRef<Value *> Args,
4138 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4139 const Twine &NameStr, Instruction *InsertBefore)
4140 : CallBase(Ty->getReturnType(), Instruction::CallBr,
4141 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4142 InsertBefore) {
4143 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4146 CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4147 ArrayRef<BasicBlock *> IndirectDests,
4148 ArrayRef<Value *> Args,
4149 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4150 const Twine &NameStr, BasicBlock *InsertAtEnd)
4151 : CallBase(
4152 cast<FunctionType>(
4153 cast<PointerType>(Func->getType())->getElementType())
4154 ->getReturnType(),
4155 Instruction::CallBr,
4156 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4157 InsertAtEnd) {
4158 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4161 //===----------------------------------------------------------------------===//
4162 // ResumeInst Class
4163 //===----------------------------------------------------------------------===//
4165 //===---------------------------------------------------------------------------
4166 /// Resume the propagation of an exception.
4168 class ResumeInst : public Instruction {
4169 ResumeInst(const ResumeInst &RI);
4171 explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr);
4172 ResumeInst(Value *Exn, BasicBlock *InsertAtEnd);
4174 protected:
4175 // Note: Instruction needs to be a friend here to call cloneImpl.
4176 friend class Instruction;
4178 ResumeInst *cloneImpl() const;
4180 public:
4181 static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) {
4182 return new(1) ResumeInst(Exn, InsertBefore);
4185 static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) {
4186 return new(1) ResumeInst(Exn, InsertAtEnd);
4189 /// Provide fast operand accessors
4190 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
4192 /// Convenience accessor.
4193 Value *getValue() const { return Op<0>(); }
4195 unsigned getNumSuccessors() const { return 0; }
4197 // Methods for support type inquiry through isa, cast, and dyn_cast:
4198 static bool classof(const Instruction *I) {
4199 return I->getOpcode() == Instruction::Resume;
4201 static bool classof(const Value *V) {
4202 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4205 private:
4206 BasicBlock *getSuccessor(unsigned idx) const {
4207 llvm_unreachable("ResumeInst has no successors!");
4210 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
4211 llvm_unreachable("ResumeInst has no successors!");
4215 template <>
4216 struct OperandTraits<ResumeInst> :
4217 public FixedNumOperandTraits<ResumeInst, 1> {
4220 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)
4222 //===----------------------------------------------------------------------===//
4223 // CatchSwitchInst Class
4224 //===----------------------------------------------------------------------===//
4225 class CatchSwitchInst : public Instruction {
4226 /// The number of operands actually allocated. NumOperands is
4227 /// the number actually in use.
4228 unsigned ReservedSpace;
4230 // Operand[0] = Outer scope
4231 // Operand[1] = Unwind block destination
4232 // Operand[n] = BasicBlock to go to on match
4233 CatchSwitchInst(const CatchSwitchInst &CSI);
4235 /// Create a new switch instruction, specifying a
4236 /// default destination. The number of additional handlers can be specified
4237 /// here to make memory allocation more efficient.
4238 /// This constructor can also autoinsert before another instruction.
4239 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4240 unsigned NumHandlers, const Twine &NameStr,
4241 Instruction *InsertBefore);
4243 /// Create a new switch instruction, specifying a
4244 /// default destination. The number of additional handlers can be specified
4245 /// here to make memory allocation more efficient.
4246 /// This constructor also autoinserts at the end of the specified BasicBlock.
4247 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4248 unsigned NumHandlers, const Twine &NameStr,
4249 BasicBlock *InsertAtEnd);
4251 // allocate space for exactly zero operands
4252 void *operator new(size_t s) { return User::operator new(s); }
4254 void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved);
4255 void growOperands(unsigned Size);
4257 protected:
4258 // Note: Instruction needs to be a friend here to call cloneImpl.
4259 friend class Instruction;
4261 CatchSwitchInst *cloneImpl() const;
4263 public:
4264 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4265 unsigned NumHandlers,
4266 const Twine &NameStr = "",
4267 Instruction *InsertBefore = nullptr) {
4268 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4269 InsertBefore);
4272 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4273 unsigned NumHandlers, const Twine &NameStr,
4274 BasicBlock *InsertAtEnd) {
4275 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4276 InsertAtEnd);
4279 /// Provide fast operand accessors
4280 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
4282 // Accessor Methods for CatchSwitch stmt
4283 Value *getParentPad() const { return getOperand(0); }
4284 void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); }
4286 // Accessor Methods for CatchSwitch stmt
4287 bool hasUnwindDest() const { return getSubclassDataFromInstruction() & 1; }
4288 bool unwindsToCaller() const { return !hasUnwindDest(); }
4289 BasicBlock *getUnwindDest() const {
4290 if (hasUnwindDest())
4291 return cast<BasicBlock>(getOperand(1));
4292 return nullptr;
4294 void setUnwindDest(BasicBlock *UnwindDest) {
4295 assert(UnwindDest);
4296 assert(hasUnwindDest());
4297 setOperand(1, UnwindDest);
4300 /// return the number of 'handlers' in this catchswitch
4301 /// instruction, except the default handler
4302 unsigned getNumHandlers() const {
4303 if (hasUnwindDest())
4304 return getNumOperands() - 2;
4305 return getNumOperands() - 1;
4308 private:
4309 static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); }
4310 static const BasicBlock *handler_helper(const Value *V) {
4311 return cast<BasicBlock>(V);
4314 public:
4315 using DerefFnTy = BasicBlock *(*)(Value *);
4316 using handler_iterator = mapped_iterator<op_iterator, DerefFnTy>;
4317 using handler_range = iterator_range<handler_iterator>;
4318 using ConstDerefFnTy = const BasicBlock *(*)(const Value *);
4319 using const_handler_iterator =
4320 mapped_iterator<const_op_iterator, ConstDerefFnTy>;
4321 using const_handler_range = iterator_range<const_handler_iterator>;
4323 /// Returns an iterator that points to the first handler in CatchSwitchInst.
4324 handler_iterator handler_begin() {
4325 op_iterator It = op_begin() + 1;
4326 if (hasUnwindDest())
4327 ++It;
4328 return handler_iterator(It, DerefFnTy(handler_helper));
4331 /// Returns an iterator that points to the first handler in the
4332 /// CatchSwitchInst.
4333 const_handler_iterator handler_begin() const {
4334 const_op_iterator It = op_begin() + 1;
4335 if (hasUnwindDest())
4336 ++It;
4337 return const_handler_iterator(It, ConstDerefFnTy(handler_helper));
4340 /// Returns a read-only iterator that points one past the last
4341 /// handler in the CatchSwitchInst.
4342 handler_iterator handler_end() {
4343 return handler_iterator(op_end(), DerefFnTy(handler_helper));
4346 /// Returns an iterator that points one past the last handler in the
4347 /// CatchSwitchInst.
4348 const_handler_iterator handler_end() const {
4349 return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper));
4352 /// iteration adapter for range-for loops.
4353 handler_range handlers() {
4354 return make_range(handler_begin(), handler_end());
4357 /// iteration adapter for range-for loops.
4358 const_handler_range handlers() const {
4359 return make_range(handler_begin(), handler_end());
4362 /// Add an entry to the switch instruction...
4363 /// Note:
4364 /// This action invalidates handler_end(). Old handler_end() iterator will
4365 /// point to the added handler.
4366 void addHandler(BasicBlock *Dest);
4368 void removeHandler(handler_iterator HI);
4370 unsigned getNumSuccessors() const { return getNumOperands() - 1; }
4371 BasicBlock *getSuccessor(unsigned Idx) const {
4372 assert(Idx < getNumSuccessors() &&
4373 "Successor # out of range for catchswitch!");
4374 return cast<BasicBlock>(getOperand(Idx + 1));
4376 void setSuccessor(unsigned Idx, BasicBlock *NewSucc) {
4377 assert(Idx < getNumSuccessors() &&
4378 "Successor # out of range for catchswitch!");
4379 setOperand(Idx + 1, NewSucc);
4382 // Methods for support type inquiry through isa, cast, and dyn_cast:
4383 static bool classof(const Instruction *I) {
4384 return I->getOpcode() == Instruction::CatchSwitch;
4386 static bool classof(const Value *V) {
4387 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4391 template <>
4392 struct OperandTraits<CatchSwitchInst> : public HungoffOperandTraits<2> {};
4394 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value)
4396 //===----------------------------------------------------------------------===//
4397 // CleanupPadInst Class
4398 //===----------------------------------------------------------------------===//
4399 class CleanupPadInst : public FuncletPadInst {
4400 private:
4401 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4402 unsigned Values, const Twine &NameStr,
4403 Instruction *InsertBefore)
4404 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4405 NameStr, InsertBefore) {}
4406 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4407 unsigned Values, const Twine &NameStr,
4408 BasicBlock *InsertAtEnd)
4409 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4410 NameStr, InsertAtEnd) {}
4412 public:
4413 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = None,
4414 const Twine &NameStr = "",
4415 Instruction *InsertBefore = nullptr) {
4416 unsigned Values = 1 + Args.size();
4417 return new (Values)
4418 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore);
4421 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args,
4422 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4423 unsigned Values = 1 + Args.size();
4424 return new (Values)
4425 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd);
4428 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4429 static bool classof(const Instruction *I) {
4430 return I->getOpcode() == Instruction::CleanupPad;
4432 static bool classof(const Value *V) {
4433 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4437 //===----------------------------------------------------------------------===//
4438 // CatchPadInst Class
4439 //===----------------------------------------------------------------------===//
4440 class CatchPadInst : public FuncletPadInst {
4441 private:
4442 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4443 unsigned Values, const Twine &NameStr,
4444 Instruction *InsertBefore)
4445 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4446 NameStr, InsertBefore) {}
4447 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4448 unsigned Values, const Twine &NameStr,
4449 BasicBlock *InsertAtEnd)
4450 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4451 NameStr, InsertAtEnd) {}
4453 public:
4454 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4455 const Twine &NameStr = "",
4456 Instruction *InsertBefore = nullptr) {
4457 unsigned Values = 1 + Args.size();
4458 return new (Values)
4459 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore);
4462 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4463 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4464 unsigned Values = 1 + Args.size();
4465 return new (Values)
4466 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd);
4469 /// Convenience accessors
4470 CatchSwitchInst *getCatchSwitch() const {
4471 return cast<CatchSwitchInst>(Op<-1>());
4473 void setCatchSwitch(Value *CatchSwitch) {
4474 assert(CatchSwitch);
4475 Op<-1>() = CatchSwitch;
4478 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4479 static bool classof(const Instruction *I) {
4480 return I->getOpcode() == Instruction::CatchPad;
4482 static bool classof(const Value *V) {
4483 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4487 //===----------------------------------------------------------------------===//
4488 // CatchReturnInst Class
4489 //===----------------------------------------------------------------------===//
4491 class CatchReturnInst : public Instruction {
4492 CatchReturnInst(const CatchReturnInst &RI);
4493 CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore);
4494 CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd);
4496 void init(Value *CatchPad, BasicBlock *BB);
4498 protected:
4499 // Note: Instruction needs to be a friend here to call cloneImpl.
4500 friend class Instruction;
4502 CatchReturnInst *cloneImpl() const;
4504 public:
4505 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4506 Instruction *InsertBefore = nullptr) {
4507 assert(CatchPad);
4508 assert(BB);
4509 return new (2) CatchReturnInst(CatchPad, BB, InsertBefore);
4512 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4513 BasicBlock *InsertAtEnd) {
4514 assert(CatchPad);
4515 assert(BB);
4516 return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd);
4519 /// Provide fast operand accessors
4520 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
4522 /// Convenience accessors.
4523 CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); }
4524 void setCatchPad(CatchPadInst *CatchPad) {
4525 assert(CatchPad);
4526 Op<0>() = CatchPad;
4529 BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); }
4530 void setSuccessor(BasicBlock *NewSucc) {
4531 assert(NewSucc);
4532 Op<1>() = NewSucc;
4534 unsigned getNumSuccessors() const { return 1; }
4536 /// Get the parentPad of this catchret's catchpad's catchswitch.
4537 /// The successor block is implicitly a member of this funclet.
4538 Value *getCatchSwitchParentPad() const {
4539 return getCatchPad()->getCatchSwitch()->getParentPad();
4542 // Methods for support type inquiry through isa, cast, and dyn_cast:
4543 static bool classof(const Instruction *I) {
4544 return (I->getOpcode() == Instruction::CatchRet);
4546 static bool classof(const Value *V) {
4547 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4550 private:
4551 BasicBlock *getSuccessor(unsigned Idx) const {
4552 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!");
4553 return getSuccessor();
4556 void setSuccessor(unsigned Idx, BasicBlock *B) {
4557 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!");
4558 setSuccessor(B);
4562 template <>
4563 struct OperandTraits<CatchReturnInst>
4564 : public FixedNumOperandTraits<CatchReturnInst, 2> {};
4566 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value)
4568 //===----------------------------------------------------------------------===//
4569 // CleanupReturnInst Class
4570 //===----------------------------------------------------------------------===//
4572 class CleanupReturnInst : public Instruction {
4573 private:
4574 CleanupReturnInst(const CleanupReturnInst &RI);
4575 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4576 Instruction *InsertBefore = nullptr);
4577 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4578 BasicBlock *InsertAtEnd);
4580 void init(Value *CleanupPad, BasicBlock *UnwindBB);
4582 protected:
4583 // Note: Instruction needs to be a friend here to call cloneImpl.
4584 friend class Instruction;
4586 CleanupReturnInst *cloneImpl() const;
4588 public:
4589 static CleanupReturnInst *Create(Value *CleanupPad,
4590 BasicBlock *UnwindBB = nullptr,
4591 Instruction *InsertBefore = nullptr) {
4592 assert(CleanupPad);
4593 unsigned Values = 1;
4594 if (UnwindBB)
4595 ++Values;
4596 return new (Values)
4597 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore);
4600 static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB,
4601 BasicBlock *InsertAtEnd) {
4602 assert(CleanupPad);
4603 unsigned Values = 1;
4604 if (UnwindBB)
4605 ++Values;
4606 return new (Values)
4607 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd);
4610 /// Provide fast operand accessors
4611 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
4613 bool hasUnwindDest() const { return getSubclassDataFromInstruction() & 1; }
4614 bool unwindsToCaller() const { return !hasUnwindDest(); }
4616 /// Convenience accessor.
4617 CleanupPadInst *getCleanupPad() const {
4618 return cast<CleanupPadInst>(Op<0>());
4620 void setCleanupPad(CleanupPadInst *CleanupPad) {
4621 assert(CleanupPad);
4622 Op<0>() = CleanupPad;
4625 unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; }
4627 BasicBlock *getUnwindDest() const {
4628 return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr;
4630 void setUnwindDest(BasicBlock *NewDest) {
4631 assert(NewDest);
4632 assert(hasUnwindDest());
4633 Op<1>() = NewDest;
4636 // Methods for support type inquiry through isa, cast, and dyn_cast:
4637 static bool classof(const Instruction *I) {
4638 return (I->getOpcode() == Instruction::CleanupRet);
4640 static bool classof(const Value *V) {
4641 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4644 private:
4645 BasicBlock *getSuccessor(unsigned Idx) const {
4646 assert(Idx == 0);
4647 return getUnwindDest();
4650 void setSuccessor(unsigned Idx, BasicBlock *B) {
4651 assert(Idx == 0);
4652 setUnwindDest(B);
4655 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4656 // method so that subclasses cannot accidentally use it.
4657 void setInstructionSubclassData(unsigned short D) {
4658 Instruction::setInstructionSubclassData(D);
4662 template <>
4663 struct OperandTraits<CleanupReturnInst>
4664 : public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {};
4666 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value)
4668 //===----------------------------------------------------------------------===//
4669 // UnreachableInst Class
4670 //===----------------------------------------------------------------------===//
4672 //===---------------------------------------------------------------------------
4673 /// This function has undefined behavior. In particular, the
4674 /// presence of this instruction indicates some higher level knowledge that the
4675 /// end of the block cannot be reached.
4677 class UnreachableInst : public Instruction {
4678 protected:
4679 // Note: Instruction needs to be a friend here to call cloneImpl.
4680 friend class Instruction;
4682 UnreachableInst *cloneImpl() const;
4684 public:
4685 explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr);
4686 explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd);
4688 // allocate space for exactly zero operands
4689 void *operator new(size_t s) {
4690 return User::operator new(s, 0);
4693 unsigned getNumSuccessors() const { return 0; }
4695 // Methods for support type inquiry through isa, cast, and dyn_cast:
4696 static bool classof(const Instruction *I) {
4697 return I->getOpcode() == Instruction::Unreachable;
4699 static bool classof(const Value *V) {
4700 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4703 private:
4704 BasicBlock *getSuccessor(unsigned idx) const {
4705 llvm_unreachable("UnreachableInst has no successors!");
4708 void setSuccessor(unsigned idx, BasicBlock *B) {
4709 llvm_unreachable("UnreachableInst has no successors!");
4713 //===----------------------------------------------------------------------===//
4714 // TruncInst Class
4715 //===----------------------------------------------------------------------===//
4717 /// This class represents a truncation of integer types.
4718 class TruncInst : public CastInst {
4719 protected:
4720 // Note: Instruction needs to be a friend here to call cloneImpl.
4721 friend class Instruction;
4723 /// Clone an identical TruncInst
4724 TruncInst *cloneImpl() const;
4726 public:
4727 /// Constructor with insert-before-instruction semantics
4728 TruncInst(
4729 Value *S, ///< The value to be truncated
4730 Type *Ty, ///< The (smaller) type to truncate to
4731 const Twine &NameStr = "", ///< A name for the new instruction
4732 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4735 /// Constructor with insert-at-end-of-block semantics
4736 TruncInst(
4737 Value *S, ///< The value to be truncated
4738 Type *Ty, ///< The (smaller) type to truncate to
4739 const Twine &NameStr, ///< A name for the new instruction
4740 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4743 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4744 static bool classof(const Instruction *I) {
4745 return I->getOpcode() == Trunc;
4747 static bool classof(const Value *V) {
4748 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4752 //===----------------------------------------------------------------------===//
4753 // ZExtInst Class
4754 //===----------------------------------------------------------------------===//
4756 /// This class represents zero extension of integer types.
4757 class ZExtInst : public CastInst {
4758 protected:
4759 // Note: Instruction needs to be a friend here to call cloneImpl.
4760 friend class Instruction;
4762 /// Clone an identical ZExtInst
4763 ZExtInst *cloneImpl() const;
4765 public:
4766 /// Constructor with insert-before-instruction semantics
4767 ZExtInst(
4768 Value *S, ///< The value to be zero extended
4769 Type *Ty, ///< The type to zero extend to
4770 const Twine &NameStr = "", ///< A name for the new instruction
4771 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4774 /// Constructor with insert-at-end semantics.
4775 ZExtInst(
4776 Value *S, ///< The value to be zero extended
4777 Type *Ty, ///< The type to zero extend to
4778 const Twine &NameStr, ///< A name for the new instruction
4779 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4782 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4783 static bool classof(const Instruction *I) {
4784 return I->getOpcode() == ZExt;
4786 static bool classof(const Value *V) {
4787 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4791 //===----------------------------------------------------------------------===//
4792 // SExtInst Class
4793 //===----------------------------------------------------------------------===//
4795 /// This class represents a sign extension of integer types.
4796 class SExtInst : public CastInst {
4797 protected:
4798 // Note: Instruction needs to be a friend here to call cloneImpl.
4799 friend class Instruction;
4801 /// Clone an identical SExtInst
4802 SExtInst *cloneImpl() const;
4804 public:
4805 /// Constructor with insert-before-instruction semantics
4806 SExtInst(
4807 Value *S, ///< The value to be sign extended
4808 Type *Ty, ///< The type to sign extend to
4809 const Twine &NameStr = "", ///< A name for the new instruction
4810 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4813 /// Constructor with insert-at-end-of-block semantics
4814 SExtInst(
4815 Value *S, ///< The value to be sign extended
4816 Type *Ty, ///< The type to sign extend to
4817 const Twine &NameStr, ///< A name for the new instruction
4818 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4821 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4822 static bool classof(const Instruction *I) {
4823 return I->getOpcode() == SExt;
4825 static bool classof(const Value *V) {
4826 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4830 //===----------------------------------------------------------------------===//
4831 // FPTruncInst Class
4832 //===----------------------------------------------------------------------===//
4834 /// This class represents a truncation of floating point types.
4835 class FPTruncInst : public CastInst {
4836 protected:
4837 // Note: Instruction needs to be a friend here to call cloneImpl.
4838 friend class Instruction;
4840 /// Clone an identical FPTruncInst
4841 FPTruncInst *cloneImpl() const;
4843 public:
4844 /// Constructor with insert-before-instruction semantics
4845 FPTruncInst(
4846 Value *S, ///< The value to be truncated
4847 Type *Ty, ///< The type to truncate to
4848 const Twine &NameStr = "", ///< A name for the new instruction
4849 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4852 /// Constructor with insert-before-instruction semantics
4853 FPTruncInst(
4854 Value *S, ///< The value to be truncated
4855 Type *Ty, ///< The type to truncate to
4856 const Twine &NameStr, ///< A name for the new instruction
4857 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4860 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4861 static bool classof(const Instruction *I) {
4862 return I->getOpcode() == FPTrunc;
4864 static bool classof(const Value *V) {
4865 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4869 //===----------------------------------------------------------------------===//
4870 // FPExtInst Class
4871 //===----------------------------------------------------------------------===//
4873 /// This class represents an extension of floating point types.
4874 class FPExtInst : public CastInst {
4875 protected:
4876 // Note: Instruction needs to be a friend here to call cloneImpl.
4877 friend class Instruction;
4879 /// Clone an identical FPExtInst
4880 FPExtInst *cloneImpl() const;
4882 public:
4883 /// Constructor with insert-before-instruction semantics
4884 FPExtInst(
4885 Value *S, ///< The value to be extended
4886 Type *Ty, ///< The type to extend to
4887 const Twine &NameStr = "", ///< A name for the new instruction
4888 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4891 /// Constructor with insert-at-end-of-block semantics
4892 FPExtInst(
4893 Value *S, ///< The value to be extended
4894 Type *Ty, ///< The type to extend to
4895 const Twine &NameStr, ///< A name for the new instruction
4896 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4899 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4900 static bool classof(const Instruction *I) {
4901 return I->getOpcode() == FPExt;
4903 static bool classof(const Value *V) {
4904 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4908 //===----------------------------------------------------------------------===//
4909 // UIToFPInst Class
4910 //===----------------------------------------------------------------------===//
4912 /// This class represents a cast unsigned integer to floating point.
4913 class UIToFPInst : public CastInst {
4914 protected:
4915 // Note: Instruction needs to be a friend here to call cloneImpl.
4916 friend class Instruction;
4918 /// Clone an identical UIToFPInst
4919 UIToFPInst *cloneImpl() const;
4921 public:
4922 /// Constructor with insert-before-instruction semantics
4923 UIToFPInst(
4924 Value *S, ///< The value to be converted
4925 Type *Ty, ///< The type to convert to
4926 const Twine &NameStr = "", ///< A name for the new instruction
4927 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4930 /// Constructor with insert-at-end-of-block semantics
4931 UIToFPInst(
4932 Value *S, ///< The value to be converted
4933 Type *Ty, ///< The type to convert to
4934 const Twine &NameStr, ///< A name for the new instruction
4935 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4938 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4939 static bool classof(const Instruction *I) {
4940 return I->getOpcode() == UIToFP;
4942 static bool classof(const Value *V) {
4943 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4947 //===----------------------------------------------------------------------===//
4948 // SIToFPInst Class
4949 //===----------------------------------------------------------------------===//
4951 /// This class represents a cast from signed integer to floating point.
4952 class SIToFPInst : public CastInst {
4953 protected:
4954 // Note: Instruction needs to be a friend here to call cloneImpl.
4955 friend class Instruction;
4957 /// Clone an identical SIToFPInst
4958 SIToFPInst *cloneImpl() const;
4960 public:
4961 /// Constructor with insert-before-instruction semantics
4962 SIToFPInst(
4963 Value *S, ///< The value to be converted
4964 Type *Ty, ///< The type to convert to
4965 const Twine &NameStr = "", ///< A name for the new instruction
4966 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4969 /// Constructor with insert-at-end-of-block semantics
4970 SIToFPInst(
4971 Value *S, ///< The value to be converted
4972 Type *Ty, ///< The type to convert to
4973 const Twine &NameStr, ///< A name for the new instruction
4974 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4977 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4978 static bool classof(const Instruction *I) {
4979 return I->getOpcode() == SIToFP;
4981 static bool classof(const Value *V) {
4982 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4986 //===----------------------------------------------------------------------===//
4987 // FPToUIInst Class
4988 //===----------------------------------------------------------------------===//
4990 /// This class represents a cast from floating point to unsigned integer
4991 class FPToUIInst : public CastInst {
4992 protected:
4993 // Note: Instruction needs to be a friend here to call cloneImpl.
4994 friend class Instruction;
4996 /// Clone an identical FPToUIInst
4997 FPToUIInst *cloneImpl() const;
4999 public:
5000 /// Constructor with insert-before-instruction semantics
5001 FPToUIInst(
5002 Value *S, ///< The value to be converted
5003 Type *Ty, ///< The type to convert to
5004 const Twine &NameStr = "", ///< A name for the new instruction
5005 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5008 /// Constructor with insert-at-end-of-block semantics
5009 FPToUIInst(
5010 Value *S, ///< The value to be converted
5011 Type *Ty, ///< The type to convert to
5012 const Twine &NameStr, ///< A name for the new instruction
5013 BasicBlock *InsertAtEnd ///< Where to insert the new instruction
5016 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5017 static bool classof(const Instruction *I) {
5018 return I->getOpcode() == FPToUI;
5020 static bool classof(const Value *V) {
5021 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5025 //===----------------------------------------------------------------------===//
5026 // FPToSIInst Class
5027 //===----------------------------------------------------------------------===//
5029 /// This class represents a cast from floating point to signed integer.
5030 class FPToSIInst : public CastInst {
5031 protected:
5032 // Note: Instruction needs to be a friend here to call cloneImpl.
5033 friend class Instruction;
5035 /// Clone an identical FPToSIInst
5036 FPToSIInst *cloneImpl() const;
5038 public:
5039 /// Constructor with insert-before-instruction semantics
5040 FPToSIInst(
5041 Value *S, ///< The value to be converted
5042 Type *Ty, ///< The type to convert to
5043 const Twine &NameStr = "", ///< A name for the new instruction
5044 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5047 /// Constructor with insert-at-end-of-block semantics
5048 FPToSIInst(
5049 Value *S, ///< The value to be converted
5050 Type *Ty, ///< The type to convert to
5051 const Twine &NameStr, ///< A name for the new instruction
5052 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5055 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5056 static bool classof(const Instruction *I) {
5057 return I->getOpcode() == FPToSI;
5059 static bool classof(const Value *V) {
5060 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5064 //===----------------------------------------------------------------------===//
5065 // IntToPtrInst Class
5066 //===----------------------------------------------------------------------===//
5068 /// This class represents a cast from an integer to a pointer.
5069 class IntToPtrInst : public CastInst {
5070 public:
5071 // Note: Instruction needs to be a friend here to call cloneImpl.
5072 friend class Instruction;
5074 /// Constructor with insert-before-instruction semantics
5075 IntToPtrInst(
5076 Value *S, ///< The value to be converted
5077 Type *Ty, ///< The type to convert to
5078 const Twine &NameStr = "", ///< A name for the new instruction
5079 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5082 /// Constructor with insert-at-end-of-block semantics
5083 IntToPtrInst(
5084 Value *S, ///< The value to be converted
5085 Type *Ty, ///< The type to convert to
5086 const Twine &NameStr, ///< A name for the new instruction
5087 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5090 /// Clone an identical IntToPtrInst.
5091 IntToPtrInst *cloneImpl() const;
5093 /// Returns the address space of this instruction's pointer type.
5094 unsigned getAddressSpace() const {
5095 return getType()->getPointerAddressSpace();
5098 // Methods for support type inquiry through isa, cast, and dyn_cast:
5099 static bool classof(const Instruction *I) {
5100 return I->getOpcode() == IntToPtr;
5102 static bool classof(const Value *V) {
5103 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5107 //===----------------------------------------------------------------------===//
5108 // PtrToIntInst Class
5109 //===----------------------------------------------------------------------===//
5111 /// This class represents a cast from a pointer to an integer.
5112 class PtrToIntInst : public CastInst {
5113 protected:
5114 // Note: Instruction needs to be a friend here to call cloneImpl.
5115 friend class Instruction;
5117 /// Clone an identical PtrToIntInst.
5118 PtrToIntInst *cloneImpl() const;
5120 public:
5121 /// Constructor with insert-before-instruction semantics
5122 PtrToIntInst(
5123 Value *S, ///< The value to be converted
5124 Type *Ty, ///< The type to convert to
5125 const Twine &NameStr = "", ///< A name for the new instruction
5126 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5129 /// Constructor with insert-at-end-of-block semantics
5130 PtrToIntInst(
5131 Value *S, ///< The value to be converted
5132 Type *Ty, ///< The type to convert to
5133 const Twine &NameStr, ///< A name for the new instruction
5134 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5137 /// Gets the pointer operand.
5138 Value *getPointerOperand() { return getOperand(0); }
5139 /// Gets the pointer operand.
5140 const Value *getPointerOperand() const { return getOperand(0); }
5141 /// Gets the operand index of the pointer operand.
5142 static unsigned getPointerOperandIndex() { return 0U; }
5144 /// Returns the address space of the pointer operand.
5145 unsigned getPointerAddressSpace() const {
5146 return getPointerOperand()->getType()->getPointerAddressSpace();
5149 // Methods for support type inquiry through isa, cast, and dyn_cast:
5150 static bool classof(const Instruction *I) {
5151 return I->getOpcode() == PtrToInt;
5153 static bool classof(const Value *V) {
5154 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5158 //===----------------------------------------------------------------------===//
5159 // BitCastInst Class
5160 //===----------------------------------------------------------------------===//
5162 /// This class represents a no-op cast from one type to another.
5163 class BitCastInst : public CastInst {
5164 protected:
5165 // Note: Instruction needs to be a friend here to call cloneImpl.
5166 friend class Instruction;
5168 /// Clone an identical BitCastInst.
5169 BitCastInst *cloneImpl() const;
5171 public:
5172 /// Constructor with insert-before-instruction semantics
5173 BitCastInst(
5174 Value *S, ///< The value to be casted
5175 Type *Ty, ///< The type to casted to
5176 const Twine &NameStr = "", ///< A name for the new instruction
5177 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5180 /// Constructor with insert-at-end-of-block semantics
5181 BitCastInst(
5182 Value *S, ///< The value to be casted
5183 Type *Ty, ///< The type to casted to
5184 const Twine &NameStr, ///< A name for the new instruction
5185 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5188 // Methods for support type inquiry through isa, cast, and dyn_cast:
5189 static bool classof(const Instruction *I) {
5190 return I->getOpcode() == BitCast;
5192 static bool classof(const Value *V) {
5193 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5197 //===----------------------------------------------------------------------===//
5198 // AddrSpaceCastInst Class
5199 //===----------------------------------------------------------------------===//
5201 /// This class represents a conversion between pointers from one address space
5202 /// to another.
5203 class AddrSpaceCastInst : public CastInst {
5204 protected:
5205 // Note: Instruction needs to be a friend here to call cloneImpl.
5206 friend class Instruction;
5208 /// Clone an identical AddrSpaceCastInst.
5209 AddrSpaceCastInst *cloneImpl() const;
5211 public:
5212 /// Constructor with insert-before-instruction semantics
5213 AddrSpaceCastInst(
5214 Value *S, ///< The value to be casted
5215 Type *Ty, ///< The type to casted to
5216 const Twine &NameStr = "", ///< A name for the new instruction
5217 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5220 /// Constructor with insert-at-end-of-block semantics
5221 AddrSpaceCastInst(
5222 Value *S, ///< The value to be casted
5223 Type *Ty, ///< The type to casted to
5224 const Twine &NameStr, ///< A name for the new instruction
5225 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5228 // Methods for support type inquiry through isa, cast, and dyn_cast:
5229 static bool classof(const Instruction *I) {
5230 return I->getOpcode() == AddrSpaceCast;
5232 static bool classof(const Value *V) {
5233 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5236 /// Gets the pointer operand.
5237 Value *getPointerOperand() {
5238 return getOperand(0);
5241 /// Gets the pointer operand.
5242 const Value *getPointerOperand() const {
5243 return getOperand(0);
5246 /// Gets the operand index of the pointer operand.
5247 static unsigned getPointerOperandIndex() {
5248 return 0U;
5251 /// Returns the address space of the pointer operand.
5252 unsigned getSrcAddressSpace() const {
5253 return getPointerOperand()->getType()->getPointerAddressSpace();
5256 /// Returns the address space of the result.
5257 unsigned getDestAddressSpace() const {
5258 return getType()->getPointerAddressSpace();
5262 /// A helper function that returns the pointer operand of a load or store
5263 /// instruction. Returns nullptr if not load or store.
5264 inline const Value *getLoadStorePointerOperand(const Value *V) {
5265 if (auto *Load = dyn_cast<LoadInst>(V))
5266 return Load->getPointerOperand();
5267 if (auto *Store = dyn_cast<StoreInst>(V))
5268 return Store->getPointerOperand();
5269 return nullptr;
5271 inline Value *getLoadStorePointerOperand(Value *V) {
5272 return const_cast<Value *>(
5273 getLoadStorePointerOperand(static_cast<const Value *>(V)));
5276 /// A helper function that returns the pointer operand of a load, store
5277 /// or GEP instruction. Returns nullptr if not load, store, or GEP.
5278 inline const Value *getPointerOperand(const Value *V) {
5279 if (auto *Ptr = getLoadStorePointerOperand(V))
5280 return Ptr;
5281 if (auto *Gep = dyn_cast<GetElementPtrInst>(V))
5282 return Gep->getPointerOperand();
5283 return nullptr;
5285 inline Value *getPointerOperand(Value *V) {
5286 return const_cast<Value *>(getPointerOperand(static_cast<const Value *>(V)));
5289 /// A helper function that returns the alignment of load or store instruction.
5290 inline unsigned getLoadStoreAlignment(Value *I) {
5291 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
5292 "Expected Load or Store instruction");
5293 if (auto *LI = dyn_cast<LoadInst>(I))
5294 return LI->getAlignment();
5295 return cast<StoreInst>(I)->getAlignment();
5298 /// A helper function that returns the address space of the pointer operand of
5299 /// load or store instruction.
5300 inline unsigned getLoadStoreAddressSpace(Value *I) {
5301 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
5302 "Expected Load or Store instruction");
5303 if (auto *LI = dyn_cast<LoadInst>(I))
5304 return LI->getPointerAddressSpace();
5305 return cast<StoreInst>(I)->getPointerAddressSpace();
5308 } // end namespace llvm
5310 #endif // LLVM_IR_INSTRUCTIONS_H