[ARM] Rejig MVE load store tests. NFC
[llvm-core.git] / lib / CodeGen / AsmPrinter / AsmPrinter.cpp
blobcc85cb940e67a847c8b0d96059ebfb39b34b88e8
1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "WasmException.h"
18 #include "WinCFGuard.h"
19 #include "WinException.h"
20 #include "llvm/ADT/APFloat.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/BinaryFormat/COFF.h"
35 #include "llvm/BinaryFormat/Dwarf.h"
36 #include "llvm/BinaryFormat/ELF.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/GCMetadataPrinter.h"
39 #include "llvm/CodeGen/GCStrategy.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineConstantPool.h"
42 #include "llvm/CodeGen/MachineDominators.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBundle.h"
48 #include "llvm/CodeGen/MachineJumpTableInfo.h"
49 #include "llvm/CodeGen/MachineLoopInfo.h"
50 #include "llvm/CodeGen/MachineMemOperand.h"
51 #include "llvm/CodeGen/MachineModuleInfo.h"
52 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
55 #include "llvm/CodeGen/StackMaps.h"
56 #include "llvm/CodeGen/TargetFrameLowering.h"
57 #include "llvm/CodeGen/TargetInstrInfo.h"
58 #include "llvm/CodeGen/TargetLowering.h"
59 #include "llvm/CodeGen/TargetOpcodes.h"
60 #include "llvm/CodeGen/TargetRegisterInfo.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/Comdat.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfoMetadata.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/GlobalAlias.h"
70 #include "llvm/IR/GlobalIFunc.h"
71 #include "llvm/IR/GlobalIndirectSymbol.h"
72 #include "llvm/IR/GlobalObject.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/Instruction.h"
76 #include "llvm/IR/Mangler.h"
77 #include "llvm/IR/Metadata.h"
78 #include "llvm/IR/Module.h"
79 #include "llvm/IR/Operator.h"
80 #include "llvm/IR/RemarkStreamer.h"
81 #include "llvm/IR/Type.h"
82 #include "llvm/IR/Value.h"
83 #include "llvm/MC/MCAsmInfo.h"
84 #include "llvm/MC/MCCodePadder.h"
85 #include "llvm/MC/MCContext.h"
86 #include "llvm/MC/MCDirectives.h"
87 #include "llvm/MC/MCDwarf.h"
88 #include "llvm/MC/MCExpr.h"
89 #include "llvm/MC/MCInst.h"
90 #include "llvm/MC/MCSection.h"
91 #include "llvm/MC/MCSectionCOFF.h"
92 #include "llvm/MC/MCSectionELF.h"
93 #include "llvm/MC/MCSectionMachO.h"
94 #include "llvm/MC/MCStreamer.h"
95 #include "llvm/MC/MCSubtargetInfo.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/MC/MCSymbolELF.h"
98 #include "llvm/MC/MCTargetOptions.h"
99 #include "llvm/MC/MCValue.h"
100 #include "llvm/MC/SectionKind.h"
101 #include "llvm/Pass.h"
102 #include "llvm/Remarks/Remark.h"
103 #include "llvm/Remarks/RemarkFormat.h"
104 #include "llvm/Remarks/RemarkStringTable.h"
105 #include "llvm/Support/Casting.h"
106 #include "llvm/Support/CommandLine.h"
107 #include "llvm/Support/Compiler.h"
108 #include "llvm/Support/ErrorHandling.h"
109 #include "llvm/Support/Format.h"
110 #include "llvm/Support/MathExtras.h"
111 #include "llvm/Support/Path.h"
112 #include "llvm/Support/TargetRegistry.h"
113 #include "llvm/Support/Timer.h"
114 #include "llvm/Support/raw_ostream.h"
115 #include "llvm/Target/TargetLoweringObjectFile.h"
116 #include "llvm/Target/TargetMachine.h"
117 #include "llvm/Target/TargetOptions.h"
118 #include <algorithm>
119 #include <cassert>
120 #include <cinttypes>
121 #include <cstdint>
122 #include <iterator>
123 #include <limits>
124 #include <memory>
125 #include <string>
126 #include <utility>
127 #include <vector>
129 using namespace llvm;
131 #define DEBUG_TYPE "asm-printer"
133 static const char *const DWARFGroupName = "dwarf";
134 static const char *const DWARFGroupDescription = "DWARF Emission";
135 static const char *const DbgTimerName = "emit";
136 static const char *const DbgTimerDescription = "Debug Info Emission";
137 static const char *const EHTimerName = "write_exception";
138 static const char *const EHTimerDescription = "DWARF Exception Writer";
139 static const char *const CFGuardName = "Control Flow Guard";
140 static const char *const CFGuardDescription = "Control Flow Guard Tables";
141 static const char *const CodeViewLineTablesGroupName = "linetables";
142 static const char *const CodeViewLineTablesGroupDescription =
143 "CodeView Line Tables";
145 STATISTIC(EmittedInsts, "Number of machine instrs printed");
147 static cl::opt<bool> EnableRemarksSection(
148 "remarks-section",
149 cl::desc("Emit a section containing remark diagnostics metadata"),
150 cl::init(false));
152 char AsmPrinter::ID = 0;
154 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
156 static gcp_map_type &getGCMap(void *&P) {
157 if (!P)
158 P = new gcp_map_type();
159 return *(gcp_map_type*)P;
162 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
163 /// value in log2 form. This rounds up to the preferred alignment if possible
164 /// and legal.
165 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL,
166 unsigned InBits = 0) {
167 unsigned NumBits = 0;
168 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
169 NumBits = DL.getPreferredAlignmentLog(GVar);
171 // If InBits is specified, round it to it.
172 if (InBits > NumBits)
173 NumBits = InBits;
175 // If the GV has a specified alignment, take it into account.
176 if (GV->getAlignment() == 0)
177 return NumBits;
179 unsigned GVAlign = Log2_32(GV->getAlignment());
181 // If the GVAlign is larger than NumBits, or if we are required to obey
182 // NumBits because the GV has an assigned section, obey it.
183 if (GVAlign > NumBits || GV->hasSection())
184 NumBits = GVAlign;
185 return NumBits;
188 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
189 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
190 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
191 VerboseAsm = OutStreamer->isVerboseAsm();
194 AsmPrinter::~AsmPrinter() {
195 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
197 if (GCMetadataPrinters) {
198 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
200 delete &GCMap;
201 GCMetadataPrinters = nullptr;
205 bool AsmPrinter::isPositionIndependent() const {
206 return TM.isPositionIndependent();
209 /// getFunctionNumber - Return a unique ID for the current function.
210 unsigned AsmPrinter::getFunctionNumber() const {
211 return MF->getFunctionNumber();
214 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
215 return *TM.getObjFileLowering();
218 const DataLayout &AsmPrinter::getDataLayout() const {
219 return MMI->getModule()->getDataLayout();
222 // Do not use the cached DataLayout because some client use it without a Module
223 // (dsymutil, llvm-dwarfdump).
224 unsigned AsmPrinter::getPointerSize() const {
225 return TM.getPointerSize(0); // FIXME: Default address space
228 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
229 assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
230 return MF->getSubtarget<MCSubtargetInfo>();
233 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
234 S.EmitInstruction(Inst, getSubtargetInfo());
237 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
238 assert(DD && "Dwarf debug file is not defined.");
239 assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode.");
240 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
243 /// getCurrentSection() - Return the current section we are emitting to.
244 const MCSection *AsmPrinter::getCurrentSection() const {
245 return OutStreamer->getCurrentSectionOnly();
248 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
249 AU.setPreservesAll();
250 MachineFunctionPass::getAnalysisUsage(AU);
251 AU.addRequired<MachineModuleInfo>();
252 AU.addRequired<MachineOptimizationRemarkEmitterPass>();
253 AU.addRequired<GCModuleInfo>();
256 bool AsmPrinter::doInitialization(Module &M) {
257 MMI = getAnalysisIfAvailable<MachineModuleInfo>();
259 // Initialize TargetLoweringObjectFile.
260 const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
261 .Initialize(OutContext, TM);
263 const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
264 .getModuleMetadata(M);
266 OutStreamer->InitSections(false);
268 // Emit the version-min deployment target directive if needed.
270 // FIXME: If we end up with a collection of these sorts of Darwin-specific
271 // or ELF-specific things, it may make sense to have a platform helper class
272 // that will work with the target helper class. For now keep it here, as the
273 // alternative is duplicated code in each of the target asm printers that
274 // use the directive, where it would need the same conditionalization
275 // anyway.
276 const Triple &Target = TM.getTargetTriple();
277 OutStreamer->EmitVersionForTarget(Target, M.getSDKVersion());
279 // Allow the target to emit any magic that it wants at the start of the file.
280 EmitStartOfAsmFile(M);
282 // Very minimal debug info. It is ignored if we emit actual debug info. If we
283 // don't, this at least helps the user find where a global came from.
284 if (MAI->hasSingleParameterDotFile()) {
285 // .file "foo.c"
286 OutStreamer->EmitFileDirective(
287 llvm::sys::path::filename(M.getSourceFileName()));
290 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
291 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
292 for (auto &I : *MI)
293 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
294 MP->beginAssembly(M, *MI, *this);
296 // Emit module-level inline asm if it exists.
297 if (!M.getModuleInlineAsm().empty()) {
298 // We're at the module level. Construct MCSubtarget from the default CPU
299 // and target triple.
300 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
301 TM.getTargetTriple().str(), TM.getTargetCPU(),
302 TM.getTargetFeatureString()));
303 OutStreamer->AddComment("Start of file scope inline assembly");
304 OutStreamer->AddBlankLine();
305 EmitInlineAsm(M.getModuleInlineAsm()+"\n",
306 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
307 OutStreamer->AddComment("End of file scope inline assembly");
308 OutStreamer->AddBlankLine();
311 if (MAI->doesSupportDebugInformation()) {
312 bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
313 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
314 Handlers.emplace_back(llvm::make_unique<CodeViewDebug>(this),
315 DbgTimerName, DbgTimerDescription,
316 CodeViewLineTablesGroupName,
317 CodeViewLineTablesGroupDescription);
319 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
320 DD = new DwarfDebug(this, &M);
321 DD->beginModule();
322 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName,
323 DbgTimerDescription, DWARFGroupName,
324 DWARFGroupDescription);
328 switch (MAI->getExceptionHandlingType()) {
329 case ExceptionHandling::SjLj:
330 case ExceptionHandling::DwarfCFI:
331 case ExceptionHandling::ARM:
332 isCFIMoveForDebugging = true;
333 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
334 break;
335 for (auto &F: M.getFunctionList()) {
336 // If the module contains any function with unwind data,
337 // .eh_frame has to be emitted.
338 // Ignore functions that won't get emitted.
339 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
340 isCFIMoveForDebugging = false;
341 break;
344 break;
345 default:
346 isCFIMoveForDebugging = false;
347 break;
350 EHStreamer *ES = nullptr;
351 switch (MAI->getExceptionHandlingType()) {
352 case ExceptionHandling::None:
353 break;
354 case ExceptionHandling::SjLj:
355 case ExceptionHandling::DwarfCFI:
356 ES = new DwarfCFIException(this);
357 break;
358 case ExceptionHandling::ARM:
359 ES = new ARMException(this);
360 break;
361 case ExceptionHandling::WinEH:
362 switch (MAI->getWinEHEncodingType()) {
363 default: llvm_unreachable("unsupported unwinding information encoding");
364 case WinEH::EncodingType::Invalid:
365 break;
366 case WinEH::EncodingType::X86:
367 case WinEH::EncodingType::Itanium:
368 ES = new WinException(this);
369 break;
371 break;
372 case ExceptionHandling::Wasm:
373 ES = new WasmException(this);
374 break;
376 if (ES)
377 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName,
378 EHTimerDescription, DWARFGroupName,
379 DWARFGroupDescription);
381 if (mdconst::extract_or_null<ConstantInt>(
382 MMI->getModule()->getModuleFlag("cfguardtable")))
383 Handlers.emplace_back(llvm::make_unique<WinCFGuard>(this), CFGuardName,
384 CFGuardDescription, DWARFGroupName,
385 DWARFGroupDescription);
387 return false;
390 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
391 if (!MAI.hasWeakDefCanBeHiddenDirective())
392 return false;
394 return GV->canBeOmittedFromSymbolTable();
397 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
398 GlobalValue::LinkageTypes Linkage = GV->getLinkage();
399 switch (Linkage) {
400 case GlobalValue::CommonLinkage:
401 case GlobalValue::LinkOnceAnyLinkage:
402 case GlobalValue::LinkOnceODRLinkage:
403 case GlobalValue::WeakAnyLinkage:
404 case GlobalValue::WeakODRLinkage:
405 if (MAI->hasWeakDefDirective()) {
406 // .globl _foo
407 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
409 if (!canBeHidden(GV, *MAI))
410 // .weak_definition _foo
411 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
412 else
413 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
414 } else if (MAI->hasLinkOnceDirective()) {
415 // .globl _foo
416 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
417 //NOTE: linkonce is handled by the section the symbol was assigned to.
418 } else {
419 // .weak _foo
420 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak);
422 return;
423 case GlobalValue::ExternalLinkage:
424 // If external, declare as a global symbol: .globl _foo
425 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
426 return;
427 case GlobalValue::PrivateLinkage:
428 case GlobalValue::InternalLinkage:
429 return;
430 case GlobalValue::AppendingLinkage:
431 case GlobalValue::AvailableExternallyLinkage:
432 case GlobalValue::ExternalWeakLinkage:
433 llvm_unreachable("Should never emit this");
435 llvm_unreachable("Unknown linkage type!");
438 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
439 const GlobalValue *GV) const {
440 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
443 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
444 return TM.getSymbol(GV);
447 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
448 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
449 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
450 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
451 "No emulated TLS variables in the common section");
453 // Never emit TLS variable xyz in emulated TLS model.
454 // The initialization value is in __emutls_t.xyz instead of xyz.
455 if (IsEmuTLSVar)
456 return;
458 if (GV->hasInitializer()) {
459 // Check to see if this is a special global used by LLVM, if so, emit it.
460 if (EmitSpecialLLVMGlobal(GV))
461 return;
463 // Skip the emission of global equivalents. The symbol can be emitted later
464 // on by emitGlobalGOTEquivs in case it turns out to be needed.
465 if (GlobalGOTEquivs.count(getSymbol(GV)))
466 return;
468 if (isVerbose()) {
469 // When printing the control variable __emutls_v.*,
470 // we don't need to print the original TLS variable name.
471 GV->printAsOperand(OutStreamer->GetCommentOS(),
472 /*PrintType=*/false, GV->getParent());
473 OutStreamer->GetCommentOS() << '\n';
477 MCSymbol *GVSym = getSymbol(GV);
478 MCSymbol *EmittedSym = GVSym;
480 // getOrCreateEmuTLSControlSym only creates the symbol with name and default
481 // attributes.
482 // GV's or GVSym's attributes will be used for the EmittedSym.
483 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
485 if (!GV->hasInitializer()) // External globals require no extra code.
486 return;
488 GVSym->redefineIfPossible();
489 if (GVSym->isDefined() || GVSym->isVariable())
490 report_fatal_error("symbol '" + Twine(GVSym->getName()) +
491 "' is already defined");
493 if (MAI->hasDotTypeDotSizeDirective())
494 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
496 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
498 const DataLayout &DL = GV->getParent()->getDataLayout();
499 uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
501 // If the alignment is specified, we *must* obey it. Overaligning a global
502 // with a specified alignment is a prompt way to break globals emitted to
503 // sections and expected to be contiguous (e.g. ObjC metadata).
504 unsigned AlignLog = getGVAlignmentLog2(GV, DL);
506 for (const HandlerInfo &HI : Handlers) {
507 NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
508 HI.TimerGroupName, HI.TimerGroupDescription,
509 TimePassesIsEnabled);
510 HI.Handler->setSymbolSize(GVSym, Size);
513 // Handle common symbols
514 if (GVKind.isCommon()) {
515 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
516 unsigned Align = 1 << AlignLog;
517 if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
518 Align = 0;
520 // .comm _foo, 42, 4
521 OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
522 return;
525 // Determine to which section this global should be emitted.
526 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
528 // If we have a bss global going to a section that supports the
529 // zerofill directive, do so here.
530 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
531 TheSection->isVirtualSection()) {
532 if (Size == 0)
533 Size = 1; // zerofill of 0 bytes is undefined.
534 unsigned Align = 1 << AlignLog;
535 EmitLinkage(GV, GVSym);
536 // .zerofill __DATA, __bss, _foo, 400, 5
537 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align);
538 return;
541 // If this is a BSS local symbol and we are emitting in the BSS
542 // section use .lcomm/.comm directive.
543 if (GVKind.isBSSLocal() &&
544 getObjFileLowering().getBSSSection() == TheSection) {
545 if (Size == 0)
546 Size = 1; // .comm Foo, 0 is undefined, avoid it.
547 unsigned Align = 1 << AlignLog;
549 // Use .lcomm only if it supports user-specified alignment.
550 // Otherwise, while it would still be correct to use .lcomm in some
551 // cases (e.g. when Align == 1), the external assembler might enfore
552 // some -unknown- default alignment behavior, which could cause
553 // spurious differences between external and integrated assembler.
554 // Prefer to simply fall back to .local / .comm in this case.
555 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
556 // .lcomm _foo, 42
557 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align);
558 return;
561 if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
562 Align = 0;
564 // .local _foo
565 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local);
566 // .comm _foo, 42, 4
567 OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
568 return;
571 // Handle thread local data for mach-o which requires us to output an
572 // additional structure of data and mangle the original symbol so that we
573 // can reference it later.
575 // TODO: This should become an "emit thread local global" method on TLOF.
576 // All of this macho specific stuff should be sunk down into TLOFMachO and
577 // stuff like "TLSExtraDataSection" should no longer be part of the parent
578 // TLOF class. This will also make it more obvious that stuff like
579 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
580 // specific code.
581 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
582 // Emit the .tbss symbol
583 MCSymbol *MangSym =
584 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
586 if (GVKind.isThreadBSS()) {
587 TheSection = getObjFileLowering().getTLSBSSSection();
588 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
589 } else if (GVKind.isThreadData()) {
590 OutStreamer->SwitchSection(TheSection);
592 EmitAlignment(AlignLog, GV);
593 OutStreamer->EmitLabel(MangSym);
595 EmitGlobalConstant(GV->getParent()->getDataLayout(),
596 GV->getInitializer());
599 OutStreamer->AddBlankLine();
601 // Emit the variable struct for the runtime.
602 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
604 OutStreamer->SwitchSection(TLVSect);
605 // Emit the linkage here.
606 EmitLinkage(GV, GVSym);
607 OutStreamer->EmitLabel(GVSym);
609 // Three pointers in size:
610 // - __tlv_bootstrap - used to make sure support exists
611 // - spare pointer, used when mapped by the runtime
612 // - pointer to mangled symbol above with initializer
613 unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
614 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
615 PtrSize);
616 OutStreamer->EmitIntValue(0, PtrSize);
617 OutStreamer->EmitSymbolValue(MangSym, PtrSize);
619 OutStreamer->AddBlankLine();
620 return;
623 MCSymbol *EmittedInitSym = GVSym;
625 OutStreamer->SwitchSection(TheSection);
627 EmitLinkage(GV, EmittedInitSym);
628 EmitAlignment(AlignLog, GV);
630 OutStreamer->EmitLabel(EmittedInitSym);
632 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
634 if (MAI->hasDotTypeDotSizeDirective())
635 // .size foo, 42
636 OutStreamer->emitELFSize(EmittedInitSym,
637 MCConstantExpr::create(Size, OutContext));
639 OutStreamer->AddBlankLine();
642 /// Emit the directive and value for debug thread local expression
644 /// \p Value - The value to emit.
645 /// \p Size - The size of the integer (in bytes) to emit.
646 void AsmPrinter::EmitDebugValue(const MCExpr *Value, unsigned Size) const {
647 OutStreamer->EmitValue(Value, Size);
650 /// EmitFunctionHeader - This method emits the header for the current
651 /// function.
652 void AsmPrinter::EmitFunctionHeader() {
653 const Function &F = MF->getFunction();
655 if (isVerbose())
656 OutStreamer->GetCommentOS()
657 << "-- Begin function "
658 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
660 // Print out constants referenced by the function
661 EmitConstantPool();
663 // Print the 'header' of function.
664 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM));
665 EmitVisibility(CurrentFnSym, F.getVisibility());
667 EmitLinkage(&F, CurrentFnSym);
668 if (MAI->hasFunctionAlignment())
669 EmitAlignment(MF->getAlignment(), &F);
671 if (MAI->hasDotTypeDotSizeDirective())
672 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
674 if (F.hasFnAttribute(Attribute::Cold))
675 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_Cold);
677 if (isVerbose()) {
678 F.printAsOperand(OutStreamer->GetCommentOS(),
679 /*PrintType=*/false, F.getParent());
680 OutStreamer->GetCommentOS() << '\n';
683 // Emit the prefix data.
684 if (F.hasPrefixData()) {
685 if (MAI->hasSubsectionsViaSymbols()) {
686 // Preserving prefix data on platforms which use subsections-via-symbols
687 // is a bit tricky. Here we introduce a symbol for the prefix data
688 // and use the .alt_entry attribute to mark the function's real entry point
689 // as an alternative entry point to the prefix-data symbol.
690 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
691 OutStreamer->EmitLabel(PrefixSym);
693 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
695 // Emit an .alt_entry directive for the actual function symbol.
696 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
697 } else {
698 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
702 // Emit the CurrentFnSym. This is a virtual function to allow targets to
703 // do their wild and crazy things as required.
704 EmitFunctionEntryLabel();
706 // If the function had address-taken blocks that got deleted, then we have
707 // references to the dangling symbols. Emit them at the start of the function
708 // so that we don't get references to undefined symbols.
709 std::vector<MCSymbol*> DeadBlockSyms;
710 MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms);
711 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
712 OutStreamer->AddComment("Address taken block that was later removed");
713 OutStreamer->EmitLabel(DeadBlockSyms[i]);
716 if (CurrentFnBegin) {
717 if (MAI->useAssignmentForEHBegin()) {
718 MCSymbol *CurPos = OutContext.createTempSymbol();
719 OutStreamer->EmitLabel(CurPos);
720 OutStreamer->EmitAssignment(CurrentFnBegin,
721 MCSymbolRefExpr::create(CurPos, OutContext));
722 } else {
723 OutStreamer->EmitLabel(CurrentFnBegin);
727 // Emit pre-function debug and/or EH information.
728 for (const HandlerInfo &HI : Handlers) {
729 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
730 HI.TimerGroupDescription, TimePassesIsEnabled);
731 HI.Handler->beginFunction(MF);
734 // Emit the prologue data.
735 if (F.hasPrologueData())
736 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
739 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
740 /// function. This can be overridden by targets as required to do custom stuff.
741 void AsmPrinter::EmitFunctionEntryLabel() {
742 CurrentFnSym->redefineIfPossible();
744 // The function label could have already been emitted if two symbols end up
745 // conflicting due to asm renaming. Detect this and emit an error.
746 if (CurrentFnSym->isVariable())
747 report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
748 "' is a protected alias");
749 if (CurrentFnSym->isDefined())
750 report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
751 "' label emitted multiple times to assembly file");
753 return OutStreamer->EmitLabel(CurrentFnSym);
756 /// emitComments - Pretty-print comments for instructions.
757 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
758 const MachineFunction *MF = MI.getMF();
759 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
761 // Check for spills and reloads
763 // We assume a single instruction only has a spill or reload, not
764 // both.
765 Optional<unsigned> Size;
766 if ((Size = MI.getRestoreSize(TII))) {
767 CommentOS << *Size << "-byte Reload\n";
768 } else if ((Size = MI.getFoldedRestoreSize(TII))) {
769 if (*Size)
770 CommentOS << *Size << "-byte Folded Reload\n";
771 } else if ((Size = MI.getSpillSize(TII))) {
772 CommentOS << *Size << "-byte Spill\n";
773 } else if ((Size = MI.getFoldedSpillSize(TII))) {
774 if (*Size)
775 CommentOS << *Size << "-byte Folded Spill\n";
778 // Check for spill-induced copies
779 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
780 CommentOS << " Reload Reuse\n";
783 /// emitImplicitDef - This method emits the specified machine instruction
784 /// that is an implicit def.
785 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
786 unsigned RegNo = MI->getOperand(0).getReg();
788 SmallString<128> Str;
789 raw_svector_ostream OS(Str);
790 OS << "implicit-def: "
791 << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
793 OutStreamer->AddComment(OS.str());
794 OutStreamer->AddBlankLine();
797 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
798 std::string Str;
799 raw_string_ostream OS(Str);
800 OS << "kill:";
801 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
802 const MachineOperand &Op = MI->getOperand(i);
803 assert(Op.isReg() && "KILL instruction must have only register operands");
804 OS << ' ' << (Op.isDef() ? "def " : "killed ")
805 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
807 AP.OutStreamer->AddComment(OS.str());
808 AP.OutStreamer->AddBlankLine();
811 /// emitDebugValueComment - This method handles the target-independent form
812 /// of DBG_VALUE, returning true if it was able to do so. A false return
813 /// means the target will need to handle MI in EmitInstruction.
814 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
815 // This code handles only the 4-operand target-independent form.
816 if (MI->getNumOperands() != 4)
817 return false;
819 SmallString<128> Str;
820 raw_svector_ostream OS(Str);
821 OS << "DEBUG_VALUE: ";
823 const DILocalVariable *V = MI->getDebugVariable();
824 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
825 StringRef Name = SP->getName();
826 if (!Name.empty())
827 OS << Name << ":";
829 OS << V->getName();
830 OS << " <- ";
832 // The second operand is only an offset if it's an immediate.
833 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
834 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0;
835 const DIExpression *Expr = MI->getDebugExpression();
836 if (Expr->getNumElements()) {
837 OS << '[';
838 bool NeedSep = false;
839 for (auto Op : Expr->expr_ops()) {
840 if (NeedSep)
841 OS << ", ";
842 else
843 NeedSep = true;
844 OS << dwarf::OperationEncodingString(Op.getOp());
845 for (unsigned I = 0; I < Op.getNumArgs(); ++I)
846 OS << ' ' << Op.getArg(I);
848 OS << "] ";
851 // Register or immediate value. Register 0 means undef.
852 if (MI->getOperand(0).isFPImm()) {
853 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
854 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
855 OS << (double)APF.convertToFloat();
856 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
857 OS << APF.convertToDouble();
858 } else {
859 // There is no good way to print long double. Convert a copy to
860 // double. Ah well, it's only a comment.
861 bool ignored;
862 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
863 &ignored);
864 OS << "(long double) " << APF.convertToDouble();
866 } else if (MI->getOperand(0).isImm()) {
867 OS << MI->getOperand(0).getImm();
868 } else if (MI->getOperand(0).isCImm()) {
869 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
870 } else {
871 unsigned Reg;
872 if (MI->getOperand(0).isReg()) {
873 Reg = MI->getOperand(0).getReg();
874 } else {
875 assert(MI->getOperand(0).isFI() && "Unknown operand type");
876 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
877 Offset += TFI->getFrameIndexReference(*AP.MF,
878 MI->getOperand(0).getIndex(), Reg);
879 MemLoc = true;
881 if (Reg == 0) {
882 // Suppress offset, it is not meaningful here.
883 OS << "undef";
884 // NOTE: Want this comment at start of line, don't emit with AddComment.
885 AP.OutStreamer->emitRawComment(OS.str());
886 return true;
888 if (MemLoc)
889 OS << '[';
890 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
893 if (MemLoc)
894 OS << '+' << Offset << ']';
896 // NOTE: Want this comment at start of line, don't emit with AddComment.
897 AP.OutStreamer->emitRawComment(OS.str());
898 return true;
901 /// This method handles the target-independent form of DBG_LABEL, returning
902 /// true if it was able to do so. A false return means the target will need
903 /// to handle MI in EmitInstruction.
904 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
905 if (MI->getNumOperands() != 1)
906 return false;
908 SmallString<128> Str;
909 raw_svector_ostream OS(Str);
910 OS << "DEBUG_LABEL: ";
912 const DILabel *V = MI->getDebugLabel();
913 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
914 StringRef Name = SP->getName();
915 if (!Name.empty())
916 OS << Name << ":";
918 OS << V->getName();
920 // NOTE: Want this comment at start of line, don't emit with AddComment.
921 AP.OutStreamer->emitRawComment(OS.str());
922 return true;
925 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const {
926 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
927 MF->getFunction().needsUnwindTableEntry())
928 return CFI_M_EH;
930 if (MMI->hasDebugInfo())
931 return CFI_M_Debug;
933 return CFI_M_None;
936 bool AsmPrinter::needsSEHMoves() {
937 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
940 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
941 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
942 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
943 ExceptionHandlingType != ExceptionHandling::ARM)
944 return;
946 if (needsCFIMoves() == CFI_M_None)
947 return;
949 // If there is no "real" instruction following this CFI instruction, skip
950 // emitting it; it would be beyond the end of the function's FDE range.
951 auto *MBB = MI.getParent();
952 auto I = std::next(MI.getIterator());
953 while (I != MBB->end() && I->isTransient())
954 ++I;
955 if (I == MBB->instr_end() &&
956 MBB->getReverseIterator() == MBB->getParent()->rbegin())
957 return;
959 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
960 unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
961 const MCCFIInstruction &CFI = Instrs[CFIIndex];
962 emitCFIInstruction(CFI);
965 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
966 // The operands are the MCSymbol and the frame offset of the allocation.
967 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
968 int FrameOffset = MI.getOperand(1).getImm();
970 // Emit a symbol assignment.
971 OutStreamer->EmitAssignment(FrameAllocSym,
972 MCConstantExpr::create(FrameOffset, OutContext));
975 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
976 if (!MF.getTarget().Options.EmitStackSizeSection)
977 return;
979 MCSection *StackSizeSection =
980 getObjFileLowering().getStackSizesSection(*getCurrentSection());
981 if (!StackSizeSection)
982 return;
984 const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
985 // Don't emit functions with dynamic stack allocations.
986 if (FrameInfo.hasVarSizedObjects())
987 return;
989 OutStreamer->PushSection();
990 OutStreamer->SwitchSection(StackSizeSection);
992 const MCSymbol *FunctionSymbol = getFunctionBegin();
993 uint64_t StackSize = FrameInfo.getStackSize();
994 OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
995 OutStreamer->EmitULEB128IntValue(StackSize);
997 OutStreamer->PopSection();
1000 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF,
1001 MachineModuleInfo *MMI) {
1002 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo())
1003 return true;
1005 // We might emit an EH table that uses function begin and end labels even if
1006 // we don't have any landingpads.
1007 if (!MF.getFunction().hasPersonalityFn())
1008 return false;
1009 return !isNoOpWithoutInvoke(
1010 classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1013 /// EmitFunctionBody - This method emits the body and trailer for a
1014 /// function.
1015 void AsmPrinter::EmitFunctionBody() {
1016 EmitFunctionHeader();
1018 // Emit target-specific gunk before the function body.
1019 EmitFunctionBodyStart();
1021 bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
1023 if (isVerbose()) {
1024 // Get MachineDominatorTree or compute it on the fly if it's unavailable
1025 MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1026 if (!MDT) {
1027 OwnedMDT = make_unique<MachineDominatorTree>();
1028 OwnedMDT->getBase().recalculate(*MF);
1029 MDT = OwnedMDT.get();
1032 // Get MachineLoopInfo or compute it on the fly if it's unavailable
1033 MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1034 if (!MLI) {
1035 OwnedMLI = make_unique<MachineLoopInfo>();
1036 OwnedMLI->getBase().analyze(MDT->getBase());
1037 MLI = OwnedMLI.get();
1041 // Print out code for the function.
1042 bool HasAnyRealCode = false;
1043 int NumInstsInFunction = 0;
1044 for (auto &MBB : *MF) {
1045 // Print a label for the basic block.
1046 EmitBasicBlockStart(MBB);
1047 for (auto &MI : MBB) {
1048 // Print the assembly for the instruction.
1049 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1050 !MI.isDebugInstr()) {
1051 HasAnyRealCode = true;
1052 ++NumInstsInFunction;
1055 // If there is a pre-instruction symbol, emit a label for it here.
1056 if (MCSymbol *S = MI.getPreInstrSymbol())
1057 OutStreamer->EmitLabel(S);
1059 if (ShouldPrintDebugScopes) {
1060 for (const HandlerInfo &HI : Handlers) {
1061 NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1062 HI.TimerGroupName, HI.TimerGroupDescription,
1063 TimePassesIsEnabled);
1064 HI.Handler->beginInstruction(&MI);
1068 if (isVerbose())
1069 emitComments(MI, OutStreamer->GetCommentOS());
1071 switch (MI.getOpcode()) {
1072 case TargetOpcode::CFI_INSTRUCTION:
1073 emitCFIInstruction(MI);
1074 break;
1075 case TargetOpcode::LOCAL_ESCAPE:
1076 emitFrameAlloc(MI);
1077 break;
1078 case TargetOpcode::ANNOTATION_LABEL:
1079 case TargetOpcode::EH_LABEL:
1080 case TargetOpcode::GC_LABEL:
1081 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol());
1082 break;
1083 case TargetOpcode::INLINEASM:
1084 case TargetOpcode::INLINEASM_BR:
1085 EmitInlineAsm(&MI);
1086 break;
1087 case TargetOpcode::DBG_VALUE:
1088 if (isVerbose()) {
1089 if (!emitDebugValueComment(&MI, *this))
1090 EmitInstruction(&MI);
1092 break;
1093 case TargetOpcode::DBG_LABEL:
1094 if (isVerbose()) {
1095 if (!emitDebugLabelComment(&MI, *this))
1096 EmitInstruction(&MI);
1098 break;
1099 case TargetOpcode::IMPLICIT_DEF:
1100 if (isVerbose()) emitImplicitDef(&MI);
1101 break;
1102 case TargetOpcode::KILL:
1103 if (isVerbose()) emitKill(&MI, *this);
1104 break;
1105 default:
1106 EmitInstruction(&MI);
1107 break;
1110 // If there is a post-instruction symbol, emit a label for it here.
1111 if (MCSymbol *S = MI.getPostInstrSymbol())
1112 OutStreamer->EmitLabel(S);
1114 if (ShouldPrintDebugScopes) {
1115 for (const HandlerInfo &HI : Handlers) {
1116 NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1117 HI.TimerGroupName, HI.TimerGroupDescription,
1118 TimePassesIsEnabled);
1119 HI.Handler->endInstruction();
1124 EmitBasicBlockEnd(MBB);
1127 EmittedInsts += NumInstsInFunction;
1128 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1129 MF->getFunction().getSubprogram(),
1130 &MF->front());
1131 R << ore::NV("NumInstructions", NumInstsInFunction)
1132 << " instructions in function";
1133 ORE->emit(R);
1135 // If the function is empty and the object file uses .subsections_via_symbols,
1136 // then we need to emit *something* to the function body to prevent the
1137 // labels from collapsing together. Just emit a noop.
1138 // Similarly, don't emit empty functions on Windows either. It can lead to
1139 // duplicate entries (two functions with the same RVA) in the Guard CF Table
1140 // after linking, causing the kernel not to load the binary:
1141 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1142 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1143 const Triple &TT = TM.getTargetTriple();
1144 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1145 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1146 MCInst Noop;
1147 MF->getSubtarget().getInstrInfo()->getNoop(Noop);
1149 // Targets can opt-out of emitting the noop here by leaving the opcode
1150 // unspecified.
1151 if (Noop.getOpcode()) {
1152 OutStreamer->AddComment("avoids zero-length function");
1153 OutStreamer->EmitInstruction(Noop, getSubtargetInfo());
1157 const Function &F = MF->getFunction();
1158 for (const auto &BB : F) {
1159 if (!BB.hasAddressTaken())
1160 continue;
1161 MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1162 if (Sym->isDefined())
1163 continue;
1164 OutStreamer->AddComment("Address of block that was removed by CodeGen");
1165 OutStreamer->EmitLabel(Sym);
1168 // Emit target-specific gunk after the function body.
1169 EmitFunctionBodyEnd();
1171 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) ||
1172 MAI->hasDotTypeDotSizeDirective()) {
1173 // Create a symbol for the end of function.
1174 CurrentFnEnd = createTempSymbol("func_end");
1175 OutStreamer->EmitLabel(CurrentFnEnd);
1178 // If the target wants a .size directive for the size of the function, emit
1179 // it.
1180 if (MAI->hasDotTypeDotSizeDirective()) {
1181 // We can get the size as difference between the function label and the
1182 // temp label.
1183 const MCExpr *SizeExp = MCBinaryExpr::createSub(
1184 MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1185 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1186 OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1189 for (const HandlerInfo &HI : Handlers) {
1190 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1191 HI.TimerGroupDescription, TimePassesIsEnabled);
1192 HI.Handler->markFunctionEnd();
1195 // Print out jump tables referenced by the function.
1196 EmitJumpTableInfo();
1198 // Emit post-function debug and/or EH information.
1199 for (const HandlerInfo &HI : Handlers) {
1200 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1201 HI.TimerGroupDescription, TimePassesIsEnabled);
1202 HI.Handler->endFunction(MF);
1205 // Emit section containing stack size metadata.
1206 emitStackSizeSection(*MF);
1208 if (isVerbose())
1209 OutStreamer->GetCommentOS() << "-- End function\n";
1211 OutStreamer->AddBlankLine();
1214 /// Compute the number of Global Variables that uses a Constant.
1215 static unsigned getNumGlobalVariableUses(const Constant *C) {
1216 if (!C)
1217 return 0;
1219 if (isa<GlobalVariable>(C))
1220 return 1;
1222 unsigned NumUses = 0;
1223 for (auto *CU : C->users())
1224 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1226 return NumUses;
1229 /// Only consider global GOT equivalents if at least one user is a
1230 /// cstexpr inside an initializer of another global variables. Also, don't
1231 /// handle cstexpr inside instructions. During global variable emission,
1232 /// candidates are skipped and are emitted later in case at least one cstexpr
1233 /// isn't replaced by a PC relative GOT entry access.
1234 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1235 unsigned &NumGOTEquivUsers) {
1236 // Global GOT equivalents are unnamed private globals with a constant
1237 // pointer initializer to another global symbol. They must point to a
1238 // GlobalVariable or Function, i.e., as GlobalValue.
1239 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1240 !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1241 !isa<GlobalValue>(GV->getOperand(0)))
1242 return false;
1244 // To be a got equivalent, at least one of its users need to be a constant
1245 // expression used by another global variable.
1246 for (auto *U : GV->users())
1247 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1249 return NumGOTEquivUsers > 0;
1252 /// Unnamed constant global variables solely contaning a pointer to
1253 /// another globals variable is equivalent to a GOT table entry; it contains the
1254 /// the address of another symbol. Optimize it and replace accesses to these
1255 /// "GOT equivalents" by using the GOT entry for the final global instead.
1256 /// Compute GOT equivalent candidates among all global variables to avoid
1257 /// emitting them if possible later on, after it use is replaced by a GOT entry
1258 /// access.
1259 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1260 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1261 return;
1263 for (const auto &G : M.globals()) {
1264 unsigned NumGOTEquivUsers = 0;
1265 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1266 continue;
1268 const MCSymbol *GOTEquivSym = getSymbol(&G);
1269 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1273 /// Constant expressions using GOT equivalent globals may not be eligible
1274 /// for PC relative GOT entry conversion, in such cases we need to emit such
1275 /// globals we previously omitted in EmitGlobalVariable.
1276 void AsmPrinter::emitGlobalGOTEquivs() {
1277 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1278 return;
1280 SmallVector<const GlobalVariable *, 8> FailedCandidates;
1281 for (auto &I : GlobalGOTEquivs) {
1282 const GlobalVariable *GV = I.second.first;
1283 unsigned Cnt = I.second.second;
1284 if (Cnt)
1285 FailedCandidates.push_back(GV);
1287 GlobalGOTEquivs.clear();
1289 for (auto *GV : FailedCandidates)
1290 EmitGlobalVariable(GV);
1293 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1294 const GlobalIndirectSymbol& GIS) {
1295 MCSymbol *Name = getSymbol(&GIS);
1297 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1298 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global);
1299 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1300 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference);
1301 else
1302 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1304 bool IsFunction = GIS.getValueType()->isFunctionTy();
1306 // Treat bitcasts of functions as functions also. This is important at least
1307 // on WebAssembly where object and function addresses can't alias each other.
1308 if (!IsFunction)
1309 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol()))
1310 if (CE->getOpcode() == Instruction::BitCast)
1311 IsFunction =
1312 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy();
1314 // Set the symbol type to function if the alias has a function type.
1315 // This affects codegen when the aliasee is not a function.
1316 if (IsFunction) {
1317 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction);
1318 if (isa<GlobalIFunc>(GIS))
1319 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction);
1322 EmitVisibility(Name, GIS.getVisibility());
1324 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1326 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1327 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry);
1329 // Emit the directives as assignments aka .set:
1330 OutStreamer->EmitAssignment(Name, Expr);
1332 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1333 // If the aliasee does not correspond to a symbol in the output, i.e. the
1334 // alias is not of an object or the aliased object is private, then set the
1335 // size of the alias symbol from the type of the alias. We don't do this in
1336 // other situations as the alias and aliasee having differing types but same
1337 // size may be intentional.
1338 const GlobalObject *BaseObject = GA->getBaseObject();
1339 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1340 (!BaseObject || BaseObject->hasPrivateLinkage())) {
1341 const DataLayout &DL = M.getDataLayout();
1342 uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1343 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1348 void AsmPrinter::emitRemarksSection(Module &M) {
1349 RemarkStreamer *RS = M.getContext().getRemarkStreamer();
1350 if (!RS)
1351 return;
1352 remarks::RemarkSerializer &RemarkSerializer = RS->getSerializer();
1354 StringRef FilenameRef = RS->getFilename();
1355 SmallString<128> Filename = FilenameRef;
1356 sys::fs::make_absolute(Filename);
1357 assert(!Filename.empty() && "The filename can't be empty.");
1359 std::string Buf;
1360 raw_string_ostream OS(Buf);
1361 std::unique_ptr<remarks::MetaSerializer> MetaSerializer =
1362 RemarkSerializer.metaSerializer(OS, StringRef(Filename));
1363 MetaSerializer->emit();
1365 // Switch to the right section: .remarks/__remarks.
1366 MCSection *RemarksSection =
1367 OutContext.getObjectFileInfo()->getRemarksSection();
1368 OutStreamer->SwitchSection(RemarksSection);
1370 OutStreamer->EmitBinaryData(OS.str());
1373 bool AsmPrinter::doFinalization(Module &M) {
1374 // Set the MachineFunction to nullptr so that we can catch attempted
1375 // accesses to MF specific features at the module level and so that
1376 // we can conditionalize accesses based on whether or not it is nullptr.
1377 MF = nullptr;
1379 // Gather all GOT equivalent globals in the module. We really need two
1380 // passes over the globals: one to compute and another to avoid its emission
1381 // in EmitGlobalVariable, otherwise we would not be able to handle cases
1382 // where the got equivalent shows up before its use.
1383 computeGlobalGOTEquivs(M);
1385 // Emit global variables.
1386 for (const auto &G : M.globals())
1387 EmitGlobalVariable(&G);
1389 // Emit remaining GOT equivalent globals.
1390 emitGlobalGOTEquivs();
1392 // Emit visibility info for declarations
1393 for (const Function &F : M) {
1394 if (!F.isDeclarationForLinker())
1395 continue;
1396 GlobalValue::VisibilityTypes V = F.getVisibility();
1397 if (V == GlobalValue::DefaultVisibility)
1398 continue;
1400 MCSymbol *Name = getSymbol(&F);
1401 EmitVisibility(Name, V, false);
1404 // Emit the remarks section contents.
1405 // FIXME: Figure out when is the safest time to emit this section. It should
1406 // not come after debug info.
1407 if (EnableRemarksSection)
1408 emitRemarksSection(M);
1410 const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1412 TLOF.emitModuleMetadata(*OutStreamer, M);
1414 if (TM.getTargetTriple().isOSBinFormatELF()) {
1415 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1417 // Output stubs for external and common global variables.
1418 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1419 if (!Stubs.empty()) {
1420 OutStreamer->SwitchSection(TLOF.getDataSection());
1421 const DataLayout &DL = M.getDataLayout();
1423 EmitAlignment(Log2_32(DL.getPointerSize()));
1424 for (const auto &Stub : Stubs) {
1425 OutStreamer->EmitLabel(Stub.first);
1426 OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1427 DL.getPointerSize());
1432 if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1433 MachineModuleInfoCOFF &MMICOFF =
1434 MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1436 // Output stubs for external and common global variables.
1437 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1438 if (!Stubs.empty()) {
1439 const DataLayout &DL = M.getDataLayout();
1441 for (const auto &Stub : Stubs) {
1442 SmallString<256> SectionName = StringRef(".rdata$");
1443 SectionName += Stub.first->getName();
1444 OutStreamer->SwitchSection(OutContext.getCOFFSection(
1445 SectionName,
1446 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1447 COFF::IMAGE_SCN_LNK_COMDAT,
1448 SectionKind::getReadOnly(), Stub.first->getName(),
1449 COFF::IMAGE_COMDAT_SELECT_ANY));
1450 EmitAlignment(Log2_32(DL.getPointerSize()));
1451 OutStreamer->EmitSymbolAttribute(Stub.first, MCSA_Global);
1452 OutStreamer->EmitLabel(Stub.first);
1453 OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1454 DL.getPointerSize());
1459 // Finalize debug and EH information.
1460 for (const HandlerInfo &HI : Handlers) {
1461 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1462 HI.TimerGroupDescription, TimePassesIsEnabled);
1463 HI.Handler->endModule();
1465 Handlers.clear();
1466 DD = nullptr;
1468 // If the target wants to know about weak references, print them all.
1469 if (MAI->getWeakRefDirective()) {
1470 // FIXME: This is not lazy, it would be nice to only print weak references
1471 // to stuff that is actually used. Note that doing so would require targets
1472 // to notice uses in operands (due to constant exprs etc). This should
1473 // happen with the MC stuff eventually.
1475 // Print out module-level global objects here.
1476 for (const auto &GO : M.global_objects()) {
1477 if (!GO.hasExternalWeakLinkage())
1478 continue;
1479 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1483 OutStreamer->AddBlankLine();
1485 // Print aliases in topological order, that is, for each alias a = b,
1486 // b must be printed before a.
1487 // This is because on some targets (e.g. PowerPC) linker expects aliases in
1488 // such an order to generate correct TOC information.
1489 SmallVector<const GlobalAlias *, 16> AliasStack;
1490 SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1491 for (const auto &Alias : M.aliases()) {
1492 for (const GlobalAlias *Cur = &Alias; Cur;
1493 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1494 if (!AliasVisited.insert(Cur).second)
1495 break;
1496 AliasStack.push_back(Cur);
1498 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1499 emitGlobalIndirectSymbol(M, *AncestorAlias);
1500 AliasStack.clear();
1502 for (const auto &IFunc : M.ifuncs())
1503 emitGlobalIndirectSymbol(M, IFunc);
1505 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1506 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1507 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1508 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1509 MP->finishAssembly(M, *MI, *this);
1511 // Emit llvm.ident metadata in an '.ident' directive.
1512 EmitModuleIdents(M);
1514 // Emit bytes for llvm.commandline metadata.
1515 EmitModuleCommandLines(M);
1517 // Emit __morestack address if needed for indirect calls.
1518 if (MMI->usesMorestackAddr()) {
1519 unsigned Align = 1;
1520 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1521 getDataLayout(), SectionKind::getReadOnly(),
1522 /*C=*/nullptr, Align);
1523 OutStreamer->SwitchSection(ReadOnlySection);
1525 MCSymbol *AddrSymbol =
1526 OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1527 OutStreamer->EmitLabel(AddrSymbol);
1529 unsigned PtrSize = MAI->getCodePointerSize();
1530 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1531 PtrSize);
1534 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1535 // split-stack is used.
1536 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1537 OutStreamer->SwitchSection(
1538 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1539 if (MMI->hasNosplitStack())
1540 OutStreamer->SwitchSection(
1541 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1544 // If we don't have any trampolines, then we don't require stack memory
1545 // to be executable. Some targets have a directive to declare this.
1546 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1547 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1548 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1549 OutStreamer->SwitchSection(S);
1551 if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1552 // Emit /EXPORT: flags for each exported global as necessary.
1553 const auto &TLOF = getObjFileLowering();
1554 std::string Flags;
1556 for (const GlobalValue &GV : M.global_values()) {
1557 raw_string_ostream OS(Flags);
1558 TLOF.emitLinkerFlagsForGlobal(OS, &GV);
1559 OS.flush();
1560 if (!Flags.empty()) {
1561 OutStreamer->SwitchSection(TLOF.getDrectveSection());
1562 OutStreamer->EmitBytes(Flags);
1564 Flags.clear();
1567 // Emit /INCLUDE: flags for each used global as necessary.
1568 if (const auto *LU = M.getNamedGlobal("llvm.used")) {
1569 assert(LU->hasInitializer() &&
1570 "expected llvm.used to have an initializer");
1571 assert(isa<ArrayType>(LU->getValueType()) &&
1572 "expected llvm.used to be an array type");
1573 if (const auto *A = cast<ConstantArray>(LU->getInitializer())) {
1574 for (const Value *Op : A->operands()) {
1575 const auto *GV =
1576 cast<GlobalValue>(Op->stripPointerCastsNoFollowAliases());
1577 // Global symbols with internal or private linkage are not visible to
1578 // the linker, and thus would cause an error when the linker tried to
1579 // preserve the symbol due to the `/include:` directive.
1580 if (GV->hasLocalLinkage())
1581 continue;
1583 raw_string_ostream OS(Flags);
1584 TLOF.emitLinkerFlagsForUsed(OS, GV);
1585 OS.flush();
1587 if (!Flags.empty()) {
1588 OutStreamer->SwitchSection(TLOF.getDrectveSection());
1589 OutStreamer->EmitBytes(Flags);
1591 Flags.clear();
1597 if (TM.Options.EmitAddrsig) {
1598 // Emit address-significance attributes for all globals.
1599 OutStreamer->EmitAddrsig();
1600 for (const GlobalValue &GV : M.global_values())
1601 if (!GV.use_empty() && !GV.isThreadLocal() &&
1602 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") &&
1603 !GV.hasAtLeastLocalUnnamedAddr())
1604 OutStreamer->EmitAddrsigSym(getSymbol(&GV));
1607 // Emit symbol partition specifications (ELF only).
1608 if (TM.getTargetTriple().isOSBinFormatELF()) {
1609 unsigned UniqueID = 0;
1610 for (const GlobalValue &GV : M.global_values()) {
1611 if (!GV.hasPartition() || GV.isDeclarationForLinker() ||
1612 GV.getVisibility() != GlobalValue::DefaultVisibility)
1613 continue;
1615 OutStreamer->SwitchSection(OutContext.getELFSection(
1616 ".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, "", ++UniqueID));
1617 OutStreamer->EmitBytes(GV.getPartition());
1618 OutStreamer->EmitZeros(1);
1619 OutStreamer->EmitValue(
1620 MCSymbolRefExpr::create(getSymbol(&GV), OutContext),
1621 MAI->getCodePointerSize());
1625 // Allow the target to emit any magic that it wants at the end of the file,
1626 // after everything else has gone out.
1627 EmitEndOfAsmFile(M);
1629 MMI = nullptr;
1631 OutStreamer->Finish();
1632 OutStreamer->reset();
1633 OwnedMLI.reset();
1634 OwnedMDT.reset();
1636 return false;
1639 MCSymbol *AsmPrinter::getCurExceptionSym() {
1640 if (!CurExceptionSym)
1641 CurExceptionSym = createTempSymbol("exception");
1642 return CurExceptionSym;
1645 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1646 this->MF = &MF;
1647 // Get the function symbol.
1648 CurrentFnSym = getSymbol(&MF.getFunction());
1649 CurrentFnSymForSize = CurrentFnSym;
1650 CurrentFnBegin = nullptr;
1651 CurExceptionSym = nullptr;
1652 bool NeedsLocalForSize = MAI->needsLocalForSize();
1653 if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize ||
1654 MF.getTarget().Options.EmitStackSizeSection) {
1655 CurrentFnBegin = createTempSymbol("func_begin");
1656 if (NeedsLocalForSize)
1657 CurrentFnSymForSize = CurrentFnBegin;
1660 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1663 namespace {
1665 // Keep track the alignment, constpool entries per Section.
1666 struct SectionCPs {
1667 MCSection *S;
1668 unsigned Alignment;
1669 SmallVector<unsigned, 4> CPEs;
1671 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {}
1674 } // end anonymous namespace
1676 /// EmitConstantPool - Print to the current output stream assembly
1677 /// representations of the constants in the constant pool MCP. This is
1678 /// used to print out constants which have been "spilled to memory" by
1679 /// the code generator.
1680 void AsmPrinter::EmitConstantPool() {
1681 const MachineConstantPool *MCP = MF->getConstantPool();
1682 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1683 if (CP.empty()) return;
1685 // Calculate sections for constant pool entries. We collect entries to go into
1686 // the same section together to reduce amount of section switch statements.
1687 SmallVector<SectionCPs, 4> CPSections;
1688 for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1689 const MachineConstantPoolEntry &CPE = CP[i];
1690 unsigned Align = CPE.getAlignment();
1692 SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1694 const Constant *C = nullptr;
1695 if (!CPE.isMachineConstantPoolEntry())
1696 C = CPE.Val.ConstVal;
1698 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(),
1699 Kind, C, Align);
1701 // The number of sections are small, just do a linear search from the
1702 // last section to the first.
1703 bool Found = false;
1704 unsigned SecIdx = CPSections.size();
1705 while (SecIdx != 0) {
1706 if (CPSections[--SecIdx].S == S) {
1707 Found = true;
1708 break;
1711 if (!Found) {
1712 SecIdx = CPSections.size();
1713 CPSections.push_back(SectionCPs(S, Align));
1716 if (Align > CPSections[SecIdx].Alignment)
1717 CPSections[SecIdx].Alignment = Align;
1718 CPSections[SecIdx].CPEs.push_back(i);
1721 // Now print stuff into the calculated sections.
1722 const MCSection *CurSection = nullptr;
1723 unsigned Offset = 0;
1724 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1725 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1726 unsigned CPI = CPSections[i].CPEs[j];
1727 MCSymbol *Sym = GetCPISymbol(CPI);
1728 if (!Sym->isUndefined())
1729 continue;
1731 if (CurSection != CPSections[i].S) {
1732 OutStreamer->SwitchSection(CPSections[i].S);
1733 EmitAlignment(Log2_32(CPSections[i].Alignment));
1734 CurSection = CPSections[i].S;
1735 Offset = 0;
1738 MachineConstantPoolEntry CPE = CP[CPI];
1740 // Emit inter-object padding for alignment.
1741 unsigned AlignMask = CPE.getAlignment() - 1;
1742 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1743 OutStreamer->EmitZeros(NewOffset - Offset);
1745 Type *Ty = CPE.getType();
1746 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1748 OutStreamer->EmitLabel(Sym);
1749 if (CPE.isMachineConstantPoolEntry())
1750 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1751 else
1752 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1757 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1758 /// by the current function to the current output stream.
1759 void AsmPrinter::EmitJumpTableInfo() {
1760 const DataLayout &DL = MF->getDataLayout();
1761 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1762 if (!MJTI) return;
1763 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1764 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1765 if (JT.empty()) return;
1767 // Pick the directive to use to print the jump table entries, and switch to
1768 // the appropriate section.
1769 const Function &F = MF->getFunction();
1770 const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1771 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1772 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1774 if (JTInDiffSection) {
1775 // Drop it in the readonly section.
1776 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
1777 OutStreamer->SwitchSection(ReadOnlySection);
1780 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL)));
1782 // Jump tables in code sections are marked with a data_region directive
1783 // where that's supported.
1784 if (!JTInDiffSection)
1785 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
1787 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1788 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1790 // If this jump table was deleted, ignore it.
1791 if (JTBBs.empty()) continue;
1793 // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1794 /// emit a .set directive for each unique entry.
1795 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1796 MAI->doesSetDirectiveSuppressReloc()) {
1797 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1798 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1799 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1800 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1801 const MachineBasicBlock *MBB = JTBBs[ii];
1802 if (!EmittedSets.insert(MBB).second)
1803 continue;
1805 // .set LJTSet, LBB32-base
1806 const MCExpr *LHS =
1807 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1808 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1809 MCBinaryExpr::createSub(LHS, Base,
1810 OutContext));
1814 // On some targets (e.g. Darwin) we want to emit two consecutive labels
1815 // before each jump table. The first label is never referenced, but tells
1816 // the assembler and linker the extents of the jump table object. The
1817 // second label is actually referenced by the code.
1818 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
1819 // FIXME: This doesn't have to have any specific name, just any randomly
1820 // named and numbered 'l' label would work. Simplify GetJTISymbol.
1821 OutStreamer->EmitLabel(GetJTISymbol(JTI, true));
1823 OutStreamer->EmitLabel(GetJTISymbol(JTI));
1825 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1826 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1828 if (!JTInDiffSection)
1829 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1832 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1833 /// current stream.
1834 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1835 const MachineBasicBlock *MBB,
1836 unsigned UID) const {
1837 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1838 const MCExpr *Value = nullptr;
1839 switch (MJTI->getEntryKind()) {
1840 case MachineJumpTableInfo::EK_Inline:
1841 llvm_unreachable("Cannot emit EK_Inline jump table entry");
1842 case MachineJumpTableInfo::EK_Custom32:
1843 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1844 MJTI, MBB, UID, OutContext);
1845 break;
1846 case MachineJumpTableInfo::EK_BlockAddress:
1847 // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1848 // .word LBB123
1849 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1850 break;
1851 case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1852 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1853 // with a relocation as gp-relative, e.g.:
1854 // .gprel32 LBB123
1855 MCSymbol *MBBSym = MBB->getSymbol();
1856 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1857 return;
1860 case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1861 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1862 // with a relocation as gp-relative, e.g.:
1863 // .gpdword LBB123
1864 MCSymbol *MBBSym = MBB->getSymbol();
1865 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1866 return;
1869 case MachineJumpTableInfo::EK_LabelDifference32: {
1870 // Each entry is the address of the block minus the address of the jump
1871 // table. This is used for PIC jump tables where gprel32 is not supported.
1872 // e.g.:
1873 // .word LBB123 - LJTI1_2
1874 // If the .set directive avoids relocations, this is emitted as:
1875 // .set L4_5_set_123, LBB123 - LJTI1_2
1876 // .word L4_5_set_123
1877 if (MAI->doesSetDirectiveSuppressReloc()) {
1878 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
1879 OutContext);
1880 break;
1882 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1883 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1884 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
1885 Value = MCBinaryExpr::createSub(Value, Base, OutContext);
1886 break;
1890 assert(Value && "Unknown entry kind!");
1892 unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
1893 OutStreamer->EmitValue(Value, EntrySize);
1896 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1897 /// special global used by LLVM. If so, emit it and return true, otherwise
1898 /// do nothing and return false.
1899 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1900 if (GV->getName() == "llvm.used") {
1901 if (MAI->hasNoDeadStrip()) // No need to emit this at all.
1902 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1903 return true;
1906 // Ignore debug and non-emitted data. This handles llvm.compiler.used.
1907 if (GV->getSection() == "llvm.metadata" ||
1908 GV->hasAvailableExternallyLinkage())
1909 return true;
1911 if (!GV->hasAppendingLinkage()) return false;
1913 assert(GV->hasInitializer() && "Not a special LLVM global!");
1915 if (GV->getName() == "llvm.global_ctors") {
1916 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1917 /* isCtor */ true);
1919 return true;
1922 if (GV->getName() == "llvm.global_dtors") {
1923 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1924 /* isCtor */ false);
1926 return true;
1929 report_fatal_error("unknown special variable");
1932 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1933 /// global in the specified llvm.used list.
1934 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1935 // Should be an array of 'i8*'.
1936 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1937 const GlobalValue *GV =
1938 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1939 if (GV)
1940 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
1944 namespace {
1946 struct Structor {
1947 int Priority = 0;
1948 Constant *Func = nullptr;
1949 GlobalValue *ComdatKey = nullptr;
1951 Structor() = default;
1954 } // end anonymous namespace
1956 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1957 /// priority.
1958 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List,
1959 bool isCtor) {
1960 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is the
1961 // init priority.
1962 if (!isa<ConstantArray>(List)) return;
1964 // Sanity check the structors list.
1965 const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1966 if (!InitList) return; // Not an array!
1967 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1968 if (!ETy || ETy->getNumElements() != 3 ||
1969 !isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1970 !isa<PointerType>(ETy->getTypeAtIndex(1U)) ||
1971 !isa<PointerType>(ETy->getTypeAtIndex(2U)))
1972 return; // Not (int, ptr, ptr).
1974 // Gather the structors in a form that's convenient for sorting by priority.
1975 SmallVector<Structor, 8> Structors;
1976 for (Value *O : InitList->operands()) {
1977 ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
1978 if (!CS) continue; // Malformed.
1979 if (CS->getOperand(1)->isNullValue())
1980 break; // Found a null terminator, skip the rest.
1981 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1982 if (!Priority) continue; // Malformed.
1983 Structors.push_back(Structor());
1984 Structor &S = Structors.back();
1985 S.Priority = Priority->getLimitedValue(65535);
1986 S.Func = CS->getOperand(1);
1987 if (!CS->getOperand(2)->isNullValue())
1988 S.ComdatKey =
1989 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
1992 // Emit the function pointers in the target-specific order
1993 unsigned Align = Log2_32(DL.getPointerPrefAlignment());
1994 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) {
1995 return L.Priority < R.Priority;
1997 for (Structor &S : Structors) {
1998 const TargetLoweringObjectFile &Obj = getObjFileLowering();
1999 const MCSymbol *KeySym = nullptr;
2000 if (GlobalValue *GV = S.ComdatKey) {
2001 if (GV->isDeclarationForLinker())
2002 // If the associated variable is not defined in this module
2003 // (it might be available_externally, or have been an
2004 // available_externally definition that was dropped by the
2005 // EliminateAvailableExternally pass), some other TU
2006 // will provide its dynamic initializer.
2007 continue;
2009 KeySym = getSymbol(GV);
2011 MCSection *OutputSection =
2012 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
2013 : Obj.getStaticDtorSection(S.Priority, KeySym));
2014 OutStreamer->SwitchSection(OutputSection);
2015 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
2016 EmitAlignment(Align);
2017 EmitXXStructor(DL, S.Func);
2021 void AsmPrinter::EmitModuleIdents(Module &M) {
2022 if (!MAI->hasIdentDirective())
2023 return;
2025 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2026 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2027 const MDNode *N = NMD->getOperand(i);
2028 assert(N->getNumOperands() == 1 &&
2029 "llvm.ident metadata entry can have only one operand");
2030 const MDString *S = cast<MDString>(N->getOperand(0));
2031 OutStreamer->EmitIdent(S->getString());
2036 void AsmPrinter::EmitModuleCommandLines(Module &M) {
2037 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
2038 if (!CommandLine)
2039 return;
2041 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
2042 if (!NMD || !NMD->getNumOperands())
2043 return;
2045 OutStreamer->PushSection();
2046 OutStreamer->SwitchSection(CommandLine);
2047 OutStreamer->EmitZeros(1);
2048 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2049 const MDNode *N = NMD->getOperand(i);
2050 assert(N->getNumOperands() == 1 &&
2051 "llvm.commandline metadata entry can have only one operand");
2052 const MDString *S = cast<MDString>(N->getOperand(0));
2053 OutStreamer->EmitBytes(S->getString());
2054 OutStreamer->EmitZeros(1);
2056 OutStreamer->PopSection();
2059 //===--------------------------------------------------------------------===//
2060 // Emission and print routines
2063 /// Emit a byte directive and value.
2065 void AsmPrinter::emitInt8(int Value) const {
2066 OutStreamer->EmitIntValue(Value, 1);
2069 /// Emit a short directive and value.
2070 void AsmPrinter::emitInt16(int Value) const {
2071 OutStreamer->EmitIntValue(Value, 2);
2074 /// Emit a long directive and value.
2075 void AsmPrinter::emitInt32(int Value) const {
2076 OutStreamer->EmitIntValue(Value, 4);
2079 /// Emit a long long directive and value.
2080 void AsmPrinter::emitInt64(uint64_t Value) const {
2081 OutStreamer->EmitIntValue(Value, 8);
2084 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2085 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2086 /// .set if it avoids relocations.
2087 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2088 unsigned Size) const {
2089 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2092 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2093 /// where the size in bytes of the directive is specified by Size and Label
2094 /// specifies the label. This implicitly uses .set if it is available.
2095 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2096 unsigned Size,
2097 bool IsSectionRelative) const {
2098 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2099 OutStreamer->EmitCOFFSecRel32(Label, Offset);
2100 if (Size > 4)
2101 OutStreamer->EmitZeros(Size - 4);
2102 return;
2105 // Emit Label+Offset (or just Label if Offset is zero)
2106 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2107 if (Offset)
2108 Expr = MCBinaryExpr::createAdd(
2109 Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2111 OutStreamer->EmitValue(Expr, Size);
2114 //===----------------------------------------------------------------------===//
2116 // EmitAlignment - Emit an alignment directive to the specified power of
2117 // two boundary. For example, if you pass in 3 here, you will get an 8
2118 // byte alignment. If a global value is specified, and if that global has
2119 // an explicit alignment requested, it will override the alignment request
2120 // if required for correctness.
2121 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const {
2122 if (GV)
2123 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits);
2125 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment.
2127 assert(NumBits <
2128 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
2129 "undefined behavior");
2130 if (getCurrentSection()->getKind().isText())
2131 OutStreamer->EmitCodeAlignment(1u << NumBits);
2132 else
2133 OutStreamer->EmitValueToAlignment(1u << NumBits);
2136 //===----------------------------------------------------------------------===//
2137 // Constant emission.
2138 //===----------------------------------------------------------------------===//
2140 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2141 MCContext &Ctx = OutContext;
2143 if (CV->isNullValue() || isa<UndefValue>(CV))
2144 return MCConstantExpr::create(0, Ctx);
2146 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2147 return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2149 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2150 return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2152 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2153 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2155 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2156 if (!CE) {
2157 llvm_unreachable("Unknown constant value to lower!");
2160 switch (CE->getOpcode()) {
2161 default:
2162 // If the code isn't optimized, there may be outstanding folding
2163 // opportunities. Attempt to fold the expression using DataLayout as a
2164 // last resort before giving up.
2165 if (Constant *C = ConstantFoldConstant(CE, getDataLayout()))
2166 if (C != CE)
2167 return lowerConstant(C);
2169 // Otherwise report the problem to the user.
2171 std::string S;
2172 raw_string_ostream OS(S);
2173 OS << "Unsupported expression in static initializer: ";
2174 CE->printAsOperand(OS, /*PrintType=*/false,
2175 !MF ? nullptr : MF->getFunction().getParent());
2176 report_fatal_error(OS.str());
2178 case Instruction::GetElementPtr: {
2179 // Generate a symbolic expression for the byte address
2180 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2181 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2183 const MCExpr *Base = lowerConstant(CE->getOperand(0));
2184 if (!OffsetAI)
2185 return Base;
2187 int64_t Offset = OffsetAI.getSExtValue();
2188 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2189 Ctx);
2192 case Instruction::Trunc:
2193 // We emit the value and depend on the assembler to truncate the generated
2194 // expression properly. This is important for differences between
2195 // blockaddress labels. Since the two labels are in the same function, it
2196 // is reasonable to treat their delta as a 32-bit value.
2197 LLVM_FALLTHROUGH;
2198 case Instruction::BitCast:
2199 return lowerConstant(CE->getOperand(0));
2201 case Instruction::IntToPtr: {
2202 const DataLayout &DL = getDataLayout();
2204 // Handle casts to pointers by changing them into casts to the appropriate
2205 // integer type. This promotes constant folding and simplifies this code.
2206 Constant *Op = CE->getOperand(0);
2207 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2208 false/*ZExt*/);
2209 return lowerConstant(Op);
2212 case Instruction::PtrToInt: {
2213 const DataLayout &DL = getDataLayout();
2215 // Support only foldable casts to/from pointers that can be eliminated by
2216 // changing the pointer to the appropriately sized integer type.
2217 Constant *Op = CE->getOperand(0);
2218 Type *Ty = CE->getType();
2220 const MCExpr *OpExpr = lowerConstant(Op);
2222 // We can emit the pointer value into this slot if the slot is an
2223 // integer slot equal to the size of the pointer.
2225 // If the pointer is larger than the resultant integer, then
2226 // as with Trunc just depend on the assembler to truncate it.
2227 if (DL.getTypeAllocSize(Ty) <= DL.getTypeAllocSize(Op->getType()))
2228 return OpExpr;
2230 // Otherwise the pointer is smaller than the resultant integer, mask off
2231 // the high bits so we are sure to get a proper truncation if the input is
2232 // a constant expr.
2233 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2234 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2235 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2238 case Instruction::Sub: {
2239 GlobalValue *LHSGV;
2240 APInt LHSOffset;
2241 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2242 getDataLayout())) {
2243 GlobalValue *RHSGV;
2244 APInt RHSOffset;
2245 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2246 getDataLayout())) {
2247 const MCExpr *RelocExpr =
2248 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2249 if (!RelocExpr)
2250 RelocExpr = MCBinaryExpr::createSub(
2251 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
2252 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2253 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2254 if (Addend != 0)
2255 RelocExpr = MCBinaryExpr::createAdd(
2256 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2257 return RelocExpr;
2261 // else fallthrough
2262 LLVM_FALLTHROUGH;
2264 // The MC library also has a right-shift operator, but it isn't consistently
2265 // signed or unsigned between different targets.
2266 case Instruction::Add:
2267 case Instruction::Mul:
2268 case Instruction::SDiv:
2269 case Instruction::SRem:
2270 case Instruction::Shl:
2271 case Instruction::And:
2272 case Instruction::Or:
2273 case Instruction::Xor: {
2274 const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2275 const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2276 switch (CE->getOpcode()) {
2277 default: llvm_unreachable("Unknown binary operator constant cast expr");
2278 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2279 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2280 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2281 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2282 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2283 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2284 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2285 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2286 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2292 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2293 AsmPrinter &AP,
2294 const Constant *BaseCV = nullptr,
2295 uint64_t Offset = 0);
2297 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2298 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2300 /// isRepeatedByteSequence - Determine whether the given value is
2301 /// composed of a repeated sequence of identical bytes and return the
2302 /// byte value. If it is not a repeated sequence, return -1.
2303 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2304 StringRef Data = V->getRawDataValues();
2305 assert(!Data.empty() && "Empty aggregates should be CAZ node");
2306 char C = Data[0];
2307 for (unsigned i = 1, e = Data.size(); i != e; ++i)
2308 if (Data[i] != C) return -1;
2309 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2312 /// isRepeatedByteSequence - Determine whether the given value is
2313 /// composed of a repeated sequence of identical bytes and return the
2314 /// byte value. If it is not a repeated sequence, return -1.
2315 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2316 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2317 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2318 assert(Size % 8 == 0);
2320 // Extend the element to take zero padding into account.
2321 APInt Value = CI->getValue().zextOrSelf(Size);
2322 if (!Value.isSplat(8))
2323 return -1;
2325 return Value.zextOrTrunc(8).getZExtValue();
2327 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2328 // Make sure all array elements are sequences of the same repeated
2329 // byte.
2330 assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2331 Constant *Op0 = CA->getOperand(0);
2332 int Byte = isRepeatedByteSequence(Op0, DL);
2333 if (Byte == -1)
2334 return -1;
2336 // All array elements must be equal.
2337 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2338 if (CA->getOperand(i) != Op0)
2339 return -1;
2340 return Byte;
2343 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2344 return isRepeatedByteSequence(CDS);
2346 return -1;
2349 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2350 const ConstantDataSequential *CDS,
2351 AsmPrinter &AP) {
2352 // See if we can aggregate this into a .fill, if so, emit it as such.
2353 int Value = isRepeatedByteSequence(CDS, DL);
2354 if (Value != -1) {
2355 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2356 // Don't emit a 1-byte object as a .fill.
2357 if (Bytes > 1)
2358 return AP.OutStreamer->emitFill(Bytes, Value);
2361 // If this can be emitted with .ascii/.asciz, emit it as such.
2362 if (CDS->isString())
2363 return AP.OutStreamer->EmitBytes(CDS->getAsString());
2365 // Otherwise, emit the values in successive locations.
2366 unsigned ElementByteSize = CDS->getElementByteSize();
2367 if (isa<IntegerType>(CDS->getElementType())) {
2368 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2369 if (AP.isVerbose())
2370 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2371 CDS->getElementAsInteger(i));
2372 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i),
2373 ElementByteSize);
2375 } else {
2376 Type *ET = CDS->getElementType();
2377 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2378 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2381 unsigned Size = DL.getTypeAllocSize(CDS->getType());
2382 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
2383 CDS->getNumElements();
2384 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2385 if (unsigned Padding = Size - EmittedSize)
2386 AP.OutStreamer->EmitZeros(Padding);
2389 static void emitGlobalConstantArray(const DataLayout &DL,
2390 const ConstantArray *CA, AsmPrinter &AP,
2391 const Constant *BaseCV, uint64_t Offset) {
2392 // See if we can aggregate some values. Make sure it can be
2393 // represented as a series of bytes of the constant value.
2394 int Value = isRepeatedByteSequence(CA, DL);
2396 if (Value != -1) {
2397 uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2398 AP.OutStreamer->emitFill(Bytes, Value);
2400 else {
2401 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2402 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2403 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2408 static void emitGlobalConstantVector(const DataLayout &DL,
2409 const ConstantVector *CV, AsmPrinter &AP) {
2410 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2411 emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2413 unsigned Size = DL.getTypeAllocSize(CV->getType());
2414 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2415 CV->getType()->getNumElements();
2416 if (unsigned Padding = Size - EmittedSize)
2417 AP.OutStreamer->EmitZeros(Padding);
2420 static void emitGlobalConstantStruct(const DataLayout &DL,
2421 const ConstantStruct *CS, AsmPrinter &AP,
2422 const Constant *BaseCV, uint64_t Offset) {
2423 // Print the fields in successive locations. Pad to align if needed!
2424 unsigned Size = DL.getTypeAllocSize(CS->getType());
2425 const StructLayout *Layout = DL.getStructLayout(CS->getType());
2426 uint64_t SizeSoFar = 0;
2427 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2428 const Constant *Field = CS->getOperand(i);
2430 // Print the actual field value.
2431 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2433 // Check if padding is needed and insert one or more 0s.
2434 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2435 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2436 - Layout->getElementOffset(i)) - FieldSize;
2437 SizeSoFar += FieldSize + PadSize;
2439 // Insert padding - this may include padding to increase the size of the
2440 // current field up to the ABI size (if the struct is not packed) as well
2441 // as padding to ensure that the next field starts at the right offset.
2442 AP.OutStreamer->EmitZeros(PadSize);
2444 assert(SizeSoFar == Layout->getSizeInBytes() &&
2445 "Layout of constant struct may be incorrect!");
2448 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2449 APInt API = APF.bitcastToAPInt();
2451 // First print a comment with what we think the original floating-point value
2452 // should have been.
2453 if (AP.isVerbose()) {
2454 SmallString<8> StrVal;
2455 APF.toString(StrVal);
2457 if (ET)
2458 ET->print(AP.OutStreamer->GetCommentOS());
2459 else
2460 AP.OutStreamer->GetCommentOS() << "Printing <null> Type";
2461 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2464 // Now iterate through the APInt chunks, emitting them in endian-correct
2465 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2466 // floats).
2467 unsigned NumBytes = API.getBitWidth() / 8;
2468 unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2469 const uint64_t *p = API.getRawData();
2471 // PPC's long double has odd notions of endianness compared to how LLVM
2472 // handles it: p[0] goes first for *big* endian on PPC.
2473 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2474 int Chunk = API.getNumWords() - 1;
2476 if (TrailingBytes)
2477 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes);
2479 for (; Chunk >= 0; --Chunk)
2480 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2481 } else {
2482 unsigned Chunk;
2483 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2484 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2486 if (TrailingBytes)
2487 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes);
2490 // Emit the tail padding for the long double.
2491 const DataLayout &DL = AP.getDataLayout();
2492 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2495 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2496 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2499 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2500 const DataLayout &DL = AP.getDataLayout();
2501 unsigned BitWidth = CI->getBitWidth();
2503 // Copy the value as we may massage the layout for constants whose bit width
2504 // is not a multiple of 64-bits.
2505 APInt Realigned(CI->getValue());
2506 uint64_t ExtraBits = 0;
2507 unsigned ExtraBitsSize = BitWidth & 63;
2509 if (ExtraBitsSize) {
2510 // The bit width of the data is not a multiple of 64-bits.
2511 // The extra bits are expected to be at the end of the chunk of the memory.
2512 // Little endian:
2513 // * Nothing to be done, just record the extra bits to emit.
2514 // Big endian:
2515 // * Record the extra bits to emit.
2516 // * Realign the raw data to emit the chunks of 64-bits.
2517 if (DL.isBigEndian()) {
2518 // Basically the structure of the raw data is a chunk of 64-bits cells:
2519 // 0 1 BitWidth / 64
2520 // [chunk1][chunk2] ... [chunkN].
2521 // The most significant chunk is chunkN and it should be emitted first.
2522 // However, due to the alignment issue chunkN contains useless bits.
2523 // Realign the chunks so that they contain only useless information:
2524 // ExtraBits 0 1 (BitWidth / 64) - 1
2525 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2526 ExtraBits = Realigned.getRawData()[0] &
2527 (((uint64_t)-1) >> (64 - ExtraBitsSize));
2528 Realigned.lshrInPlace(ExtraBitsSize);
2529 } else
2530 ExtraBits = Realigned.getRawData()[BitWidth / 64];
2533 // We don't expect assemblers to support integer data directives
2534 // for more than 64 bits, so we emit the data in at most 64-bit
2535 // quantities at a time.
2536 const uint64_t *RawData = Realigned.getRawData();
2537 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2538 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2539 AP.OutStreamer->EmitIntValue(Val, 8);
2542 if (ExtraBitsSize) {
2543 // Emit the extra bits after the 64-bits chunks.
2545 // Emit a directive that fills the expected size.
2546 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType());
2547 Size -= (BitWidth / 64) * 8;
2548 assert(Size && Size * 8 >= ExtraBitsSize &&
2549 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2550 == ExtraBits && "Directive too small for extra bits.");
2551 AP.OutStreamer->EmitIntValue(ExtraBits, Size);
2555 /// Transform a not absolute MCExpr containing a reference to a GOT
2556 /// equivalent global, by a target specific GOT pc relative access to the
2557 /// final symbol.
2558 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2559 const Constant *BaseCst,
2560 uint64_t Offset) {
2561 // The global @foo below illustrates a global that uses a got equivalent.
2563 // @bar = global i32 42
2564 // @gotequiv = private unnamed_addr constant i32* @bar
2565 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2566 // i64 ptrtoint (i32* @foo to i64))
2567 // to i32)
2569 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2570 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2571 // form:
2573 // foo = cstexpr, where
2574 // cstexpr := <gotequiv> - "." + <cst>
2575 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2577 // After canonicalization by evaluateAsRelocatable `ME` turns into:
2579 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2580 // gotpcrelcst := <offset from @foo base> + <cst>
2581 MCValue MV;
2582 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2583 return;
2584 const MCSymbolRefExpr *SymA = MV.getSymA();
2585 if (!SymA)
2586 return;
2588 // Check that GOT equivalent symbol is cached.
2589 const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2590 if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2591 return;
2593 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2594 if (!BaseGV)
2595 return;
2597 // Check for a valid base symbol
2598 const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2599 const MCSymbolRefExpr *SymB = MV.getSymB();
2601 if (!SymB || BaseSym != &SymB->getSymbol())
2602 return;
2604 // Make sure to match:
2606 // gotpcrelcst := <offset from @foo base> + <cst>
2608 // If gotpcrelcst is positive it means that we can safely fold the pc rel
2609 // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2610 // if the target knows how to encode it.
2611 int64_t GOTPCRelCst = Offset + MV.getConstant();
2612 if (GOTPCRelCst < 0)
2613 return;
2614 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2615 return;
2617 // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2619 // bar:
2620 // .long 42
2621 // gotequiv:
2622 // .quad bar
2623 // foo:
2624 // .long gotequiv - "." + <cst>
2626 // is replaced by the target specific equivalent to:
2628 // bar:
2629 // .long 42
2630 // foo:
2631 // .long bar@GOTPCREL+<gotpcrelcst>
2632 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2633 const GlobalVariable *GV = Result.first;
2634 int NumUses = (int)Result.second;
2635 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2636 const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2637 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2638 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2640 // Update GOT equivalent usage information
2641 --NumUses;
2642 if (NumUses >= 0)
2643 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2646 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2647 AsmPrinter &AP, const Constant *BaseCV,
2648 uint64_t Offset) {
2649 uint64_t Size = DL.getTypeAllocSize(CV->getType());
2651 // Globals with sub-elements such as combinations of arrays and structs
2652 // are handled recursively by emitGlobalConstantImpl. Keep track of the
2653 // constant symbol base and the current position with BaseCV and Offset.
2654 if (!BaseCV && CV->hasOneUse())
2655 BaseCV = dyn_cast<Constant>(CV->user_back());
2657 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2658 return AP.OutStreamer->EmitZeros(Size);
2660 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2661 switch (Size) {
2662 case 1:
2663 case 2:
2664 case 4:
2665 case 8:
2666 if (AP.isVerbose())
2667 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2668 CI->getZExtValue());
2669 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size);
2670 return;
2671 default:
2672 emitGlobalConstantLargeInt(CI, AP);
2673 return;
2677 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2678 return emitGlobalConstantFP(CFP, AP);
2680 if (isa<ConstantPointerNull>(CV)) {
2681 AP.OutStreamer->EmitIntValue(0, Size);
2682 return;
2685 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2686 return emitGlobalConstantDataSequential(DL, CDS, AP);
2688 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2689 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2691 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2692 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2694 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2695 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2696 // vectors).
2697 if (CE->getOpcode() == Instruction::BitCast)
2698 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2700 if (Size > 8) {
2701 // If the constant expression's size is greater than 64-bits, then we have
2702 // to emit the value in chunks. Try to constant fold the value and emit it
2703 // that way.
2704 Constant *New = ConstantFoldConstant(CE, DL);
2705 if (New && New != CE)
2706 return emitGlobalConstantImpl(DL, New, AP);
2710 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2711 return emitGlobalConstantVector(DL, V, AP);
2713 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it
2714 // thread the streamer with EmitValue.
2715 const MCExpr *ME = AP.lowerConstant(CV);
2717 // Since lowerConstant already folded and got rid of all IR pointer and
2718 // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2719 // directly.
2720 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2721 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2723 AP.OutStreamer->EmitValue(ME, Size);
2726 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2727 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2728 uint64_t Size = DL.getTypeAllocSize(CV->getType());
2729 if (Size)
2730 emitGlobalConstantImpl(DL, CV, *this);
2731 else if (MAI->hasSubsectionsViaSymbols()) {
2732 // If the global has zero size, emit a single byte so that two labels don't
2733 // look like they are at the same location.
2734 OutStreamer->EmitIntValue(0, 1);
2738 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2739 // Target doesn't support this yet!
2740 llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2743 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2744 if (Offset > 0)
2745 OS << '+' << Offset;
2746 else if (Offset < 0)
2747 OS << Offset;
2750 //===----------------------------------------------------------------------===//
2751 // Symbol Lowering Routines.
2752 //===----------------------------------------------------------------------===//
2754 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2755 return OutContext.createTempSymbol(Name, true);
2758 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2759 return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2762 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2763 return MMI->getAddrLabelSymbol(BB);
2766 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
2767 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2768 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) {
2769 const MachineConstantPoolEntry &CPE =
2770 MF->getConstantPool()->getConstants()[CPID];
2771 if (!CPE.isMachineConstantPoolEntry()) {
2772 const DataLayout &DL = MF->getDataLayout();
2773 SectionKind Kind = CPE.getSectionKind(&DL);
2774 const Constant *C = CPE.Val.ConstVal;
2775 unsigned Align = CPE.Alignment;
2776 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
2777 getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) {
2778 if (MCSymbol *Sym = S->getCOMDATSymbol()) {
2779 if (Sym->isUndefined())
2780 OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global);
2781 return Sym;
2787 const DataLayout &DL = getDataLayout();
2788 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2789 "CPI" + Twine(getFunctionNumber()) + "_" +
2790 Twine(CPID));
2793 /// GetJTISymbol - Return the symbol for the specified jump table entry.
2794 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2795 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2798 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2799 /// FIXME: privatize to AsmPrinter.
2800 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2801 const DataLayout &DL = getDataLayout();
2802 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2803 Twine(getFunctionNumber()) + "_" +
2804 Twine(UID) + "_set_" + Twine(MBBID));
2807 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2808 StringRef Suffix) const {
2809 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
2812 /// Return the MCSymbol for the specified ExternalSymbol.
2813 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2814 SmallString<60> NameStr;
2815 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
2816 return OutContext.getOrCreateSymbol(NameStr);
2819 /// PrintParentLoopComment - Print comments about parent loops of this one.
2820 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2821 unsigned FunctionNumber) {
2822 if (!Loop) return;
2823 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2824 OS.indent(Loop->getLoopDepth()*2)
2825 << "Parent Loop BB" << FunctionNumber << "_"
2826 << Loop->getHeader()->getNumber()
2827 << " Depth=" << Loop->getLoopDepth() << '\n';
2830 /// PrintChildLoopComment - Print comments about child loops within
2831 /// the loop for this basic block, with nesting.
2832 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2833 unsigned FunctionNumber) {
2834 // Add child loop information
2835 for (const MachineLoop *CL : *Loop) {
2836 OS.indent(CL->getLoopDepth()*2)
2837 << "Child Loop BB" << FunctionNumber << "_"
2838 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2839 << '\n';
2840 PrintChildLoopComment(OS, CL, FunctionNumber);
2844 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2845 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2846 const MachineLoopInfo *LI,
2847 const AsmPrinter &AP) {
2848 // Add loop depth information
2849 const MachineLoop *Loop = LI->getLoopFor(&MBB);
2850 if (!Loop) return;
2852 MachineBasicBlock *Header = Loop->getHeader();
2853 assert(Header && "No header for loop");
2855 // If this block is not a loop header, just print out what is the loop header
2856 // and return.
2857 if (Header != &MBB) {
2858 AP.OutStreamer->AddComment(" in Loop: Header=BB" +
2859 Twine(AP.getFunctionNumber())+"_" +
2860 Twine(Loop->getHeader()->getNumber())+
2861 " Depth="+Twine(Loop->getLoopDepth()));
2862 return;
2865 // Otherwise, it is a loop header. Print out information about child and
2866 // parent loops.
2867 raw_ostream &OS = AP.OutStreamer->GetCommentOS();
2869 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2871 OS << "=>";
2872 OS.indent(Loop->getLoopDepth()*2-2);
2874 OS << "This ";
2875 if (Loop->empty())
2876 OS << "Inner ";
2877 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2879 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2882 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB,
2883 MCCodePaddingContext &Context) const {
2884 assert(MF != nullptr && "Machine function must be valid");
2885 Context.IsPaddingActive = !MF->hasInlineAsm() &&
2886 !MF->getFunction().hasOptSize() &&
2887 TM.getOptLevel() != CodeGenOpt::None;
2888 Context.IsBasicBlockReachableViaFallthrough =
2889 std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) !=
2890 MBB.pred_end();
2891 Context.IsBasicBlockReachableViaBranch =
2892 MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB);
2895 /// EmitBasicBlockStart - This method prints the label for the specified
2896 /// MachineBasicBlock, an alignment (if present) and a comment describing
2897 /// it if appropriate.
2898 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
2899 // End the previous funclet and start a new one.
2900 if (MBB.isEHFuncletEntry()) {
2901 for (const HandlerInfo &HI : Handlers) {
2902 HI.Handler->endFunclet();
2903 HI.Handler->beginFunclet(MBB);
2907 // Emit an alignment directive for this block, if needed.
2908 if (unsigned Align = MBB.getAlignment())
2909 EmitAlignment(Align);
2910 MCCodePaddingContext Context;
2911 setupCodePaddingContext(MBB, Context);
2912 OutStreamer->EmitCodePaddingBasicBlockStart(Context);
2914 // If the block has its address taken, emit any labels that were used to
2915 // reference the block. It is possible that there is more than one label
2916 // here, because multiple LLVM BB's may have been RAUW'd to this block after
2917 // the references were generated.
2918 if (MBB.hasAddressTaken()) {
2919 const BasicBlock *BB = MBB.getBasicBlock();
2920 if (isVerbose())
2921 OutStreamer->AddComment("Block address taken");
2923 // MBBs can have their address taken as part of CodeGen without having
2924 // their corresponding BB's address taken in IR
2925 if (BB->hasAddressTaken())
2926 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
2927 OutStreamer->EmitLabel(Sym);
2930 // Print some verbose block comments.
2931 if (isVerbose()) {
2932 if (const BasicBlock *BB = MBB.getBasicBlock()) {
2933 if (BB->hasName()) {
2934 BB->printAsOperand(OutStreamer->GetCommentOS(),
2935 /*PrintType=*/false, BB->getModule());
2936 OutStreamer->GetCommentOS() << '\n';
2940 assert(MLI != nullptr && "MachineLoopInfo should has been computed");
2941 emitBasicBlockLoopComments(MBB, MLI, *this);
2944 // Print the main label for the block.
2945 if (MBB.pred_empty() ||
2946 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry() &&
2947 !MBB.hasLabelMustBeEmitted())) {
2948 if (isVerbose()) {
2949 // NOTE: Want this comment at start of line, don't emit with AddComment.
2950 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
2951 false);
2953 } else {
2954 if (isVerbose() && MBB.hasLabelMustBeEmitted())
2955 OutStreamer->AddComment("Label of block must be emitted");
2956 OutStreamer->EmitLabel(MBB.getSymbol());
2960 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) {
2961 MCCodePaddingContext Context;
2962 setupCodePaddingContext(MBB, Context);
2963 OutStreamer->EmitCodePaddingBasicBlockEnd(Context);
2966 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2967 bool IsDefinition) const {
2968 MCSymbolAttr Attr = MCSA_Invalid;
2970 switch (Visibility) {
2971 default: break;
2972 case GlobalValue::HiddenVisibility:
2973 if (IsDefinition)
2974 Attr = MAI->getHiddenVisibilityAttr();
2975 else
2976 Attr = MAI->getHiddenDeclarationVisibilityAttr();
2977 break;
2978 case GlobalValue::ProtectedVisibility:
2979 Attr = MAI->getProtectedVisibilityAttr();
2980 break;
2983 if (Attr != MCSA_Invalid)
2984 OutStreamer->EmitSymbolAttribute(Sym, Attr);
2987 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
2988 /// exactly one predecessor and the control transfer mechanism between
2989 /// the predecessor and this block is a fall-through.
2990 bool AsmPrinter::
2991 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2992 // If this is a landing pad, it isn't a fall through. If it has no preds,
2993 // then nothing falls through to it.
2994 if (MBB->isEHPad() || MBB->pred_empty())
2995 return false;
2997 // If there isn't exactly one predecessor, it can't be a fall through.
2998 if (MBB->pred_size() > 1)
2999 return false;
3001 // The predecessor has to be immediately before this block.
3002 MachineBasicBlock *Pred = *MBB->pred_begin();
3003 if (!Pred->isLayoutSuccessor(MBB))
3004 return false;
3006 // If the block is completely empty, then it definitely does fall through.
3007 if (Pred->empty())
3008 return true;
3010 // Check the terminators in the previous blocks
3011 for (const auto &MI : Pred->terminators()) {
3012 // If it is not a simple branch, we are in a table somewhere.
3013 if (!MI.isBranch() || MI.isIndirectBranch())
3014 return false;
3016 // If we are the operands of one of the branches, this is not a fall
3017 // through. Note that targets with delay slots will usually bundle
3018 // terminators with the delay slot instruction.
3019 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
3020 if (OP->isJTI())
3021 return false;
3022 if (OP->isMBB() && OP->getMBB() == MBB)
3023 return false;
3027 return true;
3030 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
3031 if (!S.usesMetadata())
3032 return nullptr;
3034 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
3035 gcp_map_type::iterator GCPI = GCMap.find(&S);
3036 if (GCPI != GCMap.end())
3037 return GCPI->second.get();
3039 auto Name = S.getName();
3041 for (GCMetadataPrinterRegistry::iterator
3042 I = GCMetadataPrinterRegistry::begin(),
3043 E = GCMetadataPrinterRegistry::end(); I != E; ++I)
3044 if (Name == I->getName()) {
3045 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
3046 GMP->S = &S;
3047 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
3048 return IterBool.first->second.get();
3051 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
3054 void AsmPrinter::emitStackMaps(StackMaps &SM) {
3055 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
3056 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
3057 bool NeedsDefault = false;
3058 if (MI->begin() == MI->end())
3059 // No GC strategy, use the default format.
3060 NeedsDefault = true;
3061 else
3062 for (auto &I : *MI) {
3063 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
3064 if (MP->emitStackMaps(SM, *this))
3065 continue;
3066 // The strategy doesn't have printer or doesn't emit custom stack maps.
3067 // Use the default format.
3068 NeedsDefault = true;
3071 if (NeedsDefault)
3072 SM.serializeToStackMapSection();
3075 /// Pin vtable to this file.
3076 AsmPrinterHandler::~AsmPrinterHandler() = default;
3078 void AsmPrinterHandler::markFunctionEnd() {}
3080 // In the binary's "xray_instr_map" section, an array of these function entries
3081 // describes each instrumentation point. When XRay patches your code, the index
3082 // into this table will be given to your handler as a patch point identifier.
3083 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out,
3084 const MCSymbol *CurrentFnSym) const {
3085 Out->EmitSymbolValue(Sled, Bytes);
3086 Out->EmitSymbolValue(CurrentFnSym, Bytes);
3087 auto Kind8 = static_cast<uint8_t>(Kind);
3088 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3089 Out->EmitBinaryData(
3090 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3091 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3092 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3093 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3094 Out->EmitZeros(Padding);
3097 void AsmPrinter::emitXRayTable() {
3098 if (Sleds.empty())
3099 return;
3101 auto PrevSection = OutStreamer->getCurrentSectionOnly();
3102 const Function &F = MF->getFunction();
3103 MCSection *InstMap = nullptr;
3104 MCSection *FnSledIndex = nullptr;
3105 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) {
3106 auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym);
3107 assert(Associated != nullptr);
3108 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3109 std::string GroupName;
3110 if (F.hasComdat()) {
3111 Flags |= ELF::SHF_GROUP;
3112 GroupName = F.getComdat()->getName();
3115 auto UniqueID = ++XRayFnUniqueID;
3116 InstMap =
3117 OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0,
3118 GroupName, UniqueID, Associated);
3119 FnSledIndex =
3120 OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0,
3121 GroupName, UniqueID, Associated);
3122 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3123 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3124 SectionKind::getReadOnlyWithRel());
3125 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0,
3126 SectionKind::getReadOnlyWithRel());
3127 } else {
3128 llvm_unreachable("Unsupported target");
3131 auto WordSizeBytes = MAI->getCodePointerSize();
3133 // Now we switch to the instrumentation map section. Because this is done
3134 // per-function, we are able to create an index entry that will represent the
3135 // range of sleds associated with a function.
3136 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3137 OutStreamer->SwitchSection(InstMap);
3138 OutStreamer->EmitLabel(SledsStart);
3139 for (const auto &Sled : Sleds)
3140 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym);
3141 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3142 OutStreamer->EmitLabel(SledsEnd);
3144 // We then emit a single entry in the index per function. We use the symbols
3145 // that bound the instrumentation map as the range for a specific function.
3146 // Each entry here will be 2 * word size aligned, as we're writing down two
3147 // pointers. This should work for both 32-bit and 64-bit platforms.
3148 OutStreamer->SwitchSection(FnSledIndex);
3149 OutStreamer->EmitCodeAlignment(2 * WordSizeBytes);
3150 OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false);
3151 OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false);
3152 OutStreamer->SwitchSection(PrevSection);
3153 Sleds.clear();
3156 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3157 SledKind Kind, uint8_t Version) {
3158 const Function &F = MI.getMF()->getFunction();
3159 auto Attr = F.getFnAttribute("function-instrument");
3160 bool LogArgs = F.hasFnAttribute("xray-log-args");
3161 bool AlwaysInstrument =
3162 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3163 if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3164 Kind = SledKind::LOG_ARGS_ENTER;
3165 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3166 AlwaysInstrument, &F, Version});
3169 uint16_t AsmPrinter::getDwarfVersion() const {
3170 return OutStreamer->getContext().getDwarfVersion();
3173 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3174 OutStreamer->getContext().setDwarfVersion(Version);