1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the SampleProfileLoader transformation. This pass
10 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
11 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
12 // profile information in the given profile.
14 // This pass generates branch weight annotations on the IR:
16 // - prof: Represents branch weights. This annotation is added to branches
17 // to indicate the weights of each edge coming out of the branch.
18 // The weight of each edge is the weight of the target block for
19 // that edge. The weight of a block B is computed as the maximum
20 // number of samples found in B.
22 //===----------------------------------------------------------------------===//
24 #include "llvm/Transforms/IPO/SampleProfile.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/None.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringMap.h"
33 #include "llvm/ADT/StringRef.h"
34 #include "llvm/ADT/Twine.h"
35 #include "llvm/Analysis/AssumptionCache.h"
36 #include "llvm/Analysis/InlineCost.h"
37 #include "llvm/Analysis/LoopInfo.h"
38 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
39 #include "llvm/Analysis/PostDominators.h"
40 #include "llvm/Analysis/ProfileSummaryInfo.h"
41 #include "llvm/Analysis/TargetTransformInfo.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/CFG.h"
44 #include "llvm/IR/CallSite.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/DiagnosticInfo.h"
48 #include "llvm/IR/Dominators.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GlobalValue.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/MDBuilder.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/PassManager.h"
59 #include "llvm/IR/ValueSymbolTable.h"
60 #include "llvm/Pass.h"
61 #include "llvm/ProfileData/InstrProf.h"
62 #include "llvm/ProfileData/SampleProf.h"
63 #include "llvm/ProfileData/SampleProfReader.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/ErrorOr.h"
69 #include "llvm/Support/GenericDomTree.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Transforms/IPO.h"
72 #include "llvm/Transforms/Instrumentation.h"
73 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
74 #include "llvm/Transforms/Utils/Cloning.h"
83 #include <system_error>
88 using namespace sampleprof
;
89 using ProfileCount
= Function::ProfileCount
;
90 #define DEBUG_TYPE "sample-profile"
92 // Command line option to specify the file to read samples from. This is
93 // mainly used for debugging.
94 static cl::opt
<std::string
> SampleProfileFile(
95 "sample-profile-file", cl::init(""), cl::value_desc("filename"),
96 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden
);
98 // The named file contains a set of transformations that may have been applied
99 // to the symbol names between the program from which the sample data was
100 // collected and the current program's symbols.
101 static cl::opt
<std::string
> SampleProfileRemappingFile(
102 "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"),
103 cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden
);
105 static cl::opt
<unsigned> SampleProfileMaxPropagateIterations(
106 "sample-profile-max-propagate-iterations", cl::init(100),
107 cl::desc("Maximum number of iterations to go through when propagating "
108 "sample block/edge weights through the CFG."));
110 static cl::opt
<unsigned> SampleProfileRecordCoverage(
111 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
112 cl::desc("Emit a warning if less than N% of records in the input profile "
113 "are matched to the IR."));
115 static cl::opt
<unsigned> SampleProfileSampleCoverage(
116 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
117 cl::desc("Emit a warning if less than N% of samples in the input profile "
118 "are matched to the IR."));
120 static cl::opt
<bool> NoWarnSampleUnused(
121 "no-warn-sample-unused", cl::init(false), cl::Hidden
,
122 cl::desc("Use this option to turn off/on warnings about function with "
123 "samples but without debug information to use those samples. "));
125 static cl::opt
<bool> ProfileSampleAccurate(
126 "profile-sample-accurate", cl::Hidden
, cl::init(false),
127 cl::desc("If the sample profile is accurate, we will mark all un-sampled "
128 "callsite and function as having 0 samples. Otherwise, treat "
129 "un-sampled callsites and functions conservatively as unknown. "));
133 using BlockWeightMap
= DenseMap
<const BasicBlock
*, uint64_t>;
134 using EquivalenceClassMap
= DenseMap
<const BasicBlock
*, const BasicBlock
*>;
135 using Edge
= std::pair
<const BasicBlock
*, const BasicBlock
*>;
136 using EdgeWeightMap
= DenseMap
<Edge
, uint64_t>;
138 DenseMap
<const BasicBlock
*, SmallVector
<const BasicBlock
*, 8>>;
140 class SampleCoverageTracker
{
142 SampleCoverageTracker() = default;
144 bool markSamplesUsed(const FunctionSamples
*FS
, uint32_t LineOffset
,
145 uint32_t Discriminator
, uint64_t Samples
);
146 unsigned computeCoverage(unsigned Used
, unsigned Total
) const;
147 unsigned countUsedRecords(const FunctionSamples
*FS
,
148 ProfileSummaryInfo
*PSI
) const;
149 unsigned countBodyRecords(const FunctionSamples
*FS
,
150 ProfileSummaryInfo
*PSI
) const;
151 uint64_t getTotalUsedSamples() const { return TotalUsedSamples
; }
152 uint64_t countBodySamples(const FunctionSamples
*FS
,
153 ProfileSummaryInfo
*PSI
) const;
156 SampleCoverage
.clear();
157 TotalUsedSamples
= 0;
161 using BodySampleCoverageMap
= std::map
<LineLocation
, unsigned>;
162 using FunctionSamplesCoverageMap
=
163 DenseMap
<const FunctionSamples
*, BodySampleCoverageMap
>;
165 /// Coverage map for sampling records.
167 /// This map keeps a record of sampling records that have been matched to
168 /// an IR instruction. This is used to detect some form of staleness in
169 /// profiles (see flag -sample-profile-check-coverage).
171 /// Each entry in the map corresponds to a FunctionSamples instance. This is
172 /// another map that counts how many times the sample record at the
173 /// given location has been used.
174 FunctionSamplesCoverageMap SampleCoverage
;
176 /// Number of samples used from the profile.
178 /// When a sampling record is used for the first time, the samples from
179 /// that record are added to this accumulator. Coverage is later computed
180 /// based on the total number of samples available in this function and
183 /// Note that this accumulator tracks samples used from a single function
184 /// and all the inlined callsites. Strictly, we should have a map of counters
185 /// keyed by FunctionSamples pointers, but these stats are cleared after
186 /// every function, so we just need to keep a single counter.
187 uint64_t TotalUsedSamples
= 0;
190 /// Sample profile pass.
192 /// This pass reads profile data from the file specified by
193 /// -sample-profile-file and annotates every affected function with the
194 /// profile information found in that file.
195 class SampleProfileLoader
{
198 StringRef Name
, StringRef RemapName
, bool IsThinLTOPreLink
,
199 std::function
<AssumptionCache
&(Function
&)> GetAssumptionCache
,
200 std::function
<TargetTransformInfo
&(Function
&)> GetTargetTransformInfo
)
201 : GetAC(std::move(GetAssumptionCache
)),
202 GetTTI(std::move(GetTargetTransformInfo
)), Filename(Name
),
203 RemappingFilename(RemapName
), IsThinLTOPreLink(IsThinLTOPreLink
) {}
205 bool doInitialization(Module
&M
);
206 bool runOnModule(Module
&M
, ModuleAnalysisManager
*AM
,
207 ProfileSummaryInfo
*_PSI
);
209 void dump() { Reader
->dump(); }
212 bool runOnFunction(Function
&F
, ModuleAnalysisManager
*AM
);
213 unsigned getFunctionLoc(Function
&F
);
214 bool emitAnnotations(Function
&F
);
215 ErrorOr
<uint64_t> getInstWeight(const Instruction
&I
);
216 ErrorOr
<uint64_t> getBlockWeight(const BasicBlock
*BB
);
217 const FunctionSamples
*findCalleeFunctionSamples(const Instruction
&I
) const;
218 std::vector
<const FunctionSamples
*>
219 findIndirectCallFunctionSamples(const Instruction
&I
, uint64_t &Sum
) const;
220 mutable DenseMap
<const DILocation
*, const FunctionSamples
*> DILocation2SampleMap
;
221 const FunctionSamples
*findFunctionSamples(const Instruction
&I
) const;
222 bool inlineCallInstruction(Instruction
*I
);
223 bool inlineHotFunctions(Function
&F
,
224 DenseSet
<GlobalValue::GUID
> &InlinedGUIDs
);
225 void printEdgeWeight(raw_ostream
&OS
, Edge E
);
226 void printBlockWeight(raw_ostream
&OS
, const BasicBlock
*BB
) const;
227 void printBlockEquivalence(raw_ostream
&OS
, const BasicBlock
*BB
);
228 bool computeBlockWeights(Function
&F
);
229 void findEquivalenceClasses(Function
&F
);
230 template <bool IsPostDom
>
231 void findEquivalencesFor(BasicBlock
*BB1
, ArrayRef
<BasicBlock
*> Descendants
,
232 DominatorTreeBase
<BasicBlock
, IsPostDom
> *DomTree
);
234 void propagateWeights(Function
&F
);
235 uint64_t visitEdge(Edge E
, unsigned *NumUnknownEdges
, Edge
*UnknownEdge
);
236 void buildEdges(Function
&F
);
237 bool propagateThroughEdges(Function
&F
, bool UpdateBlockCount
);
238 void computeDominanceAndLoopInfo(Function
&F
);
239 void clearFunctionData();
241 /// Map basic blocks to their computed weights.
243 /// The weight of a basic block is defined to be the maximum
244 /// of all the instruction weights in that block.
245 BlockWeightMap BlockWeights
;
247 /// Map edges to their computed weights.
249 /// Edge weights are computed by propagating basic block weights in
250 /// SampleProfile::propagateWeights.
251 EdgeWeightMap EdgeWeights
;
253 /// Set of visited blocks during propagation.
254 SmallPtrSet
<const BasicBlock
*, 32> VisitedBlocks
;
256 /// Set of visited edges during propagation.
257 SmallSet
<Edge
, 32> VisitedEdges
;
259 /// Equivalence classes for block weights.
261 /// Two blocks BB1 and BB2 are in the same equivalence class if they
262 /// dominate and post-dominate each other, and they are in the same loop
263 /// nest. When this happens, the two blocks are guaranteed to execute
264 /// the same number of times.
265 EquivalenceClassMap EquivalenceClass
;
267 /// Map from function name to Function *. Used to find the function from
268 /// the function name. If the function name contains suffix, additional
269 /// entry is added to map from the stripped name to the function if there
270 /// is one-to-one mapping.
271 StringMap
<Function
*> SymbolMap
;
273 /// Dominance, post-dominance and loop information.
274 std::unique_ptr
<DominatorTree
> DT
;
275 std::unique_ptr
<PostDominatorTree
> PDT
;
276 std::unique_ptr
<LoopInfo
> LI
;
278 std::function
<AssumptionCache
&(Function
&)> GetAC
;
279 std::function
<TargetTransformInfo
&(Function
&)> GetTTI
;
281 /// Predecessors for each basic block in the CFG.
282 BlockEdgeMap Predecessors
;
284 /// Successors for each basic block in the CFG.
285 BlockEdgeMap Successors
;
287 SampleCoverageTracker CoverageTracker
;
289 /// Profile reader object.
290 std::unique_ptr
<SampleProfileReader
> Reader
;
292 /// Samples collected for the body of this function.
293 FunctionSamples
*Samples
= nullptr;
295 /// Name of the profile file to load.
296 std::string Filename
;
298 /// Name of the profile remapping file to load.
299 std::string RemappingFilename
;
301 /// Flag indicating whether the profile input loaded successfully.
302 bool ProfileIsValid
= false;
304 /// Flag indicating if the pass is invoked in ThinLTO compile phase.
306 /// In this phase, in annotation, we should not promote indirect calls.
307 /// Instead, we will mark GUIDs that needs to be annotated to the function.
308 bool IsThinLTOPreLink
;
310 /// Profile Summary Info computed from sample profile.
311 ProfileSummaryInfo
*PSI
= nullptr;
313 /// Total number of samples collected in this profile.
315 /// This is the sum of all the samples collected in all the functions executed
317 uint64_t TotalCollectedSamples
= 0;
319 /// Optimization Remark Emitter used to emit diagnostic remarks.
320 OptimizationRemarkEmitter
*ORE
= nullptr;
322 // Information recorded when we declined to inline a call site
323 // because we have determined it is too cold is accumulated for
324 // each callee function. Initially this is just the entry count.
325 struct NotInlinedProfileInfo
{
328 DenseMap
<Function
*, NotInlinedProfileInfo
> notInlinedCallInfo
;
331 class SampleProfileLoaderLegacyPass
: public ModulePass
{
333 // Class identification, replacement for typeinfo
336 SampleProfileLoaderLegacyPass(StringRef Name
= SampleProfileFile
,
337 bool IsThinLTOPreLink
= false)
339 SampleLoader(Name
, SampleProfileRemappingFile
, IsThinLTOPreLink
,
340 [&](Function
&F
) -> AssumptionCache
& {
341 return ACT
->getAssumptionCache(F
);
343 [&](Function
&F
) -> TargetTransformInfo
& {
344 return TTIWP
->getTTI(F
);
346 initializeSampleProfileLoaderLegacyPassPass(
347 *PassRegistry::getPassRegistry());
350 void dump() { SampleLoader
.dump(); }
352 bool doInitialization(Module
&M
) override
{
353 return SampleLoader
.doInitialization(M
);
356 StringRef
getPassName() const override
{ return "Sample profile pass"; }
357 bool runOnModule(Module
&M
) override
;
359 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
360 AU
.addRequired
<AssumptionCacheTracker
>();
361 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
362 AU
.addRequired
<ProfileSummaryInfoWrapperPass
>();
366 SampleProfileLoader SampleLoader
;
367 AssumptionCacheTracker
*ACT
= nullptr;
368 TargetTransformInfoWrapperPass
*TTIWP
= nullptr;
371 } // end anonymous namespace
373 /// Return true if the given callsite is hot wrt to hot cutoff threshold.
375 /// Functions that were inlined in the original binary will be represented
376 /// in the inline stack in the sample profile. If the profile shows that
377 /// the original inline decision was "good" (i.e., the callsite is executed
378 /// frequently), then we will recreate the inline decision and apply the
379 /// profile from the inlined callsite.
381 /// To decide whether an inlined callsite is hot, we compare the callsite
382 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is
383 /// regarded as hot if the count is above the cutoff value.
384 static bool callsiteIsHot(const FunctionSamples
*CallsiteFS
,
385 ProfileSummaryInfo
*PSI
) {
387 return false; // The callsite was not inlined in the original binary.
389 assert(PSI
&& "PSI is expected to be non null");
390 uint64_t CallsiteTotalSamples
= CallsiteFS
->getTotalSamples();
391 return PSI
->isHotCount(CallsiteTotalSamples
);
394 /// Mark as used the sample record for the given function samples at
395 /// (LineOffset, Discriminator).
397 /// \returns true if this is the first time we mark the given record.
398 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples
*FS
,
400 uint32_t Discriminator
,
402 LineLocation
Loc(LineOffset
, Discriminator
);
403 unsigned &Count
= SampleCoverage
[FS
][Loc
];
404 bool FirstTime
= (++Count
== 1);
406 TotalUsedSamples
+= Samples
;
410 /// Return the number of sample records that were applied from this profile.
412 /// This count does not include records from cold inlined callsites.
414 SampleCoverageTracker::countUsedRecords(const FunctionSamples
*FS
,
415 ProfileSummaryInfo
*PSI
) const {
416 auto I
= SampleCoverage
.find(FS
);
418 // The size of the coverage map for FS represents the number of records
419 // that were marked used at least once.
420 unsigned Count
= (I
!= SampleCoverage
.end()) ? I
->second
.size() : 0;
422 // If there are inlined callsites in this function, count the samples found
423 // in the respective bodies. However, do not bother counting callees with 0
424 // total samples, these are callees that were never invoked at runtime.
425 for (const auto &I
: FS
->getCallsiteSamples())
426 for (const auto &J
: I
.second
) {
427 const FunctionSamples
*CalleeSamples
= &J
.second
;
428 if (callsiteIsHot(CalleeSamples
, PSI
))
429 Count
+= countUsedRecords(CalleeSamples
, PSI
);
435 /// Return the number of sample records in the body of this profile.
437 /// This count does not include records from cold inlined callsites.
439 SampleCoverageTracker::countBodyRecords(const FunctionSamples
*FS
,
440 ProfileSummaryInfo
*PSI
) const {
441 unsigned Count
= FS
->getBodySamples().size();
443 // Only count records in hot callsites.
444 for (const auto &I
: FS
->getCallsiteSamples())
445 for (const auto &J
: I
.second
) {
446 const FunctionSamples
*CalleeSamples
= &J
.second
;
447 if (callsiteIsHot(CalleeSamples
, PSI
))
448 Count
+= countBodyRecords(CalleeSamples
, PSI
);
454 /// Return the number of samples collected in the body of this profile.
456 /// This count does not include samples from cold inlined callsites.
458 SampleCoverageTracker::countBodySamples(const FunctionSamples
*FS
,
459 ProfileSummaryInfo
*PSI
) const {
461 for (const auto &I
: FS
->getBodySamples())
462 Total
+= I
.second
.getSamples();
464 // Only count samples in hot callsites.
465 for (const auto &I
: FS
->getCallsiteSamples())
466 for (const auto &J
: I
.second
) {
467 const FunctionSamples
*CalleeSamples
= &J
.second
;
468 if (callsiteIsHot(CalleeSamples
, PSI
))
469 Total
+= countBodySamples(CalleeSamples
, PSI
);
475 /// Return the fraction of sample records used in this profile.
477 /// The returned value is an unsigned integer in the range 0-100 indicating
478 /// the percentage of sample records that were used while applying this
479 /// profile to the associated function.
480 unsigned SampleCoverageTracker::computeCoverage(unsigned Used
,
481 unsigned Total
) const {
482 assert(Used
<= Total
&&
483 "number of used records cannot exceed the total number of records");
484 return Total
> 0 ? Used
* 100 / Total
: 100;
487 /// Clear all the per-function data used to load samples and propagate weights.
488 void SampleProfileLoader::clearFunctionData() {
489 BlockWeights
.clear();
491 VisitedBlocks
.clear();
492 VisitedEdges
.clear();
493 EquivalenceClass
.clear();
497 Predecessors
.clear();
499 CoverageTracker
.clear();
503 /// Print the weight of edge \p E on stream \p OS.
505 /// \param OS Stream to emit the output to.
506 /// \param E Edge to print.
507 void SampleProfileLoader::printEdgeWeight(raw_ostream
&OS
, Edge E
) {
508 OS
<< "weight[" << E
.first
->getName() << "->" << E
.second
->getName()
509 << "]: " << EdgeWeights
[E
] << "\n";
512 /// Print the equivalence class of block \p BB on stream \p OS.
514 /// \param OS Stream to emit the output to.
515 /// \param BB Block to print.
516 void SampleProfileLoader::printBlockEquivalence(raw_ostream
&OS
,
517 const BasicBlock
*BB
) {
518 const BasicBlock
*Equiv
= EquivalenceClass
[BB
];
519 OS
<< "equivalence[" << BB
->getName()
520 << "]: " << ((Equiv
) ? EquivalenceClass
[BB
]->getName() : "NONE") << "\n";
523 /// Print the weight of block \p BB on stream \p OS.
525 /// \param OS Stream to emit the output to.
526 /// \param BB Block to print.
527 void SampleProfileLoader::printBlockWeight(raw_ostream
&OS
,
528 const BasicBlock
*BB
) const {
529 const auto &I
= BlockWeights
.find(BB
);
530 uint64_t W
= (I
== BlockWeights
.end() ? 0 : I
->second
);
531 OS
<< "weight[" << BB
->getName() << "]: " << W
<< "\n";
535 /// Get the weight for an instruction.
537 /// The "weight" of an instruction \p Inst is the number of samples
538 /// collected on that instruction at runtime. To retrieve it, we
539 /// need to compute the line number of \p Inst relative to the start of its
540 /// function. We use HeaderLineno to compute the offset. We then
541 /// look up the samples collected for \p Inst using BodySamples.
543 /// \param Inst Instruction to query.
545 /// \returns the weight of \p Inst.
546 ErrorOr
<uint64_t> SampleProfileLoader::getInstWeight(const Instruction
&Inst
) {
547 const DebugLoc
&DLoc
= Inst
.getDebugLoc();
549 return std::error_code();
551 const FunctionSamples
*FS
= findFunctionSamples(Inst
);
553 return std::error_code();
555 // Ignore all intrinsics, phinodes and branch instructions.
556 // Branch and phinodes instruction usually contains debug info from sources outside of
557 // the residing basic block, thus we ignore them during annotation.
558 if (isa
<BranchInst
>(Inst
) || isa
<IntrinsicInst
>(Inst
) || isa
<PHINode
>(Inst
))
559 return std::error_code();
561 // If a direct call/invoke instruction is inlined in profile
562 // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
563 // it means that the inlined callsite has no sample, thus the call
564 // instruction should have 0 count.
565 if ((isa
<CallInst
>(Inst
) || isa
<InvokeInst
>(Inst
)) &&
566 !ImmutableCallSite(&Inst
).isIndirectCall() &&
567 findCalleeFunctionSamples(Inst
))
570 const DILocation
*DIL
= DLoc
;
571 uint32_t LineOffset
= FunctionSamples::getOffset(DIL
);
572 uint32_t Discriminator
= DIL
->getBaseDiscriminator();
573 ErrorOr
<uint64_t> R
= FS
->findSamplesAt(LineOffset
, Discriminator
);
576 CoverageTracker
.markSamplesUsed(FS
, LineOffset
, Discriminator
, R
.get());
579 OptimizationRemarkAnalysis
Remark(DEBUG_TYPE
, "AppliedSamples", &Inst
);
580 Remark
<< "Applied " << ore::NV("NumSamples", *R
);
581 Remark
<< " samples from profile (offset: ";
582 Remark
<< ore::NV("LineOffset", LineOffset
);
585 Remark
<< ore::NV("Discriminator", Discriminator
);
591 LLVM_DEBUG(dbgs() << " " << DLoc
.getLine() << "."
592 << DIL
->getBaseDiscriminator() << ":" << Inst
593 << " (line offset: " << LineOffset
<< "."
594 << DIL
->getBaseDiscriminator() << " - weight: " << R
.get()
600 /// Compute the weight of a basic block.
602 /// The weight of basic block \p BB is the maximum weight of all the
603 /// instructions in BB.
605 /// \param BB The basic block to query.
607 /// \returns the weight for \p BB.
608 ErrorOr
<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock
*BB
) {
610 bool HasWeight
= false;
611 for (auto &I
: BB
->getInstList()) {
612 const ErrorOr
<uint64_t> &R
= getInstWeight(I
);
614 Max
= std::max(Max
, R
.get());
618 return HasWeight
? ErrorOr
<uint64_t>(Max
) : std::error_code();
621 /// Compute and store the weights of every basic block.
623 /// This populates the BlockWeights map by computing
624 /// the weights of every basic block in the CFG.
626 /// \param F The function to query.
627 bool SampleProfileLoader::computeBlockWeights(Function
&F
) {
628 bool Changed
= false;
629 LLVM_DEBUG(dbgs() << "Block weights\n");
630 for (const auto &BB
: F
) {
631 ErrorOr
<uint64_t> Weight
= getBlockWeight(&BB
);
633 BlockWeights
[&BB
] = Weight
.get();
634 VisitedBlocks
.insert(&BB
);
637 LLVM_DEBUG(printBlockWeight(dbgs(), &BB
));
643 /// Get the FunctionSamples for a call instruction.
645 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
646 /// instance in which that call instruction is calling to. It contains
647 /// all samples that resides in the inlined instance. We first find the
648 /// inlined instance in which the call instruction is from, then we
649 /// traverse its children to find the callsite with the matching
652 /// \param Inst Call/Invoke instruction to query.
654 /// \returns The FunctionSamples pointer to the inlined instance.
655 const FunctionSamples
*
656 SampleProfileLoader::findCalleeFunctionSamples(const Instruction
&Inst
) const {
657 const DILocation
*DIL
= Inst
.getDebugLoc();
662 StringRef CalleeName
;
663 if (const CallInst
*CI
= dyn_cast
<CallInst
>(&Inst
))
664 if (Function
*Callee
= CI
->getCalledFunction())
665 CalleeName
= Callee
->getName();
667 const FunctionSamples
*FS
= findFunctionSamples(Inst
);
671 return FS
->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL
),
672 DIL
->getBaseDiscriminator()),
676 /// Returns a vector of FunctionSamples that are the indirect call targets
677 /// of \p Inst. The vector is sorted by the total number of samples. Stores
678 /// the total call count of the indirect call in \p Sum.
679 std::vector
<const FunctionSamples
*>
680 SampleProfileLoader::findIndirectCallFunctionSamples(
681 const Instruction
&Inst
, uint64_t &Sum
) const {
682 const DILocation
*DIL
= Inst
.getDebugLoc();
683 std::vector
<const FunctionSamples
*> R
;
689 const FunctionSamples
*FS
= findFunctionSamples(Inst
);
693 uint32_t LineOffset
= FunctionSamples::getOffset(DIL
);
694 uint32_t Discriminator
= DIL
->getBaseDiscriminator();
696 auto T
= FS
->findCallTargetMapAt(LineOffset
, Discriminator
);
699 for (const auto &T_C
: T
.get())
701 if (const FunctionSamplesMap
*M
= FS
->findFunctionSamplesMapAt(LineLocation(
702 FunctionSamples::getOffset(DIL
), DIL
->getBaseDiscriminator()))) {
705 for (const auto &NameFS
: *M
) {
706 Sum
+= NameFS
.second
.getEntrySamples();
707 R
.push_back(&NameFS
.second
);
709 llvm::sort(R
, [](const FunctionSamples
*L
, const FunctionSamples
*R
) {
710 if (L
->getEntrySamples() != R
->getEntrySamples())
711 return L
->getEntrySamples() > R
->getEntrySamples();
712 return FunctionSamples::getGUID(L
->getName()) <
713 FunctionSamples::getGUID(R
->getName());
719 /// Get the FunctionSamples for an instruction.
721 /// The FunctionSamples of an instruction \p Inst is the inlined instance
722 /// in which that instruction is coming from. We traverse the inline stack
723 /// of that instruction, and match it with the tree nodes in the profile.
725 /// \param Inst Instruction to query.
727 /// \returns the FunctionSamples pointer to the inlined instance.
728 const FunctionSamples
*
729 SampleProfileLoader::findFunctionSamples(const Instruction
&Inst
) const {
730 const DILocation
*DIL
= Inst
.getDebugLoc();
734 auto it
= DILocation2SampleMap
.try_emplace(DIL
,nullptr);
736 it
.first
->second
= Samples
->findFunctionSamples(DIL
);
737 return it
.first
->second
;
740 bool SampleProfileLoader::inlineCallInstruction(Instruction
*I
) {
741 assert(isa
<CallInst
>(I
) || isa
<InvokeInst
>(I
));
743 Function
*CalledFunction
= CS
.getCalledFunction();
744 assert(CalledFunction
);
745 DebugLoc DLoc
= I
->getDebugLoc();
746 BasicBlock
*BB
= I
->getParent();
747 InlineParams Params
= getInlineParams();
748 Params
.ComputeFullInlineCost
= true;
749 // Checks if there is anything in the reachable portion of the callee at
750 // this callsite that makes this inlining potentially illegal. Need to
751 // set ComputeFullInlineCost, otherwise getInlineCost may return early
752 // when cost exceeds threshold without checking all IRs in the callee.
753 // The acutal cost does not matter because we only checks isNever() to
754 // see if it is legal to inline the callsite.
756 getInlineCost(cast
<CallBase
>(*I
), Params
, GetTTI(*CalledFunction
), GetAC
,
757 None
, nullptr, nullptr);
758 if (Cost
.isNever()) {
759 ORE
->emit(OptimizationRemark(DEBUG_TYPE
, "Not inline", DLoc
, BB
)
760 << "incompatible inlining");
763 InlineFunctionInfo
IFI(nullptr, &GetAC
);
764 if (InlineFunction(CS
, IFI
)) {
765 // The call to InlineFunction erases I, so we can't pass it here.
766 ORE
->emit(OptimizationRemark(DEBUG_TYPE
, "HotInline", DLoc
, BB
)
767 << "inlined hot callee '" << ore::NV("Callee", CalledFunction
)
768 << "' into '" << ore::NV("Caller", BB
->getParent()) << "'");
774 /// Iteratively inline hot callsites of a function.
776 /// Iteratively traverse all callsites of the function \p F, and find if
777 /// the corresponding inlined instance exists and is hot in profile. If
778 /// it is hot enough, inline the callsites and adds new callsites of the
779 /// callee into the caller. If the call is an indirect call, first promote
780 /// it to direct call. Each indirect call is limited with a single target.
782 /// \param F function to perform iterative inlining.
783 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are
784 /// inlined in the profiled binary.
786 /// \returns True if there is any inline happened.
787 bool SampleProfileLoader::inlineHotFunctions(
788 Function
&F
, DenseSet
<GlobalValue::GUID
> &InlinedGUIDs
) {
789 DenseSet
<Instruction
*> PromotedInsns
;
791 DenseMap
<Instruction
*, const FunctionSamples
*> localNotInlinedCallSites
;
792 bool Changed
= false;
794 bool LocalChanged
= false;
795 SmallVector
<Instruction
*, 10> CIS
;
798 SmallVector
<Instruction
*, 10> Candidates
;
799 for (auto &I
: BB
.getInstList()) {
800 const FunctionSamples
*FS
= nullptr;
801 if ((isa
<CallInst
>(I
) || isa
<InvokeInst
>(I
)) &&
802 !isa
<IntrinsicInst
>(I
) && (FS
= findCalleeFunctionSamples(I
))) {
803 Candidates
.push_back(&I
);
804 if (FS
->getEntrySamples() > 0)
805 localNotInlinedCallSites
.try_emplace(&I
, FS
);
806 if (callsiteIsHot(FS
, PSI
))
811 CIS
.insert(CIS
.begin(), Candidates
.begin(), Candidates
.end());
815 Function
*CalledFunction
= CallSite(I
).getCalledFunction();
816 // Do not inline recursive calls.
817 if (CalledFunction
== &F
)
819 if (CallSite(I
).isIndirectCall()) {
820 if (PromotedInsns
.count(I
))
823 for (const auto *FS
: findIndirectCallFunctionSamples(*I
, Sum
)) {
824 if (IsThinLTOPreLink
) {
825 FS
->findInlinedFunctions(InlinedGUIDs
, F
.getParent(),
826 PSI
->getOrCompHotCountThreshold());
829 auto CalleeFunctionName
= FS
->getFuncNameInModule(F
.getParent());
830 // If it is a recursive call, we do not inline it as it could bloat
831 // the code exponentially. There is way to better handle this, e.g.
832 // clone the caller first, and inline the cloned caller if it is
833 // recursive. As llvm does not inline recursive calls, we will
834 // simply ignore it instead of handling it explicitly.
835 if (CalleeFunctionName
== F
.getName())
838 if (!callsiteIsHot(FS
, PSI
))
841 const char *Reason
= "Callee function not available";
842 auto R
= SymbolMap
.find(CalleeFunctionName
);
843 if (R
!= SymbolMap
.end() && R
->getValue() &&
844 !R
->getValue()->isDeclaration() &&
845 R
->getValue()->getSubprogram() &&
846 isLegalToPromote(CallSite(I
), R
->getValue(), &Reason
)) {
847 uint64_t C
= FS
->getEntrySamples();
849 pgo::promoteIndirectCall(I
, R
->getValue(), C
, Sum
, false, ORE
);
851 PromotedInsns
.insert(I
);
852 // If profile mismatches, we should not attempt to inline DI.
853 if ((isa
<CallInst
>(DI
) || isa
<InvokeInst
>(DI
)) &&
854 inlineCallInstruction(DI
)) {
855 localNotInlinedCallSites
.erase(I
);
860 << "\nFailed to promote indirect call to "
861 << CalleeFunctionName
<< " because " << Reason
<< "\n");
864 } else if (CalledFunction
&& CalledFunction
->getSubprogram() &&
865 !CalledFunction
->isDeclaration()) {
866 if (inlineCallInstruction(I
)) {
867 localNotInlinedCallSites
.erase(I
);
870 } else if (IsThinLTOPreLink
) {
871 findCalleeFunctionSamples(*I
)->findInlinedFunctions(
872 InlinedGUIDs
, F
.getParent(), PSI
->getOrCompHotCountThreshold());
882 // Accumulate not inlined callsite information into notInlinedSamples
883 for (const auto &Pair
: localNotInlinedCallSites
) {
884 Instruction
*I
= Pair
.getFirst();
885 Function
*Callee
= CallSite(I
).getCalledFunction();
886 if (!Callee
|| Callee
->isDeclaration())
888 const FunctionSamples
*FS
= Pair
.getSecond();
890 notInlinedCallInfo
.try_emplace(Callee
, NotInlinedProfileInfo
{0});
891 pair
.first
->second
.entryCount
+= FS
->getEntrySamples();
896 /// Find equivalence classes for the given block.
898 /// This finds all the blocks that are guaranteed to execute the same
899 /// number of times as \p BB1. To do this, it traverses all the
900 /// descendants of \p BB1 in the dominator or post-dominator tree.
902 /// A block BB2 will be in the same equivalence class as \p BB1 if
903 /// the following holds:
905 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
906 /// is a descendant of \p BB1 in the dominator tree, then BB2 should
907 /// dominate BB1 in the post-dominator tree.
909 /// 2- Both BB2 and \p BB1 must be in the same loop.
911 /// For every block BB2 that meets those two requirements, we set BB2's
912 /// equivalence class to \p BB1.
914 /// \param BB1 Block to check.
915 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree.
916 /// \param DomTree Opposite dominator tree. If \p Descendants is filled
917 /// with blocks from \p BB1's dominator tree, then
918 /// this is the post-dominator tree, and vice versa.
919 template <bool IsPostDom
>
920 void SampleProfileLoader::findEquivalencesFor(
921 BasicBlock
*BB1
, ArrayRef
<BasicBlock
*> Descendants
,
922 DominatorTreeBase
<BasicBlock
, IsPostDom
> *DomTree
) {
923 const BasicBlock
*EC
= EquivalenceClass
[BB1
];
924 uint64_t Weight
= BlockWeights
[EC
];
925 for (const auto *BB2
: Descendants
) {
926 bool IsDomParent
= DomTree
->dominates(BB2
, BB1
);
927 bool IsInSameLoop
= LI
->getLoopFor(BB1
) == LI
->getLoopFor(BB2
);
928 if (BB1
!= BB2
&& IsDomParent
&& IsInSameLoop
) {
929 EquivalenceClass
[BB2
] = EC
;
930 // If BB2 is visited, then the entire EC should be marked as visited.
931 if (VisitedBlocks
.count(BB2
)) {
932 VisitedBlocks
.insert(EC
);
935 // If BB2 is heavier than BB1, make BB2 have the same weight
938 // Note that we don't worry about the opposite situation here
939 // (when BB2 is lighter than BB1). We will deal with this
940 // during the propagation phase. Right now, we just want to
941 // make sure that BB1 has the largest weight of all the
942 // members of its equivalence set.
943 Weight
= std::max(Weight
, BlockWeights
[BB2
]);
946 if (EC
== &EC
->getParent()->getEntryBlock()) {
947 BlockWeights
[EC
] = Samples
->getHeadSamples() + 1;
949 BlockWeights
[EC
] = Weight
;
953 /// Find equivalence classes.
955 /// Since samples may be missing from blocks, we can fill in the gaps by setting
956 /// the weights of all the blocks in the same equivalence class to the same
957 /// weight. To compute the concept of equivalence, we use dominance and loop
958 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
959 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
961 /// \param F The function to query.
962 void SampleProfileLoader::findEquivalenceClasses(Function
&F
) {
963 SmallVector
<BasicBlock
*, 8> DominatedBBs
;
964 LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
965 // Find equivalence sets based on dominance and post-dominance information.
967 BasicBlock
*BB1
= &BB
;
969 // Compute BB1's equivalence class once.
970 if (EquivalenceClass
.count(BB1
)) {
971 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1
));
975 // By default, blocks are in their own equivalence class.
976 EquivalenceClass
[BB1
] = BB1
;
978 // Traverse all the blocks dominated by BB1. We are looking for
979 // every basic block BB2 such that:
981 // 1- BB1 dominates BB2.
982 // 2- BB2 post-dominates BB1.
983 // 3- BB1 and BB2 are in the same loop nest.
985 // If all those conditions hold, it means that BB2 is executed
986 // as many times as BB1, so they are placed in the same equivalence
987 // class by making BB2's equivalence class be BB1.
988 DominatedBBs
.clear();
989 DT
->getDescendants(BB1
, DominatedBBs
);
990 findEquivalencesFor(BB1
, DominatedBBs
, PDT
.get());
992 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1
));
995 // Assign weights to equivalence classes.
997 // All the basic blocks in the same equivalence class will execute
998 // the same number of times. Since we know that the head block in
999 // each equivalence class has the largest weight, assign that weight
1000 // to all the blocks in that equivalence class.
1002 dbgs() << "\nAssign the same weight to all blocks in the same class\n");
1003 for (auto &BI
: F
) {
1004 const BasicBlock
*BB
= &BI
;
1005 const BasicBlock
*EquivBB
= EquivalenceClass
[BB
];
1007 BlockWeights
[BB
] = BlockWeights
[EquivBB
];
1008 LLVM_DEBUG(printBlockWeight(dbgs(), BB
));
1012 /// Visit the given edge to decide if it has a valid weight.
1014 /// If \p E has not been visited before, we copy to \p UnknownEdge
1015 /// and increment the count of unknown edges.
1017 /// \param E Edge to visit.
1018 /// \param NumUnknownEdges Current number of unknown edges.
1019 /// \param UnknownEdge Set if E has not been visited before.
1021 /// \returns E's weight, if known. Otherwise, return 0.
1022 uint64_t SampleProfileLoader::visitEdge(Edge E
, unsigned *NumUnknownEdges
,
1023 Edge
*UnknownEdge
) {
1024 if (!VisitedEdges
.count(E
)) {
1025 (*NumUnknownEdges
)++;
1030 return EdgeWeights
[E
];
1033 /// Propagate weights through incoming/outgoing edges.
1035 /// If the weight of a basic block is known, and there is only one edge
1036 /// with an unknown weight, we can calculate the weight of that edge.
1038 /// Similarly, if all the edges have a known count, we can calculate the
1039 /// count of the basic block, if needed.
1041 /// \param F Function to process.
1042 /// \param UpdateBlockCount Whether we should update basic block counts that
1043 /// has already been annotated.
1045 /// \returns True if new weights were assigned to edges or blocks.
1046 bool SampleProfileLoader::propagateThroughEdges(Function
&F
,
1047 bool UpdateBlockCount
) {
1048 bool Changed
= false;
1049 LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
1050 for (const auto &BI
: F
) {
1051 const BasicBlock
*BB
= &BI
;
1052 const BasicBlock
*EC
= EquivalenceClass
[BB
];
1054 // Visit all the predecessor and successor edges to determine
1055 // which ones have a weight assigned already. Note that it doesn't
1056 // matter that we only keep track of a single unknown edge. The
1057 // only case we are interested in handling is when only a single
1058 // edge is unknown (see setEdgeOrBlockWeight).
1059 for (unsigned i
= 0; i
< 2; i
++) {
1060 uint64_t TotalWeight
= 0;
1061 unsigned NumUnknownEdges
= 0, NumTotalEdges
= 0;
1062 Edge UnknownEdge
, SelfReferentialEdge
, SingleEdge
;
1065 // First, visit all predecessor edges.
1066 NumTotalEdges
= Predecessors
[BB
].size();
1067 for (auto *Pred
: Predecessors
[BB
]) {
1068 Edge E
= std::make_pair(Pred
, BB
);
1069 TotalWeight
+= visitEdge(E
, &NumUnknownEdges
, &UnknownEdge
);
1070 if (E
.first
== E
.second
)
1071 SelfReferentialEdge
= E
;
1073 if (NumTotalEdges
== 1) {
1074 SingleEdge
= std::make_pair(Predecessors
[BB
][0], BB
);
1077 // On the second round, visit all successor edges.
1078 NumTotalEdges
= Successors
[BB
].size();
1079 for (auto *Succ
: Successors
[BB
]) {
1080 Edge E
= std::make_pair(BB
, Succ
);
1081 TotalWeight
+= visitEdge(E
, &NumUnknownEdges
, &UnknownEdge
);
1083 if (NumTotalEdges
== 1) {
1084 SingleEdge
= std::make_pair(BB
, Successors
[BB
][0]);
1088 // After visiting all the edges, there are three cases that we
1089 // can handle immediately:
1091 // - All the edge weights are known (i.e., NumUnknownEdges == 0).
1092 // In this case, we simply check that the sum of all the edges
1093 // is the same as BB's weight. If not, we change BB's weight
1094 // to match. Additionally, if BB had not been visited before,
1095 // we mark it visited.
1097 // - Only one edge is unknown and BB has already been visited.
1098 // In this case, we can compute the weight of the edge by
1099 // subtracting the total block weight from all the known
1100 // edge weights. If the edges weight more than BB, then the
1101 // edge of the last remaining edge is set to zero.
1103 // - There exists a self-referential edge and the weight of BB is
1104 // known. In this case, this edge can be based on BB's weight.
1105 // We add up all the other known edges and set the weight on
1106 // the self-referential edge as we did in the previous case.
1108 // In any other case, we must continue iterating. Eventually,
1109 // all edges will get a weight, or iteration will stop when
1110 // it reaches SampleProfileMaxPropagateIterations.
1111 if (NumUnknownEdges
<= 1) {
1112 uint64_t &BBWeight
= BlockWeights
[EC
];
1113 if (NumUnknownEdges
== 0) {
1114 if (!VisitedBlocks
.count(EC
)) {
1115 // If we already know the weight of all edges, the weight of the
1116 // basic block can be computed. It should be no larger than the sum
1117 // of all edge weights.
1118 if (TotalWeight
> BBWeight
) {
1119 BBWeight
= TotalWeight
;
1121 LLVM_DEBUG(dbgs() << "All edge weights for " << BB
->getName()
1122 << " known. Set weight for block: ";
1123 printBlockWeight(dbgs(), BB
););
1125 } else if (NumTotalEdges
== 1 &&
1126 EdgeWeights
[SingleEdge
] < BlockWeights
[EC
]) {
1127 // If there is only one edge for the visited basic block, use the
1128 // block weight to adjust edge weight if edge weight is smaller.
1129 EdgeWeights
[SingleEdge
] = BlockWeights
[EC
];
1132 } else if (NumUnknownEdges
== 1 && VisitedBlocks
.count(EC
)) {
1133 // If there is a single unknown edge and the block has been
1134 // visited, then we can compute E's weight.
1135 if (BBWeight
>= TotalWeight
)
1136 EdgeWeights
[UnknownEdge
] = BBWeight
- TotalWeight
;
1138 EdgeWeights
[UnknownEdge
] = 0;
1139 const BasicBlock
*OtherEC
;
1141 OtherEC
= EquivalenceClass
[UnknownEdge
.first
];
1143 OtherEC
= EquivalenceClass
[UnknownEdge
.second
];
1144 // Edge weights should never exceed the BB weights it connects.
1145 if (VisitedBlocks
.count(OtherEC
) &&
1146 EdgeWeights
[UnknownEdge
] > BlockWeights
[OtherEC
])
1147 EdgeWeights
[UnknownEdge
] = BlockWeights
[OtherEC
];
1148 VisitedEdges
.insert(UnknownEdge
);
1150 LLVM_DEBUG(dbgs() << "Set weight for edge: ";
1151 printEdgeWeight(dbgs(), UnknownEdge
));
1153 } else if (VisitedBlocks
.count(EC
) && BlockWeights
[EC
] == 0) {
1154 // If a block Weights 0, all its in/out edges should weight 0.
1156 for (auto *Pred
: Predecessors
[BB
]) {
1157 Edge E
= std::make_pair(Pred
, BB
);
1159 VisitedEdges
.insert(E
);
1162 for (auto *Succ
: Successors
[BB
]) {
1163 Edge E
= std::make_pair(BB
, Succ
);
1165 VisitedEdges
.insert(E
);
1168 } else if (SelfReferentialEdge
.first
&& VisitedBlocks
.count(EC
)) {
1169 uint64_t &BBWeight
= BlockWeights
[BB
];
1170 // We have a self-referential edge and the weight of BB is known.
1171 if (BBWeight
>= TotalWeight
)
1172 EdgeWeights
[SelfReferentialEdge
] = BBWeight
- TotalWeight
;
1174 EdgeWeights
[SelfReferentialEdge
] = 0;
1175 VisitedEdges
.insert(SelfReferentialEdge
);
1177 LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
1178 printEdgeWeight(dbgs(), SelfReferentialEdge
));
1180 if (UpdateBlockCount
&& !VisitedBlocks
.count(EC
) && TotalWeight
> 0) {
1181 BlockWeights
[EC
] = TotalWeight
;
1182 VisitedBlocks
.insert(EC
);
1191 /// Build in/out edge lists for each basic block in the CFG.
1193 /// We are interested in unique edges. If a block B1 has multiple
1194 /// edges to another block B2, we only add a single B1->B2 edge.
1195 void SampleProfileLoader::buildEdges(Function
&F
) {
1196 for (auto &BI
: F
) {
1197 BasicBlock
*B1
= &BI
;
1199 // Add predecessors for B1.
1200 SmallPtrSet
<BasicBlock
*, 16> Visited
;
1201 if (!Predecessors
[B1
].empty())
1202 llvm_unreachable("Found a stale predecessors list in a basic block.");
1203 for (pred_iterator PI
= pred_begin(B1
), PE
= pred_end(B1
); PI
!= PE
; ++PI
) {
1204 BasicBlock
*B2
= *PI
;
1205 if (Visited
.insert(B2
).second
)
1206 Predecessors
[B1
].push_back(B2
);
1209 // Add successors for B1.
1211 if (!Successors
[B1
].empty())
1212 llvm_unreachable("Found a stale successors list in a basic block.");
1213 for (succ_iterator SI
= succ_begin(B1
), SE
= succ_end(B1
); SI
!= SE
; ++SI
) {
1214 BasicBlock
*B2
= *SI
;
1215 if (Visited
.insert(B2
).second
)
1216 Successors
[B1
].push_back(B2
);
1221 /// Returns the sorted CallTargetMap \p M by count in descending order.
1222 static SmallVector
<InstrProfValueData
, 2> SortCallTargets(
1223 const SampleRecord::CallTargetMap
&M
) {
1224 SmallVector
<InstrProfValueData
, 2> R
;
1225 for (auto I
= M
.begin(); I
!= M
.end(); ++I
)
1226 R
.push_back({FunctionSamples::getGUID(I
->getKey()), I
->getValue()});
1227 llvm::sort(R
, [](const InstrProfValueData
&L
, const InstrProfValueData
&R
) {
1228 if (L
.Count
== R
.Count
)
1229 return L
.Value
> R
.Value
;
1231 return L
.Count
> R
.Count
;
1236 /// Propagate weights into edges
1238 /// The following rules are applied to every block BB in the CFG:
1240 /// - If BB has a single predecessor/successor, then the weight
1241 /// of that edge is the weight of the block.
1243 /// - If all incoming or outgoing edges are known except one, and the
1244 /// weight of the block is already known, the weight of the unknown
1245 /// edge will be the weight of the block minus the sum of all the known
1246 /// edges. If the sum of all the known edges is larger than BB's weight,
1247 /// we set the unknown edge weight to zero.
1249 /// - If there is a self-referential edge, and the weight of the block is
1250 /// known, the weight for that edge is set to the weight of the block
1251 /// minus the weight of the other incoming edges to that block (if
1253 void SampleProfileLoader::propagateWeights(Function
&F
) {
1254 bool Changed
= true;
1257 // If BB weight is larger than its corresponding loop's header BB weight,
1258 // use the BB weight to replace the loop header BB weight.
1259 for (auto &BI
: F
) {
1260 BasicBlock
*BB
= &BI
;
1261 Loop
*L
= LI
->getLoopFor(BB
);
1265 BasicBlock
*Header
= L
->getHeader();
1266 if (Header
&& BlockWeights
[BB
] > BlockWeights
[Header
]) {
1267 BlockWeights
[Header
] = BlockWeights
[BB
];
1271 // Before propagation starts, build, for each block, a list of
1272 // unique predecessors and successors. This is necessary to handle
1273 // identical edges in multiway branches. Since we visit all blocks and all
1274 // edges of the CFG, it is cleaner to build these lists once at the start
1278 // Propagate until we converge or we go past the iteration limit.
1279 while (Changed
&& I
++ < SampleProfileMaxPropagateIterations
) {
1280 Changed
= propagateThroughEdges(F
, false);
1283 // The first propagation propagates BB counts from annotated BBs to unknown
1284 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1285 // to propagate edge weights.
1286 VisitedEdges
.clear();
1288 while (Changed
&& I
++ < SampleProfileMaxPropagateIterations
) {
1289 Changed
= propagateThroughEdges(F
, false);
1292 // The 3rd propagation pass allows adjust annotated BB weights that are
1295 while (Changed
&& I
++ < SampleProfileMaxPropagateIterations
) {
1296 Changed
= propagateThroughEdges(F
, true);
1299 // Generate MD_prof metadata for every branch instruction using the
1300 // edge weights computed during propagation.
1301 LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1302 LLVMContext
&Ctx
= F
.getContext();
1304 for (auto &BI
: F
) {
1305 BasicBlock
*BB
= &BI
;
1307 if (BlockWeights
[BB
]) {
1308 for (auto &I
: BB
->getInstList()) {
1309 if (!isa
<CallInst
>(I
) && !isa
<InvokeInst
>(I
))
1312 if (!CS
.getCalledFunction()) {
1313 const DebugLoc
&DLoc
= I
.getDebugLoc();
1316 const DILocation
*DIL
= DLoc
;
1317 uint32_t LineOffset
= FunctionSamples::getOffset(DIL
);
1318 uint32_t Discriminator
= DIL
->getBaseDiscriminator();
1320 const FunctionSamples
*FS
= findFunctionSamples(I
);
1323 auto T
= FS
->findCallTargetMapAt(LineOffset
, Discriminator
);
1324 if (!T
|| T
.get().empty())
1326 SmallVector
<InstrProfValueData
, 2> SortedCallTargets
=
1327 SortCallTargets(T
.get());
1329 findIndirectCallFunctionSamples(I
, Sum
);
1330 annotateValueSite(*I
.getParent()->getParent()->getParent(), I
,
1331 SortedCallTargets
, Sum
, IPVK_IndirectCallTarget
,
1332 SortedCallTargets
.size());
1333 } else if (!isa
<IntrinsicInst
>(&I
)) {
1334 I
.setMetadata(LLVMContext::MD_prof
,
1335 MDB
.createBranchWeights(
1336 {static_cast<uint32_t>(BlockWeights
[BB
])}));
1340 Instruction
*TI
= BB
->getTerminator();
1341 if (TI
->getNumSuccessors() == 1)
1343 if (!isa
<BranchInst
>(TI
) && !isa
<SwitchInst
>(TI
))
1346 DebugLoc BranchLoc
= TI
->getDebugLoc();
1347 LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line "
1348 << ((BranchLoc
) ? Twine(BranchLoc
.getLine())
1349 : Twine("<UNKNOWN LOCATION>"))
1351 SmallVector
<uint32_t, 4> Weights
;
1352 uint32_t MaxWeight
= 0;
1353 Instruction
*MaxDestInst
;
1354 for (unsigned I
= 0; I
< TI
->getNumSuccessors(); ++I
) {
1355 BasicBlock
*Succ
= TI
->getSuccessor(I
);
1356 Edge E
= std::make_pair(BB
, Succ
);
1357 uint64_t Weight
= EdgeWeights
[E
];
1358 LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E
));
1359 // Use uint32_t saturated arithmetic to adjust the incoming weights,
1360 // if needed. Sample counts in profiles are 64-bit unsigned values,
1361 // but internally branch weights are expressed as 32-bit values.
1362 if (Weight
> std::numeric_limits
<uint32_t>::max()) {
1363 LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1364 Weight
= std::numeric_limits
<uint32_t>::max();
1366 // Weight is added by one to avoid propagation errors introduced by
1368 Weights
.push_back(static_cast<uint32_t>(Weight
+ 1));
1370 if (Weight
> MaxWeight
) {
1372 MaxDestInst
= Succ
->getFirstNonPHIOrDbgOrLifetime();
1377 uint64_t TempWeight
;
1378 // Only set weights if there is at least one non-zero weight.
1379 // In any other case, let the analyzer set weights.
1380 // Do not set weights if the weights are present. In ThinLTO, the profile
1381 // annotation is done twice. If the first annotation already set the
1382 // weights, the second pass does not need to set it.
1383 if (MaxWeight
> 0 && !TI
->extractProfTotalWeight(TempWeight
)) {
1384 LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1385 TI
->setMetadata(LLVMContext::MD_prof
,
1386 MDB
.createBranchWeights(Weights
));
1388 return OptimizationRemark(DEBUG_TYPE
, "PopularDest", MaxDestInst
)
1389 << "most popular destination for conditional branches at "
1390 << ore::NV("CondBranchesLoc", BranchLoc
);
1393 LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1398 /// Get the line number for the function header.
1400 /// This looks up function \p F in the current compilation unit and
1401 /// retrieves the line number where the function is defined. This is
1402 /// line 0 for all the samples read from the profile file. Every line
1403 /// number is relative to this line.
1405 /// \param F Function object to query.
1407 /// \returns the line number where \p F is defined. If it returns 0,
1408 /// it means that there is no debug information available for \p F.
1409 unsigned SampleProfileLoader::getFunctionLoc(Function
&F
) {
1410 if (DISubprogram
*S
= F
.getSubprogram())
1411 return S
->getLine();
1413 if (NoWarnSampleUnused
)
1416 // If the start of \p F is missing, emit a diagnostic to inform the user
1417 // about the missed opportunity.
1418 F
.getContext().diagnose(DiagnosticInfoSampleProfile(
1419 "No debug information found in function " + F
.getName() +
1420 ": Function profile not used",
1425 void SampleProfileLoader::computeDominanceAndLoopInfo(Function
&F
) {
1426 DT
.reset(new DominatorTree
);
1429 PDT
.reset(new PostDominatorTree(F
));
1431 LI
.reset(new LoopInfo
);
1435 /// Generate branch weight metadata for all branches in \p F.
1437 /// Branch weights are computed out of instruction samples using a
1438 /// propagation heuristic. Propagation proceeds in 3 phases:
1440 /// 1- Assignment of block weights. All the basic blocks in the function
1441 /// are initial assigned the same weight as their most frequently
1442 /// executed instruction.
1444 /// 2- Creation of equivalence classes. Since samples may be missing from
1445 /// blocks, we can fill in the gaps by setting the weights of all the
1446 /// blocks in the same equivalence class to the same weight. To compute
1447 /// the concept of equivalence, we use dominance and loop information.
1448 /// Two blocks B1 and B2 are in the same equivalence class if B1
1449 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
1451 /// 3- Propagation of block weights into edges. This uses a simple
1452 /// propagation heuristic. The following rules are applied to every
1453 /// block BB in the CFG:
1455 /// - If BB has a single predecessor/successor, then the weight
1456 /// of that edge is the weight of the block.
1458 /// - If all the edges are known except one, and the weight of the
1459 /// block is already known, the weight of the unknown edge will
1460 /// be the weight of the block minus the sum of all the known
1461 /// edges. If the sum of all the known edges is larger than BB's weight,
1462 /// we set the unknown edge weight to zero.
1464 /// - If there is a self-referential edge, and the weight of the block is
1465 /// known, the weight for that edge is set to the weight of the block
1466 /// minus the weight of the other incoming edges to that block (if
1469 /// Since this propagation is not guaranteed to finalize for every CFG, we
1470 /// only allow it to proceed for a limited number of iterations (controlled
1471 /// by -sample-profile-max-propagate-iterations).
1473 /// FIXME: Try to replace this propagation heuristic with a scheme
1474 /// that is guaranteed to finalize. A work-list approach similar to
1475 /// the standard value propagation algorithm used by SSA-CCP might
1478 /// Once all the branch weights are computed, we emit the MD_prof
1479 /// metadata on BB using the computed values for each of its branches.
1481 /// \param F The function to query.
1483 /// \returns true if \p F was modified. Returns false, otherwise.
1484 bool SampleProfileLoader::emitAnnotations(Function
&F
) {
1485 bool Changed
= false;
1487 if (getFunctionLoc(F
) == 0)
1490 LLVM_DEBUG(dbgs() << "Line number for the first instruction in "
1491 << F
.getName() << ": " << getFunctionLoc(F
) << "\n");
1493 DenseSet
<GlobalValue::GUID
> InlinedGUIDs
;
1494 Changed
|= inlineHotFunctions(F
, InlinedGUIDs
);
1496 // Compute basic block weights.
1497 Changed
|= computeBlockWeights(F
);
1500 // Add an entry count to the function using the samples gathered at the
1502 // Sets the GUIDs that are inlined in the profiled binary. This is used
1503 // for ThinLink to make correct liveness analysis, and also make the IR
1504 // match the profiled binary before annotation.
1506 ProfileCount(Samples
->getHeadSamples() + 1, Function::PCT_Real
),
1509 // Compute dominance and loop info needed for propagation.
1510 computeDominanceAndLoopInfo(F
);
1512 // Find equivalence classes.
1513 findEquivalenceClasses(F
);
1515 // Propagate weights to all edges.
1516 propagateWeights(F
);
1519 // If coverage checking was requested, compute it now.
1520 if (SampleProfileRecordCoverage
) {
1521 unsigned Used
= CoverageTracker
.countUsedRecords(Samples
, PSI
);
1522 unsigned Total
= CoverageTracker
.countBodyRecords(Samples
, PSI
);
1523 unsigned Coverage
= CoverageTracker
.computeCoverage(Used
, Total
);
1524 if (Coverage
< SampleProfileRecordCoverage
) {
1525 F
.getContext().diagnose(DiagnosticInfoSampleProfile(
1526 F
.getSubprogram()->getFilename(), getFunctionLoc(F
),
1527 Twine(Used
) + " of " + Twine(Total
) + " available profile records (" +
1528 Twine(Coverage
) + "%) were applied",
1533 if (SampleProfileSampleCoverage
) {
1534 uint64_t Used
= CoverageTracker
.getTotalUsedSamples();
1535 uint64_t Total
= CoverageTracker
.countBodySamples(Samples
, PSI
);
1536 unsigned Coverage
= CoverageTracker
.computeCoverage(Used
, Total
);
1537 if (Coverage
< SampleProfileSampleCoverage
) {
1538 F
.getContext().diagnose(DiagnosticInfoSampleProfile(
1539 F
.getSubprogram()->getFilename(), getFunctionLoc(F
),
1540 Twine(Used
) + " of " + Twine(Total
) + " available profile samples (" +
1541 Twine(Coverage
) + "%) were applied",
1548 char SampleProfileLoaderLegacyPass::ID
= 0;
1550 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass
, "sample-profile",
1551 "Sample Profile loader", false, false)
1552 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
1553 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
1554 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass
)
1555 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass
, "sample-profile",
1556 "Sample Profile loader", false, false)
1558 bool SampleProfileLoader::doInitialization(Module
&M
) {
1559 auto &Ctx
= M
.getContext();
1560 auto ReaderOrErr
= SampleProfileReader::create(Filename
, Ctx
);
1561 if (std::error_code EC
= ReaderOrErr
.getError()) {
1562 std::string Msg
= "Could not open profile: " + EC
.message();
1563 Ctx
.diagnose(DiagnosticInfoSampleProfile(Filename
, Msg
));
1566 Reader
= std::move(ReaderOrErr
.get());
1567 Reader
->collectFuncsToUse(M
);
1568 ProfileIsValid
= (Reader
->read() == sampleprof_error::success
);
1570 if (!RemappingFilename
.empty()) {
1571 // Apply profile remappings to the loaded profile data if requested.
1572 // For now, we only support remapping symbols encoded using the Itanium
1573 // C++ ABI's name mangling scheme.
1574 ReaderOrErr
= SampleProfileReaderItaniumRemapper::create(
1575 RemappingFilename
, Ctx
, std::move(Reader
));
1576 if (std::error_code EC
= ReaderOrErr
.getError()) {
1577 std::string Msg
= "Could not open profile remapping file: " + EC
.message();
1578 Ctx
.diagnose(DiagnosticInfoSampleProfile(Filename
, Msg
));
1581 Reader
= std::move(ReaderOrErr
.get());
1582 ProfileIsValid
= (Reader
->read() == sampleprof_error::success
);
1587 ModulePass
*llvm::createSampleProfileLoaderPass() {
1588 return new SampleProfileLoaderLegacyPass();
1591 ModulePass
*llvm::createSampleProfileLoaderPass(StringRef Name
) {
1592 return new SampleProfileLoaderLegacyPass(Name
);
1595 bool SampleProfileLoader::runOnModule(Module
&M
, ModuleAnalysisManager
*AM
,
1596 ProfileSummaryInfo
*_PSI
) {
1597 FunctionSamples::GUIDToFuncNameMapper
Mapper(M
);
1598 if (!ProfileIsValid
)
1602 if (M
.getProfileSummary(/* IsCS */ false) == nullptr)
1603 M
.setProfileSummary(Reader
->getSummary().getMD(M
.getContext()),
1604 ProfileSummary::PSK_Sample
);
1606 // Compute the total number of samples collected in this profile.
1607 for (const auto &I
: Reader
->getProfiles())
1608 TotalCollectedSamples
+= I
.second
.getTotalSamples();
1610 // Populate the symbol map.
1611 for (const auto &N_F
: M
.getValueSymbolTable()) {
1612 StringRef OrigName
= N_F
.getKey();
1613 Function
*F
= dyn_cast
<Function
>(N_F
.getValue());
1616 SymbolMap
[OrigName
] = F
;
1617 auto pos
= OrigName
.find('.');
1618 if (pos
!= StringRef::npos
) {
1619 StringRef NewName
= OrigName
.substr(0, pos
);
1620 auto r
= SymbolMap
.insert(std::make_pair(NewName
, F
));
1621 // Failiing to insert means there is already an entry in SymbolMap,
1622 // thus there are multiple functions that are mapped to the same
1623 // stripped name. In this case of name conflicting, set the value
1624 // to nullptr to avoid confusion.
1626 r
.first
->second
= nullptr;
1630 bool retval
= false;
1632 if (!F
.isDeclaration()) {
1633 clearFunctionData();
1634 retval
|= runOnFunction(F
, AM
);
1637 // Account for cold calls not inlined....
1638 for (const std::pair
<Function
*, NotInlinedProfileInfo
> &pair
:
1640 updateProfileCallee(pair
.first
, pair
.second
.entryCount
);
1645 bool SampleProfileLoaderLegacyPass::runOnModule(Module
&M
) {
1646 ACT
= &getAnalysis
<AssumptionCacheTracker
>();
1647 TTIWP
= &getAnalysis
<TargetTransformInfoWrapperPass
>();
1648 ProfileSummaryInfo
*PSI
=
1649 &getAnalysis
<ProfileSummaryInfoWrapperPass
>().getPSI();
1650 return SampleLoader
.runOnModule(M
, nullptr, PSI
);
1653 bool SampleProfileLoader::runOnFunction(Function
&F
, ModuleAnalysisManager
*AM
) {
1655 DILocation2SampleMap
.clear();
1656 // By default the entry count is initialized to -1, which will be treated
1657 // conservatively by getEntryCount as the same as unknown (None). This is
1658 // to avoid newly added code to be treated as cold. If we have samples
1659 // this will be overwritten in emitAnnotations.
1660 // If ProfileSampleAccurate is true or F has profile-sample-accurate
1661 // attribute, initialize the entry count to 0 so callsites or functions
1662 // unsampled will be treated as cold.
1663 uint64_t initialEntryCount
=
1664 (ProfileSampleAccurate
|| F
.hasFnAttribute("profile-sample-accurate"))
1667 F
.setEntryCount(ProfileCount(initialEntryCount
, Function::PCT_Real
));
1668 std::unique_ptr
<OptimizationRemarkEmitter
> OwnedORE
;
1671 AM
->getResult
<FunctionAnalysisManagerModuleProxy
>(*F
.getParent())
1673 ORE
= &FAM
.getResult
<OptimizationRemarkEmitterAnalysis
>(F
);
1675 OwnedORE
= make_unique
<OptimizationRemarkEmitter
>(&F
);
1676 ORE
= OwnedORE
.get();
1678 Samples
= Reader
->getSamplesFor(F
);
1679 if (Samples
&& !Samples
->empty())
1680 return emitAnnotations(F
);
1684 PreservedAnalyses
SampleProfileLoaderPass::run(Module
&M
,
1685 ModuleAnalysisManager
&AM
) {
1686 FunctionAnalysisManager
&FAM
=
1687 AM
.getResult
<FunctionAnalysisManagerModuleProxy
>(M
).getManager();
1689 auto GetAssumptionCache
= [&](Function
&F
) -> AssumptionCache
& {
1690 return FAM
.getResult
<AssumptionAnalysis
>(F
);
1692 auto GetTTI
= [&](Function
&F
) -> TargetTransformInfo
& {
1693 return FAM
.getResult
<TargetIRAnalysis
>(F
);
1696 SampleProfileLoader
SampleLoader(
1697 ProfileFileName
.empty() ? SampleProfileFile
: ProfileFileName
,
1698 ProfileRemappingFileName
.empty() ? SampleProfileRemappingFile
1699 : ProfileRemappingFileName
,
1700 IsThinLTOPreLink
, GetAssumptionCache
, GetTTI
);
1702 SampleLoader
.doInitialization(M
);
1704 ProfileSummaryInfo
*PSI
= &AM
.getResult
<ProfileSummaryAnalysis
>(M
);
1705 if (!SampleLoader
.runOnModule(M
, &AM
, PSI
))
1706 return PreservedAnalyses::all();
1708 return PreservedAnalyses::none();