1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass performs several transformations to transform natural loops into a
11 // simpler form, which makes subsequent analyses and transformations simpler and
14 // Loop pre-header insertion guarantees that there is a single, non-critical
15 // entry edge from outside of the loop to the loop header. This simplifies a
16 // number of analyses and transformations, such as LICM.
18 // Loop exit-block insertion guarantees that all exit blocks from the loop
19 // (blocks which are outside of the loop that have predecessors inside of the
20 // loop) only have predecessors from inside of the loop (and are thus dominated
21 // by the loop header). This simplifies transformations such as store-sinking
22 // that are built into LICM.
24 // This pass also guarantees that loops will have exactly one backedge.
26 // Indirectbr instructions introduce several complications. If the loop
27 // contains or is entered by an indirectbr instruction, it may not be possible
28 // to transform the loop and make these guarantees. Client code should check
29 // that these conditions are true before relying on them.
31 // Note that the simplifycfg pass will clean up blocks which are split out but
32 // end up being unnecessary, so usage of this pass should not pessimize
35 // This pass obviously modifies the CFG, but updates loop information and
36 // dominator information.
38 //===----------------------------------------------------------------------===//
40 #include "llvm/Transforms/Utils/LoopSimplify.h"
41 #include "llvm/ADT/DepthFirstIterator.h"
42 #include "llvm/ADT/SetOperations.h"
43 #include "llvm/ADT/SetVector.h"
44 #include "llvm/ADT/SmallVector.h"
45 #include "llvm/ADT/Statistic.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/AssumptionCache.h"
48 #include "llvm/Analysis/BasicAliasAnalysis.h"
49 #include "llvm/Analysis/DependenceAnalysis.h"
50 #include "llvm/Analysis/GlobalsModRef.h"
51 #include "llvm/Analysis/InstructionSimplify.h"
52 #include "llvm/Analysis/LoopInfo.h"
53 #include "llvm/Analysis/ScalarEvolution.h"
54 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
55 #include "llvm/IR/CFG.h"
56 #include "llvm/IR/Constants.h"
57 #include "llvm/IR/DataLayout.h"
58 #include "llvm/IR/Dominators.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/Type.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Transforms/Scalar.h"
68 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include "llvm/Transforms/Utils/LoopUtils.h"
73 #define DEBUG_TYPE "loop-simplify"
75 STATISTIC(NumNested
, "Number of nested loops split out");
77 // If the block isn't already, move the new block to right after some 'outside
78 // block' block. This prevents the preheader from being placed inside the loop
79 // body, e.g. when the loop hasn't been rotated.
80 static void placeSplitBlockCarefully(BasicBlock
*NewBB
,
81 SmallVectorImpl
<BasicBlock
*> &SplitPreds
,
83 // Check to see if NewBB is already well placed.
84 Function::iterator BBI
= --NewBB
->getIterator();
85 for (unsigned i
= 0, e
= SplitPreds
.size(); i
!= e
; ++i
) {
86 if (&*BBI
== SplitPreds
[i
])
90 // If it isn't already after an outside block, move it after one. This is
91 // always good as it makes the uncond branch from the outside block into a
94 // Figure out *which* outside block to put this after. Prefer an outside
95 // block that neighbors a BB actually in the loop.
96 BasicBlock
*FoundBB
= nullptr;
97 for (unsigned i
= 0, e
= SplitPreds
.size(); i
!= e
; ++i
) {
98 Function::iterator BBI
= SplitPreds
[i
]->getIterator();
99 if (++BBI
!= NewBB
->getParent()->end() && L
->contains(&*BBI
)) {
100 FoundBB
= SplitPreds
[i
];
105 // If our heuristic for a *good* bb to place this after doesn't find
106 // anything, just pick something. It's likely better than leaving it within
109 FoundBB
= SplitPreds
[0];
110 NewBB
->moveAfter(FoundBB
);
113 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
114 /// preheader, this method is called to insert one. This method has two phases:
115 /// preheader insertion and analysis updating.
117 BasicBlock
*llvm::InsertPreheaderForLoop(Loop
*L
, DominatorTree
*DT
,
118 LoopInfo
*LI
, bool PreserveLCSSA
) {
119 BasicBlock
*Header
= L
->getHeader();
121 // Compute the set of predecessors of the loop that are not in the loop.
122 SmallVector
<BasicBlock
*, 8> OutsideBlocks
;
123 for (pred_iterator PI
= pred_begin(Header
), PE
= pred_end(Header
);
126 if (!L
->contains(P
)) { // Coming in from outside the loop?
127 // If the loop is branched to from an indirect branch, we won't
128 // be able to fully transform the loop, because it prohibits
130 if (isa
<IndirectBrInst
>(P
->getTerminator())) return nullptr;
133 OutsideBlocks
.push_back(P
);
137 // Split out the loop pre-header.
138 BasicBlock
*PreheaderBB
;
139 PreheaderBB
= SplitBlockPredecessors(Header
, OutsideBlocks
, ".preheader", DT
,
144 DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
145 << PreheaderBB
->getName() << "\n");
147 // Make sure that NewBB is put someplace intelligent, which doesn't mess up
148 // code layout too horribly.
149 placeSplitBlockCarefully(PreheaderBB
, OutsideBlocks
, L
);
154 /// Add the specified block, and all of its predecessors, to the specified set,
155 /// if it's not already in there. Stop predecessor traversal when we reach
157 static void addBlockAndPredsToSet(BasicBlock
*InputBB
, BasicBlock
*StopBlock
,
158 std::set
<BasicBlock
*> &Blocks
) {
159 SmallVector
<BasicBlock
*, 8> Worklist
;
160 Worklist
.push_back(InputBB
);
162 BasicBlock
*BB
= Worklist
.pop_back_val();
163 if (Blocks
.insert(BB
).second
&& BB
!= StopBlock
)
164 // If BB is not already processed and it is not a stop block then
165 // insert its predecessor in the work list
166 for (pred_iterator I
= pred_begin(BB
), E
= pred_end(BB
); I
!= E
; ++I
) {
167 BasicBlock
*WBB
= *I
;
168 Worklist
.push_back(WBB
);
170 } while (!Worklist
.empty());
173 /// \brief The first part of loop-nestification is to find a PHI node that tells
174 /// us how to partition the loops.
175 static PHINode
*findPHIToPartitionLoops(Loop
*L
, DominatorTree
*DT
,
176 AssumptionCache
*AC
) {
177 const DataLayout
&DL
= L
->getHeader()->getModule()->getDataLayout();
178 for (BasicBlock::iterator I
= L
->getHeader()->begin(); isa
<PHINode
>(I
); ) {
179 PHINode
*PN
= cast
<PHINode
>(I
);
181 if (Value
*V
= SimplifyInstruction(PN
, {DL
, nullptr, DT
, AC
})) {
182 // This is a degenerate PHI already, don't modify it!
183 PN
->replaceAllUsesWith(V
);
184 PN
->eraseFromParent();
188 // Scan this PHI node looking for a use of the PHI node by itself.
189 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
190 if (PN
->getIncomingValue(i
) == PN
&&
191 L
->contains(PN
->getIncomingBlock(i
)))
192 // We found something tasty to remove.
198 /// \brief If this loop has multiple backedges, try to pull one of them out into
201 /// This is important for code that looks like
206 /// br cond, Loop, Next
208 /// br cond2, Loop, Out
210 /// To identify this common case, we look at the PHI nodes in the header of the
211 /// loop. PHI nodes with unchanging values on one backedge correspond to values
212 /// that change in the "outer" loop, but not in the "inner" loop.
214 /// If we are able to separate out a loop, return the new outer loop that was
217 static Loop
*separateNestedLoop(Loop
*L
, BasicBlock
*Preheader
,
218 DominatorTree
*DT
, LoopInfo
*LI
,
219 ScalarEvolution
*SE
, bool PreserveLCSSA
,
220 AssumptionCache
*AC
) {
221 // Don't try to separate loops without a preheader.
225 // The header is not a landing pad; preheader insertion should ensure this.
226 BasicBlock
*Header
= L
->getHeader();
227 assert(!Header
->isEHPad() && "Can't insert backedge to EH pad");
229 PHINode
*PN
= findPHIToPartitionLoops(L
, DT
, AC
);
230 if (!PN
) return nullptr; // No known way to partition.
232 // Pull out all predecessors that have varying values in the loop. This
233 // handles the case when a PHI node has multiple instances of itself as
235 SmallVector
<BasicBlock
*, 8> OuterLoopPreds
;
236 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
237 if (PN
->getIncomingValue(i
) != PN
||
238 !L
->contains(PN
->getIncomingBlock(i
))) {
239 // We can't split indirectbr edges.
240 if (isa
<IndirectBrInst
>(PN
->getIncomingBlock(i
)->getTerminator()))
242 OuterLoopPreds
.push_back(PN
->getIncomingBlock(i
));
245 DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
247 // If ScalarEvolution is around and knows anything about values in
248 // this loop, tell it to forget them, because we're about to
249 // substantially change it.
253 BasicBlock
*NewBB
= SplitBlockPredecessors(Header
, OuterLoopPreds
, ".outer",
254 DT
, LI
, PreserveLCSSA
);
256 // Make sure that NewBB is put someplace intelligent, which doesn't mess up
257 // code layout too horribly.
258 placeSplitBlockCarefully(NewBB
, OuterLoopPreds
, L
);
260 // Create the new outer loop.
261 Loop
*NewOuter
= new Loop();
263 // Change the parent loop to use the outer loop as its child now.
264 if (Loop
*Parent
= L
->getParentLoop())
265 Parent
->replaceChildLoopWith(L
, NewOuter
);
267 LI
->changeTopLevelLoop(L
, NewOuter
);
269 // L is now a subloop of our outer loop.
270 NewOuter
->addChildLoop(L
);
272 for (Loop::block_iterator I
= L
->block_begin(), E
= L
->block_end();
274 NewOuter
->addBlockEntry(*I
);
276 // Now reset the header in L, which had been moved by
277 // SplitBlockPredecessors for the outer loop.
278 L
->moveToHeader(Header
);
280 // Determine which blocks should stay in L and which should be moved out to
281 // the Outer loop now.
282 std::set
<BasicBlock
*> BlocksInL
;
283 for (pred_iterator PI
=pred_begin(Header
), E
= pred_end(Header
); PI
!=E
; ++PI
) {
285 if (DT
->dominates(Header
, P
))
286 addBlockAndPredsToSet(P
, Header
, BlocksInL
);
289 // Scan all of the loop children of L, moving them to OuterLoop if they are
290 // not part of the inner loop.
291 const std::vector
<Loop
*> &SubLoops
= L
->getSubLoops();
292 for (size_t I
= 0; I
!= SubLoops
.size(); )
293 if (BlocksInL
.count(SubLoops
[I
]->getHeader()))
294 ++I
; // Loop remains in L
296 NewOuter
->addChildLoop(L
->removeChildLoop(SubLoops
.begin() + I
));
298 SmallVector
<BasicBlock
*, 8> OuterLoopBlocks
;
299 OuterLoopBlocks
.push_back(NewBB
);
300 // Now that we know which blocks are in L and which need to be moved to
301 // OuterLoop, move any blocks that need it.
302 for (unsigned i
= 0; i
!= L
->getBlocks().size(); ++i
) {
303 BasicBlock
*BB
= L
->getBlocks()[i
];
304 if (!BlocksInL
.count(BB
)) {
305 // Move this block to the parent, updating the exit blocks sets
306 L
->removeBlockFromLoop(BB
);
307 if ((*LI
)[BB
] == L
) {
308 LI
->changeLoopFor(BB
, NewOuter
);
309 OuterLoopBlocks
.push_back(BB
);
315 // Split edges to exit blocks from the inner loop, if they emerged in the
316 // process of separating the outer one.
317 formDedicatedExitBlocks(L
, DT
, LI
, PreserveLCSSA
);
320 // Fix LCSSA form for L. Some values, which previously were only used inside
321 // L, can now be used in NewOuter loop. We need to insert phi-nodes for them
322 // in corresponding exit blocks.
323 // We don't need to form LCSSA recursively, because there cannot be uses
324 // inside a newly created loop of defs from inner loops as those would
325 // already be a use of an LCSSA phi node.
326 formLCSSA(*L
, *DT
, LI
, SE
);
328 assert(NewOuter
->isRecursivelyLCSSAForm(*DT
, *LI
) &&
329 "LCSSA is broken after separating nested loops!");
335 /// \brief This method is called when the specified loop has more than one
338 /// If this occurs, revector all of these backedges to target a new basic block
339 /// and have that block branch to the loop header. This ensures that loops
340 /// have exactly one backedge.
341 static BasicBlock
*insertUniqueBackedgeBlock(Loop
*L
, BasicBlock
*Preheader
,
342 DominatorTree
*DT
, LoopInfo
*LI
) {
343 assert(L
->getNumBackEdges() > 1 && "Must have > 1 backedge!");
345 // Get information about the loop
346 BasicBlock
*Header
= L
->getHeader();
347 Function
*F
= Header
->getParent();
349 // Unique backedge insertion currently depends on having a preheader.
353 // The header is not an EH pad; preheader insertion should ensure this.
354 assert(!Header
->isEHPad() && "Can't insert backedge to EH pad");
356 // Figure out which basic blocks contain back-edges to the loop header.
357 std::vector
<BasicBlock
*> BackedgeBlocks
;
358 for (pred_iterator I
= pred_begin(Header
), E
= pred_end(Header
); I
!= E
; ++I
){
361 // Indirectbr edges cannot be split, so we must fail if we find one.
362 if (isa
<IndirectBrInst
>(P
->getTerminator()))
365 if (P
!= Preheader
) BackedgeBlocks
.push_back(P
);
368 // Create and insert the new backedge block...
369 BasicBlock
*BEBlock
= BasicBlock::Create(Header
->getContext(),
370 Header
->getName() + ".backedge", F
);
371 BranchInst
*BETerminator
= BranchInst::Create(Header
, BEBlock
);
372 BETerminator
->setDebugLoc(Header
->getFirstNonPHI()->getDebugLoc());
374 DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
375 << BEBlock
->getName() << "\n");
377 // Move the new backedge block to right after the last backedge block.
378 Function::iterator InsertPos
= ++BackedgeBlocks
.back()->getIterator();
379 F
->getBasicBlockList().splice(InsertPos
, F
->getBasicBlockList(), BEBlock
);
381 // Now that the block has been inserted into the function, create PHI nodes in
382 // the backedge block which correspond to any PHI nodes in the header block.
383 for (BasicBlock::iterator I
= Header
->begin(); isa
<PHINode
>(I
); ++I
) {
384 PHINode
*PN
= cast
<PHINode
>(I
);
385 PHINode
*NewPN
= PHINode::Create(PN
->getType(), BackedgeBlocks
.size(),
386 PN
->getName()+".be", BETerminator
);
388 // Loop over the PHI node, moving all entries except the one for the
389 // preheader over to the new PHI node.
390 unsigned PreheaderIdx
= ~0U;
391 bool HasUniqueIncomingValue
= true;
392 Value
*UniqueValue
= nullptr;
393 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
394 BasicBlock
*IBB
= PN
->getIncomingBlock(i
);
395 Value
*IV
= PN
->getIncomingValue(i
);
396 if (IBB
== Preheader
) {
399 NewPN
->addIncoming(IV
, IBB
);
400 if (HasUniqueIncomingValue
) {
403 else if (UniqueValue
!= IV
)
404 HasUniqueIncomingValue
= false;
409 // Delete all of the incoming values from the old PN except the preheader's
410 assert(PreheaderIdx
!= ~0U && "PHI has no preheader entry??");
411 if (PreheaderIdx
!= 0) {
412 PN
->setIncomingValue(0, PN
->getIncomingValue(PreheaderIdx
));
413 PN
->setIncomingBlock(0, PN
->getIncomingBlock(PreheaderIdx
));
415 // Nuke all entries except the zero'th.
416 for (unsigned i
= 0, e
= PN
->getNumIncomingValues()-1; i
!= e
; ++i
)
417 PN
->removeIncomingValue(e
-i
, false);
419 // Finally, add the newly constructed PHI node as the entry for the BEBlock.
420 PN
->addIncoming(NewPN
, BEBlock
);
422 // As an optimization, if all incoming values in the new PhiNode (which is a
423 // subset of the incoming values of the old PHI node) have the same value,
424 // eliminate the PHI Node.
425 if (HasUniqueIncomingValue
) {
426 NewPN
->replaceAllUsesWith(UniqueValue
);
427 BEBlock
->getInstList().erase(NewPN
);
431 // Now that all of the PHI nodes have been inserted and adjusted, modify the
432 // backedge blocks to jump to the BEBlock instead of the header.
433 // If one of the backedges has llvm.loop metadata attached, we remove
434 // it from the backedge and add it to BEBlock.
435 unsigned LoopMDKind
= BEBlock
->getContext().getMDKindID("llvm.loop");
436 MDNode
*LoopMD
= nullptr;
437 for (unsigned i
= 0, e
= BackedgeBlocks
.size(); i
!= e
; ++i
) {
438 TerminatorInst
*TI
= BackedgeBlocks
[i
]->getTerminator();
440 LoopMD
= TI
->getMetadata(LoopMDKind
);
441 TI
->setMetadata(LoopMDKind
, nullptr);
442 for (unsigned Op
= 0, e
= TI
->getNumSuccessors(); Op
!= e
; ++Op
)
443 if (TI
->getSuccessor(Op
) == Header
)
444 TI
->setSuccessor(Op
, BEBlock
);
446 BEBlock
->getTerminator()->setMetadata(LoopMDKind
, LoopMD
);
448 //===--- Update all analyses which we must preserve now -----------------===//
450 // Update Loop Information - we know that this block is now in the current
451 // loop and all parent loops.
452 L
->addBasicBlockToLoop(BEBlock
, *LI
);
454 // Update dominator information
455 DT
->splitBlock(BEBlock
);
460 /// \brief Simplify one loop and queue further loops for simplification.
461 static bool simplifyOneLoop(Loop
*L
, SmallVectorImpl
<Loop
*> &Worklist
,
462 DominatorTree
*DT
, LoopInfo
*LI
,
463 ScalarEvolution
*SE
, AssumptionCache
*AC
,
464 bool PreserveLCSSA
) {
465 bool Changed
= false;
468 // Check to see that no blocks (other than the header) in this loop have
469 // predecessors that are not in the loop. This is not valid for natural
470 // loops, but can occur if the blocks are unreachable. Since they are
471 // unreachable we can just shamelessly delete those CFG edges!
472 for (Loop::block_iterator BB
= L
->block_begin(), E
= L
->block_end();
474 if (*BB
== L
->getHeader()) continue;
476 SmallPtrSet
<BasicBlock
*, 4> BadPreds
;
477 for (pred_iterator PI
= pred_begin(*BB
),
478 PE
= pred_end(*BB
); PI
!= PE
; ++PI
) {
484 // Delete each unique out-of-loop (and thus dead) predecessor.
485 for (BasicBlock
*P
: BadPreds
) {
487 DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
488 << P
->getName() << "\n");
490 // Zap the dead pred's terminator and replace it with unreachable.
491 TerminatorInst
*TI
= P
->getTerminator();
492 changeToUnreachable(TI
, /*UseLLVMTrap=*/false, PreserveLCSSA
);
497 // If there are exiting blocks with branches on undef, resolve the undef in
498 // the direction which will exit the loop. This will help simplify loop
499 // trip count computations.
500 SmallVector
<BasicBlock
*, 8> ExitingBlocks
;
501 L
->getExitingBlocks(ExitingBlocks
);
502 for (BasicBlock
*ExitingBlock
: ExitingBlocks
)
503 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(ExitingBlock
->getTerminator()))
504 if (BI
->isConditional()) {
505 if (UndefValue
*Cond
= dyn_cast
<UndefValue
>(BI
->getCondition())) {
507 DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
508 << ExitingBlock
->getName() << "\n");
510 BI
->setCondition(ConstantInt::get(Cond
->getType(),
511 !L
->contains(BI
->getSuccessor(0))));
513 // This may make the loop analyzable, force SCEV recomputation.
521 // Does the loop already have a preheader? If so, don't insert one.
522 BasicBlock
*Preheader
= L
->getLoopPreheader();
524 Preheader
= InsertPreheaderForLoop(L
, DT
, LI
, PreserveLCSSA
);
529 // Next, check to make sure that all exit nodes of the loop only have
530 // predecessors that are inside of the loop. This check guarantees that the
531 // loop preheader/header will dominate the exit blocks. If the exit block has
532 // predecessors from outside of the loop, split the edge now.
533 if (formDedicatedExitBlocks(L
, DT
, LI
, PreserveLCSSA
))
536 // If the header has more than two predecessors at this point (from the
537 // preheader and from multiple backedges), we must adjust the loop.
538 BasicBlock
*LoopLatch
= L
->getLoopLatch();
540 // If this is really a nested loop, rip it out into a child loop. Don't do
541 // this for loops with a giant number of backedges, just factor them into a
542 // common backedge instead.
543 if (L
->getNumBackEdges() < 8) {
545 separateNestedLoop(L
, Preheader
, DT
, LI
, SE
, PreserveLCSSA
, AC
)) {
547 // Enqueue the outer loop as it should be processed next in our
548 // depth-first nest walk.
549 Worklist
.push_back(OuterL
);
551 // This is a big restructuring change, reprocess the whole loop.
553 // GCC doesn't tail recursion eliminate this.
554 // FIXME: It isn't clear we can't rely on LLVM to TRE this.
559 // If we either couldn't, or didn't want to, identify nesting of the loops,
560 // insert a new block that all backedges target, then make it jump to the
562 LoopLatch
= insertUniqueBackedgeBlock(L
, Preheader
, DT
, LI
);
567 const DataLayout
&DL
= L
->getHeader()->getModule()->getDataLayout();
569 // Scan over the PHI nodes in the loop header. Since they now have only two
570 // incoming values (the loop is canonicalized), we may have simplified the PHI
571 // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
573 for (BasicBlock::iterator I
= L
->getHeader()->begin();
574 (PN
= dyn_cast
<PHINode
>(I
++)); )
575 if (Value
*V
= SimplifyInstruction(PN
, {DL
, nullptr, DT
, AC
})) {
576 if (SE
) SE
->forgetValue(PN
);
577 if (!PreserveLCSSA
|| LI
->replacementPreservesLCSSAForm(PN
, V
)) {
578 PN
->replaceAllUsesWith(V
);
579 PN
->eraseFromParent();
583 // If this loop has multiple exits and the exits all go to the same
584 // block, attempt to merge the exits. This helps several passes, such
585 // as LoopRotation, which do not support loops with multiple exits.
586 // SimplifyCFG also does this (and this code uses the same utility
587 // function), however this code is loop-aware, where SimplifyCFG is
588 // not. That gives it the advantage of being able to hoist
589 // loop-invariant instructions out of the way to open up more
590 // opportunities, and the disadvantage of having the responsibility
591 // to preserve dominator information.
592 auto HasUniqueExitBlock
= [&]() {
593 BasicBlock
*UniqueExit
= nullptr;
594 for (auto *ExitingBB
: ExitingBlocks
)
595 for (auto *SuccBB
: successors(ExitingBB
)) {
596 if (L
->contains(SuccBB
))
601 else if (UniqueExit
!= SuccBB
)
607 if (HasUniqueExitBlock()) {
608 for (unsigned i
= 0, e
= ExitingBlocks
.size(); i
!= e
; ++i
) {
609 BasicBlock
*ExitingBlock
= ExitingBlocks
[i
];
610 if (!ExitingBlock
->getSinglePredecessor()) continue;
611 BranchInst
*BI
= dyn_cast
<BranchInst
>(ExitingBlock
->getTerminator());
612 if (!BI
|| !BI
->isConditional()) continue;
613 CmpInst
*CI
= dyn_cast
<CmpInst
>(BI
->getCondition());
614 if (!CI
|| CI
->getParent() != ExitingBlock
) continue;
616 // Attempt to hoist out all instructions except for the
617 // comparison and the branch.
618 bool AllInvariant
= true;
619 bool AnyInvariant
= false;
620 for (BasicBlock::iterator I
= ExitingBlock
->begin(); &*I
!= BI
; ) {
621 Instruction
*Inst
= &*I
++;
622 // Skip debug info intrinsics.
623 if (isa
<DbgInfoIntrinsic
>(Inst
))
627 if (!L
->makeLoopInvariant(Inst
, AnyInvariant
,
628 Preheader
? Preheader
->getTerminator()
630 AllInvariant
= false;
636 // The loop disposition of all SCEV expressions that depend on any
637 // hoisted values have also changed.
639 SE
->forgetLoopDispositions(L
);
641 if (!AllInvariant
) continue;
643 // The block has now been cleared of all instructions except for
644 // a comparison and a conditional branch. SimplifyCFG may be able
646 if (!FoldBranchToCommonDest(BI
))
649 // Success. The block is now dead, so remove it from the loop,
650 // update the dominator tree and delete it.
651 DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
652 << ExitingBlock
->getName() << "\n");
654 // Notify ScalarEvolution before deleting this block. Currently assume the
655 // parent loop doesn't change (spliting edges doesn't count). If blocks,
656 // CFG edges, or other values in the parent loop change, then we need call
657 // to forgetLoop() for the parent instead.
661 assert(pred_begin(ExitingBlock
) == pred_end(ExitingBlock
));
663 LI
->removeBlock(ExitingBlock
);
665 DomTreeNode
*Node
= DT
->getNode(ExitingBlock
);
666 const std::vector
<DomTreeNodeBase
<BasicBlock
> *> &Children
=
668 while (!Children
.empty()) {
669 DomTreeNode
*Child
= Children
.front();
670 DT
->changeImmediateDominator(Child
, Node
->getIDom());
672 DT
->eraseNode(ExitingBlock
);
674 BI
->getSuccessor(0)->removePredecessor(
675 ExitingBlock
, /* DontDeleteUselessPHIs */ PreserveLCSSA
);
676 BI
->getSuccessor(1)->removePredecessor(
677 ExitingBlock
, /* DontDeleteUselessPHIs */ PreserveLCSSA
);
678 ExitingBlock
->eraseFromParent();
685 bool llvm::simplifyLoop(Loop
*L
, DominatorTree
*DT
, LoopInfo
*LI
,
686 ScalarEvolution
*SE
, AssumptionCache
*AC
,
687 bool PreserveLCSSA
) {
688 bool Changed
= false;
691 // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA
694 assert(DT
&& "DT not available.");
695 assert(LI
&& "LI not available.");
696 assert(L
->isRecursivelyLCSSAForm(*DT
, *LI
) &&
697 "Requested to preserve LCSSA, but it's already broken.");
701 // Worklist maintains our depth-first queue of loops in this nest to process.
702 SmallVector
<Loop
*, 4> Worklist
;
703 Worklist
.push_back(L
);
705 // Walk the worklist from front to back, pushing newly found sub loops onto
706 // the back. This will let us process loops from back to front in depth-first
707 // order. We can use this simple process because loops form a tree.
708 for (unsigned Idx
= 0; Idx
!= Worklist
.size(); ++Idx
) {
709 Loop
*L2
= Worklist
[Idx
];
710 Worklist
.append(L2
->begin(), L2
->end());
713 while (!Worklist
.empty())
714 Changed
|= simplifyOneLoop(Worklist
.pop_back_val(), Worklist
, DT
, LI
, SE
,
721 struct LoopSimplify
: public FunctionPass
{
722 static char ID
; // Pass identification, replacement for typeid
723 LoopSimplify() : FunctionPass(ID
) {
724 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
727 bool runOnFunction(Function
&F
) override
;
729 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
730 AU
.addRequired
<AssumptionCacheTracker
>();
732 // We need loop information to identify the loops...
733 AU
.addRequired
<DominatorTreeWrapperPass
>();
734 AU
.addPreserved
<DominatorTreeWrapperPass
>();
736 AU
.addRequired
<LoopInfoWrapperPass
>();
737 AU
.addPreserved
<LoopInfoWrapperPass
>();
739 AU
.addPreserved
<BasicAAWrapperPass
>();
740 AU
.addPreserved
<AAResultsWrapperPass
>();
741 AU
.addPreserved
<GlobalsAAWrapperPass
>();
742 AU
.addPreserved
<ScalarEvolutionWrapperPass
>();
743 AU
.addPreserved
<SCEVAAWrapperPass
>();
744 AU
.addPreservedID(LCSSAID
);
745 AU
.addPreserved
<DependenceAnalysisWrapperPass
>();
746 AU
.addPreservedID(BreakCriticalEdgesID
); // No critical edges added.
749 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
750 void verifyAnalysis() const override
;
754 char LoopSimplify::ID
= 0;
755 INITIALIZE_PASS_BEGIN(LoopSimplify
, "loop-simplify",
756 "Canonicalize natural loops", false, false)
757 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
758 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
759 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
760 INITIALIZE_PASS_END(LoopSimplify
, "loop-simplify",
761 "Canonicalize natural loops", false, false)
763 // Publicly exposed interface to pass...
764 char &llvm::LoopSimplifyID
= LoopSimplify::ID
;
765 Pass
*llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
767 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
768 /// it in any convenient order) inserting preheaders...
770 bool LoopSimplify::runOnFunction(Function
&F
) {
771 bool Changed
= false;
772 LoopInfo
*LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
773 DominatorTree
*DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
774 auto *SEWP
= getAnalysisIfAvailable
<ScalarEvolutionWrapperPass
>();
775 ScalarEvolution
*SE
= SEWP
? &SEWP
->getSE() : nullptr;
776 AssumptionCache
*AC
=
777 &getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
);
779 bool PreserveLCSSA
= mustPreserveAnalysisID(LCSSAID
);
781 // Simplify each loop nest in the function.
782 for (LoopInfo::iterator I
= LI
->begin(), E
= LI
->end(); I
!= E
; ++I
)
783 Changed
|= simplifyLoop(*I
, DT
, LI
, SE
, AC
, PreserveLCSSA
);
787 bool InLCSSA
= all_of(
788 *LI
, [&](Loop
*L
) { return L
->isRecursivelyLCSSAForm(*DT
, *LI
); });
789 assert(InLCSSA
&& "LCSSA is broken after loop-simplify.");
795 PreservedAnalyses
LoopSimplifyPass::run(Function
&F
,
796 FunctionAnalysisManager
&AM
) {
797 bool Changed
= false;
798 LoopInfo
*LI
= &AM
.getResult
<LoopAnalysis
>(F
);
799 DominatorTree
*DT
= &AM
.getResult
<DominatorTreeAnalysis
>(F
);
800 ScalarEvolution
*SE
= AM
.getCachedResult
<ScalarEvolutionAnalysis
>(F
);
801 AssumptionCache
*AC
= &AM
.getResult
<AssumptionAnalysis
>(F
);
803 // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA
804 // after simplifying the loops.
805 for (LoopInfo::iterator I
= LI
->begin(), E
= LI
->end(); I
!= E
; ++I
)
806 Changed
|= simplifyLoop(*I
, DT
, LI
, SE
, AC
, /*PreserveLCSSA*/ false);
809 return PreservedAnalyses::all();
811 PreservedAnalyses PA
;
812 PA
.preserve
<DominatorTreeAnalysis
>();
813 PA
.preserve
<LoopAnalysis
>();
814 PA
.preserve
<BasicAA
>();
815 PA
.preserve
<GlobalsAA
>();
816 PA
.preserve
<SCEVAA
>();
817 PA
.preserve
<ScalarEvolutionAnalysis
>();
818 PA
.preserve
<DependenceAnalysis
>();
822 // FIXME: Restore this code when we re-enable verification in verifyAnalysis
825 static void verifyLoop(Loop
*L
) {
827 for (Loop::iterator I
= L
->begin(), E
= L
->end(); I
!= E
; ++I
)
830 // It used to be possible to just assert L->isLoopSimplifyForm(), however
831 // with the introduction of indirectbr, there are now cases where it's
832 // not possible to transform a loop as necessary. We can at least check
833 // that there is an indirectbr near any time there's trouble.
835 // Indirectbr can interfere with preheader and unique backedge insertion.
836 if (!L
->getLoopPreheader() || !L
->getLoopLatch()) {
837 bool HasIndBrPred
= false;
838 for (pred_iterator PI
= pred_begin(L
->getHeader()),
839 PE
= pred_end(L
->getHeader()); PI
!= PE
; ++PI
)
840 if (isa
<IndirectBrInst
>((*PI
)->getTerminator())) {
844 assert(HasIndBrPred
&&
845 "LoopSimplify has no excuse for missing loop header info!");
849 // Indirectbr can interfere with exit block canonicalization.
850 if (!L
->hasDedicatedExits()) {
851 bool HasIndBrExiting
= false;
852 SmallVector
<BasicBlock
*, 8> ExitingBlocks
;
853 L
->getExitingBlocks(ExitingBlocks
);
854 for (unsigned i
= 0, e
= ExitingBlocks
.size(); i
!= e
; ++i
) {
855 if (isa
<IndirectBrInst
>((ExitingBlocks
[i
])->getTerminator())) {
856 HasIndBrExiting
= true;
861 assert(HasIndBrExiting
&&
862 "LoopSimplify has no excuse for missing exit block info!");
863 (void)HasIndBrExiting
;
868 void LoopSimplify::verifyAnalysis() const {
869 // FIXME: This routine is being called mid-way through the loop pass manager
870 // as loop passes destroy this analysis. That's actually fine, but we have no
871 // way of expressing that here. Once all of the passes that destroy this are
872 // hoisted out of the loop pass manager we can add back verification here.
874 for (LoopInfo::iterator I
= LI
->begin(), E
= LI
->end(); I
!= E
; ++I
)