[ARM] Rejig MVE load store tests. NFC
[llvm-core.git] / lib / Transforms / IPO / SampleProfile.cpp
blob877d20e72ffc51a4a04b8a44293f78dad408cb58
1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SampleProfileLoader transformation. This pass
10 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
11 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
12 // profile information in the given profile.
14 // This pass generates branch weight annotations on the IR:
16 // - prof: Represents branch weights. This annotation is added to branches
17 // to indicate the weights of each edge coming out of the branch.
18 // The weight of each edge is the weight of the target block for
19 // that edge. The weight of a block B is computed as the maximum
20 // number of samples found in B.
22 //===----------------------------------------------------------------------===//
24 #include "llvm/Transforms/IPO/SampleProfile.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/None.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringMap.h"
33 #include "llvm/ADT/StringRef.h"
34 #include "llvm/ADT/Twine.h"
35 #include "llvm/Analysis/AssumptionCache.h"
36 #include "llvm/Analysis/InlineCost.h"
37 #include "llvm/Analysis/LoopInfo.h"
38 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
39 #include "llvm/Analysis/PostDominators.h"
40 #include "llvm/Analysis/ProfileSummaryInfo.h"
41 #include "llvm/Analysis/TargetTransformInfo.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/CFG.h"
44 #include "llvm/IR/CallSite.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/DiagnosticInfo.h"
48 #include "llvm/IR/Dominators.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GlobalValue.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/MDBuilder.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/PassManager.h"
59 #include "llvm/IR/ValueSymbolTable.h"
60 #include "llvm/Pass.h"
61 #include "llvm/ProfileData/InstrProf.h"
62 #include "llvm/ProfileData/SampleProf.h"
63 #include "llvm/ProfileData/SampleProfReader.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/ErrorOr.h"
69 #include "llvm/Support/GenericDomTree.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Transforms/IPO.h"
72 #include "llvm/Transforms/Instrumentation.h"
73 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
74 #include "llvm/Transforms/Utils/Cloning.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstdint>
78 #include <functional>
79 #include <limits>
80 #include <map>
81 #include <memory>
82 #include <string>
83 #include <system_error>
84 #include <utility>
85 #include <vector>
87 using namespace llvm;
88 using namespace sampleprof;
89 using ProfileCount = Function::ProfileCount;
90 #define DEBUG_TYPE "sample-profile"
92 // Command line option to specify the file to read samples from. This is
93 // mainly used for debugging.
94 static cl::opt<std::string> SampleProfileFile(
95 "sample-profile-file", cl::init(""), cl::value_desc("filename"),
96 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
98 // The named file contains a set of transformations that may have been applied
99 // to the symbol names between the program from which the sample data was
100 // collected and the current program's symbols.
101 static cl::opt<std::string> SampleProfileRemappingFile(
102 "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"),
103 cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden);
105 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
106 "sample-profile-max-propagate-iterations", cl::init(100),
107 cl::desc("Maximum number of iterations to go through when propagating "
108 "sample block/edge weights through the CFG."));
110 static cl::opt<unsigned> SampleProfileRecordCoverage(
111 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
112 cl::desc("Emit a warning if less than N% of records in the input profile "
113 "are matched to the IR."));
115 static cl::opt<unsigned> SampleProfileSampleCoverage(
116 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
117 cl::desc("Emit a warning if less than N% of samples in the input profile "
118 "are matched to the IR."));
120 static cl::opt<bool> NoWarnSampleUnused(
121 "no-warn-sample-unused", cl::init(false), cl::Hidden,
122 cl::desc("Use this option to turn off/on warnings about function with "
123 "samples but without debug information to use those samples. "));
125 static cl::opt<bool> ProfileSampleAccurate(
126 "profile-sample-accurate", cl::Hidden, cl::init(false),
127 cl::desc("If the sample profile is accurate, we will mark all un-sampled "
128 "callsite and function as having 0 samples. Otherwise, treat "
129 "un-sampled callsites and functions conservatively as unknown. "));
131 namespace {
133 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>;
134 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>;
135 using Edge = std::pair<const BasicBlock *, const BasicBlock *>;
136 using EdgeWeightMap = DenseMap<Edge, uint64_t>;
137 using BlockEdgeMap =
138 DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>;
140 class SampleCoverageTracker {
141 public:
142 SampleCoverageTracker() = default;
144 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
145 uint32_t Discriminator, uint64_t Samples);
146 unsigned computeCoverage(unsigned Used, unsigned Total) const;
147 unsigned countUsedRecords(const FunctionSamples *FS,
148 ProfileSummaryInfo *PSI) const;
149 unsigned countBodyRecords(const FunctionSamples *FS,
150 ProfileSummaryInfo *PSI) const;
151 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
152 uint64_t countBodySamples(const FunctionSamples *FS,
153 ProfileSummaryInfo *PSI) const;
155 void clear() {
156 SampleCoverage.clear();
157 TotalUsedSamples = 0;
160 private:
161 using BodySampleCoverageMap = std::map<LineLocation, unsigned>;
162 using FunctionSamplesCoverageMap =
163 DenseMap<const FunctionSamples *, BodySampleCoverageMap>;
165 /// Coverage map for sampling records.
167 /// This map keeps a record of sampling records that have been matched to
168 /// an IR instruction. This is used to detect some form of staleness in
169 /// profiles (see flag -sample-profile-check-coverage).
171 /// Each entry in the map corresponds to a FunctionSamples instance. This is
172 /// another map that counts how many times the sample record at the
173 /// given location has been used.
174 FunctionSamplesCoverageMap SampleCoverage;
176 /// Number of samples used from the profile.
178 /// When a sampling record is used for the first time, the samples from
179 /// that record are added to this accumulator. Coverage is later computed
180 /// based on the total number of samples available in this function and
181 /// its callsites.
183 /// Note that this accumulator tracks samples used from a single function
184 /// and all the inlined callsites. Strictly, we should have a map of counters
185 /// keyed by FunctionSamples pointers, but these stats are cleared after
186 /// every function, so we just need to keep a single counter.
187 uint64_t TotalUsedSamples = 0;
190 /// Sample profile pass.
192 /// This pass reads profile data from the file specified by
193 /// -sample-profile-file and annotates every affected function with the
194 /// profile information found in that file.
195 class SampleProfileLoader {
196 public:
197 SampleProfileLoader(
198 StringRef Name, StringRef RemapName, bool IsThinLTOPreLink,
199 std::function<AssumptionCache &(Function &)> GetAssumptionCache,
200 std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo)
201 : GetAC(std::move(GetAssumptionCache)),
202 GetTTI(std::move(GetTargetTransformInfo)), Filename(Name),
203 RemappingFilename(RemapName), IsThinLTOPreLink(IsThinLTOPreLink) {}
205 bool doInitialization(Module &M);
206 bool runOnModule(Module &M, ModuleAnalysisManager *AM,
207 ProfileSummaryInfo *_PSI);
209 void dump() { Reader->dump(); }
211 protected:
212 bool runOnFunction(Function &F, ModuleAnalysisManager *AM);
213 unsigned getFunctionLoc(Function &F);
214 bool emitAnnotations(Function &F);
215 ErrorOr<uint64_t> getInstWeight(const Instruction &I);
216 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
217 const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const;
218 std::vector<const FunctionSamples *>
219 findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const;
220 mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap;
221 const FunctionSamples *findFunctionSamples(const Instruction &I) const;
222 bool inlineCallInstruction(Instruction *I);
223 bool inlineHotFunctions(Function &F,
224 DenseSet<GlobalValue::GUID> &InlinedGUIDs);
225 void printEdgeWeight(raw_ostream &OS, Edge E);
226 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
227 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
228 bool computeBlockWeights(Function &F);
229 void findEquivalenceClasses(Function &F);
230 template <bool IsPostDom>
231 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
232 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree);
234 void propagateWeights(Function &F);
235 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
236 void buildEdges(Function &F);
237 bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
238 void computeDominanceAndLoopInfo(Function &F);
239 void clearFunctionData();
241 /// Map basic blocks to their computed weights.
243 /// The weight of a basic block is defined to be the maximum
244 /// of all the instruction weights in that block.
245 BlockWeightMap BlockWeights;
247 /// Map edges to their computed weights.
249 /// Edge weights are computed by propagating basic block weights in
250 /// SampleProfile::propagateWeights.
251 EdgeWeightMap EdgeWeights;
253 /// Set of visited blocks during propagation.
254 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
256 /// Set of visited edges during propagation.
257 SmallSet<Edge, 32> VisitedEdges;
259 /// Equivalence classes for block weights.
261 /// Two blocks BB1 and BB2 are in the same equivalence class if they
262 /// dominate and post-dominate each other, and they are in the same loop
263 /// nest. When this happens, the two blocks are guaranteed to execute
264 /// the same number of times.
265 EquivalenceClassMap EquivalenceClass;
267 /// Map from function name to Function *. Used to find the function from
268 /// the function name. If the function name contains suffix, additional
269 /// entry is added to map from the stripped name to the function if there
270 /// is one-to-one mapping.
271 StringMap<Function *> SymbolMap;
273 /// Dominance, post-dominance and loop information.
274 std::unique_ptr<DominatorTree> DT;
275 std::unique_ptr<PostDominatorTree> PDT;
276 std::unique_ptr<LoopInfo> LI;
278 std::function<AssumptionCache &(Function &)> GetAC;
279 std::function<TargetTransformInfo &(Function &)> GetTTI;
281 /// Predecessors for each basic block in the CFG.
282 BlockEdgeMap Predecessors;
284 /// Successors for each basic block in the CFG.
285 BlockEdgeMap Successors;
287 SampleCoverageTracker CoverageTracker;
289 /// Profile reader object.
290 std::unique_ptr<SampleProfileReader> Reader;
292 /// Samples collected for the body of this function.
293 FunctionSamples *Samples = nullptr;
295 /// Name of the profile file to load.
296 std::string Filename;
298 /// Name of the profile remapping file to load.
299 std::string RemappingFilename;
301 /// Flag indicating whether the profile input loaded successfully.
302 bool ProfileIsValid = false;
304 /// Flag indicating if the pass is invoked in ThinLTO compile phase.
306 /// In this phase, in annotation, we should not promote indirect calls.
307 /// Instead, we will mark GUIDs that needs to be annotated to the function.
308 bool IsThinLTOPreLink;
310 /// Profile Summary Info computed from sample profile.
311 ProfileSummaryInfo *PSI = nullptr;
313 /// Total number of samples collected in this profile.
315 /// This is the sum of all the samples collected in all the functions executed
316 /// at runtime.
317 uint64_t TotalCollectedSamples = 0;
319 /// Optimization Remark Emitter used to emit diagnostic remarks.
320 OptimizationRemarkEmitter *ORE = nullptr;
322 // Information recorded when we declined to inline a call site
323 // because we have determined it is too cold is accumulated for
324 // each callee function. Initially this is just the entry count.
325 struct NotInlinedProfileInfo {
326 uint64_t entryCount;
328 DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo;
331 class SampleProfileLoaderLegacyPass : public ModulePass {
332 public:
333 // Class identification, replacement for typeinfo
334 static char ID;
336 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile,
337 bool IsThinLTOPreLink = false)
338 : ModulePass(ID),
339 SampleLoader(Name, SampleProfileRemappingFile, IsThinLTOPreLink,
340 [&](Function &F) -> AssumptionCache & {
341 return ACT->getAssumptionCache(F);
343 [&](Function &F) -> TargetTransformInfo & {
344 return TTIWP->getTTI(F);
345 }) {
346 initializeSampleProfileLoaderLegacyPassPass(
347 *PassRegistry::getPassRegistry());
350 void dump() { SampleLoader.dump(); }
352 bool doInitialization(Module &M) override {
353 return SampleLoader.doInitialization(M);
356 StringRef getPassName() const override { return "Sample profile pass"; }
357 bool runOnModule(Module &M) override;
359 void getAnalysisUsage(AnalysisUsage &AU) const override {
360 AU.addRequired<AssumptionCacheTracker>();
361 AU.addRequired<TargetTransformInfoWrapperPass>();
362 AU.addRequired<ProfileSummaryInfoWrapperPass>();
365 private:
366 SampleProfileLoader SampleLoader;
367 AssumptionCacheTracker *ACT = nullptr;
368 TargetTransformInfoWrapperPass *TTIWP = nullptr;
371 } // end anonymous namespace
373 /// Return true if the given callsite is hot wrt to hot cutoff threshold.
375 /// Functions that were inlined in the original binary will be represented
376 /// in the inline stack in the sample profile. If the profile shows that
377 /// the original inline decision was "good" (i.e., the callsite is executed
378 /// frequently), then we will recreate the inline decision and apply the
379 /// profile from the inlined callsite.
381 /// To decide whether an inlined callsite is hot, we compare the callsite
382 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is
383 /// regarded as hot if the count is above the cutoff value.
384 static bool callsiteIsHot(const FunctionSamples *CallsiteFS,
385 ProfileSummaryInfo *PSI) {
386 if (!CallsiteFS)
387 return false; // The callsite was not inlined in the original binary.
389 assert(PSI && "PSI is expected to be non null");
390 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
391 return PSI->isHotCount(CallsiteTotalSamples);
394 /// Mark as used the sample record for the given function samples at
395 /// (LineOffset, Discriminator).
397 /// \returns true if this is the first time we mark the given record.
398 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
399 uint32_t LineOffset,
400 uint32_t Discriminator,
401 uint64_t Samples) {
402 LineLocation Loc(LineOffset, Discriminator);
403 unsigned &Count = SampleCoverage[FS][Loc];
404 bool FirstTime = (++Count == 1);
405 if (FirstTime)
406 TotalUsedSamples += Samples;
407 return FirstTime;
410 /// Return the number of sample records that were applied from this profile.
412 /// This count does not include records from cold inlined callsites.
413 unsigned
414 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS,
415 ProfileSummaryInfo *PSI) const {
416 auto I = SampleCoverage.find(FS);
418 // The size of the coverage map for FS represents the number of records
419 // that were marked used at least once.
420 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
422 // If there are inlined callsites in this function, count the samples found
423 // in the respective bodies. However, do not bother counting callees with 0
424 // total samples, these are callees that were never invoked at runtime.
425 for (const auto &I : FS->getCallsiteSamples())
426 for (const auto &J : I.second) {
427 const FunctionSamples *CalleeSamples = &J.second;
428 if (callsiteIsHot(CalleeSamples, PSI))
429 Count += countUsedRecords(CalleeSamples, PSI);
432 return Count;
435 /// Return the number of sample records in the body of this profile.
437 /// This count does not include records from cold inlined callsites.
438 unsigned
439 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS,
440 ProfileSummaryInfo *PSI) const {
441 unsigned Count = FS->getBodySamples().size();
443 // Only count records in hot callsites.
444 for (const auto &I : FS->getCallsiteSamples())
445 for (const auto &J : I.second) {
446 const FunctionSamples *CalleeSamples = &J.second;
447 if (callsiteIsHot(CalleeSamples, PSI))
448 Count += countBodyRecords(CalleeSamples, PSI);
451 return Count;
454 /// Return the number of samples collected in the body of this profile.
456 /// This count does not include samples from cold inlined callsites.
457 uint64_t
458 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS,
459 ProfileSummaryInfo *PSI) const {
460 uint64_t Total = 0;
461 for (const auto &I : FS->getBodySamples())
462 Total += I.second.getSamples();
464 // Only count samples in hot callsites.
465 for (const auto &I : FS->getCallsiteSamples())
466 for (const auto &J : I.second) {
467 const FunctionSamples *CalleeSamples = &J.second;
468 if (callsiteIsHot(CalleeSamples, PSI))
469 Total += countBodySamples(CalleeSamples, PSI);
472 return Total;
475 /// Return the fraction of sample records used in this profile.
477 /// The returned value is an unsigned integer in the range 0-100 indicating
478 /// the percentage of sample records that were used while applying this
479 /// profile to the associated function.
480 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
481 unsigned Total) const {
482 assert(Used <= Total &&
483 "number of used records cannot exceed the total number of records");
484 return Total > 0 ? Used * 100 / Total : 100;
487 /// Clear all the per-function data used to load samples and propagate weights.
488 void SampleProfileLoader::clearFunctionData() {
489 BlockWeights.clear();
490 EdgeWeights.clear();
491 VisitedBlocks.clear();
492 VisitedEdges.clear();
493 EquivalenceClass.clear();
494 DT = nullptr;
495 PDT = nullptr;
496 LI = nullptr;
497 Predecessors.clear();
498 Successors.clear();
499 CoverageTracker.clear();
502 #ifndef NDEBUG
503 /// Print the weight of edge \p E on stream \p OS.
505 /// \param OS Stream to emit the output to.
506 /// \param E Edge to print.
507 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
508 OS << "weight[" << E.first->getName() << "->" << E.second->getName()
509 << "]: " << EdgeWeights[E] << "\n";
512 /// Print the equivalence class of block \p BB on stream \p OS.
514 /// \param OS Stream to emit the output to.
515 /// \param BB Block to print.
516 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
517 const BasicBlock *BB) {
518 const BasicBlock *Equiv = EquivalenceClass[BB];
519 OS << "equivalence[" << BB->getName()
520 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
523 /// Print the weight of block \p BB on stream \p OS.
525 /// \param OS Stream to emit the output to.
526 /// \param BB Block to print.
527 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
528 const BasicBlock *BB) const {
529 const auto &I = BlockWeights.find(BB);
530 uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
531 OS << "weight[" << BB->getName() << "]: " << W << "\n";
533 #endif
535 /// Get the weight for an instruction.
537 /// The "weight" of an instruction \p Inst is the number of samples
538 /// collected on that instruction at runtime. To retrieve it, we
539 /// need to compute the line number of \p Inst relative to the start of its
540 /// function. We use HeaderLineno to compute the offset. We then
541 /// look up the samples collected for \p Inst using BodySamples.
543 /// \param Inst Instruction to query.
545 /// \returns the weight of \p Inst.
546 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
547 const DebugLoc &DLoc = Inst.getDebugLoc();
548 if (!DLoc)
549 return std::error_code();
551 const FunctionSamples *FS = findFunctionSamples(Inst);
552 if (!FS)
553 return std::error_code();
555 // Ignore all intrinsics, phinodes and branch instructions.
556 // Branch and phinodes instruction usually contains debug info from sources outside of
557 // the residing basic block, thus we ignore them during annotation.
558 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst))
559 return std::error_code();
561 // If a direct call/invoke instruction is inlined in profile
562 // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
563 // it means that the inlined callsite has no sample, thus the call
564 // instruction should have 0 count.
565 if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) &&
566 !ImmutableCallSite(&Inst).isIndirectCall() &&
567 findCalleeFunctionSamples(Inst))
568 return 0;
570 const DILocation *DIL = DLoc;
571 uint32_t LineOffset = FunctionSamples::getOffset(DIL);
572 uint32_t Discriminator = DIL->getBaseDiscriminator();
573 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
574 if (R) {
575 bool FirstMark =
576 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
577 if (FirstMark) {
578 ORE->emit([&]() {
579 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
580 Remark << "Applied " << ore::NV("NumSamples", *R);
581 Remark << " samples from profile (offset: ";
582 Remark << ore::NV("LineOffset", LineOffset);
583 if (Discriminator) {
584 Remark << ".";
585 Remark << ore::NV("Discriminator", Discriminator);
587 Remark << ")";
588 return Remark;
591 LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "."
592 << DIL->getBaseDiscriminator() << ":" << Inst
593 << " (line offset: " << LineOffset << "."
594 << DIL->getBaseDiscriminator() << " - weight: " << R.get()
595 << ")\n");
597 return R;
600 /// Compute the weight of a basic block.
602 /// The weight of basic block \p BB is the maximum weight of all the
603 /// instructions in BB.
605 /// \param BB The basic block to query.
607 /// \returns the weight for \p BB.
608 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
609 uint64_t Max = 0;
610 bool HasWeight = false;
611 for (auto &I : BB->getInstList()) {
612 const ErrorOr<uint64_t> &R = getInstWeight(I);
613 if (R) {
614 Max = std::max(Max, R.get());
615 HasWeight = true;
618 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
621 /// Compute and store the weights of every basic block.
623 /// This populates the BlockWeights map by computing
624 /// the weights of every basic block in the CFG.
626 /// \param F The function to query.
627 bool SampleProfileLoader::computeBlockWeights(Function &F) {
628 bool Changed = false;
629 LLVM_DEBUG(dbgs() << "Block weights\n");
630 for (const auto &BB : F) {
631 ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
632 if (Weight) {
633 BlockWeights[&BB] = Weight.get();
634 VisitedBlocks.insert(&BB);
635 Changed = true;
637 LLVM_DEBUG(printBlockWeight(dbgs(), &BB));
640 return Changed;
643 /// Get the FunctionSamples for a call instruction.
645 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
646 /// instance in which that call instruction is calling to. It contains
647 /// all samples that resides in the inlined instance. We first find the
648 /// inlined instance in which the call instruction is from, then we
649 /// traverse its children to find the callsite with the matching
650 /// location.
652 /// \param Inst Call/Invoke instruction to query.
654 /// \returns The FunctionSamples pointer to the inlined instance.
655 const FunctionSamples *
656 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const {
657 const DILocation *DIL = Inst.getDebugLoc();
658 if (!DIL) {
659 return nullptr;
662 StringRef CalleeName;
663 if (const CallInst *CI = dyn_cast<CallInst>(&Inst))
664 if (Function *Callee = CI->getCalledFunction())
665 CalleeName = Callee->getName();
667 const FunctionSamples *FS = findFunctionSamples(Inst);
668 if (FS == nullptr)
669 return nullptr;
671 return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL),
672 DIL->getBaseDiscriminator()),
673 CalleeName);
676 /// Returns a vector of FunctionSamples that are the indirect call targets
677 /// of \p Inst. The vector is sorted by the total number of samples. Stores
678 /// the total call count of the indirect call in \p Sum.
679 std::vector<const FunctionSamples *>
680 SampleProfileLoader::findIndirectCallFunctionSamples(
681 const Instruction &Inst, uint64_t &Sum) const {
682 const DILocation *DIL = Inst.getDebugLoc();
683 std::vector<const FunctionSamples *> R;
685 if (!DIL) {
686 return R;
689 const FunctionSamples *FS = findFunctionSamples(Inst);
690 if (FS == nullptr)
691 return R;
693 uint32_t LineOffset = FunctionSamples::getOffset(DIL);
694 uint32_t Discriminator = DIL->getBaseDiscriminator();
696 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
697 Sum = 0;
698 if (T)
699 for (const auto &T_C : T.get())
700 Sum += T_C.second;
701 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation(
702 FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) {
703 if (M->empty())
704 return R;
705 for (const auto &NameFS : *M) {
706 Sum += NameFS.second.getEntrySamples();
707 R.push_back(&NameFS.second);
709 llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) {
710 if (L->getEntrySamples() != R->getEntrySamples())
711 return L->getEntrySamples() > R->getEntrySamples();
712 return FunctionSamples::getGUID(L->getName()) <
713 FunctionSamples::getGUID(R->getName());
716 return R;
719 /// Get the FunctionSamples for an instruction.
721 /// The FunctionSamples of an instruction \p Inst is the inlined instance
722 /// in which that instruction is coming from. We traverse the inline stack
723 /// of that instruction, and match it with the tree nodes in the profile.
725 /// \param Inst Instruction to query.
727 /// \returns the FunctionSamples pointer to the inlined instance.
728 const FunctionSamples *
729 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
730 const DILocation *DIL = Inst.getDebugLoc();
731 if (!DIL)
732 return Samples;
734 auto it = DILocation2SampleMap.try_emplace(DIL,nullptr);
735 if (it.second)
736 it.first->second = Samples->findFunctionSamples(DIL);
737 return it.first->second;
740 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) {
741 assert(isa<CallInst>(I) || isa<InvokeInst>(I));
742 CallSite CS(I);
743 Function *CalledFunction = CS.getCalledFunction();
744 assert(CalledFunction);
745 DebugLoc DLoc = I->getDebugLoc();
746 BasicBlock *BB = I->getParent();
747 InlineParams Params = getInlineParams();
748 Params.ComputeFullInlineCost = true;
749 // Checks if there is anything in the reachable portion of the callee at
750 // this callsite that makes this inlining potentially illegal. Need to
751 // set ComputeFullInlineCost, otherwise getInlineCost may return early
752 // when cost exceeds threshold without checking all IRs in the callee.
753 // The acutal cost does not matter because we only checks isNever() to
754 // see if it is legal to inline the callsite.
755 InlineCost Cost =
756 getInlineCost(cast<CallBase>(*I), Params, GetTTI(*CalledFunction), GetAC,
757 None, nullptr, nullptr);
758 if (Cost.isNever()) {
759 ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB)
760 << "incompatible inlining");
761 return false;
763 InlineFunctionInfo IFI(nullptr, &GetAC);
764 if (InlineFunction(CS, IFI)) {
765 // The call to InlineFunction erases I, so we can't pass it here.
766 ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB)
767 << "inlined hot callee '" << ore::NV("Callee", CalledFunction)
768 << "' into '" << ore::NV("Caller", BB->getParent()) << "'");
769 return true;
771 return false;
774 /// Iteratively inline hot callsites of a function.
776 /// Iteratively traverse all callsites of the function \p F, and find if
777 /// the corresponding inlined instance exists and is hot in profile. If
778 /// it is hot enough, inline the callsites and adds new callsites of the
779 /// callee into the caller. If the call is an indirect call, first promote
780 /// it to direct call. Each indirect call is limited with a single target.
782 /// \param F function to perform iterative inlining.
783 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are
784 /// inlined in the profiled binary.
786 /// \returns True if there is any inline happened.
787 bool SampleProfileLoader::inlineHotFunctions(
788 Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
789 DenseSet<Instruction *> PromotedInsns;
791 DenseMap<Instruction *, const FunctionSamples *> localNotInlinedCallSites;
792 bool Changed = false;
793 while (true) {
794 bool LocalChanged = false;
795 SmallVector<Instruction *, 10> CIS;
796 for (auto &BB : F) {
797 bool Hot = false;
798 SmallVector<Instruction *, 10> Candidates;
799 for (auto &I : BB.getInstList()) {
800 const FunctionSamples *FS = nullptr;
801 if ((isa<CallInst>(I) || isa<InvokeInst>(I)) &&
802 !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) {
803 Candidates.push_back(&I);
804 if (FS->getEntrySamples() > 0)
805 localNotInlinedCallSites.try_emplace(&I, FS);
806 if (callsiteIsHot(FS, PSI))
807 Hot = true;
810 if (Hot) {
811 CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end());
814 for (auto I : CIS) {
815 Function *CalledFunction = CallSite(I).getCalledFunction();
816 // Do not inline recursive calls.
817 if (CalledFunction == &F)
818 continue;
819 if (CallSite(I).isIndirectCall()) {
820 if (PromotedInsns.count(I))
821 continue;
822 uint64_t Sum;
823 for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) {
824 if (IsThinLTOPreLink) {
825 FS->findInlinedFunctions(InlinedGUIDs, F.getParent(),
826 PSI->getOrCompHotCountThreshold());
827 continue;
829 auto CalleeFunctionName = FS->getFuncNameInModule(F.getParent());
830 // If it is a recursive call, we do not inline it as it could bloat
831 // the code exponentially. There is way to better handle this, e.g.
832 // clone the caller first, and inline the cloned caller if it is
833 // recursive. As llvm does not inline recursive calls, we will
834 // simply ignore it instead of handling it explicitly.
835 if (CalleeFunctionName == F.getName())
836 continue;
838 if (!callsiteIsHot(FS, PSI))
839 continue;
841 const char *Reason = "Callee function not available";
842 auto R = SymbolMap.find(CalleeFunctionName);
843 if (R != SymbolMap.end() && R->getValue() &&
844 !R->getValue()->isDeclaration() &&
845 R->getValue()->getSubprogram() &&
846 isLegalToPromote(CallSite(I), R->getValue(), &Reason)) {
847 uint64_t C = FS->getEntrySamples();
848 Instruction *DI =
849 pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE);
850 Sum -= C;
851 PromotedInsns.insert(I);
852 // If profile mismatches, we should not attempt to inline DI.
853 if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) &&
854 inlineCallInstruction(DI)) {
855 localNotInlinedCallSites.erase(I);
856 LocalChanged = true;
858 } else {
859 LLVM_DEBUG(dbgs()
860 << "\nFailed to promote indirect call to "
861 << CalleeFunctionName << " because " << Reason << "\n");
864 } else if (CalledFunction && CalledFunction->getSubprogram() &&
865 !CalledFunction->isDeclaration()) {
866 if (inlineCallInstruction(I)) {
867 localNotInlinedCallSites.erase(I);
868 LocalChanged = true;
870 } else if (IsThinLTOPreLink) {
871 findCalleeFunctionSamples(*I)->findInlinedFunctions(
872 InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold());
875 if (LocalChanged) {
876 Changed = true;
877 } else {
878 break;
882 // Accumulate not inlined callsite information into notInlinedSamples
883 for (const auto &Pair : localNotInlinedCallSites) {
884 Instruction *I = Pair.getFirst();
885 Function *Callee = CallSite(I).getCalledFunction();
886 if (!Callee || Callee->isDeclaration())
887 continue;
888 const FunctionSamples *FS = Pair.getSecond();
889 auto pair =
890 notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0});
891 pair.first->second.entryCount += FS->getEntrySamples();
893 return Changed;
896 /// Find equivalence classes for the given block.
898 /// This finds all the blocks that are guaranteed to execute the same
899 /// number of times as \p BB1. To do this, it traverses all the
900 /// descendants of \p BB1 in the dominator or post-dominator tree.
902 /// A block BB2 will be in the same equivalence class as \p BB1 if
903 /// the following holds:
905 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
906 /// is a descendant of \p BB1 in the dominator tree, then BB2 should
907 /// dominate BB1 in the post-dominator tree.
909 /// 2- Both BB2 and \p BB1 must be in the same loop.
911 /// For every block BB2 that meets those two requirements, we set BB2's
912 /// equivalence class to \p BB1.
914 /// \param BB1 Block to check.
915 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree.
916 /// \param DomTree Opposite dominator tree. If \p Descendants is filled
917 /// with blocks from \p BB1's dominator tree, then
918 /// this is the post-dominator tree, and vice versa.
919 template <bool IsPostDom>
920 void SampleProfileLoader::findEquivalencesFor(
921 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
922 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) {
923 const BasicBlock *EC = EquivalenceClass[BB1];
924 uint64_t Weight = BlockWeights[EC];
925 for (const auto *BB2 : Descendants) {
926 bool IsDomParent = DomTree->dominates(BB2, BB1);
927 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
928 if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
929 EquivalenceClass[BB2] = EC;
930 // If BB2 is visited, then the entire EC should be marked as visited.
931 if (VisitedBlocks.count(BB2)) {
932 VisitedBlocks.insert(EC);
935 // If BB2 is heavier than BB1, make BB2 have the same weight
936 // as BB1.
938 // Note that we don't worry about the opposite situation here
939 // (when BB2 is lighter than BB1). We will deal with this
940 // during the propagation phase. Right now, we just want to
941 // make sure that BB1 has the largest weight of all the
942 // members of its equivalence set.
943 Weight = std::max(Weight, BlockWeights[BB2]);
946 if (EC == &EC->getParent()->getEntryBlock()) {
947 BlockWeights[EC] = Samples->getHeadSamples() + 1;
948 } else {
949 BlockWeights[EC] = Weight;
953 /// Find equivalence classes.
955 /// Since samples may be missing from blocks, we can fill in the gaps by setting
956 /// the weights of all the blocks in the same equivalence class to the same
957 /// weight. To compute the concept of equivalence, we use dominance and loop
958 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
959 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
961 /// \param F The function to query.
962 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
963 SmallVector<BasicBlock *, 8> DominatedBBs;
964 LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
965 // Find equivalence sets based on dominance and post-dominance information.
966 for (auto &BB : F) {
967 BasicBlock *BB1 = &BB;
969 // Compute BB1's equivalence class once.
970 if (EquivalenceClass.count(BB1)) {
971 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
972 continue;
975 // By default, blocks are in their own equivalence class.
976 EquivalenceClass[BB1] = BB1;
978 // Traverse all the blocks dominated by BB1. We are looking for
979 // every basic block BB2 such that:
981 // 1- BB1 dominates BB2.
982 // 2- BB2 post-dominates BB1.
983 // 3- BB1 and BB2 are in the same loop nest.
985 // If all those conditions hold, it means that BB2 is executed
986 // as many times as BB1, so they are placed in the same equivalence
987 // class by making BB2's equivalence class be BB1.
988 DominatedBBs.clear();
989 DT->getDescendants(BB1, DominatedBBs);
990 findEquivalencesFor(BB1, DominatedBBs, PDT.get());
992 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
995 // Assign weights to equivalence classes.
997 // All the basic blocks in the same equivalence class will execute
998 // the same number of times. Since we know that the head block in
999 // each equivalence class has the largest weight, assign that weight
1000 // to all the blocks in that equivalence class.
1001 LLVM_DEBUG(
1002 dbgs() << "\nAssign the same weight to all blocks in the same class\n");
1003 for (auto &BI : F) {
1004 const BasicBlock *BB = &BI;
1005 const BasicBlock *EquivBB = EquivalenceClass[BB];
1006 if (BB != EquivBB)
1007 BlockWeights[BB] = BlockWeights[EquivBB];
1008 LLVM_DEBUG(printBlockWeight(dbgs(), BB));
1012 /// Visit the given edge to decide if it has a valid weight.
1014 /// If \p E has not been visited before, we copy to \p UnknownEdge
1015 /// and increment the count of unknown edges.
1017 /// \param E Edge to visit.
1018 /// \param NumUnknownEdges Current number of unknown edges.
1019 /// \param UnknownEdge Set if E has not been visited before.
1021 /// \returns E's weight, if known. Otherwise, return 0.
1022 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
1023 Edge *UnknownEdge) {
1024 if (!VisitedEdges.count(E)) {
1025 (*NumUnknownEdges)++;
1026 *UnknownEdge = E;
1027 return 0;
1030 return EdgeWeights[E];
1033 /// Propagate weights through incoming/outgoing edges.
1035 /// If the weight of a basic block is known, and there is only one edge
1036 /// with an unknown weight, we can calculate the weight of that edge.
1038 /// Similarly, if all the edges have a known count, we can calculate the
1039 /// count of the basic block, if needed.
1041 /// \param F Function to process.
1042 /// \param UpdateBlockCount Whether we should update basic block counts that
1043 /// has already been annotated.
1045 /// \returns True if new weights were assigned to edges or blocks.
1046 bool SampleProfileLoader::propagateThroughEdges(Function &F,
1047 bool UpdateBlockCount) {
1048 bool Changed = false;
1049 LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
1050 for (const auto &BI : F) {
1051 const BasicBlock *BB = &BI;
1052 const BasicBlock *EC = EquivalenceClass[BB];
1054 // Visit all the predecessor and successor edges to determine
1055 // which ones have a weight assigned already. Note that it doesn't
1056 // matter that we only keep track of a single unknown edge. The
1057 // only case we are interested in handling is when only a single
1058 // edge is unknown (see setEdgeOrBlockWeight).
1059 for (unsigned i = 0; i < 2; i++) {
1060 uint64_t TotalWeight = 0;
1061 unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
1062 Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
1064 if (i == 0) {
1065 // First, visit all predecessor edges.
1066 NumTotalEdges = Predecessors[BB].size();
1067 for (auto *Pred : Predecessors[BB]) {
1068 Edge E = std::make_pair(Pred, BB);
1069 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1070 if (E.first == E.second)
1071 SelfReferentialEdge = E;
1073 if (NumTotalEdges == 1) {
1074 SingleEdge = std::make_pair(Predecessors[BB][0], BB);
1076 } else {
1077 // On the second round, visit all successor edges.
1078 NumTotalEdges = Successors[BB].size();
1079 for (auto *Succ : Successors[BB]) {
1080 Edge E = std::make_pair(BB, Succ);
1081 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1083 if (NumTotalEdges == 1) {
1084 SingleEdge = std::make_pair(BB, Successors[BB][0]);
1088 // After visiting all the edges, there are three cases that we
1089 // can handle immediately:
1091 // - All the edge weights are known (i.e., NumUnknownEdges == 0).
1092 // In this case, we simply check that the sum of all the edges
1093 // is the same as BB's weight. If not, we change BB's weight
1094 // to match. Additionally, if BB had not been visited before,
1095 // we mark it visited.
1097 // - Only one edge is unknown and BB has already been visited.
1098 // In this case, we can compute the weight of the edge by
1099 // subtracting the total block weight from all the known
1100 // edge weights. If the edges weight more than BB, then the
1101 // edge of the last remaining edge is set to zero.
1103 // - There exists a self-referential edge and the weight of BB is
1104 // known. In this case, this edge can be based on BB's weight.
1105 // We add up all the other known edges and set the weight on
1106 // the self-referential edge as we did in the previous case.
1108 // In any other case, we must continue iterating. Eventually,
1109 // all edges will get a weight, or iteration will stop when
1110 // it reaches SampleProfileMaxPropagateIterations.
1111 if (NumUnknownEdges <= 1) {
1112 uint64_t &BBWeight = BlockWeights[EC];
1113 if (NumUnknownEdges == 0) {
1114 if (!VisitedBlocks.count(EC)) {
1115 // If we already know the weight of all edges, the weight of the
1116 // basic block can be computed. It should be no larger than the sum
1117 // of all edge weights.
1118 if (TotalWeight > BBWeight) {
1119 BBWeight = TotalWeight;
1120 Changed = true;
1121 LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName()
1122 << " known. Set weight for block: ";
1123 printBlockWeight(dbgs(), BB););
1125 } else if (NumTotalEdges == 1 &&
1126 EdgeWeights[SingleEdge] < BlockWeights[EC]) {
1127 // If there is only one edge for the visited basic block, use the
1128 // block weight to adjust edge weight if edge weight is smaller.
1129 EdgeWeights[SingleEdge] = BlockWeights[EC];
1130 Changed = true;
1132 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
1133 // If there is a single unknown edge and the block has been
1134 // visited, then we can compute E's weight.
1135 if (BBWeight >= TotalWeight)
1136 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
1137 else
1138 EdgeWeights[UnknownEdge] = 0;
1139 const BasicBlock *OtherEC;
1140 if (i == 0)
1141 OtherEC = EquivalenceClass[UnknownEdge.first];
1142 else
1143 OtherEC = EquivalenceClass[UnknownEdge.second];
1144 // Edge weights should never exceed the BB weights it connects.
1145 if (VisitedBlocks.count(OtherEC) &&
1146 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
1147 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
1148 VisitedEdges.insert(UnknownEdge);
1149 Changed = true;
1150 LLVM_DEBUG(dbgs() << "Set weight for edge: ";
1151 printEdgeWeight(dbgs(), UnknownEdge));
1153 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
1154 // If a block Weights 0, all its in/out edges should weight 0.
1155 if (i == 0) {
1156 for (auto *Pred : Predecessors[BB]) {
1157 Edge E = std::make_pair(Pred, BB);
1158 EdgeWeights[E] = 0;
1159 VisitedEdges.insert(E);
1161 } else {
1162 for (auto *Succ : Successors[BB]) {
1163 Edge E = std::make_pair(BB, Succ);
1164 EdgeWeights[E] = 0;
1165 VisitedEdges.insert(E);
1168 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
1169 uint64_t &BBWeight = BlockWeights[BB];
1170 // We have a self-referential edge and the weight of BB is known.
1171 if (BBWeight >= TotalWeight)
1172 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
1173 else
1174 EdgeWeights[SelfReferentialEdge] = 0;
1175 VisitedEdges.insert(SelfReferentialEdge);
1176 Changed = true;
1177 LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
1178 printEdgeWeight(dbgs(), SelfReferentialEdge));
1180 if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
1181 BlockWeights[EC] = TotalWeight;
1182 VisitedBlocks.insert(EC);
1183 Changed = true;
1188 return Changed;
1191 /// Build in/out edge lists for each basic block in the CFG.
1193 /// We are interested in unique edges. If a block B1 has multiple
1194 /// edges to another block B2, we only add a single B1->B2 edge.
1195 void SampleProfileLoader::buildEdges(Function &F) {
1196 for (auto &BI : F) {
1197 BasicBlock *B1 = &BI;
1199 // Add predecessors for B1.
1200 SmallPtrSet<BasicBlock *, 16> Visited;
1201 if (!Predecessors[B1].empty())
1202 llvm_unreachable("Found a stale predecessors list in a basic block.");
1203 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
1204 BasicBlock *B2 = *PI;
1205 if (Visited.insert(B2).second)
1206 Predecessors[B1].push_back(B2);
1209 // Add successors for B1.
1210 Visited.clear();
1211 if (!Successors[B1].empty())
1212 llvm_unreachable("Found a stale successors list in a basic block.");
1213 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
1214 BasicBlock *B2 = *SI;
1215 if (Visited.insert(B2).second)
1216 Successors[B1].push_back(B2);
1221 /// Returns the sorted CallTargetMap \p M by count in descending order.
1222 static SmallVector<InstrProfValueData, 2> SortCallTargets(
1223 const SampleRecord::CallTargetMap &M) {
1224 SmallVector<InstrProfValueData, 2> R;
1225 for (auto I = M.begin(); I != M.end(); ++I)
1226 R.push_back({FunctionSamples::getGUID(I->getKey()), I->getValue()});
1227 llvm::sort(R, [](const InstrProfValueData &L, const InstrProfValueData &R) {
1228 if (L.Count == R.Count)
1229 return L.Value > R.Value;
1230 else
1231 return L.Count > R.Count;
1233 return R;
1236 /// Propagate weights into edges
1238 /// The following rules are applied to every block BB in the CFG:
1240 /// - If BB has a single predecessor/successor, then the weight
1241 /// of that edge is the weight of the block.
1243 /// - If all incoming or outgoing edges are known except one, and the
1244 /// weight of the block is already known, the weight of the unknown
1245 /// edge will be the weight of the block minus the sum of all the known
1246 /// edges. If the sum of all the known edges is larger than BB's weight,
1247 /// we set the unknown edge weight to zero.
1249 /// - If there is a self-referential edge, and the weight of the block is
1250 /// known, the weight for that edge is set to the weight of the block
1251 /// minus the weight of the other incoming edges to that block (if
1252 /// known).
1253 void SampleProfileLoader::propagateWeights(Function &F) {
1254 bool Changed = true;
1255 unsigned I = 0;
1257 // If BB weight is larger than its corresponding loop's header BB weight,
1258 // use the BB weight to replace the loop header BB weight.
1259 for (auto &BI : F) {
1260 BasicBlock *BB = &BI;
1261 Loop *L = LI->getLoopFor(BB);
1262 if (!L) {
1263 continue;
1265 BasicBlock *Header = L->getHeader();
1266 if (Header && BlockWeights[BB] > BlockWeights[Header]) {
1267 BlockWeights[Header] = BlockWeights[BB];
1271 // Before propagation starts, build, for each block, a list of
1272 // unique predecessors and successors. This is necessary to handle
1273 // identical edges in multiway branches. Since we visit all blocks and all
1274 // edges of the CFG, it is cleaner to build these lists once at the start
1275 // of the pass.
1276 buildEdges(F);
1278 // Propagate until we converge or we go past the iteration limit.
1279 while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1280 Changed = propagateThroughEdges(F, false);
1283 // The first propagation propagates BB counts from annotated BBs to unknown
1284 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1285 // to propagate edge weights.
1286 VisitedEdges.clear();
1287 Changed = true;
1288 while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1289 Changed = propagateThroughEdges(F, false);
1292 // The 3rd propagation pass allows adjust annotated BB weights that are
1293 // obviously wrong.
1294 Changed = true;
1295 while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1296 Changed = propagateThroughEdges(F, true);
1299 // Generate MD_prof metadata for every branch instruction using the
1300 // edge weights computed during propagation.
1301 LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1302 LLVMContext &Ctx = F.getContext();
1303 MDBuilder MDB(Ctx);
1304 for (auto &BI : F) {
1305 BasicBlock *BB = &BI;
1307 if (BlockWeights[BB]) {
1308 for (auto &I : BB->getInstList()) {
1309 if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
1310 continue;
1311 CallSite CS(&I);
1312 if (!CS.getCalledFunction()) {
1313 const DebugLoc &DLoc = I.getDebugLoc();
1314 if (!DLoc)
1315 continue;
1316 const DILocation *DIL = DLoc;
1317 uint32_t LineOffset = FunctionSamples::getOffset(DIL);
1318 uint32_t Discriminator = DIL->getBaseDiscriminator();
1320 const FunctionSamples *FS = findFunctionSamples(I);
1321 if (!FS)
1322 continue;
1323 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
1324 if (!T || T.get().empty())
1325 continue;
1326 SmallVector<InstrProfValueData, 2> SortedCallTargets =
1327 SortCallTargets(T.get());
1328 uint64_t Sum;
1329 findIndirectCallFunctionSamples(I, Sum);
1330 annotateValueSite(*I.getParent()->getParent()->getParent(), I,
1331 SortedCallTargets, Sum, IPVK_IndirectCallTarget,
1332 SortedCallTargets.size());
1333 } else if (!isa<IntrinsicInst>(&I)) {
1334 I.setMetadata(LLVMContext::MD_prof,
1335 MDB.createBranchWeights(
1336 {static_cast<uint32_t>(BlockWeights[BB])}));
1340 Instruction *TI = BB->getTerminator();
1341 if (TI->getNumSuccessors() == 1)
1342 continue;
1343 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1344 continue;
1346 DebugLoc BranchLoc = TI->getDebugLoc();
1347 LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line "
1348 << ((BranchLoc) ? Twine(BranchLoc.getLine())
1349 : Twine("<UNKNOWN LOCATION>"))
1350 << ".\n");
1351 SmallVector<uint32_t, 4> Weights;
1352 uint32_t MaxWeight = 0;
1353 Instruction *MaxDestInst;
1354 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1355 BasicBlock *Succ = TI->getSuccessor(I);
1356 Edge E = std::make_pair(BB, Succ);
1357 uint64_t Weight = EdgeWeights[E];
1358 LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1359 // Use uint32_t saturated arithmetic to adjust the incoming weights,
1360 // if needed. Sample counts in profiles are 64-bit unsigned values,
1361 // but internally branch weights are expressed as 32-bit values.
1362 if (Weight > std::numeric_limits<uint32_t>::max()) {
1363 LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1364 Weight = std::numeric_limits<uint32_t>::max();
1366 // Weight is added by one to avoid propagation errors introduced by
1367 // 0 weights.
1368 Weights.push_back(static_cast<uint32_t>(Weight + 1));
1369 if (Weight != 0) {
1370 if (Weight > MaxWeight) {
1371 MaxWeight = Weight;
1372 MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime();
1377 uint64_t TempWeight;
1378 // Only set weights if there is at least one non-zero weight.
1379 // In any other case, let the analyzer set weights.
1380 // Do not set weights if the weights are present. In ThinLTO, the profile
1381 // annotation is done twice. If the first annotation already set the
1382 // weights, the second pass does not need to set it.
1383 if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
1384 LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1385 TI->setMetadata(LLVMContext::MD_prof,
1386 MDB.createBranchWeights(Weights));
1387 ORE->emit([&]() {
1388 return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst)
1389 << "most popular destination for conditional branches at "
1390 << ore::NV("CondBranchesLoc", BranchLoc);
1392 } else {
1393 LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1398 /// Get the line number for the function header.
1400 /// This looks up function \p F in the current compilation unit and
1401 /// retrieves the line number where the function is defined. This is
1402 /// line 0 for all the samples read from the profile file. Every line
1403 /// number is relative to this line.
1405 /// \param F Function object to query.
1407 /// \returns the line number where \p F is defined. If it returns 0,
1408 /// it means that there is no debug information available for \p F.
1409 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1410 if (DISubprogram *S = F.getSubprogram())
1411 return S->getLine();
1413 if (NoWarnSampleUnused)
1414 return 0;
1416 // If the start of \p F is missing, emit a diagnostic to inform the user
1417 // about the missed opportunity.
1418 F.getContext().diagnose(DiagnosticInfoSampleProfile(
1419 "No debug information found in function " + F.getName() +
1420 ": Function profile not used",
1421 DS_Warning));
1422 return 0;
1425 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1426 DT.reset(new DominatorTree);
1427 DT->recalculate(F);
1429 PDT.reset(new PostDominatorTree(F));
1431 LI.reset(new LoopInfo);
1432 LI->analyze(*DT);
1435 /// Generate branch weight metadata for all branches in \p F.
1437 /// Branch weights are computed out of instruction samples using a
1438 /// propagation heuristic. Propagation proceeds in 3 phases:
1440 /// 1- Assignment of block weights. All the basic blocks in the function
1441 /// are initial assigned the same weight as their most frequently
1442 /// executed instruction.
1444 /// 2- Creation of equivalence classes. Since samples may be missing from
1445 /// blocks, we can fill in the gaps by setting the weights of all the
1446 /// blocks in the same equivalence class to the same weight. To compute
1447 /// the concept of equivalence, we use dominance and loop information.
1448 /// Two blocks B1 and B2 are in the same equivalence class if B1
1449 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
1451 /// 3- Propagation of block weights into edges. This uses a simple
1452 /// propagation heuristic. The following rules are applied to every
1453 /// block BB in the CFG:
1455 /// - If BB has a single predecessor/successor, then the weight
1456 /// of that edge is the weight of the block.
1458 /// - If all the edges are known except one, and the weight of the
1459 /// block is already known, the weight of the unknown edge will
1460 /// be the weight of the block minus the sum of all the known
1461 /// edges. If the sum of all the known edges is larger than BB's weight,
1462 /// we set the unknown edge weight to zero.
1464 /// - If there is a self-referential edge, and the weight of the block is
1465 /// known, the weight for that edge is set to the weight of the block
1466 /// minus the weight of the other incoming edges to that block (if
1467 /// known).
1469 /// Since this propagation is not guaranteed to finalize for every CFG, we
1470 /// only allow it to proceed for a limited number of iterations (controlled
1471 /// by -sample-profile-max-propagate-iterations).
1473 /// FIXME: Try to replace this propagation heuristic with a scheme
1474 /// that is guaranteed to finalize. A work-list approach similar to
1475 /// the standard value propagation algorithm used by SSA-CCP might
1476 /// work here.
1478 /// Once all the branch weights are computed, we emit the MD_prof
1479 /// metadata on BB using the computed values for each of its branches.
1481 /// \param F The function to query.
1483 /// \returns true if \p F was modified. Returns false, otherwise.
1484 bool SampleProfileLoader::emitAnnotations(Function &F) {
1485 bool Changed = false;
1487 if (getFunctionLoc(F) == 0)
1488 return false;
1490 LLVM_DEBUG(dbgs() << "Line number for the first instruction in "
1491 << F.getName() << ": " << getFunctionLoc(F) << "\n");
1493 DenseSet<GlobalValue::GUID> InlinedGUIDs;
1494 Changed |= inlineHotFunctions(F, InlinedGUIDs);
1496 // Compute basic block weights.
1497 Changed |= computeBlockWeights(F);
1499 if (Changed) {
1500 // Add an entry count to the function using the samples gathered at the
1501 // function entry.
1502 // Sets the GUIDs that are inlined in the profiled binary. This is used
1503 // for ThinLink to make correct liveness analysis, and also make the IR
1504 // match the profiled binary before annotation.
1505 F.setEntryCount(
1506 ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
1507 &InlinedGUIDs);
1509 // Compute dominance and loop info needed for propagation.
1510 computeDominanceAndLoopInfo(F);
1512 // Find equivalence classes.
1513 findEquivalenceClasses(F);
1515 // Propagate weights to all edges.
1516 propagateWeights(F);
1519 // If coverage checking was requested, compute it now.
1520 if (SampleProfileRecordCoverage) {
1521 unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI);
1522 unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI);
1523 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1524 if (Coverage < SampleProfileRecordCoverage) {
1525 F.getContext().diagnose(DiagnosticInfoSampleProfile(
1526 F.getSubprogram()->getFilename(), getFunctionLoc(F),
1527 Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1528 Twine(Coverage) + "%) were applied",
1529 DS_Warning));
1533 if (SampleProfileSampleCoverage) {
1534 uint64_t Used = CoverageTracker.getTotalUsedSamples();
1535 uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI);
1536 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1537 if (Coverage < SampleProfileSampleCoverage) {
1538 F.getContext().diagnose(DiagnosticInfoSampleProfile(
1539 F.getSubprogram()->getFilename(), getFunctionLoc(F),
1540 Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1541 Twine(Coverage) + "%) were applied",
1542 DS_Warning));
1545 return Changed;
1548 char SampleProfileLoaderLegacyPass::ID = 0;
1550 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1551 "Sample Profile loader", false, false)
1552 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1553 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1554 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1555 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1556 "Sample Profile loader", false, false)
1558 bool SampleProfileLoader::doInitialization(Module &M) {
1559 auto &Ctx = M.getContext();
1560 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx);
1561 if (std::error_code EC = ReaderOrErr.getError()) {
1562 std::string Msg = "Could not open profile: " + EC.message();
1563 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1564 return false;
1566 Reader = std::move(ReaderOrErr.get());
1567 Reader->collectFuncsToUse(M);
1568 ProfileIsValid = (Reader->read() == sampleprof_error::success);
1570 if (!RemappingFilename.empty()) {
1571 // Apply profile remappings to the loaded profile data if requested.
1572 // For now, we only support remapping symbols encoded using the Itanium
1573 // C++ ABI's name mangling scheme.
1574 ReaderOrErr = SampleProfileReaderItaniumRemapper::create(
1575 RemappingFilename, Ctx, std::move(Reader));
1576 if (std::error_code EC = ReaderOrErr.getError()) {
1577 std::string Msg = "Could not open profile remapping file: " + EC.message();
1578 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1579 return false;
1581 Reader = std::move(ReaderOrErr.get());
1582 ProfileIsValid = (Reader->read() == sampleprof_error::success);
1584 return true;
1587 ModulePass *llvm::createSampleProfileLoaderPass() {
1588 return new SampleProfileLoaderLegacyPass();
1591 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1592 return new SampleProfileLoaderLegacyPass(Name);
1595 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM,
1596 ProfileSummaryInfo *_PSI) {
1597 FunctionSamples::GUIDToFuncNameMapper Mapper(M);
1598 if (!ProfileIsValid)
1599 return false;
1601 PSI = _PSI;
1602 if (M.getProfileSummary(/* IsCS */ false) == nullptr)
1603 M.setProfileSummary(Reader->getSummary().getMD(M.getContext()),
1604 ProfileSummary::PSK_Sample);
1606 // Compute the total number of samples collected in this profile.
1607 for (const auto &I : Reader->getProfiles())
1608 TotalCollectedSamples += I.second.getTotalSamples();
1610 // Populate the symbol map.
1611 for (const auto &N_F : M.getValueSymbolTable()) {
1612 StringRef OrigName = N_F.getKey();
1613 Function *F = dyn_cast<Function>(N_F.getValue());
1614 if (F == nullptr)
1615 continue;
1616 SymbolMap[OrigName] = F;
1617 auto pos = OrigName.find('.');
1618 if (pos != StringRef::npos) {
1619 StringRef NewName = OrigName.substr(0, pos);
1620 auto r = SymbolMap.insert(std::make_pair(NewName, F));
1621 // Failiing to insert means there is already an entry in SymbolMap,
1622 // thus there are multiple functions that are mapped to the same
1623 // stripped name. In this case of name conflicting, set the value
1624 // to nullptr to avoid confusion.
1625 if (!r.second)
1626 r.first->second = nullptr;
1630 bool retval = false;
1631 for (auto &F : M)
1632 if (!F.isDeclaration()) {
1633 clearFunctionData();
1634 retval |= runOnFunction(F, AM);
1637 // Account for cold calls not inlined....
1638 for (const std::pair<Function *, NotInlinedProfileInfo> &pair :
1639 notInlinedCallInfo)
1640 updateProfileCallee(pair.first, pair.second.entryCount);
1642 return retval;
1645 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1646 ACT = &getAnalysis<AssumptionCacheTracker>();
1647 TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>();
1648 ProfileSummaryInfo *PSI =
1649 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1650 return SampleLoader.runOnModule(M, nullptr, PSI);
1653 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) {
1655 DILocation2SampleMap.clear();
1656 // By default the entry count is initialized to -1, which will be treated
1657 // conservatively by getEntryCount as the same as unknown (None). This is
1658 // to avoid newly added code to be treated as cold. If we have samples
1659 // this will be overwritten in emitAnnotations.
1660 // If ProfileSampleAccurate is true or F has profile-sample-accurate
1661 // attribute, initialize the entry count to 0 so callsites or functions
1662 // unsampled will be treated as cold.
1663 uint64_t initialEntryCount =
1664 (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate"))
1666 : -1;
1667 F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real));
1668 std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
1669 if (AM) {
1670 auto &FAM =
1671 AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent())
1672 .getManager();
1673 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1674 } else {
1675 OwnedORE = make_unique<OptimizationRemarkEmitter>(&F);
1676 ORE = OwnedORE.get();
1678 Samples = Reader->getSamplesFor(F);
1679 if (Samples && !Samples->empty())
1680 return emitAnnotations(F);
1681 return false;
1684 PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
1685 ModuleAnalysisManager &AM) {
1686 FunctionAnalysisManager &FAM =
1687 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1689 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
1690 return FAM.getResult<AssumptionAnalysis>(F);
1692 auto GetTTI = [&](Function &F) -> TargetTransformInfo & {
1693 return FAM.getResult<TargetIRAnalysis>(F);
1696 SampleProfileLoader SampleLoader(
1697 ProfileFileName.empty() ? SampleProfileFile : ProfileFileName,
1698 ProfileRemappingFileName.empty() ? SampleProfileRemappingFile
1699 : ProfileRemappingFileName,
1700 IsThinLTOPreLink, GetAssumptionCache, GetTTI);
1702 SampleLoader.doInitialization(M);
1704 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
1705 if (!SampleLoader.runOnModule(M, &AM, PSI))
1706 return PreservedAnalyses::all();
1708 return PreservedAnalyses::none();