[ARM] Rejig MVE load store tests. NFC
[llvm-core.git] / lib / Transforms / IPO / Inliner.cpp
blob945f8affae6e601794830cf9bc2e884436de9a26
1 //===- Inliner.cpp - Code common to all inliners --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the mechanics required to implement inlining without
10 // missing any calls and updating the call graph. The decisions of which calls
11 // are profitable to inline are implemented elsewhere.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/IPO/Inliner.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/BasicAliasAnalysis.h"
28 #include "llvm/Analysis/BlockFrequencyInfo.h"
29 #include "llvm/Analysis/CGSCCPassManager.h"
30 #include "llvm/Analysis/CallGraph.h"
31 #include "llvm/Analysis/InlineCost.h"
32 #include "llvm/Analysis/LazyCallGraph.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/ProfileSummaryInfo.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/Transforms/Utils/Local.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/CallSite.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/DiagnosticInfo.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InstIterator.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/PassManager.h"
53 #include "llvm/IR/User.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/CommandLine.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Transforms/Utils/Cloning.h"
61 #include "llvm/Transforms/Utils/ImportedFunctionsInliningStatistics.h"
62 #include "llvm/Transforms/Utils/ModuleUtils.h"
63 #include <algorithm>
64 #include <cassert>
65 #include <functional>
66 #include <sstream>
67 #include <tuple>
68 #include <utility>
69 #include <vector>
71 using namespace llvm;
73 #define DEBUG_TYPE "inline"
75 STATISTIC(NumInlined, "Number of functions inlined");
76 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
77 STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
78 STATISTIC(NumMergedAllocas, "Number of allocas merged together");
80 // This weirdly named statistic tracks the number of times that, when attempting
81 // to inline a function A into B, we analyze the callers of B in order to see
82 // if those would be more profitable and blocked inline steps.
83 STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed");
85 /// Flag to disable manual alloca merging.
86 ///
87 /// Merging of allocas was originally done as a stack-size saving technique
88 /// prior to LLVM's code generator having support for stack coloring based on
89 /// lifetime markers. It is now in the process of being removed. To experiment
90 /// with disabling it and relying fully on lifetime marker based stack
91 /// coloring, you can pass this flag to LLVM.
92 static cl::opt<bool>
93 DisableInlinedAllocaMerging("disable-inlined-alloca-merging",
94 cl::init(false), cl::Hidden);
96 namespace {
98 enum class InlinerFunctionImportStatsOpts {
99 No = 0,
100 Basic = 1,
101 Verbose = 2,
104 } // end anonymous namespace
106 static cl::opt<InlinerFunctionImportStatsOpts> InlinerFunctionImportStats(
107 "inliner-function-import-stats",
108 cl::init(InlinerFunctionImportStatsOpts::No),
109 cl::values(clEnumValN(InlinerFunctionImportStatsOpts::Basic, "basic",
110 "basic statistics"),
111 clEnumValN(InlinerFunctionImportStatsOpts::Verbose, "verbose",
112 "printing of statistics for each inlined function")),
113 cl::Hidden, cl::desc("Enable inliner stats for imported functions"));
115 /// Flag to add inline messages as callsite attributes 'inline-remark'.
116 static cl::opt<bool>
117 InlineRemarkAttribute("inline-remark-attribute", cl::init(false),
118 cl::Hidden,
119 cl::desc("Enable adding inline-remark attribute to"
120 " callsites processed by inliner but decided"
121 " to be not inlined"));
123 LegacyInlinerBase::LegacyInlinerBase(char &ID) : CallGraphSCCPass(ID) {}
125 LegacyInlinerBase::LegacyInlinerBase(char &ID, bool InsertLifetime)
126 : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {}
128 /// For this class, we declare that we require and preserve the call graph.
129 /// If the derived class implements this method, it should
130 /// always explicitly call the implementation here.
131 void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage &AU) const {
132 AU.addRequired<AssumptionCacheTracker>();
133 AU.addRequired<ProfileSummaryInfoWrapperPass>();
134 AU.addRequired<TargetLibraryInfoWrapperPass>();
135 getAAResultsAnalysisUsage(AU);
136 CallGraphSCCPass::getAnalysisUsage(AU);
139 using InlinedArrayAllocasTy = DenseMap<ArrayType *, std::vector<AllocaInst *>>;
141 /// Look at all of the allocas that we inlined through this call site. If we
142 /// have already inlined other allocas through other calls into this function,
143 /// then we know that they have disjoint lifetimes and that we can merge them.
145 /// There are many heuristics possible for merging these allocas, and the
146 /// different options have different tradeoffs. One thing that we *really*
147 /// don't want to hurt is SRoA: once inlining happens, often allocas are no
148 /// longer address taken and so they can be promoted.
150 /// Our "solution" for that is to only merge allocas whose outermost type is an
151 /// array type. These are usually not promoted because someone is using a
152 /// variable index into them. These are also often the most important ones to
153 /// merge.
155 /// A better solution would be to have real memory lifetime markers in the IR
156 /// and not have the inliner do any merging of allocas at all. This would
157 /// allow the backend to do proper stack slot coloring of all allocas that
158 /// *actually make it to the backend*, which is really what we want.
160 /// Because we don't have this information, we do this simple and useful hack.
161 static void mergeInlinedArrayAllocas(
162 Function *Caller, InlineFunctionInfo &IFI,
163 InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory) {
164 SmallPtrSet<AllocaInst *, 16> UsedAllocas;
166 // When processing our SCC, check to see if CS was inlined from some other
167 // call site. For example, if we're processing "A" in this code:
168 // A() { B() }
169 // B() { x = alloca ... C() }
170 // C() { y = alloca ... }
171 // Assume that C was not inlined into B initially, and so we're processing A
172 // and decide to inline B into A. Doing this makes an alloca available for
173 // reuse and makes a callsite (C) available for inlining. When we process
174 // the C call site we don't want to do any alloca merging between X and Y
175 // because their scopes are not disjoint. We could make this smarter by
176 // keeping track of the inline history for each alloca in the
177 // InlinedArrayAllocas but this isn't likely to be a significant win.
178 if (InlineHistory != -1) // Only do merging for top-level call sites in SCC.
179 return;
181 // Loop over all the allocas we have so far and see if they can be merged with
182 // a previously inlined alloca. If not, remember that we had it.
183 for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size(); AllocaNo != e;
184 ++AllocaNo) {
185 AllocaInst *AI = IFI.StaticAllocas[AllocaNo];
187 // Don't bother trying to merge array allocations (they will usually be
188 // canonicalized to be an allocation *of* an array), or allocations whose
189 // type is not itself an array (because we're afraid of pessimizing SRoA).
190 ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
191 if (!ATy || AI->isArrayAllocation())
192 continue;
194 // Get the list of all available allocas for this array type.
195 std::vector<AllocaInst *> &AllocasForType = InlinedArrayAllocas[ATy];
197 // Loop over the allocas in AllocasForType to see if we can reuse one. Note
198 // that we have to be careful not to reuse the same "available" alloca for
199 // multiple different allocas that we just inlined, we use the 'UsedAllocas'
200 // set to keep track of which "available" allocas are being used by this
201 // function. Also, AllocasForType can be empty of course!
202 bool MergedAwayAlloca = false;
203 for (AllocaInst *AvailableAlloca : AllocasForType) {
204 unsigned Align1 = AI->getAlignment(),
205 Align2 = AvailableAlloca->getAlignment();
207 // The available alloca has to be in the right function, not in some other
208 // function in this SCC.
209 if (AvailableAlloca->getParent() != AI->getParent())
210 continue;
212 // If the inlined function already uses this alloca then we can't reuse
213 // it.
214 if (!UsedAllocas.insert(AvailableAlloca).second)
215 continue;
217 // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
218 // success!
219 LLVM_DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI
220 << "\n\t\tINTO: " << *AvailableAlloca << '\n');
222 // Move affected dbg.declare calls immediately after the new alloca to
223 // avoid the situation when a dbg.declare precedes its alloca.
224 if (auto *L = LocalAsMetadata::getIfExists(AI))
225 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
226 for (User *U : MDV->users())
227 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
228 DDI->moveBefore(AvailableAlloca->getNextNode());
230 AI->replaceAllUsesWith(AvailableAlloca);
232 if (Align1 != Align2) {
233 if (!Align1 || !Align2) {
234 const DataLayout &DL = Caller->getParent()->getDataLayout();
235 unsigned TypeAlign = DL.getABITypeAlignment(AI->getAllocatedType());
237 Align1 = Align1 ? Align1 : TypeAlign;
238 Align2 = Align2 ? Align2 : TypeAlign;
241 if (Align1 > Align2)
242 AvailableAlloca->setAlignment(AI->getAlignment());
245 AI->eraseFromParent();
246 MergedAwayAlloca = true;
247 ++NumMergedAllocas;
248 IFI.StaticAllocas[AllocaNo] = nullptr;
249 break;
252 // If we already nuked the alloca, we're done with it.
253 if (MergedAwayAlloca)
254 continue;
256 // If we were unable to merge away the alloca either because there are no
257 // allocas of the right type available or because we reused them all
258 // already, remember that this alloca came from an inlined function and mark
259 // it used so we don't reuse it for other allocas from this inline
260 // operation.
261 AllocasForType.push_back(AI);
262 UsedAllocas.insert(AI);
266 /// If it is possible to inline the specified call site,
267 /// do so and update the CallGraph for this operation.
269 /// This function also does some basic book-keeping to update the IR. The
270 /// InlinedArrayAllocas map keeps track of any allocas that are already
271 /// available from other functions inlined into the caller. If we are able to
272 /// inline this call site we attempt to reuse already available allocas or add
273 /// any new allocas to the set if not possible.
274 static InlineResult InlineCallIfPossible(
275 CallSite CS, InlineFunctionInfo &IFI,
276 InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory,
277 bool InsertLifetime, function_ref<AAResults &(Function &)> &AARGetter,
278 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
279 Function *Callee = CS.getCalledFunction();
280 Function *Caller = CS.getCaller();
282 AAResults &AAR = AARGetter(*Callee);
284 // Try to inline the function. Get the list of static allocas that were
285 // inlined.
286 InlineResult IR = InlineFunction(CS, IFI, &AAR, InsertLifetime);
287 if (!IR)
288 return IR;
290 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
291 ImportedFunctionsStats.recordInline(*Caller, *Callee);
293 AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee);
295 if (!DisableInlinedAllocaMerging)
296 mergeInlinedArrayAllocas(Caller, IFI, InlinedArrayAllocas, InlineHistory);
298 return IR; // success
301 /// Return true if inlining of CS can block the caller from being
302 /// inlined which is proved to be more beneficial. \p IC is the
303 /// estimated inline cost associated with callsite \p CS.
304 /// \p TotalSecondaryCost will be set to the estimated cost of inlining the
305 /// caller if \p CS is suppressed for inlining.
306 static bool
307 shouldBeDeferred(Function *Caller, CallSite CS, InlineCost IC,
308 int &TotalSecondaryCost,
309 function_ref<InlineCost(CallSite CS)> GetInlineCost) {
310 // For now we only handle local or inline functions.
311 if (!Caller->hasLocalLinkage() && !Caller->hasLinkOnceODRLinkage())
312 return false;
313 // If the cost of inlining CS is non-positive, it is not going to prevent the
314 // caller from being inlined into its callers and hence we don't need to
315 // defer.
316 if (IC.getCost() <= 0)
317 return false;
318 // Try to detect the case where the current inlining candidate caller (call
319 // it B) is a static or linkonce-ODR function and is an inlining candidate
320 // elsewhere, and the current candidate callee (call it C) is large enough
321 // that inlining it into B would make B too big to inline later. In these
322 // circumstances it may be best not to inline C into B, but to inline B into
323 // its callers.
325 // This only applies to static and linkonce-ODR functions because those are
326 // expected to be available for inlining in the translation units where they
327 // are used. Thus we will always have the opportunity to make local inlining
328 // decisions. Importantly the linkonce-ODR linkage covers inline functions
329 // and templates in C++.
331 // FIXME: All of this logic should be sunk into getInlineCost. It relies on
332 // the internal implementation of the inline cost metrics rather than
333 // treating them as truly abstract units etc.
334 TotalSecondaryCost = 0;
335 // The candidate cost to be imposed upon the current function.
336 int CandidateCost = IC.getCost() - 1;
337 // If the caller has local linkage and can be inlined to all its callers, we
338 // can apply a huge negative bonus to TotalSecondaryCost.
339 bool ApplyLastCallBonus = Caller->hasLocalLinkage() && !Caller->hasOneUse();
340 // This bool tracks what happens if we DO inline C into B.
341 bool inliningPreventsSomeOuterInline = false;
342 for (User *U : Caller->users()) {
343 // If the caller will not be removed (either because it does not have a
344 // local linkage or because the LastCallToStaticBonus has been already
345 // applied), then we can exit the loop early.
346 if (!ApplyLastCallBonus && TotalSecondaryCost >= IC.getCost())
347 return false;
348 CallSite CS2(U);
350 // If this isn't a call to Caller (it could be some other sort
351 // of reference) skip it. Such references will prevent the caller
352 // from being removed.
353 if (!CS2 || CS2.getCalledFunction() != Caller) {
354 ApplyLastCallBonus = false;
355 continue;
358 InlineCost IC2 = GetInlineCost(CS2);
359 ++NumCallerCallersAnalyzed;
360 if (!IC2) {
361 ApplyLastCallBonus = false;
362 continue;
364 if (IC2.isAlways())
365 continue;
367 // See if inlining of the original callsite would erase the cost delta of
368 // this callsite. We subtract off the penalty for the call instruction,
369 // which we would be deleting.
370 if (IC2.getCostDelta() <= CandidateCost) {
371 inliningPreventsSomeOuterInline = true;
372 TotalSecondaryCost += IC2.getCost();
375 // If all outer calls to Caller would get inlined, the cost for the last
376 // one is set very low by getInlineCost, in anticipation that Caller will
377 // be removed entirely. We did not account for this above unless there
378 // is only one caller of Caller.
379 if (ApplyLastCallBonus)
380 TotalSecondaryCost -= InlineConstants::LastCallToStaticBonus;
382 if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost())
383 return true;
385 return false;
388 static std::basic_ostream<char> &operator<<(std::basic_ostream<char> &R,
389 const ore::NV &Arg) {
390 return R << Arg.Val;
393 template <class RemarkT>
394 RemarkT &operator<<(RemarkT &&R, const InlineCost &IC) {
395 using namespace ore;
396 if (IC.isAlways()) {
397 R << "(cost=always)";
398 } else if (IC.isNever()) {
399 R << "(cost=never)";
400 } else {
401 R << "(cost=" << ore::NV("Cost", IC.getCost())
402 << ", threshold=" << ore::NV("Threshold", IC.getThreshold()) << ")";
404 if (const char *Reason = IC.getReason())
405 R << ": " << ore::NV("Reason", Reason);
406 return R;
409 static std::string inlineCostStr(const InlineCost &IC) {
410 std::stringstream Remark;
411 Remark << IC;
412 return Remark.str();
415 /// Return the cost only if the inliner should attempt to inline at the given
416 /// CallSite. If we return the cost, we will emit an optimisation remark later
417 /// using that cost, so we won't do so from this function.
418 static Optional<InlineCost>
419 shouldInline(CallSite CS, function_ref<InlineCost(CallSite CS)> GetInlineCost,
420 OptimizationRemarkEmitter &ORE) {
421 using namespace ore;
423 InlineCost IC = GetInlineCost(CS);
424 Instruction *Call = CS.getInstruction();
425 Function *Callee = CS.getCalledFunction();
426 Function *Caller = CS.getCaller();
428 if (IC.isAlways()) {
429 LLVM_DEBUG(dbgs() << " Inlining " << inlineCostStr(IC)
430 << ", Call: " << *CS.getInstruction() << "\n");
431 return IC;
434 if (IC.isNever()) {
435 LLVM_DEBUG(dbgs() << " NOT Inlining " << inlineCostStr(IC)
436 << ", Call: " << *CS.getInstruction() << "\n");
437 ORE.emit([&]() {
438 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", Call)
439 << NV("Callee", Callee) << " not inlined into "
440 << NV("Caller", Caller) << " because it should never be inlined "
441 << IC;
443 return IC;
446 if (!IC) {
447 LLVM_DEBUG(dbgs() << " NOT Inlining " << inlineCostStr(IC)
448 << ", Call: " << *CS.getInstruction() << "\n");
449 ORE.emit([&]() {
450 return OptimizationRemarkMissed(DEBUG_TYPE, "TooCostly", Call)
451 << NV("Callee", Callee) << " not inlined into "
452 << NV("Caller", Caller) << " because too costly to inline " << IC;
454 return IC;
457 int TotalSecondaryCost = 0;
458 if (shouldBeDeferred(Caller, CS, IC, TotalSecondaryCost, GetInlineCost)) {
459 LLVM_DEBUG(dbgs() << " NOT Inlining: " << *CS.getInstruction()
460 << " Cost = " << IC.getCost()
461 << ", outer Cost = " << TotalSecondaryCost << '\n');
462 ORE.emit([&]() {
463 return OptimizationRemarkMissed(DEBUG_TYPE, "IncreaseCostInOtherContexts",
464 Call)
465 << "Not inlining. Cost of inlining " << NV("Callee", Callee)
466 << " increases the cost of inlining " << NV("Caller", Caller)
467 << " in other contexts";
470 // IC does not bool() to false, so get an InlineCost that will.
471 // This will not be inspected to make an error message.
472 return None;
475 LLVM_DEBUG(dbgs() << " Inlining " << inlineCostStr(IC)
476 << ", Call: " << *CS.getInstruction() << '\n');
477 return IC;
480 /// Return true if the specified inline history ID
481 /// indicates an inline history that includes the specified function.
482 static bool InlineHistoryIncludes(
483 Function *F, int InlineHistoryID,
484 const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) {
485 while (InlineHistoryID != -1) {
486 assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
487 "Invalid inline history ID");
488 if (InlineHistory[InlineHistoryID].first == F)
489 return true;
490 InlineHistoryID = InlineHistory[InlineHistoryID].second;
492 return false;
495 bool LegacyInlinerBase::doInitialization(CallGraph &CG) {
496 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
497 ImportedFunctionsStats.setModuleInfo(CG.getModule());
498 return false; // No changes to CallGraph.
501 bool LegacyInlinerBase::runOnSCC(CallGraphSCC &SCC) {
502 if (skipSCC(SCC))
503 return false;
504 return inlineCalls(SCC);
507 static void emit_inlined_into(OptimizationRemarkEmitter &ORE, DebugLoc &DLoc,
508 const BasicBlock *Block, const Function &Callee,
509 const Function &Caller, const InlineCost &IC) {
510 ORE.emit([&]() {
511 bool AlwaysInline = IC.isAlways();
512 StringRef RemarkName = AlwaysInline ? "AlwaysInline" : "Inlined";
513 return OptimizationRemark(DEBUG_TYPE, RemarkName, DLoc, Block)
514 << ore::NV("Callee", &Callee) << " inlined into "
515 << ore::NV("Caller", &Caller) << " with " << IC;
519 static void setInlineRemark(CallSite &CS, StringRef message) {
520 if (!InlineRemarkAttribute)
521 return;
523 Attribute attr = Attribute::get(CS->getContext(), "inline-remark", message);
524 CS.addAttribute(AttributeList::FunctionIndex, attr);
527 static bool
528 inlineCallsImpl(CallGraphSCC &SCC, CallGraph &CG,
529 std::function<AssumptionCache &(Function &)> GetAssumptionCache,
530 ProfileSummaryInfo *PSI, TargetLibraryInfo &TLI,
531 bool InsertLifetime,
532 function_ref<InlineCost(CallSite CS)> GetInlineCost,
533 function_ref<AAResults &(Function &)> AARGetter,
534 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
535 SmallPtrSet<Function *, 8> SCCFunctions;
536 LLVM_DEBUG(dbgs() << "Inliner visiting SCC:");
537 for (CallGraphNode *Node : SCC) {
538 Function *F = Node->getFunction();
539 if (F)
540 SCCFunctions.insert(F);
541 LLVM_DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
544 // Scan through and identify all call sites ahead of time so that we only
545 // inline call sites in the original functions, not call sites that result
546 // from inlining other functions.
547 SmallVector<std::pair<CallSite, int>, 16> CallSites;
549 // When inlining a callee produces new call sites, we want to keep track of
550 // the fact that they were inlined from the callee. This allows us to avoid
551 // infinite inlining in some obscure cases. To represent this, we use an
552 // index into the InlineHistory vector.
553 SmallVector<std::pair<Function *, int>, 8> InlineHistory;
555 for (CallGraphNode *Node : SCC) {
556 Function *F = Node->getFunction();
557 if (!F || F->isDeclaration())
558 continue;
560 OptimizationRemarkEmitter ORE(F);
561 for (BasicBlock &BB : *F)
562 for (Instruction &I : BB) {
563 CallSite CS(cast<Value>(&I));
564 // If this isn't a call, or it is a call to an intrinsic, it can
565 // never be inlined.
566 if (!CS || isa<IntrinsicInst>(I))
567 continue;
569 // If this is a direct call to an external function, we can never inline
570 // it. If it is an indirect call, inlining may resolve it to be a
571 // direct call, so we keep it.
572 if (Function *Callee = CS.getCalledFunction())
573 if (Callee->isDeclaration()) {
574 using namespace ore;
576 setInlineRemark(CS, "unavailable definition");
577 ORE.emit([&]() {
578 return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
579 << NV("Callee", Callee) << " will not be inlined into "
580 << NV("Caller", CS.getCaller())
581 << " because its definition is unavailable"
582 << setIsVerbose();
584 continue;
587 CallSites.push_back(std::make_pair(CS, -1));
591 LLVM_DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
593 // If there are no calls in this function, exit early.
594 if (CallSites.empty())
595 return false;
597 // Now that we have all of the call sites, move the ones to functions in the
598 // current SCC to the end of the list.
599 unsigned FirstCallInSCC = CallSites.size();
600 for (unsigned i = 0; i < FirstCallInSCC; ++i)
601 if (Function *F = CallSites[i].first.getCalledFunction())
602 if (SCCFunctions.count(F))
603 std::swap(CallSites[i--], CallSites[--FirstCallInSCC]);
605 InlinedArrayAllocasTy InlinedArrayAllocas;
606 InlineFunctionInfo InlineInfo(&CG, &GetAssumptionCache, PSI);
608 // Now that we have all of the call sites, loop over them and inline them if
609 // it looks profitable to do so.
610 bool Changed = false;
611 bool LocalChange;
612 do {
613 LocalChange = false;
614 // Iterate over the outer loop because inlining functions can cause indirect
615 // calls to become direct calls.
616 // CallSites may be modified inside so ranged for loop can not be used.
617 for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
618 CallSite CS = CallSites[CSi].first;
620 Function *Caller = CS.getCaller();
621 Function *Callee = CS.getCalledFunction();
623 // We can only inline direct calls to non-declarations.
624 if (!Callee || Callee->isDeclaration())
625 continue;
627 Instruction *Instr = CS.getInstruction();
629 bool IsTriviallyDead = isInstructionTriviallyDead(Instr, &TLI);
631 int InlineHistoryID;
632 if (!IsTriviallyDead) {
633 // If this call site was obtained by inlining another function, verify
634 // that the include path for the function did not include the callee
635 // itself. If so, we'd be recursively inlining the same function,
636 // which would provide the same callsites, which would cause us to
637 // infinitely inline.
638 InlineHistoryID = CallSites[CSi].second;
639 if (InlineHistoryID != -1 &&
640 InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) {
641 setInlineRemark(CS, "recursive");
642 continue;
646 // FIXME for new PM: because of the old PM we currently generate ORE and
647 // in turn BFI on demand. With the new PM, the ORE dependency should
648 // just become a regular analysis dependency.
649 OptimizationRemarkEmitter ORE(Caller);
651 Optional<InlineCost> OIC = shouldInline(CS, GetInlineCost, ORE);
652 // If the policy determines that we should inline this function,
653 // delete the call instead.
654 if (!OIC.hasValue()) {
655 setInlineRemark(CS, "deferred");
656 continue;
659 if (!OIC.getValue()) {
660 // shouldInline() call returned a negative inline cost that explains
661 // why this callsite should not be inlined.
662 setInlineRemark(CS, inlineCostStr(*OIC));
663 continue;
666 // If this call site is dead and it is to a readonly function, we should
667 // just delete the call instead of trying to inline it, regardless of
668 // size. This happens because IPSCCP propagates the result out of the
669 // call and then we're left with the dead call.
670 if (IsTriviallyDead) {
671 LLVM_DEBUG(dbgs() << " -> Deleting dead call: " << *Instr << "\n");
672 // Update the call graph by deleting the edge from Callee to Caller.
673 setInlineRemark(CS, "trivially dead");
674 CG[Caller]->removeCallEdgeFor(*cast<CallBase>(CS.getInstruction()));
675 Instr->eraseFromParent();
676 ++NumCallsDeleted;
677 } else {
678 // Get DebugLoc to report. CS will be invalid after Inliner.
679 DebugLoc DLoc = CS->getDebugLoc();
680 BasicBlock *Block = CS.getParent();
682 // Attempt to inline the function.
683 using namespace ore;
685 InlineResult IR = InlineCallIfPossible(
686 CS, InlineInfo, InlinedArrayAllocas, InlineHistoryID,
687 InsertLifetime, AARGetter, ImportedFunctionsStats);
688 if (!IR) {
689 setInlineRemark(CS, std::string(IR) + "; " + inlineCostStr(*OIC));
690 ORE.emit([&]() {
691 return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc,
692 Block)
693 << NV("Callee", Callee) << " will not be inlined into "
694 << NV("Caller", Caller) << ": " << NV("Reason", IR.message);
696 continue;
698 ++NumInlined;
700 emit_inlined_into(ORE, DLoc, Block, *Callee, *Caller, *OIC);
702 // If inlining this function gave us any new call sites, throw them
703 // onto our worklist to process. They are useful inline candidates.
704 if (!InlineInfo.InlinedCalls.empty()) {
705 // Create a new inline history entry for this, so that we remember
706 // that these new callsites came about due to inlining Callee.
707 int NewHistoryID = InlineHistory.size();
708 InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));
710 for (Value *Ptr : InlineInfo.InlinedCalls)
711 CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID));
715 // If we inlined or deleted the last possible call site to the function,
716 // delete the function body now.
717 if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
718 // TODO: Can remove if in SCC now.
719 !SCCFunctions.count(Callee) &&
720 // The function may be apparently dead, but if there are indirect
721 // callgraph references to the node, we cannot delete it yet, this
722 // could invalidate the CGSCC iterator.
723 CG[Callee]->getNumReferences() == 0) {
724 LLVM_DEBUG(dbgs() << " -> Deleting dead function: "
725 << Callee->getName() << "\n");
726 CallGraphNode *CalleeNode = CG[Callee];
728 // Remove any call graph edges from the callee to its callees.
729 CalleeNode->removeAllCalledFunctions();
731 // Removing the node for callee from the call graph and delete it.
732 delete CG.removeFunctionFromModule(CalleeNode);
733 ++NumDeleted;
736 // Remove this call site from the list. If possible, use
737 // swap/pop_back for efficiency, but do not use it if doing so would
738 // move a call site to a function in this SCC before the
739 // 'FirstCallInSCC' barrier.
740 if (SCC.isSingular()) {
741 CallSites[CSi] = CallSites.back();
742 CallSites.pop_back();
743 } else {
744 CallSites.erase(CallSites.begin() + CSi);
746 --CSi;
748 Changed = true;
749 LocalChange = true;
751 } while (LocalChange);
753 return Changed;
756 bool LegacyInlinerBase::inlineCalls(CallGraphSCC &SCC) {
757 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
758 ACT = &getAnalysis<AssumptionCacheTracker>();
759 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
760 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
761 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
762 return ACT->getAssumptionCache(F);
764 return inlineCallsImpl(SCC, CG, GetAssumptionCache, PSI, TLI, InsertLifetime,
765 [this](CallSite CS) { return getInlineCost(CS); },
766 LegacyAARGetter(*this), ImportedFunctionsStats);
769 /// Remove now-dead linkonce functions at the end of
770 /// processing to avoid breaking the SCC traversal.
771 bool LegacyInlinerBase::doFinalization(CallGraph &CG) {
772 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
773 ImportedFunctionsStats.dump(InlinerFunctionImportStats ==
774 InlinerFunctionImportStatsOpts::Verbose);
775 return removeDeadFunctions(CG);
778 /// Remove dead functions that are not included in DNR (Do Not Remove) list.
779 bool LegacyInlinerBase::removeDeadFunctions(CallGraph &CG,
780 bool AlwaysInlineOnly) {
781 SmallVector<CallGraphNode *, 16> FunctionsToRemove;
782 SmallVector<Function *, 16> DeadFunctionsInComdats;
784 auto RemoveCGN = [&](CallGraphNode *CGN) {
785 // Remove any call graph edges from the function to its callees.
786 CGN->removeAllCalledFunctions();
788 // Remove any edges from the external node to the function's call graph
789 // node. These edges might have been made irrelegant due to
790 // optimization of the program.
791 CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
793 // Removing the node for callee from the call graph and delete it.
794 FunctionsToRemove.push_back(CGN);
797 // Scan for all of the functions, looking for ones that should now be removed
798 // from the program. Insert the dead ones in the FunctionsToRemove set.
799 for (const auto &I : CG) {
800 CallGraphNode *CGN = I.second.get();
801 Function *F = CGN->getFunction();
802 if (!F || F->isDeclaration())
803 continue;
805 // Handle the case when this function is called and we only want to care
806 // about always-inline functions. This is a bit of a hack to share code
807 // between here and the InlineAlways pass.
808 if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline))
809 continue;
811 // If the only remaining users of the function are dead constants, remove
812 // them.
813 F->removeDeadConstantUsers();
815 if (!F->isDefTriviallyDead())
816 continue;
818 // It is unsafe to drop a function with discardable linkage from a COMDAT
819 // without also dropping the other members of the COMDAT.
820 // The inliner doesn't visit non-function entities which are in COMDAT
821 // groups so it is unsafe to do so *unless* the linkage is local.
822 if (!F->hasLocalLinkage()) {
823 if (F->hasComdat()) {
824 DeadFunctionsInComdats.push_back(F);
825 continue;
829 RemoveCGN(CGN);
831 if (!DeadFunctionsInComdats.empty()) {
832 // Filter out the functions whose comdats remain alive.
833 filterDeadComdatFunctions(CG.getModule(), DeadFunctionsInComdats);
834 // Remove the rest.
835 for (Function *F : DeadFunctionsInComdats)
836 RemoveCGN(CG[F]);
839 if (FunctionsToRemove.empty())
840 return false;
842 // Now that we know which functions to delete, do so. We didn't want to do
843 // this inline, because that would invalidate our CallGraph::iterator
844 // objects. :(
846 // Note that it doesn't matter that we are iterating over a non-stable order
847 // here to do this, it doesn't matter which order the functions are deleted
848 // in.
849 array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end());
850 FunctionsToRemove.erase(
851 std::unique(FunctionsToRemove.begin(), FunctionsToRemove.end()),
852 FunctionsToRemove.end());
853 for (CallGraphNode *CGN : FunctionsToRemove) {
854 delete CG.removeFunctionFromModule(CGN);
855 ++NumDeleted;
857 return true;
860 InlinerPass::~InlinerPass() {
861 if (ImportedFunctionsStats) {
862 assert(InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No);
863 ImportedFunctionsStats->dump(InlinerFunctionImportStats ==
864 InlinerFunctionImportStatsOpts::Verbose);
868 PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC,
869 CGSCCAnalysisManager &AM, LazyCallGraph &CG,
870 CGSCCUpdateResult &UR) {
871 const ModuleAnalysisManager &MAM =
872 AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG).getManager();
873 bool Changed = false;
875 assert(InitialC.size() > 0 && "Cannot handle an empty SCC!");
876 Module &M = *InitialC.begin()->getFunction().getParent();
877 ProfileSummaryInfo *PSI = MAM.getCachedResult<ProfileSummaryAnalysis>(M);
879 if (!ImportedFunctionsStats &&
880 InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) {
881 ImportedFunctionsStats =
882 llvm::make_unique<ImportedFunctionsInliningStatistics>();
883 ImportedFunctionsStats->setModuleInfo(M);
886 // We use a single common worklist for calls across the entire SCC. We
887 // process these in-order and append new calls introduced during inlining to
888 // the end.
890 // Note that this particular order of processing is actually critical to
891 // avoid very bad behaviors. Consider *highly connected* call graphs where
892 // each function contains a small amonut of code and a couple of calls to
893 // other functions. Because the LLVM inliner is fundamentally a bottom-up
894 // inliner, it can handle gracefully the fact that these all appear to be
895 // reasonable inlining candidates as it will flatten things until they become
896 // too big to inline, and then move on and flatten another batch.
898 // However, when processing call edges *within* an SCC we cannot rely on this
899 // bottom-up behavior. As a consequence, with heavily connected *SCCs* of
900 // functions we can end up incrementally inlining N calls into each of
901 // N functions because each incremental inlining decision looks good and we
902 // don't have a topological ordering to prevent explosions.
904 // To compensate for this, we don't process transitive edges made immediate
905 // by inlining until we've done one pass of inlining across the entire SCC.
906 // Large, highly connected SCCs still lead to some amount of code bloat in
907 // this model, but it is uniformly spread across all the functions in the SCC
908 // and eventually they all become too large to inline, rather than
909 // incrementally maknig a single function grow in a super linear fashion.
910 SmallVector<std::pair<CallSite, int>, 16> Calls;
912 FunctionAnalysisManager &FAM =
913 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(InitialC, CG)
914 .getManager();
916 // Populate the initial list of calls in this SCC.
917 for (auto &N : InitialC) {
918 auto &ORE =
919 FAM.getResult<OptimizationRemarkEmitterAnalysis>(N.getFunction());
920 // We want to generally process call sites top-down in order for
921 // simplifications stemming from replacing the call with the returned value
922 // after inlining to be visible to subsequent inlining decisions.
923 // FIXME: Using instructions sequence is a really bad way to do this.
924 // Instead we should do an actual RPO walk of the function body.
925 for (Instruction &I : instructions(N.getFunction()))
926 if (auto CS = CallSite(&I))
927 if (Function *Callee = CS.getCalledFunction()) {
928 if (!Callee->isDeclaration())
929 Calls.push_back({CS, -1});
930 else if (!isa<IntrinsicInst>(I)) {
931 using namespace ore;
932 setInlineRemark(CS, "unavailable definition");
933 ORE.emit([&]() {
934 return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
935 << NV("Callee", Callee) << " will not be inlined into "
936 << NV("Caller", CS.getCaller())
937 << " because its definition is unavailable"
938 << setIsVerbose();
943 if (Calls.empty())
944 return PreservedAnalyses::all();
946 // Capture updatable variables for the current SCC and RefSCC.
947 auto *C = &InitialC;
948 auto *RC = &C->getOuterRefSCC();
950 // When inlining a callee produces new call sites, we want to keep track of
951 // the fact that they were inlined from the callee. This allows us to avoid
952 // infinite inlining in some obscure cases. To represent this, we use an
953 // index into the InlineHistory vector.
954 SmallVector<std::pair<Function *, int>, 16> InlineHistory;
956 // Track a set vector of inlined callees so that we can augment the caller
957 // with all of their edges in the call graph before pruning out the ones that
958 // got simplified away.
959 SmallSetVector<Function *, 4> InlinedCallees;
961 // Track the dead functions to delete once finished with inlining calls. We
962 // defer deleting these to make it easier to handle the call graph updates.
963 SmallVector<Function *, 4> DeadFunctions;
965 // Loop forward over all of the calls. Note that we cannot cache the size as
966 // inlining can introduce new calls that need to be processed.
967 for (int i = 0; i < (int)Calls.size(); ++i) {
968 // We expect the calls to typically be batched with sequences of calls that
969 // have the same caller, so we first set up some shared infrastructure for
970 // this caller. We also do any pruning we can at this layer on the caller
971 // alone.
972 Function &F = *Calls[i].first.getCaller();
973 LazyCallGraph::Node &N = *CG.lookup(F);
974 if (CG.lookupSCC(N) != C)
975 continue;
976 if (F.hasOptNone()) {
977 setInlineRemark(Calls[i].first, "optnone attribute");
978 continue;
981 LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n");
983 // Get a FunctionAnalysisManager via a proxy for this particular node. We
984 // do this each time we visit a node as the SCC may have changed and as
985 // we're going to mutate this particular function we want to make sure the
986 // proxy is in place to forward any invalidation events. We can use the
987 // manager we get here for looking up results for functions other than this
988 // node however because those functions aren't going to be mutated by this
989 // pass.
990 FunctionAnalysisManager &FAM =
991 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG)
992 .getManager();
994 // Get the remarks emission analysis for the caller.
995 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
997 std::function<AssumptionCache &(Function &)> GetAssumptionCache =
998 [&](Function &F) -> AssumptionCache & {
999 return FAM.getResult<AssumptionAnalysis>(F);
1001 auto GetBFI = [&](Function &F) -> BlockFrequencyInfo & {
1002 return FAM.getResult<BlockFrequencyAnalysis>(F);
1005 auto GetInlineCost = [&](CallSite CS) {
1006 Function &Callee = *CS.getCalledFunction();
1007 auto &CalleeTTI = FAM.getResult<TargetIRAnalysis>(Callee);
1008 bool RemarksEnabled =
1009 Callee.getContext().getDiagHandlerPtr()->isMissedOptRemarkEnabled(
1010 DEBUG_TYPE);
1011 return getInlineCost(cast<CallBase>(*CS.getInstruction()), Params,
1012 CalleeTTI, GetAssumptionCache, {GetBFI}, PSI,
1013 RemarksEnabled ? &ORE : nullptr);
1016 // Now process as many calls as we have within this caller in the sequnece.
1017 // We bail out as soon as the caller has to change so we can update the
1018 // call graph and prepare the context of that new caller.
1019 bool DidInline = false;
1020 for (; i < (int)Calls.size() && Calls[i].first.getCaller() == &F; ++i) {
1021 int InlineHistoryID;
1022 CallSite CS;
1023 std::tie(CS, InlineHistoryID) = Calls[i];
1024 Function &Callee = *CS.getCalledFunction();
1026 if (InlineHistoryID != -1 &&
1027 InlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) {
1028 setInlineRemark(CS, "recursive");
1029 continue;
1032 // Check if this inlining may repeat breaking an SCC apart that has
1033 // already been split once before. In that case, inlining here may
1034 // trigger infinite inlining, much like is prevented within the inliner
1035 // itself by the InlineHistory above, but spread across CGSCC iterations
1036 // and thus hidden from the full inline history.
1037 if (CG.lookupSCC(*CG.lookup(Callee)) == C &&
1038 UR.InlinedInternalEdges.count({&N, C})) {
1039 LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node "
1040 "previously split out of this SCC by inlining: "
1041 << F.getName() << " -> " << Callee.getName() << "\n");
1042 setInlineRemark(CS, "recursive SCC split");
1043 continue;
1046 Optional<InlineCost> OIC = shouldInline(CS, GetInlineCost, ORE);
1047 // Check whether we want to inline this callsite.
1048 if (!OIC.hasValue()) {
1049 setInlineRemark(CS, "deferred");
1050 continue;
1053 if (!OIC.getValue()) {
1054 // shouldInline() call returned a negative inline cost that explains
1055 // why this callsite should not be inlined.
1056 setInlineRemark(CS, inlineCostStr(*OIC));
1057 continue;
1060 // Setup the data structure used to plumb customization into the
1061 // `InlineFunction` routine.
1062 InlineFunctionInfo IFI(
1063 /*cg=*/nullptr, &GetAssumptionCache, PSI,
1064 &FAM.getResult<BlockFrequencyAnalysis>(*(CS.getCaller())),
1065 &FAM.getResult<BlockFrequencyAnalysis>(Callee));
1067 // Get DebugLoc to report. CS will be invalid after Inliner.
1068 DebugLoc DLoc = CS->getDebugLoc();
1069 BasicBlock *Block = CS.getParent();
1071 using namespace ore;
1073 InlineResult IR = InlineFunction(CS, IFI);
1074 if (!IR) {
1075 setInlineRemark(CS, std::string(IR) + "; " + inlineCostStr(*OIC));
1076 ORE.emit([&]() {
1077 return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc, Block)
1078 << NV("Callee", &Callee) << " will not be inlined into "
1079 << NV("Caller", &F) << ": " << NV("Reason", IR.message);
1081 continue;
1083 DidInline = true;
1084 InlinedCallees.insert(&Callee);
1086 ++NumInlined;
1088 emit_inlined_into(ORE, DLoc, Block, Callee, F, *OIC);
1090 // Add any new callsites to defined functions to the worklist.
1091 if (!IFI.InlinedCallSites.empty()) {
1092 int NewHistoryID = InlineHistory.size();
1093 InlineHistory.push_back({&Callee, InlineHistoryID});
1094 for (CallSite &CS : reverse(IFI.InlinedCallSites))
1095 if (Function *NewCallee = CS.getCalledFunction())
1096 if (!NewCallee->isDeclaration())
1097 Calls.push_back({CS, NewHistoryID});
1100 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
1101 ImportedFunctionsStats->recordInline(F, Callee);
1103 // Merge the attributes based on the inlining.
1104 AttributeFuncs::mergeAttributesForInlining(F, Callee);
1106 // For local functions, check whether this makes the callee trivially
1107 // dead. In that case, we can drop the body of the function eagerly
1108 // which may reduce the number of callers of other functions to one,
1109 // changing inline cost thresholds.
1110 if (Callee.hasLocalLinkage()) {
1111 // To check this we also need to nuke any dead constant uses (perhaps
1112 // made dead by this operation on other functions).
1113 Callee.removeDeadConstantUsers();
1114 if (Callee.use_empty() && !CG.isLibFunction(Callee)) {
1115 Calls.erase(
1116 std::remove_if(Calls.begin() + i + 1, Calls.end(),
1117 [&Callee](const std::pair<CallSite, int> &Call) {
1118 return Call.first.getCaller() == &Callee;
1120 Calls.end());
1121 // Clear the body and queue the function itself for deletion when we
1122 // finish inlining and call graph updates.
1123 // Note that after this point, it is an error to do anything other
1124 // than use the callee's address or delete it.
1125 Callee.dropAllReferences();
1126 assert(find(DeadFunctions, &Callee) == DeadFunctions.end() &&
1127 "Cannot put cause a function to become dead twice!");
1128 DeadFunctions.push_back(&Callee);
1133 // Back the call index up by one to put us in a good position to go around
1134 // the outer loop.
1135 --i;
1137 if (!DidInline)
1138 continue;
1139 Changed = true;
1141 // Add all the inlined callees' edges as ref edges to the caller. These are
1142 // by definition trivial edges as we always have *some* transitive ref edge
1143 // chain. While in some cases these edges are direct calls inside the
1144 // callee, they have to be modeled in the inliner as reference edges as
1145 // there may be a reference edge anywhere along the chain from the current
1146 // caller to the callee that causes the whole thing to appear like
1147 // a (transitive) reference edge that will require promotion to a call edge
1148 // below.
1149 for (Function *InlinedCallee : InlinedCallees) {
1150 LazyCallGraph::Node &CalleeN = *CG.lookup(*InlinedCallee);
1151 for (LazyCallGraph::Edge &E : *CalleeN)
1152 RC->insertTrivialRefEdge(N, E.getNode());
1155 // At this point, since we have made changes we have at least removed
1156 // a call instruction. However, in the process we do some incremental
1157 // simplification of the surrounding code. This simplification can
1158 // essentially do all of the same things as a function pass and we can
1159 // re-use the exact same logic for updating the call graph to reflect the
1160 // change.
1161 LazyCallGraph::SCC *OldC = C;
1162 C = &updateCGAndAnalysisManagerForFunctionPass(CG, *C, N, AM, UR);
1163 LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n");
1164 RC = &C->getOuterRefSCC();
1166 // If this causes an SCC to split apart into multiple smaller SCCs, there
1167 // is a subtle risk we need to prepare for. Other transformations may
1168 // expose an "infinite inlining" opportunity later, and because of the SCC
1169 // mutation, we will revisit this function and potentially re-inline. If we
1170 // do, and that re-inlining also has the potentially to mutate the SCC
1171 // structure, the infinite inlining problem can manifest through infinite
1172 // SCC splits and merges. To avoid this, we capture the originating caller
1173 // node and the SCC containing the call edge. This is a slight over
1174 // approximation of the possible inlining decisions that must be avoided,
1175 // but is relatively efficient to store. We use C != OldC to know when
1176 // a new SCC is generated and the original SCC may be generated via merge
1177 // in later iterations.
1179 // It is also possible that even if no new SCC is generated
1180 // (i.e., C == OldC), the original SCC could be split and then merged
1181 // into the same one as itself. and the original SCC will be added into
1182 // UR.CWorklist again, we want to catch such cases too.
1184 // FIXME: This seems like a very heavyweight way of retaining the inline
1185 // history, we should look for a more efficient way of tracking it.
1186 if ((C != OldC || UR.CWorklist.count(OldC)) &&
1187 llvm::any_of(InlinedCallees, [&](Function *Callee) {
1188 return CG.lookupSCC(*CG.lookup(*Callee)) == OldC;
1189 })) {
1190 LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, "
1191 "retaining this to avoid infinite inlining.\n");
1192 UR.InlinedInternalEdges.insert({&N, OldC});
1194 InlinedCallees.clear();
1197 // Now that we've finished inlining all of the calls across this SCC, delete
1198 // all of the trivially dead functions, updating the call graph and the CGSCC
1199 // pass manager in the process.
1201 // Note that this walks a pointer set which has non-deterministic order but
1202 // that is OK as all we do is delete things and add pointers to unordered
1203 // sets.
1204 for (Function *DeadF : DeadFunctions) {
1205 // Get the necessary information out of the call graph and nuke the
1206 // function there. Also, cclear out any cached analyses.
1207 auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF));
1208 FunctionAnalysisManager &FAM =
1209 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(DeadC, CG)
1210 .getManager();
1211 FAM.clear(*DeadF, DeadF->getName());
1212 AM.clear(DeadC, DeadC.getName());
1213 auto &DeadRC = DeadC.getOuterRefSCC();
1214 CG.removeDeadFunction(*DeadF);
1216 // Mark the relevant parts of the call graph as invalid so we don't visit
1217 // them.
1218 UR.InvalidatedSCCs.insert(&DeadC);
1219 UR.InvalidatedRefSCCs.insert(&DeadRC);
1221 // And delete the actual function from the module.
1222 M.getFunctionList().erase(DeadF);
1223 ++NumDeleted;
1226 if (!Changed)
1227 return PreservedAnalyses::all();
1229 // Even if we change the IR, we update the core CGSCC data structures and so
1230 // can preserve the proxy to the function analysis manager.
1231 PreservedAnalyses PA;
1232 PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
1233 return PA;