Remove the default clause from a fully-covering switch
[llvm-core.git] / lib / Transforms / Utils / BreakCriticalEdges.cpp
blob417a771cf952dbef8f676818a1ead3d7bf1a02e5
1 //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // BreakCriticalEdges pass - Break all of the critical edges in the CFG by
11 // inserting a dummy basic block. This pass may be "required" by passes that
12 // cannot deal with critical edges. For this usage, the structure type is
13 // forward declared. This pass obviously invalidates the CFG, but can update
14 // dominator trees.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/Transforms/Utils/BreakCriticalEdges.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/IR/CFG.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Transforms/Scalar.h"
30 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
31 using namespace llvm;
33 #define DEBUG_TYPE "break-crit-edges"
35 STATISTIC(NumBroken, "Number of blocks inserted");
37 namespace {
38 struct BreakCriticalEdges : public FunctionPass {
39 static char ID; // Pass identification, replacement for typeid
40 BreakCriticalEdges() : FunctionPass(ID) {
41 initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
44 bool runOnFunction(Function &F) override {
45 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
46 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
47 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
48 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
49 unsigned N =
50 SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI));
51 NumBroken += N;
52 return N > 0;
55 void getAnalysisUsage(AnalysisUsage &AU) const override {
56 AU.addPreserved<DominatorTreeWrapperPass>();
57 AU.addPreserved<LoopInfoWrapperPass>();
59 // No loop canonicalization guarantees are broken by this pass.
60 AU.addPreservedID(LoopSimplifyID);
65 char BreakCriticalEdges::ID = 0;
66 INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
67 "Break critical edges in CFG", false, false)
69 // Publicly exposed interface to pass...
70 char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
71 FunctionPass *llvm::createBreakCriticalEdgesPass() {
72 return new BreakCriticalEdges();
75 PreservedAnalyses BreakCriticalEdgesPass::run(Function &F,
76 FunctionAnalysisManager &AM) {
77 auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
78 auto *LI = AM.getCachedResult<LoopAnalysis>(F);
79 unsigned N = SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI));
80 NumBroken += N;
81 if (N == 0)
82 return PreservedAnalyses::all();
83 PreservedAnalyses PA;
84 PA.preserve<DominatorTreeAnalysis>();
85 PA.preserve<LoopAnalysis>();
86 return PA;
89 //===----------------------------------------------------------------------===//
90 // Implementation of the external critical edge manipulation functions
91 //===----------------------------------------------------------------------===//
93 /// When a loop exit edge is split, LCSSA form may require new PHIs in the new
94 /// exit block. This function inserts the new PHIs, as needed. Preds is a list
95 /// of preds inside the loop, SplitBB is the new loop exit block, and DestBB is
96 /// the old loop exit, now the successor of SplitBB.
97 static void createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
98 BasicBlock *SplitBB,
99 BasicBlock *DestBB) {
100 // SplitBB shouldn't have anything non-trivial in it yet.
101 assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
102 SplitBB->isLandingPad()) && "SplitBB has non-PHI nodes!");
104 // For each PHI in the destination block.
105 for (BasicBlock::iterator I = DestBB->begin();
106 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
107 unsigned Idx = PN->getBasicBlockIndex(SplitBB);
108 Value *V = PN->getIncomingValue(Idx);
110 // If the input is a PHI which already satisfies LCSSA, don't create
111 // a new one.
112 if (const PHINode *VP = dyn_cast<PHINode>(V))
113 if (VP->getParent() == SplitBB)
114 continue;
116 // Otherwise a new PHI is needed. Create one and populate it.
117 PHINode *NewPN = PHINode::Create(
118 PN->getType(), Preds.size(), "split",
119 SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator());
120 for (unsigned i = 0, e = Preds.size(); i != e; ++i)
121 NewPN->addIncoming(V, Preds[i]);
123 // Update the original PHI.
124 PN->setIncomingValue(Idx, NewPN);
128 BasicBlock *
129 llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
130 const CriticalEdgeSplittingOptions &Options) {
131 if (!isCriticalEdge(TI, SuccNum, Options.MergeIdenticalEdges))
132 return nullptr;
134 assert(!isa<IndirectBrInst>(TI) &&
135 "Cannot split critical edge from IndirectBrInst");
137 BasicBlock *TIBB = TI->getParent();
138 BasicBlock *DestBB = TI->getSuccessor(SuccNum);
140 // Splitting the critical edge to a pad block is non-trivial. Don't do
141 // it in this generic function.
142 if (DestBB->isEHPad()) return nullptr;
144 // Create a new basic block, linking it into the CFG.
145 BasicBlock *NewBB = BasicBlock::Create(TI->getContext(),
146 TIBB->getName() + "." + DestBB->getName() + "_crit_edge");
147 // Create our unconditional branch.
148 BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
149 NewBI->setDebugLoc(TI->getDebugLoc());
151 // Branch to the new block, breaking the edge.
152 TI->setSuccessor(SuccNum, NewBB);
154 // Insert the block into the function... right after the block TI lives in.
155 Function &F = *TIBB->getParent();
156 Function::iterator FBBI = TIBB->getIterator();
157 F.getBasicBlockList().insert(++FBBI, NewBB);
159 // If there are any PHI nodes in DestBB, we need to update them so that they
160 // merge incoming values from NewBB instead of from TIBB.
162 unsigned BBIdx = 0;
163 for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
164 // We no longer enter through TIBB, now we come in through NewBB.
165 // Revector exactly one entry in the PHI node that used to come from
166 // TIBB to come from NewBB.
167 PHINode *PN = cast<PHINode>(I);
169 // Reuse the previous value of BBIdx if it lines up. In cases where we
170 // have multiple phi nodes with *lots* of predecessors, this is a speed
171 // win because we don't have to scan the PHI looking for TIBB. This
172 // happens because the BB list of PHI nodes are usually in the same
173 // order.
174 if (PN->getIncomingBlock(BBIdx) != TIBB)
175 BBIdx = PN->getBasicBlockIndex(TIBB);
176 PN->setIncomingBlock(BBIdx, NewBB);
180 // If there are any other edges from TIBB to DestBB, update those to go
181 // through the split block, making those edges non-critical as well (and
182 // reducing the number of phi entries in the DestBB if relevant).
183 if (Options.MergeIdenticalEdges) {
184 for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
185 if (TI->getSuccessor(i) != DestBB) continue;
187 // Remove an entry for TIBB from DestBB phi nodes.
188 DestBB->removePredecessor(TIBB, Options.DontDeleteUselessPHIs);
190 // We found another edge to DestBB, go to NewBB instead.
191 TI->setSuccessor(i, NewBB);
195 // If we have nothing to update, just return.
196 auto *DT = Options.DT;
197 auto *LI = Options.LI;
198 if (!DT && !LI)
199 return NewBB;
201 if (DT) {
202 // Update the DominatorTree.
203 // ---> NewBB -----\
204 // / V
205 // TIBB -------\\------> DestBB
207 // First, inform the DT about the new path from TIBB to DestBB via NewBB,
208 // then delete the old edge from TIBB to DestBB. By doing this in that order
209 // DestBB stays reachable in the DT the whole time and its subtree doesn't
210 // get disconnected.
211 SmallVector<DominatorTree::UpdateType, 3> Updates;
212 Updates.push_back({DominatorTree::Insert, TIBB, NewBB});
213 Updates.push_back({DominatorTree::Insert, NewBB, DestBB});
214 if (llvm::find(successors(TIBB), DestBB) == succ_end(TIBB))
215 Updates.push_back({DominatorTree::Delete, TIBB, DestBB});
217 DT->applyUpdates(Updates);
220 // Update LoopInfo if it is around.
221 if (LI) {
222 if (Loop *TIL = LI->getLoopFor(TIBB)) {
223 // If one or the other blocks were not in a loop, the new block is not
224 // either, and thus LI doesn't need to be updated.
225 if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
226 if (TIL == DestLoop) {
227 // Both in the same loop, the NewBB joins loop.
228 DestLoop->addBasicBlockToLoop(NewBB, *LI);
229 } else if (TIL->contains(DestLoop)) {
230 // Edge from an outer loop to an inner loop. Add to the outer loop.
231 TIL->addBasicBlockToLoop(NewBB, *LI);
232 } else if (DestLoop->contains(TIL)) {
233 // Edge from an inner loop to an outer loop. Add to the outer loop.
234 DestLoop->addBasicBlockToLoop(NewBB, *LI);
235 } else {
236 // Edge from two loops with no containment relation. Because these
237 // are natural loops, we know that the destination block must be the
238 // header of its loop (adding a branch into a loop elsewhere would
239 // create an irreducible loop).
240 assert(DestLoop->getHeader() == DestBB &&
241 "Should not create irreducible loops!");
242 if (Loop *P = DestLoop->getParentLoop())
243 P->addBasicBlockToLoop(NewBB, *LI);
247 // If TIBB is in a loop and DestBB is outside of that loop, we may need
248 // to update LoopSimplify form and LCSSA form.
249 if (!TIL->contains(DestBB)) {
250 assert(!TIL->contains(NewBB) &&
251 "Split point for loop exit is contained in loop!");
253 // Update LCSSA form in the newly created exit block.
254 if (Options.PreserveLCSSA) {
255 createPHIsForSplitLoopExit(TIBB, NewBB, DestBB);
258 // The only that we can break LoopSimplify form by splitting a critical
259 // edge is if after the split there exists some edge from TIL to DestBB
260 // *and* the only edge into DestBB from outside of TIL is that of
261 // NewBB. If the first isn't true, then LoopSimplify still holds, NewBB
262 // is the new exit block and it has no non-loop predecessors. If the
263 // second isn't true, then DestBB was not in LoopSimplify form prior to
264 // the split as it had a non-loop predecessor. In both of these cases,
265 // the predecessor must be directly in TIL, not in a subloop, or again
266 // LoopSimplify doesn't hold.
267 SmallVector<BasicBlock *, 4> LoopPreds;
268 for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); I != E;
269 ++I) {
270 BasicBlock *P = *I;
271 if (P == NewBB)
272 continue; // The new block is known.
273 if (LI->getLoopFor(P) != TIL) {
274 // No need to re-simplify, it wasn't to start with.
275 LoopPreds.clear();
276 break;
278 LoopPreds.push_back(P);
280 if (!LoopPreds.empty()) {
281 assert(!DestBB->isEHPad() && "We don't split edges to EH pads!");
282 BasicBlock *NewExitBB = SplitBlockPredecessors(
283 DestBB, LoopPreds, "split", DT, LI, Options.PreserveLCSSA);
284 if (Options.PreserveLCSSA)
285 createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB);
291 return NewBB;