Remove the default clause from a fully-covering switch
[llvm-core.git] / lib / Transforms / Utils / LoopSimplify.cpp
blobe21e34df8ded026703bc76224e223007bad92549
1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs several transformations to transform natural loops into a
11 // simpler form, which makes subsequent analyses and transformations simpler and
12 // more effective.
14 // Loop pre-header insertion guarantees that there is a single, non-critical
15 // entry edge from outside of the loop to the loop header. This simplifies a
16 // number of analyses and transformations, such as LICM.
18 // Loop exit-block insertion guarantees that all exit blocks from the loop
19 // (blocks which are outside of the loop that have predecessors inside of the
20 // loop) only have predecessors from inside of the loop (and are thus dominated
21 // by the loop header). This simplifies transformations such as store-sinking
22 // that are built into LICM.
24 // This pass also guarantees that loops will have exactly one backedge.
26 // Indirectbr instructions introduce several complications. If the loop
27 // contains or is entered by an indirectbr instruction, it may not be possible
28 // to transform the loop and make these guarantees. Client code should check
29 // that these conditions are true before relying on them.
31 // Note that the simplifycfg pass will clean up blocks which are split out but
32 // end up being unnecessary, so usage of this pass should not pessimize
33 // generated code.
35 // This pass obviously modifies the CFG, but updates loop information and
36 // dominator information.
38 //===----------------------------------------------------------------------===//
40 #include "llvm/Transforms/Utils/LoopSimplify.h"
41 #include "llvm/ADT/DepthFirstIterator.h"
42 #include "llvm/ADT/SetOperations.h"
43 #include "llvm/ADT/SetVector.h"
44 #include "llvm/ADT/SmallVector.h"
45 #include "llvm/ADT/Statistic.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/AssumptionCache.h"
48 #include "llvm/Analysis/BasicAliasAnalysis.h"
49 #include "llvm/Analysis/DependenceAnalysis.h"
50 #include "llvm/Analysis/GlobalsModRef.h"
51 #include "llvm/Analysis/InstructionSimplify.h"
52 #include "llvm/Analysis/LoopInfo.h"
53 #include "llvm/Analysis/ScalarEvolution.h"
54 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
55 #include "llvm/IR/CFG.h"
56 #include "llvm/IR/Constants.h"
57 #include "llvm/IR/DataLayout.h"
58 #include "llvm/IR/Dominators.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/Type.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Transforms/Scalar.h"
68 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include "llvm/Transforms/Utils/LoopUtils.h"
71 using namespace llvm;
73 #define DEBUG_TYPE "loop-simplify"
75 STATISTIC(NumNested , "Number of nested loops split out");
77 // If the block isn't already, move the new block to right after some 'outside
78 // block' block. This prevents the preheader from being placed inside the loop
79 // body, e.g. when the loop hasn't been rotated.
80 static void placeSplitBlockCarefully(BasicBlock *NewBB,
81 SmallVectorImpl<BasicBlock *> &SplitPreds,
82 Loop *L) {
83 // Check to see if NewBB is already well placed.
84 Function::iterator BBI = --NewBB->getIterator();
85 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
86 if (&*BBI == SplitPreds[i])
87 return;
90 // If it isn't already after an outside block, move it after one. This is
91 // always good as it makes the uncond branch from the outside block into a
92 // fall-through.
94 // Figure out *which* outside block to put this after. Prefer an outside
95 // block that neighbors a BB actually in the loop.
96 BasicBlock *FoundBB = nullptr;
97 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
98 Function::iterator BBI = SplitPreds[i]->getIterator();
99 if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) {
100 FoundBB = SplitPreds[i];
101 break;
105 // If our heuristic for a *good* bb to place this after doesn't find
106 // anything, just pick something. It's likely better than leaving it within
107 // the loop.
108 if (!FoundBB)
109 FoundBB = SplitPreds[0];
110 NewBB->moveAfter(FoundBB);
113 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
114 /// preheader, this method is called to insert one. This method has two phases:
115 /// preheader insertion and analysis updating.
117 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT,
118 LoopInfo *LI, bool PreserveLCSSA) {
119 BasicBlock *Header = L->getHeader();
121 // Compute the set of predecessors of the loop that are not in the loop.
122 SmallVector<BasicBlock*, 8> OutsideBlocks;
123 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
124 PI != PE; ++PI) {
125 BasicBlock *P = *PI;
126 if (!L->contains(P)) { // Coming in from outside the loop?
127 // If the loop is branched to from an indirect branch, we won't
128 // be able to fully transform the loop, because it prohibits
129 // edge splitting.
130 if (isa<IndirectBrInst>(P->getTerminator())) return nullptr;
132 // Keep track of it.
133 OutsideBlocks.push_back(P);
137 // Split out the loop pre-header.
138 BasicBlock *PreheaderBB;
139 PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT,
140 LI, PreserveLCSSA);
141 if (!PreheaderBB)
142 return nullptr;
144 DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
145 << PreheaderBB->getName() << "\n");
147 // Make sure that NewBB is put someplace intelligent, which doesn't mess up
148 // code layout too horribly.
149 placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
151 return PreheaderBB;
154 /// Add the specified block, and all of its predecessors, to the specified set,
155 /// if it's not already in there. Stop predecessor traversal when we reach
156 /// StopBlock.
157 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
158 std::set<BasicBlock*> &Blocks) {
159 SmallVector<BasicBlock *, 8> Worklist;
160 Worklist.push_back(InputBB);
161 do {
162 BasicBlock *BB = Worklist.pop_back_val();
163 if (Blocks.insert(BB).second && BB != StopBlock)
164 // If BB is not already processed and it is not a stop block then
165 // insert its predecessor in the work list
166 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
167 BasicBlock *WBB = *I;
168 Worklist.push_back(WBB);
170 } while (!Worklist.empty());
173 /// \brief The first part of loop-nestification is to find a PHI node that tells
174 /// us how to partition the loops.
175 static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT,
176 AssumptionCache *AC) {
177 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
178 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
179 PHINode *PN = cast<PHINode>(I);
180 ++I;
181 if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
182 // This is a degenerate PHI already, don't modify it!
183 PN->replaceAllUsesWith(V);
184 PN->eraseFromParent();
185 continue;
188 // Scan this PHI node looking for a use of the PHI node by itself.
189 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
190 if (PN->getIncomingValue(i) == PN &&
191 L->contains(PN->getIncomingBlock(i)))
192 // We found something tasty to remove.
193 return PN;
195 return nullptr;
198 /// \brief If this loop has multiple backedges, try to pull one of them out into
199 /// a nested loop.
201 /// This is important for code that looks like
202 /// this:
204 /// Loop:
205 /// ...
206 /// br cond, Loop, Next
207 /// ...
208 /// br cond2, Loop, Out
210 /// To identify this common case, we look at the PHI nodes in the header of the
211 /// loop. PHI nodes with unchanging values on one backedge correspond to values
212 /// that change in the "outer" loop, but not in the "inner" loop.
214 /// If we are able to separate out a loop, return the new outer loop that was
215 /// created.
217 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
218 DominatorTree *DT, LoopInfo *LI,
219 ScalarEvolution *SE, bool PreserveLCSSA,
220 AssumptionCache *AC) {
221 // Don't try to separate loops without a preheader.
222 if (!Preheader)
223 return nullptr;
225 // The header is not a landing pad; preheader insertion should ensure this.
226 BasicBlock *Header = L->getHeader();
227 assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
229 PHINode *PN = findPHIToPartitionLoops(L, DT, AC);
230 if (!PN) return nullptr; // No known way to partition.
232 // Pull out all predecessors that have varying values in the loop. This
233 // handles the case when a PHI node has multiple instances of itself as
234 // arguments.
235 SmallVector<BasicBlock*, 8> OuterLoopPreds;
236 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
237 if (PN->getIncomingValue(i) != PN ||
238 !L->contains(PN->getIncomingBlock(i))) {
239 // We can't split indirectbr edges.
240 if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
241 return nullptr;
242 OuterLoopPreds.push_back(PN->getIncomingBlock(i));
245 DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
247 // If ScalarEvolution is around and knows anything about values in
248 // this loop, tell it to forget them, because we're about to
249 // substantially change it.
250 if (SE)
251 SE->forgetLoop(L);
253 BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer",
254 DT, LI, PreserveLCSSA);
256 // Make sure that NewBB is put someplace intelligent, which doesn't mess up
257 // code layout too horribly.
258 placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
260 // Create the new outer loop.
261 Loop *NewOuter = new Loop();
263 // Change the parent loop to use the outer loop as its child now.
264 if (Loop *Parent = L->getParentLoop())
265 Parent->replaceChildLoopWith(L, NewOuter);
266 else
267 LI->changeTopLevelLoop(L, NewOuter);
269 // L is now a subloop of our outer loop.
270 NewOuter->addChildLoop(L);
272 for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
273 I != E; ++I)
274 NewOuter->addBlockEntry(*I);
276 // Now reset the header in L, which had been moved by
277 // SplitBlockPredecessors for the outer loop.
278 L->moveToHeader(Header);
280 // Determine which blocks should stay in L and which should be moved out to
281 // the Outer loop now.
282 std::set<BasicBlock*> BlocksInL;
283 for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
284 BasicBlock *P = *PI;
285 if (DT->dominates(Header, P))
286 addBlockAndPredsToSet(P, Header, BlocksInL);
289 // Scan all of the loop children of L, moving them to OuterLoop if they are
290 // not part of the inner loop.
291 const std::vector<Loop*> &SubLoops = L->getSubLoops();
292 for (size_t I = 0; I != SubLoops.size(); )
293 if (BlocksInL.count(SubLoops[I]->getHeader()))
294 ++I; // Loop remains in L
295 else
296 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
298 SmallVector<BasicBlock *, 8> OuterLoopBlocks;
299 OuterLoopBlocks.push_back(NewBB);
300 // Now that we know which blocks are in L and which need to be moved to
301 // OuterLoop, move any blocks that need it.
302 for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
303 BasicBlock *BB = L->getBlocks()[i];
304 if (!BlocksInL.count(BB)) {
305 // Move this block to the parent, updating the exit blocks sets
306 L->removeBlockFromLoop(BB);
307 if ((*LI)[BB] == L) {
308 LI->changeLoopFor(BB, NewOuter);
309 OuterLoopBlocks.push_back(BB);
311 --i;
315 // Split edges to exit blocks from the inner loop, if they emerged in the
316 // process of separating the outer one.
317 formDedicatedExitBlocks(L, DT, LI, PreserveLCSSA);
319 if (PreserveLCSSA) {
320 // Fix LCSSA form for L. Some values, which previously were only used inside
321 // L, can now be used in NewOuter loop. We need to insert phi-nodes for them
322 // in corresponding exit blocks.
323 // We don't need to form LCSSA recursively, because there cannot be uses
324 // inside a newly created loop of defs from inner loops as those would
325 // already be a use of an LCSSA phi node.
326 formLCSSA(*L, *DT, LI, SE);
328 assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) &&
329 "LCSSA is broken after separating nested loops!");
332 return NewOuter;
335 /// \brief This method is called when the specified loop has more than one
336 /// backedge in it.
338 /// If this occurs, revector all of these backedges to target a new basic block
339 /// and have that block branch to the loop header. This ensures that loops
340 /// have exactly one backedge.
341 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
342 DominatorTree *DT, LoopInfo *LI) {
343 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
345 // Get information about the loop
346 BasicBlock *Header = L->getHeader();
347 Function *F = Header->getParent();
349 // Unique backedge insertion currently depends on having a preheader.
350 if (!Preheader)
351 return nullptr;
353 // The header is not an EH pad; preheader insertion should ensure this.
354 assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
356 // Figure out which basic blocks contain back-edges to the loop header.
357 std::vector<BasicBlock*> BackedgeBlocks;
358 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
359 BasicBlock *P = *I;
361 // Indirectbr edges cannot be split, so we must fail if we find one.
362 if (isa<IndirectBrInst>(P->getTerminator()))
363 return nullptr;
365 if (P != Preheader) BackedgeBlocks.push_back(P);
368 // Create and insert the new backedge block...
369 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
370 Header->getName() + ".backedge", F);
371 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
372 BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc());
374 DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
375 << BEBlock->getName() << "\n");
377 // Move the new backedge block to right after the last backedge block.
378 Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator();
379 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
381 // Now that the block has been inserted into the function, create PHI nodes in
382 // the backedge block which correspond to any PHI nodes in the header block.
383 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
384 PHINode *PN = cast<PHINode>(I);
385 PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
386 PN->getName()+".be", BETerminator);
388 // Loop over the PHI node, moving all entries except the one for the
389 // preheader over to the new PHI node.
390 unsigned PreheaderIdx = ~0U;
391 bool HasUniqueIncomingValue = true;
392 Value *UniqueValue = nullptr;
393 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
394 BasicBlock *IBB = PN->getIncomingBlock(i);
395 Value *IV = PN->getIncomingValue(i);
396 if (IBB == Preheader) {
397 PreheaderIdx = i;
398 } else {
399 NewPN->addIncoming(IV, IBB);
400 if (HasUniqueIncomingValue) {
401 if (!UniqueValue)
402 UniqueValue = IV;
403 else if (UniqueValue != IV)
404 HasUniqueIncomingValue = false;
409 // Delete all of the incoming values from the old PN except the preheader's
410 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
411 if (PreheaderIdx != 0) {
412 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
413 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
415 // Nuke all entries except the zero'th.
416 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
417 PN->removeIncomingValue(e-i, false);
419 // Finally, add the newly constructed PHI node as the entry for the BEBlock.
420 PN->addIncoming(NewPN, BEBlock);
422 // As an optimization, if all incoming values in the new PhiNode (which is a
423 // subset of the incoming values of the old PHI node) have the same value,
424 // eliminate the PHI Node.
425 if (HasUniqueIncomingValue) {
426 NewPN->replaceAllUsesWith(UniqueValue);
427 BEBlock->getInstList().erase(NewPN);
431 // Now that all of the PHI nodes have been inserted and adjusted, modify the
432 // backedge blocks to jump to the BEBlock instead of the header.
433 // If one of the backedges has llvm.loop metadata attached, we remove
434 // it from the backedge and add it to BEBlock.
435 unsigned LoopMDKind = BEBlock->getContext().getMDKindID("llvm.loop");
436 MDNode *LoopMD = nullptr;
437 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
438 TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
439 if (!LoopMD)
440 LoopMD = TI->getMetadata(LoopMDKind);
441 TI->setMetadata(LoopMDKind, nullptr);
442 for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
443 if (TI->getSuccessor(Op) == Header)
444 TI->setSuccessor(Op, BEBlock);
446 BEBlock->getTerminator()->setMetadata(LoopMDKind, LoopMD);
448 //===--- Update all analyses which we must preserve now -----------------===//
450 // Update Loop Information - we know that this block is now in the current
451 // loop and all parent loops.
452 L->addBasicBlockToLoop(BEBlock, *LI);
454 // Update dominator information
455 DT->splitBlock(BEBlock);
457 return BEBlock;
460 /// \brief Simplify one loop and queue further loops for simplification.
461 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
462 DominatorTree *DT, LoopInfo *LI,
463 ScalarEvolution *SE, AssumptionCache *AC,
464 bool PreserveLCSSA) {
465 bool Changed = false;
466 ReprocessLoop:
468 // Check to see that no blocks (other than the header) in this loop have
469 // predecessors that are not in the loop. This is not valid for natural
470 // loops, but can occur if the blocks are unreachable. Since they are
471 // unreachable we can just shamelessly delete those CFG edges!
472 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
473 BB != E; ++BB) {
474 if (*BB == L->getHeader()) continue;
476 SmallPtrSet<BasicBlock*, 4> BadPreds;
477 for (pred_iterator PI = pred_begin(*BB),
478 PE = pred_end(*BB); PI != PE; ++PI) {
479 BasicBlock *P = *PI;
480 if (!L->contains(P))
481 BadPreds.insert(P);
484 // Delete each unique out-of-loop (and thus dead) predecessor.
485 for (BasicBlock *P : BadPreds) {
487 DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
488 << P->getName() << "\n");
490 // Zap the dead pred's terminator and replace it with unreachable.
491 TerminatorInst *TI = P->getTerminator();
492 changeToUnreachable(TI, /*UseLLVMTrap=*/false, PreserveLCSSA);
493 Changed = true;
497 // If there are exiting blocks with branches on undef, resolve the undef in
498 // the direction which will exit the loop. This will help simplify loop
499 // trip count computations.
500 SmallVector<BasicBlock*, 8> ExitingBlocks;
501 L->getExitingBlocks(ExitingBlocks);
502 for (BasicBlock *ExitingBlock : ExitingBlocks)
503 if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
504 if (BI->isConditional()) {
505 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
507 DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
508 << ExitingBlock->getName() << "\n");
510 BI->setCondition(ConstantInt::get(Cond->getType(),
511 !L->contains(BI->getSuccessor(0))));
513 // This may make the loop analyzable, force SCEV recomputation.
514 if (SE)
515 SE->forgetLoop(L);
517 Changed = true;
521 // Does the loop already have a preheader? If so, don't insert one.
522 BasicBlock *Preheader = L->getLoopPreheader();
523 if (!Preheader) {
524 Preheader = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA);
525 if (Preheader)
526 Changed = true;
529 // Next, check to make sure that all exit nodes of the loop only have
530 // predecessors that are inside of the loop. This check guarantees that the
531 // loop preheader/header will dominate the exit blocks. If the exit block has
532 // predecessors from outside of the loop, split the edge now.
533 if (formDedicatedExitBlocks(L, DT, LI, PreserveLCSSA))
534 Changed = true;
536 // If the header has more than two predecessors at this point (from the
537 // preheader and from multiple backedges), we must adjust the loop.
538 BasicBlock *LoopLatch = L->getLoopLatch();
539 if (!LoopLatch) {
540 // If this is really a nested loop, rip it out into a child loop. Don't do
541 // this for loops with a giant number of backedges, just factor them into a
542 // common backedge instead.
543 if (L->getNumBackEdges() < 8) {
544 if (Loop *OuterL =
545 separateNestedLoop(L, Preheader, DT, LI, SE, PreserveLCSSA, AC)) {
546 ++NumNested;
547 // Enqueue the outer loop as it should be processed next in our
548 // depth-first nest walk.
549 Worklist.push_back(OuterL);
551 // This is a big restructuring change, reprocess the whole loop.
552 Changed = true;
553 // GCC doesn't tail recursion eliminate this.
554 // FIXME: It isn't clear we can't rely on LLVM to TRE this.
555 goto ReprocessLoop;
559 // If we either couldn't, or didn't want to, identify nesting of the loops,
560 // insert a new block that all backedges target, then make it jump to the
561 // loop header.
562 LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI);
563 if (LoopLatch)
564 Changed = true;
567 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
569 // Scan over the PHI nodes in the loop header. Since they now have only two
570 // incoming values (the loop is canonicalized), we may have simplified the PHI
571 // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
572 PHINode *PN;
573 for (BasicBlock::iterator I = L->getHeader()->begin();
574 (PN = dyn_cast<PHINode>(I++)); )
575 if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
576 if (SE) SE->forgetValue(PN);
577 if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(PN, V)) {
578 PN->replaceAllUsesWith(V);
579 PN->eraseFromParent();
583 // If this loop has multiple exits and the exits all go to the same
584 // block, attempt to merge the exits. This helps several passes, such
585 // as LoopRotation, which do not support loops with multiple exits.
586 // SimplifyCFG also does this (and this code uses the same utility
587 // function), however this code is loop-aware, where SimplifyCFG is
588 // not. That gives it the advantage of being able to hoist
589 // loop-invariant instructions out of the way to open up more
590 // opportunities, and the disadvantage of having the responsibility
591 // to preserve dominator information.
592 auto HasUniqueExitBlock = [&]() {
593 BasicBlock *UniqueExit = nullptr;
594 for (auto *ExitingBB : ExitingBlocks)
595 for (auto *SuccBB : successors(ExitingBB)) {
596 if (L->contains(SuccBB))
597 continue;
599 if (!UniqueExit)
600 UniqueExit = SuccBB;
601 else if (UniqueExit != SuccBB)
602 return false;
605 return true;
607 if (HasUniqueExitBlock()) {
608 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
609 BasicBlock *ExitingBlock = ExitingBlocks[i];
610 if (!ExitingBlock->getSinglePredecessor()) continue;
611 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
612 if (!BI || !BI->isConditional()) continue;
613 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
614 if (!CI || CI->getParent() != ExitingBlock) continue;
616 // Attempt to hoist out all instructions except for the
617 // comparison and the branch.
618 bool AllInvariant = true;
619 bool AnyInvariant = false;
620 for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
621 Instruction *Inst = &*I++;
622 // Skip debug info intrinsics.
623 if (isa<DbgInfoIntrinsic>(Inst))
624 continue;
625 if (Inst == CI)
626 continue;
627 if (!L->makeLoopInvariant(Inst, AnyInvariant,
628 Preheader ? Preheader->getTerminator()
629 : nullptr)) {
630 AllInvariant = false;
631 break;
634 if (AnyInvariant) {
635 Changed = true;
636 // The loop disposition of all SCEV expressions that depend on any
637 // hoisted values have also changed.
638 if (SE)
639 SE->forgetLoopDispositions(L);
641 if (!AllInvariant) continue;
643 // The block has now been cleared of all instructions except for
644 // a comparison and a conditional branch. SimplifyCFG may be able
645 // to fold it now.
646 if (!FoldBranchToCommonDest(BI))
647 continue;
649 // Success. The block is now dead, so remove it from the loop,
650 // update the dominator tree and delete it.
651 DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
652 << ExitingBlock->getName() << "\n");
654 // Notify ScalarEvolution before deleting this block. Currently assume the
655 // parent loop doesn't change (spliting edges doesn't count). If blocks,
656 // CFG edges, or other values in the parent loop change, then we need call
657 // to forgetLoop() for the parent instead.
658 if (SE)
659 SE->forgetLoop(L);
661 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
662 Changed = true;
663 LI->removeBlock(ExitingBlock);
665 DomTreeNode *Node = DT->getNode(ExitingBlock);
666 const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
667 Node->getChildren();
668 while (!Children.empty()) {
669 DomTreeNode *Child = Children.front();
670 DT->changeImmediateDominator(Child, Node->getIDom());
672 DT->eraseNode(ExitingBlock);
674 BI->getSuccessor(0)->removePredecessor(
675 ExitingBlock, /* DontDeleteUselessPHIs */ PreserveLCSSA);
676 BI->getSuccessor(1)->removePredecessor(
677 ExitingBlock, /* DontDeleteUselessPHIs */ PreserveLCSSA);
678 ExitingBlock->eraseFromParent();
682 return Changed;
685 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
686 ScalarEvolution *SE, AssumptionCache *AC,
687 bool PreserveLCSSA) {
688 bool Changed = false;
690 #ifndef NDEBUG
691 // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA
692 // form.
693 if (PreserveLCSSA) {
694 assert(DT && "DT not available.");
695 assert(LI && "LI not available.");
696 assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
697 "Requested to preserve LCSSA, but it's already broken.");
699 #endif
701 // Worklist maintains our depth-first queue of loops in this nest to process.
702 SmallVector<Loop *, 4> Worklist;
703 Worklist.push_back(L);
705 // Walk the worklist from front to back, pushing newly found sub loops onto
706 // the back. This will let us process loops from back to front in depth-first
707 // order. We can use this simple process because loops form a tree.
708 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
709 Loop *L2 = Worklist[Idx];
710 Worklist.append(L2->begin(), L2->end());
713 while (!Worklist.empty())
714 Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE,
715 AC, PreserveLCSSA);
717 return Changed;
720 namespace {
721 struct LoopSimplify : public FunctionPass {
722 static char ID; // Pass identification, replacement for typeid
723 LoopSimplify() : FunctionPass(ID) {
724 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
727 bool runOnFunction(Function &F) override;
729 void getAnalysisUsage(AnalysisUsage &AU) const override {
730 AU.addRequired<AssumptionCacheTracker>();
732 // We need loop information to identify the loops...
733 AU.addRequired<DominatorTreeWrapperPass>();
734 AU.addPreserved<DominatorTreeWrapperPass>();
736 AU.addRequired<LoopInfoWrapperPass>();
737 AU.addPreserved<LoopInfoWrapperPass>();
739 AU.addPreserved<BasicAAWrapperPass>();
740 AU.addPreserved<AAResultsWrapperPass>();
741 AU.addPreserved<GlobalsAAWrapperPass>();
742 AU.addPreserved<ScalarEvolutionWrapperPass>();
743 AU.addPreserved<SCEVAAWrapperPass>();
744 AU.addPreservedID(LCSSAID);
745 AU.addPreserved<DependenceAnalysisWrapperPass>();
746 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added.
749 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
750 void verifyAnalysis() const override;
754 char LoopSimplify::ID = 0;
755 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
756 "Canonicalize natural loops", false, false)
757 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
758 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
759 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
760 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
761 "Canonicalize natural loops", false, false)
763 // Publicly exposed interface to pass...
764 char &llvm::LoopSimplifyID = LoopSimplify::ID;
765 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
767 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
768 /// it in any convenient order) inserting preheaders...
770 bool LoopSimplify::runOnFunction(Function &F) {
771 bool Changed = false;
772 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
773 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
774 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
775 ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr;
776 AssumptionCache *AC =
777 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
779 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
781 // Simplify each loop nest in the function.
782 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
783 Changed |= simplifyLoop(*I, DT, LI, SE, AC, PreserveLCSSA);
785 #ifndef NDEBUG
786 if (PreserveLCSSA) {
787 bool InLCSSA = all_of(
788 *LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); });
789 assert(InLCSSA && "LCSSA is broken after loop-simplify.");
791 #endif
792 return Changed;
795 PreservedAnalyses LoopSimplifyPass::run(Function &F,
796 FunctionAnalysisManager &AM) {
797 bool Changed = false;
798 LoopInfo *LI = &AM.getResult<LoopAnalysis>(F);
799 DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
800 ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
801 AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F);
803 // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA
804 // after simplifying the loops.
805 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
806 Changed |= simplifyLoop(*I, DT, LI, SE, AC, /*PreserveLCSSA*/ false);
808 if (!Changed)
809 return PreservedAnalyses::all();
811 PreservedAnalyses PA;
812 PA.preserve<DominatorTreeAnalysis>();
813 PA.preserve<LoopAnalysis>();
814 PA.preserve<BasicAA>();
815 PA.preserve<GlobalsAA>();
816 PA.preserve<SCEVAA>();
817 PA.preserve<ScalarEvolutionAnalysis>();
818 PA.preserve<DependenceAnalysis>();
819 return PA;
822 // FIXME: Restore this code when we re-enable verification in verifyAnalysis
823 // below.
824 #if 0
825 static void verifyLoop(Loop *L) {
826 // Verify subloops.
827 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
828 verifyLoop(*I);
830 // It used to be possible to just assert L->isLoopSimplifyForm(), however
831 // with the introduction of indirectbr, there are now cases where it's
832 // not possible to transform a loop as necessary. We can at least check
833 // that there is an indirectbr near any time there's trouble.
835 // Indirectbr can interfere with preheader and unique backedge insertion.
836 if (!L->getLoopPreheader() || !L->getLoopLatch()) {
837 bool HasIndBrPred = false;
838 for (pred_iterator PI = pred_begin(L->getHeader()),
839 PE = pred_end(L->getHeader()); PI != PE; ++PI)
840 if (isa<IndirectBrInst>((*PI)->getTerminator())) {
841 HasIndBrPred = true;
842 break;
844 assert(HasIndBrPred &&
845 "LoopSimplify has no excuse for missing loop header info!");
846 (void)HasIndBrPred;
849 // Indirectbr can interfere with exit block canonicalization.
850 if (!L->hasDedicatedExits()) {
851 bool HasIndBrExiting = false;
852 SmallVector<BasicBlock*, 8> ExitingBlocks;
853 L->getExitingBlocks(ExitingBlocks);
854 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
855 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
856 HasIndBrExiting = true;
857 break;
861 assert(HasIndBrExiting &&
862 "LoopSimplify has no excuse for missing exit block info!");
863 (void)HasIndBrExiting;
866 #endif
868 void LoopSimplify::verifyAnalysis() const {
869 // FIXME: This routine is being called mid-way through the loop pass manager
870 // as loop passes destroy this analysis. That's actually fine, but we have no
871 // way of expressing that here. Once all of the passes that destroy this are
872 // hoisted out of the loop pass manager we can add back verification here.
873 #if 0
874 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
875 verifyLoop(*I);
876 #endif