[ARM] Rejig MVE load store tests. NFC
[llvm-core.git] / lib / Transforms / Vectorize / SLPVectorizer.cpp
blobe1b2653e50857d40637ba673540b1e2b9c6a765b
1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10 // stores that can be put together into vector-stores. Next, it attempts to
11 // construct vectorizable tree using the use-def chains. If a profitable tree
12 // was found, the SLP vectorizer performs vectorization on the tree.
14 // The pass is inspired by the work described in the paper:
15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
17 //===----------------------------------------------------------------------===//
19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/None.h"
25 #include "llvm/ADT/Optional.h"
26 #include "llvm/ADT/PostOrderIterator.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SetVector.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/ADT/iterator.h"
34 #include "llvm/ADT/iterator_range.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/Analysis/CodeMetrics.h"
37 #include "llvm/Analysis/DemandedBits.h"
38 #include "llvm/Analysis/GlobalsModRef.h"
39 #include "llvm/Analysis/LoopAccessAnalysis.h"
40 #include "llvm/Analysis/LoopInfo.h"
41 #include "llvm/Analysis/MemoryLocation.h"
42 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
43 #include "llvm/Analysis/ScalarEvolution.h"
44 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
45 #include "llvm/Analysis/TargetLibraryInfo.h"
46 #include "llvm/Analysis/TargetTransformInfo.h"
47 #include "llvm/Analysis/ValueTracking.h"
48 #include "llvm/Analysis/VectorUtils.h"
49 #include "llvm/IR/Attributes.h"
50 #include "llvm/IR/BasicBlock.h"
51 #include "llvm/IR/Constant.h"
52 #include "llvm/IR/Constants.h"
53 #include "llvm/IR/DataLayout.h"
54 #include "llvm/IR/DebugLoc.h"
55 #include "llvm/IR/DerivedTypes.h"
56 #include "llvm/IR/Dominators.h"
57 #include "llvm/IR/Function.h"
58 #include "llvm/IR/IRBuilder.h"
59 #include "llvm/IR/InstrTypes.h"
60 #include "llvm/IR/Instruction.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/IR/Intrinsics.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/NoFolder.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PassManager.h"
68 #include "llvm/IR/PatternMatch.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/IR/ValueHandle.h"
74 #include "llvm/IR/Verifier.h"
75 #include "llvm/Pass.h"
76 #include "llvm/Support/Casting.h"
77 #include "llvm/Support/CommandLine.h"
78 #include "llvm/Support/Compiler.h"
79 #include "llvm/Support/DOTGraphTraits.h"
80 #include "llvm/Support/Debug.h"
81 #include "llvm/Support/ErrorHandling.h"
82 #include "llvm/Support/GraphWriter.h"
83 #include "llvm/Support/KnownBits.h"
84 #include "llvm/Support/MathExtras.h"
85 #include "llvm/Support/raw_ostream.h"
86 #include "llvm/Transforms/Utils/LoopUtils.h"
87 #include "llvm/Transforms/Vectorize.h"
88 #include <algorithm>
89 #include <cassert>
90 #include <cstdint>
91 #include <iterator>
92 #include <memory>
93 #include <set>
94 #include <string>
95 #include <tuple>
96 #include <utility>
97 #include <vector>
99 using namespace llvm;
100 using namespace llvm::PatternMatch;
101 using namespace slpvectorizer;
103 #define SV_NAME "slp-vectorizer"
104 #define DEBUG_TYPE "SLP"
106 STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
108 cl::opt<bool>
109 llvm::RunSLPVectorization("vectorize-slp", cl::init(false), cl::Hidden,
110 cl::desc("Run the SLP vectorization passes"));
112 static cl::opt<int>
113 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
114 cl::desc("Only vectorize if you gain more than this "
115 "number "));
117 static cl::opt<bool>
118 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
119 cl::desc("Attempt to vectorize horizontal reductions"));
121 static cl::opt<bool> ShouldStartVectorizeHorAtStore(
122 "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
123 cl::desc(
124 "Attempt to vectorize horizontal reductions feeding into a store"));
126 static cl::opt<int>
127 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
128 cl::desc("Attempt to vectorize for this register size in bits"));
130 /// Limits the size of scheduling regions in a block.
131 /// It avoid long compile times for _very_ large blocks where vector
132 /// instructions are spread over a wide range.
133 /// This limit is way higher than needed by real-world functions.
134 static cl::opt<int>
135 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
136 cl::desc("Limit the size of the SLP scheduling region per block"));
138 static cl::opt<int> MinVectorRegSizeOption(
139 "slp-min-reg-size", cl::init(128), cl::Hidden,
140 cl::desc("Attempt to vectorize for this register size in bits"));
142 static cl::opt<unsigned> RecursionMaxDepth(
143 "slp-recursion-max-depth", cl::init(12), cl::Hidden,
144 cl::desc("Limit the recursion depth when building a vectorizable tree"));
146 static cl::opt<unsigned> MinTreeSize(
147 "slp-min-tree-size", cl::init(3), cl::Hidden,
148 cl::desc("Only vectorize small trees if they are fully vectorizable"));
150 static cl::opt<bool>
151 ViewSLPTree("view-slp-tree", cl::Hidden,
152 cl::desc("Display the SLP trees with Graphviz"));
154 // Limit the number of alias checks. The limit is chosen so that
155 // it has no negative effect on the llvm benchmarks.
156 static const unsigned AliasedCheckLimit = 10;
158 // Another limit for the alias checks: The maximum distance between load/store
159 // instructions where alias checks are done.
160 // This limit is useful for very large basic blocks.
161 static const unsigned MaxMemDepDistance = 160;
163 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
164 /// regions to be handled.
165 static const int MinScheduleRegionSize = 16;
167 /// Predicate for the element types that the SLP vectorizer supports.
169 /// The most important thing to filter here are types which are invalid in LLVM
170 /// vectors. We also filter target specific types which have absolutely no
171 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
172 /// avoids spending time checking the cost model and realizing that they will
173 /// be inevitably scalarized.
174 static bool isValidElementType(Type *Ty) {
175 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
176 !Ty->isPPC_FP128Ty();
179 /// \returns true if all of the instructions in \p VL are in the same block or
180 /// false otherwise.
181 static bool allSameBlock(ArrayRef<Value *> VL) {
182 Instruction *I0 = dyn_cast<Instruction>(VL[0]);
183 if (!I0)
184 return false;
185 BasicBlock *BB = I0->getParent();
186 for (int i = 1, e = VL.size(); i < e; i++) {
187 Instruction *I = dyn_cast<Instruction>(VL[i]);
188 if (!I)
189 return false;
191 if (BB != I->getParent())
192 return false;
194 return true;
197 /// \returns True if all of the values in \p VL are constants.
198 static bool allConstant(ArrayRef<Value *> VL) {
199 for (Value *i : VL)
200 if (!isa<Constant>(i))
201 return false;
202 return true;
205 /// \returns True if all of the values in \p VL are identical.
206 static bool isSplat(ArrayRef<Value *> VL) {
207 for (unsigned i = 1, e = VL.size(); i < e; ++i)
208 if (VL[i] != VL[0])
209 return false;
210 return true;
213 /// \returns True if \p I is commutative, handles CmpInst as well as Instruction.
214 static bool isCommutative(Instruction *I) {
215 if (auto *IC = dyn_cast<CmpInst>(I))
216 return IC->isCommutative();
217 return I->isCommutative();
220 /// Checks if the vector of instructions can be represented as a shuffle, like:
221 /// %x0 = extractelement <4 x i8> %x, i32 0
222 /// %x3 = extractelement <4 x i8> %x, i32 3
223 /// %y1 = extractelement <4 x i8> %y, i32 1
224 /// %y2 = extractelement <4 x i8> %y, i32 2
225 /// %x0x0 = mul i8 %x0, %x0
226 /// %x3x3 = mul i8 %x3, %x3
227 /// %y1y1 = mul i8 %y1, %y1
228 /// %y2y2 = mul i8 %y2, %y2
229 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0
230 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
231 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
232 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
233 /// ret <4 x i8> %ins4
234 /// can be transformed into:
235 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
236 /// i32 6>
237 /// %2 = mul <4 x i8> %1, %1
238 /// ret <4 x i8> %2
239 /// We convert this initially to something like:
240 /// %x0 = extractelement <4 x i8> %x, i32 0
241 /// %x3 = extractelement <4 x i8> %x, i32 3
242 /// %y1 = extractelement <4 x i8> %y, i32 1
243 /// %y2 = extractelement <4 x i8> %y, i32 2
244 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0
245 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
246 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
247 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
248 /// %5 = mul <4 x i8> %4, %4
249 /// %6 = extractelement <4 x i8> %5, i32 0
250 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0
251 /// %7 = extractelement <4 x i8> %5, i32 1
252 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
253 /// %8 = extractelement <4 x i8> %5, i32 2
254 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
255 /// %9 = extractelement <4 x i8> %5, i32 3
256 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
257 /// ret <4 x i8> %ins4
258 /// InstCombiner transforms this into a shuffle and vector mul
259 /// TODO: Can we split off and reuse the shuffle mask detection from
260 /// TargetTransformInfo::getInstructionThroughput?
261 static Optional<TargetTransformInfo::ShuffleKind>
262 isShuffle(ArrayRef<Value *> VL) {
263 auto *EI0 = cast<ExtractElementInst>(VL[0]);
264 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements();
265 Value *Vec1 = nullptr;
266 Value *Vec2 = nullptr;
267 enum ShuffleMode { Unknown, Select, Permute };
268 ShuffleMode CommonShuffleMode = Unknown;
269 for (unsigned I = 0, E = VL.size(); I < E; ++I) {
270 auto *EI = cast<ExtractElementInst>(VL[I]);
271 auto *Vec = EI->getVectorOperand();
272 // All vector operands must have the same number of vector elements.
273 if (Vec->getType()->getVectorNumElements() != Size)
274 return None;
275 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
276 if (!Idx)
277 return None;
278 // Undefined behavior if Idx is negative or >= Size.
279 if (Idx->getValue().uge(Size))
280 continue;
281 unsigned IntIdx = Idx->getValue().getZExtValue();
282 // We can extractelement from undef vector.
283 if (isa<UndefValue>(Vec))
284 continue;
285 // For correct shuffling we have to have at most 2 different vector operands
286 // in all extractelement instructions.
287 if (!Vec1 || Vec1 == Vec)
288 Vec1 = Vec;
289 else if (!Vec2 || Vec2 == Vec)
290 Vec2 = Vec;
291 else
292 return None;
293 if (CommonShuffleMode == Permute)
294 continue;
295 // If the extract index is not the same as the operation number, it is a
296 // permutation.
297 if (IntIdx != I) {
298 CommonShuffleMode = Permute;
299 continue;
301 CommonShuffleMode = Select;
303 // If we're not crossing lanes in different vectors, consider it as blending.
304 if (CommonShuffleMode == Select && Vec2)
305 return TargetTransformInfo::SK_Select;
306 // If Vec2 was never used, we have a permutation of a single vector, otherwise
307 // we have permutation of 2 vectors.
308 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
309 : TargetTransformInfo::SK_PermuteSingleSrc;
312 namespace {
314 /// Main data required for vectorization of instructions.
315 struct InstructionsState {
316 /// The very first instruction in the list with the main opcode.
317 Value *OpValue = nullptr;
319 /// The main/alternate instruction.
320 Instruction *MainOp = nullptr;
321 Instruction *AltOp = nullptr;
323 /// The main/alternate opcodes for the list of instructions.
324 unsigned getOpcode() const {
325 return MainOp ? MainOp->getOpcode() : 0;
328 unsigned getAltOpcode() const {
329 return AltOp ? AltOp->getOpcode() : 0;
332 /// Some of the instructions in the list have alternate opcodes.
333 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); }
335 bool isOpcodeOrAlt(Instruction *I) const {
336 unsigned CheckedOpcode = I->getOpcode();
337 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
340 InstructionsState() = delete;
341 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
342 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
345 } // end anonymous namespace
347 /// Chooses the correct key for scheduling data. If \p Op has the same (or
348 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
349 /// OpValue.
350 static Value *isOneOf(const InstructionsState &S, Value *Op) {
351 auto *I = dyn_cast<Instruction>(Op);
352 if (I && S.isOpcodeOrAlt(I))
353 return Op;
354 return S.OpValue;
357 /// \returns analysis of the Instructions in \p VL described in
358 /// InstructionsState, the Opcode that we suppose the whole list
359 /// could be vectorized even if its structure is diverse.
360 static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
361 unsigned BaseIndex = 0) {
362 // Make sure these are all Instructions.
363 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
364 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
366 bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
367 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
368 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
369 unsigned AltOpcode = Opcode;
370 unsigned AltIndex = BaseIndex;
372 // Check for one alternate opcode from another BinaryOperator.
373 // TODO - generalize to support all operators (types, calls etc.).
374 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
375 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
376 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
377 if (InstOpcode == Opcode || InstOpcode == AltOpcode)
378 continue;
379 if (Opcode == AltOpcode) {
380 AltOpcode = InstOpcode;
381 AltIndex = Cnt;
382 continue;
384 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
385 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
386 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
387 if (Ty0 == Ty1) {
388 if (InstOpcode == Opcode || InstOpcode == AltOpcode)
389 continue;
390 if (Opcode == AltOpcode) {
391 AltOpcode = InstOpcode;
392 AltIndex = Cnt;
393 continue;
396 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
397 continue;
398 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
401 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
402 cast<Instruction>(VL[AltIndex]));
405 /// \returns true if all of the values in \p VL have the same type or false
406 /// otherwise.
407 static bool allSameType(ArrayRef<Value *> VL) {
408 Type *Ty = VL[0]->getType();
409 for (int i = 1, e = VL.size(); i < e; i++)
410 if (VL[i]->getType() != Ty)
411 return false;
413 return true;
416 /// \returns True if Extract{Value,Element} instruction extracts element Idx.
417 static Optional<unsigned> getExtractIndex(Instruction *E) {
418 unsigned Opcode = E->getOpcode();
419 assert((Opcode == Instruction::ExtractElement ||
420 Opcode == Instruction::ExtractValue) &&
421 "Expected extractelement or extractvalue instruction.");
422 if (Opcode == Instruction::ExtractElement) {
423 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
424 if (!CI)
425 return None;
426 return CI->getZExtValue();
428 ExtractValueInst *EI = cast<ExtractValueInst>(E);
429 if (EI->getNumIndices() != 1)
430 return None;
431 return *EI->idx_begin();
434 /// \returns True if in-tree use also needs extract. This refers to
435 /// possible scalar operand in vectorized instruction.
436 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
437 TargetLibraryInfo *TLI) {
438 unsigned Opcode = UserInst->getOpcode();
439 switch (Opcode) {
440 case Instruction::Load: {
441 LoadInst *LI = cast<LoadInst>(UserInst);
442 return (LI->getPointerOperand() == Scalar);
444 case Instruction::Store: {
445 StoreInst *SI = cast<StoreInst>(UserInst);
446 return (SI->getPointerOperand() == Scalar);
448 case Instruction::Call: {
449 CallInst *CI = cast<CallInst>(UserInst);
450 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
451 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
452 if (hasVectorInstrinsicScalarOpd(ID, i))
453 return (CI->getArgOperand(i) == Scalar);
455 LLVM_FALLTHROUGH;
457 default:
458 return false;
462 /// \returns the AA location that is being access by the instruction.
463 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) {
464 if (StoreInst *SI = dyn_cast<StoreInst>(I))
465 return MemoryLocation::get(SI);
466 if (LoadInst *LI = dyn_cast<LoadInst>(I))
467 return MemoryLocation::get(LI);
468 return MemoryLocation();
471 /// \returns True if the instruction is not a volatile or atomic load/store.
472 static bool isSimple(Instruction *I) {
473 if (LoadInst *LI = dyn_cast<LoadInst>(I))
474 return LI->isSimple();
475 if (StoreInst *SI = dyn_cast<StoreInst>(I))
476 return SI->isSimple();
477 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
478 return !MI->isVolatile();
479 return true;
482 namespace llvm {
484 namespace slpvectorizer {
486 /// Bottom Up SLP Vectorizer.
487 class BoUpSLP {
488 struct TreeEntry;
490 public:
491 using ValueList = SmallVector<Value *, 8>;
492 using InstrList = SmallVector<Instruction *, 16>;
493 using ValueSet = SmallPtrSet<Value *, 16>;
494 using StoreList = SmallVector<StoreInst *, 8>;
495 using ExtraValueToDebugLocsMap =
496 MapVector<Value *, SmallVector<Instruction *, 2>>;
498 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
499 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li,
500 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
501 const DataLayout *DL, OptimizationRemarkEmitter *ORE)
502 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
503 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
504 CodeMetrics::collectEphemeralValues(F, AC, EphValues);
505 // Use the vector register size specified by the target unless overridden
506 // by a command-line option.
507 // TODO: It would be better to limit the vectorization factor based on
508 // data type rather than just register size. For example, x86 AVX has
509 // 256-bit registers, but it does not support integer operations
510 // at that width (that requires AVX2).
511 if (MaxVectorRegSizeOption.getNumOccurrences())
512 MaxVecRegSize = MaxVectorRegSizeOption;
513 else
514 MaxVecRegSize = TTI->getRegisterBitWidth(true);
516 if (MinVectorRegSizeOption.getNumOccurrences())
517 MinVecRegSize = MinVectorRegSizeOption;
518 else
519 MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
522 /// Vectorize the tree that starts with the elements in \p VL.
523 /// Returns the vectorized root.
524 Value *vectorizeTree();
526 /// Vectorize the tree but with the list of externally used values \p
527 /// ExternallyUsedValues. Values in this MapVector can be replaced but the
528 /// generated extractvalue instructions.
529 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
531 /// \returns the cost incurred by unwanted spills and fills, caused by
532 /// holding live values over call sites.
533 int getSpillCost() const;
535 /// \returns the vectorization cost of the subtree that starts at \p VL.
536 /// A negative number means that this is profitable.
537 int getTreeCost();
539 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
540 /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
541 void buildTree(ArrayRef<Value *> Roots,
542 ArrayRef<Value *> UserIgnoreLst = None);
544 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
545 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
546 /// into account (anf updating it, if required) list of externally used
547 /// values stored in \p ExternallyUsedValues.
548 void buildTree(ArrayRef<Value *> Roots,
549 ExtraValueToDebugLocsMap &ExternallyUsedValues,
550 ArrayRef<Value *> UserIgnoreLst = None);
552 /// Clear the internal data structures that are created by 'buildTree'.
553 void deleteTree() {
554 VectorizableTree.clear();
555 ScalarToTreeEntry.clear();
556 MustGather.clear();
557 ExternalUses.clear();
558 NumOpsWantToKeepOrder.clear();
559 NumOpsWantToKeepOriginalOrder = 0;
560 for (auto &Iter : BlocksSchedules) {
561 BlockScheduling *BS = Iter.second.get();
562 BS->clear();
564 MinBWs.clear();
567 unsigned getTreeSize() const { return VectorizableTree.size(); }
569 /// Perform LICM and CSE on the newly generated gather sequences.
570 void optimizeGatherSequence();
572 /// \returns The best order of instructions for vectorization.
573 Optional<ArrayRef<unsigned>> bestOrder() const {
574 auto I = std::max_element(
575 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(),
576 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1,
577 const decltype(NumOpsWantToKeepOrder)::value_type &D2) {
578 return D1.second < D2.second;
580 if (I == NumOpsWantToKeepOrder.end() ||
581 I->getSecond() <= NumOpsWantToKeepOriginalOrder)
582 return None;
584 return makeArrayRef(I->getFirst());
587 /// \return The vector element size in bits to use when vectorizing the
588 /// expression tree ending at \p V. If V is a store, the size is the width of
589 /// the stored value. Otherwise, the size is the width of the largest loaded
590 /// value reaching V. This method is used by the vectorizer to calculate
591 /// vectorization factors.
592 unsigned getVectorElementSize(Value *V) const;
594 /// Compute the minimum type sizes required to represent the entries in a
595 /// vectorizable tree.
596 void computeMinimumValueSizes();
598 // \returns maximum vector register size as set by TTI or overridden by cl::opt.
599 unsigned getMaxVecRegSize() const {
600 return MaxVecRegSize;
603 // \returns minimum vector register size as set by cl::opt.
604 unsigned getMinVecRegSize() const {
605 return MinVecRegSize;
608 /// Check if ArrayType or StructType is isomorphic to some VectorType.
610 /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
611 unsigned canMapToVector(Type *T, const DataLayout &DL) const;
613 /// \returns True if the VectorizableTree is both tiny and not fully
614 /// vectorizable. We do not vectorize such trees.
615 bool isTreeTinyAndNotFullyVectorizable() const;
617 OptimizationRemarkEmitter *getORE() { return ORE; }
619 /// This structure holds any data we need about the edges being traversed
620 /// during buildTree_rec(). We keep track of:
621 /// (i) the user TreeEntry index, and
622 /// (ii) the index of the edge.
623 struct EdgeInfo {
624 EdgeInfo() = default;
625 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
626 : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
627 /// The user TreeEntry.
628 TreeEntry *UserTE = nullptr;
629 /// The operand index of the use.
630 unsigned EdgeIdx = UINT_MAX;
631 #ifndef NDEBUG
632 friend inline raw_ostream &operator<<(raw_ostream &OS,
633 const BoUpSLP::EdgeInfo &EI) {
634 EI.dump(OS);
635 return OS;
637 /// Debug print.
638 void dump(raw_ostream &OS) const {
639 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
640 << " EdgeIdx:" << EdgeIdx << "}";
642 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); }
643 #endif
646 /// A helper data structure to hold the operands of a vector of instructions.
647 /// This supports a fixed vector length for all operand vectors.
648 class VLOperands {
649 /// For each operand we need (i) the value, and (ii) the opcode that it
650 /// would be attached to if the expression was in a left-linearized form.
651 /// This is required to avoid illegal operand reordering.
652 /// For example:
653 /// \verbatim
654 /// 0 Op1
655 /// |/
656 /// Op1 Op2 Linearized + Op2
657 /// \ / ----------> |/
658 /// - -
660 /// Op1 - Op2 (0 + Op1) - Op2
661 /// \endverbatim
663 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
665 /// Another way to think of this is to track all the operations across the
666 /// path from the operand all the way to the root of the tree and to
667 /// calculate the operation that corresponds to this path. For example, the
668 /// path from Op2 to the root crosses the RHS of the '-', therefore the
669 /// corresponding operation is a '-' (which matches the one in the
670 /// linearized tree, as shown above).
672 /// For lack of a better term, we refer to this operation as Accumulated
673 /// Path Operation (APO).
674 struct OperandData {
675 OperandData() = default;
676 OperandData(Value *V, bool APO, bool IsUsed)
677 : V(V), APO(APO), IsUsed(IsUsed) {}
678 /// The operand value.
679 Value *V = nullptr;
680 /// TreeEntries only allow a single opcode, or an alternate sequence of
681 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
682 /// APO. It is set to 'true' if 'V' is attached to an inverse operation
683 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
684 /// (e.g., Add/Mul)
685 bool APO = false;
686 /// Helper data for the reordering function.
687 bool IsUsed = false;
690 /// During operand reordering, we are trying to select the operand at lane
691 /// that matches best with the operand at the neighboring lane. Our
692 /// selection is based on the type of value we are looking for. For example,
693 /// if the neighboring lane has a load, we need to look for a load that is
694 /// accessing a consecutive address. These strategies are summarized in the
695 /// 'ReorderingMode' enumerator.
696 enum class ReorderingMode {
697 Load, ///< Matching loads to consecutive memory addresses
698 Opcode, ///< Matching instructions based on opcode (same or alternate)
699 Constant, ///< Matching constants
700 Splat, ///< Matching the same instruction multiple times (broadcast)
701 Failed, ///< We failed to create a vectorizable group
704 using OperandDataVec = SmallVector<OperandData, 2>;
706 /// A vector of operand vectors.
707 SmallVector<OperandDataVec, 4> OpsVec;
709 const DataLayout &DL;
710 ScalarEvolution &SE;
712 /// \returns the operand data at \p OpIdx and \p Lane.
713 OperandData &getData(unsigned OpIdx, unsigned Lane) {
714 return OpsVec[OpIdx][Lane];
717 /// \returns the operand data at \p OpIdx and \p Lane. Const version.
718 const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
719 return OpsVec[OpIdx][Lane];
722 /// Clears the used flag for all entries.
723 void clearUsed() {
724 for (unsigned OpIdx = 0, NumOperands = getNumOperands();
725 OpIdx != NumOperands; ++OpIdx)
726 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
727 ++Lane)
728 OpsVec[OpIdx][Lane].IsUsed = false;
731 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
732 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
733 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
736 // Search all operands in Ops[*][Lane] for the one that matches best
737 // Ops[OpIdx][LastLane] and return its opreand index.
738 // If no good match can be found, return None.
739 Optional<unsigned>
740 getBestOperand(unsigned OpIdx, int Lane, int LastLane,
741 ArrayRef<ReorderingMode> ReorderingModes) {
742 unsigned NumOperands = getNumOperands();
744 // The operand of the previous lane at OpIdx.
745 Value *OpLastLane = getData(OpIdx, LastLane).V;
747 // Our strategy mode for OpIdx.
748 ReorderingMode RMode = ReorderingModes[OpIdx];
750 // The linearized opcode of the operand at OpIdx, Lane.
751 bool OpIdxAPO = getData(OpIdx, Lane).APO;
753 const unsigned BestScore = 2;
754 const unsigned GoodScore = 1;
756 // The best operand index and its score.
757 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
758 // are using the score to differentiate between the two.
759 struct BestOpData {
760 Optional<unsigned> Idx = None;
761 unsigned Score = 0;
762 } BestOp;
764 // Iterate through all unused operands and look for the best.
765 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
766 // Get the operand at Idx and Lane.
767 OperandData &OpData = getData(Idx, Lane);
768 Value *Op = OpData.V;
769 bool OpAPO = OpData.APO;
771 // Skip already selected operands.
772 if (OpData.IsUsed)
773 continue;
775 // Skip if we are trying to move the operand to a position with a
776 // different opcode in the linearized tree form. This would break the
777 // semantics.
778 if (OpAPO != OpIdxAPO)
779 continue;
781 // Look for an operand that matches the current mode.
782 switch (RMode) {
783 case ReorderingMode::Load:
784 if (isa<LoadInst>(Op)) {
785 // Figure out which is left and right, so that we can check for
786 // consecutive loads
787 bool LeftToRight = Lane > LastLane;
788 Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
789 Value *OpRight = (LeftToRight) ? Op : OpLastLane;
790 if (isConsecutiveAccess(cast<LoadInst>(OpLeft),
791 cast<LoadInst>(OpRight), DL, SE))
792 BestOp.Idx = Idx;
794 break;
795 case ReorderingMode::Opcode:
796 // We accept both Instructions and Undefs, but with different scores.
797 if ((isa<Instruction>(Op) && isa<Instruction>(OpLastLane) &&
798 cast<Instruction>(Op)->getOpcode() ==
799 cast<Instruction>(OpLastLane)->getOpcode()) ||
800 (isa<UndefValue>(OpLastLane) && isa<Instruction>(Op)) ||
801 isa<UndefValue>(Op)) {
802 // An instruction has a higher score than an undef.
803 unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore;
804 if (Score > BestOp.Score) {
805 BestOp.Idx = Idx;
806 BestOp.Score = Score;
809 break;
810 case ReorderingMode::Constant:
811 if (isa<Constant>(Op)) {
812 unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore;
813 if (Score > BestOp.Score) {
814 BestOp.Idx = Idx;
815 BestOp.Score = Score;
818 break;
819 case ReorderingMode::Splat:
820 if (Op == OpLastLane)
821 BestOp.Idx = Idx;
822 break;
823 case ReorderingMode::Failed:
824 return None;
828 if (BestOp.Idx) {
829 getData(BestOp.Idx.getValue(), Lane).IsUsed = true;
830 return BestOp.Idx;
832 // If we could not find a good match return None.
833 return None;
836 /// Helper for reorderOperandVecs. \Returns the lane that we should start
837 /// reordering from. This is the one which has the least number of operands
838 /// that can freely move about.
839 unsigned getBestLaneToStartReordering() const {
840 unsigned BestLane = 0;
841 unsigned Min = UINT_MAX;
842 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
843 ++Lane) {
844 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane);
845 if (NumFreeOps < Min) {
846 Min = NumFreeOps;
847 BestLane = Lane;
850 return BestLane;
853 /// \Returns the maximum number of operands that are allowed to be reordered
854 /// for \p Lane. This is used as a heuristic for selecting the first lane to
855 /// start operand reordering.
856 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
857 unsigned CntTrue = 0;
858 unsigned NumOperands = getNumOperands();
859 // Operands with the same APO can be reordered. We therefore need to count
860 // how many of them we have for each APO, like this: Cnt[APO] = x.
861 // Since we only have two APOs, namely true and false, we can avoid using
862 // a map. Instead we can simply count the number of operands that
863 // correspond to one of them (in this case the 'true' APO), and calculate
864 // the other by subtracting it from the total number of operands.
865 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx)
866 if (getData(OpIdx, Lane).APO)
867 ++CntTrue;
868 unsigned CntFalse = NumOperands - CntTrue;
869 return std::max(CntTrue, CntFalse);
872 /// Go through the instructions in VL and append their operands.
873 void appendOperandsOfVL(ArrayRef<Value *> VL) {
874 assert(!VL.empty() && "Bad VL");
875 assert((empty() || VL.size() == getNumLanes()) &&
876 "Expected same number of lanes");
877 assert(isa<Instruction>(VL[0]) && "Expected instruction");
878 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
879 OpsVec.resize(NumOperands);
880 unsigned NumLanes = VL.size();
881 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
882 OpsVec[OpIdx].resize(NumLanes);
883 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
884 assert(isa<Instruction>(VL[Lane]) && "Expected instruction");
885 // Our tree has just 3 nodes: the root and two operands.
886 // It is therefore trivial to get the APO. We only need to check the
887 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
888 // RHS operand. The LHS operand of both add and sub is never attached
889 // to an inversese operation in the linearized form, therefore its APO
890 // is false. The RHS is true only if VL[Lane] is an inverse operation.
892 // Since operand reordering is performed on groups of commutative
893 // operations or alternating sequences (e.g., +, -), we can safely
894 // tell the inverse operations by checking commutativity.
895 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
896 bool APO = (OpIdx == 0) ? false : IsInverseOperation;
897 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
898 APO, false};
903 /// \returns the number of operands.
904 unsigned getNumOperands() const { return OpsVec.size(); }
906 /// \returns the number of lanes.
907 unsigned getNumLanes() const { return OpsVec[0].size(); }
909 /// \returns the operand value at \p OpIdx and \p Lane.
910 Value *getValue(unsigned OpIdx, unsigned Lane) const {
911 return getData(OpIdx, Lane).V;
914 /// \returns true if the data structure is empty.
915 bool empty() const { return OpsVec.empty(); }
917 /// Clears the data.
918 void clear() { OpsVec.clear(); }
920 /// \Returns true if there are enough operands identical to \p Op to fill
921 /// the whole vector.
922 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
923 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
924 bool OpAPO = getData(OpIdx, Lane).APO;
925 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
926 if (Ln == Lane)
927 continue;
928 // This is set to true if we found a candidate for broadcast at Lane.
929 bool FoundCandidate = false;
930 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
931 OperandData &Data = getData(OpI, Ln);
932 if (Data.APO != OpAPO || Data.IsUsed)
933 continue;
934 if (Data.V == Op) {
935 FoundCandidate = true;
936 Data.IsUsed = true;
937 break;
940 if (!FoundCandidate)
941 return false;
943 return true;
946 public:
947 /// Initialize with all the operands of the instruction vector \p RootVL.
948 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
949 ScalarEvolution &SE)
950 : DL(DL), SE(SE) {
951 // Append all the operands of RootVL.
952 appendOperandsOfVL(RootVL);
955 /// \Returns a value vector with the operands across all lanes for the
956 /// opearnd at \p OpIdx.
957 ValueList getVL(unsigned OpIdx) const {
958 ValueList OpVL(OpsVec[OpIdx].size());
959 assert(OpsVec[OpIdx].size() == getNumLanes() &&
960 "Expected same num of lanes across all operands");
961 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
962 OpVL[Lane] = OpsVec[OpIdx][Lane].V;
963 return OpVL;
966 // Performs operand reordering for 2 or more operands.
967 // The original operands are in OrigOps[OpIdx][Lane].
968 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
969 void reorder() {
970 unsigned NumOperands = getNumOperands();
971 unsigned NumLanes = getNumLanes();
972 // Each operand has its own mode. We are using this mode to help us select
973 // the instructions for each lane, so that they match best with the ones
974 // we have selected so far.
975 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
977 // This is a greedy single-pass algorithm. We are going over each lane
978 // once and deciding on the best order right away with no back-tracking.
979 // However, in order to increase its effectiveness, we start with the lane
980 // that has operands that can move the least. For example, given the
981 // following lanes:
982 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd
983 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st
984 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd
985 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th
986 // we will start at Lane 1, since the operands of the subtraction cannot
987 // be reordered. Then we will visit the rest of the lanes in a circular
988 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
990 // Find the first lane that we will start our search from.
991 unsigned FirstLane = getBestLaneToStartReordering();
993 // Initialize the modes.
994 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
995 Value *OpLane0 = getValue(OpIdx, FirstLane);
996 // Keep track if we have instructions with all the same opcode on one
997 // side.
998 if (isa<LoadInst>(OpLane0))
999 ReorderingModes[OpIdx] = ReorderingMode::Load;
1000 else if (isa<Instruction>(OpLane0)) {
1001 // Check if OpLane0 should be broadcast.
1002 if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
1003 ReorderingModes[OpIdx] = ReorderingMode::Splat;
1004 else
1005 ReorderingModes[OpIdx] = ReorderingMode::Opcode;
1007 else if (isa<Constant>(OpLane0))
1008 ReorderingModes[OpIdx] = ReorderingMode::Constant;
1009 else if (isa<Argument>(OpLane0))
1010 // Our best hope is a Splat. It may save some cost in some cases.
1011 ReorderingModes[OpIdx] = ReorderingMode::Splat;
1012 else
1013 // NOTE: This should be unreachable.
1014 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1017 // If the initial strategy fails for any of the operand indexes, then we
1018 // perform reordering again in a second pass. This helps avoid assigning
1019 // high priority to the failed strategy, and should improve reordering for
1020 // the non-failed operand indexes.
1021 for (int Pass = 0; Pass != 2; ++Pass) {
1022 // Skip the second pass if the first pass did not fail.
1023 bool StrategyFailed = false;
1024 // Mark all operand data as free to use.
1025 clearUsed();
1026 // We keep the original operand order for the FirstLane, so reorder the
1027 // rest of the lanes. We are visiting the nodes in a circular fashion,
1028 // using FirstLane as the center point and increasing the radius
1029 // distance.
1030 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
1031 // Visit the lane on the right and then the lane on the left.
1032 for (int Direction : {+1, -1}) {
1033 int Lane = FirstLane + Direction * Distance;
1034 if (Lane < 0 || Lane >= (int)NumLanes)
1035 continue;
1036 int LastLane = Lane - Direction;
1037 assert(LastLane >= 0 && LastLane < (int)NumLanes &&
1038 "Out of bounds");
1039 // Look for a good match for each operand.
1040 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1041 // Search for the operand that matches SortedOps[OpIdx][Lane-1].
1042 Optional<unsigned> BestIdx =
1043 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes);
1044 // By not selecting a value, we allow the operands that follow to
1045 // select a better matching value. We will get a non-null value in
1046 // the next run of getBestOperand().
1047 if (BestIdx) {
1048 // Swap the current operand with the one returned by
1049 // getBestOperand().
1050 swap(OpIdx, BestIdx.getValue(), Lane);
1051 } else {
1052 // We failed to find a best operand, set mode to 'Failed'.
1053 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1054 // Enable the second pass.
1055 StrategyFailed = true;
1060 // Skip second pass if the strategy did not fail.
1061 if (!StrategyFailed)
1062 break;
1066 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1067 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) {
1068 switch (RMode) {
1069 case ReorderingMode::Load:
1070 return "Load";
1071 case ReorderingMode::Opcode:
1072 return "Opcode";
1073 case ReorderingMode::Constant:
1074 return "Constant";
1075 case ReorderingMode::Splat:
1076 return "Splat";
1077 case ReorderingMode::Failed:
1078 return "Failed";
1080 llvm_unreachable("Unimplemented Reordering Type");
1083 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode,
1084 raw_ostream &OS) {
1085 return OS << getModeStr(RMode);
1088 /// Debug print.
1089 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) {
1090 printMode(RMode, dbgs());
1093 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
1094 return printMode(RMode, OS);
1097 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const {
1098 const unsigned Indent = 2;
1099 unsigned Cnt = 0;
1100 for (const OperandDataVec &OpDataVec : OpsVec) {
1101 OS << "Operand " << Cnt++ << "\n";
1102 for (const OperandData &OpData : OpDataVec) {
1103 OS.indent(Indent) << "{";
1104 if (Value *V = OpData.V)
1105 OS << *V;
1106 else
1107 OS << "null";
1108 OS << ", APO:" << OpData.APO << "}\n";
1110 OS << "\n";
1112 return OS;
1115 /// Debug print.
1116 LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
1117 #endif
1120 private:
1121 /// Checks if all users of \p I are the part of the vectorization tree.
1122 bool areAllUsersVectorized(Instruction *I) const;
1124 /// \returns the cost of the vectorizable entry.
1125 int getEntryCost(TreeEntry *E);
1127 /// This is the recursive part of buildTree.
1128 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
1129 const EdgeInfo &EI);
1131 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
1132 /// be vectorized to use the original vector (or aggregate "bitcast" to a
1133 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
1134 /// returns false, setting \p CurrentOrder to either an empty vector or a
1135 /// non-identity permutation that allows to reuse extract instructions.
1136 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
1137 SmallVectorImpl<unsigned> &CurrentOrder) const;
1139 /// Vectorize a single entry in the tree.
1140 Value *vectorizeTree(TreeEntry *E);
1142 /// Vectorize a single entry in the tree, starting in \p VL.
1143 Value *vectorizeTree(ArrayRef<Value *> VL);
1145 /// \returns the scalarization cost for this type. Scalarization in this
1146 /// context means the creation of vectors from a group of scalars.
1147 int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices) const;
1149 /// \returns the scalarization cost for this list of values. Assuming that
1150 /// this subtree gets vectorized, we may need to extract the values from the
1151 /// roots. This method calculates the cost of extracting the values.
1152 int getGatherCost(ArrayRef<Value *> VL) const;
1154 /// Set the Builder insert point to one after the last instruction in
1155 /// the bundle
1156 void setInsertPointAfterBundle(ArrayRef<Value *> VL,
1157 const InstructionsState &S);
1159 /// \returns a vector from a collection of scalars in \p VL.
1160 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
1162 /// \returns whether the VectorizableTree is fully vectorizable and will
1163 /// be beneficial even the tree height is tiny.
1164 bool isFullyVectorizableTinyTree() const;
1166 /// Reorder commutative or alt operands to get better probability of
1167 /// generating vectorized code.
1168 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
1169 SmallVectorImpl<Value *> &Left,
1170 SmallVectorImpl<Value *> &Right,
1171 const DataLayout &DL,
1172 ScalarEvolution &SE);
1173 struct TreeEntry {
1174 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
1175 TreeEntry(VecTreeTy &Container) : Container(Container) {}
1177 /// \returns true if the scalars in VL are equal to this entry.
1178 bool isSame(ArrayRef<Value *> VL) const {
1179 if (VL.size() == Scalars.size())
1180 return std::equal(VL.begin(), VL.end(), Scalars.begin());
1181 return VL.size() == ReuseShuffleIndices.size() &&
1182 std::equal(
1183 VL.begin(), VL.end(), ReuseShuffleIndices.begin(),
1184 [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; });
1187 /// A vector of scalars.
1188 ValueList Scalars;
1190 /// The Scalars are vectorized into this value. It is initialized to Null.
1191 Value *VectorizedValue = nullptr;
1193 /// Do we need to gather this sequence ?
1194 bool NeedToGather = false;
1196 /// Does this sequence require some shuffling?
1197 SmallVector<unsigned, 4> ReuseShuffleIndices;
1199 /// Does this entry require reordering?
1200 ArrayRef<unsigned> ReorderIndices;
1202 /// Points back to the VectorizableTree.
1204 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has
1205 /// to be a pointer and needs to be able to initialize the child iterator.
1206 /// Thus we need a reference back to the container to translate the indices
1207 /// to entries.
1208 VecTreeTy &Container;
1210 /// The TreeEntry index containing the user of this entry. We can actually
1211 /// have multiple users so the data structure is not truly a tree.
1212 SmallVector<EdgeInfo, 1> UserTreeIndices;
1214 /// The index of this treeEntry in VectorizableTree.
1215 int Idx = -1;
1217 private:
1218 /// The operands of each instruction in each lane Operands[op_index][lane].
1219 /// Note: This helps avoid the replication of the code that performs the
1220 /// reordering of operands during buildTree_rec() and vectorizeTree().
1221 SmallVector<ValueList, 2> Operands;
1223 public:
1224 /// Set this bundle's \p OpIdx'th operand to \p OpVL.
1225 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL,
1226 ArrayRef<unsigned> ReuseShuffleIndices) {
1227 if (Operands.size() < OpIdx + 1)
1228 Operands.resize(OpIdx + 1);
1229 assert(Operands[OpIdx].size() == 0 && "Already resized?");
1230 Operands[OpIdx].resize(Scalars.size());
1231 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane)
1232 Operands[OpIdx][Lane] = (!ReuseShuffleIndices.empty())
1233 ? OpVL[ReuseShuffleIndices[Lane]]
1234 : OpVL[Lane];
1237 /// If there is a user TreeEntry, then set its operand.
1238 void trySetUserTEOperand(const EdgeInfo &UserTreeIdx,
1239 ArrayRef<Value *> OpVL,
1240 ArrayRef<unsigned> ReuseShuffleIndices) {
1241 if (UserTreeIdx.UserTE)
1242 UserTreeIdx.UserTE->setOperand(UserTreeIdx.EdgeIdx, OpVL,
1243 ReuseShuffleIndices);
1246 /// \returns the \p OpIdx operand of this TreeEntry.
1247 ValueList &getOperand(unsigned OpIdx) {
1248 assert(OpIdx < Operands.size() && "Off bounds");
1249 return Operands[OpIdx];
1252 /// \return the single \p OpIdx operand.
1253 Value *getSingleOperand(unsigned OpIdx) const {
1254 assert(OpIdx < Operands.size() && "Off bounds");
1255 assert(!Operands[OpIdx].empty() && "No operand available");
1256 return Operands[OpIdx][0];
1259 #ifndef NDEBUG
1260 /// Debug printer.
1261 LLVM_DUMP_METHOD void dump() const {
1262 dbgs() << Idx << ".\n";
1263 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
1264 dbgs() << "Operand " << OpI << ":\n";
1265 for (const Value *V : Operands[OpI])
1266 dbgs().indent(2) << *V << "\n";
1268 dbgs() << "Scalars: \n";
1269 for (Value *V : Scalars)
1270 dbgs().indent(2) << *V << "\n";
1271 dbgs() << "NeedToGather: " << NeedToGather << "\n";
1272 dbgs() << "VectorizedValue: ";
1273 if (VectorizedValue)
1274 dbgs() << *VectorizedValue;
1275 else
1276 dbgs() << "NULL";
1277 dbgs() << "\n";
1278 dbgs() << "ReuseShuffleIndices: ";
1279 if (ReuseShuffleIndices.empty())
1280 dbgs() << "Emtpy";
1281 else
1282 for (unsigned Idx : ReuseShuffleIndices)
1283 dbgs() << Idx << ", ";
1284 dbgs() << "\n";
1285 dbgs() << "ReorderIndices: ";
1286 for (unsigned Idx : ReorderIndices)
1287 dbgs() << Idx << ", ";
1288 dbgs() << "\n";
1289 dbgs() << "UserTreeIndices: ";
1290 for (const auto &EInfo : UserTreeIndices)
1291 dbgs() << EInfo << ", ";
1292 dbgs() << "\n";
1294 #endif
1297 /// Create a new VectorizableTree entry.
1298 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized,
1299 const EdgeInfo &UserTreeIdx,
1300 ArrayRef<unsigned> ReuseShuffleIndices = None,
1301 ArrayRef<unsigned> ReorderIndices = None) {
1302 VectorizableTree.push_back(llvm::make_unique<TreeEntry>(VectorizableTree));
1303 TreeEntry *Last = VectorizableTree.back().get();
1304 Last->Idx = VectorizableTree.size() - 1;
1305 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
1306 Last->NeedToGather = !Vectorized;
1307 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
1308 ReuseShuffleIndices.end());
1309 Last->ReorderIndices = ReorderIndices;
1310 if (Vectorized) {
1311 for (int i = 0, e = VL.size(); i != e; ++i) {
1312 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!");
1313 ScalarToTreeEntry[VL[i]] = Last->Idx;
1315 } else {
1316 MustGather.insert(VL.begin(), VL.end());
1319 if (UserTreeIdx.UserTE)
1320 Last->UserTreeIndices.push_back(UserTreeIdx);
1322 Last->trySetUserTEOperand(UserTreeIdx, VL, ReuseShuffleIndices);
1323 return Last;
1326 /// -- Vectorization State --
1327 /// Holds all of the tree entries.
1328 TreeEntry::VecTreeTy VectorizableTree;
1330 #ifndef NDEBUG
1331 /// Debug printer.
1332 LLVM_DUMP_METHOD void dumpVectorizableTree() const {
1333 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
1334 VectorizableTree[Id]->dump();
1335 dbgs() << "\n";
1338 #endif
1340 TreeEntry *getTreeEntry(Value *V) {
1341 auto I = ScalarToTreeEntry.find(V);
1342 if (I != ScalarToTreeEntry.end())
1343 return VectorizableTree[I->second].get();
1344 return nullptr;
1347 const TreeEntry *getTreeEntry(Value *V) const {
1348 auto I = ScalarToTreeEntry.find(V);
1349 if (I != ScalarToTreeEntry.end())
1350 return VectorizableTree[I->second].get();
1351 return nullptr;
1354 /// Maps a specific scalar to its tree entry.
1355 SmallDenseMap<Value*, int> ScalarToTreeEntry;
1357 /// A list of scalars that we found that we need to keep as scalars.
1358 ValueSet MustGather;
1360 /// This POD struct describes one external user in the vectorized tree.
1361 struct ExternalUser {
1362 ExternalUser(Value *S, llvm::User *U, int L)
1363 : Scalar(S), User(U), Lane(L) {}
1365 // Which scalar in our function.
1366 Value *Scalar;
1368 // Which user that uses the scalar.
1369 llvm::User *User;
1371 // Which lane does the scalar belong to.
1372 int Lane;
1374 using UserList = SmallVector<ExternalUser, 16>;
1376 /// Checks if two instructions may access the same memory.
1378 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
1379 /// is invariant in the calling loop.
1380 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
1381 Instruction *Inst2) {
1382 // First check if the result is already in the cache.
1383 AliasCacheKey key = std::make_pair(Inst1, Inst2);
1384 Optional<bool> &result = AliasCache[key];
1385 if (result.hasValue()) {
1386 return result.getValue();
1388 MemoryLocation Loc2 = getLocation(Inst2, AA);
1389 bool aliased = true;
1390 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
1391 // Do the alias check.
1392 aliased = AA->alias(Loc1, Loc2);
1394 // Store the result in the cache.
1395 result = aliased;
1396 return aliased;
1399 using AliasCacheKey = std::pair<Instruction *, Instruction *>;
1401 /// Cache for alias results.
1402 /// TODO: consider moving this to the AliasAnalysis itself.
1403 DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
1405 /// Removes an instruction from its block and eventually deletes it.
1406 /// It's like Instruction::eraseFromParent() except that the actual deletion
1407 /// is delayed until BoUpSLP is destructed.
1408 /// This is required to ensure that there are no incorrect collisions in the
1409 /// AliasCache, which can happen if a new instruction is allocated at the
1410 /// same address as a previously deleted instruction.
1411 void eraseInstruction(Instruction *I) {
1412 I->removeFromParent();
1413 I->dropAllReferences();
1414 DeletedInstructions.emplace_back(I);
1417 /// Temporary store for deleted instructions. Instructions will be deleted
1418 /// eventually when the BoUpSLP is destructed.
1419 SmallVector<unique_value, 8> DeletedInstructions;
1421 /// A list of values that need to extracted out of the tree.
1422 /// This list holds pairs of (Internal Scalar : External User). External User
1423 /// can be nullptr, it means that this Internal Scalar will be used later,
1424 /// after vectorization.
1425 UserList ExternalUses;
1427 /// Values used only by @llvm.assume calls.
1428 SmallPtrSet<const Value *, 32> EphValues;
1430 /// Holds all of the instructions that we gathered.
1431 SetVector<Instruction *> GatherSeq;
1433 /// A list of blocks that we are going to CSE.
1434 SetVector<BasicBlock *> CSEBlocks;
1436 /// Contains all scheduling relevant data for an instruction.
1437 /// A ScheduleData either represents a single instruction or a member of an
1438 /// instruction bundle (= a group of instructions which is combined into a
1439 /// vector instruction).
1440 struct ScheduleData {
1441 // The initial value for the dependency counters. It means that the
1442 // dependencies are not calculated yet.
1443 enum { InvalidDeps = -1 };
1445 ScheduleData() = default;
1447 void init(int BlockSchedulingRegionID, Value *OpVal) {
1448 FirstInBundle = this;
1449 NextInBundle = nullptr;
1450 NextLoadStore = nullptr;
1451 IsScheduled = false;
1452 SchedulingRegionID = BlockSchedulingRegionID;
1453 UnscheduledDepsInBundle = UnscheduledDeps;
1454 clearDependencies();
1455 OpValue = OpVal;
1458 /// Returns true if the dependency information has been calculated.
1459 bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
1461 /// Returns true for single instructions and for bundle representatives
1462 /// (= the head of a bundle).
1463 bool isSchedulingEntity() const { return FirstInBundle == this; }
1465 /// Returns true if it represents an instruction bundle and not only a
1466 /// single instruction.
1467 bool isPartOfBundle() const {
1468 return NextInBundle != nullptr || FirstInBundle != this;
1471 /// Returns true if it is ready for scheduling, i.e. it has no more
1472 /// unscheduled depending instructions/bundles.
1473 bool isReady() const {
1474 assert(isSchedulingEntity() &&
1475 "can't consider non-scheduling entity for ready list");
1476 return UnscheduledDepsInBundle == 0 && !IsScheduled;
1479 /// Modifies the number of unscheduled dependencies, also updating it for
1480 /// the whole bundle.
1481 int incrementUnscheduledDeps(int Incr) {
1482 UnscheduledDeps += Incr;
1483 return FirstInBundle->UnscheduledDepsInBundle += Incr;
1486 /// Sets the number of unscheduled dependencies to the number of
1487 /// dependencies.
1488 void resetUnscheduledDeps() {
1489 incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
1492 /// Clears all dependency information.
1493 void clearDependencies() {
1494 Dependencies = InvalidDeps;
1495 resetUnscheduledDeps();
1496 MemoryDependencies.clear();
1499 void dump(raw_ostream &os) const {
1500 if (!isSchedulingEntity()) {
1501 os << "/ " << *Inst;
1502 } else if (NextInBundle) {
1503 os << '[' << *Inst;
1504 ScheduleData *SD = NextInBundle;
1505 while (SD) {
1506 os << ';' << *SD->Inst;
1507 SD = SD->NextInBundle;
1509 os << ']';
1510 } else {
1511 os << *Inst;
1515 Instruction *Inst = nullptr;
1517 /// Points to the head in an instruction bundle (and always to this for
1518 /// single instructions).
1519 ScheduleData *FirstInBundle = nullptr;
1521 /// Single linked list of all instructions in a bundle. Null if it is a
1522 /// single instruction.
1523 ScheduleData *NextInBundle = nullptr;
1525 /// Single linked list of all memory instructions (e.g. load, store, call)
1526 /// in the block - until the end of the scheduling region.
1527 ScheduleData *NextLoadStore = nullptr;
1529 /// The dependent memory instructions.
1530 /// This list is derived on demand in calculateDependencies().
1531 SmallVector<ScheduleData *, 4> MemoryDependencies;
1533 /// This ScheduleData is in the current scheduling region if this matches
1534 /// the current SchedulingRegionID of BlockScheduling.
1535 int SchedulingRegionID = 0;
1537 /// Used for getting a "good" final ordering of instructions.
1538 int SchedulingPriority = 0;
1540 /// The number of dependencies. Constitutes of the number of users of the
1541 /// instruction plus the number of dependent memory instructions (if any).
1542 /// This value is calculated on demand.
1543 /// If InvalidDeps, the number of dependencies is not calculated yet.
1544 int Dependencies = InvalidDeps;
1546 /// The number of dependencies minus the number of dependencies of scheduled
1547 /// instructions. As soon as this is zero, the instruction/bundle gets ready
1548 /// for scheduling.
1549 /// Note that this is negative as long as Dependencies is not calculated.
1550 int UnscheduledDeps = InvalidDeps;
1552 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
1553 /// single instructions.
1554 int UnscheduledDepsInBundle = InvalidDeps;
1556 /// True if this instruction is scheduled (or considered as scheduled in the
1557 /// dry-run).
1558 bool IsScheduled = false;
1560 /// Opcode of the current instruction in the schedule data.
1561 Value *OpValue = nullptr;
1564 #ifndef NDEBUG
1565 friend inline raw_ostream &operator<<(raw_ostream &os,
1566 const BoUpSLP::ScheduleData &SD) {
1567 SD.dump(os);
1568 return os;
1570 #endif
1572 friend struct GraphTraits<BoUpSLP *>;
1573 friend struct DOTGraphTraits<BoUpSLP *>;
1575 /// Contains all scheduling data for a basic block.
1576 struct BlockScheduling {
1577 BlockScheduling(BasicBlock *BB)
1578 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
1580 void clear() {
1581 ReadyInsts.clear();
1582 ScheduleStart = nullptr;
1583 ScheduleEnd = nullptr;
1584 FirstLoadStoreInRegion = nullptr;
1585 LastLoadStoreInRegion = nullptr;
1587 // Reduce the maximum schedule region size by the size of the
1588 // previous scheduling run.
1589 ScheduleRegionSizeLimit -= ScheduleRegionSize;
1590 if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
1591 ScheduleRegionSizeLimit = MinScheduleRegionSize;
1592 ScheduleRegionSize = 0;
1594 // Make a new scheduling region, i.e. all existing ScheduleData is not
1595 // in the new region yet.
1596 ++SchedulingRegionID;
1599 ScheduleData *getScheduleData(Value *V) {
1600 ScheduleData *SD = ScheduleDataMap[V];
1601 if (SD && SD->SchedulingRegionID == SchedulingRegionID)
1602 return SD;
1603 return nullptr;
1606 ScheduleData *getScheduleData(Value *V, Value *Key) {
1607 if (V == Key)
1608 return getScheduleData(V);
1609 auto I = ExtraScheduleDataMap.find(V);
1610 if (I != ExtraScheduleDataMap.end()) {
1611 ScheduleData *SD = I->second[Key];
1612 if (SD && SD->SchedulingRegionID == SchedulingRegionID)
1613 return SD;
1615 return nullptr;
1618 bool isInSchedulingRegion(ScheduleData *SD) {
1619 return SD->SchedulingRegionID == SchedulingRegionID;
1622 /// Marks an instruction as scheduled and puts all dependent ready
1623 /// instructions into the ready-list.
1624 template <typename ReadyListType>
1625 void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
1626 SD->IsScheduled = true;
1627 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n");
1629 ScheduleData *BundleMember = SD;
1630 while (BundleMember) {
1631 if (BundleMember->Inst != BundleMember->OpValue) {
1632 BundleMember = BundleMember->NextInBundle;
1633 continue;
1635 // Handle the def-use chain dependencies.
1636 for (Use &U : BundleMember->Inst->operands()) {
1637 auto *I = dyn_cast<Instruction>(U.get());
1638 if (!I)
1639 continue;
1640 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
1641 if (OpDef && OpDef->hasValidDependencies() &&
1642 OpDef->incrementUnscheduledDeps(-1) == 0) {
1643 // There are no more unscheduled dependencies after
1644 // decrementing, so we can put the dependent instruction
1645 // into the ready list.
1646 ScheduleData *DepBundle = OpDef->FirstInBundle;
1647 assert(!DepBundle->IsScheduled &&
1648 "already scheduled bundle gets ready");
1649 ReadyList.insert(DepBundle);
1650 LLVM_DEBUG(dbgs()
1651 << "SLP: gets ready (def): " << *DepBundle << "\n");
1655 // Handle the memory dependencies.
1656 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
1657 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
1658 // There are no more unscheduled dependencies after decrementing,
1659 // so we can put the dependent instruction into the ready list.
1660 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
1661 assert(!DepBundle->IsScheduled &&
1662 "already scheduled bundle gets ready");
1663 ReadyList.insert(DepBundle);
1664 LLVM_DEBUG(dbgs()
1665 << "SLP: gets ready (mem): " << *DepBundle << "\n");
1668 BundleMember = BundleMember->NextInBundle;
1672 void doForAllOpcodes(Value *V,
1673 function_ref<void(ScheduleData *SD)> Action) {
1674 if (ScheduleData *SD = getScheduleData(V))
1675 Action(SD);
1676 auto I = ExtraScheduleDataMap.find(V);
1677 if (I != ExtraScheduleDataMap.end())
1678 for (auto &P : I->second)
1679 if (P.second->SchedulingRegionID == SchedulingRegionID)
1680 Action(P.second);
1683 /// Put all instructions into the ReadyList which are ready for scheduling.
1684 template <typename ReadyListType>
1685 void initialFillReadyList(ReadyListType &ReadyList) {
1686 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
1687 doForAllOpcodes(I, [&](ScheduleData *SD) {
1688 if (SD->isSchedulingEntity() && SD->isReady()) {
1689 ReadyList.insert(SD);
1690 LLVM_DEBUG(dbgs()
1691 << "SLP: initially in ready list: " << *I << "\n");
1697 /// Checks if a bundle of instructions can be scheduled, i.e. has no
1698 /// cyclic dependencies. This is only a dry-run, no instructions are
1699 /// actually moved at this stage.
1700 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
1701 const InstructionsState &S);
1703 /// Un-bundles a group of instructions.
1704 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
1706 /// Allocates schedule data chunk.
1707 ScheduleData *allocateScheduleDataChunks();
1709 /// Extends the scheduling region so that V is inside the region.
1710 /// \returns true if the region size is within the limit.
1711 bool extendSchedulingRegion(Value *V, const InstructionsState &S);
1713 /// Initialize the ScheduleData structures for new instructions in the
1714 /// scheduling region.
1715 void initScheduleData(Instruction *FromI, Instruction *ToI,
1716 ScheduleData *PrevLoadStore,
1717 ScheduleData *NextLoadStore);
1719 /// Updates the dependency information of a bundle and of all instructions/
1720 /// bundles which depend on the original bundle.
1721 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
1722 BoUpSLP *SLP);
1724 /// Sets all instruction in the scheduling region to un-scheduled.
1725 void resetSchedule();
1727 BasicBlock *BB;
1729 /// Simple memory allocation for ScheduleData.
1730 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
1732 /// The size of a ScheduleData array in ScheduleDataChunks.
1733 int ChunkSize;
1735 /// The allocator position in the current chunk, which is the last entry
1736 /// of ScheduleDataChunks.
1737 int ChunkPos;
1739 /// Attaches ScheduleData to Instruction.
1740 /// Note that the mapping survives during all vectorization iterations, i.e.
1741 /// ScheduleData structures are recycled.
1742 DenseMap<Value *, ScheduleData *> ScheduleDataMap;
1744 /// Attaches ScheduleData to Instruction with the leading key.
1745 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
1746 ExtraScheduleDataMap;
1748 struct ReadyList : SmallVector<ScheduleData *, 8> {
1749 void insert(ScheduleData *SD) { push_back(SD); }
1752 /// The ready-list for scheduling (only used for the dry-run).
1753 ReadyList ReadyInsts;
1755 /// The first instruction of the scheduling region.
1756 Instruction *ScheduleStart = nullptr;
1758 /// The first instruction _after_ the scheduling region.
1759 Instruction *ScheduleEnd = nullptr;
1761 /// The first memory accessing instruction in the scheduling region
1762 /// (can be null).
1763 ScheduleData *FirstLoadStoreInRegion = nullptr;
1765 /// The last memory accessing instruction in the scheduling region
1766 /// (can be null).
1767 ScheduleData *LastLoadStoreInRegion = nullptr;
1769 /// The current size of the scheduling region.
1770 int ScheduleRegionSize = 0;
1772 /// The maximum size allowed for the scheduling region.
1773 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
1775 /// The ID of the scheduling region. For a new vectorization iteration this
1776 /// is incremented which "removes" all ScheduleData from the region.
1777 // Make sure that the initial SchedulingRegionID is greater than the
1778 // initial SchedulingRegionID in ScheduleData (which is 0).
1779 int SchedulingRegionID = 1;
1782 /// Attaches the BlockScheduling structures to basic blocks.
1783 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
1785 /// Performs the "real" scheduling. Done before vectorization is actually
1786 /// performed in a basic block.
1787 void scheduleBlock(BlockScheduling *BS);
1789 /// List of users to ignore during scheduling and that don't need extracting.
1790 ArrayRef<Value *> UserIgnoreList;
1792 using OrdersType = SmallVector<unsigned, 4>;
1793 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
1794 /// sorted SmallVectors of unsigned.
1795 struct OrdersTypeDenseMapInfo {
1796 static OrdersType getEmptyKey() {
1797 OrdersType V;
1798 V.push_back(~1U);
1799 return V;
1802 static OrdersType getTombstoneKey() {
1803 OrdersType V;
1804 V.push_back(~2U);
1805 return V;
1808 static unsigned getHashValue(const OrdersType &V) {
1809 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1812 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
1813 return LHS == RHS;
1817 /// Contains orders of operations along with the number of bundles that have
1818 /// operations in this order. It stores only those orders that require
1819 /// reordering, if reordering is not required it is counted using \a
1820 /// NumOpsWantToKeepOriginalOrder.
1821 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder;
1822 /// Number of bundles that do not require reordering.
1823 unsigned NumOpsWantToKeepOriginalOrder = 0;
1825 // Analysis and block reference.
1826 Function *F;
1827 ScalarEvolution *SE;
1828 TargetTransformInfo *TTI;
1829 TargetLibraryInfo *TLI;
1830 AliasAnalysis *AA;
1831 LoopInfo *LI;
1832 DominatorTree *DT;
1833 AssumptionCache *AC;
1834 DemandedBits *DB;
1835 const DataLayout *DL;
1836 OptimizationRemarkEmitter *ORE;
1838 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
1839 unsigned MinVecRegSize; // Set by cl::opt (default: 128).
1841 /// Instruction builder to construct the vectorized tree.
1842 IRBuilder<> Builder;
1844 /// A map of scalar integer values to the smallest bit width with which they
1845 /// can legally be represented. The values map to (width, signed) pairs,
1846 /// where "width" indicates the minimum bit width and "signed" is True if the
1847 /// value must be signed-extended, rather than zero-extended, back to its
1848 /// original width.
1849 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
1852 } // end namespace slpvectorizer
1854 template <> struct GraphTraits<BoUpSLP *> {
1855 using TreeEntry = BoUpSLP::TreeEntry;
1857 /// NodeRef has to be a pointer per the GraphWriter.
1858 using NodeRef = TreeEntry *;
1860 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
1862 /// Add the VectorizableTree to the index iterator to be able to return
1863 /// TreeEntry pointers.
1864 struct ChildIteratorType
1865 : public iterator_adaptor_base<
1866 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
1867 ContainerTy &VectorizableTree;
1869 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
1870 ContainerTy &VT)
1871 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
1873 NodeRef operator*() { return I->UserTE; }
1876 static NodeRef getEntryNode(BoUpSLP &R) {
1877 return R.VectorizableTree[0].get();
1880 static ChildIteratorType child_begin(NodeRef N) {
1881 return {N->UserTreeIndices.begin(), N->Container};
1884 static ChildIteratorType child_end(NodeRef N) {
1885 return {N->UserTreeIndices.end(), N->Container};
1888 /// For the node iterator we just need to turn the TreeEntry iterator into a
1889 /// TreeEntry* iterator so that it dereferences to NodeRef.
1890 class nodes_iterator {
1891 using ItTy = ContainerTy::iterator;
1892 ItTy It;
1894 public:
1895 nodes_iterator(const ItTy &It2) : It(It2) {}
1896 NodeRef operator*() { return It->get(); }
1897 nodes_iterator operator++() {
1898 ++It;
1899 return *this;
1901 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
1904 static nodes_iterator nodes_begin(BoUpSLP *R) {
1905 return nodes_iterator(R->VectorizableTree.begin());
1908 static nodes_iterator nodes_end(BoUpSLP *R) {
1909 return nodes_iterator(R->VectorizableTree.end());
1912 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
1915 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
1916 using TreeEntry = BoUpSLP::TreeEntry;
1918 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
1920 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
1921 std::string Str;
1922 raw_string_ostream OS(Str);
1923 if (isSplat(Entry->Scalars)) {
1924 OS << "<splat> " << *Entry->Scalars[0];
1925 return Str;
1927 for (auto V : Entry->Scalars) {
1928 OS << *V;
1929 if (std::any_of(
1930 R->ExternalUses.begin(), R->ExternalUses.end(),
1931 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; }))
1932 OS << " <extract>";
1933 OS << "\n";
1935 return Str;
1938 static std::string getNodeAttributes(const TreeEntry *Entry,
1939 const BoUpSLP *) {
1940 if (Entry->NeedToGather)
1941 return "color=red";
1942 return "";
1946 } // end namespace llvm
1948 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
1949 ArrayRef<Value *> UserIgnoreLst) {
1950 ExtraValueToDebugLocsMap ExternallyUsedValues;
1951 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst);
1954 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
1955 ExtraValueToDebugLocsMap &ExternallyUsedValues,
1956 ArrayRef<Value *> UserIgnoreLst) {
1957 deleteTree();
1958 UserIgnoreList = UserIgnoreLst;
1959 if (!allSameType(Roots))
1960 return;
1961 buildTree_rec(Roots, 0, EdgeInfo());
1963 // Collect the values that we need to extract from the tree.
1964 for (auto &TEPtr : VectorizableTree) {
1965 TreeEntry *Entry = TEPtr.get();
1967 // No need to handle users of gathered values.
1968 if (Entry->NeedToGather)
1969 continue;
1971 // For each lane:
1972 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
1973 Value *Scalar = Entry->Scalars[Lane];
1974 int FoundLane = Lane;
1975 if (!Entry->ReuseShuffleIndices.empty()) {
1976 FoundLane =
1977 std::distance(Entry->ReuseShuffleIndices.begin(),
1978 llvm::find(Entry->ReuseShuffleIndices, FoundLane));
1981 // Check if the scalar is externally used as an extra arg.
1982 auto ExtI = ExternallyUsedValues.find(Scalar);
1983 if (ExtI != ExternallyUsedValues.end()) {
1984 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
1985 << Lane << " from " << *Scalar << ".\n");
1986 ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
1988 for (User *U : Scalar->users()) {
1989 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
1991 Instruction *UserInst = dyn_cast<Instruction>(U);
1992 if (!UserInst)
1993 continue;
1995 // Skip in-tree scalars that become vectors
1996 if (TreeEntry *UseEntry = getTreeEntry(U)) {
1997 Value *UseScalar = UseEntry->Scalars[0];
1998 // Some in-tree scalars will remain as scalar in vectorized
1999 // instructions. If that is the case, the one in Lane 0 will
2000 // be used.
2001 if (UseScalar != U ||
2002 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
2003 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
2004 << ".\n");
2005 assert(!UseEntry->NeedToGather && "Bad state");
2006 continue;
2010 // Ignore users in the user ignore list.
2011 if (is_contained(UserIgnoreList, UserInst))
2012 continue;
2014 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "
2015 << Lane << " from " << *Scalar << ".\n");
2016 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
2022 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
2023 const EdgeInfo &UserTreeIdx) {
2024 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
2026 InstructionsState S = getSameOpcode(VL);
2027 if (Depth == RecursionMaxDepth) {
2028 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
2029 newTreeEntry(VL, false, UserTreeIdx);
2030 return;
2033 // Don't handle vectors.
2034 if (S.OpValue->getType()->isVectorTy()) {
2035 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
2036 newTreeEntry(VL, false, UserTreeIdx);
2037 return;
2040 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
2041 if (SI->getValueOperand()->getType()->isVectorTy()) {
2042 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
2043 newTreeEntry(VL, false, UserTreeIdx);
2044 return;
2047 // If all of the operands are identical or constant we have a simple solution.
2048 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) {
2049 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
2050 newTreeEntry(VL, false, UserTreeIdx);
2051 return;
2054 // We now know that this is a vector of instructions of the same type from
2055 // the same block.
2057 // Don't vectorize ephemeral values.
2058 for (unsigned i = 0, e = VL.size(); i != e; ++i) {
2059 if (EphValues.count(VL[i])) {
2060 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i]
2061 << ") is ephemeral.\n");
2062 newTreeEntry(VL, false, UserTreeIdx);
2063 return;
2067 // Check if this is a duplicate of another entry.
2068 if (TreeEntry *E = getTreeEntry(S.OpValue)) {
2069 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
2070 if (!E->isSame(VL)) {
2071 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
2072 newTreeEntry(VL, false, UserTreeIdx);
2073 return;
2075 // Record the reuse of the tree node. FIXME, currently this is only used to
2076 // properly draw the graph rather than for the actual vectorization.
2077 E->UserTreeIndices.push_back(UserTreeIdx);
2078 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue
2079 << ".\n");
2080 E->trySetUserTEOperand(UserTreeIdx, VL, None);
2081 return;
2084 // Check that none of the instructions in the bundle are already in the tree.
2085 for (unsigned i = 0, e = VL.size(); i != e; ++i) {
2086 auto *I = dyn_cast<Instruction>(VL[i]);
2087 if (!I)
2088 continue;
2089 if (getTreeEntry(I)) {
2090 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i]
2091 << ") is already in tree.\n");
2092 newTreeEntry(VL, false, UserTreeIdx);
2093 return;
2097 // If any of the scalars is marked as a value that needs to stay scalar, then
2098 // we need to gather the scalars.
2099 // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
2100 for (unsigned i = 0, e = VL.size(); i != e; ++i) {
2101 if (MustGather.count(VL[i]) || is_contained(UserIgnoreList, VL[i])) {
2102 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
2103 newTreeEntry(VL, false, UserTreeIdx);
2104 return;
2108 // Check that all of the users of the scalars that we want to vectorize are
2109 // schedulable.
2110 auto *VL0 = cast<Instruction>(S.OpValue);
2111 BasicBlock *BB = VL0->getParent();
2113 if (!DT->isReachableFromEntry(BB)) {
2114 // Don't go into unreachable blocks. They may contain instructions with
2115 // dependency cycles which confuse the final scheduling.
2116 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
2117 newTreeEntry(VL, false, UserTreeIdx);
2118 return;
2121 // Check that every instruction appears once in this bundle.
2122 SmallVector<unsigned, 4> ReuseShuffleIndicies;
2123 SmallVector<Value *, 4> UniqueValues;
2124 DenseMap<Value *, unsigned> UniquePositions;
2125 for (Value *V : VL) {
2126 auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
2127 ReuseShuffleIndicies.emplace_back(Res.first->second);
2128 if (Res.second)
2129 UniqueValues.emplace_back(V);
2131 if (UniqueValues.size() == VL.size()) {
2132 ReuseShuffleIndicies.clear();
2133 } else {
2134 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
2135 if (UniqueValues.size() <= 1 || !llvm::isPowerOf2_32(UniqueValues.size())) {
2136 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
2137 newTreeEntry(VL, false, UserTreeIdx);
2138 return;
2140 VL = UniqueValues;
2143 auto &BSRef = BlocksSchedules[BB];
2144 if (!BSRef)
2145 BSRef = llvm::make_unique<BlockScheduling>(BB);
2147 BlockScheduling &BS = *BSRef.get();
2149 if (!BS.tryScheduleBundle(VL, this, S)) {
2150 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
2151 assert((!BS.getScheduleData(VL0) ||
2152 !BS.getScheduleData(VL0)->isPartOfBundle()) &&
2153 "tryScheduleBundle should cancelScheduling on failure");
2154 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
2155 return;
2157 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
2159 unsigned ShuffleOrOp = S.isAltShuffle() ?
2160 (unsigned) Instruction::ShuffleVector : S.getOpcode();
2161 switch (ShuffleOrOp) {
2162 case Instruction::PHI: {
2163 PHINode *PH = dyn_cast<PHINode>(VL0);
2165 // Check for terminator values (e.g. invoke).
2166 for (unsigned j = 0; j < VL.size(); ++j)
2167 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
2168 Instruction *Term = dyn_cast<Instruction>(
2169 cast<PHINode>(VL[j])->getIncomingValueForBlock(
2170 PH->getIncomingBlock(i)));
2171 if (Term && Term->isTerminator()) {
2172 LLVM_DEBUG(dbgs()
2173 << "SLP: Need to swizzle PHINodes (terminator use).\n");
2174 BS.cancelScheduling(VL, VL0);
2175 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
2176 return;
2180 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
2181 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
2183 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
2184 ValueList Operands;
2185 // Prepare the operand vector.
2186 for (Value *j : VL)
2187 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock(
2188 PH->getIncomingBlock(i)));
2190 buildTree_rec(Operands, Depth + 1, {TE, i});
2192 return;
2194 case Instruction::ExtractValue:
2195 case Instruction::ExtractElement: {
2196 OrdersType CurrentOrder;
2197 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
2198 if (Reuse) {
2199 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
2200 ++NumOpsWantToKeepOriginalOrder;
2201 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx,
2202 ReuseShuffleIndicies);
2203 // This is a special case, as it does not gather, but at the same time
2204 // we are not extending buildTree_rec() towards the operands.
2205 ValueList Op0;
2206 Op0.assign(VL.size(), VL0->getOperand(0));
2207 VectorizableTree.back()->setOperand(0, Op0, ReuseShuffleIndicies);
2208 return;
2210 if (!CurrentOrder.empty()) {
2211 LLVM_DEBUG({
2212 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
2213 "with order";
2214 for (unsigned Idx : CurrentOrder)
2215 dbgs() << " " << Idx;
2216 dbgs() << "\n";
2218 // Insert new order with initial value 0, if it does not exist,
2219 // otherwise return the iterator to the existing one.
2220 auto StoredCurrentOrderAndNum =
2221 NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
2222 ++StoredCurrentOrderAndNum->getSecond();
2223 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, ReuseShuffleIndicies,
2224 StoredCurrentOrderAndNum->getFirst());
2225 // This is a special case, as it does not gather, but at the same time
2226 // we are not extending buildTree_rec() towards the operands.
2227 ValueList Op0;
2228 Op0.assign(VL.size(), VL0->getOperand(0));
2229 VectorizableTree.back()->setOperand(0, Op0, ReuseShuffleIndicies);
2230 return;
2232 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
2233 newTreeEntry(VL, /*Vectorized=*/false, UserTreeIdx, ReuseShuffleIndicies);
2234 BS.cancelScheduling(VL, VL0);
2235 return;
2237 case Instruction::Load: {
2238 // Check that a vectorized load would load the same memory as a scalar
2239 // load. For example, we don't want to vectorize loads that are smaller
2240 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
2241 // treats loading/storing it as an i8 struct. If we vectorize loads/stores
2242 // from such a struct, we read/write packed bits disagreeing with the
2243 // unvectorized version.
2244 Type *ScalarTy = VL0->getType();
2246 if (DL->getTypeSizeInBits(ScalarTy) !=
2247 DL->getTypeAllocSizeInBits(ScalarTy)) {
2248 BS.cancelScheduling(VL, VL0);
2249 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
2250 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
2251 return;
2254 // Make sure all loads in the bundle are simple - we can't vectorize
2255 // atomic or volatile loads.
2256 SmallVector<Value *, 4> PointerOps(VL.size());
2257 auto POIter = PointerOps.begin();
2258 for (Value *V : VL) {
2259 auto *L = cast<LoadInst>(V);
2260 if (!L->isSimple()) {
2261 BS.cancelScheduling(VL, VL0);
2262 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
2263 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
2264 return;
2266 *POIter = L->getPointerOperand();
2267 ++POIter;
2270 OrdersType CurrentOrder;
2271 // Check the order of pointer operands.
2272 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
2273 Value *Ptr0;
2274 Value *PtrN;
2275 if (CurrentOrder.empty()) {
2276 Ptr0 = PointerOps.front();
2277 PtrN = PointerOps.back();
2278 } else {
2279 Ptr0 = PointerOps[CurrentOrder.front()];
2280 PtrN = PointerOps[CurrentOrder.back()];
2282 const SCEV *Scev0 = SE->getSCEV(Ptr0);
2283 const SCEV *ScevN = SE->getSCEV(PtrN);
2284 const auto *Diff =
2285 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0));
2286 uint64_t Size = DL->getTypeAllocSize(ScalarTy);
2287 // Check that the sorted loads are consecutive.
2288 if (Diff && Diff->getAPInt().getZExtValue() == (VL.size() - 1) * Size) {
2289 if (CurrentOrder.empty()) {
2290 // Original loads are consecutive and does not require reordering.
2291 ++NumOpsWantToKeepOriginalOrder;
2292 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx,
2293 ReuseShuffleIndicies);
2294 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
2295 } else {
2296 // Need to reorder.
2297 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
2298 ++I->getSecond();
2299 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx,
2300 ReuseShuffleIndicies, I->getFirst());
2301 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
2303 return;
2307 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
2308 BS.cancelScheduling(VL, VL0);
2309 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
2310 return;
2312 case Instruction::ZExt:
2313 case Instruction::SExt:
2314 case Instruction::FPToUI:
2315 case Instruction::FPToSI:
2316 case Instruction::FPExt:
2317 case Instruction::PtrToInt:
2318 case Instruction::IntToPtr:
2319 case Instruction::SIToFP:
2320 case Instruction::UIToFP:
2321 case Instruction::Trunc:
2322 case Instruction::FPTrunc:
2323 case Instruction::BitCast: {
2324 Type *SrcTy = VL0->getOperand(0)->getType();
2325 for (unsigned i = 0; i < VL.size(); ++i) {
2326 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
2327 if (Ty != SrcTy || !isValidElementType(Ty)) {
2328 BS.cancelScheduling(VL, VL0);
2329 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
2330 LLVM_DEBUG(dbgs()
2331 << "SLP: Gathering casts with different src types.\n");
2332 return;
2335 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
2336 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");
2338 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
2339 ValueList Operands;
2340 // Prepare the operand vector.
2341 for (Value *j : VL)
2342 Operands.push_back(cast<Instruction>(j)->getOperand(i));
2344 buildTree_rec(Operands, Depth + 1, {TE, i});
2346 return;
2348 case Instruction::ICmp:
2349 case Instruction::FCmp: {
2350 // Check that all of the compares have the same predicate.
2351 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
2352 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
2353 Type *ComparedTy = VL0->getOperand(0)->getType();
2354 for (unsigned i = 1, e = VL.size(); i < e; ++i) {
2355 CmpInst *Cmp = cast<CmpInst>(VL[i]);
2356 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
2357 Cmp->getOperand(0)->getType() != ComparedTy) {
2358 BS.cancelScheduling(VL, VL0);
2359 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
2360 LLVM_DEBUG(dbgs()
2361 << "SLP: Gathering cmp with different predicate.\n");
2362 return;
2366 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
2367 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");
2369 ValueList Left, Right;
2370 if (cast<CmpInst>(VL0)->isCommutative()) {
2371 // Commutative predicate - collect + sort operands of the instructions
2372 // so that each side is more likely to have the same opcode.
2373 assert(P0 == SwapP0 && "Commutative Predicate mismatch");
2374 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE);
2375 } else {
2376 // Collect operands - commute if it uses the swapped predicate.
2377 for (Value *V : VL) {
2378 auto *Cmp = cast<CmpInst>(V);
2379 Value *LHS = Cmp->getOperand(0);
2380 Value *RHS = Cmp->getOperand(1);
2381 if (Cmp->getPredicate() != P0)
2382 std::swap(LHS, RHS);
2383 Left.push_back(LHS);
2384 Right.push_back(RHS);
2388 buildTree_rec(Left, Depth + 1, {TE, 0});
2389 buildTree_rec(Right, Depth + 1, {TE, 1});
2390 return;
2392 case Instruction::Select:
2393 case Instruction::FNeg:
2394 case Instruction::Add:
2395 case Instruction::FAdd:
2396 case Instruction::Sub:
2397 case Instruction::FSub:
2398 case Instruction::Mul:
2399 case Instruction::FMul:
2400 case Instruction::UDiv:
2401 case Instruction::SDiv:
2402 case Instruction::FDiv:
2403 case Instruction::URem:
2404 case Instruction::SRem:
2405 case Instruction::FRem:
2406 case Instruction::Shl:
2407 case Instruction::LShr:
2408 case Instruction::AShr:
2409 case Instruction::And:
2410 case Instruction::Or:
2411 case Instruction::Xor: {
2412 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
2413 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n");
2415 // Sort operands of the instructions so that each side is more likely to
2416 // have the same opcode.
2417 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
2418 ValueList Left, Right;
2419 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE);
2420 buildTree_rec(Left, Depth + 1, {TE, 0});
2421 buildTree_rec(Right, Depth + 1, {TE, 1});
2422 return;
2425 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
2426 ValueList Operands;
2427 // Prepare the operand vector.
2428 for (Value *j : VL)
2429 Operands.push_back(cast<Instruction>(j)->getOperand(i));
2431 buildTree_rec(Operands, Depth + 1, {TE, i});
2433 return;
2435 case Instruction::GetElementPtr: {
2436 // We don't combine GEPs with complicated (nested) indexing.
2437 for (unsigned j = 0; j < VL.size(); ++j) {
2438 if (cast<Instruction>(VL[j])->getNumOperands() != 2) {
2439 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
2440 BS.cancelScheduling(VL, VL0);
2441 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
2442 return;
2446 // We can't combine several GEPs into one vector if they operate on
2447 // different types.
2448 Type *Ty0 = VL0->getOperand(0)->getType();
2449 for (unsigned j = 0; j < VL.size(); ++j) {
2450 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType();
2451 if (Ty0 != CurTy) {
2452 LLVM_DEBUG(dbgs()
2453 << "SLP: not-vectorizable GEP (different types).\n");
2454 BS.cancelScheduling(VL, VL0);
2455 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
2456 return;
2460 // We don't combine GEPs with non-constant indexes.
2461 for (unsigned j = 0; j < VL.size(); ++j) {
2462 auto Op = cast<Instruction>(VL[j])->getOperand(1);
2463 if (!isa<ConstantInt>(Op)) {
2464 LLVM_DEBUG(dbgs()
2465 << "SLP: not-vectorizable GEP (non-constant indexes).\n");
2466 BS.cancelScheduling(VL, VL0);
2467 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
2468 return;
2472 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
2473 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
2474 for (unsigned i = 0, e = 2; i < e; ++i) {
2475 ValueList Operands;
2476 // Prepare the operand vector.
2477 for (Value *j : VL)
2478 Operands.push_back(cast<Instruction>(j)->getOperand(i));
2480 buildTree_rec(Operands, Depth + 1, {TE, i});
2482 return;
2484 case Instruction::Store: {
2485 // Check if the stores are consecutive or of we need to swizzle them.
2486 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
2487 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) {
2488 BS.cancelScheduling(VL, VL0);
2489 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
2490 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
2491 return;
2494 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
2495 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
2497 ValueList Operands;
2498 for (Value *j : VL)
2499 Operands.push_back(cast<Instruction>(j)->getOperand(0));
2501 buildTree_rec(Operands, Depth + 1, {TE, 0});
2502 return;
2504 case Instruction::Call: {
2505 // Check if the calls are all to the same vectorizable intrinsic.
2506 CallInst *CI = cast<CallInst>(VL0);
2507 // Check if this is an Intrinsic call or something that can be
2508 // represented by an intrinsic call
2509 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
2510 if (!isTriviallyVectorizable(ID)) {
2511 BS.cancelScheduling(VL, VL0);
2512 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
2513 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
2514 return;
2516 Function *Int = CI->getCalledFunction();
2517 unsigned NumArgs = CI->getNumArgOperands();
2518 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
2519 for (unsigned j = 0; j != NumArgs; ++j)
2520 if (hasVectorInstrinsicScalarOpd(ID, j))
2521 ScalarArgs[j] = CI->getArgOperand(j);
2522 for (unsigned i = 1, e = VL.size(); i != e; ++i) {
2523 CallInst *CI2 = dyn_cast<CallInst>(VL[i]);
2524 if (!CI2 || CI2->getCalledFunction() != Int ||
2525 getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
2526 !CI->hasIdenticalOperandBundleSchema(*CI2)) {
2527 BS.cancelScheduling(VL, VL0);
2528 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
2529 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i]
2530 << "\n");
2531 return;
2533 // Some intrinsics have scalar arguments and should be same in order for
2534 // them to be vectorized.
2535 for (unsigned j = 0; j != NumArgs; ++j) {
2536 if (hasVectorInstrinsicScalarOpd(ID, j)) {
2537 Value *A1J = CI2->getArgOperand(j);
2538 if (ScalarArgs[j] != A1J) {
2539 BS.cancelScheduling(VL, VL0);
2540 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
2541 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
2542 << " argument " << ScalarArgs[j] << "!=" << A1J
2543 << "\n");
2544 return;
2548 // Verify that the bundle operands are identical between the two calls.
2549 if (CI->hasOperandBundles() &&
2550 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
2551 CI->op_begin() + CI->getBundleOperandsEndIndex(),
2552 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
2553 BS.cancelScheduling(VL, VL0);
2554 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
2555 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"
2556 << *CI << "!=" << *VL[i] << '\n');
2557 return;
2561 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
2562 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
2563 ValueList Operands;
2564 // Prepare the operand vector.
2565 for (Value *j : VL) {
2566 CallInst *CI2 = dyn_cast<CallInst>(j);
2567 Operands.push_back(CI2->getArgOperand(i));
2569 buildTree_rec(Operands, Depth + 1, {TE, i});
2571 return;
2573 case Instruction::ShuffleVector: {
2574 // If this is not an alternate sequence of opcode like add-sub
2575 // then do not vectorize this instruction.
2576 if (!S.isAltShuffle()) {
2577 BS.cancelScheduling(VL, VL0);
2578 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
2579 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
2580 return;
2582 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
2583 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
2585 // Reorder operands if reordering would enable vectorization.
2586 if (isa<BinaryOperator>(VL0)) {
2587 ValueList Left, Right;
2588 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE);
2589 buildTree_rec(Left, Depth + 1, {TE, 0});
2590 buildTree_rec(Right, Depth + 1, {TE, 1});
2591 return;
2594 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
2595 ValueList Operands;
2596 // Prepare the operand vector.
2597 for (Value *j : VL)
2598 Operands.push_back(cast<Instruction>(j)->getOperand(i));
2600 buildTree_rec(Operands, Depth + 1, {TE, i});
2602 return;
2604 default:
2605 BS.cancelScheduling(VL, VL0);
2606 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
2607 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
2608 return;
2612 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
2613 unsigned N;
2614 Type *EltTy;
2615 auto *ST = dyn_cast<StructType>(T);
2616 if (ST) {
2617 N = ST->getNumElements();
2618 EltTy = *ST->element_begin();
2619 } else {
2620 N = cast<ArrayType>(T)->getNumElements();
2621 EltTy = cast<ArrayType>(T)->getElementType();
2623 if (!isValidElementType(EltTy))
2624 return 0;
2625 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N));
2626 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
2627 return 0;
2628 if (ST) {
2629 // Check that struct is homogeneous.
2630 for (const auto *Ty : ST->elements())
2631 if (Ty != EltTy)
2632 return 0;
2634 return N;
2637 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
2638 SmallVectorImpl<unsigned> &CurrentOrder) const {
2639 Instruction *E0 = cast<Instruction>(OpValue);
2640 assert(E0->getOpcode() == Instruction::ExtractElement ||
2641 E0->getOpcode() == Instruction::ExtractValue);
2642 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode");
2643 // Check if all of the extracts come from the same vector and from the
2644 // correct offset.
2645 Value *Vec = E0->getOperand(0);
2647 CurrentOrder.clear();
2649 // We have to extract from a vector/aggregate with the same number of elements.
2650 unsigned NElts;
2651 if (E0->getOpcode() == Instruction::ExtractValue) {
2652 const DataLayout &DL = E0->getModule()->getDataLayout();
2653 NElts = canMapToVector(Vec->getType(), DL);
2654 if (!NElts)
2655 return false;
2656 // Check if load can be rewritten as load of vector.
2657 LoadInst *LI = dyn_cast<LoadInst>(Vec);
2658 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
2659 return false;
2660 } else {
2661 NElts = Vec->getType()->getVectorNumElements();
2664 if (NElts != VL.size())
2665 return false;
2667 // Check that all of the indices extract from the correct offset.
2668 bool ShouldKeepOrder = true;
2669 unsigned E = VL.size();
2670 // Assign to all items the initial value E + 1 so we can check if the extract
2671 // instruction index was used already.
2672 // Also, later we can check that all the indices are used and we have a
2673 // consecutive access in the extract instructions, by checking that no
2674 // element of CurrentOrder still has value E + 1.
2675 CurrentOrder.assign(E, E + 1);
2676 unsigned I = 0;
2677 for (; I < E; ++I) {
2678 auto *Inst = cast<Instruction>(VL[I]);
2679 if (Inst->getOperand(0) != Vec)
2680 break;
2681 Optional<unsigned> Idx = getExtractIndex(Inst);
2682 if (!Idx)
2683 break;
2684 const unsigned ExtIdx = *Idx;
2685 if (ExtIdx != I) {
2686 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1)
2687 break;
2688 ShouldKeepOrder = false;
2689 CurrentOrder[ExtIdx] = I;
2690 } else {
2691 if (CurrentOrder[I] != E + 1)
2692 break;
2693 CurrentOrder[I] = I;
2696 if (I < E) {
2697 CurrentOrder.clear();
2698 return false;
2701 return ShouldKeepOrder;
2704 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const {
2705 return I->hasOneUse() ||
2706 std::all_of(I->user_begin(), I->user_end(), [this](User *U) {
2707 return ScalarToTreeEntry.count(U) > 0;
2711 int BoUpSLP::getEntryCost(TreeEntry *E) {
2712 ArrayRef<Value*> VL = E->Scalars;
2714 Type *ScalarTy = VL[0]->getType();
2715 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
2716 ScalarTy = SI->getValueOperand()->getType();
2717 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
2718 ScalarTy = CI->getOperand(0)->getType();
2719 VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
2721 // If we have computed a smaller type for the expression, update VecTy so
2722 // that the costs will be accurate.
2723 if (MinBWs.count(VL[0]))
2724 VecTy = VectorType::get(
2725 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
2727 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size();
2728 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
2729 int ReuseShuffleCost = 0;
2730 if (NeedToShuffleReuses) {
2731 ReuseShuffleCost =
2732 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
2734 if (E->NeedToGather) {
2735 if (allConstant(VL))
2736 return 0;
2737 if (isSplat(VL)) {
2738 return ReuseShuffleCost +
2739 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
2741 if (getSameOpcode(VL).getOpcode() == Instruction::ExtractElement &&
2742 allSameType(VL) && allSameBlock(VL)) {
2743 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL);
2744 if (ShuffleKind.hasValue()) {
2745 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy);
2746 for (auto *V : VL) {
2747 // If all users of instruction are going to be vectorized and this
2748 // instruction itself is not going to be vectorized, consider this
2749 // instruction as dead and remove its cost from the final cost of the
2750 // vectorized tree.
2751 if (areAllUsersVectorized(cast<Instruction>(V)) &&
2752 !ScalarToTreeEntry.count(V)) {
2753 auto *IO = cast<ConstantInt>(
2754 cast<ExtractElementInst>(V)->getIndexOperand());
2755 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
2756 IO->getZExtValue());
2759 return ReuseShuffleCost + Cost;
2762 return ReuseShuffleCost + getGatherCost(VL);
2764 InstructionsState S = getSameOpcode(VL);
2765 assert(S.getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL");
2766 Instruction *VL0 = cast<Instruction>(S.OpValue);
2767 unsigned ShuffleOrOp = S.isAltShuffle() ?
2768 (unsigned) Instruction::ShuffleVector : S.getOpcode();
2769 switch (ShuffleOrOp) {
2770 case Instruction::PHI:
2771 return 0;
2773 case Instruction::ExtractValue:
2774 case Instruction::ExtractElement:
2775 if (NeedToShuffleReuses) {
2776 unsigned Idx = 0;
2777 for (unsigned I : E->ReuseShuffleIndices) {
2778 if (ShuffleOrOp == Instruction::ExtractElement) {
2779 auto *IO = cast<ConstantInt>(
2780 cast<ExtractElementInst>(VL[I])->getIndexOperand());
2781 Idx = IO->getZExtValue();
2782 ReuseShuffleCost -= TTI->getVectorInstrCost(
2783 Instruction::ExtractElement, VecTy, Idx);
2784 } else {
2785 ReuseShuffleCost -= TTI->getVectorInstrCost(
2786 Instruction::ExtractElement, VecTy, Idx);
2787 ++Idx;
2790 Idx = ReuseShuffleNumbers;
2791 for (Value *V : VL) {
2792 if (ShuffleOrOp == Instruction::ExtractElement) {
2793 auto *IO = cast<ConstantInt>(
2794 cast<ExtractElementInst>(V)->getIndexOperand());
2795 Idx = IO->getZExtValue();
2796 } else {
2797 --Idx;
2799 ReuseShuffleCost +=
2800 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx);
2803 if (!E->NeedToGather) {
2804 int DeadCost = ReuseShuffleCost;
2805 if (!E->ReorderIndices.empty()) {
2806 // TODO: Merge this shuffle with the ReuseShuffleCost.
2807 DeadCost += TTI->getShuffleCost(
2808 TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
2810 for (unsigned i = 0, e = VL.size(); i < e; ++i) {
2811 Instruction *E = cast<Instruction>(VL[i]);
2812 // If all users are going to be vectorized, instruction can be
2813 // considered as dead.
2814 // The same, if have only one user, it will be vectorized for sure.
2815 if (areAllUsersVectorized(E)) {
2816 // Take credit for instruction that will become dead.
2817 if (E->hasOneUse()) {
2818 Instruction *Ext = E->user_back();
2819 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
2820 all_of(Ext->users(),
2821 [](User *U) { return isa<GetElementPtrInst>(U); })) {
2822 // Use getExtractWithExtendCost() to calculate the cost of
2823 // extractelement/ext pair.
2824 DeadCost -= TTI->getExtractWithExtendCost(
2825 Ext->getOpcode(), Ext->getType(), VecTy, i);
2826 // Add back the cost of s|zext which is subtracted separately.
2827 DeadCost += TTI->getCastInstrCost(
2828 Ext->getOpcode(), Ext->getType(), E->getType(), Ext);
2829 continue;
2832 DeadCost -=
2833 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
2836 return DeadCost;
2838 return ReuseShuffleCost + getGatherCost(VL);
2840 case Instruction::ZExt:
2841 case Instruction::SExt:
2842 case Instruction::FPToUI:
2843 case Instruction::FPToSI:
2844 case Instruction::FPExt:
2845 case Instruction::PtrToInt:
2846 case Instruction::IntToPtr:
2847 case Instruction::SIToFP:
2848 case Instruction::UIToFP:
2849 case Instruction::Trunc:
2850 case Instruction::FPTrunc:
2851 case Instruction::BitCast: {
2852 Type *SrcTy = VL0->getOperand(0)->getType();
2853 int ScalarEltCost =
2854 TTI->getCastInstrCost(S.getOpcode(), ScalarTy, SrcTy, VL0);
2855 if (NeedToShuffleReuses) {
2856 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
2859 // Calculate the cost of this instruction.
2860 int ScalarCost = VL.size() * ScalarEltCost;
2862 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
2863 int VecCost = 0;
2864 // Check if the values are candidates to demote.
2865 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
2866 VecCost = ReuseShuffleCost +
2867 TTI->getCastInstrCost(S.getOpcode(), VecTy, SrcVecTy, VL0);
2869 return VecCost - ScalarCost;
2871 case Instruction::FCmp:
2872 case Instruction::ICmp:
2873 case Instruction::Select: {
2874 // Calculate the cost of this instruction.
2875 int ScalarEltCost = TTI->getCmpSelInstrCost(S.getOpcode(), ScalarTy,
2876 Builder.getInt1Ty(), VL0);
2877 if (NeedToShuffleReuses) {
2878 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
2880 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
2881 int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
2882 int VecCost = TTI->getCmpSelInstrCost(S.getOpcode(), VecTy, MaskTy, VL0);
2883 return ReuseShuffleCost + VecCost - ScalarCost;
2885 case Instruction::FNeg:
2886 case Instruction::Add:
2887 case Instruction::FAdd:
2888 case Instruction::Sub:
2889 case Instruction::FSub:
2890 case Instruction::Mul:
2891 case Instruction::FMul:
2892 case Instruction::UDiv:
2893 case Instruction::SDiv:
2894 case Instruction::FDiv:
2895 case Instruction::URem:
2896 case Instruction::SRem:
2897 case Instruction::FRem:
2898 case Instruction::Shl:
2899 case Instruction::LShr:
2900 case Instruction::AShr:
2901 case Instruction::And:
2902 case Instruction::Or:
2903 case Instruction::Xor: {
2904 // Certain instructions can be cheaper to vectorize if they have a
2905 // constant second vector operand.
2906 TargetTransformInfo::OperandValueKind Op1VK =
2907 TargetTransformInfo::OK_AnyValue;
2908 TargetTransformInfo::OperandValueKind Op2VK =
2909 TargetTransformInfo::OK_UniformConstantValue;
2910 TargetTransformInfo::OperandValueProperties Op1VP =
2911 TargetTransformInfo::OP_None;
2912 TargetTransformInfo::OperandValueProperties Op2VP =
2913 TargetTransformInfo::OP_PowerOf2;
2915 // If all operands are exactly the same ConstantInt then set the
2916 // operand kind to OK_UniformConstantValue.
2917 // If instead not all operands are constants, then set the operand kind
2918 // to OK_AnyValue. If all operands are constants but not the same,
2919 // then set the operand kind to OK_NonUniformConstantValue.
2920 ConstantInt *CInt0 = nullptr;
2921 for (unsigned i = 0, e = VL.size(); i < e; ++i) {
2922 const Instruction *I = cast<Instruction>(VL[i]);
2923 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0;
2924 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx));
2925 if (!CInt) {
2926 Op2VK = TargetTransformInfo::OK_AnyValue;
2927 Op2VP = TargetTransformInfo::OP_None;
2928 break;
2930 if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
2931 !CInt->getValue().isPowerOf2())
2932 Op2VP = TargetTransformInfo::OP_None;
2933 if (i == 0) {
2934 CInt0 = CInt;
2935 continue;
2937 if (CInt0 != CInt)
2938 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
2941 SmallVector<const Value *, 4> Operands(VL0->operand_values());
2942 int ScalarEltCost = TTI->getArithmeticInstrCost(
2943 S.getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands);
2944 if (NeedToShuffleReuses) {
2945 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
2947 int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
2948 int VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy, Op1VK,
2949 Op2VK, Op1VP, Op2VP, Operands);
2950 return ReuseShuffleCost + VecCost - ScalarCost;
2952 case Instruction::GetElementPtr: {
2953 TargetTransformInfo::OperandValueKind Op1VK =
2954 TargetTransformInfo::OK_AnyValue;
2955 TargetTransformInfo::OperandValueKind Op2VK =
2956 TargetTransformInfo::OK_UniformConstantValue;
2958 int ScalarEltCost =
2959 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK);
2960 if (NeedToShuffleReuses) {
2961 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
2963 int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
2964 int VecCost =
2965 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK);
2966 return ReuseShuffleCost + VecCost - ScalarCost;
2968 case Instruction::Load: {
2969 // Cost of wide load - cost of scalar loads.
2970 unsigned alignment = cast<LoadInst>(VL0)->getAlignment();
2971 int ScalarEltCost =
2972 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0);
2973 if (NeedToShuffleReuses) {
2974 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
2976 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
2977 int VecLdCost =
2978 TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0);
2979 if (!E->ReorderIndices.empty()) {
2980 // TODO: Merge this shuffle with the ReuseShuffleCost.
2981 VecLdCost += TTI->getShuffleCost(
2982 TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
2984 return ReuseShuffleCost + VecLdCost - ScalarLdCost;
2986 case Instruction::Store: {
2987 // We know that we can merge the stores. Calculate the cost.
2988 unsigned alignment = cast<StoreInst>(VL0)->getAlignment();
2989 int ScalarEltCost =
2990 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0);
2991 if (NeedToShuffleReuses) {
2992 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
2994 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
2995 int VecStCost =
2996 TTI->getMemoryOpCost(Instruction::Store, VecTy, alignment, 0, VL0);
2997 return ReuseShuffleCost + VecStCost - ScalarStCost;
2999 case Instruction::Call: {
3000 CallInst *CI = cast<CallInst>(VL0);
3001 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3003 // Calculate the cost of the scalar and vector calls.
3004 SmallVector<Type *, 4> ScalarTys;
3005 for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op)
3006 ScalarTys.push_back(CI->getArgOperand(op)->getType());
3008 FastMathFlags FMF;
3009 if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3010 FMF = FPMO->getFastMathFlags();
3012 int ScalarEltCost =
3013 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF);
3014 if (NeedToShuffleReuses) {
3015 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3017 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
3019 SmallVector<Value *, 4> Args(CI->arg_operands());
3020 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF,
3021 VecTy->getNumElements());
3023 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost
3024 << " (" << VecCallCost << "-" << ScalarCallCost << ")"
3025 << " for " << *CI << "\n");
3027 return ReuseShuffleCost + VecCallCost - ScalarCallCost;
3029 case Instruction::ShuffleVector: {
3030 assert(S.isAltShuffle() &&
3031 ((Instruction::isBinaryOp(S.getOpcode()) &&
3032 Instruction::isBinaryOp(S.getAltOpcode())) ||
3033 (Instruction::isCast(S.getOpcode()) &&
3034 Instruction::isCast(S.getAltOpcode()))) &&
3035 "Invalid Shuffle Vector Operand");
3036 int ScalarCost = 0;
3037 if (NeedToShuffleReuses) {
3038 for (unsigned Idx : E->ReuseShuffleIndices) {
3039 Instruction *I = cast<Instruction>(VL[Idx]);
3040 ReuseShuffleCost -= TTI->getInstructionCost(
3041 I, TargetTransformInfo::TCK_RecipThroughput);
3043 for (Value *V : VL) {
3044 Instruction *I = cast<Instruction>(V);
3045 ReuseShuffleCost += TTI->getInstructionCost(
3046 I, TargetTransformInfo::TCK_RecipThroughput);
3049 for (Value *i : VL) {
3050 Instruction *I = cast<Instruction>(i);
3051 assert(S.isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
3052 ScalarCost += TTI->getInstructionCost(
3053 I, TargetTransformInfo::TCK_RecipThroughput);
3055 // VecCost is equal to sum of the cost of creating 2 vectors
3056 // and the cost of creating shuffle.
3057 int VecCost = 0;
3058 if (Instruction::isBinaryOp(S.getOpcode())) {
3059 VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy);
3060 VecCost += TTI->getArithmeticInstrCost(S.getAltOpcode(), VecTy);
3061 } else {
3062 Type *Src0SclTy = S.MainOp->getOperand(0)->getType();
3063 Type *Src1SclTy = S.AltOp->getOperand(0)->getType();
3064 VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size());
3065 VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size());
3066 VecCost = TTI->getCastInstrCost(S.getOpcode(), VecTy, Src0Ty);
3067 VecCost += TTI->getCastInstrCost(S.getAltOpcode(), VecTy, Src1Ty);
3069 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0);
3070 return ReuseShuffleCost + VecCost - ScalarCost;
3072 default:
3073 llvm_unreachable("Unknown instruction");
3077 bool BoUpSLP::isFullyVectorizableTinyTree() const {
3078 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
3079 << VectorizableTree.size() << " is fully vectorizable .\n");
3081 // We only handle trees of heights 1 and 2.
3082 if (VectorizableTree.size() == 1 && !VectorizableTree[0]->NeedToGather)
3083 return true;
3085 if (VectorizableTree.size() != 2)
3086 return false;
3088 // Handle splat and all-constants stores.
3089 if (!VectorizableTree[0]->NeedToGather &&
3090 (allConstant(VectorizableTree[1]->Scalars) ||
3091 isSplat(VectorizableTree[1]->Scalars)))
3092 return true;
3094 // Gathering cost would be too much for tiny trees.
3095 if (VectorizableTree[0]->NeedToGather || VectorizableTree[1]->NeedToGather)
3096 return false;
3098 return true;
3101 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const {
3102 // We can vectorize the tree if its size is greater than or equal to the
3103 // minimum size specified by the MinTreeSize command line option.
3104 if (VectorizableTree.size() >= MinTreeSize)
3105 return false;
3107 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
3108 // can vectorize it if we can prove it fully vectorizable.
3109 if (isFullyVectorizableTinyTree())
3110 return false;
3112 assert(VectorizableTree.empty()
3113 ? ExternalUses.empty()
3114 : true && "We shouldn't have any external users");
3116 // Otherwise, we can't vectorize the tree. It is both tiny and not fully
3117 // vectorizable.
3118 return true;
3121 int BoUpSLP::getSpillCost() const {
3122 // Walk from the bottom of the tree to the top, tracking which values are
3123 // live. When we see a call instruction that is not part of our tree,
3124 // query TTI to see if there is a cost to keeping values live over it
3125 // (for example, if spills and fills are required).
3126 unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
3127 int Cost = 0;
3129 SmallPtrSet<Instruction*, 4> LiveValues;
3130 Instruction *PrevInst = nullptr;
3132 for (const auto &TEPtr : VectorizableTree) {
3133 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
3134 if (!Inst)
3135 continue;
3137 if (!PrevInst) {
3138 PrevInst = Inst;
3139 continue;
3142 // Update LiveValues.
3143 LiveValues.erase(PrevInst);
3144 for (auto &J : PrevInst->operands()) {
3145 if (isa<Instruction>(&*J) && getTreeEntry(&*J))
3146 LiveValues.insert(cast<Instruction>(&*J));
3149 LLVM_DEBUG({
3150 dbgs() << "SLP: #LV: " << LiveValues.size();
3151 for (auto *X : LiveValues)
3152 dbgs() << " " << X->getName();
3153 dbgs() << ", Looking at ";
3154 Inst->dump();
3157 // Now find the sequence of instructions between PrevInst and Inst.
3158 unsigned NumCalls = 0;
3159 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
3160 PrevInstIt =
3161 PrevInst->getIterator().getReverse();
3162 while (InstIt != PrevInstIt) {
3163 if (PrevInstIt == PrevInst->getParent()->rend()) {
3164 PrevInstIt = Inst->getParent()->rbegin();
3165 continue;
3168 // Debug informations don't impact spill cost.
3169 if ((isa<CallInst>(&*PrevInstIt) &&
3170 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
3171 &*PrevInstIt != PrevInst)
3172 NumCalls++;
3174 ++PrevInstIt;
3177 if (NumCalls) {
3178 SmallVector<Type*, 4> V;
3179 for (auto *II : LiveValues)
3180 V.push_back(VectorType::get(II->getType(), BundleWidth));
3181 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
3184 PrevInst = Inst;
3187 return Cost;
3190 int BoUpSLP::getTreeCost() {
3191 int Cost = 0;
3192 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
3193 << VectorizableTree.size() << ".\n");
3195 unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
3197 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
3198 TreeEntry &TE = *VectorizableTree[I].get();
3200 // We create duplicate tree entries for gather sequences that have multiple
3201 // uses. However, we should not compute the cost of duplicate sequences.
3202 // For example, if we have a build vector (i.e., insertelement sequence)
3203 // that is used by more than one vector instruction, we only need to
3204 // compute the cost of the insertelement instructions once. The redundant
3205 // instructions will be eliminated by CSE.
3207 // We should consider not creating duplicate tree entries for gather
3208 // sequences, and instead add additional edges to the tree representing
3209 // their uses. Since such an approach results in fewer total entries,
3210 // existing heuristics based on tree size may yield different results.
3212 if (TE.NeedToGather &&
3213 std::any_of(
3214 std::next(VectorizableTree.begin(), I + 1), VectorizableTree.end(),
3215 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) {
3216 return EntryPtr->NeedToGather && EntryPtr->isSame(TE.Scalars);
3218 continue;
3220 int C = getEntryCost(&TE);
3221 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
3222 << " for bundle that starts with " << *TE.Scalars[0]
3223 << ".\n");
3224 Cost += C;
3227 SmallPtrSet<Value *, 16> ExtractCostCalculated;
3228 int ExtractCost = 0;
3229 for (ExternalUser &EU : ExternalUses) {
3230 // We only add extract cost once for the same scalar.
3231 if (!ExtractCostCalculated.insert(EU.Scalar).second)
3232 continue;
3234 // Uses by ephemeral values are free (because the ephemeral value will be
3235 // removed prior to code generation, and so the extraction will be
3236 // removed as well).
3237 if (EphValues.count(EU.User))
3238 continue;
3240 // If we plan to rewrite the tree in a smaller type, we will need to sign
3241 // extend the extracted value back to the original type. Here, we account
3242 // for the extract and the added cost of the sign extend if needed.
3243 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth);
3244 auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
3245 if (MinBWs.count(ScalarRoot)) {
3246 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
3247 auto Extend =
3248 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
3249 VecTy = VectorType::get(MinTy, BundleWidth);
3250 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
3251 VecTy, EU.Lane);
3252 } else {
3253 ExtractCost +=
3254 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
3258 int SpillCost = getSpillCost();
3259 Cost += SpillCost + ExtractCost;
3261 std::string Str;
3263 raw_string_ostream OS(Str);
3264 OS << "SLP: Spill Cost = " << SpillCost << ".\n"
3265 << "SLP: Extract Cost = " << ExtractCost << ".\n"
3266 << "SLP: Total Cost = " << Cost << ".\n";
3268 LLVM_DEBUG(dbgs() << Str);
3270 if (ViewSLPTree)
3271 ViewGraph(this, "SLP" + F->getName(), false, Str);
3273 return Cost;
3276 int BoUpSLP::getGatherCost(Type *Ty,
3277 const DenseSet<unsigned> &ShuffledIndices) const {
3278 int Cost = 0;
3279 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
3280 if (!ShuffledIndices.count(i))
3281 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
3282 if (!ShuffledIndices.empty())
3283 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
3284 return Cost;
3287 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
3288 // Find the type of the operands in VL.
3289 Type *ScalarTy = VL[0]->getType();
3290 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
3291 ScalarTy = SI->getValueOperand()->getType();
3292 VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
3293 // Find the cost of inserting/extracting values from the vector.
3294 // Check if the same elements are inserted several times and count them as
3295 // shuffle candidates.
3296 DenseSet<unsigned> ShuffledElements;
3297 DenseSet<Value *> UniqueElements;
3298 // Iterate in reverse order to consider insert elements with the high cost.
3299 for (unsigned I = VL.size(); I > 0; --I) {
3300 unsigned Idx = I - 1;
3301 if (!UniqueElements.insert(VL[Idx]).second)
3302 ShuffledElements.insert(Idx);
3304 return getGatherCost(VecTy, ShuffledElements);
3307 // Perform operand reordering on the instructions in VL and return the reordered
3308 // operands in Left and Right.
3309 void BoUpSLP::reorderInputsAccordingToOpcode(
3310 ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left,
3311 SmallVectorImpl<Value *> &Right, const DataLayout &DL,
3312 ScalarEvolution &SE) {
3313 if (VL.empty())
3314 return;
3315 VLOperands Ops(VL, DL, SE);
3316 // Reorder the operands in place.
3317 Ops.reorder();
3318 Left = Ops.getVL(0);
3319 Right = Ops.getVL(1);
3322 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL,
3323 const InstructionsState &S) {
3324 // Get the basic block this bundle is in. All instructions in the bundle
3325 // should be in this block.
3326 auto *Front = cast<Instruction>(S.OpValue);
3327 auto *BB = Front->getParent();
3328 assert(llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool {
3329 auto *I = cast<Instruction>(V);
3330 return !S.isOpcodeOrAlt(I) || I->getParent() == BB;
3331 }));
3333 // The last instruction in the bundle in program order.
3334 Instruction *LastInst = nullptr;
3336 // Find the last instruction. The common case should be that BB has been
3337 // scheduled, and the last instruction is VL.back(). So we start with
3338 // VL.back() and iterate over schedule data until we reach the end of the
3339 // bundle. The end of the bundle is marked by null ScheduleData.
3340 if (BlocksSchedules.count(BB)) {
3341 auto *Bundle =
3342 BlocksSchedules[BB]->getScheduleData(isOneOf(S, VL.back()));
3343 if (Bundle && Bundle->isPartOfBundle())
3344 for (; Bundle; Bundle = Bundle->NextInBundle)
3345 if (Bundle->OpValue == Bundle->Inst)
3346 LastInst = Bundle->Inst;
3349 // LastInst can still be null at this point if there's either not an entry
3350 // for BB in BlocksSchedules or there's no ScheduleData available for
3351 // VL.back(). This can be the case if buildTree_rec aborts for various
3352 // reasons (e.g., the maximum recursion depth is reached, the maximum region
3353 // size is reached, etc.). ScheduleData is initialized in the scheduling
3354 // "dry-run".
3356 // If this happens, we can still find the last instruction by brute force. We
3357 // iterate forwards from Front (inclusive) until we either see all
3358 // instructions in the bundle or reach the end of the block. If Front is the
3359 // last instruction in program order, LastInst will be set to Front, and we
3360 // will visit all the remaining instructions in the block.
3362 // One of the reasons we exit early from buildTree_rec is to place an upper
3363 // bound on compile-time. Thus, taking an additional compile-time hit here is
3364 // not ideal. However, this should be exceedingly rare since it requires that
3365 // we both exit early from buildTree_rec and that the bundle be out-of-order
3366 // (causing us to iterate all the way to the end of the block).
3367 if (!LastInst) {
3368 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end());
3369 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
3370 if (Bundle.erase(&I) && S.isOpcodeOrAlt(&I))
3371 LastInst = &I;
3372 if (Bundle.empty())
3373 break;
3377 // Set the insertion point after the last instruction in the bundle. Set the
3378 // debug location to Front.
3379 Builder.SetInsertPoint(BB, ++LastInst->getIterator());
3380 Builder.SetCurrentDebugLocation(Front->getDebugLoc());
3383 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
3384 Value *Vec = UndefValue::get(Ty);
3385 // Generate the 'InsertElement' instruction.
3386 for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
3387 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
3388 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
3389 GatherSeq.insert(Insrt);
3390 CSEBlocks.insert(Insrt->getParent());
3392 // Add to our 'need-to-extract' list.
3393 if (TreeEntry *E = getTreeEntry(VL[i])) {
3394 // Find which lane we need to extract.
3395 int FoundLane = -1;
3396 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) {
3397 // Is this the lane of the scalar that we are looking for ?
3398 if (E->Scalars[Lane] == VL[i]) {
3399 FoundLane = Lane;
3400 break;
3403 assert(FoundLane >= 0 && "Could not find the correct lane");
3404 if (!E->ReuseShuffleIndices.empty()) {
3405 FoundLane =
3406 std::distance(E->ReuseShuffleIndices.begin(),
3407 llvm::find(E->ReuseShuffleIndices, FoundLane));
3409 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
3414 return Vec;
3417 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
3418 InstructionsState S = getSameOpcode(VL);
3419 if (S.getOpcode()) {
3420 if (TreeEntry *E = getTreeEntry(S.OpValue)) {
3421 if (E->isSame(VL)) {
3422 Value *V = vectorizeTree(E);
3423 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) {
3424 // We need to get the vectorized value but without shuffle.
3425 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) {
3426 V = SV->getOperand(0);
3427 } else {
3428 // Reshuffle to get only unique values.
3429 SmallVector<unsigned, 4> UniqueIdxs;
3430 SmallSet<unsigned, 4> UsedIdxs;
3431 for(unsigned Idx : E->ReuseShuffleIndices)
3432 if (UsedIdxs.insert(Idx).second)
3433 UniqueIdxs.emplace_back(Idx);
3434 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
3435 UniqueIdxs);
3438 return V;
3443 Type *ScalarTy = S.OpValue->getType();
3444 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
3445 ScalarTy = SI->getValueOperand()->getType();
3447 // Check that every instruction appears once in this bundle.
3448 SmallVector<unsigned, 4> ReuseShuffleIndicies;
3449 SmallVector<Value *, 4> UniqueValues;
3450 if (VL.size() > 2) {
3451 DenseMap<Value *, unsigned> UniquePositions;
3452 for (Value *V : VL) {
3453 auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
3454 ReuseShuffleIndicies.emplace_back(Res.first->second);
3455 if (Res.second || isa<Constant>(V))
3456 UniqueValues.emplace_back(V);
3458 // Do not shuffle single element or if number of unique values is not power
3459 // of 2.
3460 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 ||
3461 !llvm::isPowerOf2_32(UniqueValues.size()))
3462 ReuseShuffleIndicies.clear();
3463 else
3464 VL = UniqueValues;
3466 VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
3468 Value *V = Gather(VL, VecTy);
3469 if (!ReuseShuffleIndicies.empty()) {
3470 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3471 ReuseShuffleIndicies, "shuffle");
3472 if (auto *I = dyn_cast<Instruction>(V)) {
3473 GatherSeq.insert(I);
3474 CSEBlocks.insert(I->getParent());
3477 return V;
3480 static void inversePermutation(ArrayRef<unsigned> Indices,
3481 SmallVectorImpl<unsigned> &Mask) {
3482 Mask.clear();
3483 const unsigned E = Indices.size();
3484 Mask.resize(E);
3485 for (unsigned I = 0; I < E; ++I)
3486 Mask[Indices[I]] = I;
3489 Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
3490 IRBuilder<>::InsertPointGuard Guard(Builder);
3492 if (E->VectorizedValue) {
3493 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
3494 return E->VectorizedValue;
3497 InstructionsState S = getSameOpcode(E->Scalars);
3498 Instruction *VL0 = cast<Instruction>(S.OpValue);
3499 Type *ScalarTy = VL0->getType();
3500 if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
3501 ScalarTy = SI->getValueOperand()->getType();
3502 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
3504 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
3506 if (E->NeedToGather) {
3507 setInsertPointAfterBundle(E->Scalars, S);
3508 auto *V = Gather(E->Scalars, VecTy);
3509 if (NeedToShuffleReuses) {
3510 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3511 E->ReuseShuffleIndices, "shuffle");
3512 if (auto *I = dyn_cast<Instruction>(V)) {
3513 GatherSeq.insert(I);
3514 CSEBlocks.insert(I->getParent());
3517 E->VectorizedValue = V;
3518 return V;
3521 unsigned ShuffleOrOp = S.isAltShuffle() ?
3522 (unsigned) Instruction::ShuffleVector : S.getOpcode();
3523 switch (ShuffleOrOp) {
3524 case Instruction::PHI: {
3525 PHINode *PH = dyn_cast<PHINode>(VL0);
3526 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
3527 Builder.SetCurrentDebugLocation(PH->getDebugLoc());
3528 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
3529 Value *V = NewPhi;
3530 if (NeedToShuffleReuses) {
3531 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3532 E->ReuseShuffleIndices, "shuffle");
3534 E->VectorizedValue = V;
3536 // PHINodes may have multiple entries from the same block. We want to
3537 // visit every block once.
3538 SmallPtrSet<BasicBlock*, 4> VisitedBBs;
3540 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
3541 ValueList Operands;
3542 BasicBlock *IBB = PH->getIncomingBlock(i);
3544 if (!VisitedBBs.insert(IBB).second) {
3545 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
3546 continue;
3549 Builder.SetInsertPoint(IBB->getTerminator());
3550 Builder.SetCurrentDebugLocation(PH->getDebugLoc());
3551 Value *Vec = vectorizeTree(E->getOperand(i));
3552 NewPhi->addIncoming(Vec, IBB);
3555 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
3556 "Invalid number of incoming values");
3557 return V;
3560 case Instruction::ExtractElement: {
3561 if (!E->NeedToGather) {
3562 Value *V = E->getSingleOperand(0);
3563 if (!E->ReorderIndices.empty()) {
3564 OrdersType Mask;
3565 inversePermutation(E->ReorderIndices, Mask);
3566 Builder.SetInsertPoint(VL0);
3567 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask,
3568 "reorder_shuffle");
3570 if (NeedToShuffleReuses) {
3571 // TODO: Merge this shuffle with the ReorderShuffleMask.
3572 if (E->ReorderIndices.empty())
3573 Builder.SetInsertPoint(VL0);
3574 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3575 E->ReuseShuffleIndices, "shuffle");
3577 E->VectorizedValue = V;
3578 return V;
3580 setInsertPointAfterBundle(E->Scalars, S);
3581 auto *V = Gather(E->Scalars, VecTy);
3582 if (NeedToShuffleReuses) {
3583 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3584 E->ReuseShuffleIndices, "shuffle");
3585 if (auto *I = dyn_cast<Instruction>(V)) {
3586 GatherSeq.insert(I);
3587 CSEBlocks.insert(I->getParent());
3590 E->VectorizedValue = V;
3591 return V;
3593 case Instruction::ExtractValue: {
3594 if (!E->NeedToGather) {
3595 LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0));
3596 Builder.SetInsertPoint(LI);
3597 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
3598 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
3599 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlignment());
3600 Value *NewV = propagateMetadata(V, E->Scalars);
3601 if (!E->ReorderIndices.empty()) {
3602 OrdersType Mask;
3603 inversePermutation(E->ReorderIndices, Mask);
3604 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask,
3605 "reorder_shuffle");
3607 if (NeedToShuffleReuses) {
3608 // TODO: Merge this shuffle with the ReorderShuffleMask.
3609 NewV = Builder.CreateShuffleVector(
3610 NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle");
3612 E->VectorizedValue = NewV;
3613 return NewV;
3615 setInsertPointAfterBundle(E->Scalars, S);
3616 auto *V = Gather(E->Scalars, VecTy);
3617 if (NeedToShuffleReuses) {
3618 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3619 E->ReuseShuffleIndices, "shuffle");
3620 if (auto *I = dyn_cast<Instruction>(V)) {
3621 GatherSeq.insert(I);
3622 CSEBlocks.insert(I->getParent());
3625 E->VectorizedValue = V;
3626 return V;
3628 case Instruction::ZExt:
3629 case Instruction::SExt:
3630 case Instruction::FPToUI:
3631 case Instruction::FPToSI:
3632 case Instruction::FPExt:
3633 case Instruction::PtrToInt:
3634 case Instruction::IntToPtr:
3635 case Instruction::SIToFP:
3636 case Instruction::UIToFP:
3637 case Instruction::Trunc:
3638 case Instruction::FPTrunc:
3639 case Instruction::BitCast: {
3640 setInsertPointAfterBundle(E->Scalars, S);
3642 Value *InVec = vectorizeTree(E->getOperand(0));
3644 if (E->VectorizedValue) {
3645 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
3646 return E->VectorizedValue;
3649 CastInst *CI = dyn_cast<CastInst>(VL0);
3650 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
3651 if (NeedToShuffleReuses) {
3652 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3653 E->ReuseShuffleIndices, "shuffle");
3655 E->VectorizedValue = V;
3656 ++NumVectorInstructions;
3657 return V;
3659 case Instruction::FCmp:
3660 case Instruction::ICmp: {
3661 setInsertPointAfterBundle(E->Scalars, S);
3663 Value *L = vectorizeTree(E->getOperand(0));
3664 Value *R = vectorizeTree(E->getOperand(1));
3666 if (E->VectorizedValue) {
3667 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
3668 return E->VectorizedValue;
3671 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
3672 Value *V;
3673 if (S.getOpcode() == Instruction::FCmp)
3674 V = Builder.CreateFCmp(P0, L, R);
3675 else
3676 V = Builder.CreateICmp(P0, L, R);
3678 propagateIRFlags(V, E->Scalars, VL0);
3679 if (NeedToShuffleReuses) {
3680 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3681 E->ReuseShuffleIndices, "shuffle");
3683 E->VectorizedValue = V;
3684 ++NumVectorInstructions;
3685 return V;
3687 case Instruction::Select: {
3688 setInsertPointAfterBundle(E->Scalars, S);
3690 Value *Cond = vectorizeTree(E->getOperand(0));
3691 Value *True = vectorizeTree(E->getOperand(1));
3692 Value *False = vectorizeTree(E->getOperand(2));
3694 if (E->VectorizedValue) {
3695 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
3696 return E->VectorizedValue;
3699 Value *V = Builder.CreateSelect(Cond, True, False);
3700 if (NeedToShuffleReuses) {
3701 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3702 E->ReuseShuffleIndices, "shuffle");
3704 E->VectorizedValue = V;
3705 ++NumVectorInstructions;
3706 return V;
3708 case Instruction::FNeg: {
3709 setInsertPointAfterBundle(E->Scalars, S);
3711 Value *Op = vectorizeTree(E->getOperand(0));
3713 if (E->VectorizedValue) {
3714 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
3715 return E->VectorizedValue;
3718 Value *V = Builder.CreateUnOp(
3719 static_cast<Instruction::UnaryOps>(S.getOpcode()), Op);
3720 propagateIRFlags(V, E->Scalars, VL0);
3721 if (auto *I = dyn_cast<Instruction>(V))
3722 V = propagateMetadata(I, E->Scalars);
3724 if (NeedToShuffleReuses) {
3725 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3726 E->ReuseShuffleIndices, "shuffle");
3728 E->VectorizedValue = V;
3729 ++NumVectorInstructions;
3731 return V;
3733 case Instruction::Add:
3734 case Instruction::FAdd:
3735 case Instruction::Sub:
3736 case Instruction::FSub:
3737 case Instruction::Mul:
3738 case Instruction::FMul:
3739 case Instruction::UDiv:
3740 case Instruction::SDiv:
3741 case Instruction::FDiv:
3742 case Instruction::URem:
3743 case Instruction::SRem:
3744 case Instruction::FRem:
3745 case Instruction::Shl:
3746 case Instruction::LShr:
3747 case Instruction::AShr:
3748 case Instruction::And:
3749 case Instruction::Or:
3750 case Instruction::Xor: {
3751 setInsertPointAfterBundle(E->Scalars, S);
3753 Value *LHS = vectorizeTree(E->getOperand(0));
3754 Value *RHS = vectorizeTree(E->getOperand(1));
3756 if (E->VectorizedValue) {
3757 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
3758 return E->VectorizedValue;
3761 Value *V = Builder.CreateBinOp(
3762 static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS);
3763 propagateIRFlags(V, E->Scalars, VL0);
3764 if (auto *I = dyn_cast<Instruction>(V))
3765 V = propagateMetadata(I, E->Scalars);
3767 if (NeedToShuffleReuses) {
3768 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3769 E->ReuseShuffleIndices, "shuffle");
3771 E->VectorizedValue = V;
3772 ++NumVectorInstructions;
3774 return V;
3776 case Instruction::Load: {
3777 // Loads are inserted at the head of the tree because we don't want to
3778 // sink them all the way down past store instructions.
3779 bool IsReorder = !E->ReorderIndices.empty();
3780 if (IsReorder) {
3781 S = getSameOpcode(E->Scalars, E->ReorderIndices.front());
3782 VL0 = cast<Instruction>(S.OpValue);
3784 setInsertPointAfterBundle(E->Scalars, S);
3786 LoadInst *LI = cast<LoadInst>(VL0);
3787 Type *ScalarLoadTy = LI->getType();
3788 unsigned AS = LI->getPointerAddressSpace();
3790 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
3791 VecTy->getPointerTo(AS));
3793 // The pointer operand uses an in-tree scalar so we add the new BitCast to
3794 // ExternalUses list to make sure that an extract will be generated in the
3795 // future.
3796 Value *PO = LI->getPointerOperand();
3797 if (getTreeEntry(PO))
3798 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0));
3800 unsigned Alignment = LI->getAlignment();
3801 LI = Builder.CreateLoad(VecTy, VecPtr);
3802 if (!Alignment) {
3803 Alignment = DL->getABITypeAlignment(ScalarLoadTy);
3805 LI->setAlignment(Alignment);
3806 Value *V = propagateMetadata(LI, E->Scalars);
3807 if (IsReorder) {
3808 OrdersType Mask;
3809 inversePermutation(E->ReorderIndices, Mask);
3810 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
3811 Mask, "reorder_shuffle");
3813 if (NeedToShuffleReuses) {
3814 // TODO: Merge this shuffle with the ReorderShuffleMask.
3815 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3816 E->ReuseShuffleIndices, "shuffle");
3818 E->VectorizedValue = V;
3819 ++NumVectorInstructions;
3820 return V;
3822 case Instruction::Store: {
3823 StoreInst *SI = cast<StoreInst>(VL0);
3824 unsigned Alignment = SI->getAlignment();
3825 unsigned AS = SI->getPointerAddressSpace();
3827 setInsertPointAfterBundle(E->Scalars, S);
3829 Value *VecValue = vectorizeTree(E->getOperand(0));
3830 Value *ScalarPtr = SI->getPointerOperand();
3831 Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS));
3832 StoreInst *ST = Builder.CreateStore(VecValue, VecPtr);
3834 // The pointer operand uses an in-tree scalar, so add the new BitCast to
3835 // ExternalUses to make sure that an extract will be generated in the
3836 // future.
3837 if (getTreeEntry(ScalarPtr))
3838 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0));
3840 if (!Alignment)
3841 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType());
3843 ST->setAlignment(Alignment);
3844 Value *V = propagateMetadata(ST, E->Scalars);
3845 if (NeedToShuffleReuses) {
3846 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3847 E->ReuseShuffleIndices, "shuffle");
3849 E->VectorizedValue = V;
3850 ++NumVectorInstructions;
3851 return V;
3853 case Instruction::GetElementPtr: {
3854 setInsertPointAfterBundle(E->Scalars, S);
3856 Value *Op0 = vectorizeTree(E->getOperand(0));
3858 std::vector<Value *> OpVecs;
3859 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
3860 ++j) {
3861 Value *OpVec = vectorizeTree(E->getOperand(j));
3862 OpVecs.push_back(OpVec);
3865 Value *V = Builder.CreateGEP(
3866 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
3867 if (Instruction *I = dyn_cast<Instruction>(V))
3868 V = propagateMetadata(I, E->Scalars);
3870 if (NeedToShuffleReuses) {
3871 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3872 E->ReuseShuffleIndices, "shuffle");
3874 E->VectorizedValue = V;
3875 ++NumVectorInstructions;
3877 return V;
3879 case Instruction::Call: {
3880 CallInst *CI = cast<CallInst>(VL0);
3881 setInsertPointAfterBundle(E->Scalars, S);
3883 Intrinsic::ID IID = Intrinsic::not_intrinsic;
3884 if (Function *FI = CI->getCalledFunction())
3885 IID = FI->getIntrinsicID();
3887 Value *ScalarArg = nullptr;
3888 std::vector<Value *> OpVecs;
3889 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
3890 ValueList OpVL;
3891 // Some intrinsics have scalar arguments. This argument should not be
3892 // vectorized.
3893 if (hasVectorInstrinsicScalarOpd(IID, j)) {
3894 CallInst *CEI = cast<CallInst>(VL0);
3895 ScalarArg = CEI->getArgOperand(j);
3896 OpVecs.push_back(CEI->getArgOperand(j));
3897 continue;
3900 Value *OpVec = vectorizeTree(E->getOperand(j));
3901 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
3902 OpVecs.push_back(OpVec);
3905 Module *M = F->getParent();
3906 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3907 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
3908 Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
3909 SmallVector<OperandBundleDef, 1> OpBundles;
3910 CI->getOperandBundlesAsDefs(OpBundles);
3911 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
3913 // The scalar argument uses an in-tree scalar so we add the new vectorized
3914 // call to ExternalUses list to make sure that an extract will be
3915 // generated in the future.
3916 if (ScalarArg && getTreeEntry(ScalarArg))
3917 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
3919 propagateIRFlags(V, E->Scalars, VL0);
3920 if (NeedToShuffleReuses) {
3921 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3922 E->ReuseShuffleIndices, "shuffle");
3924 E->VectorizedValue = V;
3925 ++NumVectorInstructions;
3926 return V;
3928 case Instruction::ShuffleVector: {
3929 assert(S.isAltShuffle() &&
3930 ((Instruction::isBinaryOp(S.getOpcode()) &&
3931 Instruction::isBinaryOp(S.getAltOpcode())) ||
3932 (Instruction::isCast(S.getOpcode()) &&
3933 Instruction::isCast(S.getAltOpcode()))) &&
3934 "Invalid Shuffle Vector Operand");
3936 Value *LHS = nullptr, *RHS = nullptr;
3937 if (Instruction::isBinaryOp(S.getOpcode())) {
3938 setInsertPointAfterBundle(E->Scalars, S);
3939 LHS = vectorizeTree(E->getOperand(0));
3940 RHS = vectorizeTree(E->getOperand(1));
3941 } else {
3942 setInsertPointAfterBundle(E->Scalars, S);
3943 LHS = vectorizeTree(E->getOperand(0));
3946 if (E->VectorizedValue) {
3947 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
3948 return E->VectorizedValue;
3951 Value *V0, *V1;
3952 if (Instruction::isBinaryOp(S.getOpcode())) {
3953 V0 = Builder.CreateBinOp(
3954 static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS);
3955 V1 = Builder.CreateBinOp(
3956 static_cast<Instruction::BinaryOps>(S.getAltOpcode()), LHS, RHS);
3957 } else {
3958 V0 = Builder.CreateCast(
3959 static_cast<Instruction::CastOps>(S.getOpcode()), LHS, VecTy);
3960 V1 = Builder.CreateCast(
3961 static_cast<Instruction::CastOps>(S.getAltOpcode()), LHS, VecTy);
3964 // Create shuffle to take alternate operations from the vector.
3965 // Also, gather up main and alt scalar ops to propagate IR flags to
3966 // each vector operation.
3967 ValueList OpScalars, AltScalars;
3968 unsigned e = E->Scalars.size();
3969 SmallVector<Constant *, 8> Mask(e);
3970 for (unsigned i = 0; i < e; ++i) {
3971 auto *OpInst = cast<Instruction>(E->Scalars[i]);
3972 assert(S.isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode");
3973 if (OpInst->getOpcode() == S.getAltOpcode()) {
3974 Mask[i] = Builder.getInt32(e + i);
3975 AltScalars.push_back(E->Scalars[i]);
3976 } else {
3977 Mask[i] = Builder.getInt32(i);
3978 OpScalars.push_back(E->Scalars[i]);
3982 Value *ShuffleMask = ConstantVector::get(Mask);
3983 propagateIRFlags(V0, OpScalars);
3984 propagateIRFlags(V1, AltScalars);
3986 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask);
3987 if (Instruction *I = dyn_cast<Instruction>(V))
3988 V = propagateMetadata(I, E->Scalars);
3989 if (NeedToShuffleReuses) {
3990 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3991 E->ReuseShuffleIndices, "shuffle");
3993 E->VectorizedValue = V;
3994 ++NumVectorInstructions;
3996 return V;
3998 default:
3999 llvm_unreachable("unknown inst");
4001 return nullptr;
4004 Value *BoUpSLP::vectorizeTree() {
4005 ExtraValueToDebugLocsMap ExternallyUsedValues;
4006 return vectorizeTree(ExternallyUsedValues);
4009 Value *
4010 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
4011 // All blocks must be scheduled before any instructions are inserted.
4012 for (auto &BSIter : BlocksSchedules) {
4013 scheduleBlock(BSIter.second.get());
4016 Builder.SetInsertPoint(&F->getEntryBlock().front());
4017 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());
4019 // If the vectorized tree can be rewritten in a smaller type, we truncate the
4020 // vectorized root. InstCombine will then rewrite the entire expression. We
4021 // sign extend the extracted values below.
4022 auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
4023 if (MinBWs.count(ScalarRoot)) {
4024 if (auto *I = dyn_cast<Instruction>(VectorRoot))
4025 Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
4026 auto BundleWidth = VectorizableTree[0]->Scalars.size();
4027 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
4028 auto *VecTy = VectorType::get(MinTy, BundleWidth);
4029 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
4030 VectorizableTree[0]->VectorizedValue = Trunc;
4033 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()
4034 << " values .\n");
4036 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type
4037 // specified by ScalarType.
4038 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) {
4039 if (!MinBWs.count(ScalarRoot))
4040 return Ex;
4041 if (MinBWs[ScalarRoot].second)
4042 return Builder.CreateSExt(Ex, ScalarType);
4043 return Builder.CreateZExt(Ex, ScalarType);
4046 // Extract all of the elements with the external uses.
4047 for (const auto &ExternalUse : ExternalUses) {
4048 Value *Scalar = ExternalUse.Scalar;
4049 llvm::User *User = ExternalUse.User;
4051 // Skip users that we already RAUW. This happens when one instruction
4052 // has multiple uses of the same value.
4053 if (User && !is_contained(Scalar->users(), User))
4054 continue;
4055 TreeEntry *E = getTreeEntry(Scalar);
4056 assert(E && "Invalid scalar");
4057 assert(!E->NeedToGather && "Extracting from a gather list");
4059 Value *Vec = E->VectorizedValue;
4060 assert(Vec && "Can't find vectorizable value");
4062 Value *Lane = Builder.getInt32(ExternalUse.Lane);
4063 // If User == nullptr, the Scalar is used as extra arg. Generate
4064 // ExtractElement instruction and update the record for this scalar in
4065 // ExternallyUsedValues.
4066 if (!User) {
4067 assert(ExternallyUsedValues.count(Scalar) &&
4068 "Scalar with nullptr as an external user must be registered in "
4069 "ExternallyUsedValues map");
4070 if (auto *VecI = dyn_cast<Instruction>(Vec)) {
4071 Builder.SetInsertPoint(VecI->getParent(),
4072 std::next(VecI->getIterator()));
4073 } else {
4074 Builder.SetInsertPoint(&F->getEntryBlock().front());
4076 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4077 Ex = extend(ScalarRoot, Ex, Scalar->getType());
4078 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
4079 auto &Locs = ExternallyUsedValues[Scalar];
4080 ExternallyUsedValues.insert({Ex, Locs});
4081 ExternallyUsedValues.erase(Scalar);
4082 // Required to update internally referenced instructions.
4083 Scalar->replaceAllUsesWith(Ex);
4084 continue;
4087 // Generate extracts for out-of-tree users.
4088 // Find the insertion point for the extractelement lane.
4089 if (auto *VecI = dyn_cast<Instruction>(Vec)) {
4090 if (PHINode *PH = dyn_cast<PHINode>(User)) {
4091 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
4092 if (PH->getIncomingValue(i) == Scalar) {
4093 Instruction *IncomingTerminator =
4094 PH->getIncomingBlock(i)->getTerminator();
4095 if (isa<CatchSwitchInst>(IncomingTerminator)) {
4096 Builder.SetInsertPoint(VecI->getParent(),
4097 std::next(VecI->getIterator()));
4098 } else {
4099 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
4101 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4102 Ex = extend(ScalarRoot, Ex, Scalar->getType());
4103 CSEBlocks.insert(PH->getIncomingBlock(i));
4104 PH->setOperand(i, Ex);
4107 } else {
4108 Builder.SetInsertPoint(cast<Instruction>(User));
4109 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4110 Ex = extend(ScalarRoot, Ex, Scalar->getType());
4111 CSEBlocks.insert(cast<Instruction>(User)->getParent());
4112 User->replaceUsesOfWith(Scalar, Ex);
4114 } else {
4115 Builder.SetInsertPoint(&F->getEntryBlock().front());
4116 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4117 Ex = extend(ScalarRoot, Ex, Scalar->getType());
4118 CSEBlocks.insert(&F->getEntryBlock());
4119 User->replaceUsesOfWith(Scalar, Ex);
4122 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
4125 // For each vectorized value:
4126 for (auto &TEPtr : VectorizableTree) {
4127 TreeEntry *Entry = TEPtr.get();
4129 // No need to handle users of gathered values.
4130 if (Entry->NeedToGather)
4131 continue;
4133 assert(Entry->VectorizedValue && "Can't find vectorizable value");
4135 // For each lane:
4136 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
4137 Value *Scalar = Entry->Scalars[Lane];
4139 Type *Ty = Scalar->getType();
4140 if (!Ty->isVoidTy()) {
4141 #ifndef NDEBUG
4142 for (User *U : Scalar->users()) {
4143 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
4145 // It is legal to replace users in the ignorelist by undef.
4146 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&
4147 "Replacing out-of-tree value with undef");
4149 #endif
4150 Value *Undef = UndefValue::get(Ty);
4151 Scalar->replaceAllUsesWith(Undef);
4153 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
4154 eraseInstruction(cast<Instruction>(Scalar));
4158 Builder.ClearInsertionPoint();
4160 return VectorizableTree[0]->VectorizedValue;
4163 void BoUpSLP::optimizeGatherSequence() {
4164 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
4165 << " gather sequences instructions.\n");
4166 // LICM InsertElementInst sequences.
4167 for (Instruction *I : GatherSeq) {
4168 if (!isa<InsertElementInst>(I) && !isa<ShuffleVectorInst>(I))
4169 continue;
4171 // Check if this block is inside a loop.
4172 Loop *L = LI->getLoopFor(I->getParent());
4173 if (!L)
4174 continue;
4176 // Check if it has a preheader.
4177 BasicBlock *PreHeader = L->getLoopPreheader();
4178 if (!PreHeader)
4179 continue;
4181 // If the vector or the element that we insert into it are
4182 // instructions that are defined in this basic block then we can't
4183 // hoist this instruction.
4184 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
4185 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
4186 if (Op0 && L->contains(Op0))
4187 continue;
4188 if (Op1 && L->contains(Op1))
4189 continue;
4191 // We can hoist this instruction. Move it to the pre-header.
4192 I->moveBefore(PreHeader->getTerminator());
4195 // Make a list of all reachable blocks in our CSE queue.
4196 SmallVector<const DomTreeNode *, 8> CSEWorkList;
4197 CSEWorkList.reserve(CSEBlocks.size());
4198 for (BasicBlock *BB : CSEBlocks)
4199 if (DomTreeNode *N = DT->getNode(BB)) {
4200 assert(DT->isReachableFromEntry(N));
4201 CSEWorkList.push_back(N);
4204 // Sort blocks by domination. This ensures we visit a block after all blocks
4205 // dominating it are visited.
4206 llvm::stable_sort(CSEWorkList,
4207 [this](const DomTreeNode *A, const DomTreeNode *B) {
4208 return DT->properlyDominates(A, B);
4211 // Perform O(N^2) search over the gather sequences and merge identical
4212 // instructions. TODO: We can further optimize this scan if we split the
4213 // instructions into different buckets based on the insert lane.
4214 SmallVector<Instruction *, 16> Visited;
4215 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
4216 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
4217 "Worklist not sorted properly!");
4218 BasicBlock *BB = (*I)->getBlock();
4219 // For all instructions in blocks containing gather sequences:
4220 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
4221 Instruction *In = &*it++;
4222 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
4223 continue;
4225 // Check if we can replace this instruction with any of the
4226 // visited instructions.
4227 for (Instruction *v : Visited) {
4228 if (In->isIdenticalTo(v) &&
4229 DT->dominates(v->getParent(), In->getParent())) {
4230 In->replaceAllUsesWith(v);
4231 eraseInstruction(In);
4232 In = nullptr;
4233 break;
4236 if (In) {
4237 assert(!is_contained(Visited, In));
4238 Visited.push_back(In);
4242 CSEBlocks.clear();
4243 GatherSeq.clear();
4246 // Groups the instructions to a bundle (which is then a single scheduling entity)
4247 // and schedules instructions until the bundle gets ready.
4248 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL,
4249 BoUpSLP *SLP,
4250 const InstructionsState &S) {
4251 if (isa<PHINode>(S.OpValue))
4252 return true;
4254 // Initialize the instruction bundle.
4255 Instruction *OldScheduleEnd = ScheduleEnd;
4256 ScheduleData *PrevInBundle = nullptr;
4257 ScheduleData *Bundle = nullptr;
4258 bool ReSchedule = false;
4259 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n");
4261 // Make sure that the scheduling region contains all
4262 // instructions of the bundle.
4263 for (Value *V : VL) {
4264 if (!extendSchedulingRegion(V, S))
4265 return false;
4268 for (Value *V : VL) {
4269 ScheduleData *BundleMember = getScheduleData(V);
4270 assert(BundleMember &&
4271 "no ScheduleData for bundle member (maybe not in same basic block)");
4272 if (BundleMember->IsScheduled) {
4273 // A bundle member was scheduled as single instruction before and now
4274 // needs to be scheduled as part of the bundle. We just get rid of the
4275 // existing schedule.
4276 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember
4277 << " was already scheduled\n");
4278 ReSchedule = true;
4280 assert(BundleMember->isSchedulingEntity() &&
4281 "bundle member already part of other bundle");
4282 if (PrevInBundle) {
4283 PrevInBundle->NextInBundle = BundleMember;
4284 } else {
4285 Bundle = BundleMember;
4287 BundleMember->UnscheduledDepsInBundle = 0;
4288 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
4290 // Group the instructions to a bundle.
4291 BundleMember->FirstInBundle = Bundle;
4292 PrevInBundle = BundleMember;
4294 if (ScheduleEnd != OldScheduleEnd) {
4295 // The scheduling region got new instructions at the lower end (or it is a
4296 // new region for the first bundle). This makes it necessary to
4297 // recalculate all dependencies.
4298 // It is seldom that this needs to be done a second time after adding the
4299 // initial bundle to the region.
4300 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
4301 doForAllOpcodes(I, [](ScheduleData *SD) {
4302 SD->clearDependencies();
4305 ReSchedule = true;
4307 if (ReSchedule) {
4308 resetSchedule();
4309 initialFillReadyList(ReadyInsts);
4312 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "
4313 << BB->getName() << "\n");
4315 calculateDependencies(Bundle, true, SLP);
4317 // Now try to schedule the new bundle. As soon as the bundle is "ready" it
4318 // means that there are no cyclic dependencies and we can schedule it.
4319 // Note that's important that we don't "schedule" the bundle yet (see
4320 // cancelScheduling).
4321 while (!Bundle->isReady() && !ReadyInsts.empty()) {
4323 ScheduleData *pickedSD = ReadyInsts.back();
4324 ReadyInsts.pop_back();
4326 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
4327 schedule(pickedSD, ReadyInsts);
4330 if (!Bundle->isReady()) {
4331 cancelScheduling(VL, S.OpValue);
4332 return false;
4334 return true;
4337 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
4338 Value *OpValue) {
4339 if (isa<PHINode>(OpValue))
4340 return;
4342 ScheduleData *Bundle = getScheduleData(OpValue);
4343 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n");
4344 assert(!Bundle->IsScheduled &&
4345 "Can't cancel bundle which is already scheduled");
4346 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
4347 "tried to unbundle something which is not a bundle");
4349 // Un-bundle: make single instructions out of the bundle.
4350 ScheduleData *BundleMember = Bundle;
4351 while (BundleMember) {
4352 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
4353 BundleMember->FirstInBundle = BundleMember;
4354 ScheduleData *Next = BundleMember->NextInBundle;
4355 BundleMember->NextInBundle = nullptr;
4356 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
4357 if (BundleMember->UnscheduledDepsInBundle == 0) {
4358 ReadyInsts.insert(BundleMember);
4360 BundleMember = Next;
4364 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
4365 // Allocate a new ScheduleData for the instruction.
4366 if (ChunkPos >= ChunkSize) {
4367 ScheduleDataChunks.push_back(llvm::make_unique<ScheduleData[]>(ChunkSize));
4368 ChunkPos = 0;
4370 return &(ScheduleDataChunks.back()[ChunkPos++]);
4373 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
4374 const InstructionsState &S) {
4375 if (getScheduleData(V, isOneOf(S, V)))
4376 return true;
4377 Instruction *I = dyn_cast<Instruction>(V);
4378 assert(I && "bundle member must be an instruction");
4379 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
4380 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool {
4381 ScheduleData *ISD = getScheduleData(I);
4382 if (!ISD)
4383 return false;
4384 assert(isInSchedulingRegion(ISD) &&
4385 "ScheduleData not in scheduling region");
4386 ScheduleData *SD = allocateScheduleDataChunks();
4387 SD->Inst = I;
4388 SD->init(SchedulingRegionID, S.OpValue);
4389 ExtraScheduleDataMap[I][S.OpValue] = SD;
4390 return true;
4392 if (CheckSheduleForI(I))
4393 return true;
4394 if (!ScheduleStart) {
4395 // It's the first instruction in the new region.
4396 initScheduleData(I, I->getNextNode(), nullptr, nullptr);
4397 ScheduleStart = I;
4398 ScheduleEnd = I->getNextNode();
4399 if (isOneOf(S, I) != I)
4400 CheckSheduleForI(I);
4401 assert(ScheduleEnd && "tried to vectorize a terminator?");
4402 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n");
4403 return true;
4405 // Search up and down at the same time, because we don't know if the new
4406 // instruction is above or below the existing scheduling region.
4407 BasicBlock::reverse_iterator UpIter =
4408 ++ScheduleStart->getIterator().getReverse();
4409 BasicBlock::reverse_iterator UpperEnd = BB->rend();
4410 BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
4411 BasicBlock::iterator LowerEnd = BB->end();
4412 while (true) {
4413 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
4414 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n");
4415 return false;
4418 if (UpIter != UpperEnd) {
4419 if (&*UpIter == I) {
4420 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
4421 ScheduleStart = I;
4422 if (isOneOf(S, I) != I)
4423 CheckSheduleForI(I);
4424 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I
4425 << "\n");
4426 return true;
4428 ++UpIter;
4430 if (DownIter != LowerEnd) {
4431 if (&*DownIter == I) {
4432 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
4433 nullptr);
4434 ScheduleEnd = I->getNextNode();
4435 if (isOneOf(S, I) != I)
4436 CheckSheduleForI(I);
4437 assert(ScheduleEnd && "tried to vectorize a terminator?");
4438 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I
4439 << "\n");
4440 return true;
4442 ++DownIter;
4444 assert((UpIter != UpperEnd || DownIter != LowerEnd) &&
4445 "instruction not found in block");
4447 return true;
4450 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
4451 Instruction *ToI,
4452 ScheduleData *PrevLoadStore,
4453 ScheduleData *NextLoadStore) {
4454 ScheduleData *CurrentLoadStore = PrevLoadStore;
4455 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
4456 ScheduleData *SD = ScheduleDataMap[I];
4457 if (!SD) {
4458 SD = allocateScheduleDataChunks();
4459 ScheduleDataMap[I] = SD;
4460 SD->Inst = I;
4462 assert(!isInSchedulingRegion(SD) &&
4463 "new ScheduleData already in scheduling region");
4464 SD->init(SchedulingRegionID, I);
4466 if (I->mayReadOrWriteMemory() &&
4467 (!isa<IntrinsicInst>(I) ||
4468 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) {
4469 // Update the linked list of memory accessing instructions.
4470 if (CurrentLoadStore) {
4471 CurrentLoadStore->NextLoadStore = SD;
4472 } else {
4473 FirstLoadStoreInRegion = SD;
4475 CurrentLoadStore = SD;
4478 if (NextLoadStore) {
4479 if (CurrentLoadStore)
4480 CurrentLoadStore->NextLoadStore = NextLoadStore;
4481 } else {
4482 LastLoadStoreInRegion = CurrentLoadStore;
4486 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
4487 bool InsertInReadyList,
4488 BoUpSLP *SLP) {
4489 assert(SD->isSchedulingEntity());
4491 SmallVector<ScheduleData *, 10> WorkList;
4492 WorkList.push_back(SD);
4494 while (!WorkList.empty()) {
4495 ScheduleData *SD = WorkList.back();
4496 WorkList.pop_back();
4498 ScheduleData *BundleMember = SD;
4499 while (BundleMember) {
4500 assert(isInSchedulingRegion(BundleMember));
4501 if (!BundleMember->hasValidDependencies()) {
4503 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember
4504 << "\n");
4505 BundleMember->Dependencies = 0;
4506 BundleMember->resetUnscheduledDeps();
4508 // Handle def-use chain dependencies.
4509 if (BundleMember->OpValue != BundleMember->Inst) {
4510 ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
4511 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
4512 BundleMember->Dependencies++;
4513 ScheduleData *DestBundle = UseSD->FirstInBundle;
4514 if (!DestBundle->IsScheduled)
4515 BundleMember->incrementUnscheduledDeps(1);
4516 if (!DestBundle->hasValidDependencies())
4517 WorkList.push_back(DestBundle);
4519 } else {
4520 for (User *U : BundleMember->Inst->users()) {
4521 if (isa<Instruction>(U)) {
4522 ScheduleData *UseSD = getScheduleData(U);
4523 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
4524 BundleMember->Dependencies++;
4525 ScheduleData *DestBundle = UseSD->FirstInBundle;
4526 if (!DestBundle->IsScheduled)
4527 BundleMember->incrementUnscheduledDeps(1);
4528 if (!DestBundle->hasValidDependencies())
4529 WorkList.push_back(DestBundle);
4531 } else {
4532 // I'm not sure if this can ever happen. But we need to be safe.
4533 // This lets the instruction/bundle never be scheduled and
4534 // eventually disable vectorization.
4535 BundleMember->Dependencies++;
4536 BundleMember->incrementUnscheduledDeps(1);
4541 // Handle the memory dependencies.
4542 ScheduleData *DepDest = BundleMember->NextLoadStore;
4543 if (DepDest) {
4544 Instruction *SrcInst = BundleMember->Inst;
4545 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
4546 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
4547 unsigned numAliased = 0;
4548 unsigned DistToSrc = 1;
4550 while (DepDest) {
4551 assert(isInSchedulingRegion(DepDest));
4553 // We have two limits to reduce the complexity:
4554 // 1) AliasedCheckLimit: It's a small limit to reduce calls to
4555 // SLP->isAliased (which is the expensive part in this loop).
4556 // 2) MaxMemDepDistance: It's for very large blocks and it aborts
4557 // the whole loop (even if the loop is fast, it's quadratic).
4558 // It's important for the loop break condition (see below) to
4559 // check this limit even between two read-only instructions.
4560 if (DistToSrc >= MaxMemDepDistance ||
4561 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
4562 (numAliased >= AliasedCheckLimit ||
4563 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
4565 // We increment the counter only if the locations are aliased
4566 // (instead of counting all alias checks). This gives a better
4567 // balance between reduced runtime and accurate dependencies.
4568 numAliased++;
4570 DepDest->MemoryDependencies.push_back(BundleMember);
4571 BundleMember->Dependencies++;
4572 ScheduleData *DestBundle = DepDest->FirstInBundle;
4573 if (!DestBundle->IsScheduled) {
4574 BundleMember->incrementUnscheduledDeps(1);
4576 if (!DestBundle->hasValidDependencies()) {
4577 WorkList.push_back(DestBundle);
4580 DepDest = DepDest->NextLoadStore;
4582 // Example, explaining the loop break condition: Let's assume our
4583 // starting instruction is i0 and MaxMemDepDistance = 3.
4585 // +--------v--v--v
4586 // i0,i1,i2,i3,i4,i5,i6,i7,i8
4587 // +--------^--^--^
4589 // MaxMemDepDistance let us stop alias-checking at i3 and we add
4590 // dependencies from i0 to i3,i4,.. (even if they are not aliased).
4591 // Previously we already added dependencies from i3 to i6,i7,i8
4592 // (because of MaxMemDepDistance). As we added a dependency from
4593 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
4594 // and we can abort this loop at i6.
4595 if (DistToSrc >= 2 * MaxMemDepDistance)
4596 break;
4597 DistToSrc++;
4601 BundleMember = BundleMember->NextInBundle;
4603 if (InsertInReadyList && SD->isReady()) {
4604 ReadyInsts.push_back(SD);
4605 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst
4606 << "\n");
4611 void BoUpSLP::BlockScheduling::resetSchedule() {
4612 assert(ScheduleStart &&
4613 "tried to reset schedule on block which has not been scheduled");
4614 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
4615 doForAllOpcodes(I, [&](ScheduleData *SD) {
4616 assert(isInSchedulingRegion(SD) &&
4617 "ScheduleData not in scheduling region");
4618 SD->IsScheduled = false;
4619 SD->resetUnscheduledDeps();
4622 ReadyInsts.clear();
4625 void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
4626 if (!BS->ScheduleStart)
4627 return;
4629 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
4631 BS->resetSchedule();
4633 // For the real scheduling we use a more sophisticated ready-list: it is
4634 // sorted by the original instruction location. This lets the final schedule
4635 // be as close as possible to the original instruction order.
4636 struct ScheduleDataCompare {
4637 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
4638 return SD2->SchedulingPriority < SD1->SchedulingPriority;
4641 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
4643 // Ensure that all dependency data is updated and fill the ready-list with
4644 // initial instructions.
4645 int Idx = 0;
4646 int NumToSchedule = 0;
4647 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
4648 I = I->getNextNode()) {
4649 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) {
4650 assert(SD->isPartOfBundle() ==
4651 (getTreeEntry(SD->Inst) != nullptr) &&
4652 "scheduler and vectorizer bundle mismatch");
4653 SD->FirstInBundle->SchedulingPriority = Idx++;
4654 if (SD->isSchedulingEntity()) {
4655 BS->calculateDependencies(SD, false, this);
4656 NumToSchedule++;
4660 BS->initialFillReadyList(ReadyInsts);
4662 Instruction *LastScheduledInst = BS->ScheduleEnd;
4664 // Do the "real" scheduling.
4665 while (!ReadyInsts.empty()) {
4666 ScheduleData *picked = *ReadyInsts.begin();
4667 ReadyInsts.erase(ReadyInsts.begin());
4669 // Move the scheduled instruction(s) to their dedicated places, if not
4670 // there yet.
4671 ScheduleData *BundleMember = picked;
4672 while (BundleMember) {
4673 Instruction *pickedInst = BundleMember->Inst;
4674 if (LastScheduledInst->getNextNode() != pickedInst) {
4675 BS->BB->getInstList().remove(pickedInst);
4676 BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
4677 pickedInst);
4679 LastScheduledInst = pickedInst;
4680 BundleMember = BundleMember->NextInBundle;
4683 BS->schedule(picked, ReadyInsts);
4684 NumToSchedule--;
4686 assert(NumToSchedule == 0 && "could not schedule all instructions");
4688 // Avoid duplicate scheduling of the block.
4689 BS->ScheduleStart = nullptr;
4692 unsigned BoUpSLP::getVectorElementSize(Value *V) const {
4693 // If V is a store, just return the width of the stored value without
4694 // traversing the expression tree. This is the common case.
4695 if (auto *Store = dyn_cast<StoreInst>(V))
4696 return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
4698 // If V is not a store, we can traverse the expression tree to find loads
4699 // that feed it. The type of the loaded value may indicate a more suitable
4700 // width than V's type. We want to base the vector element size on the width
4701 // of memory operations where possible.
4702 SmallVector<Instruction *, 16> Worklist;
4703 SmallPtrSet<Instruction *, 16> Visited;
4704 if (auto *I = dyn_cast<Instruction>(V))
4705 Worklist.push_back(I);
4707 // Traverse the expression tree in bottom-up order looking for loads. If we
4708 // encounter an instruction we don't yet handle, we give up.
4709 auto MaxWidth = 0u;
4710 auto FoundUnknownInst = false;
4711 while (!Worklist.empty() && !FoundUnknownInst) {
4712 auto *I = Worklist.pop_back_val();
4713 Visited.insert(I);
4715 // We should only be looking at scalar instructions here. If the current
4716 // instruction has a vector type, give up.
4717 auto *Ty = I->getType();
4718 if (isa<VectorType>(Ty))
4719 FoundUnknownInst = true;
4721 // If the current instruction is a load, update MaxWidth to reflect the
4722 // width of the loaded value.
4723 else if (isa<LoadInst>(I))
4724 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty));
4726 // Otherwise, we need to visit the operands of the instruction. We only
4727 // handle the interesting cases from buildTree here. If an operand is an
4728 // instruction we haven't yet visited, we add it to the worklist.
4729 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4730 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) {
4731 for (Use &U : I->operands())
4732 if (auto *J = dyn_cast<Instruction>(U.get()))
4733 if (!Visited.count(J))
4734 Worklist.push_back(J);
4737 // If we don't yet handle the instruction, give up.
4738 else
4739 FoundUnknownInst = true;
4742 // If we didn't encounter a memory access in the expression tree, or if we
4743 // gave up for some reason, just return the width of V.
4744 if (!MaxWidth || FoundUnknownInst)
4745 return DL->getTypeSizeInBits(V->getType());
4747 // Otherwise, return the maximum width we found.
4748 return MaxWidth;
4751 // Determine if a value V in a vectorizable expression Expr can be demoted to a
4752 // smaller type with a truncation. We collect the values that will be demoted
4753 // in ToDemote and additional roots that require investigating in Roots.
4754 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
4755 SmallVectorImpl<Value *> &ToDemote,
4756 SmallVectorImpl<Value *> &Roots) {
4757 // We can always demote constants.
4758 if (isa<Constant>(V)) {
4759 ToDemote.push_back(V);
4760 return true;
4763 // If the value is not an instruction in the expression with only one use, it
4764 // cannot be demoted.
4765 auto *I = dyn_cast<Instruction>(V);
4766 if (!I || !I->hasOneUse() || !Expr.count(I))
4767 return false;
4769 switch (I->getOpcode()) {
4771 // We can always demote truncations and extensions. Since truncations can
4772 // seed additional demotion, we save the truncated value.
4773 case Instruction::Trunc:
4774 Roots.push_back(I->getOperand(0));
4775 break;
4776 case Instruction::ZExt:
4777 case Instruction::SExt:
4778 break;
4780 // We can demote certain binary operations if we can demote both of their
4781 // operands.
4782 case Instruction::Add:
4783 case Instruction::Sub:
4784 case Instruction::Mul:
4785 case Instruction::And:
4786 case Instruction::Or:
4787 case Instruction::Xor:
4788 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
4789 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
4790 return false;
4791 break;
4793 // We can demote selects if we can demote their true and false values.
4794 case Instruction::Select: {
4795 SelectInst *SI = cast<SelectInst>(I);
4796 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
4797 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
4798 return false;
4799 break;
4802 // We can demote phis if we can demote all their incoming operands. Note that
4803 // we don't need to worry about cycles since we ensure single use above.
4804 case Instruction::PHI: {
4805 PHINode *PN = cast<PHINode>(I);
4806 for (Value *IncValue : PN->incoming_values())
4807 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
4808 return false;
4809 break;
4812 // Otherwise, conservatively give up.
4813 default:
4814 return false;
4817 // Record the value that we can demote.
4818 ToDemote.push_back(V);
4819 return true;
4822 void BoUpSLP::computeMinimumValueSizes() {
4823 // If there are no external uses, the expression tree must be rooted by a
4824 // store. We can't demote in-memory values, so there is nothing to do here.
4825 if (ExternalUses.empty())
4826 return;
4828 // We only attempt to truncate integer expressions.
4829 auto &TreeRoot = VectorizableTree[0]->Scalars;
4830 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
4831 if (!TreeRootIT)
4832 return;
4834 // If the expression is not rooted by a store, these roots should have
4835 // external uses. We will rely on InstCombine to rewrite the expression in
4836 // the narrower type. However, InstCombine only rewrites single-use values.
4837 // This means that if a tree entry other than a root is used externally, it
4838 // must have multiple uses and InstCombine will not rewrite it. The code
4839 // below ensures that only the roots are used externally.
4840 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
4841 for (auto &EU : ExternalUses)
4842 if (!Expr.erase(EU.Scalar))
4843 return;
4844 if (!Expr.empty())
4845 return;
4847 // Collect the scalar values of the vectorizable expression. We will use this
4848 // context to determine which values can be demoted. If we see a truncation,
4849 // we mark it as seeding another demotion.
4850 for (auto &EntryPtr : VectorizableTree)
4851 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());
4853 // Ensure the roots of the vectorizable tree don't form a cycle. They must
4854 // have a single external user that is not in the vectorizable tree.
4855 for (auto *Root : TreeRoot)
4856 if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
4857 return;
4859 // Conservatively determine if we can actually truncate the roots of the
4860 // expression. Collect the values that can be demoted in ToDemote and
4861 // additional roots that require investigating in Roots.
4862 SmallVector<Value *, 32> ToDemote;
4863 SmallVector<Value *, 4> Roots;
4864 for (auto *Root : TreeRoot)
4865 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
4866 return;
4868 // The maximum bit width required to represent all the values that can be
4869 // demoted without loss of precision. It would be safe to truncate the roots
4870 // of the expression to this width.
4871 auto MaxBitWidth = 8u;
4873 // We first check if all the bits of the roots are demanded. If they're not,
4874 // we can truncate the roots to this narrower type.
4875 for (auto *Root : TreeRoot) {
4876 auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
4877 MaxBitWidth = std::max<unsigned>(
4878 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
4881 // True if the roots can be zero-extended back to their original type, rather
4882 // than sign-extended. We know that if the leading bits are not demanded, we
4883 // can safely zero-extend. So we initialize IsKnownPositive to True.
4884 bool IsKnownPositive = true;
4886 // If all the bits of the roots are demanded, we can try a little harder to
4887 // compute a narrower type. This can happen, for example, if the roots are
4888 // getelementptr indices. InstCombine promotes these indices to the pointer
4889 // width. Thus, all their bits are technically demanded even though the
4890 // address computation might be vectorized in a smaller type.
4892 // We start by looking at each entry that can be demoted. We compute the
4893 // maximum bit width required to store the scalar by using ValueTracking to
4894 // compute the number of high-order bits we can truncate.
4895 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
4896 llvm::all_of(TreeRoot, [](Value *R) {
4897 assert(R->hasOneUse() && "Root should have only one use!");
4898 return isa<GetElementPtrInst>(R->user_back());
4899 })) {
4900 MaxBitWidth = 8u;
4902 // Determine if the sign bit of all the roots is known to be zero. If not,
4903 // IsKnownPositive is set to False.
4904 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
4905 KnownBits Known = computeKnownBits(R, *DL);
4906 return Known.isNonNegative();
4909 // Determine the maximum number of bits required to store the scalar
4910 // values.
4911 for (auto *Scalar : ToDemote) {
4912 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
4913 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
4914 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
4917 // If we can't prove that the sign bit is zero, we must add one to the
4918 // maximum bit width to account for the unknown sign bit. This preserves
4919 // the existing sign bit so we can safely sign-extend the root back to the
4920 // original type. Otherwise, if we know the sign bit is zero, we will
4921 // zero-extend the root instead.
4923 // FIXME: This is somewhat suboptimal, as there will be cases where adding
4924 // one to the maximum bit width will yield a larger-than-necessary
4925 // type. In general, we need to add an extra bit only if we can't
4926 // prove that the upper bit of the original type is equal to the
4927 // upper bit of the proposed smaller type. If these two bits are the
4928 // same (either zero or one) we know that sign-extending from the
4929 // smaller type will result in the same value. Here, since we can't
4930 // yet prove this, we are just making the proposed smaller type
4931 // larger to ensure correctness.
4932 if (!IsKnownPositive)
4933 ++MaxBitWidth;
4936 // Round MaxBitWidth up to the next power-of-two.
4937 if (!isPowerOf2_64(MaxBitWidth))
4938 MaxBitWidth = NextPowerOf2(MaxBitWidth);
4940 // If the maximum bit width we compute is less than the with of the roots'
4941 // type, we can proceed with the narrowing. Otherwise, do nothing.
4942 if (MaxBitWidth >= TreeRootIT->getBitWidth())
4943 return;
4945 // If we can truncate the root, we must collect additional values that might
4946 // be demoted as a result. That is, those seeded by truncations we will
4947 // modify.
4948 while (!Roots.empty())
4949 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
4951 // Finally, map the values we can demote to the maximum bit with we computed.
4952 for (auto *Scalar : ToDemote)
4953 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
4956 namespace {
4958 /// The SLPVectorizer Pass.
4959 struct SLPVectorizer : public FunctionPass {
4960 SLPVectorizerPass Impl;
4962 /// Pass identification, replacement for typeid
4963 static char ID;
4965 explicit SLPVectorizer() : FunctionPass(ID) {
4966 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
4969 bool doInitialization(Module &M) override {
4970 return false;
4973 bool runOnFunction(Function &F) override {
4974 if (skipFunction(F))
4975 return false;
4977 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
4978 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
4979 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
4980 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
4981 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
4982 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
4983 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
4984 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
4985 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
4986 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
4988 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
4991 void getAnalysisUsage(AnalysisUsage &AU) const override {
4992 FunctionPass::getAnalysisUsage(AU);
4993 AU.addRequired<AssumptionCacheTracker>();
4994 AU.addRequired<ScalarEvolutionWrapperPass>();
4995 AU.addRequired<AAResultsWrapperPass>();
4996 AU.addRequired<TargetTransformInfoWrapperPass>();
4997 AU.addRequired<LoopInfoWrapperPass>();
4998 AU.addRequired<DominatorTreeWrapperPass>();
4999 AU.addRequired<DemandedBitsWrapperPass>();
5000 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
5001 AU.addPreserved<LoopInfoWrapperPass>();
5002 AU.addPreserved<DominatorTreeWrapperPass>();
5003 AU.addPreserved<AAResultsWrapperPass>();
5004 AU.addPreserved<GlobalsAAWrapperPass>();
5005 AU.setPreservesCFG();
5009 } // end anonymous namespace
5011 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
5012 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
5013 auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
5014 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
5015 auto *AA = &AM.getResult<AAManager>(F);
5016 auto *LI = &AM.getResult<LoopAnalysis>(F);
5017 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
5018 auto *AC = &AM.getResult<AssumptionAnalysis>(F);
5019 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
5020 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
5022 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
5023 if (!Changed)
5024 return PreservedAnalyses::all();
5026 PreservedAnalyses PA;
5027 PA.preserveSet<CFGAnalyses>();
5028 PA.preserve<AAManager>();
5029 PA.preserve<GlobalsAA>();
5030 return PA;
5033 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
5034 TargetTransformInfo *TTI_,
5035 TargetLibraryInfo *TLI_, AliasAnalysis *AA_,
5036 LoopInfo *LI_, DominatorTree *DT_,
5037 AssumptionCache *AC_, DemandedBits *DB_,
5038 OptimizationRemarkEmitter *ORE_) {
5039 SE = SE_;
5040 TTI = TTI_;
5041 TLI = TLI_;
5042 AA = AA_;
5043 LI = LI_;
5044 DT = DT_;
5045 AC = AC_;
5046 DB = DB_;
5047 DL = &F.getParent()->getDataLayout();
5049 Stores.clear();
5050 GEPs.clear();
5051 bool Changed = false;
5053 // If the target claims to have no vector registers don't attempt
5054 // vectorization.
5055 if (!TTI->getNumberOfRegisters(true))
5056 return false;
5058 // Don't vectorize when the attribute NoImplicitFloat is used.
5059 if (F.hasFnAttribute(Attribute::NoImplicitFloat))
5060 return false;
5062 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
5064 // Use the bottom up slp vectorizer to construct chains that start with
5065 // store instructions.
5066 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
5068 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
5069 // delete instructions.
5071 // Scan the blocks in the function in post order.
5072 for (auto BB : post_order(&F.getEntryBlock())) {
5073 collectSeedInstructions(BB);
5075 // Vectorize trees that end at stores.
5076 if (!Stores.empty()) {
5077 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
5078 << " underlying objects.\n");
5079 Changed |= vectorizeStoreChains(R);
5082 // Vectorize trees that end at reductions.
5083 Changed |= vectorizeChainsInBlock(BB, R);
5085 // Vectorize the index computations of getelementptr instructions. This
5086 // is primarily intended to catch gather-like idioms ending at
5087 // non-consecutive loads.
5088 if (!GEPs.empty()) {
5089 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
5090 << " underlying objects.\n");
5091 Changed |= vectorizeGEPIndices(BB, R);
5095 if (Changed) {
5096 R.optimizeGatherSequence();
5097 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
5098 LLVM_DEBUG(verifyFunction(F));
5100 return Changed;
5103 /// Check that the Values in the slice in VL array are still existent in
5104 /// the WeakTrackingVH array.
5105 /// Vectorization of part of the VL array may cause later values in the VL array
5106 /// to become invalid. We track when this has happened in the WeakTrackingVH
5107 /// array.
5108 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL,
5109 ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin,
5110 unsigned SliceSize) {
5111 VL = VL.slice(SliceBegin, SliceSize);
5112 VH = VH.slice(SliceBegin, SliceSize);
5113 return !std::equal(VL.begin(), VL.end(), VH.begin());
5116 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
5117 unsigned VecRegSize) {
5118 const unsigned ChainLen = Chain.size();
5119 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
5120 << "\n");
5121 const unsigned Sz = R.getVectorElementSize(Chain[0]);
5122 const unsigned VF = VecRegSize / Sz;
5124 if (!isPowerOf2_32(Sz) || VF < 2)
5125 return false;
5127 // Keep track of values that were deleted by vectorizing in the loop below.
5128 const SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end());
5130 bool Changed = false;
5131 // Look for profitable vectorizable trees at all offsets, starting at zero.
5132 for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) {
5134 // Check that a previous iteration of this loop did not delete the Value.
5135 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF))
5136 continue;
5138 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
5139 << "\n");
5140 ArrayRef<Value *> Operands = Chain.slice(i, VF);
5142 R.buildTree(Operands);
5143 if (R.isTreeTinyAndNotFullyVectorizable())
5144 continue;
5146 R.computeMinimumValueSizes();
5148 int Cost = R.getTreeCost();
5150 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF
5151 << "\n");
5152 if (Cost < -SLPCostThreshold) {
5153 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
5155 using namespace ore;
5157 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
5158 cast<StoreInst>(Chain[i]))
5159 << "Stores SLP vectorized with cost " << NV("Cost", Cost)
5160 << " and with tree size "
5161 << NV("TreeSize", R.getTreeSize()));
5163 R.vectorizeTree();
5165 // Move to the next bundle.
5166 i += VF - 1;
5167 Changed = true;
5171 return Changed;
5174 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
5175 BoUpSLP &R) {
5176 SetVector<StoreInst *> Heads;
5177 SmallDenseSet<StoreInst *> Tails;
5178 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
5180 // We may run into multiple chains that merge into a single chain. We mark the
5181 // stores that we vectorized so that we don't visit the same store twice.
5182 BoUpSLP::ValueSet VectorizedStores;
5183 bool Changed = false;
5185 auto &&FindConsecutiveAccess =
5186 [this, &Stores, &Heads, &Tails, &ConsecutiveChain] (int K, int Idx) {
5187 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE))
5188 return false;
5190 Tails.insert(Stores[Idx]);
5191 Heads.insert(Stores[K]);
5192 ConsecutiveChain[Stores[K]] = Stores[Idx];
5193 return true;
5196 // Do a quadratic search on all of the given stores in reverse order and find
5197 // all of the pairs of stores that follow each other.
5198 int E = Stores.size();
5199 for (int Idx = E - 1; Idx >= 0; --Idx) {
5200 // If a store has multiple consecutive store candidates, search according
5201 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
5202 // This is because usually pairing with immediate succeeding or preceding
5203 // candidate create the best chance to find slp vectorization opportunity.
5204 for (int Offset = 1, F = std::max(E - Idx, Idx + 1); Offset < F; ++Offset)
5205 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
5206 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
5207 break;
5210 // For stores that start but don't end a link in the chain:
5211 for (auto *SI : llvm::reverse(Heads)) {
5212 if (Tails.count(SI))
5213 continue;
5215 // We found a store instr that starts a chain. Now follow the chain and try
5216 // to vectorize it.
5217 BoUpSLP::ValueList Operands;
5218 StoreInst *I = SI;
5219 // Collect the chain into a list.
5220 while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) {
5221 Operands.push_back(I);
5222 // Move to the next value in the chain.
5223 I = ConsecutiveChain[I];
5226 // FIXME: Is division-by-2 the correct step? Should we assert that the
5227 // register size is a power-of-2?
5228 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize();
5229 Size /= 2) {
5230 if (vectorizeStoreChain(Operands, R, Size)) {
5231 // Mark the vectorized stores so that we don't vectorize them again.
5232 VectorizedStores.insert(Operands.begin(), Operands.end());
5233 Changed = true;
5234 break;
5239 return Changed;
5242 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
5243 // Initialize the collections. We will make a single pass over the block.
5244 Stores.clear();
5245 GEPs.clear();
5247 // Visit the store and getelementptr instructions in BB and organize them in
5248 // Stores and GEPs according to the underlying objects of their pointer
5249 // operands.
5250 for (Instruction &I : *BB) {
5251 // Ignore store instructions that are volatile or have a pointer operand
5252 // that doesn't point to a scalar type.
5253 if (auto *SI = dyn_cast<StoreInst>(&I)) {
5254 if (!SI->isSimple())
5255 continue;
5256 if (!isValidElementType(SI->getValueOperand()->getType()))
5257 continue;
5258 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI);
5261 // Ignore getelementptr instructions that have more than one index, a
5262 // constant index, or a pointer operand that doesn't point to a scalar
5263 // type.
5264 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
5265 auto Idx = GEP->idx_begin()->get();
5266 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
5267 continue;
5268 if (!isValidElementType(Idx->getType()))
5269 continue;
5270 if (GEP->getType()->isVectorTy())
5271 continue;
5272 GEPs[GEP->getPointerOperand()].push_back(GEP);
5277 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
5278 if (!A || !B)
5279 return false;
5280 Value *VL[] = { A, B };
5281 return tryToVectorizeList(VL, R, /*UserCost=*/0, true);
5284 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
5285 int UserCost, bool AllowReorder) {
5286 if (VL.size() < 2)
5287 return false;
5289 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
5290 << VL.size() << ".\n");
5292 // Check that all of the parts are scalar instructions of the same type,
5293 // we permit an alternate opcode via InstructionsState.
5294 InstructionsState S = getSameOpcode(VL);
5295 if (!S.getOpcode())
5296 return false;
5298 Instruction *I0 = cast<Instruction>(S.OpValue);
5299 unsigned Sz = R.getVectorElementSize(I0);
5300 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz);
5301 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
5302 if (MaxVF < 2) {
5303 R.getORE()->emit([&]() {
5304 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0)
5305 << "Cannot SLP vectorize list: vectorization factor "
5306 << "less than 2 is not supported";
5308 return false;
5311 for (Value *V : VL) {
5312 Type *Ty = V->getType();
5313 if (!isValidElementType(Ty)) {
5314 // NOTE: the following will give user internal llvm type name, which may
5315 // not be useful.
5316 R.getORE()->emit([&]() {
5317 std::string type_str;
5318 llvm::raw_string_ostream rso(type_str);
5319 Ty->print(rso);
5320 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0)
5321 << "Cannot SLP vectorize list: type "
5322 << rso.str() + " is unsupported by vectorizer";
5324 return false;
5328 bool Changed = false;
5329 bool CandidateFound = false;
5330 int MinCost = SLPCostThreshold;
5332 // Keep track of values that were deleted by vectorizing in the loop below.
5333 SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end());
5335 unsigned NextInst = 0, MaxInst = VL.size();
5336 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF;
5337 VF /= 2) {
5338 // No actual vectorization should happen, if number of parts is the same as
5339 // provided vectorization factor (i.e. the scalar type is used for vector
5340 // code during codegen).
5341 auto *VecTy = VectorType::get(VL[0]->getType(), VF);
5342 if (TTI->getNumberOfParts(VecTy) == VF)
5343 continue;
5344 for (unsigned I = NextInst; I < MaxInst; ++I) {
5345 unsigned OpsWidth = 0;
5347 if (I + VF > MaxInst)
5348 OpsWidth = MaxInst - I;
5349 else
5350 OpsWidth = VF;
5352 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
5353 break;
5355 // Check that a previous iteration of this loop did not delete the Value.
5356 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth))
5357 continue;
5359 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
5360 << "\n");
5361 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
5363 R.buildTree(Ops);
5364 Optional<ArrayRef<unsigned>> Order = R.bestOrder();
5365 // TODO: check if we can allow reordering for more cases.
5366 if (AllowReorder && Order) {
5367 // TODO: reorder tree nodes without tree rebuilding.
5368 // Conceptually, there is nothing actually preventing us from trying to
5369 // reorder a larger list. In fact, we do exactly this when vectorizing
5370 // reductions. However, at this point, we only expect to get here when
5371 // there are exactly two operations.
5372 assert(Ops.size() == 2);
5373 Value *ReorderedOps[] = {Ops[1], Ops[0]};
5374 R.buildTree(ReorderedOps, None);
5376 if (R.isTreeTinyAndNotFullyVectorizable())
5377 continue;
5379 R.computeMinimumValueSizes();
5380 int Cost = R.getTreeCost() - UserCost;
5381 CandidateFound = true;
5382 MinCost = std::min(MinCost, Cost);
5384 if (Cost < -SLPCostThreshold) {
5385 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
5386 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
5387 cast<Instruction>(Ops[0]))
5388 << "SLP vectorized with cost " << ore::NV("Cost", Cost)
5389 << " and with tree size "
5390 << ore::NV("TreeSize", R.getTreeSize()));
5392 R.vectorizeTree();
5393 // Move to the next bundle.
5394 I += VF - 1;
5395 NextInst = I + 1;
5396 Changed = true;
5401 if (!Changed && CandidateFound) {
5402 R.getORE()->emit([&]() {
5403 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0)
5404 << "List vectorization was possible but not beneficial with cost "
5405 << ore::NV("Cost", MinCost) << " >= "
5406 << ore::NV("Treshold", -SLPCostThreshold);
5408 } else if (!Changed) {
5409 R.getORE()->emit([&]() {
5410 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0)
5411 << "Cannot SLP vectorize list: vectorization was impossible"
5412 << " with available vectorization factors";
5415 return Changed;
5418 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
5419 if (!I)
5420 return false;
5422 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
5423 return false;
5425 Value *P = I->getParent();
5427 // Vectorize in current basic block only.
5428 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
5429 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
5430 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
5431 return false;
5433 // Try to vectorize V.
5434 if (tryToVectorizePair(Op0, Op1, R))
5435 return true;
5437 auto *A = dyn_cast<BinaryOperator>(Op0);
5438 auto *B = dyn_cast<BinaryOperator>(Op1);
5439 // Try to skip B.
5440 if (B && B->hasOneUse()) {
5441 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
5442 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
5443 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
5444 return true;
5445 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
5446 return true;
5449 // Try to skip A.
5450 if (A && A->hasOneUse()) {
5451 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
5452 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
5453 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
5454 return true;
5455 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
5456 return true;
5458 return false;
5461 /// Generate a shuffle mask to be used in a reduction tree.
5463 /// \param VecLen The length of the vector to be reduced.
5464 /// \param NumEltsToRdx The number of elements that should be reduced in the
5465 /// vector.
5466 /// \param IsPairwise Whether the reduction is a pairwise or splitting
5467 /// reduction. A pairwise reduction will generate a mask of
5468 /// <0,2,...> or <1,3,..> while a splitting reduction will generate
5469 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2.
5470 /// \param IsLeft True will generate a mask of even elements, odd otherwise.
5471 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
5472 bool IsPairwise, bool IsLeft,
5473 IRBuilder<> &Builder) {
5474 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
5476 SmallVector<Constant *, 32> ShuffleMask(
5477 VecLen, UndefValue::get(Builder.getInt32Ty()));
5479 if (IsPairwise)
5480 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
5481 for (unsigned i = 0; i != NumEltsToRdx; ++i)
5482 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
5483 else
5484 // Move the upper half of the vector to the lower half.
5485 for (unsigned i = 0; i != NumEltsToRdx; ++i)
5486 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
5488 return ConstantVector::get(ShuffleMask);
5491 namespace {
5493 /// Model horizontal reductions.
5495 /// A horizontal reduction is a tree of reduction operations (currently add and
5496 /// fadd) that has operations that can be put into a vector as its leaf.
5497 /// For example, this tree:
5499 /// mul mul mul mul
5500 /// \ / \ /
5501 /// + +
5502 /// \ /
5503 /// +
5504 /// This tree has "mul" as its reduced values and "+" as its reduction
5505 /// operations. A reduction might be feeding into a store or a binary operation
5506 /// feeding a phi.
5507 /// ...
5508 /// \ /
5509 /// +
5510 /// |
5511 /// phi +=
5513 /// Or:
5514 /// ...
5515 /// \ /
5516 /// +
5517 /// |
5518 /// *p =
5520 class HorizontalReduction {
5521 using ReductionOpsType = SmallVector<Value *, 16>;
5522 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
5523 ReductionOpsListType ReductionOps;
5524 SmallVector<Value *, 32> ReducedVals;
5525 // Use map vector to make stable output.
5526 MapVector<Instruction *, Value *> ExtraArgs;
5528 /// Kind of the reduction data.
5529 enum ReductionKind {
5530 RK_None, /// Not a reduction.
5531 RK_Arithmetic, /// Binary reduction data.
5532 RK_Min, /// Minimum reduction data.
5533 RK_UMin, /// Unsigned minimum reduction data.
5534 RK_Max, /// Maximum reduction data.
5535 RK_UMax, /// Unsigned maximum reduction data.
5538 /// Contains info about operation, like its opcode, left and right operands.
5539 class OperationData {
5540 /// Opcode of the instruction.
5541 unsigned Opcode = 0;
5543 /// Left operand of the reduction operation.
5544 Value *LHS = nullptr;
5546 /// Right operand of the reduction operation.
5547 Value *RHS = nullptr;
5549 /// Kind of the reduction operation.
5550 ReductionKind Kind = RK_None;
5552 /// True if float point min/max reduction has no NaNs.
5553 bool NoNaN = false;
5555 /// Checks if the reduction operation can be vectorized.
5556 bool isVectorizable() const {
5557 return LHS && RHS &&
5558 // We currently only support add/mul/logical && min/max reductions.
5559 ((Kind == RK_Arithmetic &&
5560 (Opcode == Instruction::Add || Opcode == Instruction::FAdd ||
5561 Opcode == Instruction::Mul || Opcode == Instruction::FMul ||
5562 Opcode == Instruction::And || Opcode == Instruction::Or ||
5563 Opcode == Instruction::Xor)) ||
5564 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
5565 (Kind == RK_Min || Kind == RK_Max)) ||
5566 (Opcode == Instruction::ICmp &&
5567 (Kind == RK_UMin || Kind == RK_UMax)));
5570 /// Creates reduction operation with the current opcode.
5571 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const {
5572 assert(isVectorizable() &&
5573 "Expected add|fadd or min/max reduction operation.");
5574 Value *Cmp = nullptr;
5575 switch (Kind) {
5576 case RK_Arithmetic:
5577 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS,
5578 Name);
5579 case RK_Min:
5580 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS)
5581 : Builder.CreateFCmpOLT(LHS, RHS);
5582 break;
5583 case RK_Max:
5584 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS)
5585 : Builder.CreateFCmpOGT(LHS, RHS);
5586 break;
5587 case RK_UMin:
5588 assert(Opcode == Instruction::ICmp && "Expected integer types.");
5589 Cmp = Builder.CreateICmpULT(LHS, RHS);
5590 break;
5591 case RK_UMax:
5592 assert(Opcode == Instruction::ICmp && "Expected integer types.");
5593 Cmp = Builder.CreateICmpUGT(LHS, RHS);
5594 break;
5595 case RK_None:
5596 llvm_unreachable("Unknown reduction operation.");
5598 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
5601 public:
5602 explicit OperationData() = default;
5604 /// Construction for reduced values. They are identified by opcode only and
5605 /// don't have associated LHS/RHS values.
5606 explicit OperationData(Value *V) {
5607 if (auto *I = dyn_cast<Instruction>(V))
5608 Opcode = I->getOpcode();
5611 /// Constructor for reduction operations with opcode and its left and
5612 /// right operands.
5613 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind,
5614 bool NoNaN = false)
5615 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) {
5616 assert(Kind != RK_None && "One of the reduction operations is expected.");
5619 explicit operator bool() const { return Opcode; }
5621 /// Get the index of the first operand.
5622 unsigned getFirstOperandIndex() const {
5623 assert(!!*this && "The opcode is not set.");
5624 switch (Kind) {
5625 case RK_Min:
5626 case RK_UMin:
5627 case RK_Max:
5628 case RK_UMax:
5629 return 1;
5630 case RK_Arithmetic:
5631 case RK_None:
5632 break;
5634 return 0;
5637 /// Total number of operands in the reduction operation.
5638 unsigned getNumberOfOperands() const {
5639 assert(Kind != RK_None && !!*this && LHS && RHS &&
5640 "Expected reduction operation.");
5641 switch (Kind) {
5642 case RK_Arithmetic:
5643 return 2;
5644 case RK_Min:
5645 case RK_UMin:
5646 case RK_Max:
5647 case RK_UMax:
5648 return 3;
5649 case RK_None:
5650 break;
5652 llvm_unreachable("Reduction kind is not set");
5655 /// Checks if the operation has the same parent as \p P.
5656 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const {
5657 assert(Kind != RK_None && !!*this && LHS && RHS &&
5658 "Expected reduction operation.");
5659 if (!IsRedOp)
5660 return I->getParent() == P;
5661 switch (Kind) {
5662 case RK_Arithmetic:
5663 // Arithmetic reduction operation must be used once only.
5664 return I->getParent() == P;
5665 case RK_Min:
5666 case RK_UMin:
5667 case RK_Max:
5668 case RK_UMax: {
5669 // SelectInst must be used twice while the condition op must have single
5670 // use only.
5671 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition());
5672 return I->getParent() == P && Cmp && Cmp->getParent() == P;
5674 case RK_None:
5675 break;
5677 llvm_unreachable("Reduction kind is not set");
5679 /// Expected number of uses for reduction operations/reduced values.
5680 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const {
5681 assert(Kind != RK_None && !!*this && LHS && RHS &&
5682 "Expected reduction operation.");
5683 switch (Kind) {
5684 case RK_Arithmetic:
5685 return I->hasOneUse();
5686 case RK_Min:
5687 case RK_UMin:
5688 case RK_Max:
5689 case RK_UMax:
5690 return I->hasNUses(2) &&
5691 (!IsReductionOp ||
5692 cast<SelectInst>(I)->getCondition()->hasOneUse());
5693 case RK_None:
5694 break;
5696 llvm_unreachable("Reduction kind is not set");
5699 /// Initializes the list of reduction operations.
5700 void initReductionOps(ReductionOpsListType &ReductionOps) {
5701 assert(Kind != RK_None && !!*this && LHS && RHS &&
5702 "Expected reduction operation.");
5703 switch (Kind) {
5704 case RK_Arithmetic:
5705 ReductionOps.assign(1, ReductionOpsType());
5706 break;
5707 case RK_Min:
5708 case RK_UMin:
5709 case RK_Max:
5710 case RK_UMax:
5711 ReductionOps.assign(2, ReductionOpsType());
5712 break;
5713 case RK_None:
5714 llvm_unreachable("Reduction kind is not set");
5717 /// Add all reduction operations for the reduction instruction \p I.
5718 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) {
5719 assert(Kind != RK_None && !!*this && LHS && RHS &&
5720 "Expected reduction operation.");
5721 switch (Kind) {
5722 case RK_Arithmetic:
5723 ReductionOps[0].emplace_back(I);
5724 break;
5725 case RK_Min:
5726 case RK_UMin:
5727 case RK_Max:
5728 case RK_UMax:
5729 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
5730 ReductionOps[1].emplace_back(I);
5731 break;
5732 case RK_None:
5733 llvm_unreachable("Reduction kind is not set");
5737 /// Checks if instruction is associative and can be vectorized.
5738 bool isAssociative(Instruction *I) const {
5739 assert(Kind != RK_None && *this && LHS && RHS &&
5740 "Expected reduction operation.");
5741 switch (Kind) {
5742 case RK_Arithmetic:
5743 return I->isAssociative();
5744 case RK_Min:
5745 case RK_Max:
5746 return Opcode == Instruction::ICmp ||
5747 cast<Instruction>(I->getOperand(0))->isFast();
5748 case RK_UMin:
5749 case RK_UMax:
5750 assert(Opcode == Instruction::ICmp &&
5751 "Only integer compare operation is expected.");
5752 return true;
5753 case RK_None:
5754 break;
5756 llvm_unreachable("Reduction kind is not set");
5759 /// Checks if the reduction operation can be vectorized.
5760 bool isVectorizable(Instruction *I) const {
5761 return isVectorizable() && isAssociative(I);
5764 /// Checks if two operation data are both a reduction op or both a reduced
5765 /// value.
5766 bool operator==(const OperationData &OD) {
5767 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) &&
5768 "One of the comparing operations is incorrect.");
5769 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode);
5771 bool operator!=(const OperationData &OD) { return !(*this == OD); }
5772 void clear() {
5773 Opcode = 0;
5774 LHS = nullptr;
5775 RHS = nullptr;
5776 Kind = RK_None;
5777 NoNaN = false;
5780 /// Get the opcode of the reduction operation.
5781 unsigned getOpcode() const {
5782 assert(isVectorizable() && "Expected vectorizable operation.");
5783 return Opcode;
5786 /// Get kind of reduction data.
5787 ReductionKind getKind() const { return Kind; }
5788 Value *getLHS() const { return LHS; }
5789 Value *getRHS() const { return RHS; }
5790 Type *getConditionType() const {
5791 switch (Kind) {
5792 case RK_Arithmetic:
5793 return nullptr;
5794 case RK_Min:
5795 case RK_Max:
5796 case RK_UMin:
5797 case RK_UMax:
5798 return CmpInst::makeCmpResultType(LHS->getType());
5799 case RK_None:
5800 break;
5802 llvm_unreachable("Reduction kind is not set");
5805 /// Creates reduction operation with the current opcode with the IR flags
5806 /// from \p ReductionOps.
5807 Value *createOp(IRBuilder<> &Builder, const Twine &Name,
5808 const ReductionOpsListType &ReductionOps) const {
5809 assert(isVectorizable() &&
5810 "Expected add|fadd or min/max reduction operation.");
5811 auto *Op = createOp(Builder, Name);
5812 switch (Kind) {
5813 case RK_Arithmetic:
5814 propagateIRFlags(Op, ReductionOps[0]);
5815 return Op;
5816 case RK_Min:
5817 case RK_Max:
5818 case RK_UMin:
5819 case RK_UMax:
5820 if (auto *SI = dyn_cast<SelectInst>(Op))
5821 propagateIRFlags(SI->getCondition(), ReductionOps[0]);
5822 propagateIRFlags(Op, ReductionOps[1]);
5823 return Op;
5824 case RK_None:
5825 break;
5827 llvm_unreachable("Unknown reduction operation.");
5829 /// Creates reduction operation with the current opcode with the IR flags
5830 /// from \p I.
5831 Value *createOp(IRBuilder<> &Builder, const Twine &Name,
5832 Instruction *I) const {
5833 assert(isVectorizable() &&
5834 "Expected add|fadd or min/max reduction operation.");
5835 auto *Op = createOp(Builder, Name);
5836 switch (Kind) {
5837 case RK_Arithmetic:
5838 propagateIRFlags(Op, I);
5839 return Op;
5840 case RK_Min:
5841 case RK_Max:
5842 case RK_UMin:
5843 case RK_UMax:
5844 if (auto *SI = dyn_cast<SelectInst>(Op)) {
5845 propagateIRFlags(SI->getCondition(),
5846 cast<SelectInst>(I)->getCondition());
5848 propagateIRFlags(Op, I);
5849 return Op;
5850 case RK_None:
5851 break;
5853 llvm_unreachable("Unknown reduction operation.");
5856 TargetTransformInfo::ReductionFlags getFlags() const {
5857 TargetTransformInfo::ReductionFlags Flags;
5858 Flags.NoNaN = NoNaN;
5859 switch (Kind) {
5860 case RK_Arithmetic:
5861 break;
5862 case RK_Min:
5863 Flags.IsSigned = Opcode == Instruction::ICmp;
5864 Flags.IsMaxOp = false;
5865 break;
5866 case RK_Max:
5867 Flags.IsSigned = Opcode == Instruction::ICmp;
5868 Flags.IsMaxOp = true;
5869 break;
5870 case RK_UMin:
5871 Flags.IsSigned = false;
5872 Flags.IsMaxOp = false;
5873 break;
5874 case RK_UMax:
5875 Flags.IsSigned = false;
5876 Flags.IsMaxOp = true;
5877 break;
5878 case RK_None:
5879 llvm_unreachable("Reduction kind is not set");
5881 return Flags;
5885 WeakTrackingVH ReductionRoot;
5887 /// The operation data of the reduction operation.
5888 OperationData ReductionData;
5890 /// The operation data of the values we perform a reduction on.
5891 OperationData ReducedValueData;
5893 /// Should we model this reduction as a pairwise reduction tree or a tree that
5894 /// splits the vector in halves and adds those halves.
5895 bool IsPairwiseReduction = false;
5897 /// Checks if the ParentStackElem.first should be marked as a reduction
5898 /// operation with an extra argument or as extra argument itself.
5899 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
5900 Value *ExtraArg) {
5901 if (ExtraArgs.count(ParentStackElem.first)) {
5902 ExtraArgs[ParentStackElem.first] = nullptr;
5903 // We ran into something like:
5904 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
5905 // The whole ParentStackElem.first should be considered as an extra value
5906 // in this case.
5907 // Do not perform analysis of remaining operands of ParentStackElem.first
5908 // instruction, this whole instruction is an extra argument.
5909 ParentStackElem.second = ParentStackElem.first->getNumOperands();
5910 } else {
5911 // We ran into something like:
5912 // ParentStackElem.first += ... + ExtraArg + ...
5913 ExtraArgs[ParentStackElem.first] = ExtraArg;
5917 static OperationData getOperationData(Value *V) {
5918 if (!V)
5919 return OperationData();
5921 Value *LHS;
5922 Value *RHS;
5923 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) {
5924 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS,
5925 RK_Arithmetic);
5927 if (auto *Select = dyn_cast<SelectInst>(V)) {
5928 // Look for a min/max pattern.
5929 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
5930 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin);
5931 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
5932 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min);
5933 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) ||
5934 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
5935 return OperationData(
5936 Instruction::FCmp, LHS, RHS, RK_Min,
5937 cast<Instruction>(Select->getCondition())->hasNoNaNs());
5938 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
5939 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax);
5940 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
5941 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max);
5942 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) ||
5943 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
5944 return OperationData(
5945 Instruction::FCmp, LHS, RHS, RK_Max,
5946 cast<Instruction>(Select->getCondition())->hasNoNaNs());
5947 } else {
5948 // Try harder: look for min/max pattern based on instructions producing
5949 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
5950 // During the intermediate stages of SLP, it's very common to have
5951 // pattern like this (since optimizeGatherSequence is run only once
5952 // at the end):
5953 // %1 = extractelement <2 x i32> %a, i32 0
5954 // %2 = extractelement <2 x i32> %a, i32 1
5955 // %cond = icmp sgt i32 %1, %2
5956 // %3 = extractelement <2 x i32> %a, i32 0
5957 // %4 = extractelement <2 x i32> %a, i32 1
5958 // %select = select i1 %cond, i32 %3, i32 %4
5959 CmpInst::Predicate Pred;
5960 Instruction *L1;
5961 Instruction *L2;
5963 LHS = Select->getTrueValue();
5964 RHS = Select->getFalseValue();
5965 Value *Cond = Select->getCondition();
5967 // TODO: Support inverse predicates.
5968 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
5969 if (!isa<ExtractElementInst>(RHS) ||
5970 !L2->isIdenticalTo(cast<Instruction>(RHS)))
5971 return OperationData(V);
5972 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
5973 if (!isa<ExtractElementInst>(LHS) ||
5974 !L1->isIdenticalTo(cast<Instruction>(LHS)))
5975 return OperationData(V);
5976 } else {
5977 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
5978 return OperationData(V);
5979 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
5980 !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
5981 !L2->isIdenticalTo(cast<Instruction>(RHS)))
5982 return OperationData(V);
5984 switch (Pred) {
5985 default:
5986 return OperationData(V);
5988 case CmpInst::ICMP_ULT:
5989 case CmpInst::ICMP_ULE:
5990 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin);
5992 case CmpInst::ICMP_SLT:
5993 case CmpInst::ICMP_SLE:
5994 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min);
5996 case CmpInst::FCMP_OLT:
5997 case CmpInst::FCMP_OLE:
5998 case CmpInst::FCMP_ULT:
5999 case CmpInst::FCMP_ULE:
6000 return OperationData(Instruction::FCmp, LHS, RHS, RK_Min,
6001 cast<Instruction>(Cond)->hasNoNaNs());
6003 case CmpInst::ICMP_UGT:
6004 case CmpInst::ICMP_UGE:
6005 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax);
6007 case CmpInst::ICMP_SGT:
6008 case CmpInst::ICMP_SGE:
6009 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max);
6011 case CmpInst::FCMP_OGT:
6012 case CmpInst::FCMP_OGE:
6013 case CmpInst::FCMP_UGT:
6014 case CmpInst::FCMP_UGE:
6015 return OperationData(Instruction::FCmp, LHS, RHS, RK_Max,
6016 cast<Instruction>(Cond)->hasNoNaNs());
6020 return OperationData(V);
6023 public:
6024 HorizontalReduction() = default;
6026 /// Try to find a reduction tree.
6027 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) {
6028 assert((!Phi || is_contained(Phi->operands(), B)) &&
6029 "Thi phi needs to use the binary operator");
6031 ReductionData = getOperationData(B);
6033 // We could have a initial reductions that is not an add.
6034 // r *= v1 + v2 + v3 + v4
6035 // In such a case start looking for a tree rooted in the first '+'.
6036 if (Phi) {
6037 if (ReductionData.getLHS() == Phi) {
6038 Phi = nullptr;
6039 B = dyn_cast<Instruction>(ReductionData.getRHS());
6040 ReductionData = getOperationData(B);
6041 } else if (ReductionData.getRHS() == Phi) {
6042 Phi = nullptr;
6043 B = dyn_cast<Instruction>(ReductionData.getLHS());
6044 ReductionData = getOperationData(B);
6048 if (!ReductionData.isVectorizable(B))
6049 return false;
6051 Type *Ty = B->getType();
6052 if (!isValidElementType(Ty))
6053 return false;
6054 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy())
6055 return false;
6057 ReducedValueData.clear();
6058 ReductionRoot = B;
6060 // Post order traverse the reduction tree starting at B. We only handle true
6061 // trees containing only binary operators.
6062 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
6063 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex()));
6064 ReductionData.initReductionOps(ReductionOps);
6065 while (!Stack.empty()) {
6066 Instruction *TreeN = Stack.back().first;
6067 unsigned EdgeToVist = Stack.back().second++;
6068 OperationData OpData = getOperationData(TreeN);
6069 bool IsReducedValue = OpData != ReductionData;
6071 // Postorder vist.
6072 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) {
6073 if (IsReducedValue)
6074 ReducedVals.push_back(TreeN);
6075 else {
6076 auto I = ExtraArgs.find(TreeN);
6077 if (I != ExtraArgs.end() && !I->second) {
6078 // Check if TreeN is an extra argument of its parent operation.
6079 if (Stack.size() <= 1) {
6080 // TreeN can't be an extra argument as it is a root reduction
6081 // operation.
6082 return false;
6084 // Yes, TreeN is an extra argument, do not add it to a list of
6085 // reduction operations.
6086 // Stack[Stack.size() - 2] always points to the parent operation.
6087 markExtraArg(Stack[Stack.size() - 2], TreeN);
6088 ExtraArgs.erase(TreeN);
6089 } else
6090 ReductionData.addReductionOps(TreeN, ReductionOps);
6092 // Retract.
6093 Stack.pop_back();
6094 continue;
6097 // Visit left or right.
6098 Value *NextV = TreeN->getOperand(EdgeToVist);
6099 if (NextV != Phi) {
6100 auto *I = dyn_cast<Instruction>(NextV);
6101 OpData = getOperationData(I);
6102 // Continue analysis if the next operand is a reduction operation or
6103 // (possibly) a reduced value. If the reduced value opcode is not set,
6104 // the first met operation != reduction operation is considered as the
6105 // reduced value class.
6106 if (I && (!ReducedValueData || OpData == ReducedValueData ||
6107 OpData == ReductionData)) {
6108 const bool IsReductionOperation = OpData == ReductionData;
6109 // Only handle trees in the current basic block.
6110 if (!ReductionData.hasSameParent(I, B->getParent(),
6111 IsReductionOperation)) {
6112 // I is an extra argument for TreeN (its parent operation).
6113 markExtraArg(Stack.back(), I);
6114 continue;
6117 // Each tree node needs to have minimal number of users except for the
6118 // ultimate reduction.
6119 if (!ReductionData.hasRequiredNumberOfUses(I,
6120 OpData == ReductionData) &&
6121 I != B) {
6122 // I is an extra argument for TreeN (its parent operation).
6123 markExtraArg(Stack.back(), I);
6124 continue;
6127 if (IsReductionOperation) {
6128 // We need to be able to reassociate the reduction operations.
6129 if (!OpData.isAssociative(I)) {
6130 // I is an extra argument for TreeN (its parent operation).
6131 markExtraArg(Stack.back(), I);
6132 continue;
6134 } else if (ReducedValueData &&
6135 ReducedValueData != OpData) {
6136 // Make sure that the opcodes of the operations that we are going to
6137 // reduce match.
6138 // I is an extra argument for TreeN (its parent operation).
6139 markExtraArg(Stack.back(), I);
6140 continue;
6141 } else if (!ReducedValueData)
6142 ReducedValueData = OpData;
6144 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex()));
6145 continue;
6148 // NextV is an extra argument for TreeN (its parent operation).
6149 markExtraArg(Stack.back(), NextV);
6151 return true;
6154 /// Attempt to vectorize the tree found by
6155 /// matchAssociativeReduction.
6156 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
6157 if (ReducedVals.empty())
6158 return false;
6160 // If there is a sufficient number of reduction values, reduce
6161 // to a nearby power-of-2. Can safely generate oversized
6162 // vectors and rely on the backend to split them to legal sizes.
6163 unsigned NumReducedVals = ReducedVals.size();
6164 if (NumReducedVals < 4)
6165 return false;
6167 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
6169 Value *VectorizedTree = nullptr;
6171 // FIXME: Fast-math-flags should be set based on the instructions in the
6172 // reduction (not all of 'fast' are required).
6173 IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
6174 FastMathFlags Unsafe;
6175 Unsafe.setFast();
6176 Builder.setFastMathFlags(Unsafe);
6177 unsigned i = 0;
6179 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
6180 // The same extra argument may be used several time, so log each attempt
6181 // to use it.
6182 for (auto &Pair : ExtraArgs) {
6183 assert(Pair.first && "DebugLoc must be set.");
6184 ExternallyUsedValues[Pair.second].push_back(Pair.first);
6186 // The reduction root is used as the insertion point for new instructions,
6187 // so set it as externally used to prevent it from being deleted.
6188 ExternallyUsedValues[ReductionRoot];
6189 SmallVector<Value *, 16> IgnoreList;
6190 for (auto &V : ReductionOps)
6191 IgnoreList.append(V.begin(), V.end());
6192 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
6193 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth);
6194 V.buildTree(VL, ExternallyUsedValues, IgnoreList);
6195 Optional<ArrayRef<unsigned>> Order = V.bestOrder();
6196 // TODO: Handle orders of size less than number of elements in the vector.
6197 if (Order && Order->size() == VL.size()) {
6198 // TODO: reorder tree nodes without tree rebuilding.
6199 SmallVector<Value *, 4> ReorderedOps(VL.size());
6200 llvm::transform(*Order, ReorderedOps.begin(),
6201 [VL](const unsigned Idx) { return VL[Idx]; });
6202 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList);
6204 if (V.isTreeTinyAndNotFullyVectorizable())
6205 break;
6207 V.computeMinimumValueSizes();
6209 // Estimate cost.
6210 int TreeCost = V.getTreeCost();
6211 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth);
6212 int Cost = TreeCost + ReductionCost;
6213 if (Cost >= -SLPCostThreshold) {
6214 V.getORE()->emit([&]() {
6215 return OptimizationRemarkMissed(
6216 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0]))
6217 << "Vectorizing horizontal reduction is possible"
6218 << "but not beneficial with cost "
6219 << ore::NV("Cost", Cost) << " and threshold "
6220 << ore::NV("Threshold", -SLPCostThreshold);
6222 break;
6225 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
6226 << Cost << ". (HorRdx)\n");
6227 V.getORE()->emit([&]() {
6228 return OptimizationRemark(
6229 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0]))
6230 << "Vectorized horizontal reduction with cost "
6231 << ore::NV("Cost", Cost) << " and with tree size "
6232 << ore::NV("TreeSize", V.getTreeSize());
6235 // Vectorize a tree.
6236 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
6237 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
6239 // Emit a reduction.
6240 Builder.SetInsertPoint(cast<Instruction>(ReductionRoot));
6241 Value *ReducedSubTree =
6242 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
6243 if (VectorizedTree) {
6244 Builder.SetCurrentDebugLocation(Loc);
6245 OperationData VectReductionData(ReductionData.getOpcode(),
6246 VectorizedTree, ReducedSubTree,
6247 ReductionData.getKind());
6248 VectorizedTree =
6249 VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
6250 } else
6251 VectorizedTree = ReducedSubTree;
6252 i += ReduxWidth;
6253 ReduxWidth = PowerOf2Floor(NumReducedVals - i);
6256 if (VectorizedTree) {
6257 // Finish the reduction.
6258 for (; i < NumReducedVals; ++i) {
6259 auto *I = cast<Instruction>(ReducedVals[i]);
6260 Builder.SetCurrentDebugLocation(I->getDebugLoc());
6261 OperationData VectReductionData(ReductionData.getOpcode(),
6262 VectorizedTree, I,
6263 ReductionData.getKind());
6264 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps);
6266 for (auto &Pair : ExternallyUsedValues) {
6267 // Add each externally used value to the final reduction.
6268 for (auto *I : Pair.second) {
6269 Builder.SetCurrentDebugLocation(I->getDebugLoc());
6270 OperationData VectReductionData(ReductionData.getOpcode(),
6271 VectorizedTree, Pair.first,
6272 ReductionData.getKind());
6273 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I);
6276 // Update users.
6277 ReductionRoot->replaceAllUsesWith(VectorizedTree);
6279 return VectorizedTree != nullptr;
6282 unsigned numReductionValues() const {
6283 return ReducedVals.size();
6286 private:
6287 /// Calculate the cost of a reduction.
6288 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal,
6289 unsigned ReduxWidth) {
6290 Type *ScalarTy = FirstReducedVal->getType();
6291 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
6293 int PairwiseRdxCost;
6294 int SplittingRdxCost;
6295 switch (ReductionData.getKind()) {
6296 case RK_Arithmetic:
6297 PairwiseRdxCost =
6298 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
6299 /*IsPairwiseForm=*/true);
6300 SplittingRdxCost =
6301 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
6302 /*IsPairwiseForm=*/false);
6303 break;
6304 case RK_Min:
6305 case RK_Max:
6306 case RK_UMin:
6307 case RK_UMax: {
6308 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy);
6309 bool IsUnsigned = ReductionData.getKind() == RK_UMin ||
6310 ReductionData.getKind() == RK_UMax;
6311 PairwiseRdxCost =
6312 TTI->getMinMaxReductionCost(VecTy, VecCondTy,
6313 /*IsPairwiseForm=*/true, IsUnsigned);
6314 SplittingRdxCost =
6315 TTI->getMinMaxReductionCost(VecTy, VecCondTy,
6316 /*IsPairwiseForm=*/false, IsUnsigned);
6317 break;
6319 case RK_None:
6320 llvm_unreachable("Expected arithmetic or min/max reduction operation");
6323 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
6324 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
6326 int ScalarReduxCost = 0;
6327 switch (ReductionData.getKind()) {
6328 case RK_Arithmetic:
6329 ScalarReduxCost =
6330 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy);
6331 break;
6332 case RK_Min:
6333 case RK_Max:
6334 case RK_UMin:
6335 case RK_UMax:
6336 ScalarReduxCost =
6337 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) +
6338 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
6339 CmpInst::makeCmpResultType(ScalarTy));
6340 break;
6341 case RK_None:
6342 llvm_unreachable("Expected arithmetic or min/max reduction operation");
6344 ScalarReduxCost *= (ReduxWidth - 1);
6346 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
6347 << " for reduction that starts with " << *FirstReducedVal
6348 << " (It is a "
6349 << (IsPairwiseReduction ? "pairwise" : "splitting")
6350 << " reduction)\n");
6352 return VecReduxCost - ScalarReduxCost;
6355 /// Emit a horizontal reduction of the vectorized value.
6356 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
6357 unsigned ReduxWidth, const TargetTransformInfo *TTI) {
6358 assert(VectorizedValue && "Need to have a vectorized tree node");
6359 assert(isPowerOf2_32(ReduxWidth) &&
6360 "We only handle power-of-two reductions for now");
6362 if (!IsPairwiseReduction) {
6363 // FIXME: The builder should use an FMF guard. It should not be hard-coded
6364 // to 'fast'.
6365 assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF");
6366 return createSimpleTargetReduction(
6367 Builder, TTI, ReductionData.getOpcode(), VectorizedValue,
6368 ReductionData.getFlags(), ReductionOps.back());
6371 Value *TmpVec = VectorizedValue;
6372 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
6373 Value *LeftMask =
6374 createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
6375 Value *RightMask =
6376 createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
6378 Value *LeftShuf = Builder.CreateShuffleVector(
6379 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
6380 Value *RightShuf = Builder.CreateShuffleVector(
6381 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
6382 "rdx.shuf.r");
6383 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf,
6384 RightShuf, ReductionData.getKind());
6385 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
6388 // The result is in the first element of the vector.
6389 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
6393 } // end anonymous namespace
6395 /// Recognize construction of vectors like
6396 /// %ra = insertelement <4 x float> undef, float %s0, i32 0
6397 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1
6398 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2
6399 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3
6400 /// starting from the last insertelement instruction.
6402 /// Returns true if it matches
6403 static bool findBuildVector(InsertElementInst *LastInsertElem,
6404 TargetTransformInfo *TTI,
6405 SmallVectorImpl<Value *> &BuildVectorOpds,
6406 int &UserCost) {
6407 UserCost = 0;
6408 Value *V = nullptr;
6409 do {
6410 if (auto *CI = dyn_cast<ConstantInt>(LastInsertElem->getOperand(2))) {
6411 UserCost += TTI->getVectorInstrCost(Instruction::InsertElement,
6412 LastInsertElem->getType(),
6413 CI->getZExtValue());
6415 BuildVectorOpds.push_back(LastInsertElem->getOperand(1));
6416 V = LastInsertElem->getOperand(0);
6417 if (isa<UndefValue>(V))
6418 break;
6419 LastInsertElem = dyn_cast<InsertElementInst>(V);
6420 if (!LastInsertElem || !LastInsertElem->hasOneUse())
6421 return false;
6422 } while (true);
6423 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end());
6424 return true;
6427 /// Like findBuildVector, but looks for construction of aggregate.
6429 /// \return true if it matches.
6430 static bool findBuildAggregate(InsertValueInst *IV,
6431 SmallVectorImpl<Value *> &BuildVectorOpds) {
6432 Value *V;
6433 do {
6434 BuildVectorOpds.push_back(IV->getInsertedValueOperand());
6435 V = IV->getAggregateOperand();
6436 if (isa<UndefValue>(V))
6437 break;
6438 IV = dyn_cast<InsertValueInst>(V);
6439 if (!IV || !IV->hasOneUse())
6440 return false;
6441 } while (true);
6442 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end());
6443 return true;
6446 static bool PhiTypeSorterFunc(Value *V, Value *V2) {
6447 return V->getType() < V2->getType();
6450 /// Try and get a reduction value from a phi node.
6452 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
6453 /// if they come from either \p ParentBB or a containing loop latch.
6455 /// \returns A candidate reduction value if possible, or \code nullptr \endcode
6456 /// if not possible.
6457 static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
6458 BasicBlock *ParentBB, LoopInfo *LI) {
6459 // There are situations where the reduction value is not dominated by the
6460 // reduction phi. Vectorizing such cases has been reported to cause
6461 // miscompiles. See PR25787.
6462 auto DominatedReduxValue = [&](Value *R) {
6463 return isa<Instruction>(R) &&
6464 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
6467 Value *Rdx = nullptr;
6469 // Return the incoming value if it comes from the same BB as the phi node.
6470 if (P->getIncomingBlock(0) == ParentBB) {
6471 Rdx = P->getIncomingValue(0);
6472 } else if (P->getIncomingBlock(1) == ParentBB) {
6473 Rdx = P->getIncomingValue(1);
6476 if (Rdx && DominatedReduxValue(Rdx))
6477 return Rdx;
6479 // Otherwise, check whether we have a loop latch to look at.
6480 Loop *BBL = LI->getLoopFor(ParentBB);
6481 if (!BBL)
6482 return nullptr;
6483 BasicBlock *BBLatch = BBL->getLoopLatch();
6484 if (!BBLatch)
6485 return nullptr;
6487 // There is a loop latch, return the incoming value if it comes from
6488 // that. This reduction pattern occasionally turns up.
6489 if (P->getIncomingBlock(0) == BBLatch) {
6490 Rdx = P->getIncomingValue(0);
6491 } else if (P->getIncomingBlock(1) == BBLatch) {
6492 Rdx = P->getIncomingValue(1);
6495 if (Rdx && DominatedReduxValue(Rdx))
6496 return Rdx;
6498 return nullptr;
6501 /// Attempt to reduce a horizontal reduction.
6502 /// If it is legal to match a horizontal reduction feeding the phi node \a P
6503 /// with reduction operators \a Root (or one of its operands) in a basic block
6504 /// \a BB, then check if it can be done. If horizontal reduction is not found
6505 /// and root instruction is a binary operation, vectorization of the operands is
6506 /// attempted.
6507 /// \returns true if a horizontal reduction was matched and reduced or operands
6508 /// of one of the binary instruction were vectorized.
6509 /// \returns false if a horizontal reduction was not matched (or not possible)
6510 /// or no vectorization of any binary operation feeding \a Root instruction was
6511 /// performed.
6512 static bool tryToVectorizeHorReductionOrInstOperands(
6513 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
6514 TargetTransformInfo *TTI,
6515 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
6516 if (!ShouldVectorizeHor)
6517 return false;
6519 if (!Root)
6520 return false;
6522 if (Root->getParent() != BB || isa<PHINode>(Root))
6523 return false;
6524 // Start analysis starting from Root instruction. If horizontal reduction is
6525 // found, try to vectorize it. If it is not a horizontal reduction or
6526 // vectorization is not possible or not effective, and currently analyzed
6527 // instruction is a binary operation, try to vectorize the operands, using
6528 // pre-order DFS traversal order. If the operands were not vectorized, repeat
6529 // the same procedure considering each operand as a possible root of the
6530 // horizontal reduction.
6531 // Interrupt the process if the Root instruction itself was vectorized or all
6532 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
6533 SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0});
6534 SmallPtrSet<Value *, 8> VisitedInstrs;
6535 bool Res = false;
6536 while (!Stack.empty()) {
6537 Value *V;
6538 unsigned Level;
6539 std::tie(V, Level) = Stack.pop_back_val();
6540 if (!V)
6541 continue;
6542 auto *Inst = dyn_cast<Instruction>(V);
6543 if (!Inst)
6544 continue;
6545 auto *BI = dyn_cast<BinaryOperator>(Inst);
6546 auto *SI = dyn_cast<SelectInst>(Inst);
6547 if (BI || SI) {
6548 HorizontalReduction HorRdx;
6549 if (HorRdx.matchAssociativeReduction(P, Inst)) {
6550 if (HorRdx.tryToReduce(R, TTI)) {
6551 Res = true;
6552 // Set P to nullptr to avoid re-analysis of phi node in
6553 // matchAssociativeReduction function unless this is the root node.
6554 P = nullptr;
6555 continue;
6558 if (P && BI) {
6559 Inst = dyn_cast<Instruction>(BI->getOperand(0));
6560 if (Inst == P)
6561 Inst = dyn_cast<Instruction>(BI->getOperand(1));
6562 if (!Inst) {
6563 // Set P to nullptr to avoid re-analysis of phi node in
6564 // matchAssociativeReduction function unless this is the root node.
6565 P = nullptr;
6566 continue;
6570 // Set P to nullptr to avoid re-analysis of phi node in
6571 // matchAssociativeReduction function unless this is the root node.
6572 P = nullptr;
6573 if (Vectorize(Inst, R)) {
6574 Res = true;
6575 continue;
6578 // Try to vectorize operands.
6579 // Continue analysis for the instruction from the same basic block only to
6580 // save compile time.
6581 if (++Level < RecursionMaxDepth)
6582 for (auto *Op : Inst->operand_values())
6583 if (VisitedInstrs.insert(Op).second)
6584 if (auto *I = dyn_cast<Instruction>(Op))
6585 if (!isa<PHINode>(I) && I->getParent() == BB)
6586 Stack.emplace_back(Op, Level);
6588 return Res;
6591 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
6592 BasicBlock *BB, BoUpSLP &R,
6593 TargetTransformInfo *TTI) {
6594 if (!V)
6595 return false;
6596 auto *I = dyn_cast<Instruction>(V);
6597 if (!I)
6598 return false;
6600 if (!isa<BinaryOperator>(I))
6601 P = nullptr;
6602 // Try to match and vectorize a horizontal reduction.
6603 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
6604 return tryToVectorize(I, R);
6606 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
6607 ExtraVectorization);
6610 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
6611 BasicBlock *BB, BoUpSLP &R) {
6612 const DataLayout &DL = BB->getModule()->getDataLayout();
6613 if (!R.canMapToVector(IVI->getType(), DL))
6614 return false;
6616 SmallVector<Value *, 16> BuildVectorOpds;
6617 if (!findBuildAggregate(IVI, BuildVectorOpds))
6618 return false;
6620 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
6621 // Aggregate value is unlikely to be processed in vector register, we need to
6622 // extract scalars into scalar registers, so NeedExtraction is set true.
6623 return tryToVectorizeList(BuildVectorOpds, R);
6626 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
6627 BasicBlock *BB, BoUpSLP &R) {
6628 int UserCost;
6629 SmallVector<Value *, 16> BuildVectorOpds;
6630 if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) ||
6631 (llvm::all_of(BuildVectorOpds,
6632 [](Value *V) { return isa<ExtractElementInst>(V); }) &&
6633 isShuffle(BuildVectorOpds)))
6634 return false;
6636 // Vectorize starting with the build vector operands ignoring the BuildVector
6637 // instructions for the purpose of scheduling and user extraction.
6638 return tryToVectorizeList(BuildVectorOpds, R, UserCost);
6641 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB,
6642 BoUpSLP &R) {
6643 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R))
6644 return true;
6646 bool OpsChanged = false;
6647 for (int Idx = 0; Idx < 2; ++Idx) {
6648 OpsChanged |=
6649 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI);
6651 return OpsChanged;
6654 bool SLPVectorizerPass::vectorizeSimpleInstructions(
6655 SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) {
6656 bool OpsChanged = false;
6657 for (auto &VH : reverse(Instructions)) {
6658 auto *I = dyn_cast_or_null<Instruction>(VH);
6659 if (!I)
6660 continue;
6661 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
6662 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
6663 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
6664 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
6665 else if (auto *CI = dyn_cast<CmpInst>(I))
6666 OpsChanged |= vectorizeCmpInst(CI, BB, R);
6668 Instructions.clear();
6669 return OpsChanged;
6672 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
6673 bool Changed = false;
6674 SmallVector<Value *, 4> Incoming;
6675 SmallPtrSet<Value *, 16> VisitedInstrs;
6677 bool HaveVectorizedPhiNodes = true;
6678 while (HaveVectorizedPhiNodes) {
6679 HaveVectorizedPhiNodes = false;
6681 // Collect the incoming values from the PHIs.
6682 Incoming.clear();
6683 for (Instruction &I : *BB) {
6684 PHINode *P = dyn_cast<PHINode>(&I);
6685 if (!P)
6686 break;
6688 if (!VisitedInstrs.count(P))
6689 Incoming.push_back(P);
6692 // Sort by type.
6693 llvm::stable_sort(Incoming, PhiTypeSorterFunc);
6695 // Try to vectorize elements base on their type.
6696 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
6697 E = Incoming.end();
6698 IncIt != E;) {
6700 // Look for the next elements with the same type.
6701 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
6702 while (SameTypeIt != E &&
6703 (*SameTypeIt)->getType() == (*IncIt)->getType()) {
6704 VisitedInstrs.insert(*SameTypeIt);
6705 ++SameTypeIt;
6708 // Try to vectorize them.
6709 unsigned NumElts = (SameTypeIt - IncIt);
6710 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs ("
6711 << NumElts << ")\n");
6712 // The order in which the phi nodes appear in the program does not matter.
6713 // So allow tryToVectorizeList to reorder them if it is beneficial. This
6714 // is done when there are exactly two elements since tryToVectorizeList
6715 // asserts that there are only two values when AllowReorder is true.
6716 bool AllowReorder = NumElts == 2;
6717 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R,
6718 /*UserCost=*/0, AllowReorder)) {
6719 // Success start over because instructions might have been changed.
6720 HaveVectorizedPhiNodes = true;
6721 Changed = true;
6722 break;
6725 // Start over at the next instruction of a different type (or the end).
6726 IncIt = SameTypeIt;
6730 VisitedInstrs.clear();
6732 SmallVector<WeakVH, 8> PostProcessInstructions;
6733 SmallDenseSet<Instruction *, 4> KeyNodes;
6734 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
6735 // We may go through BB multiple times so skip the one we have checked.
6736 if (!VisitedInstrs.insert(&*it).second) {
6737 if (it->use_empty() && KeyNodes.count(&*it) > 0 &&
6738 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) {
6739 // We would like to start over since some instructions are deleted
6740 // and the iterator may become invalid value.
6741 Changed = true;
6742 it = BB->begin();
6743 e = BB->end();
6745 continue;
6748 if (isa<DbgInfoIntrinsic>(it))
6749 continue;
6751 // Try to vectorize reductions that use PHINodes.
6752 if (PHINode *P = dyn_cast<PHINode>(it)) {
6753 // Check that the PHI is a reduction PHI.
6754 if (P->getNumIncomingValues() != 2)
6755 return Changed;
6757 // Try to match and vectorize a horizontal reduction.
6758 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
6759 TTI)) {
6760 Changed = true;
6761 it = BB->begin();
6762 e = BB->end();
6763 continue;
6765 continue;
6768 // Ran into an instruction without users, like terminator, or function call
6769 // with ignored return value, store. Ignore unused instructions (basing on
6770 // instruction type, except for CallInst and InvokeInst).
6771 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
6772 isa<InvokeInst>(it))) {
6773 KeyNodes.insert(&*it);
6774 bool OpsChanged = false;
6775 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
6776 for (auto *V : it->operand_values()) {
6777 // Try to match and vectorize a horizontal reduction.
6778 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
6781 // Start vectorization of post-process list of instructions from the
6782 // top-tree instructions to try to vectorize as many instructions as
6783 // possible.
6784 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R);
6785 if (OpsChanged) {
6786 // We would like to start over since some instructions are deleted
6787 // and the iterator may become invalid value.
6788 Changed = true;
6789 it = BB->begin();
6790 e = BB->end();
6791 continue;
6795 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
6796 isa<InsertValueInst>(it))
6797 PostProcessInstructions.push_back(&*it);
6800 return Changed;
6803 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
6804 auto Changed = false;
6805 for (auto &Entry : GEPs) {
6806 // If the getelementptr list has fewer than two elements, there's nothing
6807 // to do.
6808 if (Entry.second.size() < 2)
6809 continue;
6811 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
6812 << Entry.second.size() << ".\n");
6814 // We process the getelementptr list in chunks of 16 (like we do for
6815 // stores) to minimize compile-time.
6816 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) {
6817 auto Len = std::min<unsigned>(BE - BI, 16);
6818 auto GEPList = makeArrayRef(&Entry.second[BI], Len);
6820 // Initialize a set a candidate getelementptrs. Note that we use a
6821 // SetVector here to preserve program order. If the index computations
6822 // are vectorizable and begin with loads, we want to minimize the chance
6823 // of having to reorder them later.
6824 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
6826 // Some of the candidates may have already been vectorized after we
6827 // initially collected them. If so, the WeakTrackingVHs will have
6828 // nullified the
6829 // values, so remove them from the set of candidates.
6830 Candidates.remove(nullptr);
6832 // Remove from the set of candidates all pairs of getelementptrs with
6833 // constant differences. Such getelementptrs are likely not good
6834 // candidates for vectorization in a bottom-up phase since one can be
6835 // computed from the other. We also ensure all candidate getelementptr
6836 // indices are unique.
6837 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
6838 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]);
6839 if (!Candidates.count(GEPI))
6840 continue;
6841 auto *SCEVI = SE->getSCEV(GEPList[I]);
6842 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
6843 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]);
6844 auto *SCEVJ = SE->getSCEV(GEPList[J]);
6845 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
6846 Candidates.remove(GEPList[I]);
6847 Candidates.remove(GEPList[J]);
6848 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
6849 Candidates.remove(GEPList[J]);
6854 // We break out of the above computation as soon as we know there are
6855 // fewer than two candidates remaining.
6856 if (Candidates.size() < 2)
6857 continue;
6859 // Add the single, non-constant index of each candidate to the bundle. We
6860 // ensured the indices met these constraints when we originally collected
6861 // the getelementptrs.
6862 SmallVector<Value *, 16> Bundle(Candidates.size());
6863 auto BundleIndex = 0u;
6864 for (auto *V : Candidates) {
6865 auto *GEP = cast<GetElementPtrInst>(V);
6866 auto *GEPIdx = GEP->idx_begin()->get();
6867 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
6868 Bundle[BundleIndex++] = GEPIdx;
6871 // Try and vectorize the indices. We are currently only interested in
6872 // gather-like cases of the form:
6874 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
6876 // where the loads of "a", the loads of "b", and the subtractions can be
6877 // performed in parallel. It's likely that detecting this pattern in a
6878 // bottom-up phase will be simpler and less costly than building a
6879 // full-blown top-down phase beginning at the consecutive loads.
6880 Changed |= tryToVectorizeList(Bundle, R);
6883 return Changed;
6886 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
6887 bool Changed = false;
6888 // Attempt to sort and vectorize each of the store-groups.
6889 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e;
6890 ++it) {
6891 if (it->second.size() < 2)
6892 continue;
6894 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
6895 << it->second.size() << ".\n");
6897 // Process the stores in chunks of 16.
6898 // TODO: The limit of 16 inhibits greater vectorization factors.
6899 // For example, AVX2 supports v32i8. Increasing this limit, however,
6900 // may cause a significant compile-time increase.
6901 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI += 16) {
6902 unsigned Len = std::min<unsigned>(CE - CI, 16);
6903 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R);
6906 return Changed;
6909 char SLPVectorizer::ID = 0;
6911 static const char lv_name[] = "SLP Vectorizer";
6913 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
6914 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
6915 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
6916 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
6917 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
6918 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
6919 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
6920 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
6921 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
6923 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }