1 //===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file implements interprocedural passes which walk the
11 /// call-graph deducing and/or propagating function attributes.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/IPO/FunctionAttrs.h"
16 #include "llvm/ADT/SCCIterator.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/BasicAliasAnalysis.h"
25 #include "llvm/Analysis/CGSCCPassManager.h"
26 #include "llvm/Analysis/CallGraph.h"
27 #include "llvm/Analysis/CallGraphSCCPass.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/LazyCallGraph.h"
30 #include "llvm/Analysis/MemoryBuiltins.h"
31 #include "llvm/Analysis/MemoryLocation.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/Argument.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CallSite.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/InstIterator.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Metadata.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/Use.h"
49 #include "llvm/IR/User.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/IPO.h"
66 #define DEBUG_TYPE "functionattrs"
68 STATISTIC(NumReadNone
, "Number of functions marked readnone");
69 STATISTIC(NumReadOnly
, "Number of functions marked readonly");
70 STATISTIC(NumWriteOnly
, "Number of functions marked writeonly");
71 STATISTIC(NumNoCapture
, "Number of arguments marked nocapture");
72 STATISTIC(NumReturned
, "Number of arguments marked returned");
73 STATISTIC(NumReadNoneArg
, "Number of arguments marked readnone");
74 STATISTIC(NumReadOnlyArg
, "Number of arguments marked readonly");
75 STATISTIC(NumNoAlias
, "Number of function returns marked noalias");
76 STATISTIC(NumNonNullReturn
, "Number of function returns marked nonnull");
77 STATISTIC(NumNoRecurse
, "Number of functions marked as norecurse");
78 STATISTIC(NumNoUnwind
, "Number of functions marked as nounwind");
79 STATISTIC(NumNoFree
, "Number of functions marked as nofree");
81 // FIXME: This is disabled by default to avoid exposing security vulnerabilities
82 // in C/C++ code compiled by clang:
83 // http://lists.llvm.org/pipermail/cfe-dev/2017-January/052066.html
84 static cl::opt
<bool> EnableNonnullArgPropagation(
85 "enable-nonnull-arg-prop", cl::Hidden
,
86 cl::desc("Try to propagate nonnull argument attributes from callsites to "
87 "caller functions."));
89 static cl::opt
<bool> DisableNoUnwindInference(
90 "disable-nounwind-inference", cl::Hidden
,
91 cl::desc("Stop inferring nounwind attribute during function-attrs pass"));
93 static cl::opt
<bool> DisableNoFreeInference(
94 "disable-nofree-inference", cl::Hidden
,
95 cl::desc("Stop inferring nofree attribute during function-attrs pass"));
99 using SCCNodeSet
= SmallSetVector
<Function
*, 8>;
101 } // end anonymous namespace
103 /// Returns the memory access attribute for function F using AAR for AA results,
104 /// where SCCNodes is the current SCC.
106 /// If ThisBody is true, this function may examine the function body and will
107 /// return a result pertaining to this copy of the function. If it is false, the
108 /// result will be based only on AA results for the function declaration; it
109 /// will be assumed that some other (perhaps less optimized) version of the
110 /// function may be selected at link time.
111 static MemoryAccessKind
checkFunctionMemoryAccess(Function
&F
, bool ThisBody
,
113 const SCCNodeSet
&SCCNodes
) {
114 FunctionModRefBehavior MRB
= AAR
.getModRefBehavior(&F
);
115 if (MRB
== FMRB_DoesNotAccessMemory
)
120 if (AliasAnalysis::onlyReadsMemory(MRB
))
123 if (AliasAnalysis::doesNotReadMemory(MRB
))
124 return MAK_WriteOnly
;
126 // Conservatively assume it reads and writes to memory.
130 // Scan the function body for instructions that may read or write memory.
131 bool ReadsMemory
= false;
132 bool WritesMemory
= false;
133 for (inst_iterator II
= inst_begin(F
), E
= inst_end(F
); II
!= E
; ++II
) {
134 Instruction
*I
= &*II
;
136 // Some instructions can be ignored even if they read or write memory.
137 // Detect these now, skipping to the next instruction if one is found.
138 if (auto *Call
= dyn_cast
<CallBase
>(I
)) {
139 // Ignore calls to functions in the same SCC, as long as the call sites
140 // don't have operand bundles. Calls with operand bundles are allowed to
141 // have memory effects not described by the memory effects of the call
143 if (!Call
->hasOperandBundles() && Call
->getCalledFunction() &&
144 SCCNodes
.count(Call
->getCalledFunction()))
146 FunctionModRefBehavior MRB
= AAR
.getModRefBehavior(Call
);
147 ModRefInfo MRI
= createModRefInfo(MRB
);
149 // If the call doesn't access memory, we're done.
153 if (!AliasAnalysis::onlyAccessesArgPointees(MRB
)) {
154 // The call could access any memory. If that includes writes, note it.
157 // If it reads, note it.
163 // Check whether all pointer arguments point to local memory, and
164 // ignore calls that only access local memory.
165 for (CallSite::arg_iterator CI
= Call
->arg_begin(), CE
= Call
->arg_end();
168 if (!Arg
->getType()->isPtrOrPtrVectorTy())
172 I
->getAAMetadata(AAInfo
);
173 MemoryLocation
Loc(Arg
, LocationSize::unknown(), AAInfo
);
175 // Skip accesses to local or constant memory as they don't impact the
176 // externally visible mod/ref behavior.
177 if (AAR
.pointsToConstantMemory(Loc
, /*OrLocal=*/true))
181 // Writes non-local memory.
184 // Ok, it reads non-local memory.
188 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
189 // Ignore non-volatile loads from local memory. (Atomic is okay here.)
190 if (!LI
->isVolatile()) {
191 MemoryLocation Loc
= MemoryLocation::get(LI
);
192 if (AAR
.pointsToConstantMemory(Loc
, /*OrLocal=*/true))
195 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
196 // Ignore non-volatile stores to local memory. (Atomic is okay here.)
197 if (!SI
->isVolatile()) {
198 MemoryLocation Loc
= MemoryLocation::get(SI
);
199 if (AAR
.pointsToConstantMemory(Loc
, /*OrLocal=*/true))
202 } else if (VAArgInst
*VI
= dyn_cast
<VAArgInst
>(I
)) {
203 // Ignore vaargs on local memory.
204 MemoryLocation Loc
= MemoryLocation::get(VI
);
205 if (AAR
.pointsToConstantMemory(Loc
, /*OrLocal=*/true))
209 // Any remaining instructions need to be taken seriously! Check if they
210 // read or write memory.
212 // Writes memory, remember that.
213 WritesMemory
|= I
->mayWriteToMemory();
215 // If this instruction may read memory, remember that.
216 ReadsMemory
|= I
->mayReadFromMemory();
221 return MAK_WriteOnly
;
226 return ReadsMemory
? MAK_ReadOnly
: MAK_ReadNone
;
229 MemoryAccessKind
llvm::computeFunctionBodyMemoryAccess(Function
&F
,
231 return checkFunctionMemoryAccess(F
, /*ThisBody=*/true, AAR
, {});
234 /// Deduce readonly/readnone attributes for the SCC.
235 template <typename AARGetterT
>
236 static bool addReadAttrs(const SCCNodeSet
&SCCNodes
, AARGetterT
&&AARGetter
) {
237 // Check if any of the functions in the SCC read or write memory. If they
238 // write memory then they can't be marked readnone or readonly.
239 bool ReadsMemory
= false;
240 bool WritesMemory
= false;
241 for (Function
*F
: SCCNodes
) {
242 // Call the callable parameter to look up AA results for this function.
243 AAResults
&AAR
= AARGetter(*F
);
245 // Non-exact function definitions may not be selected at link time, and an
246 // alternative version that writes to memory may be selected. See the
247 // comment on GlobalValue::isDefinitionExact for more details.
248 switch (checkFunctionMemoryAccess(*F
, F
->hasExactDefinition(),
264 // If the SCC contains both functions that read and functions that write, then
265 // we cannot add readonly attributes.
266 if (ReadsMemory
&& WritesMemory
)
269 // Success! Functions in this SCC do not access memory, or only read memory.
270 // Give them the appropriate attribute.
271 bool MadeChange
= false;
273 for (Function
*F
: SCCNodes
) {
274 if (F
->doesNotAccessMemory())
278 if (F
->onlyReadsMemory() && ReadsMemory
)
282 if (F
->doesNotReadMemory() && WritesMemory
)
287 // Clear out any existing attributes.
288 F
->removeFnAttr(Attribute::ReadOnly
);
289 F
->removeFnAttr(Attribute::ReadNone
);
290 F
->removeFnAttr(Attribute::WriteOnly
);
292 if (!WritesMemory
&& !ReadsMemory
) {
293 // Clear out any "access range attributes" if readnone was deduced.
294 F
->removeFnAttr(Attribute::ArgMemOnly
);
295 F
->removeFnAttr(Attribute::InaccessibleMemOnly
);
296 F
->removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly
);
299 // Add in the new attribute.
300 if (WritesMemory
&& !ReadsMemory
)
301 F
->addFnAttr(Attribute::WriteOnly
);
303 F
->addFnAttr(ReadsMemory
? Attribute::ReadOnly
: Attribute::ReadNone
);
305 if (WritesMemory
&& !ReadsMemory
)
307 else if (ReadsMemory
)
318 /// For a given pointer Argument, this retains a list of Arguments of functions
319 /// in the same SCC that the pointer data flows into. We use this to build an
320 /// SCC of the arguments.
321 struct ArgumentGraphNode
{
322 Argument
*Definition
;
323 SmallVector
<ArgumentGraphNode
*, 4> Uses
;
326 class ArgumentGraph
{
327 // We store pointers to ArgumentGraphNode objects, so it's important that
328 // that they not move around upon insert.
329 using ArgumentMapTy
= std::map
<Argument
*, ArgumentGraphNode
>;
331 ArgumentMapTy ArgumentMap
;
333 // There is no root node for the argument graph, in fact:
334 // void f(int *x, int *y) { if (...) f(x, y); }
335 // is an example where the graph is disconnected. The SCCIterator requires a
336 // single entry point, so we maintain a fake ("synthetic") root node that
337 // uses every node. Because the graph is directed and nothing points into
338 // the root, it will not participate in any SCCs (except for its own).
339 ArgumentGraphNode SyntheticRoot
;
342 ArgumentGraph() { SyntheticRoot
.Definition
= nullptr; }
344 using iterator
= SmallVectorImpl
<ArgumentGraphNode
*>::iterator
;
346 iterator
begin() { return SyntheticRoot
.Uses
.begin(); }
347 iterator
end() { return SyntheticRoot
.Uses
.end(); }
348 ArgumentGraphNode
*getEntryNode() { return &SyntheticRoot
; }
350 ArgumentGraphNode
*operator[](Argument
*A
) {
351 ArgumentGraphNode
&Node
= ArgumentMap
[A
];
353 SyntheticRoot
.Uses
.push_back(&Node
);
358 /// This tracker checks whether callees are in the SCC, and if so it does not
359 /// consider that a capture, instead adding it to the "Uses" list and
360 /// continuing with the analysis.
361 struct ArgumentUsesTracker
: public CaptureTracker
{
362 ArgumentUsesTracker(const SCCNodeSet
&SCCNodes
) : SCCNodes(SCCNodes
) {}
364 void tooManyUses() override
{ Captured
= true; }
366 bool captured(const Use
*U
) override
{
367 CallSite
CS(U
->getUser());
368 if (!CS
.getInstruction()) {
373 Function
*F
= CS
.getCalledFunction();
374 if (!F
|| !F
->hasExactDefinition() || !SCCNodes
.count(F
)) {
379 // Note: the callee and the two successor blocks *follow* the argument
380 // operands. This means there is no need to adjust UseIndex to account for
384 std::distance(const_cast<const Use
*>(CS
.arg_begin()), U
);
386 assert(UseIndex
< CS
.data_operands_size() &&
387 "Indirect function calls should have been filtered above!");
389 if (UseIndex
>= CS
.getNumArgOperands()) {
390 // Data operand, but not a argument operand -- must be a bundle operand
391 assert(CS
.hasOperandBundles() && "Must be!");
393 // CaptureTracking told us that we're being captured by an operand bundle
394 // use. In this case it does not matter if the callee is within our SCC
395 // or not -- we've been captured in some unknown way, and we have to be
401 if (UseIndex
>= F
->arg_size()) {
402 assert(F
->isVarArg() && "More params than args in non-varargs call");
407 Uses
.push_back(&*std::next(F
->arg_begin(), UseIndex
));
411 // True only if certainly captured (used outside our SCC).
412 bool Captured
= false;
414 // Uses within our SCC.
415 SmallVector
<Argument
*, 4> Uses
;
417 const SCCNodeSet
&SCCNodes
;
420 } // end anonymous namespace
424 template <> struct GraphTraits
<ArgumentGraphNode
*> {
425 using NodeRef
= ArgumentGraphNode
*;
426 using ChildIteratorType
= SmallVectorImpl
<ArgumentGraphNode
*>::iterator
;
428 static NodeRef
getEntryNode(NodeRef A
) { return A
; }
429 static ChildIteratorType
child_begin(NodeRef N
) { return N
->Uses
.begin(); }
430 static ChildIteratorType
child_end(NodeRef N
) { return N
->Uses
.end(); }
434 struct GraphTraits
<ArgumentGraph
*> : public GraphTraits
<ArgumentGraphNode
*> {
435 static NodeRef
getEntryNode(ArgumentGraph
*AG
) { return AG
->getEntryNode(); }
437 static ChildIteratorType
nodes_begin(ArgumentGraph
*AG
) {
441 static ChildIteratorType
nodes_end(ArgumentGraph
*AG
) { return AG
->end(); }
444 } // end namespace llvm
446 /// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone.
447 static Attribute::AttrKind
448 determinePointerReadAttrs(Argument
*A
,
449 const SmallPtrSet
<Argument
*, 8> &SCCNodes
) {
450 SmallVector
<Use
*, 32> Worklist
;
451 SmallPtrSet
<Use
*, 32> Visited
;
453 // inalloca arguments are always clobbered by the call.
454 if (A
->hasInAllocaAttr())
455 return Attribute::None
;
458 // We don't need to track IsWritten. If A is written to, return immediately.
460 for (Use
&U
: A
->uses()) {
462 Worklist
.push_back(&U
);
465 while (!Worklist
.empty()) {
466 Use
*U
= Worklist
.pop_back_val();
467 Instruction
*I
= cast
<Instruction
>(U
->getUser());
469 switch (I
->getOpcode()) {
470 case Instruction::BitCast
:
471 case Instruction::GetElementPtr
:
472 case Instruction::PHI
:
473 case Instruction::Select
:
474 case Instruction::AddrSpaceCast
:
475 // The original value is not read/written via this if the new value isn't.
476 for (Use
&UU
: I
->uses())
477 if (Visited
.insert(&UU
).second
)
478 Worklist
.push_back(&UU
);
481 case Instruction::Call
:
482 case Instruction::Invoke
: {
483 bool Captures
= true;
485 if (I
->getType()->isVoidTy())
488 auto AddUsersToWorklistIfCapturing
= [&] {
490 for (Use
&UU
: I
->uses())
491 if (Visited
.insert(&UU
).second
)
492 Worklist
.push_back(&UU
);
496 if (CS
.doesNotAccessMemory()) {
497 AddUsersToWorklistIfCapturing();
501 Function
*F
= CS
.getCalledFunction();
503 if (CS
.onlyReadsMemory()) {
505 AddUsersToWorklistIfCapturing();
508 return Attribute::None
;
511 // Note: the callee and the two successor blocks *follow* the argument
512 // operands. This means there is no need to adjust UseIndex to account
515 unsigned UseIndex
= std::distance(CS
.arg_begin(), U
);
517 // U cannot be the callee operand use: since we're exploring the
518 // transitive uses of an Argument, having such a use be a callee would
519 // imply the CallSite is an indirect call or invoke; and we'd take the
521 assert(UseIndex
< CS
.data_operands_size() &&
522 "Data operand use expected!");
524 bool IsOperandBundleUse
= UseIndex
>= CS
.getNumArgOperands();
526 if (UseIndex
>= F
->arg_size() && !IsOperandBundleUse
) {
527 assert(F
->isVarArg() && "More params than args in non-varargs call");
528 return Attribute::None
;
531 Captures
&= !CS
.doesNotCapture(UseIndex
);
533 // Since the optimizer (by design) cannot see the data flow corresponding
534 // to a operand bundle use, these cannot participate in the optimistic SCC
535 // analysis. Instead, we model the operand bundle uses as arguments in
536 // call to a function external to the SCC.
537 if (IsOperandBundleUse
||
538 !SCCNodes
.count(&*std::next(F
->arg_begin(), UseIndex
))) {
540 // The accessors used on CallSite here do the right thing for calls and
541 // invokes with operand bundles.
543 if (!CS
.onlyReadsMemory() && !CS
.onlyReadsMemory(UseIndex
))
544 return Attribute::None
;
545 if (!CS
.doesNotAccessMemory(UseIndex
))
549 AddUsersToWorklistIfCapturing();
553 case Instruction::Load
:
554 // A volatile load has side effects beyond what readonly can be relied
556 if (cast
<LoadInst
>(I
)->isVolatile())
557 return Attribute::None
;
562 case Instruction::ICmp
:
563 case Instruction::Ret
:
567 return Attribute::None
;
571 return IsRead
? Attribute::ReadOnly
: Attribute::ReadNone
;
574 /// Deduce returned attributes for the SCC.
575 static bool addArgumentReturnedAttrs(const SCCNodeSet
&SCCNodes
) {
576 bool Changed
= false;
578 // Check each function in turn, determining if an argument is always returned.
579 for (Function
*F
: SCCNodes
) {
580 // We can infer and propagate function attributes only when we know that the
581 // definition we'll get at link time is *exactly* the definition we see now.
582 // For more details, see GlobalValue::mayBeDerefined.
583 if (!F
->hasExactDefinition())
586 if (F
->getReturnType()->isVoidTy())
589 // There is nothing to do if an argument is already marked as 'returned'.
590 if (llvm::any_of(F
->args(),
591 [](const Argument
&Arg
) { return Arg
.hasReturnedAttr(); }))
594 auto FindRetArg
= [&]() -> Value
* {
595 Value
*RetArg
= nullptr;
596 for (BasicBlock
&BB
: *F
)
597 if (auto *Ret
= dyn_cast
<ReturnInst
>(BB
.getTerminator())) {
598 // Note that stripPointerCasts should look through functions with
599 // returned arguments.
600 Value
*RetVal
= Ret
->getReturnValue()->stripPointerCasts();
601 if (!isa
<Argument
>(RetVal
) || RetVal
->getType() != F
->getReturnType())
606 else if (RetArg
!= RetVal
)
613 if (Value
*RetArg
= FindRetArg()) {
614 auto *A
= cast
<Argument
>(RetArg
);
615 A
->addAttr(Attribute::Returned
);
624 /// If a callsite has arguments that are also arguments to the parent function,
625 /// try to propagate attributes from the callsite's arguments to the parent's
626 /// arguments. This may be important because inlining can cause information loss
627 /// when attribute knowledge disappears with the inlined call.
628 static bool addArgumentAttrsFromCallsites(Function
&F
) {
629 if (!EnableNonnullArgPropagation
)
632 bool Changed
= false;
634 // For an argument attribute to transfer from a callsite to the parent, the
635 // call must be guaranteed to execute every time the parent is called.
636 // Conservatively, just check for calls in the entry block that are guaranteed
638 // TODO: This could be enhanced by testing if the callsite post-dominates the
639 // entry block or by doing simple forward walks or backward walks to the
641 BasicBlock
&Entry
= F
.getEntryBlock();
642 for (Instruction
&I
: Entry
) {
643 if (auto CS
= CallSite(&I
)) {
644 if (auto *CalledFunc
= CS
.getCalledFunction()) {
645 for (auto &CSArg
: CalledFunc
->args()) {
646 if (!CSArg
.hasNonNullAttr())
649 // If the non-null callsite argument operand is an argument to 'F'
650 // (the caller) and the call is guaranteed to execute, then the value
651 // must be non-null throughout 'F'.
652 auto *FArg
= dyn_cast
<Argument
>(CS
.getArgOperand(CSArg
.getArgNo()));
653 if (FArg
&& !FArg
->hasNonNullAttr()) {
654 FArg
->addAttr(Attribute::NonNull
);
660 if (!isGuaranteedToTransferExecutionToSuccessor(&I
))
667 /// Deduce nocapture attributes for the SCC.
668 static bool addArgumentAttrs(const SCCNodeSet
&SCCNodes
) {
669 bool Changed
= false;
673 // Check each function in turn, determining which pointer arguments are not
675 for (Function
*F
: SCCNodes
) {
676 // We can infer and propagate function attributes only when we know that the
677 // definition we'll get at link time is *exactly* the definition we see now.
678 // For more details, see GlobalValue::mayBeDerefined.
679 if (!F
->hasExactDefinition())
682 Changed
|= addArgumentAttrsFromCallsites(*F
);
684 // Functions that are readonly (or readnone) and nounwind and don't return
685 // a value can't capture arguments. Don't analyze them.
686 if (F
->onlyReadsMemory() && F
->doesNotThrow() &&
687 F
->getReturnType()->isVoidTy()) {
688 for (Function::arg_iterator A
= F
->arg_begin(), E
= F
->arg_end(); A
!= E
;
690 if (A
->getType()->isPointerTy() && !A
->hasNoCaptureAttr()) {
691 A
->addAttr(Attribute::NoCapture
);
699 for (Function::arg_iterator A
= F
->arg_begin(), E
= F
->arg_end(); A
!= E
;
701 if (!A
->getType()->isPointerTy())
703 bool HasNonLocalUses
= false;
704 if (!A
->hasNoCaptureAttr()) {
705 ArgumentUsesTracker
Tracker(SCCNodes
);
706 PointerMayBeCaptured(&*A
, &Tracker
);
707 if (!Tracker
.Captured
) {
708 if (Tracker
.Uses
.empty()) {
709 // If it's trivially not captured, mark it nocapture now.
710 A
->addAttr(Attribute::NoCapture
);
714 // If it's not trivially captured and not trivially not captured,
715 // then it must be calling into another function in our SCC. Save
716 // its particulars for Argument-SCC analysis later.
717 ArgumentGraphNode
*Node
= AG
[&*A
];
718 for (Argument
*Use
: Tracker
.Uses
) {
719 Node
->Uses
.push_back(AG
[Use
]);
721 HasNonLocalUses
= true;
725 // Otherwise, it's captured. Don't bother doing SCC analysis on it.
727 if (!HasNonLocalUses
&& !A
->onlyReadsMemory()) {
728 // Can we determine that it's readonly/readnone without doing an SCC?
729 // Note that we don't allow any calls at all here, or else our result
730 // will be dependent on the iteration order through the functions in the
732 SmallPtrSet
<Argument
*, 8> Self
;
734 Attribute::AttrKind R
= determinePointerReadAttrs(&*A
, Self
);
735 if (R
!= Attribute::None
) {
738 R
== Attribute::ReadOnly
? ++NumReadOnlyArg
: ++NumReadNoneArg
;
744 // The graph we've collected is partial because we stopped scanning for
745 // argument uses once we solved the argument trivially. These partial nodes
746 // show up as ArgumentGraphNode objects with an empty Uses list, and for
747 // these nodes the final decision about whether they capture has already been
748 // made. If the definition doesn't have a 'nocapture' attribute by now, it
751 for (scc_iterator
<ArgumentGraph
*> I
= scc_begin(&AG
); !I
.isAtEnd(); ++I
) {
752 const std::vector
<ArgumentGraphNode
*> &ArgumentSCC
= *I
;
753 if (ArgumentSCC
.size() == 1) {
754 if (!ArgumentSCC
[0]->Definition
)
755 continue; // synthetic root node
757 // eg. "void f(int* x) { if (...) f(x); }"
758 if (ArgumentSCC
[0]->Uses
.size() == 1 &&
759 ArgumentSCC
[0]->Uses
[0] == ArgumentSCC
[0]) {
760 Argument
*A
= ArgumentSCC
[0]->Definition
;
761 A
->addAttr(Attribute::NoCapture
);
768 bool SCCCaptured
= false;
769 for (auto I
= ArgumentSCC
.begin(), E
= ArgumentSCC
.end();
770 I
!= E
&& !SCCCaptured
; ++I
) {
771 ArgumentGraphNode
*Node
= *I
;
772 if (Node
->Uses
.empty()) {
773 if (!Node
->Definition
->hasNoCaptureAttr())
780 SmallPtrSet
<Argument
*, 8> ArgumentSCCNodes
;
781 // Fill ArgumentSCCNodes with the elements of the ArgumentSCC. Used for
782 // quickly looking up whether a given Argument is in this ArgumentSCC.
783 for (ArgumentGraphNode
*I
: ArgumentSCC
) {
784 ArgumentSCCNodes
.insert(I
->Definition
);
787 for (auto I
= ArgumentSCC
.begin(), E
= ArgumentSCC
.end();
788 I
!= E
&& !SCCCaptured
; ++I
) {
789 ArgumentGraphNode
*N
= *I
;
790 for (ArgumentGraphNode
*Use
: N
->Uses
) {
791 Argument
*A
= Use
->Definition
;
792 if (A
->hasNoCaptureAttr() || ArgumentSCCNodes
.count(A
))
801 for (unsigned i
= 0, e
= ArgumentSCC
.size(); i
!= e
; ++i
) {
802 Argument
*A
= ArgumentSCC
[i
]->Definition
;
803 A
->addAttr(Attribute::NoCapture
);
808 // We also want to compute readonly/readnone. With a small number of false
809 // negatives, we can assume that any pointer which is captured isn't going
810 // to be provably readonly or readnone, since by definition we can't
811 // analyze all uses of a captured pointer.
813 // The false negatives happen when the pointer is captured by a function
814 // that promises readonly/readnone behaviour on the pointer, then the
815 // pointer's lifetime ends before anything that writes to arbitrary memory.
816 // Also, a readonly/readnone pointer may be returned, but returning a
817 // pointer is capturing it.
819 Attribute::AttrKind ReadAttr
= Attribute::ReadNone
;
820 for (unsigned i
= 0, e
= ArgumentSCC
.size(); i
!= e
; ++i
) {
821 Argument
*A
= ArgumentSCC
[i
]->Definition
;
822 Attribute::AttrKind K
= determinePointerReadAttrs(A
, ArgumentSCCNodes
);
823 if (K
== Attribute::ReadNone
)
825 if (K
== Attribute::ReadOnly
) {
826 ReadAttr
= Attribute::ReadOnly
;
833 if (ReadAttr
!= Attribute::None
) {
834 for (unsigned i
= 0, e
= ArgumentSCC
.size(); i
!= e
; ++i
) {
835 Argument
*A
= ArgumentSCC
[i
]->Definition
;
836 // Clear out existing readonly/readnone attributes
837 A
->removeAttr(Attribute::ReadOnly
);
838 A
->removeAttr(Attribute::ReadNone
);
839 A
->addAttr(ReadAttr
);
840 ReadAttr
== Attribute::ReadOnly
? ++NumReadOnlyArg
: ++NumReadNoneArg
;
849 /// Tests whether a function is "malloc-like".
851 /// A function is "malloc-like" if it returns either null or a pointer that
852 /// doesn't alias any other pointer visible to the caller.
853 static bool isFunctionMallocLike(Function
*F
, const SCCNodeSet
&SCCNodes
) {
854 SmallSetVector
<Value
*, 8> FlowsToReturn
;
855 for (BasicBlock
&BB
: *F
)
856 if (ReturnInst
*Ret
= dyn_cast
<ReturnInst
>(BB
.getTerminator()))
857 FlowsToReturn
.insert(Ret
->getReturnValue());
859 for (unsigned i
= 0; i
!= FlowsToReturn
.size(); ++i
) {
860 Value
*RetVal
= FlowsToReturn
[i
];
862 if (Constant
*C
= dyn_cast
<Constant
>(RetVal
)) {
863 if (!C
->isNullValue() && !isa
<UndefValue
>(C
))
869 if (isa
<Argument
>(RetVal
))
872 if (Instruction
*RVI
= dyn_cast
<Instruction
>(RetVal
))
873 switch (RVI
->getOpcode()) {
874 // Extend the analysis by looking upwards.
875 case Instruction::BitCast
:
876 case Instruction::GetElementPtr
:
877 case Instruction::AddrSpaceCast
:
878 FlowsToReturn
.insert(RVI
->getOperand(0));
880 case Instruction::Select
: {
881 SelectInst
*SI
= cast
<SelectInst
>(RVI
);
882 FlowsToReturn
.insert(SI
->getTrueValue());
883 FlowsToReturn
.insert(SI
->getFalseValue());
886 case Instruction::PHI
: {
887 PHINode
*PN
= cast
<PHINode
>(RVI
);
888 for (Value
*IncValue
: PN
->incoming_values())
889 FlowsToReturn
.insert(IncValue
);
893 // Check whether the pointer came from an allocation.
894 case Instruction::Alloca
:
896 case Instruction::Call
:
897 case Instruction::Invoke
: {
899 if (CS
.hasRetAttr(Attribute::NoAlias
))
901 if (CS
.getCalledFunction() && SCCNodes
.count(CS
.getCalledFunction()))
906 return false; // Did not come from an allocation.
909 if (PointerMayBeCaptured(RetVal
, false, /*StoreCaptures=*/false))
916 /// Deduce noalias attributes for the SCC.
917 static bool addNoAliasAttrs(const SCCNodeSet
&SCCNodes
) {
918 // Check each function in turn, determining which functions return noalias
920 for (Function
*F
: SCCNodes
) {
922 if (F
->returnDoesNotAlias())
925 // We can infer and propagate function attributes only when we know that the
926 // definition we'll get at link time is *exactly* the definition we see now.
927 // For more details, see GlobalValue::mayBeDerefined.
928 if (!F
->hasExactDefinition())
931 // We annotate noalias return values, which are only applicable to
933 if (!F
->getReturnType()->isPointerTy())
936 if (!isFunctionMallocLike(F
, SCCNodes
))
940 bool MadeChange
= false;
941 for (Function
*F
: SCCNodes
) {
942 if (F
->returnDoesNotAlias() ||
943 !F
->getReturnType()->isPointerTy())
946 F
->setReturnDoesNotAlias();
954 /// Tests whether this function is known to not return null.
956 /// Requires that the function returns a pointer.
958 /// Returns true if it believes the function will not return a null, and sets
959 /// \p Speculative based on whether the returned conclusion is a speculative
960 /// conclusion due to SCC calls.
961 static bool isReturnNonNull(Function
*F
, const SCCNodeSet
&SCCNodes
,
963 assert(F
->getReturnType()->isPointerTy() &&
964 "nonnull only meaningful on pointer types");
967 SmallSetVector
<Value
*, 8> FlowsToReturn
;
968 for (BasicBlock
&BB
: *F
)
969 if (auto *Ret
= dyn_cast
<ReturnInst
>(BB
.getTerminator()))
970 FlowsToReturn
.insert(Ret
->getReturnValue());
972 auto &DL
= F
->getParent()->getDataLayout();
974 for (unsigned i
= 0; i
!= FlowsToReturn
.size(); ++i
) {
975 Value
*RetVal
= FlowsToReturn
[i
];
977 // If this value is locally known to be non-null, we're good
978 if (isKnownNonZero(RetVal
, DL
))
981 // Otherwise, we need to look upwards since we can't make any local
983 Instruction
*RVI
= dyn_cast
<Instruction
>(RetVal
);
986 switch (RVI
->getOpcode()) {
987 // Extend the analysis by looking upwards.
988 case Instruction::BitCast
:
989 case Instruction::GetElementPtr
:
990 case Instruction::AddrSpaceCast
:
991 FlowsToReturn
.insert(RVI
->getOperand(0));
993 case Instruction::Select
: {
994 SelectInst
*SI
= cast
<SelectInst
>(RVI
);
995 FlowsToReturn
.insert(SI
->getTrueValue());
996 FlowsToReturn
.insert(SI
->getFalseValue());
999 case Instruction::PHI
: {
1000 PHINode
*PN
= cast
<PHINode
>(RVI
);
1001 for (int i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
1002 FlowsToReturn
.insert(PN
->getIncomingValue(i
));
1005 case Instruction::Call
:
1006 case Instruction::Invoke
: {
1008 Function
*Callee
= CS
.getCalledFunction();
1009 // A call to a node within the SCC is assumed to return null until
1011 if (Callee
&& SCCNodes
.count(Callee
)) {
1018 return false; // Unknown source, may be null
1020 llvm_unreachable("should have either continued or returned");
1026 /// Deduce nonnull attributes for the SCC.
1027 static bool addNonNullAttrs(const SCCNodeSet
&SCCNodes
) {
1028 // Speculative that all functions in the SCC return only nonnull
1029 // pointers. We may refute this as we analyze functions.
1030 bool SCCReturnsNonNull
= true;
1032 bool MadeChange
= false;
1034 // Check each function in turn, determining which functions return nonnull
1036 for (Function
*F
: SCCNodes
) {
1038 if (F
->getAttributes().hasAttribute(AttributeList::ReturnIndex
,
1039 Attribute::NonNull
))
1042 // We can infer and propagate function attributes only when we know that the
1043 // definition we'll get at link time is *exactly* the definition we see now.
1044 // For more details, see GlobalValue::mayBeDerefined.
1045 if (!F
->hasExactDefinition())
1048 // We annotate nonnull return values, which are only applicable to
1050 if (!F
->getReturnType()->isPointerTy())
1053 bool Speculative
= false;
1054 if (isReturnNonNull(F
, SCCNodes
, Speculative
)) {
1056 // Mark the function eagerly since we may discover a function
1057 // which prevents us from speculating about the entire SCC
1058 LLVM_DEBUG(dbgs() << "Eagerly marking " << F
->getName()
1059 << " as nonnull\n");
1060 F
->addAttribute(AttributeList::ReturnIndex
, Attribute::NonNull
);
1066 // At least one function returns something which could be null, can't
1067 // speculate any more.
1068 SCCReturnsNonNull
= false;
1071 if (SCCReturnsNonNull
) {
1072 for (Function
*F
: SCCNodes
) {
1073 if (F
->getAttributes().hasAttribute(AttributeList::ReturnIndex
,
1074 Attribute::NonNull
) ||
1075 !F
->getReturnType()->isPointerTy())
1078 LLVM_DEBUG(dbgs() << "SCC marking " << F
->getName() << " as nonnull\n");
1079 F
->addAttribute(AttributeList::ReturnIndex
, Attribute::NonNull
);
1090 /// Collects a set of attribute inference requests and performs them all in one
1091 /// go on a single SCC Node. Inference involves scanning function bodies
1092 /// looking for instructions that violate attribute assumptions.
1093 /// As soon as all the bodies are fine we are free to set the attribute.
1094 /// Customization of inference for individual attributes is performed by
1095 /// providing a handful of predicates for each attribute.
1096 class AttributeInferer
{
1098 /// Describes a request for inference of a single attribute.
1099 struct InferenceDescriptor
{
1101 /// Returns true if this function does not have to be handled.
1102 /// General intent for this predicate is to provide an optimization
1103 /// for functions that do not need this attribute inference at all
1104 /// (say, for functions that already have the attribute).
1105 std::function
<bool(const Function
&)> SkipFunction
;
1107 /// Returns true if this instruction violates attribute assumptions.
1108 std::function
<bool(Instruction
&)> InstrBreaksAttribute
;
1110 /// Sets the inferred attribute for this function.
1111 std::function
<void(Function
&)> SetAttribute
;
1113 /// Attribute we derive.
1114 Attribute::AttrKind AKind
;
1116 /// If true, only "exact" definitions can be used to infer this attribute.
1117 /// See GlobalValue::isDefinitionExact.
1118 bool RequiresExactDefinition
;
1120 InferenceDescriptor(Attribute::AttrKind AK
,
1121 std::function
<bool(const Function
&)> SkipFunc
,
1122 std::function
<bool(Instruction
&)> InstrScan
,
1123 std::function
<void(Function
&)> SetAttr
,
1125 : SkipFunction(SkipFunc
), InstrBreaksAttribute(InstrScan
),
1126 SetAttribute(SetAttr
), AKind(AK
),
1127 RequiresExactDefinition(ReqExactDef
) {}
1131 SmallVector
<InferenceDescriptor
, 4> InferenceDescriptors
;
1134 void registerAttrInference(InferenceDescriptor AttrInference
) {
1135 InferenceDescriptors
.push_back(AttrInference
);
1138 bool run(const SCCNodeSet
&SCCNodes
);
1141 /// Perform all the requested attribute inference actions according to the
1142 /// attribute predicates stored before.
1143 bool AttributeInferer::run(const SCCNodeSet
&SCCNodes
) {
1144 SmallVector
<InferenceDescriptor
, 4> InferInSCC
= InferenceDescriptors
;
1145 // Go through all the functions in SCC and check corresponding attribute
1146 // assumptions for each of them. Attributes that are invalid for this SCC
1147 // will be removed from InferInSCC.
1148 for (Function
*F
: SCCNodes
) {
1150 // No attributes whose assumptions are still valid - done.
1151 if (InferInSCC
.empty())
1154 // Check if our attributes ever need scanning/can be scanned.
1155 llvm::erase_if(InferInSCC
, [F
](const InferenceDescriptor
&ID
) {
1156 if (ID
.SkipFunction(*F
))
1159 // Remove from further inference (invalidate) when visiting a function
1160 // that has no instructions to scan/has an unsuitable definition.
1161 return F
->isDeclaration() ||
1162 (ID
.RequiresExactDefinition
&& !F
->hasExactDefinition());
1165 // For each attribute still in InferInSCC that doesn't explicitly skip F,
1166 // set up the F instructions scan to verify assumptions of the attribute.
1167 SmallVector
<InferenceDescriptor
, 4> InferInThisFunc
;
1169 InferInSCC
, std::back_inserter(InferInThisFunc
),
1170 [F
](const InferenceDescriptor
&ID
) { return !ID
.SkipFunction(*F
); });
1172 if (InferInThisFunc
.empty())
1175 // Start instruction scan.
1176 for (Instruction
&I
: instructions(*F
)) {
1177 llvm::erase_if(InferInThisFunc
, [&](const InferenceDescriptor
&ID
) {
1178 if (!ID
.InstrBreaksAttribute(I
))
1180 // Remove attribute from further inference on any other functions
1181 // because attribute assumptions have just been violated.
1182 llvm::erase_if(InferInSCC
, [&ID
](const InferenceDescriptor
&D
) {
1183 return D
.AKind
== ID
.AKind
;
1185 // Remove attribute from the rest of current instruction scan.
1189 if (InferInThisFunc
.empty())
1194 if (InferInSCC
.empty())
1197 bool Changed
= false;
1198 for (Function
*F
: SCCNodes
)
1199 // At this point InferInSCC contains only functions that were either:
1200 // - explicitly skipped from scan/inference, or
1201 // - verified to have no instructions that break attribute assumptions.
1202 // Hence we just go and force the attribute for all non-skipped functions.
1203 for (auto &ID
: InferInSCC
) {
1204 if (ID
.SkipFunction(*F
))
1207 ID
.SetAttribute(*F
);
1212 } // end anonymous namespace
1214 /// Helper for non-Convergent inference predicate InstrBreaksAttribute.
1215 static bool InstrBreaksNonConvergent(Instruction
&I
,
1216 const SCCNodeSet
&SCCNodes
) {
1217 const CallSite
CS(&I
);
1218 // Breaks non-convergent assumption if CS is a convergent call to a function
1220 return CS
&& CS
.isConvergent() && SCCNodes
.count(CS
.getCalledFunction()) == 0;
1223 /// Helper for NoUnwind inference predicate InstrBreaksAttribute.
1224 static bool InstrBreaksNonThrowing(Instruction
&I
, const SCCNodeSet
&SCCNodes
) {
1227 if (const auto *CI
= dyn_cast
<CallInst
>(&I
)) {
1228 if (Function
*Callee
= CI
->getCalledFunction()) {
1229 // I is a may-throw call to a function inside our SCC. This doesn't
1230 // invalidate our current working assumption that the SCC is no-throw; we
1231 // just have to scan that other function.
1232 if (SCCNodes
.count(Callee
) > 0)
1239 /// Helper for NoFree inference predicate InstrBreaksAttribute.
1240 static bool InstrBreaksNoFree(Instruction
&I
, const SCCNodeSet
&SCCNodes
) {
1245 Function
*Callee
= CS
.getCalledFunction();
1249 if (Callee
->doesNotFreeMemory())
1252 if (SCCNodes
.count(Callee
) > 0)
1258 /// Infer attributes from all functions in the SCC by scanning every
1259 /// instruction for compliance to the attribute assumptions. Currently it
1261 /// - removal of Convergent attribute
1262 /// - addition of NoUnwind attribute
1264 /// Returns true if any changes to function attributes were made.
1265 static bool inferAttrsFromFunctionBodies(const SCCNodeSet
&SCCNodes
) {
1267 AttributeInferer AI
;
1269 // Request to remove the convergent attribute from all functions in the SCC
1270 // if every callsite within the SCC is not convergent (except for calls
1271 // to functions within the SCC).
1272 // Note: Removal of the attr from the callsites will happen in
1273 // InstCombineCalls separately.
1274 AI
.registerAttrInference(AttributeInferer::InferenceDescriptor
{
1275 Attribute::Convergent
,
1276 // Skip non-convergent functions.
1277 [](const Function
&F
) { return !F
.isConvergent(); },
1278 // Instructions that break non-convergent assumption.
1279 [SCCNodes
](Instruction
&I
) {
1280 return InstrBreaksNonConvergent(I
, SCCNodes
);
1283 LLVM_DEBUG(dbgs() << "Removing convergent attr from fn " << F
.getName()
1285 F
.setNotConvergent();
1287 /* RequiresExactDefinition= */ false});
1289 if (!DisableNoUnwindInference
)
1290 // Request to infer nounwind attribute for all the functions in the SCC if
1291 // every callsite within the SCC is not throwing (except for calls to
1292 // functions within the SCC). Note that nounwind attribute suffers from
1293 // derefinement - results may change depending on how functions are
1294 // optimized. Thus it can be inferred only from exact definitions.
1295 AI
.registerAttrInference(AttributeInferer::InferenceDescriptor
{
1296 Attribute::NoUnwind
,
1297 // Skip non-throwing functions.
1298 [](const Function
&F
) { return F
.doesNotThrow(); },
1299 // Instructions that break non-throwing assumption.
1300 [SCCNodes
](Instruction
&I
) {
1301 return InstrBreaksNonThrowing(I
, SCCNodes
);
1305 << "Adding nounwind attr to fn " << F
.getName() << "\n");
1306 F
.setDoesNotThrow();
1309 /* RequiresExactDefinition= */ true});
1311 if (!DisableNoFreeInference
)
1312 // Request to infer nofree attribute for all the functions in the SCC if
1313 // every callsite within the SCC does not directly or indirectly free
1314 // memory (except for calls to functions within the SCC). Note that nofree
1315 // attribute suffers from derefinement - results may change depending on
1316 // how functions are optimized. Thus it can be inferred only from exact
1318 AI
.registerAttrInference(AttributeInferer::InferenceDescriptor
{
1320 // Skip functions known not to free memory.
1321 [](const Function
&F
) { return F
.doesNotFreeMemory(); },
1322 // Instructions that break non-deallocating assumption.
1323 [SCCNodes
](Instruction
&I
) {
1324 return InstrBreaksNoFree(I
, SCCNodes
);
1328 << "Adding nofree attr to fn " << F
.getName() << "\n");
1329 F
.setDoesNotFreeMemory();
1332 /* RequiresExactDefinition= */ true});
1334 // Perform all the requested attribute inference actions.
1335 return AI
.run(SCCNodes
);
1338 static bool setDoesNotRecurse(Function
&F
) {
1339 if (F
.doesNotRecurse())
1341 F
.setDoesNotRecurse();
1346 static bool addNoRecurseAttrs(const SCCNodeSet
&SCCNodes
) {
1347 // Try and identify functions that do not recurse.
1349 // If the SCC contains multiple nodes we know for sure there is recursion.
1350 if (SCCNodes
.size() != 1)
1353 Function
*F
= *SCCNodes
.begin();
1354 if (!F
|| !F
->hasExactDefinition() || F
->doesNotRecurse())
1357 // If all of the calls in F are identifiable and are to norecurse functions, F
1358 // is norecurse. This check also detects self-recursion as F is not currently
1359 // marked norecurse, so any called from F to F will not be marked norecurse.
1361 for (auto &I
: BB
.instructionsWithoutDebug())
1362 if (auto CS
= CallSite(&I
)) {
1363 Function
*Callee
= CS
.getCalledFunction();
1364 if (!Callee
|| Callee
== F
|| !Callee
->doesNotRecurse())
1365 // Function calls a potentially recursive function.
1369 // Every call was to a non-recursive function other than this function, and
1370 // we have no indirect recursion as the SCC size is one. This function cannot
1372 return setDoesNotRecurse(*F
);
1375 template <typename AARGetterT
>
1376 static bool deriveAttrsInPostOrder(SCCNodeSet
&SCCNodes
,
1377 AARGetterT
&&AARGetter
,
1378 bool HasUnknownCall
) {
1379 bool Changed
= false;
1381 // Bail if the SCC only contains optnone functions.
1382 if (SCCNodes
.empty())
1385 Changed
|= addArgumentReturnedAttrs(SCCNodes
);
1386 Changed
|= addReadAttrs(SCCNodes
, AARGetter
);
1387 Changed
|= addArgumentAttrs(SCCNodes
);
1389 // If we have no external nodes participating in the SCC, we can deduce some
1390 // more precise attributes as well.
1391 if (!HasUnknownCall
) {
1392 Changed
|= addNoAliasAttrs(SCCNodes
);
1393 Changed
|= addNonNullAttrs(SCCNodes
);
1394 Changed
|= inferAttrsFromFunctionBodies(SCCNodes
);
1395 Changed
|= addNoRecurseAttrs(SCCNodes
);
1401 PreservedAnalyses
PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC
&C
,
1402 CGSCCAnalysisManager
&AM
,
1404 CGSCCUpdateResult
&) {
1405 FunctionAnalysisManager
&FAM
=
1406 AM
.getResult
<FunctionAnalysisManagerCGSCCProxy
>(C
, CG
).getManager();
1408 // We pass a lambda into functions to wire them up to the analysis manager
1409 // for getting function analyses.
1410 auto AARGetter
= [&](Function
&F
) -> AAResults
& {
1411 return FAM
.getResult
<AAManager
>(F
);
1414 // Fill SCCNodes with the elements of the SCC. Also track whether there are
1415 // any external or opt-none nodes that will prevent us from optimizing any
1417 SCCNodeSet SCCNodes
;
1418 bool HasUnknownCall
= false;
1419 for (LazyCallGraph::Node
&N
: C
) {
1420 Function
&F
= N
.getFunction();
1421 if (F
.hasOptNone() || F
.hasFnAttribute(Attribute::Naked
)) {
1422 // Treat any function we're trying not to optimize as if it were an
1423 // indirect call and omit it from the node set used below.
1424 HasUnknownCall
= true;
1427 // Track whether any functions in this SCC have an unknown call edge.
1428 // Note: if this is ever a performance hit, we can common it with
1429 // subsequent routines which also do scans over the instructions of the
1431 if (!HasUnknownCall
)
1432 for (Instruction
&I
: instructions(F
))
1433 if (auto CS
= CallSite(&I
))
1434 if (!CS
.getCalledFunction()) {
1435 HasUnknownCall
= true;
1439 SCCNodes
.insert(&F
);
1442 if (deriveAttrsInPostOrder(SCCNodes
, AARGetter
, HasUnknownCall
))
1443 return PreservedAnalyses::none();
1445 return PreservedAnalyses::all();
1450 struct PostOrderFunctionAttrsLegacyPass
: public CallGraphSCCPass
{
1451 // Pass identification, replacement for typeid
1454 PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID
) {
1455 initializePostOrderFunctionAttrsLegacyPassPass(
1456 *PassRegistry::getPassRegistry());
1459 bool runOnSCC(CallGraphSCC
&SCC
) override
;
1461 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
1462 AU
.setPreservesCFG();
1463 AU
.addRequired
<AssumptionCacheTracker
>();
1464 getAAResultsAnalysisUsage(AU
);
1465 CallGraphSCCPass::getAnalysisUsage(AU
);
1469 } // end anonymous namespace
1471 char PostOrderFunctionAttrsLegacyPass::ID
= 0;
1472 INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass
, "functionattrs",
1473 "Deduce function attributes", false, false)
1474 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
1475 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass
)
1476 INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass
, "functionattrs",
1477 "Deduce function attributes", false, false)
1479 Pass
*llvm::createPostOrderFunctionAttrsLegacyPass() {
1480 return new PostOrderFunctionAttrsLegacyPass();
1483 template <typename AARGetterT
>
1484 static bool runImpl(CallGraphSCC
&SCC
, AARGetterT AARGetter
) {
1486 // Fill SCCNodes with the elements of the SCC. Used for quickly looking up
1487 // whether a given CallGraphNode is in this SCC. Also track whether there are
1488 // any external or opt-none nodes that will prevent us from optimizing any
1490 SCCNodeSet SCCNodes
;
1491 bool ExternalNode
= false;
1492 for (CallGraphNode
*I
: SCC
) {
1493 Function
*F
= I
->getFunction();
1494 if (!F
|| F
->hasOptNone() || F
->hasFnAttribute(Attribute::Naked
)) {
1495 // External node or function we're trying not to optimize - we both avoid
1496 // transform them and avoid leveraging information they provide.
1497 ExternalNode
= true;
1504 return deriveAttrsInPostOrder(SCCNodes
, AARGetter
, ExternalNode
);
1507 bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC
&SCC
) {
1510 return runImpl(SCC
, LegacyAARGetter(*this));
1515 struct ReversePostOrderFunctionAttrsLegacyPass
: public ModulePass
{
1516 // Pass identification, replacement for typeid
1519 ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID
) {
1520 initializeReversePostOrderFunctionAttrsLegacyPassPass(
1521 *PassRegistry::getPassRegistry());
1524 bool runOnModule(Module
&M
) override
;
1526 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
1527 AU
.setPreservesCFG();
1528 AU
.addRequired
<CallGraphWrapperPass
>();
1529 AU
.addPreserved
<CallGraphWrapperPass
>();
1533 } // end anonymous namespace
1535 char ReversePostOrderFunctionAttrsLegacyPass::ID
= 0;
1537 INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass
, "rpo-functionattrs",
1538 "Deduce function attributes in RPO", false, false)
1539 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass
)
1540 INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass
, "rpo-functionattrs",
1541 "Deduce function attributes in RPO", false, false)
1543 Pass
*llvm::createReversePostOrderFunctionAttrsPass() {
1544 return new ReversePostOrderFunctionAttrsLegacyPass();
1547 static bool addNoRecurseAttrsTopDown(Function
&F
) {
1548 // We check the preconditions for the function prior to calling this to avoid
1549 // the cost of building up a reversible post-order list. We assert them here
1550 // to make sure none of the invariants this relies on were violated.
1551 assert(!F
.isDeclaration() && "Cannot deduce norecurse without a definition!");
1552 assert(!F
.doesNotRecurse() &&
1553 "This function has already been deduced as norecurs!");
1554 assert(F
.hasInternalLinkage() &&
1555 "Can only do top-down deduction for internal linkage functions!");
1557 // If F is internal and all of its uses are calls from a non-recursive
1558 // functions, then none of its calls could in fact recurse without going
1559 // through a function marked norecurse, and so we can mark this function too
1560 // as norecurse. Note that the uses must actually be calls -- otherwise
1561 // a pointer to this function could be returned from a norecurse function but
1562 // this function could be recursively (indirectly) called. Note that this
1563 // also detects if F is directly recursive as F is not yet marked as
1564 // a norecurse function.
1565 for (auto *U
: F
.users()) {
1566 auto *I
= dyn_cast
<Instruction
>(U
);
1570 if (!CS
|| !CS
.getParent()->getParent()->doesNotRecurse())
1573 return setDoesNotRecurse(F
);
1576 static bool deduceFunctionAttributeInRPO(Module
&M
, CallGraph
&CG
) {
1577 // We only have a post-order SCC traversal (because SCCs are inherently
1578 // discovered in post-order), so we accumulate them in a vector and then walk
1579 // it in reverse. This is simpler than using the RPO iterator infrastructure
1580 // because we need to combine SCC detection and the PO walk of the call
1581 // graph. We can also cheat egregiously because we're primarily interested in
1582 // synthesizing norecurse and so we can only save the singular SCCs as SCCs
1583 // with multiple functions in them will clearly be recursive.
1584 SmallVector
<Function
*, 16> Worklist
;
1585 for (scc_iterator
<CallGraph
*> I
= scc_begin(&CG
); !I
.isAtEnd(); ++I
) {
1589 Function
*F
= I
->front()->getFunction();
1590 if (F
&& !F
->isDeclaration() && !F
->doesNotRecurse() &&
1591 F
->hasInternalLinkage())
1592 Worklist
.push_back(F
);
1595 bool Changed
= false;
1596 for (auto *F
: llvm::reverse(Worklist
))
1597 Changed
|= addNoRecurseAttrsTopDown(*F
);
1602 bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module
&M
) {
1606 auto &CG
= getAnalysis
<CallGraphWrapperPass
>().getCallGraph();
1608 return deduceFunctionAttributeInRPO(M
, CG
);
1612 ReversePostOrderFunctionAttrsPass::run(Module
&M
, ModuleAnalysisManager
&AM
) {
1613 auto &CG
= AM
.getResult
<CallGraphAnalysis
>(M
);
1615 if (!deduceFunctionAttributeInRPO(M
, CG
))
1616 return PreservedAnalyses::all();
1618 PreservedAnalyses PA
;
1619 PA
.preserve
<CallGraphAnalysis
>();