1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the AsmPrinter class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "WasmException.h"
18 #include "WinCFGuard.h"
19 #include "WinException.h"
20 #include "llvm/ADT/APFloat.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/BinaryFormat/COFF.h"
35 #include "llvm/BinaryFormat/Dwarf.h"
36 #include "llvm/BinaryFormat/ELF.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/GCMetadataPrinter.h"
39 #include "llvm/CodeGen/GCStrategy.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineConstantPool.h"
42 #include "llvm/CodeGen/MachineDominators.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBundle.h"
48 #include "llvm/CodeGen/MachineJumpTableInfo.h"
49 #include "llvm/CodeGen/MachineLoopInfo.h"
50 #include "llvm/CodeGen/MachineMemOperand.h"
51 #include "llvm/CodeGen/MachineModuleInfo.h"
52 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
55 #include "llvm/CodeGen/StackMaps.h"
56 #include "llvm/CodeGen/TargetFrameLowering.h"
57 #include "llvm/CodeGen/TargetInstrInfo.h"
58 #include "llvm/CodeGen/TargetLowering.h"
59 #include "llvm/CodeGen/TargetOpcodes.h"
60 #include "llvm/CodeGen/TargetRegisterInfo.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/Comdat.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfoMetadata.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/GlobalAlias.h"
70 #include "llvm/IR/GlobalIFunc.h"
71 #include "llvm/IR/GlobalIndirectSymbol.h"
72 #include "llvm/IR/GlobalObject.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/Instruction.h"
76 #include "llvm/IR/Mangler.h"
77 #include "llvm/IR/Metadata.h"
78 #include "llvm/IR/Module.h"
79 #include "llvm/IR/Operator.h"
80 #include "llvm/IR/RemarkStreamer.h"
81 #include "llvm/IR/Type.h"
82 #include "llvm/IR/Value.h"
83 #include "llvm/MC/MCAsmInfo.h"
84 #include "llvm/MC/MCCodePadder.h"
85 #include "llvm/MC/MCContext.h"
86 #include "llvm/MC/MCDirectives.h"
87 #include "llvm/MC/MCDwarf.h"
88 #include "llvm/MC/MCExpr.h"
89 #include "llvm/MC/MCInst.h"
90 #include "llvm/MC/MCSection.h"
91 #include "llvm/MC/MCSectionCOFF.h"
92 #include "llvm/MC/MCSectionELF.h"
93 #include "llvm/MC/MCSectionMachO.h"
94 #include "llvm/MC/MCStreamer.h"
95 #include "llvm/MC/MCSubtargetInfo.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/MC/MCSymbolELF.h"
98 #include "llvm/MC/MCTargetOptions.h"
99 #include "llvm/MC/MCValue.h"
100 #include "llvm/MC/SectionKind.h"
101 #include "llvm/Pass.h"
102 #include "llvm/Remarks/Remark.h"
103 #include "llvm/Remarks/RemarkFormat.h"
104 #include "llvm/Remarks/RemarkStringTable.h"
105 #include "llvm/Support/Casting.h"
106 #include "llvm/Support/CommandLine.h"
107 #include "llvm/Support/Compiler.h"
108 #include "llvm/Support/ErrorHandling.h"
109 #include "llvm/Support/Format.h"
110 #include "llvm/Support/MathExtras.h"
111 #include "llvm/Support/Path.h"
112 #include "llvm/Support/TargetRegistry.h"
113 #include "llvm/Support/Timer.h"
114 #include "llvm/Support/raw_ostream.h"
115 #include "llvm/Target/TargetLoweringObjectFile.h"
116 #include "llvm/Target/TargetMachine.h"
117 #include "llvm/Target/TargetOptions.h"
129 using namespace llvm
;
131 #define DEBUG_TYPE "asm-printer"
133 static const char *const DWARFGroupName
= "dwarf";
134 static const char *const DWARFGroupDescription
= "DWARF Emission";
135 static const char *const DbgTimerName
= "emit";
136 static const char *const DbgTimerDescription
= "Debug Info Emission";
137 static const char *const EHTimerName
= "write_exception";
138 static const char *const EHTimerDescription
= "DWARF Exception Writer";
139 static const char *const CFGuardName
= "Control Flow Guard";
140 static const char *const CFGuardDescription
= "Control Flow Guard Tables";
141 static const char *const CodeViewLineTablesGroupName
= "linetables";
142 static const char *const CodeViewLineTablesGroupDescription
=
143 "CodeView Line Tables";
145 STATISTIC(EmittedInsts
, "Number of machine instrs printed");
147 static cl::opt
<bool> EnableRemarksSection(
149 cl::desc("Emit a section containing remark diagnostics metadata"),
152 char AsmPrinter::ID
= 0;
154 using gcp_map_type
= DenseMap
<GCStrategy
*, std::unique_ptr
<GCMetadataPrinter
>>;
156 static gcp_map_type
&getGCMap(void *&P
) {
158 P
= new gcp_map_type();
159 return *(gcp_map_type
*)P
;
162 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
163 /// value in log2 form. This rounds up to the preferred alignment if possible
165 static unsigned getGVAlignmentLog2(const GlobalValue
*GV
, const DataLayout
&DL
,
166 unsigned InBits
= 0) {
167 unsigned NumBits
= 0;
168 if (const GlobalVariable
*GVar
= dyn_cast
<GlobalVariable
>(GV
))
169 NumBits
= DL
.getPreferredAlignmentLog(GVar
);
171 // If InBits is specified, round it to it.
172 if (InBits
> NumBits
)
175 // If the GV has a specified alignment, take it into account.
176 if (GV
->getAlignment() == 0)
179 unsigned GVAlign
= Log2_32(GV
->getAlignment());
181 // If the GVAlign is larger than NumBits, or if we are required to obey
182 // NumBits because the GV has an assigned section, obey it.
183 if (GVAlign
> NumBits
|| GV
->hasSection())
188 AsmPrinter::AsmPrinter(TargetMachine
&tm
, std::unique_ptr
<MCStreamer
> Streamer
)
189 : MachineFunctionPass(ID
), TM(tm
), MAI(tm
.getMCAsmInfo()),
190 OutContext(Streamer
->getContext()), OutStreamer(std::move(Streamer
)) {
191 VerboseAsm
= OutStreamer
->isVerboseAsm();
194 AsmPrinter::~AsmPrinter() {
195 assert(!DD
&& Handlers
.empty() && "Debug/EH info didn't get finalized");
197 if (GCMetadataPrinters
) {
198 gcp_map_type
&GCMap
= getGCMap(GCMetadataPrinters
);
201 GCMetadataPrinters
= nullptr;
205 bool AsmPrinter::isPositionIndependent() const {
206 return TM
.isPositionIndependent();
209 /// getFunctionNumber - Return a unique ID for the current function.
210 unsigned AsmPrinter::getFunctionNumber() const {
211 return MF
->getFunctionNumber();
214 const TargetLoweringObjectFile
&AsmPrinter::getObjFileLowering() const {
215 return *TM
.getObjFileLowering();
218 const DataLayout
&AsmPrinter::getDataLayout() const {
219 return MMI
->getModule()->getDataLayout();
222 // Do not use the cached DataLayout because some client use it without a Module
223 // (dsymutil, llvm-dwarfdump).
224 unsigned AsmPrinter::getPointerSize() const {
225 return TM
.getPointerSize(0); // FIXME: Default address space
228 const MCSubtargetInfo
&AsmPrinter::getSubtargetInfo() const {
229 assert(MF
&& "getSubtargetInfo requires a valid MachineFunction!");
230 return MF
->getSubtarget
<MCSubtargetInfo
>();
233 void AsmPrinter::EmitToStreamer(MCStreamer
&S
, const MCInst
&Inst
) {
234 S
.EmitInstruction(Inst
, getSubtargetInfo());
237 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction
&MF
) {
238 assert(DD
&& "Dwarf debug file is not defined.");
239 assert(OutStreamer
->hasRawTextSupport() && "Expected assembly output mode.");
240 (void)DD
->emitInitialLocDirective(MF
, /*CUID=*/0);
243 /// getCurrentSection() - Return the current section we are emitting to.
244 const MCSection
*AsmPrinter::getCurrentSection() const {
245 return OutStreamer
->getCurrentSectionOnly();
248 void AsmPrinter::getAnalysisUsage(AnalysisUsage
&AU
) const {
249 AU
.setPreservesAll();
250 MachineFunctionPass::getAnalysisUsage(AU
);
251 AU
.addRequired
<MachineModuleInfo
>();
252 AU
.addRequired
<MachineOptimizationRemarkEmitterPass
>();
253 AU
.addRequired
<GCModuleInfo
>();
256 bool AsmPrinter::doInitialization(Module
&M
) {
257 MMI
= getAnalysisIfAvailable
<MachineModuleInfo
>();
259 // Initialize TargetLoweringObjectFile.
260 const_cast<TargetLoweringObjectFile
&>(getObjFileLowering())
261 .Initialize(OutContext
, TM
);
263 const_cast<TargetLoweringObjectFile
&>(getObjFileLowering())
264 .getModuleMetadata(M
);
266 OutStreamer
->InitSections(false);
268 // Emit the version-min deployment target directive if needed.
270 // FIXME: If we end up with a collection of these sorts of Darwin-specific
271 // or ELF-specific things, it may make sense to have a platform helper class
272 // that will work with the target helper class. For now keep it here, as the
273 // alternative is duplicated code in each of the target asm printers that
274 // use the directive, where it would need the same conditionalization
276 const Triple
&Target
= TM
.getTargetTriple();
277 OutStreamer
->EmitVersionForTarget(Target
, M
.getSDKVersion());
279 // Allow the target to emit any magic that it wants at the start of the file.
280 EmitStartOfAsmFile(M
);
282 // Very minimal debug info. It is ignored if we emit actual debug info. If we
283 // don't, this at least helps the user find where a global came from.
284 if (MAI
->hasSingleParameterDotFile()) {
286 OutStreamer
->EmitFileDirective(
287 llvm::sys::path::filename(M
.getSourceFileName()));
290 GCModuleInfo
*MI
= getAnalysisIfAvailable
<GCModuleInfo
>();
291 assert(MI
&& "AsmPrinter didn't require GCModuleInfo?");
293 if (GCMetadataPrinter
*MP
= GetOrCreateGCPrinter(*I
))
294 MP
->beginAssembly(M
, *MI
, *this);
296 // Emit module-level inline asm if it exists.
297 if (!M
.getModuleInlineAsm().empty()) {
298 // We're at the module level. Construct MCSubtarget from the default CPU
299 // and target triple.
300 std::unique_ptr
<MCSubtargetInfo
> STI(TM
.getTarget().createMCSubtargetInfo(
301 TM
.getTargetTriple().str(), TM
.getTargetCPU(),
302 TM
.getTargetFeatureString()));
303 OutStreamer
->AddComment("Start of file scope inline assembly");
304 OutStreamer
->AddBlankLine();
305 EmitInlineAsm(M
.getModuleInlineAsm()+"\n",
306 OutContext
.getSubtargetCopy(*STI
), TM
.Options
.MCOptions
);
307 OutStreamer
->AddComment("End of file scope inline assembly");
308 OutStreamer
->AddBlankLine();
311 if (MAI
->doesSupportDebugInformation()) {
312 bool EmitCodeView
= MMI
->getModule()->getCodeViewFlag();
313 if (EmitCodeView
&& TM
.getTargetTriple().isOSWindows()) {
314 Handlers
.emplace_back(llvm::make_unique
<CodeViewDebug
>(this),
315 DbgTimerName
, DbgTimerDescription
,
316 CodeViewLineTablesGroupName
,
317 CodeViewLineTablesGroupDescription
);
319 if (!EmitCodeView
|| MMI
->getModule()->getDwarfVersion()) {
320 DD
= new DwarfDebug(this, &M
);
322 Handlers
.emplace_back(std::unique_ptr
<DwarfDebug
>(DD
), DbgTimerName
,
323 DbgTimerDescription
, DWARFGroupName
,
324 DWARFGroupDescription
);
328 switch (MAI
->getExceptionHandlingType()) {
329 case ExceptionHandling::SjLj
:
330 case ExceptionHandling::DwarfCFI
:
331 case ExceptionHandling::ARM
:
332 isCFIMoveForDebugging
= true;
333 if (MAI
->getExceptionHandlingType() != ExceptionHandling::DwarfCFI
)
335 for (auto &F
: M
.getFunctionList()) {
336 // If the module contains any function with unwind data,
337 // .eh_frame has to be emitted.
338 // Ignore functions that won't get emitted.
339 if (!F
.isDeclarationForLinker() && F
.needsUnwindTableEntry()) {
340 isCFIMoveForDebugging
= false;
346 isCFIMoveForDebugging
= false;
350 EHStreamer
*ES
= nullptr;
351 switch (MAI
->getExceptionHandlingType()) {
352 case ExceptionHandling::None
:
354 case ExceptionHandling::SjLj
:
355 case ExceptionHandling::DwarfCFI
:
356 ES
= new DwarfCFIException(this);
358 case ExceptionHandling::ARM
:
359 ES
= new ARMException(this);
361 case ExceptionHandling::WinEH
:
362 switch (MAI
->getWinEHEncodingType()) {
363 default: llvm_unreachable("unsupported unwinding information encoding");
364 case WinEH::EncodingType::Invalid
:
366 case WinEH::EncodingType::X86
:
367 case WinEH::EncodingType::Itanium
:
368 ES
= new WinException(this);
372 case ExceptionHandling::Wasm
:
373 ES
= new WasmException(this);
377 Handlers
.emplace_back(std::unique_ptr
<EHStreamer
>(ES
), EHTimerName
,
378 EHTimerDescription
, DWARFGroupName
,
379 DWARFGroupDescription
);
381 if (mdconst::extract_or_null
<ConstantInt
>(
382 MMI
->getModule()->getModuleFlag("cfguardtable")))
383 Handlers
.emplace_back(llvm::make_unique
<WinCFGuard
>(this), CFGuardName
,
384 CFGuardDescription
, DWARFGroupName
,
385 DWARFGroupDescription
);
390 static bool canBeHidden(const GlobalValue
*GV
, const MCAsmInfo
&MAI
) {
391 if (!MAI
.hasWeakDefCanBeHiddenDirective())
394 return GV
->canBeOmittedFromSymbolTable();
397 void AsmPrinter::EmitLinkage(const GlobalValue
*GV
, MCSymbol
*GVSym
) const {
398 GlobalValue::LinkageTypes Linkage
= GV
->getLinkage();
400 case GlobalValue::CommonLinkage
:
401 case GlobalValue::LinkOnceAnyLinkage
:
402 case GlobalValue::LinkOnceODRLinkage
:
403 case GlobalValue::WeakAnyLinkage
:
404 case GlobalValue::WeakODRLinkage
:
405 if (MAI
->hasWeakDefDirective()) {
407 OutStreamer
->EmitSymbolAttribute(GVSym
, MCSA_Global
);
409 if (!canBeHidden(GV
, *MAI
))
410 // .weak_definition _foo
411 OutStreamer
->EmitSymbolAttribute(GVSym
, MCSA_WeakDefinition
);
413 OutStreamer
->EmitSymbolAttribute(GVSym
, MCSA_WeakDefAutoPrivate
);
414 } else if (MAI
->hasLinkOnceDirective()) {
416 OutStreamer
->EmitSymbolAttribute(GVSym
, MCSA_Global
);
417 //NOTE: linkonce is handled by the section the symbol was assigned to.
420 OutStreamer
->EmitSymbolAttribute(GVSym
, MCSA_Weak
);
423 case GlobalValue::ExternalLinkage
:
424 // If external, declare as a global symbol: .globl _foo
425 OutStreamer
->EmitSymbolAttribute(GVSym
, MCSA_Global
);
427 case GlobalValue::PrivateLinkage
:
428 case GlobalValue::InternalLinkage
:
430 case GlobalValue::AppendingLinkage
:
431 case GlobalValue::AvailableExternallyLinkage
:
432 case GlobalValue::ExternalWeakLinkage
:
433 llvm_unreachable("Should never emit this");
435 llvm_unreachable("Unknown linkage type!");
438 void AsmPrinter::getNameWithPrefix(SmallVectorImpl
<char> &Name
,
439 const GlobalValue
*GV
) const {
440 TM
.getNameWithPrefix(Name
, GV
, getObjFileLowering().getMangler());
443 MCSymbol
*AsmPrinter::getSymbol(const GlobalValue
*GV
) const {
444 return TM
.getSymbol(GV
);
447 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
448 void AsmPrinter::EmitGlobalVariable(const GlobalVariable
*GV
) {
449 bool IsEmuTLSVar
= TM
.useEmulatedTLS() && GV
->isThreadLocal();
450 assert(!(IsEmuTLSVar
&& GV
->hasCommonLinkage()) &&
451 "No emulated TLS variables in the common section");
453 // Never emit TLS variable xyz in emulated TLS model.
454 // The initialization value is in __emutls_t.xyz instead of xyz.
458 if (GV
->hasInitializer()) {
459 // Check to see if this is a special global used by LLVM, if so, emit it.
460 if (EmitSpecialLLVMGlobal(GV
))
463 // Skip the emission of global equivalents. The symbol can be emitted later
464 // on by emitGlobalGOTEquivs in case it turns out to be needed.
465 if (GlobalGOTEquivs
.count(getSymbol(GV
)))
469 // When printing the control variable __emutls_v.*,
470 // we don't need to print the original TLS variable name.
471 GV
->printAsOperand(OutStreamer
->GetCommentOS(),
472 /*PrintType=*/false, GV
->getParent());
473 OutStreamer
->GetCommentOS() << '\n';
477 MCSymbol
*GVSym
= getSymbol(GV
);
478 MCSymbol
*EmittedSym
= GVSym
;
480 // getOrCreateEmuTLSControlSym only creates the symbol with name and default
482 // GV's or GVSym's attributes will be used for the EmittedSym.
483 EmitVisibility(EmittedSym
, GV
->getVisibility(), !GV
->isDeclaration());
485 if (!GV
->hasInitializer()) // External globals require no extra code.
488 GVSym
->redefineIfPossible();
489 if (GVSym
->isDefined() || GVSym
->isVariable())
490 report_fatal_error("symbol '" + Twine(GVSym
->getName()) +
491 "' is already defined");
493 if (MAI
->hasDotTypeDotSizeDirective())
494 OutStreamer
->EmitSymbolAttribute(EmittedSym
, MCSA_ELF_TypeObject
);
496 SectionKind GVKind
= TargetLoweringObjectFile::getKindForGlobal(GV
, TM
);
498 const DataLayout
&DL
= GV
->getParent()->getDataLayout();
499 uint64_t Size
= DL
.getTypeAllocSize(GV
->getValueType());
501 // If the alignment is specified, we *must* obey it. Overaligning a global
502 // with a specified alignment is a prompt way to break globals emitted to
503 // sections and expected to be contiguous (e.g. ObjC metadata).
504 unsigned AlignLog
= getGVAlignmentLog2(GV
, DL
);
506 for (const HandlerInfo
&HI
: Handlers
) {
507 NamedRegionTimer
T(HI
.TimerName
, HI
.TimerDescription
,
508 HI
.TimerGroupName
, HI
.TimerGroupDescription
,
509 TimePassesIsEnabled
);
510 HI
.Handler
->setSymbolSize(GVSym
, Size
);
513 // Handle common symbols
514 if (GVKind
.isCommon()) {
515 if (Size
== 0) Size
= 1; // .comm Foo, 0 is undefined, avoid it.
516 unsigned Align
= 1 << AlignLog
;
517 if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
521 OutStreamer
->EmitCommonSymbol(GVSym
, Size
, Align
);
525 // Determine to which section this global should be emitted.
526 MCSection
*TheSection
= getObjFileLowering().SectionForGlobal(GV
, GVKind
, TM
);
528 // If we have a bss global going to a section that supports the
529 // zerofill directive, do so here.
530 if (GVKind
.isBSS() && MAI
->hasMachoZeroFillDirective() &&
531 TheSection
->isVirtualSection()) {
533 Size
= 1; // zerofill of 0 bytes is undefined.
534 unsigned Align
= 1 << AlignLog
;
535 EmitLinkage(GV
, GVSym
);
536 // .zerofill __DATA, __bss, _foo, 400, 5
537 OutStreamer
->EmitZerofill(TheSection
, GVSym
, Size
, Align
);
541 // If this is a BSS local symbol and we are emitting in the BSS
542 // section use .lcomm/.comm directive.
543 if (GVKind
.isBSSLocal() &&
544 getObjFileLowering().getBSSSection() == TheSection
) {
546 Size
= 1; // .comm Foo, 0 is undefined, avoid it.
547 unsigned Align
= 1 << AlignLog
;
549 // Use .lcomm only if it supports user-specified alignment.
550 // Otherwise, while it would still be correct to use .lcomm in some
551 // cases (e.g. when Align == 1), the external assembler might enfore
552 // some -unknown- default alignment behavior, which could cause
553 // spurious differences between external and integrated assembler.
554 // Prefer to simply fall back to .local / .comm in this case.
555 if (MAI
->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment
) {
557 OutStreamer
->EmitLocalCommonSymbol(GVSym
, Size
, Align
);
561 if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
565 OutStreamer
->EmitSymbolAttribute(GVSym
, MCSA_Local
);
567 OutStreamer
->EmitCommonSymbol(GVSym
, Size
, Align
);
571 // Handle thread local data for mach-o which requires us to output an
572 // additional structure of data and mangle the original symbol so that we
573 // can reference it later.
575 // TODO: This should become an "emit thread local global" method on TLOF.
576 // All of this macho specific stuff should be sunk down into TLOFMachO and
577 // stuff like "TLSExtraDataSection" should no longer be part of the parent
578 // TLOF class. This will also make it more obvious that stuff like
579 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
581 if (GVKind
.isThreadLocal() && MAI
->hasMachoTBSSDirective()) {
582 // Emit the .tbss symbol
584 OutContext
.getOrCreateSymbol(GVSym
->getName() + Twine("$tlv$init"));
586 if (GVKind
.isThreadBSS()) {
587 TheSection
= getObjFileLowering().getTLSBSSSection();
588 OutStreamer
->EmitTBSSSymbol(TheSection
, MangSym
, Size
, 1 << AlignLog
);
589 } else if (GVKind
.isThreadData()) {
590 OutStreamer
->SwitchSection(TheSection
);
592 EmitAlignment(AlignLog
, GV
);
593 OutStreamer
->EmitLabel(MangSym
);
595 EmitGlobalConstant(GV
->getParent()->getDataLayout(),
596 GV
->getInitializer());
599 OutStreamer
->AddBlankLine();
601 // Emit the variable struct for the runtime.
602 MCSection
*TLVSect
= getObjFileLowering().getTLSExtraDataSection();
604 OutStreamer
->SwitchSection(TLVSect
);
605 // Emit the linkage here.
606 EmitLinkage(GV
, GVSym
);
607 OutStreamer
->EmitLabel(GVSym
);
609 // Three pointers in size:
610 // - __tlv_bootstrap - used to make sure support exists
611 // - spare pointer, used when mapped by the runtime
612 // - pointer to mangled symbol above with initializer
613 unsigned PtrSize
= DL
.getPointerTypeSize(GV
->getType());
614 OutStreamer
->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
616 OutStreamer
->EmitIntValue(0, PtrSize
);
617 OutStreamer
->EmitSymbolValue(MangSym
, PtrSize
);
619 OutStreamer
->AddBlankLine();
623 MCSymbol
*EmittedInitSym
= GVSym
;
625 OutStreamer
->SwitchSection(TheSection
);
627 EmitLinkage(GV
, EmittedInitSym
);
628 EmitAlignment(AlignLog
, GV
);
630 OutStreamer
->EmitLabel(EmittedInitSym
);
632 EmitGlobalConstant(GV
->getParent()->getDataLayout(), GV
->getInitializer());
634 if (MAI
->hasDotTypeDotSizeDirective())
636 OutStreamer
->emitELFSize(EmittedInitSym
,
637 MCConstantExpr::create(Size
, OutContext
));
639 OutStreamer
->AddBlankLine();
642 /// Emit the directive and value for debug thread local expression
644 /// \p Value - The value to emit.
645 /// \p Size - The size of the integer (in bytes) to emit.
646 void AsmPrinter::EmitDebugValue(const MCExpr
*Value
, unsigned Size
) const {
647 OutStreamer
->EmitValue(Value
, Size
);
650 /// EmitFunctionHeader - This method emits the header for the current
652 void AsmPrinter::EmitFunctionHeader() {
653 const Function
&F
= MF
->getFunction();
656 OutStreamer
->GetCommentOS()
657 << "-- Begin function "
658 << GlobalValue::dropLLVMManglingEscape(F
.getName()) << '\n';
660 // Print out constants referenced by the function
663 // Print the 'header' of function.
664 OutStreamer
->SwitchSection(getObjFileLowering().SectionForGlobal(&F
, TM
));
665 EmitVisibility(CurrentFnSym
, F
.getVisibility());
667 EmitLinkage(&F
, CurrentFnSym
);
668 if (MAI
->hasFunctionAlignment())
669 EmitAlignment(MF
->getAlignment(), &F
);
671 if (MAI
->hasDotTypeDotSizeDirective())
672 OutStreamer
->EmitSymbolAttribute(CurrentFnSym
, MCSA_ELF_TypeFunction
);
674 if (F
.hasFnAttribute(Attribute::Cold
))
675 OutStreamer
->EmitSymbolAttribute(CurrentFnSym
, MCSA_Cold
);
678 F
.printAsOperand(OutStreamer
->GetCommentOS(),
679 /*PrintType=*/false, F
.getParent());
680 OutStreamer
->GetCommentOS() << '\n';
683 // Emit the prefix data.
684 if (F
.hasPrefixData()) {
685 if (MAI
->hasSubsectionsViaSymbols()) {
686 // Preserving prefix data on platforms which use subsections-via-symbols
687 // is a bit tricky. Here we introduce a symbol for the prefix data
688 // and use the .alt_entry attribute to mark the function's real entry point
689 // as an alternative entry point to the prefix-data symbol.
690 MCSymbol
*PrefixSym
= OutContext
.createLinkerPrivateTempSymbol();
691 OutStreamer
->EmitLabel(PrefixSym
);
693 EmitGlobalConstant(F
.getParent()->getDataLayout(), F
.getPrefixData());
695 // Emit an .alt_entry directive for the actual function symbol.
696 OutStreamer
->EmitSymbolAttribute(CurrentFnSym
, MCSA_AltEntry
);
698 EmitGlobalConstant(F
.getParent()->getDataLayout(), F
.getPrefixData());
702 // Emit the CurrentFnSym. This is a virtual function to allow targets to
703 // do their wild and crazy things as required.
704 EmitFunctionEntryLabel();
706 // If the function had address-taken blocks that got deleted, then we have
707 // references to the dangling symbols. Emit them at the start of the function
708 // so that we don't get references to undefined symbols.
709 std::vector
<MCSymbol
*> DeadBlockSyms
;
710 MMI
->takeDeletedSymbolsForFunction(&F
, DeadBlockSyms
);
711 for (unsigned i
= 0, e
= DeadBlockSyms
.size(); i
!= e
; ++i
) {
712 OutStreamer
->AddComment("Address taken block that was later removed");
713 OutStreamer
->EmitLabel(DeadBlockSyms
[i
]);
716 if (CurrentFnBegin
) {
717 if (MAI
->useAssignmentForEHBegin()) {
718 MCSymbol
*CurPos
= OutContext
.createTempSymbol();
719 OutStreamer
->EmitLabel(CurPos
);
720 OutStreamer
->EmitAssignment(CurrentFnBegin
,
721 MCSymbolRefExpr::create(CurPos
, OutContext
));
723 OutStreamer
->EmitLabel(CurrentFnBegin
);
727 // Emit pre-function debug and/or EH information.
728 for (const HandlerInfo
&HI
: Handlers
) {
729 NamedRegionTimer
T(HI
.TimerName
, HI
.TimerDescription
, HI
.TimerGroupName
,
730 HI
.TimerGroupDescription
, TimePassesIsEnabled
);
731 HI
.Handler
->beginFunction(MF
);
734 // Emit the prologue data.
735 if (F
.hasPrologueData())
736 EmitGlobalConstant(F
.getParent()->getDataLayout(), F
.getPrologueData());
739 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
740 /// function. This can be overridden by targets as required to do custom stuff.
741 void AsmPrinter::EmitFunctionEntryLabel() {
742 CurrentFnSym
->redefineIfPossible();
744 // The function label could have already been emitted if two symbols end up
745 // conflicting due to asm renaming. Detect this and emit an error.
746 if (CurrentFnSym
->isVariable())
747 report_fatal_error("'" + Twine(CurrentFnSym
->getName()) +
748 "' is a protected alias");
749 if (CurrentFnSym
->isDefined())
750 report_fatal_error("'" + Twine(CurrentFnSym
->getName()) +
751 "' label emitted multiple times to assembly file");
753 return OutStreamer
->EmitLabel(CurrentFnSym
);
756 /// emitComments - Pretty-print comments for instructions.
757 static void emitComments(const MachineInstr
&MI
, raw_ostream
&CommentOS
) {
758 const MachineFunction
*MF
= MI
.getMF();
759 const TargetInstrInfo
*TII
= MF
->getSubtarget().getInstrInfo();
761 // Check for spills and reloads
763 // We assume a single instruction only has a spill or reload, not
765 Optional
<unsigned> Size
;
766 if ((Size
= MI
.getRestoreSize(TII
))) {
767 CommentOS
<< *Size
<< "-byte Reload\n";
768 } else if ((Size
= MI
.getFoldedRestoreSize(TII
))) {
770 CommentOS
<< *Size
<< "-byte Folded Reload\n";
771 } else if ((Size
= MI
.getSpillSize(TII
))) {
772 CommentOS
<< *Size
<< "-byte Spill\n";
773 } else if ((Size
= MI
.getFoldedSpillSize(TII
))) {
775 CommentOS
<< *Size
<< "-byte Folded Spill\n";
778 // Check for spill-induced copies
779 if (MI
.getAsmPrinterFlag(MachineInstr::ReloadReuse
))
780 CommentOS
<< " Reload Reuse\n";
783 /// emitImplicitDef - This method emits the specified machine instruction
784 /// that is an implicit def.
785 void AsmPrinter::emitImplicitDef(const MachineInstr
*MI
) const {
786 unsigned RegNo
= MI
->getOperand(0).getReg();
788 SmallString
<128> Str
;
789 raw_svector_ostream
OS(Str
);
790 OS
<< "implicit-def: "
791 << printReg(RegNo
, MF
->getSubtarget().getRegisterInfo());
793 OutStreamer
->AddComment(OS
.str());
794 OutStreamer
->AddBlankLine();
797 static void emitKill(const MachineInstr
*MI
, AsmPrinter
&AP
) {
799 raw_string_ostream
OS(Str
);
801 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
802 const MachineOperand
&Op
= MI
->getOperand(i
);
803 assert(Op
.isReg() && "KILL instruction must have only register operands");
804 OS
<< ' ' << (Op
.isDef() ? "def " : "killed ")
805 << printReg(Op
.getReg(), AP
.MF
->getSubtarget().getRegisterInfo());
807 AP
.OutStreamer
->AddComment(OS
.str());
808 AP
.OutStreamer
->AddBlankLine();
811 /// emitDebugValueComment - This method handles the target-independent form
812 /// of DBG_VALUE, returning true if it was able to do so. A false return
813 /// means the target will need to handle MI in EmitInstruction.
814 static bool emitDebugValueComment(const MachineInstr
*MI
, AsmPrinter
&AP
) {
815 // This code handles only the 4-operand target-independent form.
816 if (MI
->getNumOperands() != 4)
819 SmallString
<128> Str
;
820 raw_svector_ostream
OS(Str
);
821 OS
<< "DEBUG_VALUE: ";
823 const DILocalVariable
*V
= MI
->getDebugVariable();
824 if (auto *SP
= dyn_cast
<DISubprogram
>(V
->getScope())) {
825 StringRef Name
= SP
->getName();
832 // The second operand is only an offset if it's an immediate.
833 bool MemLoc
= MI
->getOperand(0).isReg() && MI
->getOperand(1).isImm();
834 int64_t Offset
= MemLoc
? MI
->getOperand(1).getImm() : 0;
835 const DIExpression
*Expr
= MI
->getDebugExpression();
836 if (Expr
->getNumElements()) {
838 bool NeedSep
= false;
839 for (auto Op
: Expr
->expr_ops()) {
844 OS
<< dwarf::OperationEncodingString(Op
.getOp());
845 for (unsigned I
= 0; I
< Op
.getNumArgs(); ++I
)
846 OS
<< ' ' << Op
.getArg(I
);
851 // Register or immediate value. Register 0 means undef.
852 if (MI
->getOperand(0).isFPImm()) {
853 APFloat APF
= APFloat(MI
->getOperand(0).getFPImm()->getValueAPF());
854 if (MI
->getOperand(0).getFPImm()->getType()->isFloatTy()) {
855 OS
<< (double)APF
.convertToFloat();
856 } else if (MI
->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
857 OS
<< APF
.convertToDouble();
859 // There is no good way to print long double. Convert a copy to
860 // double. Ah well, it's only a comment.
862 APF
.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven
,
864 OS
<< "(long double) " << APF
.convertToDouble();
866 } else if (MI
->getOperand(0).isImm()) {
867 OS
<< MI
->getOperand(0).getImm();
868 } else if (MI
->getOperand(0).isCImm()) {
869 MI
->getOperand(0).getCImm()->getValue().print(OS
, false /*isSigned*/);
872 if (MI
->getOperand(0).isReg()) {
873 Reg
= MI
->getOperand(0).getReg();
875 assert(MI
->getOperand(0).isFI() && "Unknown operand type");
876 const TargetFrameLowering
*TFI
= AP
.MF
->getSubtarget().getFrameLowering();
877 Offset
+= TFI
->getFrameIndexReference(*AP
.MF
,
878 MI
->getOperand(0).getIndex(), Reg
);
882 // Suppress offset, it is not meaningful here.
884 // NOTE: Want this comment at start of line, don't emit with AddComment.
885 AP
.OutStreamer
->emitRawComment(OS
.str());
890 OS
<< printReg(Reg
, AP
.MF
->getSubtarget().getRegisterInfo());
894 OS
<< '+' << Offset
<< ']';
896 // NOTE: Want this comment at start of line, don't emit with AddComment.
897 AP
.OutStreamer
->emitRawComment(OS
.str());
901 /// This method handles the target-independent form of DBG_LABEL, returning
902 /// true if it was able to do so. A false return means the target will need
903 /// to handle MI in EmitInstruction.
904 static bool emitDebugLabelComment(const MachineInstr
*MI
, AsmPrinter
&AP
) {
905 if (MI
->getNumOperands() != 1)
908 SmallString
<128> Str
;
909 raw_svector_ostream
OS(Str
);
910 OS
<< "DEBUG_LABEL: ";
912 const DILabel
*V
= MI
->getDebugLabel();
913 if (auto *SP
= dyn_cast
<DISubprogram
>(V
->getScope())) {
914 StringRef Name
= SP
->getName();
920 // NOTE: Want this comment at start of line, don't emit with AddComment.
921 AP
.OutStreamer
->emitRawComment(OS
.str());
925 AsmPrinter::CFIMoveType
AsmPrinter::needsCFIMoves() const {
926 if (MAI
->getExceptionHandlingType() == ExceptionHandling::DwarfCFI
&&
927 MF
->getFunction().needsUnwindTableEntry())
930 if (MMI
->hasDebugInfo())
936 bool AsmPrinter::needsSEHMoves() {
937 return MAI
->usesWindowsCFI() && MF
->getFunction().needsUnwindTableEntry();
940 void AsmPrinter::emitCFIInstruction(const MachineInstr
&MI
) {
941 ExceptionHandling ExceptionHandlingType
= MAI
->getExceptionHandlingType();
942 if (ExceptionHandlingType
!= ExceptionHandling::DwarfCFI
&&
943 ExceptionHandlingType
!= ExceptionHandling::ARM
)
946 if (needsCFIMoves() == CFI_M_None
)
949 // If there is no "real" instruction following this CFI instruction, skip
950 // emitting it; it would be beyond the end of the function's FDE range.
951 auto *MBB
= MI
.getParent();
952 auto I
= std::next(MI
.getIterator());
953 while (I
!= MBB
->end() && I
->isTransient())
955 if (I
== MBB
->instr_end() &&
956 MBB
->getReverseIterator() == MBB
->getParent()->rbegin())
959 const std::vector
<MCCFIInstruction
> &Instrs
= MF
->getFrameInstructions();
960 unsigned CFIIndex
= MI
.getOperand(0).getCFIIndex();
961 const MCCFIInstruction
&CFI
= Instrs
[CFIIndex
];
962 emitCFIInstruction(CFI
);
965 void AsmPrinter::emitFrameAlloc(const MachineInstr
&MI
) {
966 // The operands are the MCSymbol and the frame offset of the allocation.
967 MCSymbol
*FrameAllocSym
= MI
.getOperand(0).getMCSymbol();
968 int FrameOffset
= MI
.getOperand(1).getImm();
970 // Emit a symbol assignment.
971 OutStreamer
->EmitAssignment(FrameAllocSym
,
972 MCConstantExpr::create(FrameOffset
, OutContext
));
975 void AsmPrinter::emitStackSizeSection(const MachineFunction
&MF
) {
976 if (!MF
.getTarget().Options
.EmitStackSizeSection
)
979 MCSection
*StackSizeSection
=
980 getObjFileLowering().getStackSizesSection(*getCurrentSection());
981 if (!StackSizeSection
)
984 const MachineFrameInfo
&FrameInfo
= MF
.getFrameInfo();
985 // Don't emit functions with dynamic stack allocations.
986 if (FrameInfo
.hasVarSizedObjects())
989 OutStreamer
->PushSection();
990 OutStreamer
->SwitchSection(StackSizeSection
);
992 const MCSymbol
*FunctionSymbol
= getFunctionBegin();
993 uint64_t StackSize
= FrameInfo
.getStackSize();
994 OutStreamer
->EmitSymbolValue(FunctionSymbol
, TM
.getProgramPointerSize());
995 OutStreamer
->EmitULEB128IntValue(StackSize
);
997 OutStreamer
->PopSection();
1000 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction
&MF
,
1001 MachineModuleInfo
*MMI
) {
1002 if (!MF
.getLandingPads().empty() || MF
.hasEHFunclets() || MMI
->hasDebugInfo())
1005 // We might emit an EH table that uses function begin and end labels even if
1006 // we don't have any landingpads.
1007 if (!MF
.getFunction().hasPersonalityFn())
1009 return !isNoOpWithoutInvoke(
1010 classifyEHPersonality(MF
.getFunction().getPersonalityFn()));
1013 /// EmitFunctionBody - This method emits the body and trailer for a
1015 void AsmPrinter::EmitFunctionBody() {
1016 EmitFunctionHeader();
1018 // Emit target-specific gunk before the function body.
1019 EmitFunctionBodyStart();
1021 bool ShouldPrintDebugScopes
= MMI
->hasDebugInfo();
1024 // Get MachineDominatorTree or compute it on the fly if it's unavailable
1025 MDT
= getAnalysisIfAvailable
<MachineDominatorTree
>();
1027 OwnedMDT
= make_unique
<MachineDominatorTree
>();
1028 OwnedMDT
->getBase().recalculate(*MF
);
1029 MDT
= OwnedMDT
.get();
1032 // Get MachineLoopInfo or compute it on the fly if it's unavailable
1033 MLI
= getAnalysisIfAvailable
<MachineLoopInfo
>();
1035 OwnedMLI
= make_unique
<MachineLoopInfo
>();
1036 OwnedMLI
->getBase().analyze(MDT
->getBase());
1037 MLI
= OwnedMLI
.get();
1041 // Print out code for the function.
1042 bool HasAnyRealCode
= false;
1043 int NumInstsInFunction
= 0;
1044 for (auto &MBB
: *MF
) {
1045 // Print a label for the basic block.
1046 EmitBasicBlockStart(MBB
);
1047 for (auto &MI
: MBB
) {
1048 // Print the assembly for the instruction.
1049 if (!MI
.isPosition() && !MI
.isImplicitDef() && !MI
.isKill() &&
1050 !MI
.isDebugInstr()) {
1051 HasAnyRealCode
= true;
1052 ++NumInstsInFunction
;
1055 // If there is a pre-instruction symbol, emit a label for it here.
1056 if (MCSymbol
*S
= MI
.getPreInstrSymbol())
1057 OutStreamer
->EmitLabel(S
);
1059 if (ShouldPrintDebugScopes
) {
1060 for (const HandlerInfo
&HI
: Handlers
) {
1061 NamedRegionTimer
T(HI
.TimerName
, HI
.TimerDescription
,
1062 HI
.TimerGroupName
, HI
.TimerGroupDescription
,
1063 TimePassesIsEnabled
);
1064 HI
.Handler
->beginInstruction(&MI
);
1069 emitComments(MI
, OutStreamer
->GetCommentOS());
1071 switch (MI
.getOpcode()) {
1072 case TargetOpcode::CFI_INSTRUCTION
:
1073 emitCFIInstruction(MI
);
1075 case TargetOpcode::LOCAL_ESCAPE
:
1078 case TargetOpcode::ANNOTATION_LABEL
:
1079 case TargetOpcode::EH_LABEL
:
1080 case TargetOpcode::GC_LABEL
:
1081 OutStreamer
->EmitLabel(MI
.getOperand(0).getMCSymbol());
1083 case TargetOpcode::INLINEASM
:
1084 case TargetOpcode::INLINEASM_BR
:
1087 case TargetOpcode::DBG_VALUE
:
1089 if (!emitDebugValueComment(&MI
, *this))
1090 EmitInstruction(&MI
);
1093 case TargetOpcode::DBG_LABEL
:
1095 if (!emitDebugLabelComment(&MI
, *this))
1096 EmitInstruction(&MI
);
1099 case TargetOpcode::IMPLICIT_DEF
:
1100 if (isVerbose()) emitImplicitDef(&MI
);
1102 case TargetOpcode::KILL
:
1103 if (isVerbose()) emitKill(&MI
, *this);
1106 EmitInstruction(&MI
);
1110 // If there is a post-instruction symbol, emit a label for it here.
1111 if (MCSymbol
*S
= MI
.getPostInstrSymbol())
1112 OutStreamer
->EmitLabel(S
);
1114 if (ShouldPrintDebugScopes
) {
1115 for (const HandlerInfo
&HI
: Handlers
) {
1116 NamedRegionTimer
T(HI
.TimerName
, HI
.TimerDescription
,
1117 HI
.TimerGroupName
, HI
.TimerGroupDescription
,
1118 TimePassesIsEnabled
);
1119 HI
.Handler
->endInstruction();
1124 EmitBasicBlockEnd(MBB
);
1127 EmittedInsts
+= NumInstsInFunction
;
1128 MachineOptimizationRemarkAnalysis
R(DEBUG_TYPE
, "InstructionCount",
1129 MF
->getFunction().getSubprogram(),
1131 R
<< ore::NV("NumInstructions", NumInstsInFunction
)
1132 << " instructions in function";
1135 // If the function is empty and the object file uses .subsections_via_symbols,
1136 // then we need to emit *something* to the function body to prevent the
1137 // labels from collapsing together. Just emit a noop.
1138 // Similarly, don't emit empty functions on Windows either. It can lead to
1139 // duplicate entries (two functions with the same RVA) in the Guard CF Table
1140 // after linking, causing the kernel not to load the binary:
1141 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1142 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1143 const Triple
&TT
= TM
.getTargetTriple();
1144 if (!HasAnyRealCode
&& (MAI
->hasSubsectionsViaSymbols() ||
1145 (TT
.isOSWindows() && TT
.isOSBinFormatCOFF()))) {
1147 MF
->getSubtarget().getInstrInfo()->getNoop(Noop
);
1149 // Targets can opt-out of emitting the noop here by leaving the opcode
1151 if (Noop
.getOpcode()) {
1152 OutStreamer
->AddComment("avoids zero-length function");
1153 OutStreamer
->EmitInstruction(Noop
, getSubtargetInfo());
1157 const Function
&F
= MF
->getFunction();
1158 for (const auto &BB
: F
) {
1159 if (!BB
.hasAddressTaken())
1161 MCSymbol
*Sym
= GetBlockAddressSymbol(&BB
);
1162 if (Sym
->isDefined())
1164 OutStreamer
->AddComment("Address of block that was removed by CodeGen");
1165 OutStreamer
->EmitLabel(Sym
);
1168 // Emit target-specific gunk after the function body.
1169 EmitFunctionBodyEnd();
1171 if (needFuncLabelsForEHOrDebugInfo(*MF
, MMI
) ||
1172 MAI
->hasDotTypeDotSizeDirective()) {
1173 // Create a symbol for the end of function.
1174 CurrentFnEnd
= createTempSymbol("func_end");
1175 OutStreamer
->EmitLabel(CurrentFnEnd
);
1178 // If the target wants a .size directive for the size of the function, emit
1180 if (MAI
->hasDotTypeDotSizeDirective()) {
1181 // We can get the size as difference between the function label and the
1183 const MCExpr
*SizeExp
= MCBinaryExpr::createSub(
1184 MCSymbolRefExpr::create(CurrentFnEnd
, OutContext
),
1185 MCSymbolRefExpr::create(CurrentFnSymForSize
, OutContext
), OutContext
);
1186 OutStreamer
->emitELFSize(CurrentFnSym
, SizeExp
);
1189 for (const HandlerInfo
&HI
: Handlers
) {
1190 NamedRegionTimer
T(HI
.TimerName
, HI
.TimerDescription
, HI
.TimerGroupName
,
1191 HI
.TimerGroupDescription
, TimePassesIsEnabled
);
1192 HI
.Handler
->markFunctionEnd();
1195 // Print out jump tables referenced by the function.
1196 EmitJumpTableInfo();
1198 // Emit post-function debug and/or EH information.
1199 for (const HandlerInfo
&HI
: Handlers
) {
1200 NamedRegionTimer
T(HI
.TimerName
, HI
.TimerDescription
, HI
.TimerGroupName
,
1201 HI
.TimerGroupDescription
, TimePassesIsEnabled
);
1202 HI
.Handler
->endFunction(MF
);
1205 // Emit section containing stack size metadata.
1206 emitStackSizeSection(*MF
);
1209 OutStreamer
->GetCommentOS() << "-- End function\n";
1211 OutStreamer
->AddBlankLine();
1214 /// Compute the number of Global Variables that uses a Constant.
1215 static unsigned getNumGlobalVariableUses(const Constant
*C
) {
1219 if (isa
<GlobalVariable
>(C
))
1222 unsigned NumUses
= 0;
1223 for (auto *CU
: C
->users())
1224 NumUses
+= getNumGlobalVariableUses(dyn_cast
<Constant
>(CU
));
1229 /// Only consider global GOT equivalents if at least one user is a
1230 /// cstexpr inside an initializer of another global variables. Also, don't
1231 /// handle cstexpr inside instructions. During global variable emission,
1232 /// candidates are skipped and are emitted later in case at least one cstexpr
1233 /// isn't replaced by a PC relative GOT entry access.
1234 static bool isGOTEquivalentCandidate(const GlobalVariable
*GV
,
1235 unsigned &NumGOTEquivUsers
) {
1236 // Global GOT equivalents are unnamed private globals with a constant
1237 // pointer initializer to another global symbol. They must point to a
1238 // GlobalVariable or Function, i.e., as GlobalValue.
1239 if (!GV
->hasGlobalUnnamedAddr() || !GV
->hasInitializer() ||
1240 !GV
->isConstant() || !GV
->isDiscardableIfUnused() ||
1241 !isa
<GlobalValue
>(GV
->getOperand(0)))
1244 // To be a got equivalent, at least one of its users need to be a constant
1245 // expression used by another global variable.
1246 for (auto *U
: GV
->users())
1247 NumGOTEquivUsers
+= getNumGlobalVariableUses(dyn_cast
<Constant
>(U
));
1249 return NumGOTEquivUsers
> 0;
1252 /// Unnamed constant global variables solely contaning a pointer to
1253 /// another globals variable is equivalent to a GOT table entry; it contains the
1254 /// the address of another symbol. Optimize it and replace accesses to these
1255 /// "GOT equivalents" by using the GOT entry for the final global instead.
1256 /// Compute GOT equivalent candidates among all global variables to avoid
1257 /// emitting them if possible later on, after it use is replaced by a GOT entry
1259 void AsmPrinter::computeGlobalGOTEquivs(Module
&M
) {
1260 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1263 for (const auto &G
: M
.globals()) {
1264 unsigned NumGOTEquivUsers
= 0;
1265 if (!isGOTEquivalentCandidate(&G
, NumGOTEquivUsers
))
1268 const MCSymbol
*GOTEquivSym
= getSymbol(&G
);
1269 GlobalGOTEquivs
[GOTEquivSym
] = std::make_pair(&G
, NumGOTEquivUsers
);
1273 /// Constant expressions using GOT equivalent globals may not be eligible
1274 /// for PC relative GOT entry conversion, in such cases we need to emit such
1275 /// globals we previously omitted in EmitGlobalVariable.
1276 void AsmPrinter::emitGlobalGOTEquivs() {
1277 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1280 SmallVector
<const GlobalVariable
*, 8> FailedCandidates
;
1281 for (auto &I
: GlobalGOTEquivs
) {
1282 const GlobalVariable
*GV
= I
.second
.first
;
1283 unsigned Cnt
= I
.second
.second
;
1285 FailedCandidates
.push_back(GV
);
1287 GlobalGOTEquivs
.clear();
1289 for (auto *GV
: FailedCandidates
)
1290 EmitGlobalVariable(GV
);
1293 void AsmPrinter::emitGlobalIndirectSymbol(Module
&M
,
1294 const GlobalIndirectSymbol
& GIS
) {
1295 MCSymbol
*Name
= getSymbol(&GIS
);
1297 if (GIS
.hasExternalLinkage() || !MAI
->getWeakRefDirective())
1298 OutStreamer
->EmitSymbolAttribute(Name
, MCSA_Global
);
1299 else if (GIS
.hasWeakLinkage() || GIS
.hasLinkOnceLinkage())
1300 OutStreamer
->EmitSymbolAttribute(Name
, MCSA_WeakReference
);
1302 assert(GIS
.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1304 bool IsFunction
= GIS
.getValueType()->isFunctionTy();
1306 // Treat bitcasts of functions as functions also. This is important at least
1307 // on WebAssembly where object and function addresses can't alias each other.
1309 if (auto *CE
= dyn_cast
<ConstantExpr
>(GIS
.getIndirectSymbol()))
1310 if (CE
->getOpcode() == Instruction::BitCast
)
1312 CE
->getOperand(0)->getType()->getPointerElementType()->isFunctionTy();
1314 // Set the symbol type to function if the alias has a function type.
1315 // This affects codegen when the aliasee is not a function.
1317 OutStreamer
->EmitSymbolAttribute(Name
, MCSA_ELF_TypeFunction
);
1318 if (isa
<GlobalIFunc
>(GIS
))
1319 OutStreamer
->EmitSymbolAttribute(Name
, MCSA_ELF_TypeIndFunction
);
1322 EmitVisibility(Name
, GIS
.getVisibility());
1324 const MCExpr
*Expr
= lowerConstant(GIS
.getIndirectSymbol());
1326 if (isa
<GlobalAlias
>(&GIS
) && MAI
->hasAltEntry() && isa
<MCBinaryExpr
>(Expr
))
1327 OutStreamer
->EmitSymbolAttribute(Name
, MCSA_AltEntry
);
1329 // Emit the directives as assignments aka .set:
1330 OutStreamer
->EmitAssignment(Name
, Expr
);
1332 if (auto *GA
= dyn_cast
<GlobalAlias
>(&GIS
)) {
1333 // If the aliasee does not correspond to a symbol in the output, i.e. the
1334 // alias is not of an object or the aliased object is private, then set the
1335 // size of the alias symbol from the type of the alias. We don't do this in
1336 // other situations as the alias and aliasee having differing types but same
1337 // size may be intentional.
1338 const GlobalObject
*BaseObject
= GA
->getBaseObject();
1339 if (MAI
->hasDotTypeDotSizeDirective() && GA
->getValueType()->isSized() &&
1340 (!BaseObject
|| BaseObject
->hasPrivateLinkage())) {
1341 const DataLayout
&DL
= M
.getDataLayout();
1342 uint64_t Size
= DL
.getTypeAllocSize(GA
->getValueType());
1343 OutStreamer
->emitELFSize(Name
, MCConstantExpr::create(Size
, OutContext
));
1348 void AsmPrinter::emitRemarksSection(Module
&M
) {
1349 RemarkStreamer
*RS
= M
.getContext().getRemarkStreamer();
1352 remarks::RemarkSerializer
&RemarkSerializer
= RS
->getSerializer();
1354 StringRef FilenameRef
= RS
->getFilename();
1355 SmallString
<128> Filename
= FilenameRef
;
1356 sys::fs::make_absolute(Filename
);
1357 assert(!Filename
.empty() && "The filename can't be empty.");
1360 raw_string_ostream
OS(Buf
);
1361 std::unique_ptr
<remarks::MetaSerializer
> MetaSerializer
=
1362 RemarkSerializer
.metaSerializer(OS
, StringRef(Filename
));
1363 MetaSerializer
->emit();
1365 // Switch to the right section: .remarks/__remarks.
1366 MCSection
*RemarksSection
=
1367 OutContext
.getObjectFileInfo()->getRemarksSection();
1368 OutStreamer
->SwitchSection(RemarksSection
);
1370 OutStreamer
->EmitBinaryData(OS
.str());
1373 bool AsmPrinter::doFinalization(Module
&M
) {
1374 // Set the MachineFunction to nullptr so that we can catch attempted
1375 // accesses to MF specific features at the module level and so that
1376 // we can conditionalize accesses based on whether or not it is nullptr.
1379 // Gather all GOT equivalent globals in the module. We really need two
1380 // passes over the globals: one to compute and another to avoid its emission
1381 // in EmitGlobalVariable, otherwise we would not be able to handle cases
1382 // where the got equivalent shows up before its use.
1383 computeGlobalGOTEquivs(M
);
1385 // Emit global variables.
1386 for (const auto &G
: M
.globals())
1387 EmitGlobalVariable(&G
);
1389 // Emit remaining GOT equivalent globals.
1390 emitGlobalGOTEquivs();
1392 // Emit visibility info for declarations
1393 for (const Function
&F
: M
) {
1394 if (!F
.isDeclarationForLinker())
1396 GlobalValue::VisibilityTypes V
= F
.getVisibility();
1397 if (V
== GlobalValue::DefaultVisibility
)
1400 MCSymbol
*Name
= getSymbol(&F
);
1401 EmitVisibility(Name
, V
, false);
1404 // Emit the remarks section contents.
1405 // FIXME: Figure out when is the safest time to emit this section. It should
1406 // not come after debug info.
1407 if (EnableRemarksSection
)
1408 emitRemarksSection(M
);
1410 const TargetLoweringObjectFile
&TLOF
= getObjFileLowering();
1412 TLOF
.emitModuleMetadata(*OutStreamer
, M
);
1414 if (TM
.getTargetTriple().isOSBinFormatELF()) {
1415 MachineModuleInfoELF
&MMIELF
= MMI
->getObjFileInfo
<MachineModuleInfoELF
>();
1417 // Output stubs for external and common global variables.
1418 MachineModuleInfoELF::SymbolListTy Stubs
= MMIELF
.GetGVStubList();
1419 if (!Stubs
.empty()) {
1420 OutStreamer
->SwitchSection(TLOF
.getDataSection());
1421 const DataLayout
&DL
= M
.getDataLayout();
1423 EmitAlignment(Log2_32(DL
.getPointerSize()));
1424 for (const auto &Stub
: Stubs
) {
1425 OutStreamer
->EmitLabel(Stub
.first
);
1426 OutStreamer
->EmitSymbolValue(Stub
.second
.getPointer(),
1427 DL
.getPointerSize());
1432 if (TM
.getTargetTriple().isOSBinFormatCOFF()) {
1433 MachineModuleInfoCOFF
&MMICOFF
=
1434 MMI
->getObjFileInfo
<MachineModuleInfoCOFF
>();
1436 // Output stubs for external and common global variables.
1437 MachineModuleInfoCOFF::SymbolListTy Stubs
= MMICOFF
.GetGVStubList();
1438 if (!Stubs
.empty()) {
1439 const DataLayout
&DL
= M
.getDataLayout();
1441 for (const auto &Stub
: Stubs
) {
1442 SmallString
<256> SectionName
= StringRef(".rdata$");
1443 SectionName
+= Stub
.first
->getName();
1444 OutStreamer
->SwitchSection(OutContext
.getCOFFSection(
1446 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
| COFF::IMAGE_SCN_MEM_READ
|
1447 COFF::IMAGE_SCN_LNK_COMDAT
,
1448 SectionKind::getReadOnly(), Stub
.first
->getName(),
1449 COFF::IMAGE_COMDAT_SELECT_ANY
));
1450 EmitAlignment(Log2_32(DL
.getPointerSize()));
1451 OutStreamer
->EmitSymbolAttribute(Stub
.first
, MCSA_Global
);
1452 OutStreamer
->EmitLabel(Stub
.first
);
1453 OutStreamer
->EmitSymbolValue(Stub
.second
.getPointer(),
1454 DL
.getPointerSize());
1459 // Finalize debug and EH information.
1460 for (const HandlerInfo
&HI
: Handlers
) {
1461 NamedRegionTimer
T(HI
.TimerName
, HI
.TimerDescription
, HI
.TimerGroupName
,
1462 HI
.TimerGroupDescription
, TimePassesIsEnabled
);
1463 HI
.Handler
->endModule();
1468 // If the target wants to know about weak references, print them all.
1469 if (MAI
->getWeakRefDirective()) {
1470 // FIXME: This is not lazy, it would be nice to only print weak references
1471 // to stuff that is actually used. Note that doing so would require targets
1472 // to notice uses in operands (due to constant exprs etc). This should
1473 // happen with the MC stuff eventually.
1475 // Print out module-level global objects here.
1476 for (const auto &GO
: M
.global_objects()) {
1477 if (!GO
.hasExternalWeakLinkage())
1479 OutStreamer
->EmitSymbolAttribute(getSymbol(&GO
), MCSA_WeakReference
);
1483 OutStreamer
->AddBlankLine();
1485 // Print aliases in topological order, that is, for each alias a = b,
1486 // b must be printed before a.
1487 // This is because on some targets (e.g. PowerPC) linker expects aliases in
1488 // such an order to generate correct TOC information.
1489 SmallVector
<const GlobalAlias
*, 16> AliasStack
;
1490 SmallPtrSet
<const GlobalAlias
*, 16> AliasVisited
;
1491 for (const auto &Alias
: M
.aliases()) {
1492 for (const GlobalAlias
*Cur
= &Alias
; Cur
;
1493 Cur
= dyn_cast
<GlobalAlias
>(Cur
->getAliasee())) {
1494 if (!AliasVisited
.insert(Cur
).second
)
1496 AliasStack
.push_back(Cur
);
1498 for (const GlobalAlias
*AncestorAlias
: llvm::reverse(AliasStack
))
1499 emitGlobalIndirectSymbol(M
, *AncestorAlias
);
1502 for (const auto &IFunc
: M
.ifuncs())
1503 emitGlobalIndirectSymbol(M
, IFunc
);
1505 GCModuleInfo
*MI
= getAnalysisIfAvailable
<GCModuleInfo
>();
1506 assert(MI
&& "AsmPrinter didn't require GCModuleInfo?");
1507 for (GCModuleInfo::iterator I
= MI
->end(), E
= MI
->begin(); I
!= E
; )
1508 if (GCMetadataPrinter
*MP
= GetOrCreateGCPrinter(**--I
))
1509 MP
->finishAssembly(M
, *MI
, *this);
1511 // Emit llvm.ident metadata in an '.ident' directive.
1512 EmitModuleIdents(M
);
1514 // Emit bytes for llvm.commandline metadata.
1515 EmitModuleCommandLines(M
);
1517 // Emit __morestack address if needed for indirect calls.
1518 if (MMI
->usesMorestackAddr()) {
1520 MCSection
*ReadOnlySection
= getObjFileLowering().getSectionForConstant(
1521 getDataLayout(), SectionKind::getReadOnly(),
1522 /*C=*/nullptr, Align
);
1523 OutStreamer
->SwitchSection(ReadOnlySection
);
1525 MCSymbol
*AddrSymbol
=
1526 OutContext
.getOrCreateSymbol(StringRef("__morestack_addr"));
1527 OutStreamer
->EmitLabel(AddrSymbol
);
1529 unsigned PtrSize
= MAI
->getCodePointerSize();
1530 OutStreamer
->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1534 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1535 // split-stack is used.
1536 if (TM
.getTargetTriple().isOSBinFormatELF() && MMI
->hasSplitStack()) {
1537 OutStreamer
->SwitchSection(
1538 OutContext
.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS
, 0));
1539 if (MMI
->hasNosplitStack())
1540 OutStreamer
->SwitchSection(
1541 OutContext
.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS
, 0));
1544 // If we don't have any trampolines, then we don't require stack memory
1545 // to be executable. Some targets have a directive to declare this.
1546 Function
*InitTrampolineIntrinsic
= M
.getFunction("llvm.init.trampoline");
1547 if (!InitTrampolineIntrinsic
|| InitTrampolineIntrinsic
->use_empty())
1548 if (MCSection
*S
= MAI
->getNonexecutableStackSection(OutContext
))
1549 OutStreamer
->SwitchSection(S
);
1551 if (TM
.getTargetTriple().isOSBinFormatCOFF()) {
1552 // Emit /EXPORT: flags for each exported global as necessary.
1553 const auto &TLOF
= getObjFileLowering();
1556 for (const GlobalValue
&GV
: M
.global_values()) {
1557 raw_string_ostream
OS(Flags
);
1558 TLOF
.emitLinkerFlagsForGlobal(OS
, &GV
);
1560 if (!Flags
.empty()) {
1561 OutStreamer
->SwitchSection(TLOF
.getDrectveSection());
1562 OutStreamer
->EmitBytes(Flags
);
1567 // Emit /INCLUDE: flags for each used global as necessary.
1568 if (const auto *LU
= M
.getNamedGlobal("llvm.used")) {
1569 assert(LU
->hasInitializer() &&
1570 "expected llvm.used to have an initializer");
1571 assert(isa
<ArrayType
>(LU
->getValueType()) &&
1572 "expected llvm.used to be an array type");
1573 if (const auto *A
= cast
<ConstantArray
>(LU
->getInitializer())) {
1574 for (const Value
*Op
: A
->operands()) {
1576 cast
<GlobalValue
>(Op
->stripPointerCastsNoFollowAliases());
1577 // Global symbols with internal or private linkage are not visible to
1578 // the linker, and thus would cause an error when the linker tried to
1579 // preserve the symbol due to the `/include:` directive.
1580 if (GV
->hasLocalLinkage())
1583 raw_string_ostream
OS(Flags
);
1584 TLOF
.emitLinkerFlagsForUsed(OS
, GV
);
1587 if (!Flags
.empty()) {
1588 OutStreamer
->SwitchSection(TLOF
.getDrectveSection());
1589 OutStreamer
->EmitBytes(Flags
);
1597 if (TM
.Options
.EmitAddrsig
) {
1598 // Emit address-significance attributes for all globals.
1599 OutStreamer
->EmitAddrsig();
1600 for (const GlobalValue
&GV
: M
.global_values())
1601 if (!GV
.use_empty() && !GV
.isThreadLocal() &&
1602 !GV
.hasDLLImportStorageClass() && !GV
.getName().startswith("llvm.") &&
1603 !GV
.hasAtLeastLocalUnnamedAddr())
1604 OutStreamer
->EmitAddrsigSym(getSymbol(&GV
));
1607 // Emit symbol partition specifications (ELF only).
1608 if (TM
.getTargetTriple().isOSBinFormatELF()) {
1609 unsigned UniqueID
= 0;
1610 for (const GlobalValue
&GV
: M
.global_values()) {
1611 if (!GV
.hasPartition() || GV
.isDeclarationForLinker() ||
1612 GV
.getVisibility() != GlobalValue::DefaultVisibility
)
1615 OutStreamer
->SwitchSection(OutContext
.getELFSection(
1616 ".llvm_sympart", ELF::SHT_LLVM_SYMPART
, 0, 0, "", ++UniqueID
));
1617 OutStreamer
->EmitBytes(GV
.getPartition());
1618 OutStreamer
->EmitZeros(1);
1619 OutStreamer
->EmitValue(
1620 MCSymbolRefExpr::create(getSymbol(&GV
), OutContext
),
1621 MAI
->getCodePointerSize());
1625 // Allow the target to emit any magic that it wants at the end of the file,
1626 // after everything else has gone out.
1627 EmitEndOfAsmFile(M
);
1631 OutStreamer
->Finish();
1632 OutStreamer
->reset();
1639 MCSymbol
*AsmPrinter::getCurExceptionSym() {
1640 if (!CurExceptionSym
)
1641 CurExceptionSym
= createTempSymbol("exception");
1642 return CurExceptionSym
;
1645 void AsmPrinter::SetupMachineFunction(MachineFunction
&MF
) {
1647 // Get the function symbol.
1648 CurrentFnSym
= getSymbol(&MF
.getFunction());
1649 CurrentFnSymForSize
= CurrentFnSym
;
1650 CurrentFnBegin
= nullptr;
1651 CurExceptionSym
= nullptr;
1652 bool NeedsLocalForSize
= MAI
->needsLocalForSize();
1653 if (needFuncLabelsForEHOrDebugInfo(MF
, MMI
) || NeedsLocalForSize
||
1654 MF
.getTarget().Options
.EmitStackSizeSection
) {
1655 CurrentFnBegin
= createTempSymbol("func_begin");
1656 if (NeedsLocalForSize
)
1657 CurrentFnSymForSize
= CurrentFnBegin
;
1660 ORE
= &getAnalysis
<MachineOptimizationRemarkEmitterPass
>().getORE();
1665 // Keep track the alignment, constpool entries per Section.
1669 SmallVector
<unsigned, 4> CPEs
;
1671 SectionCPs(MCSection
*s
, unsigned a
) : S(s
), Alignment(a
) {}
1674 } // end anonymous namespace
1676 /// EmitConstantPool - Print to the current output stream assembly
1677 /// representations of the constants in the constant pool MCP. This is
1678 /// used to print out constants which have been "spilled to memory" by
1679 /// the code generator.
1680 void AsmPrinter::EmitConstantPool() {
1681 const MachineConstantPool
*MCP
= MF
->getConstantPool();
1682 const std::vector
<MachineConstantPoolEntry
> &CP
= MCP
->getConstants();
1683 if (CP
.empty()) return;
1685 // Calculate sections for constant pool entries. We collect entries to go into
1686 // the same section together to reduce amount of section switch statements.
1687 SmallVector
<SectionCPs
, 4> CPSections
;
1688 for (unsigned i
= 0, e
= CP
.size(); i
!= e
; ++i
) {
1689 const MachineConstantPoolEntry
&CPE
= CP
[i
];
1690 unsigned Align
= CPE
.getAlignment();
1692 SectionKind Kind
= CPE
.getSectionKind(&getDataLayout());
1694 const Constant
*C
= nullptr;
1695 if (!CPE
.isMachineConstantPoolEntry())
1696 C
= CPE
.Val
.ConstVal
;
1698 MCSection
*S
= getObjFileLowering().getSectionForConstant(getDataLayout(),
1701 // The number of sections are small, just do a linear search from the
1702 // last section to the first.
1704 unsigned SecIdx
= CPSections
.size();
1705 while (SecIdx
!= 0) {
1706 if (CPSections
[--SecIdx
].S
== S
) {
1712 SecIdx
= CPSections
.size();
1713 CPSections
.push_back(SectionCPs(S
, Align
));
1716 if (Align
> CPSections
[SecIdx
].Alignment
)
1717 CPSections
[SecIdx
].Alignment
= Align
;
1718 CPSections
[SecIdx
].CPEs
.push_back(i
);
1721 // Now print stuff into the calculated sections.
1722 const MCSection
*CurSection
= nullptr;
1723 unsigned Offset
= 0;
1724 for (unsigned i
= 0, e
= CPSections
.size(); i
!= e
; ++i
) {
1725 for (unsigned j
= 0, ee
= CPSections
[i
].CPEs
.size(); j
!= ee
; ++j
) {
1726 unsigned CPI
= CPSections
[i
].CPEs
[j
];
1727 MCSymbol
*Sym
= GetCPISymbol(CPI
);
1728 if (!Sym
->isUndefined())
1731 if (CurSection
!= CPSections
[i
].S
) {
1732 OutStreamer
->SwitchSection(CPSections
[i
].S
);
1733 EmitAlignment(Log2_32(CPSections
[i
].Alignment
));
1734 CurSection
= CPSections
[i
].S
;
1738 MachineConstantPoolEntry CPE
= CP
[CPI
];
1740 // Emit inter-object padding for alignment.
1741 unsigned AlignMask
= CPE
.getAlignment() - 1;
1742 unsigned NewOffset
= (Offset
+ AlignMask
) & ~AlignMask
;
1743 OutStreamer
->EmitZeros(NewOffset
- Offset
);
1745 Type
*Ty
= CPE
.getType();
1746 Offset
= NewOffset
+ getDataLayout().getTypeAllocSize(Ty
);
1748 OutStreamer
->EmitLabel(Sym
);
1749 if (CPE
.isMachineConstantPoolEntry())
1750 EmitMachineConstantPoolValue(CPE
.Val
.MachineCPVal
);
1752 EmitGlobalConstant(getDataLayout(), CPE
.Val
.ConstVal
);
1757 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1758 /// by the current function to the current output stream.
1759 void AsmPrinter::EmitJumpTableInfo() {
1760 const DataLayout
&DL
= MF
->getDataLayout();
1761 const MachineJumpTableInfo
*MJTI
= MF
->getJumpTableInfo();
1763 if (MJTI
->getEntryKind() == MachineJumpTableInfo::EK_Inline
) return;
1764 const std::vector
<MachineJumpTableEntry
> &JT
= MJTI
->getJumpTables();
1765 if (JT
.empty()) return;
1767 // Pick the directive to use to print the jump table entries, and switch to
1768 // the appropriate section.
1769 const Function
&F
= MF
->getFunction();
1770 const TargetLoweringObjectFile
&TLOF
= getObjFileLowering();
1771 bool JTInDiffSection
= !TLOF
.shouldPutJumpTableInFunctionSection(
1772 MJTI
->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32
,
1774 if (JTInDiffSection
) {
1775 // Drop it in the readonly section.
1776 MCSection
*ReadOnlySection
= TLOF
.getSectionForJumpTable(F
, TM
);
1777 OutStreamer
->SwitchSection(ReadOnlySection
);
1780 EmitAlignment(Log2_32(MJTI
->getEntryAlignment(DL
)));
1782 // Jump tables in code sections are marked with a data_region directive
1783 // where that's supported.
1784 if (!JTInDiffSection
)
1785 OutStreamer
->EmitDataRegion(MCDR_DataRegionJT32
);
1787 for (unsigned JTI
= 0, e
= JT
.size(); JTI
!= e
; ++JTI
) {
1788 const std::vector
<MachineBasicBlock
*> &JTBBs
= JT
[JTI
].MBBs
;
1790 // If this jump table was deleted, ignore it.
1791 if (JTBBs
.empty()) continue;
1793 // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1794 /// emit a .set directive for each unique entry.
1795 if (MJTI
->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32
&&
1796 MAI
->doesSetDirectiveSuppressReloc()) {
1797 SmallPtrSet
<const MachineBasicBlock
*, 16> EmittedSets
;
1798 const TargetLowering
*TLI
= MF
->getSubtarget().getTargetLowering();
1799 const MCExpr
*Base
= TLI
->getPICJumpTableRelocBaseExpr(MF
,JTI
,OutContext
);
1800 for (unsigned ii
= 0, ee
= JTBBs
.size(); ii
!= ee
; ++ii
) {
1801 const MachineBasicBlock
*MBB
= JTBBs
[ii
];
1802 if (!EmittedSets
.insert(MBB
).second
)
1805 // .set LJTSet, LBB32-base
1807 MCSymbolRefExpr::create(MBB
->getSymbol(), OutContext
);
1808 OutStreamer
->EmitAssignment(GetJTSetSymbol(JTI
, MBB
->getNumber()),
1809 MCBinaryExpr::createSub(LHS
, Base
,
1814 // On some targets (e.g. Darwin) we want to emit two consecutive labels
1815 // before each jump table. The first label is never referenced, but tells
1816 // the assembler and linker the extents of the jump table object. The
1817 // second label is actually referenced by the code.
1818 if (JTInDiffSection
&& DL
.hasLinkerPrivateGlobalPrefix())
1819 // FIXME: This doesn't have to have any specific name, just any randomly
1820 // named and numbered 'l' label would work. Simplify GetJTISymbol.
1821 OutStreamer
->EmitLabel(GetJTISymbol(JTI
, true));
1823 OutStreamer
->EmitLabel(GetJTISymbol(JTI
));
1825 for (unsigned ii
= 0, ee
= JTBBs
.size(); ii
!= ee
; ++ii
)
1826 EmitJumpTableEntry(MJTI
, JTBBs
[ii
], JTI
);
1828 if (!JTInDiffSection
)
1829 OutStreamer
->EmitDataRegion(MCDR_DataRegionEnd
);
1832 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1834 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo
*MJTI
,
1835 const MachineBasicBlock
*MBB
,
1836 unsigned UID
) const {
1837 assert(MBB
&& MBB
->getNumber() >= 0 && "Invalid basic block");
1838 const MCExpr
*Value
= nullptr;
1839 switch (MJTI
->getEntryKind()) {
1840 case MachineJumpTableInfo::EK_Inline
:
1841 llvm_unreachable("Cannot emit EK_Inline jump table entry");
1842 case MachineJumpTableInfo::EK_Custom32
:
1843 Value
= MF
->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1844 MJTI
, MBB
, UID
, OutContext
);
1846 case MachineJumpTableInfo::EK_BlockAddress
:
1847 // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1849 Value
= MCSymbolRefExpr::create(MBB
->getSymbol(), OutContext
);
1851 case MachineJumpTableInfo::EK_GPRel32BlockAddress
: {
1852 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1853 // with a relocation as gp-relative, e.g.:
1855 MCSymbol
*MBBSym
= MBB
->getSymbol();
1856 OutStreamer
->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym
, OutContext
));
1860 case MachineJumpTableInfo::EK_GPRel64BlockAddress
: {
1861 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1862 // with a relocation as gp-relative, e.g.:
1864 MCSymbol
*MBBSym
= MBB
->getSymbol();
1865 OutStreamer
->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym
, OutContext
));
1869 case MachineJumpTableInfo::EK_LabelDifference32
: {
1870 // Each entry is the address of the block minus the address of the jump
1871 // table. This is used for PIC jump tables where gprel32 is not supported.
1873 // .word LBB123 - LJTI1_2
1874 // If the .set directive avoids relocations, this is emitted as:
1875 // .set L4_5_set_123, LBB123 - LJTI1_2
1876 // .word L4_5_set_123
1877 if (MAI
->doesSetDirectiveSuppressReloc()) {
1878 Value
= MCSymbolRefExpr::create(GetJTSetSymbol(UID
, MBB
->getNumber()),
1882 Value
= MCSymbolRefExpr::create(MBB
->getSymbol(), OutContext
);
1883 const TargetLowering
*TLI
= MF
->getSubtarget().getTargetLowering();
1884 const MCExpr
*Base
= TLI
->getPICJumpTableRelocBaseExpr(MF
, UID
, OutContext
);
1885 Value
= MCBinaryExpr::createSub(Value
, Base
, OutContext
);
1890 assert(Value
&& "Unknown entry kind!");
1892 unsigned EntrySize
= MJTI
->getEntrySize(getDataLayout());
1893 OutStreamer
->EmitValue(Value
, EntrySize
);
1896 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1897 /// special global used by LLVM. If so, emit it and return true, otherwise
1898 /// do nothing and return false.
1899 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable
*GV
) {
1900 if (GV
->getName() == "llvm.used") {
1901 if (MAI
->hasNoDeadStrip()) // No need to emit this at all.
1902 EmitLLVMUsedList(cast
<ConstantArray
>(GV
->getInitializer()));
1906 // Ignore debug and non-emitted data. This handles llvm.compiler.used.
1907 if (GV
->getSection() == "llvm.metadata" ||
1908 GV
->hasAvailableExternallyLinkage())
1911 if (!GV
->hasAppendingLinkage()) return false;
1913 assert(GV
->hasInitializer() && "Not a special LLVM global!");
1915 if (GV
->getName() == "llvm.global_ctors") {
1916 EmitXXStructorList(GV
->getParent()->getDataLayout(), GV
->getInitializer(),
1922 if (GV
->getName() == "llvm.global_dtors") {
1923 EmitXXStructorList(GV
->getParent()->getDataLayout(), GV
->getInitializer(),
1924 /* isCtor */ false);
1929 report_fatal_error("unknown special variable");
1932 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1933 /// global in the specified llvm.used list.
1934 void AsmPrinter::EmitLLVMUsedList(const ConstantArray
*InitList
) {
1935 // Should be an array of 'i8*'.
1936 for (unsigned i
= 0, e
= InitList
->getNumOperands(); i
!= e
; ++i
) {
1937 const GlobalValue
*GV
=
1938 dyn_cast
<GlobalValue
>(InitList
->getOperand(i
)->stripPointerCasts());
1940 OutStreamer
->EmitSymbolAttribute(getSymbol(GV
), MCSA_NoDeadStrip
);
1948 Constant
*Func
= nullptr;
1949 GlobalValue
*ComdatKey
= nullptr;
1951 Structor() = default;
1954 } // end anonymous namespace
1956 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1958 void AsmPrinter::EmitXXStructorList(const DataLayout
&DL
, const Constant
*List
,
1960 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is the
1962 if (!isa
<ConstantArray
>(List
)) return;
1964 // Sanity check the structors list.
1965 const ConstantArray
*InitList
= dyn_cast
<ConstantArray
>(List
);
1966 if (!InitList
) return; // Not an array!
1967 StructType
*ETy
= dyn_cast
<StructType
>(InitList
->getType()->getElementType());
1968 if (!ETy
|| ETy
->getNumElements() != 3 ||
1969 !isa
<IntegerType
>(ETy
->getTypeAtIndex(0U)) ||
1970 !isa
<PointerType
>(ETy
->getTypeAtIndex(1U)) ||
1971 !isa
<PointerType
>(ETy
->getTypeAtIndex(2U)))
1972 return; // Not (int, ptr, ptr).
1974 // Gather the structors in a form that's convenient for sorting by priority.
1975 SmallVector
<Structor
, 8> Structors
;
1976 for (Value
*O
: InitList
->operands()) {
1977 ConstantStruct
*CS
= dyn_cast
<ConstantStruct
>(O
);
1978 if (!CS
) continue; // Malformed.
1979 if (CS
->getOperand(1)->isNullValue())
1980 break; // Found a null terminator, skip the rest.
1981 ConstantInt
*Priority
= dyn_cast
<ConstantInt
>(CS
->getOperand(0));
1982 if (!Priority
) continue; // Malformed.
1983 Structors
.push_back(Structor());
1984 Structor
&S
= Structors
.back();
1985 S
.Priority
= Priority
->getLimitedValue(65535);
1986 S
.Func
= CS
->getOperand(1);
1987 if (!CS
->getOperand(2)->isNullValue())
1989 dyn_cast
<GlobalValue
>(CS
->getOperand(2)->stripPointerCasts());
1992 // Emit the function pointers in the target-specific order
1993 unsigned Align
= Log2_32(DL
.getPointerPrefAlignment());
1994 llvm::stable_sort(Structors
, [](const Structor
&L
, const Structor
&R
) {
1995 return L
.Priority
< R
.Priority
;
1997 for (Structor
&S
: Structors
) {
1998 const TargetLoweringObjectFile
&Obj
= getObjFileLowering();
1999 const MCSymbol
*KeySym
= nullptr;
2000 if (GlobalValue
*GV
= S
.ComdatKey
) {
2001 if (GV
->isDeclarationForLinker())
2002 // If the associated variable is not defined in this module
2003 // (it might be available_externally, or have been an
2004 // available_externally definition that was dropped by the
2005 // EliminateAvailableExternally pass), some other TU
2006 // will provide its dynamic initializer.
2009 KeySym
= getSymbol(GV
);
2011 MCSection
*OutputSection
=
2012 (isCtor
? Obj
.getStaticCtorSection(S
.Priority
, KeySym
)
2013 : Obj
.getStaticDtorSection(S
.Priority
, KeySym
));
2014 OutStreamer
->SwitchSection(OutputSection
);
2015 if (OutStreamer
->getCurrentSection() != OutStreamer
->getPreviousSection())
2016 EmitAlignment(Align
);
2017 EmitXXStructor(DL
, S
.Func
);
2021 void AsmPrinter::EmitModuleIdents(Module
&M
) {
2022 if (!MAI
->hasIdentDirective())
2025 if (const NamedMDNode
*NMD
= M
.getNamedMetadata("llvm.ident")) {
2026 for (unsigned i
= 0, e
= NMD
->getNumOperands(); i
!= e
; ++i
) {
2027 const MDNode
*N
= NMD
->getOperand(i
);
2028 assert(N
->getNumOperands() == 1 &&
2029 "llvm.ident metadata entry can have only one operand");
2030 const MDString
*S
= cast
<MDString
>(N
->getOperand(0));
2031 OutStreamer
->EmitIdent(S
->getString());
2036 void AsmPrinter::EmitModuleCommandLines(Module
&M
) {
2037 MCSection
*CommandLine
= getObjFileLowering().getSectionForCommandLines();
2041 const NamedMDNode
*NMD
= M
.getNamedMetadata("llvm.commandline");
2042 if (!NMD
|| !NMD
->getNumOperands())
2045 OutStreamer
->PushSection();
2046 OutStreamer
->SwitchSection(CommandLine
);
2047 OutStreamer
->EmitZeros(1);
2048 for (unsigned i
= 0, e
= NMD
->getNumOperands(); i
!= e
; ++i
) {
2049 const MDNode
*N
= NMD
->getOperand(i
);
2050 assert(N
->getNumOperands() == 1 &&
2051 "llvm.commandline metadata entry can have only one operand");
2052 const MDString
*S
= cast
<MDString
>(N
->getOperand(0));
2053 OutStreamer
->EmitBytes(S
->getString());
2054 OutStreamer
->EmitZeros(1);
2056 OutStreamer
->PopSection();
2059 //===--------------------------------------------------------------------===//
2060 // Emission and print routines
2063 /// Emit a byte directive and value.
2065 void AsmPrinter::emitInt8(int Value
) const {
2066 OutStreamer
->EmitIntValue(Value
, 1);
2069 /// Emit a short directive and value.
2070 void AsmPrinter::emitInt16(int Value
) const {
2071 OutStreamer
->EmitIntValue(Value
, 2);
2074 /// Emit a long directive and value.
2075 void AsmPrinter::emitInt32(int Value
) const {
2076 OutStreamer
->EmitIntValue(Value
, 4);
2079 /// Emit a long long directive and value.
2080 void AsmPrinter::emitInt64(uint64_t Value
) const {
2081 OutStreamer
->EmitIntValue(Value
, 8);
2084 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2085 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2086 /// .set if it avoids relocations.
2087 void AsmPrinter::EmitLabelDifference(const MCSymbol
*Hi
, const MCSymbol
*Lo
,
2088 unsigned Size
) const {
2089 OutStreamer
->emitAbsoluteSymbolDiff(Hi
, Lo
, Size
);
2092 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2093 /// where the size in bytes of the directive is specified by Size and Label
2094 /// specifies the label. This implicitly uses .set if it is available.
2095 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol
*Label
, uint64_t Offset
,
2097 bool IsSectionRelative
) const {
2098 if (MAI
->needsDwarfSectionOffsetDirective() && IsSectionRelative
) {
2099 OutStreamer
->EmitCOFFSecRel32(Label
, Offset
);
2101 OutStreamer
->EmitZeros(Size
- 4);
2105 // Emit Label+Offset (or just Label if Offset is zero)
2106 const MCExpr
*Expr
= MCSymbolRefExpr::create(Label
, OutContext
);
2108 Expr
= MCBinaryExpr::createAdd(
2109 Expr
, MCConstantExpr::create(Offset
, OutContext
), OutContext
);
2111 OutStreamer
->EmitValue(Expr
, Size
);
2114 //===----------------------------------------------------------------------===//
2116 // EmitAlignment - Emit an alignment directive to the specified power of
2117 // two boundary. For example, if you pass in 3 here, you will get an 8
2118 // byte alignment. If a global value is specified, and if that global has
2119 // an explicit alignment requested, it will override the alignment request
2120 // if required for correctness.
2121 void AsmPrinter::EmitAlignment(unsigned NumBits
, const GlobalObject
*GV
) const {
2123 NumBits
= getGVAlignmentLog2(GV
, GV
->getParent()->getDataLayout(), NumBits
);
2125 if (NumBits
== 0) return; // 1-byte aligned: no need to emit alignment.
2128 static_cast<unsigned>(std::numeric_limits
<unsigned>::digits
) &&
2129 "undefined behavior");
2130 if (getCurrentSection()->getKind().isText())
2131 OutStreamer
->EmitCodeAlignment(1u << NumBits
);
2133 OutStreamer
->EmitValueToAlignment(1u << NumBits
);
2136 //===----------------------------------------------------------------------===//
2137 // Constant emission.
2138 //===----------------------------------------------------------------------===//
2140 const MCExpr
*AsmPrinter::lowerConstant(const Constant
*CV
) {
2141 MCContext
&Ctx
= OutContext
;
2143 if (CV
->isNullValue() || isa
<UndefValue
>(CV
))
2144 return MCConstantExpr::create(0, Ctx
);
2146 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CV
))
2147 return MCConstantExpr::create(CI
->getZExtValue(), Ctx
);
2149 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CV
))
2150 return MCSymbolRefExpr::create(getSymbol(GV
), Ctx
);
2152 if (const BlockAddress
*BA
= dyn_cast
<BlockAddress
>(CV
))
2153 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA
), Ctx
);
2155 const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(CV
);
2157 llvm_unreachable("Unknown constant value to lower!");
2160 switch (CE
->getOpcode()) {
2162 // If the code isn't optimized, there may be outstanding folding
2163 // opportunities. Attempt to fold the expression using DataLayout as a
2164 // last resort before giving up.
2165 if (Constant
*C
= ConstantFoldConstant(CE
, getDataLayout()))
2167 return lowerConstant(C
);
2169 // Otherwise report the problem to the user.
2172 raw_string_ostream
OS(S
);
2173 OS
<< "Unsupported expression in static initializer: ";
2174 CE
->printAsOperand(OS
, /*PrintType=*/false,
2175 !MF
? nullptr : MF
->getFunction().getParent());
2176 report_fatal_error(OS
.str());
2178 case Instruction::GetElementPtr
: {
2179 // Generate a symbolic expression for the byte address
2180 APInt
OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE
->getType()), 0);
2181 cast
<GEPOperator
>(CE
)->accumulateConstantOffset(getDataLayout(), OffsetAI
);
2183 const MCExpr
*Base
= lowerConstant(CE
->getOperand(0));
2187 int64_t Offset
= OffsetAI
.getSExtValue();
2188 return MCBinaryExpr::createAdd(Base
, MCConstantExpr::create(Offset
, Ctx
),
2192 case Instruction::Trunc
:
2193 // We emit the value and depend on the assembler to truncate the generated
2194 // expression properly. This is important for differences between
2195 // blockaddress labels. Since the two labels are in the same function, it
2196 // is reasonable to treat their delta as a 32-bit value.
2198 case Instruction::BitCast
:
2199 return lowerConstant(CE
->getOperand(0));
2201 case Instruction::IntToPtr
: {
2202 const DataLayout
&DL
= getDataLayout();
2204 // Handle casts to pointers by changing them into casts to the appropriate
2205 // integer type. This promotes constant folding and simplifies this code.
2206 Constant
*Op
= CE
->getOperand(0);
2207 Op
= ConstantExpr::getIntegerCast(Op
, DL
.getIntPtrType(CV
->getType()),
2209 return lowerConstant(Op
);
2212 case Instruction::PtrToInt
: {
2213 const DataLayout
&DL
= getDataLayout();
2215 // Support only foldable casts to/from pointers that can be eliminated by
2216 // changing the pointer to the appropriately sized integer type.
2217 Constant
*Op
= CE
->getOperand(0);
2218 Type
*Ty
= CE
->getType();
2220 const MCExpr
*OpExpr
= lowerConstant(Op
);
2222 // We can emit the pointer value into this slot if the slot is an
2223 // integer slot equal to the size of the pointer.
2225 // If the pointer is larger than the resultant integer, then
2226 // as with Trunc just depend on the assembler to truncate it.
2227 if (DL
.getTypeAllocSize(Ty
) <= DL
.getTypeAllocSize(Op
->getType()))
2230 // Otherwise the pointer is smaller than the resultant integer, mask off
2231 // the high bits so we are sure to get a proper truncation if the input is
2233 unsigned InBits
= DL
.getTypeAllocSizeInBits(Op
->getType());
2234 const MCExpr
*MaskExpr
= MCConstantExpr::create(~0ULL >> (64-InBits
), Ctx
);
2235 return MCBinaryExpr::createAnd(OpExpr
, MaskExpr
, Ctx
);
2238 case Instruction::Sub
: {
2241 if (IsConstantOffsetFromGlobal(CE
->getOperand(0), LHSGV
, LHSOffset
,
2245 if (IsConstantOffsetFromGlobal(CE
->getOperand(1), RHSGV
, RHSOffset
,
2247 const MCExpr
*RelocExpr
=
2248 getObjFileLowering().lowerRelativeReference(LHSGV
, RHSGV
, TM
);
2250 RelocExpr
= MCBinaryExpr::createSub(
2251 MCSymbolRefExpr::create(getSymbol(LHSGV
), Ctx
),
2252 MCSymbolRefExpr::create(getSymbol(RHSGV
), Ctx
), Ctx
);
2253 int64_t Addend
= (LHSOffset
- RHSOffset
).getSExtValue();
2255 RelocExpr
= MCBinaryExpr::createAdd(
2256 RelocExpr
, MCConstantExpr::create(Addend
, Ctx
), Ctx
);
2264 // The MC library also has a right-shift operator, but it isn't consistently
2265 // signed or unsigned between different targets.
2266 case Instruction::Add
:
2267 case Instruction::Mul
:
2268 case Instruction::SDiv
:
2269 case Instruction::SRem
:
2270 case Instruction::Shl
:
2271 case Instruction::And
:
2272 case Instruction::Or
:
2273 case Instruction::Xor
: {
2274 const MCExpr
*LHS
= lowerConstant(CE
->getOperand(0));
2275 const MCExpr
*RHS
= lowerConstant(CE
->getOperand(1));
2276 switch (CE
->getOpcode()) {
2277 default: llvm_unreachable("Unknown binary operator constant cast expr");
2278 case Instruction::Add
: return MCBinaryExpr::createAdd(LHS
, RHS
, Ctx
);
2279 case Instruction::Sub
: return MCBinaryExpr::createSub(LHS
, RHS
, Ctx
);
2280 case Instruction::Mul
: return MCBinaryExpr::createMul(LHS
, RHS
, Ctx
);
2281 case Instruction::SDiv
: return MCBinaryExpr::createDiv(LHS
, RHS
, Ctx
);
2282 case Instruction::SRem
: return MCBinaryExpr::createMod(LHS
, RHS
, Ctx
);
2283 case Instruction::Shl
: return MCBinaryExpr::createShl(LHS
, RHS
, Ctx
);
2284 case Instruction::And
: return MCBinaryExpr::createAnd(LHS
, RHS
, Ctx
);
2285 case Instruction::Or
: return MCBinaryExpr::createOr (LHS
, RHS
, Ctx
);
2286 case Instruction::Xor
: return MCBinaryExpr::createXor(LHS
, RHS
, Ctx
);
2292 static void emitGlobalConstantImpl(const DataLayout
&DL
, const Constant
*C
,
2294 const Constant
*BaseCV
= nullptr,
2295 uint64_t Offset
= 0);
2297 static void emitGlobalConstantFP(const ConstantFP
*CFP
, AsmPrinter
&AP
);
2298 static void emitGlobalConstantFP(APFloat APF
, Type
*ET
, AsmPrinter
&AP
);
2300 /// isRepeatedByteSequence - Determine whether the given value is
2301 /// composed of a repeated sequence of identical bytes and return the
2302 /// byte value. If it is not a repeated sequence, return -1.
2303 static int isRepeatedByteSequence(const ConstantDataSequential
*V
) {
2304 StringRef Data
= V
->getRawDataValues();
2305 assert(!Data
.empty() && "Empty aggregates should be CAZ node");
2307 for (unsigned i
= 1, e
= Data
.size(); i
!= e
; ++i
)
2308 if (Data
[i
] != C
) return -1;
2309 return static_cast<uint8_t>(C
); // Ensure 255 is not returned as -1.
2312 /// isRepeatedByteSequence - Determine whether the given value is
2313 /// composed of a repeated sequence of identical bytes and return the
2314 /// byte value. If it is not a repeated sequence, return -1.
2315 static int isRepeatedByteSequence(const Value
*V
, const DataLayout
&DL
) {
2316 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
2317 uint64_t Size
= DL
.getTypeAllocSizeInBits(V
->getType());
2318 assert(Size
% 8 == 0);
2320 // Extend the element to take zero padding into account.
2321 APInt Value
= CI
->getValue().zextOrSelf(Size
);
2322 if (!Value
.isSplat(8))
2325 return Value
.zextOrTrunc(8).getZExtValue();
2327 if (const ConstantArray
*CA
= dyn_cast
<ConstantArray
>(V
)) {
2328 // Make sure all array elements are sequences of the same repeated
2330 assert(CA
->getNumOperands() != 0 && "Should be a CAZ");
2331 Constant
*Op0
= CA
->getOperand(0);
2332 int Byte
= isRepeatedByteSequence(Op0
, DL
);
2336 // All array elements must be equal.
2337 for (unsigned i
= 1, e
= CA
->getNumOperands(); i
!= e
; ++i
)
2338 if (CA
->getOperand(i
) != Op0
)
2343 if (const ConstantDataSequential
*CDS
= dyn_cast
<ConstantDataSequential
>(V
))
2344 return isRepeatedByteSequence(CDS
);
2349 static void emitGlobalConstantDataSequential(const DataLayout
&DL
,
2350 const ConstantDataSequential
*CDS
,
2352 // See if we can aggregate this into a .fill, if so, emit it as such.
2353 int Value
= isRepeatedByteSequence(CDS
, DL
);
2355 uint64_t Bytes
= DL
.getTypeAllocSize(CDS
->getType());
2356 // Don't emit a 1-byte object as a .fill.
2358 return AP
.OutStreamer
->emitFill(Bytes
, Value
);
2361 // If this can be emitted with .ascii/.asciz, emit it as such.
2362 if (CDS
->isString())
2363 return AP
.OutStreamer
->EmitBytes(CDS
->getAsString());
2365 // Otherwise, emit the values in successive locations.
2366 unsigned ElementByteSize
= CDS
->getElementByteSize();
2367 if (isa
<IntegerType
>(CDS
->getElementType())) {
2368 for (unsigned i
= 0, e
= CDS
->getNumElements(); i
!= e
; ++i
) {
2370 AP
.OutStreamer
->GetCommentOS() << format("0x%" PRIx64
"\n",
2371 CDS
->getElementAsInteger(i
));
2372 AP
.OutStreamer
->EmitIntValue(CDS
->getElementAsInteger(i
),
2376 Type
*ET
= CDS
->getElementType();
2377 for (unsigned I
= 0, E
= CDS
->getNumElements(); I
!= E
; ++I
)
2378 emitGlobalConstantFP(CDS
->getElementAsAPFloat(I
), ET
, AP
);
2381 unsigned Size
= DL
.getTypeAllocSize(CDS
->getType());
2382 unsigned EmittedSize
= DL
.getTypeAllocSize(CDS
->getType()->getElementType()) *
2383 CDS
->getNumElements();
2384 assert(EmittedSize
<= Size
&& "Size cannot be less than EmittedSize!");
2385 if (unsigned Padding
= Size
- EmittedSize
)
2386 AP
.OutStreamer
->EmitZeros(Padding
);
2389 static void emitGlobalConstantArray(const DataLayout
&DL
,
2390 const ConstantArray
*CA
, AsmPrinter
&AP
,
2391 const Constant
*BaseCV
, uint64_t Offset
) {
2392 // See if we can aggregate some values. Make sure it can be
2393 // represented as a series of bytes of the constant value.
2394 int Value
= isRepeatedByteSequence(CA
, DL
);
2397 uint64_t Bytes
= DL
.getTypeAllocSize(CA
->getType());
2398 AP
.OutStreamer
->emitFill(Bytes
, Value
);
2401 for (unsigned i
= 0, e
= CA
->getNumOperands(); i
!= e
; ++i
) {
2402 emitGlobalConstantImpl(DL
, CA
->getOperand(i
), AP
, BaseCV
, Offset
);
2403 Offset
+= DL
.getTypeAllocSize(CA
->getOperand(i
)->getType());
2408 static void emitGlobalConstantVector(const DataLayout
&DL
,
2409 const ConstantVector
*CV
, AsmPrinter
&AP
) {
2410 for (unsigned i
= 0, e
= CV
->getType()->getNumElements(); i
!= e
; ++i
)
2411 emitGlobalConstantImpl(DL
, CV
->getOperand(i
), AP
);
2413 unsigned Size
= DL
.getTypeAllocSize(CV
->getType());
2414 unsigned EmittedSize
= DL
.getTypeAllocSize(CV
->getType()->getElementType()) *
2415 CV
->getType()->getNumElements();
2416 if (unsigned Padding
= Size
- EmittedSize
)
2417 AP
.OutStreamer
->EmitZeros(Padding
);
2420 static void emitGlobalConstantStruct(const DataLayout
&DL
,
2421 const ConstantStruct
*CS
, AsmPrinter
&AP
,
2422 const Constant
*BaseCV
, uint64_t Offset
) {
2423 // Print the fields in successive locations. Pad to align if needed!
2424 unsigned Size
= DL
.getTypeAllocSize(CS
->getType());
2425 const StructLayout
*Layout
= DL
.getStructLayout(CS
->getType());
2426 uint64_t SizeSoFar
= 0;
2427 for (unsigned i
= 0, e
= CS
->getNumOperands(); i
!= e
; ++i
) {
2428 const Constant
*Field
= CS
->getOperand(i
);
2430 // Print the actual field value.
2431 emitGlobalConstantImpl(DL
, Field
, AP
, BaseCV
, Offset
+ SizeSoFar
);
2433 // Check if padding is needed and insert one or more 0s.
2434 uint64_t FieldSize
= DL
.getTypeAllocSize(Field
->getType());
2435 uint64_t PadSize
= ((i
== e
-1 ? Size
: Layout
->getElementOffset(i
+1))
2436 - Layout
->getElementOffset(i
)) - FieldSize
;
2437 SizeSoFar
+= FieldSize
+ PadSize
;
2439 // Insert padding - this may include padding to increase the size of the
2440 // current field up to the ABI size (if the struct is not packed) as well
2441 // as padding to ensure that the next field starts at the right offset.
2442 AP
.OutStreamer
->EmitZeros(PadSize
);
2444 assert(SizeSoFar
== Layout
->getSizeInBytes() &&
2445 "Layout of constant struct may be incorrect!");
2448 static void emitGlobalConstantFP(APFloat APF
, Type
*ET
, AsmPrinter
&AP
) {
2449 APInt API
= APF
.bitcastToAPInt();
2451 // First print a comment with what we think the original floating-point value
2452 // should have been.
2453 if (AP
.isVerbose()) {
2454 SmallString
<8> StrVal
;
2455 APF
.toString(StrVal
);
2458 ET
->print(AP
.OutStreamer
->GetCommentOS());
2460 AP
.OutStreamer
->GetCommentOS() << "Printing <null> Type";
2461 AP
.OutStreamer
->GetCommentOS() << ' ' << StrVal
<< '\n';
2464 // Now iterate through the APInt chunks, emitting them in endian-correct
2465 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2467 unsigned NumBytes
= API
.getBitWidth() / 8;
2468 unsigned TrailingBytes
= NumBytes
% sizeof(uint64_t);
2469 const uint64_t *p
= API
.getRawData();
2471 // PPC's long double has odd notions of endianness compared to how LLVM
2472 // handles it: p[0] goes first for *big* endian on PPC.
2473 if (AP
.getDataLayout().isBigEndian() && !ET
->isPPC_FP128Ty()) {
2474 int Chunk
= API
.getNumWords() - 1;
2477 AP
.OutStreamer
->EmitIntValue(p
[Chunk
--], TrailingBytes
);
2479 for (; Chunk
>= 0; --Chunk
)
2480 AP
.OutStreamer
->EmitIntValue(p
[Chunk
], sizeof(uint64_t));
2483 for (Chunk
= 0; Chunk
< NumBytes
/ sizeof(uint64_t); ++Chunk
)
2484 AP
.OutStreamer
->EmitIntValue(p
[Chunk
], sizeof(uint64_t));
2487 AP
.OutStreamer
->EmitIntValue(p
[Chunk
], TrailingBytes
);
2490 // Emit the tail padding for the long double.
2491 const DataLayout
&DL
= AP
.getDataLayout();
2492 AP
.OutStreamer
->EmitZeros(DL
.getTypeAllocSize(ET
) - DL
.getTypeStoreSize(ET
));
2495 static void emitGlobalConstantFP(const ConstantFP
*CFP
, AsmPrinter
&AP
) {
2496 emitGlobalConstantFP(CFP
->getValueAPF(), CFP
->getType(), AP
);
2499 static void emitGlobalConstantLargeInt(const ConstantInt
*CI
, AsmPrinter
&AP
) {
2500 const DataLayout
&DL
= AP
.getDataLayout();
2501 unsigned BitWidth
= CI
->getBitWidth();
2503 // Copy the value as we may massage the layout for constants whose bit width
2504 // is not a multiple of 64-bits.
2505 APInt
Realigned(CI
->getValue());
2506 uint64_t ExtraBits
= 0;
2507 unsigned ExtraBitsSize
= BitWidth
& 63;
2509 if (ExtraBitsSize
) {
2510 // The bit width of the data is not a multiple of 64-bits.
2511 // The extra bits are expected to be at the end of the chunk of the memory.
2513 // * Nothing to be done, just record the extra bits to emit.
2515 // * Record the extra bits to emit.
2516 // * Realign the raw data to emit the chunks of 64-bits.
2517 if (DL
.isBigEndian()) {
2518 // Basically the structure of the raw data is a chunk of 64-bits cells:
2519 // 0 1 BitWidth / 64
2520 // [chunk1][chunk2] ... [chunkN].
2521 // The most significant chunk is chunkN and it should be emitted first.
2522 // However, due to the alignment issue chunkN contains useless bits.
2523 // Realign the chunks so that they contain only useless information:
2524 // ExtraBits 0 1 (BitWidth / 64) - 1
2525 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2526 ExtraBits
= Realigned
.getRawData()[0] &
2527 (((uint64_t)-1) >> (64 - ExtraBitsSize
));
2528 Realigned
.lshrInPlace(ExtraBitsSize
);
2530 ExtraBits
= Realigned
.getRawData()[BitWidth
/ 64];
2533 // We don't expect assemblers to support integer data directives
2534 // for more than 64 bits, so we emit the data in at most 64-bit
2535 // quantities at a time.
2536 const uint64_t *RawData
= Realigned
.getRawData();
2537 for (unsigned i
= 0, e
= BitWidth
/ 64; i
!= e
; ++i
) {
2538 uint64_t Val
= DL
.isBigEndian() ? RawData
[e
- i
- 1] : RawData
[i
];
2539 AP
.OutStreamer
->EmitIntValue(Val
, 8);
2542 if (ExtraBitsSize
) {
2543 // Emit the extra bits after the 64-bits chunks.
2545 // Emit a directive that fills the expected size.
2546 uint64_t Size
= AP
.getDataLayout().getTypeAllocSize(CI
->getType());
2547 Size
-= (BitWidth
/ 64) * 8;
2548 assert(Size
&& Size
* 8 >= ExtraBitsSize
&&
2549 (ExtraBits
& (((uint64_t)-1) >> (64 - ExtraBitsSize
)))
2550 == ExtraBits
&& "Directive too small for extra bits.");
2551 AP
.OutStreamer
->EmitIntValue(ExtraBits
, Size
);
2555 /// Transform a not absolute MCExpr containing a reference to a GOT
2556 /// equivalent global, by a target specific GOT pc relative access to the
2558 static void handleIndirectSymViaGOTPCRel(AsmPrinter
&AP
, const MCExpr
**ME
,
2559 const Constant
*BaseCst
,
2561 // The global @foo below illustrates a global that uses a got equivalent.
2563 // @bar = global i32 42
2564 // @gotequiv = private unnamed_addr constant i32* @bar
2565 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2566 // i64 ptrtoint (i32* @foo to i64))
2569 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2570 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2573 // foo = cstexpr, where
2574 // cstexpr := <gotequiv> - "." + <cst>
2575 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2577 // After canonicalization by evaluateAsRelocatable `ME` turns into:
2579 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2580 // gotpcrelcst := <offset from @foo base> + <cst>
2582 if (!(*ME
)->evaluateAsRelocatable(MV
, nullptr, nullptr) || MV
.isAbsolute())
2584 const MCSymbolRefExpr
*SymA
= MV
.getSymA();
2588 // Check that GOT equivalent symbol is cached.
2589 const MCSymbol
*GOTEquivSym
= &SymA
->getSymbol();
2590 if (!AP
.GlobalGOTEquivs
.count(GOTEquivSym
))
2593 const GlobalValue
*BaseGV
= dyn_cast_or_null
<GlobalValue
>(BaseCst
);
2597 // Check for a valid base symbol
2598 const MCSymbol
*BaseSym
= AP
.getSymbol(BaseGV
);
2599 const MCSymbolRefExpr
*SymB
= MV
.getSymB();
2601 if (!SymB
|| BaseSym
!= &SymB
->getSymbol())
2604 // Make sure to match:
2606 // gotpcrelcst := <offset from @foo base> + <cst>
2608 // If gotpcrelcst is positive it means that we can safely fold the pc rel
2609 // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2610 // if the target knows how to encode it.
2611 int64_t GOTPCRelCst
= Offset
+ MV
.getConstant();
2612 if (GOTPCRelCst
< 0)
2614 if (!AP
.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst
!= 0)
2617 // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2624 // .long gotequiv - "." + <cst>
2626 // is replaced by the target specific equivalent to:
2631 // .long bar@GOTPCREL+<gotpcrelcst>
2632 AsmPrinter::GOTEquivUsePair Result
= AP
.GlobalGOTEquivs
[GOTEquivSym
];
2633 const GlobalVariable
*GV
= Result
.first
;
2634 int NumUses
= (int)Result
.second
;
2635 const GlobalValue
*FinalGV
= dyn_cast
<GlobalValue
>(GV
->getOperand(0));
2636 const MCSymbol
*FinalSym
= AP
.getSymbol(FinalGV
);
2637 *ME
= AP
.getObjFileLowering().getIndirectSymViaGOTPCRel(
2638 FinalSym
, MV
, Offset
, AP
.MMI
, *AP
.OutStreamer
);
2640 // Update GOT equivalent usage information
2643 AP
.GlobalGOTEquivs
[GOTEquivSym
] = std::make_pair(GV
, NumUses
);
2646 static void emitGlobalConstantImpl(const DataLayout
&DL
, const Constant
*CV
,
2647 AsmPrinter
&AP
, const Constant
*BaseCV
,
2649 uint64_t Size
= DL
.getTypeAllocSize(CV
->getType());
2651 // Globals with sub-elements such as combinations of arrays and structs
2652 // are handled recursively by emitGlobalConstantImpl. Keep track of the
2653 // constant symbol base and the current position with BaseCV and Offset.
2654 if (!BaseCV
&& CV
->hasOneUse())
2655 BaseCV
= dyn_cast
<Constant
>(CV
->user_back());
2657 if (isa
<ConstantAggregateZero
>(CV
) || isa
<UndefValue
>(CV
))
2658 return AP
.OutStreamer
->EmitZeros(Size
);
2660 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CV
)) {
2667 AP
.OutStreamer
->GetCommentOS() << format("0x%" PRIx64
"\n",
2668 CI
->getZExtValue());
2669 AP
.OutStreamer
->EmitIntValue(CI
->getZExtValue(), Size
);
2672 emitGlobalConstantLargeInt(CI
, AP
);
2677 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CV
))
2678 return emitGlobalConstantFP(CFP
, AP
);
2680 if (isa
<ConstantPointerNull
>(CV
)) {
2681 AP
.OutStreamer
->EmitIntValue(0, Size
);
2685 if (const ConstantDataSequential
*CDS
= dyn_cast
<ConstantDataSequential
>(CV
))
2686 return emitGlobalConstantDataSequential(DL
, CDS
, AP
);
2688 if (const ConstantArray
*CVA
= dyn_cast
<ConstantArray
>(CV
))
2689 return emitGlobalConstantArray(DL
, CVA
, AP
, BaseCV
, Offset
);
2691 if (const ConstantStruct
*CVS
= dyn_cast
<ConstantStruct
>(CV
))
2692 return emitGlobalConstantStruct(DL
, CVS
, AP
, BaseCV
, Offset
);
2694 if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(CV
)) {
2695 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2697 if (CE
->getOpcode() == Instruction::BitCast
)
2698 return emitGlobalConstantImpl(DL
, CE
->getOperand(0), AP
);
2701 // If the constant expression's size is greater than 64-bits, then we have
2702 // to emit the value in chunks. Try to constant fold the value and emit it
2704 Constant
*New
= ConstantFoldConstant(CE
, DL
);
2705 if (New
&& New
!= CE
)
2706 return emitGlobalConstantImpl(DL
, New
, AP
);
2710 if (const ConstantVector
*V
= dyn_cast
<ConstantVector
>(CV
))
2711 return emitGlobalConstantVector(DL
, V
, AP
);
2713 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it
2714 // thread the streamer with EmitValue.
2715 const MCExpr
*ME
= AP
.lowerConstant(CV
);
2717 // Since lowerConstant already folded and got rid of all IR pointer and
2718 // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2720 if (AP
.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2721 handleIndirectSymViaGOTPCRel(AP
, &ME
, BaseCV
, Offset
);
2723 AP
.OutStreamer
->EmitValue(ME
, Size
);
2726 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2727 void AsmPrinter::EmitGlobalConstant(const DataLayout
&DL
, const Constant
*CV
) {
2728 uint64_t Size
= DL
.getTypeAllocSize(CV
->getType());
2730 emitGlobalConstantImpl(DL
, CV
, *this);
2731 else if (MAI
->hasSubsectionsViaSymbols()) {
2732 // If the global has zero size, emit a single byte so that two labels don't
2733 // look like they are at the same location.
2734 OutStreamer
->EmitIntValue(0, 1);
2738 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue
*MCPV
) {
2739 // Target doesn't support this yet!
2740 llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2743 void AsmPrinter::printOffset(int64_t Offset
, raw_ostream
&OS
) const {
2745 OS
<< '+' << Offset
;
2746 else if (Offset
< 0)
2750 //===----------------------------------------------------------------------===//
2751 // Symbol Lowering Routines.
2752 //===----------------------------------------------------------------------===//
2754 MCSymbol
*AsmPrinter::createTempSymbol(const Twine
&Name
) const {
2755 return OutContext
.createTempSymbol(Name
, true);
2758 MCSymbol
*AsmPrinter::GetBlockAddressSymbol(const BlockAddress
*BA
) const {
2759 return MMI
->getAddrLabelSymbol(BA
->getBasicBlock());
2762 MCSymbol
*AsmPrinter::GetBlockAddressSymbol(const BasicBlock
*BB
) const {
2763 return MMI
->getAddrLabelSymbol(BB
);
2766 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
2767 MCSymbol
*AsmPrinter::GetCPISymbol(unsigned CPID
) const {
2768 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) {
2769 const MachineConstantPoolEntry
&CPE
=
2770 MF
->getConstantPool()->getConstants()[CPID
];
2771 if (!CPE
.isMachineConstantPoolEntry()) {
2772 const DataLayout
&DL
= MF
->getDataLayout();
2773 SectionKind Kind
= CPE
.getSectionKind(&DL
);
2774 const Constant
*C
= CPE
.Val
.ConstVal
;
2775 unsigned Align
= CPE
.Alignment
;
2776 if (const MCSectionCOFF
*S
= dyn_cast
<MCSectionCOFF
>(
2777 getObjFileLowering().getSectionForConstant(DL
, Kind
, C
, Align
))) {
2778 if (MCSymbol
*Sym
= S
->getCOMDATSymbol()) {
2779 if (Sym
->isUndefined())
2780 OutStreamer
->EmitSymbolAttribute(Sym
, MCSA_Global
);
2787 const DataLayout
&DL
= getDataLayout();
2788 return OutContext
.getOrCreateSymbol(Twine(DL
.getPrivateGlobalPrefix()) +
2789 "CPI" + Twine(getFunctionNumber()) + "_" +
2793 /// GetJTISymbol - Return the symbol for the specified jump table entry.
2794 MCSymbol
*AsmPrinter::GetJTISymbol(unsigned JTID
, bool isLinkerPrivate
) const {
2795 return MF
->getJTISymbol(JTID
, OutContext
, isLinkerPrivate
);
2798 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2799 /// FIXME: privatize to AsmPrinter.
2800 MCSymbol
*AsmPrinter::GetJTSetSymbol(unsigned UID
, unsigned MBBID
) const {
2801 const DataLayout
&DL
= getDataLayout();
2802 return OutContext
.getOrCreateSymbol(Twine(DL
.getPrivateGlobalPrefix()) +
2803 Twine(getFunctionNumber()) + "_" +
2804 Twine(UID
) + "_set_" + Twine(MBBID
));
2807 MCSymbol
*AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue
*GV
,
2808 StringRef Suffix
) const {
2809 return getObjFileLowering().getSymbolWithGlobalValueBase(GV
, Suffix
, TM
);
2812 /// Return the MCSymbol for the specified ExternalSymbol.
2813 MCSymbol
*AsmPrinter::GetExternalSymbolSymbol(StringRef Sym
) const {
2814 SmallString
<60> NameStr
;
2815 Mangler::getNameWithPrefix(NameStr
, Sym
, getDataLayout());
2816 return OutContext
.getOrCreateSymbol(NameStr
);
2819 /// PrintParentLoopComment - Print comments about parent loops of this one.
2820 static void PrintParentLoopComment(raw_ostream
&OS
, const MachineLoop
*Loop
,
2821 unsigned FunctionNumber
) {
2823 PrintParentLoopComment(OS
, Loop
->getParentLoop(), FunctionNumber
);
2824 OS
.indent(Loop
->getLoopDepth()*2)
2825 << "Parent Loop BB" << FunctionNumber
<< "_"
2826 << Loop
->getHeader()->getNumber()
2827 << " Depth=" << Loop
->getLoopDepth() << '\n';
2830 /// PrintChildLoopComment - Print comments about child loops within
2831 /// the loop for this basic block, with nesting.
2832 static void PrintChildLoopComment(raw_ostream
&OS
, const MachineLoop
*Loop
,
2833 unsigned FunctionNumber
) {
2834 // Add child loop information
2835 for (const MachineLoop
*CL
: *Loop
) {
2836 OS
.indent(CL
->getLoopDepth()*2)
2837 << "Child Loop BB" << FunctionNumber
<< "_"
2838 << CL
->getHeader()->getNumber() << " Depth " << CL
->getLoopDepth()
2840 PrintChildLoopComment(OS
, CL
, FunctionNumber
);
2844 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2845 static void emitBasicBlockLoopComments(const MachineBasicBlock
&MBB
,
2846 const MachineLoopInfo
*LI
,
2847 const AsmPrinter
&AP
) {
2848 // Add loop depth information
2849 const MachineLoop
*Loop
= LI
->getLoopFor(&MBB
);
2852 MachineBasicBlock
*Header
= Loop
->getHeader();
2853 assert(Header
&& "No header for loop");
2855 // If this block is not a loop header, just print out what is the loop header
2857 if (Header
!= &MBB
) {
2858 AP
.OutStreamer
->AddComment(" in Loop: Header=BB" +
2859 Twine(AP
.getFunctionNumber())+"_" +
2860 Twine(Loop
->getHeader()->getNumber())+
2861 " Depth="+Twine(Loop
->getLoopDepth()));
2865 // Otherwise, it is a loop header. Print out information about child and
2867 raw_ostream
&OS
= AP
.OutStreamer
->GetCommentOS();
2869 PrintParentLoopComment(OS
, Loop
->getParentLoop(), AP
.getFunctionNumber());
2872 OS
.indent(Loop
->getLoopDepth()*2-2);
2877 OS
<< "Loop Header: Depth=" + Twine(Loop
->getLoopDepth()) << '\n';
2879 PrintChildLoopComment(OS
, Loop
, AP
.getFunctionNumber());
2882 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock
&MBB
,
2883 MCCodePaddingContext
&Context
) const {
2884 assert(MF
!= nullptr && "Machine function must be valid");
2885 Context
.IsPaddingActive
= !MF
->hasInlineAsm() &&
2886 !MF
->getFunction().hasOptSize() &&
2887 TM
.getOptLevel() != CodeGenOpt::None
;
2888 Context
.IsBasicBlockReachableViaFallthrough
=
2889 std::find(MBB
.pred_begin(), MBB
.pred_end(), MBB
.getPrevNode()) !=
2891 Context
.IsBasicBlockReachableViaBranch
=
2892 MBB
.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB
);
2895 /// EmitBasicBlockStart - This method prints the label for the specified
2896 /// MachineBasicBlock, an alignment (if present) and a comment describing
2897 /// it if appropriate.
2898 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock
&MBB
) const {
2899 // End the previous funclet and start a new one.
2900 if (MBB
.isEHFuncletEntry()) {
2901 for (const HandlerInfo
&HI
: Handlers
) {
2902 HI
.Handler
->endFunclet();
2903 HI
.Handler
->beginFunclet(MBB
);
2907 // Emit an alignment directive for this block, if needed.
2908 if (unsigned Align
= MBB
.getAlignment())
2909 EmitAlignment(Align
);
2910 MCCodePaddingContext Context
;
2911 setupCodePaddingContext(MBB
, Context
);
2912 OutStreamer
->EmitCodePaddingBasicBlockStart(Context
);
2914 // If the block has its address taken, emit any labels that were used to
2915 // reference the block. It is possible that there is more than one label
2916 // here, because multiple LLVM BB's may have been RAUW'd to this block after
2917 // the references were generated.
2918 if (MBB
.hasAddressTaken()) {
2919 const BasicBlock
*BB
= MBB
.getBasicBlock();
2921 OutStreamer
->AddComment("Block address taken");
2923 // MBBs can have their address taken as part of CodeGen without having
2924 // their corresponding BB's address taken in IR
2925 if (BB
->hasAddressTaken())
2926 for (MCSymbol
*Sym
: MMI
->getAddrLabelSymbolToEmit(BB
))
2927 OutStreamer
->EmitLabel(Sym
);
2930 // Print some verbose block comments.
2932 if (const BasicBlock
*BB
= MBB
.getBasicBlock()) {
2933 if (BB
->hasName()) {
2934 BB
->printAsOperand(OutStreamer
->GetCommentOS(),
2935 /*PrintType=*/false, BB
->getModule());
2936 OutStreamer
->GetCommentOS() << '\n';
2940 assert(MLI
!= nullptr && "MachineLoopInfo should has been computed");
2941 emitBasicBlockLoopComments(MBB
, MLI
, *this);
2944 // Print the main label for the block.
2945 if (MBB
.pred_empty() ||
2946 (isBlockOnlyReachableByFallthrough(&MBB
) && !MBB
.isEHFuncletEntry() &&
2947 !MBB
.hasLabelMustBeEmitted())) {
2949 // NOTE: Want this comment at start of line, don't emit with AddComment.
2950 OutStreamer
->emitRawComment(" %bb." + Twine(MBB
.getNumber()) + ":",
2954 if (isVerbose() && MBB
.hasLabelMustBeEmitted())
2955 OutStreamer
->AddComment("Label of block must be emitted");
2956 OutStreamer
->EmitLabel(MBB
.getSymbol());
2960 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock
&MBB
) {
2961 MCCodePaddingContext Context
;
2962 setupCodePaddingContext(MBB
, Context
);
2963 OutStreamer
->EmitCodePaddingBasicBlockEnd(Context
);
2966 void AsmPrinter::EmitVisibility(MCSymbol
*Sym
, unsigned Visibility
,
2967 bool IsDefinition
) const {
2968 MCSymbolAttr Attr
= MCSA_Invalid
;
2970 switch (Visibility
) {
2972 case GlobalValue::HiddenVisibility
:
2974 Attr
= MAI
->getHiddenVisibilityAttr();
2976 Attr
= MAI
->getHiddenDeclarationVisibilityAttr();
2978 case GlobalValue::ProtectedVisibility
:
2979 Attr
= MAI
->getProtectedVisibilityAttr();
2983 if (Attr
!= MCSA_Invalid
)
2984 OutStreamer
->EmitSymbolAttribute(Sym
, Attr
);
2987 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
2988 /// exactly one predecessor and the control transfer mechanism between
2989 /// the predecessor and this block is a fall-through.
2991 isBlockOnlyReachableByFallthrough(const MachineBasicBlock
*MBB
) const {
2992 // If this is a landing pad, it isn't a fall through. If it has no preds,
2993 // then nothing falls through to it.
2994 if (MBB
->isEHPad() || MBB
->pred_empty())
2997 // If there isn't exactly one predecessor, it can't be a fall through.
2998 if (MBB
->pred_size() > 1)
3001 // The predecessor has to be immediately before this block.
3002 MachineBasicBlock
*Pred
= *MBB
->pred_begin();
3003 if (!Pred
->isLayoutSuccessor(MBB
))
3006 // If the block is completely empty, then it definitely does fall through.
3010 // Check the terminators in the previous blocks
3011 for (const auto &MI
: Pred
->terminators()) {
3012 // If it is not a simple branch, we are in a table somewhere.
3013 if (!MI
.isBranch() || MI
.isIndirectBranch())
3016 // If we are the operands of one of the branches, this is not a fall
3017 // through. Note that targets with delay slots will usually bundle
3018 // terminators with the delay slot instruction.
3019 for (ConstMIBundleOperands
OP(MI
); OP
.isValid(); ++OP
) {
3022 if (OP
->isMBB() && OP
->getMBB() == MBB
)
3030 GCMetadataPrinter
*AsmPrinter::GetOrCreateGCPrinter(GCStrategy
&S
) {
3031 if (!S
.usesMetadata())
3034 gcp_map_type
&GCMap
= getGCMap(GCMetadataPrinters
);
3035 gcp_map_type::iterator GCPI
= GCMap
.find(&S
);
3036 if (GCPI
!= GCMap
.end())
3037 return GCPI
->second
.get();
3039 auto Name
= S
.getName();
3041 for (GCMetadataPrinterRegistry::iterator
3042 I
= GCMetadataPrinterRegistry::begin(),
3043 E
= GCMetadataPrinterRegistry::end(); I
!= E
; ++I
)
3044 if (Name
== I
->getName()) {
3045 std::unique_ptr
<GCMetadataPrinter
> GMP
= I
->instantiate();
3047 auto IterBool
= GCMap
.insert(std::make_pair(&S
, std::move(GMP
)));
3048 return IterBool
.first
->second
.get();
3051 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name
));
3054 void AsmPrinter::emitStackMaps(StackMaps
&SM
) {
3055 GCModuleInfo
*MI
= getAnalysisIfAvailable
<GCModuleInfo
>();
3056 assert(MI
&& "AsmPrinter didn't require GCModuleInfo?");
3057 bool NeedsDefault
= false;
3058 if (MI
->begin() == MI
->end())
3059 // No GC strategy, use the default format.
3060 NeedsDefault
= true;
3062 for (auto &I
: *MI
) {
3063 if (GCMetadataPrinter
*MP
= GetOrCreateGCPrinter(*I
))
3064 if (MP
->emitStackMaps(SM
, *this))
3066 // The strategy doesn't have printer or doesn't emit custom stack maps.
3067 // Use the default format.
3068 NeedsDefault
= true;
3072 SM
.serializeToStackMapSection();
3075 /// Pin vtable to this file.
3076 AsmPrinterHandler::~AsmPrinterHandler() = default;
3078 void AsmPrinterHandler::markFunctionEnd() {}
3080 // In the binary's "xray_instr_map" section, an array of these function entries
3081 // describes each instrumentation point. When XRay patches your code, the index
3082 // into this table will be given to your handler as a patch point identifier.
3083 void AsmPrinter::XRayFunctionEntry::emit(int Bytes
, MCStreamer
*Out
,
3084 const MCSymbol
*CurrentFnSym
) const {
3085 Out
->EmitSymbolValue(Sled
, Bytes
);
3086 Out
->EmitSymbolValue(CurrentFnSym
, Bytes
);
3087 auto Kind8
= static_cast<uint8_t>(Kind
);
3088 Out
->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8
), 1));
3089 Out
->EmitBinaryData(
3090 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument
), 1));
3091 Out
->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version
), 1));
3092 auto Padding
= (4 * Bytes
) - ((2 * Bytes
) + 3);
3093 assert(Padding
>= 0 && "Instrumentation map entry > 4 * Word Size");
3094 Out
->EmitZeros(Padding
);
3097 void AsmPrinter::emitXRayTable() {
3101 auto PrevSection
= OutStreamer
->getCurrentSectionOnly();
3102 const Function
&F
= MF
->getFunction();
3103 MCSection
*InstMap
= nullptr;
3104 MCSection
*FnSledIndex
= nullptr;
3105 if (MF
->getSubtarget().getTargetTriple().isOSBinFormatELF()) {
3106 auto Associated
= dyn_cast
<MCSymbolELF
>(CurrentFnSym
);
3107 assert(Associated
!= nullptr);
3108 auto Flags
= ELF::SHF_WRITE
| ELF::SHF_ALLOC
| ELF::SHF_LINK_ORDER
;
3109 std::string GroupName
;
3110 if (F
.hasComdat()) {
3111 Flags
|= ELF::SHF_GROUP
;
3112 GroupName
= F
.getComdat()->getName();
3115 auto UniqueID
= ++XRayFnUniqueID
;
3117 OutContext
.getELFSection("xray_instr_map", ELF::SHT_PROGBITS
, Flags
, 0,
3118 GroupName
, UniqueID
, Associated
);
3120 OutContext
.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS
, Flags
, 0,
3121 GroupName
, UniqueID
, Associated
);
3122 } else if (MF
->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3123 InstMap
= OutContext
.getMachOSection("__DATA", "xray_instr_map", 0,
3124 SectionKind::getReadOnlyWithRel());
3125 FnSledIndex
= OutContext
.getMachOSection("__DATA", "xray_fn_idx", 0,
3126 SectionKind::getReadOnlyWithRel());
3128 llvm_unreachable("Unsupported target");
3131 auto WordSizeBytes
= MAI
->getCodePointerSize();
3133 // Now we switch to the instrumentation map section. Because this is done
3134 // per-function, we are able to create an index entry that will represent the
3135 // range of sleds associated with a function.
3136 MCSymbol
*SledsStart
= OutContext
.createTempSymbol("xray_sleds_start", true);
3137 OutStreamer
->SwitchSection(InstMap
);
3138 OutStreamer
->EmitLabel(SledsStart
);
3139 for (const auto &Sled
: Sleds
)
3140 Sled
.emit(WordSizeBytes
, OutStreamer
.get(), CurrentFnSym
);
3141 MCSymbol
*SledsEnd
= OutContext
.createTempSymbol("xray_sleds_end", true);
3142 OutStreamer
->EmitLabel(SledsEnd
);
3144 // We then emit a single entry in the index per function. We use the symbols
3145 // that bound the instrumentation map as the range for a specific function.
3146 // Each entry here will be 2 * word size aligned, as we're writing down two
3147 // pointers. This should work for both 32-bit and 64-bit platforms.
3148 OutStreamer
->SwitchSection(FnSledIndex
);
3149 OutStreamer
->EmitCodeAlignment(2 * WordSizeBytes
);
3150 OutStreamer
->EmitSymbolValue(SledsStart
, WordSizeBytes
, false);
3151 OutStreamer
->EmitSymbolValue(SledsEnd
, WordSizeBytes
, false);
3152 OutStreamer
->SwitchSection(PrevSection
);
3156 void AsmPrinter::recordSled(MCSymbol
*Sled
, const MachineInstr
&MI
,
3157 SledKind Kind
, uint8_t Version
) {
3158 const Function
&F
= MI
.getMF()->getFunction();
3159 auto Attr
= F
.getFnAttribute("function-instrument");
3160 bool LogArgs
= F
.hasFnAttribute("xray-log-args");
3161 bool AlwaysInstrument
=
3162 Attr
.isStringAttribute() && Attr
.getValueAsString() == "xray-always";
3163 if (Kind
== SledKind::FUNCTION_ENTER
&& LogArgs
)
3164 Kind
= SledKind::LOG_ARGS_ENTER
;
3165 Sleds
.emplace_back(XRayFunctionEntry
{Sled
, CurrentFnSym
, Kind
,
3166 AlwaysInstrument
, &F
, Version
});
3169 uint16_t AsmPrinter::getDwarfVersion() const {
3170 return OutStreamer
->getContext().getDwarfVersion();
3173 void AsmPrinter::setDwarfVersion(uint16_t Version
) {
3174 OutStreamer
->getContext().setDwarfVersion(Version
);