[x86] fix assert with horizontal math + broadcast of vector (PR43402)
[llvm-core.git] / lib / CodeGen / AsmPrinter / DwarfDebug.cpp
blob255203740ac7c2fd04e5916cefe1ad41a37e8b4b
1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing dwarf debug info into asm files.
11 //===----------------------------------------------------------------------===//
13 #include "DwarfDebug.h"
14 #include "ByteStreamer.h"
15 #include "DIEHash.h"
16 #include "DebugLocEntry.h"
17 #include "DebugLocStream.h"
18 #include "DwarfCompileUnit.h"
19 #include "DwarfExpression.h"
20 #include "DwarfFile.h"
21 #include "DwarfUnit.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/DenseSet.h"
25 #include "llvm/ADT/MapVector.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/BinaryFormat/Dwarf.h"
33 #include "llvm/CodeGen/AccelTable.h"
34 #include "llvm/CodeGen/AsmPrinter.h"
35 #include "llvm/CodeGen/DIE.h"
36 #include "llvm/CodeGen/LexicalScopes.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineInstr.h"
40 #include "llvm/CodeGen/MachineModuleInfo.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/TargetInstrInfo.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/DebugInfo/DWARF/DWARFExpression.h"
47 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GlobalVariable.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/MC/MCAsmInfo.h"
55 #include "llvm/MC/MCContext.h"
56 #include "llvm/MC/MCDwarf.h"
57 #include "llvm/MC/MCSection.h"
58 #include "llvm/MC/MCStreamer.h"
59 #include "llvm/MC/MCSymbol.h"
60 #include "llvm/MC/MCTargetOptions.h"
61 #include "llvm/MC/MachineLocation.h"
62 #include "llvm/MC/SectionKind.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/MD5.h"
69 #include "llvm/Support/MathExtras.h"
70 #include "llvm/Support/Timer.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/Target/TargetLoweringObjectFile.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include "llvm/Target/TargetOptions.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <cstdint>
79 #include <iterator>
80 #include <string>
81 #include <utility>
82 #include <vector>
84 using namespace llvm;
86 #define DEBUG_TYPE "dwarfdebug"
88 STATISTIC(NumCSParams, "Number of dbg call site params created");
90 static cl::opt<bool>
91 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden,
92 cl::desc("Disable debug info printing"));
94 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier(
95 "use-dwarf-ranges-base-address-specifier", cl::Hidden,
96 cl::desc("Use base address specifiers in debug_ranges"), cl::init(false));
98 static cl::opt<bool> GenerateARangeSection("generate-arange-section",
99 cl::Hidden,
100 cl::desc("Generate dwarf aranges"),
101 cl::init(false));
103 static cl::opt<bool>
104 GenerateDwarfTypeUnits("generate-type-units", cl::Hidden,
105 cl::desc("Generate DWARF4 type units."),
106 cl::init(false));
108 static cl::opt<bool> SplitDwarfCrossCuReferences(
109 "split-dwarf-cross-cu-references", cl::Hidden,
110 cl::desc("Enable cross-cu references in DWO files"), cl::init(false));
112 enum DefaultOnOff { Default, Enable, Disable };
114 static cl::opt<DefaultOnOff> UnknownLocations(
115 "use-unknown-locations", cl::Hidden,
116 cl::desc("Make an absence of debug location information explicit."),
117 cl::values(clEnumVal(Default, "At top of block or after label"),
118 clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")),
119 cl::init(Default));
121 static cl::opt<AccelTableKind> AccelTables(
122 "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."),
123 cl::values(clEnumValN(AccelTableKind::Default, "Default",
124 "Default for platform"),
125 clEnumValN(AccelTableKind::None, "Disable", "Disabled."),
126 clEnumValN(AccelTableKind::Apple, "Apple", "Apple"),
127 clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")),
128 cl::init(AccelTableKind::Default));
130 static cl::opt<DefaultOnOff>
131 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden,
132 cl::desc("Use inlined strings rather than string section."),
133 cl::values(clEnumVal(Default, "Default for platform"),
134 clEnumVal(Enable, "Enabled"),
135 clEnumVal(Disable, "Disabled")),
136 cl::init(Default));
138 static cl::opt<bool>
139 NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden,
140 cl::desc("Disable emission .debug_ranges section."),
141 cl::init(false));
143 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences(
144 "dwarf-sections-as-references", cl::Hidden,
145 cl::desc("Use sections+offset as references rather than labels."),
146 cl::values(clEnumVal(Default, "Default for platform"),
147 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
148 cl::init(Default));
150 enum LinkageNameOption {
151 DefaultLinkageNames,
152 AllLinkageNames,
153 AbstractLinkageNames
156 static cl::opt<LinkageNameOption>
157 DwarfLinkageNames("dwarf-linkage-names", cl::Hidden,
158 cl::desc("Which DWARF linkage-name attributes to emit."),
159 cl::values(clEnumValN(DefaultLinkageNames, "Default",
160 "Default for platform"),
161 clEnumValN(AllLinkageNames, "All", "All"),
162 clEnumValN(AbstractLinkageNames, "Abstract",
163 "Abstract subprograms")),
164 cl::init(DefaultLinkageNames));
166 static const char *const DWARFGroupName = "dwarf";
167 static const char *const DWARFGroupDescription = "DWARF Emission";
168 static const char *const DbgTimerName = "writer";
169 static const char *const DbgTimerDescription = "DWARF Debug Writer";
170 static constexpr unsigned ULEB128PadSize = 4;
172 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) {
173 BS.EmitInt8(
174 Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op)
175 : dwarf::OperationEncodingString(Op));
178 void DebugLocDwarfExpression::emitSigned(int64_t Value) {
179 BS.EmitSLEB128(Value, Twine(Value));
182 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) {
183 BS.EmitULEB128(Value, Twine(Value));
186 void DebugLocDwarfExpression::emitData1(uint8_t Value) {
187 BS.EmitInt8(Value, Twine(Value));
190 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) {
191 assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit");
192 BS.EmitULEB128(Idx, Twine(Idx), ULEB128PadSize);
195 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI,
196 unsigned MachineReg) {
197 // This information is not available while emitting .debug_loc entries.
198 return false;
201 const DIType *DbgVariable::getType() const {
202 return getVariable()->getType();
205 /// Get .debug_loc entry for the instruction range starting at MI.
206 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) {
207 const DIExpression *Expr = MI->getDebugExpression();
208 assert(MI->getNumOperands() == 4);
209 if (MI->getOperand(0).isReg()) {
210 auto RegOp = MI->getOperand(0);
211 auto Op1 = MI->getOperand(1);
212 // If the second operand is an immediate, this is a
213 // register-indirect address.
214 assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset");
215 MachineLocation MLoc(RegOp.getReg(), Op1.isImm());
216 return DbgValueLoc(Expr, MLoc);
218 if (MI->getOperand(0).isImm())
219 return DbgValueLoc(Expr, MI->getOperand(0).getImm());
220 if (MI->getOperand(0).isFPImm())
221 return DbgValueLoc(Expr, MI->getOperand(0).getFPImm());
222 if (MI->getOperand(0).isCImm())
223 return DbgValueLoc(Expr, MI->getOperand(0).getCImm());
225 llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!");
228 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) {
229 assert(FrameIndexExprs.empty() && "Already initialized?");
230 assert(!ValueLoc.get() && "Already initialized?");
232 assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable");
233 assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() &&
234 "Wrong inlined-at");
236 ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue));
237 if (auto *E = DbgValue->getDebugExpression())
238 if (E->getNumElements())
239 FrameIndexExprs.push_back({0, E});
242 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const {
243 if (FrameIndexExprs.size() == 1)
244 return FrameIndexExprs;
246 assert(llvm::all_of(FrameIndexExprs,
247 [](const FrameIndexExpr &A) {
248 return A.Expr->isFragment();
249 }) &&
250 "multiple FI expressions without DW_OP_LLVM_fragment");
251 llvm::sort(FrameIndexExprs,
252 [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool {
253 return A.Expr->getFragmentInfo()->OffsetInBits <
254 B.Expr->getFragmentInfo()->OffsetInBits;
257 return FrameIndexExprs;
260 void DbgVariable::addMMIEntry(const DbgVariable &V) {
261 assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry");
262 assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry");
263 assert(V.getVariable() == getVariable() && "conflicting variable");
264 assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location");
266 assert(!FrameIndexExprs.empty() && "Expected an MMI entry");
267 assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry");
269 // FIXME: This logic should not be necessary anymore, as we now have proper
270 // deduplication. However, without it, we currently run into the assertion
271 // below, which means that we are likely dealing with broken input, i.e. two
272 // non-fragment entries for the same variable at different frame indices.
273 if (FrameIndexExprs.size()) {
274 auto *Expr = FrameIndexExprs.back().Expr;
275 if (!Expr || !Expr->isFragment())
276 return;
279 for (const auto &FIE : V.FrameIndexExprs)
280 // Ignore duplicate entries.
281 if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) {
282 return FIE.FI == Other.FI && FIE.Expr == Other.Expr;
284 FrameIndexExprs.push_back(FIE);
286 assert((FrameIndexExprs.size() == 1 ||
287 llvm::all_of(FrameIndexExprs,
288 [](FrameIndexExpr &FIE) {
289 return FIE.Expr && FIE.Expr->isFragment();
290 })) &&
291 "conflicting locations for variable");
294 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion,
295 bool GenerateTypeUnits,
296 DebuggerKind Tuning,
297 const Triple &TT) {
298 // Honor an explicit request.
299 if (AccelTables != AccelTableKind::Default)
300 return AccelTables;
302 // Accelerator tables with type units are currently not supported.
303 if (GenerateTypeUnits)
304 return AccelTableKind::None;
306 // Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5
307 // always implies debug_names. For lower standard versions we use apple
308 // accelerator tables on apple platforms and debug_names elsewhere.
309 if (DwarfVersion >= 5)
310 return AccelTableKind::Dwarf;
311 if (Tuning == DebuggerKind::LLDB)
312 return TT.isOSBinFormatMachO() ? AccelTableKind::Apple
313 : AccelTableKind::Dwarf;
314 return AccelTableKind::None;
317 DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M)
318 : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()),
319 InfoHolder(A, "info_string", DIEValueAllocator),
320 SkeletonHolder(A, "skel_string", DIEValueAllocator),
321 IsDarwin(A->TM.getTargetTriple().isOSDarwin()) {
322 const Triple &TT = Asm->TM.getTargetTriple();
324 // Make sure we know our "debugger tuning". The target option takes
325 // precedence; fall back to triple-based defaults.
326 if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default)
327 DebuggerTuning = Asm->TM.Options.DebuggerTuning;
328 else if (IsDarwin)
329 DebuggerTuning = DebuggerKind::LLDB;
330 else if (TT.isPS4CPU())
331 DebuggerTuning = DebuggerKind::SCE;
332 else
333 DebuggerTuning = DebuggerKind::GDB;
335 if (DwarfInlinedStrings == Default)
336 UseInlineStrings = TT.isNVPTX();
337 else
338 UseInlineStrings = DwarfInlinedStrings == Enable;
340 UseLocSection = !TT.isNVPTX();
342 HasAppleExtensionAttributes = tuneForLLDB();
344 // Handle split DWARF.
345 HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty();
347 // SCE defaults to linkage names only for abstract subprograms.
348 if (DwarfLinkageNames == DefaultLinkageNames)
349 UseAllLinkageNames = !tuneForSCE();
350 else
351 UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames;
353 unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion;
354 unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber
355 : MMI->getModule()->getDwarfVersion();
356 // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2.
357 DwarfVersion =
358 TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION);
360 UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX();
362 // Use sections as references. Force for NVPTX.
363 if (DwarfSectionsAsReferences == Default)
364 UseSectionsAsReferences = TT.isNVPTX();
365 else
366 UseSectionsAsReferences = DwarfSectionsAsReferences == Enable;
368 // Don't generate type units for unsupported object file formats.
369 GenerateTypeUnits =
370 A->TM.getTargetTriple().isOSBinFormatELF() && GenerateDwarfTypeUnits;
372 TheAccelTableKind = computeAccelTableKind(
373 DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple());
375 // Work around a GDB bug. GDB doesn't support the standard opcode;
376 // SCE doesn't support GNU's; LLDB prefers the standard opcode, which
377 // is defined as of DWARF 3.
378 // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented
379 // https://sourceware.org/bugzilla/show_bug.cgi?id=11616
380 UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3;
382 // GDB does not fully support the DWARF 4 representation for bitfields.
383 UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB();
385 // The DWARF v5 string offsets table has - possibly shared - contributions
386 // from each compile and type unit each preceded by a header. The string
387 // offsets table used by the pre-DWARF v5 split-DWARF implementation uses
388 // a monolithic string offsets table without any header.
389 UseSegmentedStringOffsetsTable = DwarfVersion >= 5;
391 Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion);
394 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h.
395 DwarfDebug::~DwarfDebug() = default;
397 static bool isObjCClass(StringRef Name) {
398 return Name.startswith("+") || Name.startswith("-");
401 static bool hasObjCCategory(StringRef Name) {
402 if (!isObjCClass(Name))
403 return false;
405 return Name.find(") ") != StringRef::npos;
408 static void getObjCClassCategory(StringRef In, StringRef &Class,
409 StringRef &Category) {
410 if (!hasObjCCategory(In)) {
411 Class = In.slice(In.find('[') + 1, In.find(' '));
412 Category = "";
413 return;
416 Class = In.slice(In.find('[') + 1, In.find('('));
417 Category = In.slice(In.find('[') + 1, In.find(' '));
420 static StringRef getObjCMethodName(StringRef In) {
421 return In.slice(In.find(' ') + 1, In.find(']'));
424 // Add the various names to the Dwarf accelerator table names.
425 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU,
426 const DISubprogram *SP, DIE &Die) {
427 if (getAccelTableKind() != AccelTableKind::Apple &&
428 CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None)
429 return;
431 if (!SP->isDefinition())
432 return;
434 if (SP->getName() != "")
435 addAccelName(CU, SP->getName(), Die);
437 // If the linkage name is different than the name, go ahead and output that as
438 // well into the name table. Only do that if we are going to actually emit
439 // that name.
440 if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() &&
441 (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP)))
442 addAccelName(CU, SP->getLinkageName(), Die);
444 // If this is an Objective-C selector name add it to the ObjC accelerator
445 // too.
446 if (isObjCClass(SP->getName())) {
447 StringRef Class, Category;
448 getObjCClassCategory(SP->getName(), Class, Category);
449 addAccelObjC(CU, Class, Die);
450 if (Category != "")
451 addAccelObjC(CU, Category, Die);
452 // Also add the base method name to the name table.
453 addAccelName(CU, getObjCMethodName(SP->getName()), Die);
457 /// Check whether we should create a DIE for the given Scope, return true
458 /// if we don't create a DIE (the corresponding DIE is null).
459 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
460 if (Scope->isAbstractScope())
461 return false;
463 // We don't create a DIE if there is no Range.
464 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges();
465 if (Ranges.empty())
466 return true;
468 if (Ranges.size() > 1)
469 return false;
471 // We don't create a DIE if we have a single Range and the end label
472 // is null.
473 return !getLabelAfterInsn(Ranges.front().second);
476 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) {
477 F(CU);
478 if (auto *SkelCU = CU.getSkeleton())
479 if (CU.getCUNode()->getSplitDebugInlining())
480 F(*SkelCU);
483 bool DwarfDebug::shareAcrossDWOCUs() const {
484 return SplitDwarfCrossCuReferences;
487 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU,
488 LexicalScope *Scope) {
489 assert(Scope && Scope->getScopeNode());
490 assert(Scope->isAbstractScope());
491 assert(!Scope->getInlinedAt());
493 auto *SP = cast<DISubprogram>(Scope->getScopeNode());
495 // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
496 // was inlined from another compile unit.
497 if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining())
498 // Avoid building the original CU if it won't be used
499 SrcCU.constructAbstractSubprogramScopeDIE(Scope);
500 else {
501 auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
502 if (auto *SkelCU = CU.getSkeleton()) {
503 (shareAcrossDWOCUs() ? CU : SrcCU)
504 .constructAbstractSubprogramScopeDIE(Scope);
505 if (CU.getCUNode()->getSplitDebugInlining())
506 SkelCU->constructAbstractSubprogramScopeDIE(Scope);
507 } else
508 CU.constructAbstractSubprogramScopeDIE(Scope);
512 /// Try to interpret values loaded into registers that forward parameters
513 /// for \p CallMI. Store parameters with interpreted value into \p Params.
514 static void collectCallSiteParameters(const MachineInstr *CallMI,
515 ParamSet &Params) {
516 auto *MF = CallMI->getMF();
517 auto CalleesMap = MF->getCallSitesInfo();
518 auto CallFwdRegsInfo = CalleesMap.find(CallMI);
520 // There is no information for the call instruction.
521 if (CallFwdRegsInfo == CalleesMap.end())
522 return;
524 auto *MBB = CallMI->getParent();
525 const auto &TRI = MF->getSubtarget().getRegisterInfo();
526 const auto &TII = MF->getSubtarget().getInstrInfo();
527 const auto &TLI = MF->getSubtarget().getTargetLowering();
529 // Skip the call instruction.
530 auto I = std::next(CallMI->getReverseIterator());
532 DenseSet<unsigned> ForwardedRegWorklist;
533 // Add all the forwarding registers into the ForwardedRegWorklist.
534 for (auto ArgReg : CallFwdRegsInfo->second) {
535 bool InsertedReg = ForwardedRegWorklist.insert(ArgReg.Reg).second;
536 assert(InsertedReg && "Single register used to forward two arguments?");
537 (void)InsertedReg;
540 // We erase, from the ForwardedRegWorklist, those forwarding registers for
541 // which we successfully describe a loaded value (by using
542 // the describeLoadedValue()). For those remaining arguments in the working
543 // list, for which we do not describe a loaded value by
544 // the describeLoadedValue(), we try to generate an entry value expression
545 // for their call site value desctipion, if the call is within the entry MBB.
546 // The RegsForEntryValues maps a forwarding register into the register holding
547 // the entry value.
548 // TODO: Handle situations when call site parameter value can be described
549 // as the entry value within basic blocks other then the first one.
550 bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin();
551 DenseMap<unsigned, unsigned> RegsForEntryValues;
553 // If the MI is an instruction defining one or more parameters' forwarding
554 // registers, add those defines. We can currently only describe forwarded
555 // registers that are explicitly defined, but keep track of implicit defines
556 // also to remove those registers from the work list.
557 auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI,
558 SmallVectorImpl<unsigned> &Explicit,
559 SmallVectorImpl<unsigned> &Implicit) {
560 if (MI.isDebugInstr())
561 return;
563 for (const MachineOperand &MO : MI.operands()) {
564 if (MO.isReg() && MO.isDef() &&
565 Register::isPhysicalRegister(MO.getReg())) {
566 for (auto FwdReg : ForwardedRegWorklist) {
567 if (TRI->regsOverlap(FwdReg, MO.getReg())) {
568 if (MO.isImplicit())
569 Implicit.push_back(FwdReg);
570 else
571 Explicit.push_back(FwdReg);
572 break;
579 auto finishCallSiteParam = [&](DbgValueLoc DbgLocVal, unsigned Reg) {
580 unsigned FwdReg = Reg;
581 if (ShouldTryEmitEntryVals) {
582 auto EntryValReg = RegsForEntryValues.find(Reg);
583 if (EntryValReg != RegsForEntryValues.end())
584 FwdReg = EntryValReg->second;
587 DbgCallSiteParam CSParm(FwdReg, DbgLocVal);
588 Params.push_back(CSParm);
589 ++NumCSParams;
592 // Search for a loading value in forwaring registers.
593 for (; I != MBB->rend(); ++I) {
594 // If the next instruction is a call we can not interpret parameter's
595 // forwarding registers or we finished the interpretation of all parameters.
596 if (I->isCall())
597 return;
599 if (ForwardedRegWorklist.empty())
600 return;
602 SmallVector<unsigned, 4> ExplicitFwdRegDefs;
603 SmallVector<unsigned, 4> ImplicitFwdRegDefs;
604 getForwardingRegsDefinedByMI(*I, ExplicitFwdRegDefs, ImplicitFwdRegDefs);
605 if (ExplicitFwdRegDefs.empty() && ImplicitFwdRegDefs.empty())
606 continue;
608 // If the MI clobbers more then one forwarding register we must remove
609 // all of them from the working list.
610 for (auto Reg : concat<unsigned>(ExplicitFwdRegDefs, ImplicitFwdRegDefs))
611 ForwardedRegWorklist.erase(Reg);
613 // The describeLoadedValue() hook currently does not have any information
614 // about which register it should describe in case of multiple defines, so
615 // for now we only handle instructions where a forwarded register is (at
616 // least partially) defined by the instruction's single explicit define.
617 if (I->getNumExplicitDefs() != 1 || ExplicitFwdRegDefs.empty())
618 continue;
619 unsigned Reg = ExplicitFwdRegDefs[0];
621 if (auto ParamValue = TII->describeLoadedValue(*I)) {
622 if (ParamValue->first.isImm()) {
623 unsigned Val = ParamValue->first.getImm();
624 DbgValueLoc DbgLocVal(ParamValue->second, Val);
625 finishCallSiteParam(DbgLocVal, Reg);
626 } else if (ParamValue->first.isReg()) {
627 Register RegLoc = ParamValue->first.getReg();
628 unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
629 Register FP = TRI->getFrameRegister(*MF);
630 bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP);
631 if (TRI->isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) {
632 DbgValueLoc DbgLocVal(ParamValue->second,
633 MachineLocation(RegLoc,
634 /*IsIndirect=*/IsSPorFP));
635 finishCallSiteParam(DbgLocVal, Reg);
636 } else if (ShouldTryEmitEntryVals) {
637 ForwardedRegWorklist.insert(RegLoc);
638 RegsForEntryValues[RegLoc] = Reg;
644 // Emit the call site parameter's value as an entry value.
645 if (ShouldTryEmitEntryVals) {
646 // Create an entry value expression where the expression following
647 // the 'DW_OP_entry_value' will be the size of 1 (a register operation).
648 DIExpression *EntryExpr = DIExpression::get(MF->getFunction().getContext(),
649 {dwarf::DW_OP_entry_value, 1});
650 for (auto RegEntry : ForwardedRegWorklist) {
651 unsigned FwdReg = RegEntry;
652 auto EntryValReg = RegsForEntryValues.find(RegEntry);
653 if (EntryValReg != RegsForEntryValues.end())
654 FwdReg = EntryValReg->second;
656 DbgValueLoc DbgLocVal(EntryExpr, MachineLocation(RegEntry));
657 DbgCallSiteParam CSParm(FwdReg, DbgLocVal);
658 Params.push_back(CSParm);
659 ++NumCSParams;
664 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP,
665 DwarfCompileUnit &CU, DIE &ScopeDIE,
666 const MachineFunction &MF) {
667 // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if
668 // the subprogram is required to have one.
669 if (!SP.areAllCallsDescribed() || !SP.isDefinition())
670 return;
672 // Use DW_AT_call_all_calls to express that call site entries are present
673 // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls
674 // because one of its requirements is not met: call site entries for
675 // optimized-out calls are elided.
676 CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls));
678 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
679 assert(TII && "TargetInstrInfo not found: cannot label tail calls");
680 bool ApplyGNUExtensions = getDwarfVersion() == 4 && tuneForGDB();
682 // Emit call site entries for each call or tail call in the function.
683 for (const MachineBasicBlock &MBB : MF) {
684 for (const MachineInstr &MI : MBB.instrs()) {
685 // Skip instructions which aren't calls. Both calls and tail-calling jump
686 // instructions (e.g TAILJMPd64) are classified correctly here.
687 if (!MI.isCall())
688 continue;
690 // TODO: Add support for targets with delay slots (see: beginInstruction).
691 if (MI.hasDelaySlot())
692 return;
694 // If this is a direct call, find the callee's subprogram.
695 // In the case of an indirect call find the register that holds
696 // the callee.
697 const MachineOperand &CalleeOp = MI.getOperand(0);
698 if (!CalleeOp.isGlobal() && !CalleeOp.isReg())
699 continue;
701 unsigned CallReg = 0;
702 const DISubprogram *CalleeSP = nullptr;
703 const Function *CalleeDecl = nullptr;
704 if (CalleeOp.isReg()) {
705 CallReg = CalleeOp.getReg();
706 if (!CallReg)
707 continue;
708 } else {
709 CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal());
710 if (!CalleeDecl || !CalleeDecl->getSubprogram())
711 continue;
712 CalleeSP = CalleeDecl->getSubprogram();
715 // TODO: Omit call site entries for runtime calls (objc_msgSend, etc).
717 bool IsTail = TII->isTailCall(MI);
719 // For tail calls, for non-gdb tuning, no return PC information is needed.
720 // For regular calls (and tail calls in GDB tuning), the return PC
721 // is needed to disambiguate paths in the call graph which could lead to
722 // some target function.
723 const MCExpr *PCOffset =
724 (IsTail && !tuneForGDB()) ? nullptr
725 : getFunctionLocalOffsetAfterInsn(&MI);
727 // Address of a call-like instruction for a normal call or a jump-like
728 // instruction for a tail call. This is needed for GDB + DWARF 4 tuning.
729 const MCSymbol *PCAddr =
730 ApplyGNUExtensions ? const_cast<MCSymbol*>(getLabelAfterInsn(&MI))
731 : nullptr;
733 assert((IsTail || PCOffset || PCAddr) &&
734 "Call without return PC information");
736 LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> "
737 << (CalleeDecl ? CalleeDecl->getName()
738 : StringRef(MF.getSubtarget()
739 .getRegisterInfo()
740 ->getName(CallReg)))
741 << (IsTail ? " [IsTail]" : "") << "\n");
743 DIE &CallSiteDIE =
744 CU.constructCallSiteEntryDIE(ScopeDIE, CalleeSP, IsTail, PCAddr,
745 PCOffset, CallReg);
747 // GDB and LLDB support call site parameter debug info.
748 if (Asm->TM.Options.EnableDebugEntryValues &&
749 (tuneForGDB() || tuneForLLDB())) {
750 ParamSet Params;
751 // Try to interpret values of call site parameters.
752 collectCallSiteParameters(&MI, Params);
753 CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params);
759 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const {
760 if (!U.hasDwarfPubSections())
761 return;
763 U.addFlag(D, dwarf::DW_AT_GNU_pubnames);
766 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit,
767 DwarfCompileUnit &NewCU) {
768 DIE &Die = NewCU.getUnitDie();
769 StringRef FN = DIUnit->getFilename();
771 StringRef Producer = DIUnit->getProducer();
772 StringRef Flags = DIUnit->getFlags();
773 if (!Flags.empty() && !useAppleExtensionAttributes()) {
774 std::string ProducerWithFlags = Producer.str() + " " + Flags.str();
775 NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags);
776 } else
777 NewCU.addString(Die, dwarf::DW_AT_producer, Producer);
779 NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
780 DIUnit->getSourceLanguage());
781 NewCU.addString(Die, dwarf::DW_AT_name, FN);
783 // Add DW_str_offsets_base to the unit DIE, except for split units.
784 if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
785 NewCU.addStringOffsetsStart();
787 if (!useSplitDwarf()) {
788 NewCU.initStmtList();
790 // If we're using split dwarf the compilation dir is going to be in the
791 // skeleton CU and so we don't need to duplicate it here.
792 if (!CompilationDir.empty())
793 NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
795 addGnuPubAttributes(NewCU, Die);
798 if (useAppleExtensionAttributes()) {
799 if (DIUnit->isOptimized())
800 NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized);
802 StringRef Flags = DIUnit->getFlags();
803 if (!Flags.empty())
804 NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags);
806 if (unsigned RVer = DIUnit->getRuntimeVersion())
807 NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers,
808 dwarf::DW_FORM_data1, RVer);
811 if (DIUnit->getDWOId()) {
812 // This CU is either a clang module DWO or a skeleton CU.
813 NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8,
814 DIUnit->getDWOId());
815 if (!DIUnit->getSplitDebugFilename().empty())
816 // This is a prefabricated skeleton CU.
817 NewCU.addString(Die, dwarf::DW_AT_GNU_dwo_name,
818 DIUnit->getSplitDebugFilename());
821 // Create new DwarfCompileUnit for the given metadata node with tag
822 // DW_TAG_compile_unit.
823 DwarfCompileUnit &
824 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) {
825 if (auto *CU = CUMap.lookup(DIUnit))
826 return *CU;
828 CompilationDir = DIUnit->getDirectory();
830 auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
831 InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder);
832 DwarfCompileUnit &NewCU = *OwnedUnit;
833 InfoHolder.addUnit(std::move(OwnedUnit));
835 for (auto *IE : DIUnit->getImportedEntities())
836 NewCU.addImportedEntity(IE);
838 // LTO with assembly output shares a single line table amongst multiple CUs.
839 // To avoid the compilation directory being ambiguous, let the line table
840 // explicitly describe the directory of all files, never relying on the
841 // compilation directory.
842 if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU)
843 Asm->OutStreamer->emitDwarfFile0Directive(
844 CompilationDir, DIUnit->getFilename(),
845 NewCU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource(),
846 NewCU.getUniqueID());
848 if (useSplitDwarf()) {
849 NewCU.setSkeleton(constructSkeletonCU(NewCU));
850 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection());
851 } else {
852 finishUnitAttributes(DIUnit, NewCU);
853 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
856 // Create DIEs for function declarations used for call site debug info.
857 for (auto Scope : DIUnit->getRetainedTypes())
858 if (auto *SP = dyn_cast_or_null<DISubprogram>(Scope))
859 NewCU.getOrCreateSubprogramDIE(SP);
861 CUMap.insert({DIUnit, &NewCU});
862 CUDieMap.insert({&NewCU.getUnitDie(), &NewCU});
863 return NewCU;
866 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU,
867 const DIImportedEntity *N) {
868 if (isa<DILocalScope>(N->getScope()))
869 return;
870 if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope()))
871 D->addChild(TheCU.constructImportedEntityDIE(N));
874 /// Sort and unique GVEs by comparing their fragment offset.
875 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &
876 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) {
877 llvm::sort(
878 GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) {
879 // Sort order: first null exprs, then exprs without fragment
880 // info, then sort by fragment offset in bits.
881 // FIXME: Come up with a more comprehensive comparator so
882 // the sorting isn't non-deterministic, and so the following
883 // std::unique call works correctly.
884 if (!A.Expr || !B.Expr)
885 return !!B.Expr;
886 auto FragmentA = A.Expr->getFragmentInfo();
887 auto FragmentB = B.Expr->getFragmentInfo();
888 if (!FragmentA || !FragmentB)
889 return !!FragmentB;
890 return FragmentA->OffsetInBits < FragmentB->OffsetInBits;
892 GVEs.erase(std::unique(GVEs.begin(), GVEs.end(),
893 [](DwarfCompileUnit::GlobalExpr A,
894 DwarfCompileUnit::GlobalExpr B) {
895 return A.Expr == B.Expr;
897 GVEs.end());
898 return GVEs;
901 // Emit all Dwarf sections that should come prior to the content. Create
902 // global DIEs and emit initial debug info sections. This is invoked by
903 // the target AsmPrinter.
904 void DwarfDebug::beginModule() {
905 NamedRegionTimer T(DbgTimerName, DbgTimerDescription, DWARFGroupName,
906 DWARFGroupDescription, TimePassesIsEnabled);
907 if (DisableDebugInfoPrinting) {
908 MMI->setDebugInfoAvailability(false);
909 return;
912 const Module *M = MMI->getModule();
914 unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(),
915 M->debug_compile_units_end());
916 // Tell MMI whether we have debug info.
917 assert(MMI->hasDebugInfo() == (NumDebugCUs > 0) &&
918 "DebugInfoAvailabilty initialized unexpectedly");
919 SingleCU = NumDebugCUs == 1;
920 DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>>
921 GVMap;
922 for (const GlobalVariable &Global : M->globals()) {
923 SmallVector<DIGlobalVariableExpression *, 1> GVs;
924 Global.getDebugInfo(GVs);
925 for (auto *GVE : GVs)
926 GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()});
929 // Create the symbol that designates the start of the unit's contribution
930 // to the string offsets table. In a split DWARF scenario, only the skeleton
931 // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol).
932 if (useSegmentedStringOffsetsTable())
933 (useSplitDwarf() ? SkeletonHolder : InfoHolder)
934 .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base"));
937 // Create the symbols that designates the start of the DWARF v5 range list
938 // and locations list tables. They are located past the table headers.
939 if (getDwarfVersion() >= 5) {
940 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
941 Holder.setRnglistsTableBaseSym(
942 Asm->createTempSymbol("rnglists_table_base"));
943 Holder.setLoclistsTableBaseSym(
944 Asm->createTempSymbol("loclists_table_base"));
946 if (useSplitDwarf())
947 InfoHolder.setRnglistsTableBaseSym(
948 Asm->createTempSymbol("rnglists_dwo_table_base"));
951 // Create the symbol that points to the first entry following the debug
952 // address table (.debug_addr) header.
953 AddrPool.setLabel(Asm->createTempSymbol("addr_table_base"));
955 for (DICompileUnit *CUNode : M->debug_compile_units()) {
956 // FIXME: Move local imported entities into a list attached to the
957 // subprogram, then this search won't be needed and a
958 // getImportedEntities().empty() test should go below with the rest.
959 bool HasNonLocalImportedEntities = llvm::any_of(
960 CUNode->getImportedEntities(), [](const DIImportedEntity *IE) {
961 return !isa<DILocalScope>(IE->getScope());
964 if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() &&
965 CUNode->getRetainedTypes().empty() &&
966 CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty())
967 continue;
969 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode);
971 // Global Variables.
972 for (auto *GVE : CUNode->getGlobalVariables()) {
973 // Don't bother adding DIGlobalVariableExpressions listed in the CU if we
974 // already know about the variable and it isn't adding a constant
975 // expression.
976 auto &GVMapEntry = GVMap[GVE->getVariable()];
977 auto *Expr = GVE->getExpression();
978 if (!GVMapEntry.size() || (Expr && Expr->isConstant()))
979 GVMapEntry.push_back({nullptr, Expr});
981 DenseSet<DIGlobalVariable *> Processed;
982 for (auto *GVE : CUNode->getGlobalVariables()) {
983 DIGlobalVariable *GV = GVE->getVariable();
984 if (Processed.insert(GV).second)
985 CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV]));
988 for (auto *Ty : CUNode->getEnumTypes()) {
989 // The enum types array by design contains pointers to
990 // MDNodes rather than DIRefs. Unique them here.
991 CU.getOrCreateTypeDIE(cast<DIType>(Ty));
993 for (auto *Ty : CUNode->getRetainedTypes()) {
994 // The retained types array by design contains pointers to
995 // MDNodes rather than DIRefs. Unique them here.
996 if (DIType *RT = dyn_cast<DIType>(Ty))
997 // There is no point in force-emitting a forward declaration.
998 CU.getOrCreateTypeDIE(RT);
1000 // Emit imported_modules last so that the relevant context is already
1001 // available.
1002 for (auto *IE : CUNode->getImportedEntities())
1003 constructAndAddImportedEntityDIE(CU, IE);
1007 void DwarfDebug::finishEntityDefinitions() {
1008 for (const auto &Entity : ConcreteEntities) {
1009 DIE *Die = Entity->getDIE();
1010 assert(Die);
1011 // FIXME: Consider the time-space tradeoff of just storing the unit pointer
1012 // in the ConcreteEntities list, rather than looking it up again here.
1013 // DIE::getUnit isn't simple - it walks parent pointers, etc.
1014 DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie());
1015 assert(Unit);
1016 Unit->finishEntityDefinition(Entity.get());
1020 void DwarfDebug::finishSubprogramDefinitions() {
1021 for (const DISubprogram *SP : ProcessedSPNodes) {
1022 assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug);
1023 forBothCUs(
1024 getOrCreateDwarfCompileUnit(SP->getUnit()),
1025 [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); });
1029 void DwarfDebug::finalizeModuleInfo() {
1030 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
1032 finishSubprogramDefinitions();
1034 finishEntityDefinitions();
1036 // Include the DWO file name in the hash if there's more than one CU.
1037 // This handles ThinLTO's situation where imported CUs may very easily be
1038 // duplicate with the same CU partially imported into another ThinLTO unit.
1039 StringRef DWOName;
1040 if (CUMap.size() > 1)
1041 DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile;
1043 // Handle anything that needs to be done on a per-unit basis after
1044 // all other generation.
1045 for (const auto &P : CUMap) {
1046 auto &TheCU = *P.second;
1047 if (TheCU.getCUNode()->isDebugDirectivesOnly())
1048 continue;
1049 // Emit DW_AT_containing_type attribute to connect types with their
1050 // vtable holding type.
1051 TheCU.constructContainingTypeDIEs();
1053 // Add CU specific attributes if we need to add any.
1054 // If we're splitting the dwarf out now that we've got the entire
1055 // CU then add the dwo id to it.
1056 auto *SkCU = TheCU.getSkeleton();
1057 if (useSplitDwarf() && !empty(TheCU.getUnitDie().children())) {
1058 finishUnitAttributes(TheCU.getCUNode(), TheCU);
1059 TheCU.addString(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_name,
1060 Asm->TM.Options.MCOptions.SplitDwarfFile);
1061 SkCU->addString(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_name,
1062 Asm->TM.Options.MCOptions.SplitDwarfFile);
1063 // Emit a unique identifier for this CU.
1064 uint64_t ID =
1065 DIEHash(Asm).computeCUSignature(DWOName, TheCU.getUnitDie());
1066 if (getDwarfVersion() >= 5) {
1067 TheCU.setDWOId(ID);
1068 SkCU->setDWOId(ID);
1069 } else {
1070 TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1071 dwarf::DW_FORM_data8, ID);
1072 SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1073 dwarf::DW_FORM_data8, ID);
1076 if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) {
1077 const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol();
1078 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base,
1079 Sym, Sym);
1081 } else if (SkCU) {
1082 finishUnitAttributes(SkCU->getCUNode(), *SkCU);
1085 // If we have code split among multiple sections or non-contiguous
1086 // ranges of code then emit a DW_AT_ranges attribute on the unit that will
1087 // remain in the .o file, otherwise add a DW_AT_low_pc.
1088 // FIXME: We should use ranges allow reordering of code ala
1089 // .subsections_via_symbols in mach-o. This would mean turning on
1090 // ranges for all subprogram DIEs for mach-o.
1091 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
1093 if (unsigned NumRanges = TheCU.getRanges().size()) {
1094 if (NumRanges > 1 && useRangesSection())
1095 // A DW_AT_low_pc attribute may also be specified in combination with
1096 // DW_AT_ranges to specify the default base address for use in
1097 // location lists (see Section 2.6.2) and range lists (see Section
1098 // 2.17.3).
1099 U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0);
1100 else
1101 U.setBaseAddress(TheCU.getRanges().front().getStart());
1102 U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges());
1105 // We don't keep track of which addresses are used in which CU so this
1106 // is a bit pessimistic under LTO.
1107 if (!AddrPool.isEmpty() &&
1108 (getDwarfVersion() >= 5 ||
1109 (SkCU && !empty(TheCU.getUnitDie().children()))))
1110 U.addAddrTableBase();
1112 if (getDwarfVersion() >= 5) {
1113 if (U.hasRangeLists())
1114 U.addRnglistsBase();
1116 if (!DebugLocs.getLists().empty() && !useSplitDwarf())
1117 U.addLoclistsBase();
1120 auto *CUNode = cast<DICompileUnit>(P.first);
1121 // If compile Unit has macros, emit "DW_AT_macro_info" attribute.
1122 if (CUNode->getMacros())
1123 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info,
1124 U.getMacroLabelBegin(),
1125 TLOF.getDwarfMacinfoSection()->getBeginSymbol());
1128 // Emit all frontend-produced Skeleton CUs, i.e., Clang modules.
1129 for (auto *CUNode : MMI->getModule()->debug_compile_units())
1130 if (CUNode->getDWOId())
1131 getOrCreateDwarfCompileUnit(CUNode);
1133 // Compute DIE offsets and sizes.
1134 InfoHolder.computeSizeAndOffsets();
1135 if (useSplitDwarf())
1136 SkeletonHolder.computeSizeAndOffsets();
1139 // Emit all Dwarf sections that should come after the content.
1140 void DwarfDebug::endModule() {
1141 assert(CurFn == nullptr);
1142 assert(CurMI == nullptr);
1144 for (const auto &P : CUMap) {
1145 auto &CU = *P.second;
1146 CU.createBaseTypeDIEs();
1149 // If we aren't actually generating debug info (check beginModule -
1150 // conditionalized on !DisableDebugInfoPrinting and the presence of the
1151 // llvm.dbg.cu metadata node)
1152 if (!MMI->hasDebugInfo())
1153 return;
1155 // Finalize the debug info for the module.
1156 finalizeModuleInfo();
1158 emitDebugStr();
1160 if (useSplitDwarf())
1161 emitDebugLocDWO();
1162 else
1163 // Emit info into a debug loc section.
1164 emitDebugLoc();
1166 // Corresponding abbreviations into a abbrev section.
1167 emitAbbreviations();
1169 // Emit all the DIEs into a debug info section.
1170 emitDebugInfo();
1172 // Emit info into a debug aranges section.
1173 if (GenerateARangeSection)
1174 emitDebugARanges();
1176 // Emit info into a debug ranges section.
1177 emitDebugRanges();
1179 // Emit info into a debug macinfo section.
1180 emitDebugMacinfo();
1182 if (useSplitDwarf()) {
1183 emitDebugStrDWO();
1184 emitDebugInfoDWO();
1185 emitDebugAbbrevDWO();
1186 emitDebugLineDWO();
1187 emitDebugRangesDWO();
1190 emitDebugAddr();
1192 // Emit info into the dwarf accelerator table sections.
1193 switch (getAccelTableKind()) {
1194 case AccelTableKind::Apple:
1195 emitAccelNames();
1196 emitAccelObjC();
1197 emitAccelNamespaces();
1198 emitAccelTypes();
1199 break;
1200 case AccelTableKind::Dwarf:
1201 emitAccelDebugNames();
1202 break;
1203 case AccelTableKind::None:
1204 break;
1205 case AccelTableKind::Default:
1206 llvm_unreachable("Default should have already been resolved.");
1209 // Emit the pubnames and pubtypes sections if requested.
1210 emitDebugPubSections();
1212 // clean up.
1213 // FIXME: AbstractVariables.clear();
1216 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU,
1217 const DINode *Node,
1218 const MDNode *ScopeNode) {
1219 if (CU.getExistingAbstractEntity(Node))
1220 return;
1222 CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope(
1223 cast<DILocalScope>(ScopeNode)));
1226 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU,
1227 const DINode *Node, const MDNode *ScopeNode) {
1228 if (CU.getExistingAbstractEntity(Node))
1229 return;
1231 if (LexicalScope *Scope =
1232 LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode)))
1233 CU.createAbstractEntity(Node, Scope);
1236 // Collect variable information from side table maintained by MF.
1237 void DwarfDebug::collectVariableInfoFromMFTable(
1238 DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) {
1239 SmallDenseMap<InlinedEntity, DbgVariable *> MFVars;
1240 for (const auto &VI : Asm->MF->getVariableDbgInfo()) {
1241 if (!VI.Var)
1242 continue;
1243 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1244 "Expected inlined-at fields to agree");
1246 InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt());
1247 Processed.insert(Var);
1248 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1250 // If variable scope is not found then skip this variable.
1251 if (!Scope)
1252 continue;
1254 ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode());
1255 auto RegVar = std::make_unique<DbgVariable>(
1256 cast<DILocalVariable>(Var.first), Var.second);
1257 RegVar->initializeMMI(VI.Expr, VI.Slot);
1258 if (DbgVariable *DbgVar = MFVars.lookup(Var))
1259 DbgVar->addMMIEntry(*RegVar);
1260 else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) {
1261 MFVars.insert({Var, RegVar.get()});
1262 ConcreteEntities.push_back(std::move(RegVar));
1267 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its
1268 /// enclosing lexical scope. The check ensures there are no other instructions
1269 /// in the same lexical scope preceding the DBG_VALUE and that its range is
1270 /// either open or otherwise rolls off the end of the scope.
1271 static bool validThroughout(LexicalScopes &LScopes,
1272 const MachineInstr *DbgValue,
1273 const MachineInstr *RangeEnd) {
1274 assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location");
1275 auto MBB = DbgValue->getParent();
1276 auto DL = DbgValue->getDebugLoc();
1277 auto *LScope = LScopes.findLexicalScope(DL);
1278 // Scope doesn't exist; this is a dead DBG_VALUE.
1279 if (!LScope)
1280 return false;
1281 auto &LSRange = LScope->getRanges();
1282 if (LSRange.size() == 0)
1283 return false;
1285 // Determine if the DBG_VALUE is valid at the beginning of its lexical block.
1286 const MachineInstr *LScopeBegin = LSRange.front().first;
1287 // Early exit if the lexical scope begins outside of the current block.
1288 if (LScopeBegin->getParent() != MBB)
1289 return false;
1290 MachineBasicBlock::const_reverse_iterator Pred(DbgValue);
1291 for (++Pred; Pred != MBB->rend(); ++Pred) {
1292 if (Pred->getFlag(MachineInstr::FrameSetup))
1293 break;
1294 auto PredDL = Pred->getDebugLoc();
1295 if (!PredDL || Pred->isMetaInstruction())
1296 continue;
1297 // Check whether the instruction preceding the DBG_VALUE is in the same
1298 // (sub)scope as the DBG_VALUE.
1299 if (DL->getScope() == PredDL->getScope())
1300 return false;
1301 auto *PredScope = LScopes.findLexicalScope(PredDL);
1302 if (!PredScope || LScope->dominates(PredScope))
1303 return false;
1306 // If the range of the DBG_VALUE is open-ended, report success.
1307 if (!RangeEnd)
1308 return true;
1310 // Fail if there are instructions belonging to our scope in another block.
1311 const MachineInstr *LScopeEnd = LSRange.back().second;
1312 if (LScopeEnd->getParent() != MBB)
1313 return false;
1315 // Single, constant DBG_VALUEs in the prologue are promoted to be live
1316 // throughout the function. This is a hack, presumably for DWARF v2 and not
1317 // necessarily correct. It would be much better to use a dbg.declare instead
1318 // if we know the constant is live throughout the scope.
1319 if (DbgValue->getOperand(0).isImm() && MBB->pred_empty())
1320 return true;
1322 return false;
1325 /// Build the location list for all DBG_VALUEs in the function that
1326 /// describe the same variable. The resulting DebugLocEntries will have
1327 /// strict monotonically increasing begin addresses and will never
1328 /// overlap. If the resulting list has only one entry that is valid
1329 /// throughout variable's scope return true.
1331 // See the definition of DbgValueHistoryMap::Entry for an explanation of the
1332 // different kinds of history map entries. One thing to be aware of is that if
1333 // a debug value is ended by another entry (rather than being valid until the
1334 // end of the function), that entry's instruction may or may not be included in
1335 // the range, depending on if the entry is a clobbering entry (it has an
1336 // instruction that clobbers one or more preceding locations), or if it is an
1337 // (overlapping) debug value entry. This distinction can be seen in the example
1338 // below. The first debug value is ended by the clobbering entry 2, and the
1339 // second and third debug values are ended by the overlapping debug value entry
1340 // 4.
1342 // Input:
1344 // History map entries [type, end index, mi]
1346 // 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)]
1347 // 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)]
1348 // 2 | | [Clobber, $reg0 = [...], -, -]
1349 // 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)]
1350 // 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)]
1352 // Output [start, end) [Value...]:
1354 // [0-1) [(reg0, fragment 0, 32)]
1355 // [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)]
1356 // [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)]
1357 // [4-) [(@g, fragment 0, 96)]
1358 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
1359 const DbgValueHistoryMap::Entries &Entries) {
1360 using OpenRange =
1361 std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>;
1362 SmallVector<OpenRange, 4> OpenRanges;
1363 bool isSafeForSingleLocation = true;
1364 const MachineInstr *StartDebugMI = nullptr;
1365 const MachineInstr *EndMI = nullptr;
1367 for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) {
1368 const MachineInstr *Instr = EI->getInstr();
1370 // Remove all values that are no longer live.
1371 size_t Index = std::distance(EB, EI);
1372 auto Last =
1373 remove_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; });
1374 OpenRanges.erase(Last, OpenRanges.end());
1376 // If we are dealing with a clobbering entry, this iteration will result in
1377 // a location list entry starting after the clobbering instruction.
1378 const MCSymbol *StartLabel =
1379 EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr);
1380 assert(StartLabel &&
1381 "Forgot label before/after instruction starting a range!");
1383 const MCSymbol *EndLabel;
1384 if (std::next(EI) == Entries.end()) {
1385 EndLabel = Asm->getFunctionEnd();
1386 if (EI->isClobber())
1387 EndMI = EI->getInstr();
1389 else if (std::next(EI)->isClobber())
1390 EndLabel = getLabelAfterInsn(std::next(EI)->getInstr());
1391 else
1392 EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr());
1393 assert(EndLabel && "Forgot label after instruction ending a range!");
1395 if (EI->isDbgValue())
1396 LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n");
1398 // If this history map entry has a debug value, add that to the list of
1399 // open ranges and check if its location is valid for a single value
1400 // location.
1401 if (EI->isDbgValue()) {
1402 // Do not add undef debug values, as they are redundant information in
1403 // the location list entries. An undef debug results in an empty location
1404 // description. If there are any non-undef fragments then padding pieces
1405 // with empty location descriptions will automatically be inserted, and if
1406 // all fragments are undef then the whole location list entry is
1407 // redundant.
1408 if (!Instr->isUndefDebugValue()) {
1409 auto Value = getDebugLocValue(Instr);
1410 OpenRanges.emplace_back(EI->getEndIndex(), Value);
1412 // TODO: Add support for single value fragment locations.
1413 if (Instr->getDebugExpression()->isFragment())
1414 isSafeForSingleLocation = false;
1416 if (!StartDebugMI)
1417 StartDebugMI = Instr;
1418 } else {
1419 isSafeForSingleLocation = false;
1423 // Location list entries with empty location descriptions are redundant
1424 // information in DWARF, so do not emit those.
1425 if (OpenRanges.empty())
1426 continue;
1428 // Omit entries with empty ranges as they do not have any effect in DWARF.
1429 if (StartLabel == EndLabel) {
1430 LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n");
1431 continue;
1434 SmallVector<DbgValueLoc, 4> Values;
1435 for (auto &R : OpenRanges)
1436 Values.push_back(R.second);
1437 DebugLoc.emplace_back(StartLabel, EndLabel, Values);
1439 // Attempt to coalesce the ranges of two otherwise identical
1440 // DebugLocEntries.
1441 auto CurEntry = DebugLoc.rbegin();
1442 LLVM_DEBUG({
1443 dbgs() << CurEntry->getValues().size() << " Values:\n";
1444 for (auto &Value : CurEntry->getValues())
1445 Value.dump();
1446 dbgs() << "-----\n";
1449 auto PrevEntry = std::next(CurEntry);
1450 if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry))
1451 DebugLoc.pop_back();
1454 return DebugLoc.size() == 1 && isSafeForSingleLocation &&
1455 validThroughout(LScopes, StartDebugMI, EndMI);
1458 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU,
1459 LexicalScope &Scope,
1460 const DINode *Node,
1461 const DILocation *Location,
1462 const MCSymbol *Sym) {
1463 ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode());
1464 if (isa<const DILocalVariable>(Node)) {
1465 ConcreteEntities.push_back(
1466 std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node),
1467 Location));
1468 InfoHolder.addScopeVariable(&Scope,
1469 cast<DbgVariable>(ConcreteEntities.back().get()));
1470 } else if (isa<const DILabel>(Node)) {
1471 ConcreteEntities.push_back(
1472 std::make_unique<DbgLabel>(cast<const DILabel>(Node),
1473 Location, Sym));
1474 InfoHolder.addScopeLabel(&Scope,
1475 cast<DbgLabel>(ConcreteEntities.back().get()));
1477 return ConcreteEntities.back().get();
1480 // Find variables for each lexical scope.
1481 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU,
1482 const DISubprogram *SP,
1483 DenseSet<InlinedEntity> &Processed) {
1484 // Grab the variable info that was squirreled away in the MMI side-table.
1485 collectVariableInfoFromMFTable(TheCU, Processed);
1487 for (const auto &I : DbgValues) {
1488 InlinedEntity IV = I.first;
1489 if (Processed.count(IV))
1490 continue;
1492 // Instruction ranges, specifying where IV is accessible.
1493 const auto &HistoryMapEntries = I.second;
1494 if (HistoryMapEntries.empty())
1495 continue;
1497 LexicalScope *Scope = nullptr;
1498 const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first);
1499 if (const DILocation *IA = IV.second)
1500 Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA);
1501 else
1502 Scope = LScopes.findLexicalScope(LocalVar->getScope());
1503 // If variable scope is not found then skip this variable.
1504 if (!Scope)
1505 continue;
1507 Processed.insert(IV);
1508 DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU,
1509 *Scope, LocalVar, IV.second));
1511 const MachineInstr *MInsn = HistoryMapEntries.front().getInstr();
1512 assert(MInsn->isDebugValue() && "History must begin with debug value");
1514 // Check if there is a single DBG_VALUE, valid throughout the var's scope.
1515 // If the history map contains a single debug value, there may be an
1516 // additional entry which clobbers the debug value.
1517 size_t HistSize = HistoryMapEntries.size();
1518 bool SingleValueWithClobber =
1519 HistSize == 2 && HistoryMapEntries[1].isClobber();
1520 if (HistSize == 1 || SingleValueWithClobber) {
1521 const auto *End =
1522 SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr;
1523 if (validThroughout(LScopes, MInsn, End)) {
1524 RegVar->initializeDbgValue(MInsn);
1525 continue;
1529 // Do not emit location lists if .debug_loc secton is disabled.
1530 if (!useLocSection())
1531 continue;
1533 // Handle multiple DBG_VALUE instructions describing one variable.
1534 DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn);
1536 // Build the location list for this variable.
1537 SmallVector<DebugLocEntry, 8> Entries;
1538 bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries);
1540 // Check whether buildLocationList managed to merge all locations to one
1541 // that is valid throughout the variable's scope. If so, produce single
1542 // value location.
1543 if (isValidSingleLocation) {
1544 RegVar->initializeDbgValue(Entries[0].getValues()[0]);
1545 continue;
1548 // If the variable has a DIBasicType, extract it. Basic types cannot have
1549 // unique identifiers, so don't bother resolving the type with the
1550 // identifier map.
1551 const DIBasicType *BT = dyn_cast<DIBasicType>(
1552 static_cast<const Metadata *>(LocalVar->getType()));
1554 // Finalize the entry by lowering it into a DWARF bytestream.
1555 for (auto &Entry : Entries)
1556 Entry.finalize(*Asm, List, BT, TheCU);
1559 // For each InlinedEntity collected from DBG_LABEL instructions, convert to
1560 // DWARF-related DbgLabel.
1561 for (const auto &I : DbgLabels) {
1562 InlinedEntity IL = I.first;
1563 const MachineInstr *MI = I.second;
1564 if (MI == nullptr)
1565 continue;
1567 LexicalScope *Scope = nullptr;
1568 const DILabel *Label = cast<DILabel>(IL.first);
1569 // The scope could have an extra lexical block file.
1570 const DILocalScope *LocalScope =
1571 Label->getScope()->getNonLexicalBlockFileScope();
1572 // Get inlined DILocation if it is inlined label.
1573 if (const DILocation *IA = IL.second)
1574 Scope = LScopes.findInlinedScope(LocalScope, IA);
1575 else
1576 Scope = LScopes.findLexicalScope(LocalScope);
1577 // If label scope is not found then skip this label.
1578 if (!Scope)
1579 continue;
1581 Processed.insert(IL);
1582 /// At this point, the temporary label is created.
1583 /// Save the temporary label to DbgLabel entity to get the
1584 /// actually address when generating Dwarf DIE.
1585 MCSymbol *Sym = getLabelBeforeInsn(MI);
1586 createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym);
1589 // Collect info for variables/labels that were optimized out.
1590 for (const DINode *DN : SP->getRetainedNodes()) {
1591 if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
1592 continue;
1593 LexicalScope *Scope = nullptr;
1594 if (auto *DV = dyn_cast<DILocalVariable>(DN)) {
1595 Scope = LScopes.findLexicalScope(DV->getScope());
1596 } else if (auto *DL = dyn_cast<DILabel>(DN)) {
1597 Scope = LScopes.findLexicalScope(DL->getScope());
1600 if (Scope)
1601 createConcreteEntity(TheCU, *Scope, DN, nullptr);
1605 // Process beginning of an instruction.
1606 void DwarfDebug::beginInstruction(const MachineInstr *MI) {
1607 DebugHandlerBase::beginInstruction(MI);
1608 assert(CurMI);
1610 const auto *SP = MI->getMF()->getFunction().getSubprogram();
1611 if (!SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
1612 return;
1614 // Check if source location changes, but ignore DBG_VALUE and CFI locations.
1615 // If the instruction is part of the function frame setup code, do not emit
1616 // any line record, as there is no correspondence with any user code.
1617 if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup))
1618 return;
1619 const DebugLoc &DL = MI->getDebugLoc();
1620 // When we emit a line-0 record, we don't update PrevInstLoc; so look at
1621 // the last line number actually emitted, to see if it was line 0.
1622 unsigned LastAsmLine =
1623 Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine();
1625 // Request a label after the call in order to emit AT_return_pc information
1626 // in call site entries. TODO: Add support for targets with delay slots.
1627 if (SP->areAllCallsDescribed() && MI->isCall() && !MI->hasDelaySlot())
1628 requestLabelAfterInsn(MI);
1630 if (DL == PrevInstLoc) {
1631 // If we have an ongoing unspecified location, nothing to do here.
1632 if (!DL)
1633 return;
1634 // We have an explicit location, same as the previous location.
1635 // But we might be coming back to it after a line 0 record.
1636 if (LastAsmLine == 0 && DL.getLine() != 0) {
1637 // Reinstate the source location but not marked as a statement.
1638 const MDNode *Scope = DL.getScope();
1639 recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0);
1641 return;
1644 if (!DL) {
1645 // We have an unspecified location, which might want to be line 0.
1646 // If we have already emitted a line-0 record, don't repeat it.
1647 if (LastAsmLine == 0)
1648 return;
1649 // If user said Don't Do That, don't do that.
1650 if (UnknownLocations == Disable)
1651 return;
1652 // See if we have a reason to emit a line-0 record now.
1653 // Reasons to emit a line-0 record include:
1654 // - User asked for it (UnknownLocations).
1655 // - Instruction has a label, so it's referenced from somewhere else,
1656 // possibly debug information; we want it to have a source location.
1657 // - Instruction is at the top of a block; we don't want to inherit the
1658 // location from the physically previous (maybe unrelated) block.
1659 if (UnknownLocations == Enable || PrevLabel ||
1660 (PrevInstBB && PrevInstBB != MI->getParent())) {
1661 // Preserve the file and column numbers, if we can, to save space in
1662 // the encoded line table.
1663 // Do not update PrevInstLoc, it remembers the last non-0 line.
1664 const MDNode *Scope = nullptr;
1665 unsigned Column = 0;
1666 if (PrevInstLoc) {
1667 Scope = PrevInstLoc.getScope();
1668 Column = PrevInstLoc.getCol();
1670 recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0);
1672 return;
1675 // We have an explicit location, different from the previous location.
1676 // Don't repeat a line-0 record, but otherwise emit the new location.
1677 // (The new location might be an explicit line 0, which we do emit.)
1678 if (DL.getLine() == 0 && LastAsmLine == 0)
1679 return;
1680 unsigned Flags = 0;
1681 if (DL == PrologEndLoc) {
1682 Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT;
1683 PrologEndLoc = DebugLoc();
1685 // If the line changed, we call that a new statement; unless we went to
1686 // line 0 and came back, in which case it is not a new statement.
1687 unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine;
1688 if (DL.getLine() && DL.getLine() != OldLine)
1689 Flags |= DWARF2_FLAG_IS_STMT;
1691 const MDNode *Scope = DL.getScope();
1692 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
1694 // If we're not at line 0, remember this location.
1695 if (DL.getLine())
1696 PrevInstLoc = DL;
1699 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) {
1700 // First known non-DBG_VALUE and non-frame setup location marks
1701 // the beginning of the function body.
1702 for (const auto &MBB : *MF)
1703 for (const auto &MI : MBB)
1704 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
1705 MI.getDebugLoc())
1706 return MI.getDebugLoc();
1707 return DebugLoc();
1710 /// Register a source line with debug info. Returns the unique label that was
1711 /// emitted and which provides correspondence to the source line list.
1712 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col,
1713 const MDNode *S, unsigned Flags, unsigned CUID,
1714 uint16_t DwarfVersion,
1715 ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) {
1716 StringRef Fn;
1717 unsigned FileNo = 1;
1718 unsigned Discriminator = 0;
1719 if (auto *Scope = cast_or_null<DIScope>(S)) {
1720 Fn = Scope->getFilename();
1721 if (Line != 0 && DwarfVersion >= 4)
1722 if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope))
1723 Discriminator = LBF->getDiscriminator();
1725 FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID])
1726 .getOrCreateSourceID(Scope->getFile());
1728 Asm.OutStreamer->EmitDwarfLocDirective(FileNo, Line, Col, Flags, 0,
1729 Discriminator, Fn);
1732 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF,
1733 unsigned CUID) {
1734 // Get beginning of function.
1735 if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) {
1736 // Ensure the compile unit is created if the function is called before
1737 // beginFunction().
1738 (void)getOrCreateDwarfCompileUnit(
1739 MF.getFunction().getSubprogram()->getUnit());
1740 // We'd like to list the prologue as "not statements" but GDB behaves
1741 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
1742 const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram();
1743 ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT,
1744 CUID, getDwarfVersion(), getUnits());
1745 return PrologEndLoc;
1747 return DebugLoc();
1750 // Gather pre-function debug information. Assumes being called immediately
1751 // after the function entry point has been emitted.
1752 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) {
1753 CurFn = MF;
1755 auto *SP = MF->getFunction().getSubprogram();
1756 assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode());
1757 if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
1758 return;
1760 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
1762 // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function
1763 // belongs to so that we add to the correct per-cu line table in the
1764 // non-asm case.
1765 if (Asm->OutStreamer->hasRawTextSupport())
1766 // Use a single line table if we are generating assembly.
1767 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
1768 else
1769 Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID());
1771 // Record beginning of function.
1772 PrologEndLoc = emitInitialLocDirective(
1773 *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID());
1776 void DwarfDebug::skippedNonDebugFunction() {
1777 // If we don't have a subprogram for this function then there will be a hole
1778 // in the range information. Keep note of this by setting the previously used
1779 // section to nullptr.
1780 PrevCU = nullptr;
1781 CurFn = nullptr;
1784 // Gather and emit post-function debug information.
1785 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) {
1786 const DISubprogram *SP = MF->getFunction().getSubprogram();
1788 assert(CurFn == MF &&
1789 "endFunction should be called with the same function as beginFunction");
1791 // Set DwarfDwarfCompileUnitID in MCContext to default value.
1792 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
1794 LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
1795 assert(!FnScope || SP == FnScope->getScopeNode());
1796 DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit());
1797 if (TheCU.getCUNode()->isDebugDirectivesOnly()) {
1798 PrevLabel = nullptr;
1799 CurFn = nullptr;
1800 return;
1803 DenseSet<InlinedEntity> Processed;
1804 collectEntityInfo(TheCU, SP, Processed);
1806 // Add the range of this function to the list of ranges for the CU.
1807 TheCU.addRange(RangeSpan(Asm->getFunctionBegin(), Asm->getFunctionEnd()));
1809 // Under -gmlt, skip building the subprogram if there are no inlined
1810 // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram
1811 // is still needed as we need its source location.
1812 if (!TheCU.getCUNode()->getDebugInfoForProfiling() &&
1813 TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly &&
1814 LScopes.getAbstractScopesList().empty() && !IsDarwin) {
1815 assert(InfoHolder.getScopeVariables().empty());
1816 PrevLabel = nullptr;
1817 CurFn = nullptr;
1818 return;
1821 #ifndef NDEBUG
1822 size_t NumAbstractScopes = LScopes.getAbstractScopesList().size();
1823 #endif
1824 // Construct abstract scopes.
1825 for (LexicalScope *AScope : LScopes.getAbstractScopesList()) {
1826 auto *SP = cast<DISubprogram>(AScope->getScopeNode());
1827 for (const DINode *DN : SP->getRetainedNodes()) {
1828 if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
1829 continue;
1831 const MDNode *Scope = nullptr;
1832 if (auto *DV = dyn_cast<DILocalVariable>(DN))
1833 Scope = DV->getScope();
1834 else if (auto *DL = dyn_cast<DILabel>(DN))
1835 Scope = DL->getScope();
1836 else
1837 llvm_unreachable("Unexpected DI type!");
1839 // Collect info for variables/labels that were optimized out.
1840 ensureAbstractEntityIsCreated(TheCU, DN, Scope);
1841 assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes
1842 && "ensureAbstractEntityIsCreated inserted abstract scopes");
1844 constructAbstractSubprogramScopeDIE(TheCU, AScope);
1847 ProcessedSPNodes.insert(SP);
1848 DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope);
1849 if (auto *SkelCU = TheCU.getSkeleton())
1850 if (!LScopes.getAbstractScopesList().empty() &&
1851 TheCU.getCUNode()->getSplitDebugInlining())
1852 SkelCU->constructSubprogramScopeDIE(SP, FnScope);
1854 // Construct call site entries.
1855 constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF);
1857 // Clear debug info
1858 // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the
1859 // DbgVariables except those that are also in AbstractVariables (since they
1860 // can be used cross-function)
1861 InfoHolder.getScopeVariables().clear();
1862 InfoHolder.getScopeLabels().clear();
1863 PrevLabel = nullptr;
1864 CurFn = nullptr;
1867 // Register a source line with debug info. Returns the unique label that was
1868 // emitted and which provides correspondence to the source line list.
1869 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
1870 unsigned Flags) {
1871 ::recordSourceLine(*Asm, Line, Col, S, Flags,
1872 Asm->OutStreamer->getContext().getDwarfCompileUnitID(),
1873 getDwarfVersion(), getUnits());
1876 //===----------------------------------------------------------------------===//
1877 // Emit Methods
1878 //===----------------------------------------------------------------------===//
1880 // Emit the debug info section.
1881 void DwarfDebug::emitDebugInfo() {
1882 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1883 Holder.emitUnits(/* UseOffsets */ false);
1886 // Emit the abbreviation section.
1887 void DwarfDebug::emitAbbreviations() {
1888 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1890 Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection());
1893 void DwarfDebug::emitStringOffsetsTableHeader() {
1894 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1895 Holder.getStringPool().emitStringOffsetsTableHeader(
1896 *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(),
1897 Holder.getStringOffsetsStartSym());
1900 template <typename AccelTableT>
1901 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section,
1902 StringRef TableName) {
1903 Asm->OutStreamer->SwitchSection(Section);
1905 // Emit the full data.
1906 emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol());
1909 void DwarfDebug::emitAccelDebugNames() {
1910 // Don't emit anything if we have no compilation units to index.
1911 if (getUnits().empty())
1912 return;
1914 emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits());
1917 // Emit visible names into a hashed accelerator table section.
1918 void DwarfDebug::emitAccelNames() {
1919 emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(),
1920 "Names");
1923 // Emit objective C classes and categories into a hashed accelerator table
1924 // section.
1925 void DwarfDebug::emitAccelObjC() {
1926 emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(),
1927 "ObjC");
1930 // Emit namespace dies into a hashed accelerator table.
1931 void DwarfDebug::emitAccelNamespaces() {
1932 emitAccel(AccelNamespace,
1933 Asm->getObjFileLowering().getDwarfAccelNamespaceSection(),
1934 "namespac");
1937 // Emit type dies into a hashed accelerator table.
1938 void DwarfDebug::emitAccelTypes() {
1939 emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(),
1940 "types");
1943 // Public name handling.
1944 // The format for the various pubnames:
1946 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU
1947 // for the DIE that is named.
1949 // gnu pubnames - offset/index value/name tuples where the offset is the offset
1950 // into the CU and the index value is computed according to the type of value
1951 // for the DIE that is named.
1953 // For type units the offset is the offset of the skeleton DIE. For split dwarf
1954 // it's the offset within the debug_info/debug_types dwo section, however, the
1955 // reference in the pubname header doesn't change.
1957 /// computeIndexValue - Compute the gdb index value for the DIE and CU.
1958 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU,
1959 const DIE *Die) {
1960 // Entities that ended up only in a Type Unit reference the CU instead (since
1961 // the pub entry has offsets within the CU there's no real offset that can be
1962 // provided anyway). As it happens all such entities (namespaces and types,
1963 // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out
1964 // not to be true it would be necessary to persist this information from the
1965 // point at which the entry is added to the index data structure - since by
1966 // the time the index is built from that, the original type/namespace DIE in a
1967 // type unit has already been destroyed so it can't be queried for properties
1968 // like tag, etc.
1969 if (Die->getTag() == dwarf::DW_TAG_compile_unit)
1970 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE,
1971 dwarf::GIEL_EXTERNAL);
1972 dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC;
1974 // We could have a specification DIE that has our most of our knowledge,
1975 // look for that now.
1976 if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) {
1977 DIE &SpecDIE = SpecVal.getDIEEntry().getEntry();
1978 if (SpecDIE.findAttribute(dwarf::DW_AT_external))
1979 Linkage = dwarf::GIEL_EXTERNAL;
1980 } else if (Die->findAttribute(dwarf::DW_AT_external))
1981 Linkage = dwarf::GIEL_EXTERNAL;
1983 switch (Die->getTag()) {
1984 case dwarf::DW_TAG_class_type:
1985 case dwarf::DW_TAG_structure_type:
1986 case dwarf::DW_TAG_union_type:
1987 case dwarf::DW_TAG_enumeration_type:
1988 return dwarf::PubIndexEntryDescriptor(
1989 dwarf::GIEK_TYPE, CU->getLanguage() != dwarf::DW_LANG_C_plus_plus
1990 ? dwarf::GIEL_STATIC
1991 : dwarf::GIEL_EXTERNAL);
1992 case dwarf::DW_TAG_typedef:
1993 case dwarf::DW_TAG_base_type:
1994 case dwarf::DW_TAG_subrange_type:
1995 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC);
1996 case dwarf::DW_TAG_namespace:
1997 return dwarf::GIEK_TYPE;
1998 case dwarf::DW_TAG_subprogram:
1999 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage);
2000 case dwarf::DW_TAG_variable:
2001 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage);
2002 case dwarf::DW_TAG_enumerator:
2003 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE,
2004 dwarf::GIEL_STATIC);
2005 default:
2006 return dwarf::GIEK_NONE;
2010 /// emitDebugPubSections - Emit visible names and types into debug pubnames and
2011 /// pubtypes sections.
2012 void DwarfDebug::emitDebugPubSections() {
2013 for (const auto &NU : CUMap) {
2014 DwarfCompileUnit *TheU = NU.second;
2015 if (!TheU->hasDwarfPubSections())
2016 continue;
2018 bool GnuStyle = TheU->getCUNode()->getNameTableKind() ==
2019 DICompileUnit::DebugNameTableKind::GNU;
2021 Asm->OutStreamer->SwitchSection(
2022 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection()
2023 : Asm->getObjFileLowering().getDwarfPubNamesSection());
2024 emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames());
2026 Asm->OutStreamer->SwitchSection(
2027 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection()
2028 : Asm->getObjFileLowering().getDwarfPubTypesSection());
2029 emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes());
2033 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) {
2034 if (useSectionsAsReferences())
2035 Asm->EmitDwarfOffset(CU.getSection()->getBeginSymbol(),
2036 CU.getDebugSectionOffset());
2037 else
2038 Asm->emitDwarfSymbolReference(CU.getLabelBegin());
2041 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name,
2042 DwarfCompileUnit *TheU,
2043 const StringMap<const DIE *> &Globals) {
2044 if (auto *Skeleton = TheU->getSkeleton())
2045 TheU = Skeleton;
2047 // Emit the header.
2048 Asm->OutStreamer->AddComment("Length of Public " + Name + " Info");
2049 MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin");
2050 MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end");
2051 Asm->EmitLabelDifference(EndLabel, BeginLabel, 4);
2053 Asm->OutStreamer->EmitLabel(BeginLabel);
2055 Asm->OutStreamer->AddComment("DWARF Version");
2056 Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION);
2058 Asm->OutStreamer->AddComment("Offset of Compilation Unit Info");
2059 emitSectionReference(*TheU);
2061 Asm->OutStreamer->AddComment("Compilation Unit Length");
2062 Asm->emitInt32(TheU->getLength());
2064 // Emit the pubnames for this compilation unit.
2065 for (const auto &GI : Globals) {
2066 const char *Name = GI.getKeyData();
2067 const DIE *Entity = GI.second;
2069 Asm->OutStreamer->AddComment("DIE offset");
2070 Asm->emitInt32(Entity->getOffset());
2072 if (GnuStyle) {
2073 dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity);
2074 Asm->OutStreamer->AddComment(
2075 Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) +
2076 ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage));
2077 Asm->emitInt8(Desc.toBits());
2080 Asm->OutStreamer->AddComment("External Name");
2081 Asm->OutStreamer->EmitBytes(StringRef(Name, GI.getKeyLength() + 1));
2084 Asm->OutStreamer->AddComment("End Mark");
2085 Asm->emitInt32(0);
2086 Asm->OutStreamer->EmitLabel(EndLabel);
2089 /// Emit null-terminated strings into a debug str section.
2090 void DwarfDebug::emitDebugStr() {
2091 MCSection *StringOffsetsSection = nullptr;
2092 if (useSegmentedStringOffsetsTable()) {
2093 emitStringOffsetsTableHeader();
2094 StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection();
2096 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2097 Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(),
2098 StringOffsetsSection, /* UseRelativeOffsets = */ true);
2101 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer,
2102 const DebugLocStream::Entry &Entry,
2103 const DwarfCompileUnit *CU) {
2104 auto &&Comments = DebugLocs.getComments(Entry);
2105 auto Comment = Comments.begin();
2106 auto End = Comments.end();
2108 // The expressions are inserted into a byte stream rather early (see
2109 // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that
2110 // need to reference a base_type DIE the offset of that DIE is not yet known.
2111 // To deal with this we instead insert a placeholder early and then extract
2112 // it here and replace it with the real reference.
2113 unsigned PtrSize = Asm->MAI->getCodePointerSize();
2114 DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(),
2115 DebugLocs.getBytes(Entry).size()),
2116 Asm->getDataLayout().isLittleEndian(), PtrSize);
2117 DWARFExpression Expr(Data, getDwarfVersion(), PtrSize);
2119 using Encoding = DWARFExpression::Operation::Encoding;
2120 uint64_t Offset = 0;
2121 for (auto &Op : Expr) {
2122 assert(Op.getCode() != dwarf::DW_OP_const_type &&
2123 "3 operand ops not yet supported");
2124 Streamer.EmitInt8(Op.getCode(), Comment != End ? *(Comment++) : "");
2125 Offset++;
2126 for (unsigned I = 0; I < 2; ++I) {
2127 if (Op.getDescription().Op[I] == Encoding::SizeNA)
2128 continue;
2129 if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) {
2130 if (CU) {
2131 uint64_t Offset = CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset();
2132 assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit");
2133 Asm->EmitULEB128(Offset, nullptr, ULEB128PadSize);
2134 } else {
2135 // Emit a reference to the 'generic type'.
2136 Asm->EmitULEB128(0, nullptr, ULEB128PadSize);
2138 // Make sure comments stay aligned.
2139 for (unsigned J = 0; J < ULEB128PadSize; ++J)
2140 if (Comment != End)
2141 Comment++;
2142 } else {
2143 for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J)
2144 Streamer.EmitInt8(Data.getData()[J], Comment != End ? *(Comment++) : "");
2146 Offset = Op.getOperandEndOffset(I);
2148 assert(Offset == Op.getEndOffset());
2152 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT,
2153 const DbgValueLoc &Value,
2154 DwarfExpression &DwarfExpr) {
2155 auto *DIExpr = Value.getExpression();
2156 DIExpressionCursor ExprCursor(DIExpr);
2157 DwarfExpr.addFragmentOffset(DIExpr);
2158 // Regular entry.
2159 if (Value.isInt()) {
2160 if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed ||
2161 BT->getEncoding() == dwarf::DW_ATE_signed_char))
2162 DwarfExpr.addSignedConstant(Value.getInt());
2163 else
2164 DwarfExpr.addUnsignedConstant(Value.getInt());
2165 } else if (Value.isLocation()) {
2166 MachineLocation Location = Value.getLoc();
2167 if (Location.isIndirect())
2168 DwarfExpr.setMemoryLocationKind();
2169 DIExpressionCursor Cursor(DIExpr);
2171 if (DIExpr->isEntryValue()) {
2172 DwarfExpr.setEntryValueFlag();
2173 DwarfExpr.addEntryValueExpression(Cursor);
2176 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
2177 if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg()))
2178 return;
2179 return DwarfExpr.addExpression(std::move(Cursor));
2180 } else if (Value.isConstantFP()) {
2181 APInt RawBytes = Value.getConstantFP()->getValueAPF().bitcastToAPInt();
2182 DwarfExpr.addUnsignedConstant(RawBytes);
2184 DwarfExpr.addExpression(std::move(ExprCursor));
2187 void DebugLocEntry::finalize(const AsmPrinter &AP,
2188 DebugLocStream::ListBuilder &List,
2189 const DIBasicType *BT,
2190 DwarfCompileUnit &TheCU) {
2191 assert(!Values.empty() &&
2192 "location list entries without values are redundant");
2193 assert(Begin != End && "unexpected location list entry with empty range");
2194 DebugLocStream::EntryBuilder Entry(List, Begin, End);
2195 BufferByteStreamer Streamer = Entry.getStreamer();
2196 DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU);
2197 const DbgValueLoc &Value = Values[0];
2198 if (Value.isFragment()) {
2199 // Emit all fragments that belong to the same variable and range.
2200 assert(llvm::all_of(Values, [](DbgValueLoc P) {
2201 return P.isFragment();
2202 }) && "all values are expected to be fragments");
2203 assert(std::is_sorted(Values.begin(), Values.end()) &&
2204 "fragments are expected to be sorted");
2206 for (auto Fragment : Values)
2207 DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr);
2209 } else {
2210 assert(Values.size() == 1 && "only fragments may have >1 value");
2211 DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr);
2213 DwarfExpr.finalize();
2216 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry,
2217 const DwarfCompileUnit *CU) {
2218 // Emit the size.
2219 Asm->OutStreamer->AddComment("Loc expr size");
2220 if (getDwarfVersion() >= 5)
2221 Asm->EmitULEB128(DebugLocs.getBytes(Entry).size());
2222 else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max())
2223 Asm->emitInt16(DebugLocs.getBytes(Entry).size());
2224 else {
2225 // The entry is too big to fit into 16 bit, drop it as there is nothing we
2226 // can do.
2227 Asm->emitInt16(0);
2228 return;
2230 // Emit the entry.
2231 APByteStreamer Streamer(*Asm);
2232 emitDebugLocEntry(Streamer, Entry, CU);
2235 // Emit the common part of the DWARF 5 range/locations list tables header.
2236 static void emitListsTableHeaderStart(AsmPrinter *Asm, const DwarfFile &Holder,
2237 MCSymbol *TableStart,
2238 MCSymbol *TableEnd) {
2239 // Build the table header, which starts with the length field.
2240 Asm->OutStreamer->AddComment("Length");
2241 Asm->EmitLabelDifference(TableEnd, TableStart, 4);
2242 Asm->OutStreamer->EmitLabel(TableStart);
2243 // Version number (DWARF v5 and later).
2244 Asm->OutStreamer->AddComment("Version");
2245 Asm->emitInt16(Asm->OutStreamer->getContext().getDwarfVersion());
2246 // Address size.
2247 Asm->OutStreamer->AddComment("Address size");
2248 Asm->emitInt8(Asm->MAI->getCodePointerSize());
2249 // Segment selector size.
2250 Asm->OutStreamer->AddComment("Segment selector size");
2251 Asm->emitInt8(0);
2254 // Emit the header of a DWARF 5 range list table list table. Returns the symbol
2255 // that designates the end of the table for the caller to emit when the table is
2256 // complete.
2257 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm,
2258 const DwarfFile &Holder) {
2259 MCSymbol *TableStart = Asm->createTempSymbol("debug_rnglist_table_start");
2260 MCSymbol *TableEnd = Asm->createTempSymbol("debug_rnglist_table_end");
2261 emitListsTableHeaderStart(Asm, Holder, TableStart, TableEnd);
2263 Asm->OutStreamer->AddComment("Offset entry count");
2264 Asm->emitInt32(Holder.getRangeLists().size());
2265 Asm->OutStreamer->EmitLabel(Holder.getRnglistsTableBaseSym());
2267 for (const RangeSpanList &List : Holder.getRangeLists())
2268 Asm->EmitLabelDifference(List.getSym(), Holder.getRnglistsTableBaseSym(),
2271 return TableEnd;
2274 // Emit the header of a DWARF 5 locations list table. Returns the symbol that
2275 // designates the end of the table for the caller to emit when the table is
2276 // complete.
2277 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm,
2278 const DwarfFile &Holder) {
2279 MCSymbol *TableStart = Asm->createTempSymbol("debug_loclist_table_start");
2280 MCSymbol *TableEnd = Asm->createTempSymbol("debug_loclist_table_end");
2281 emitListsTableHeaderStart(Asm, Holder, TableStart, TableEnd);
2283 // FIXME: Generate the offsets table and use DW_FORM_loclistx with the
2284 // DW_AT_loclists_base attribute. Until then set the number of offsets to 0.
2285 Asm->OutStreamer->AddComment("Offset entry count");
2286 Asm->emitInt32(0);
2287 Asm->OutStreamer->EmitLabel(Holder.getLoclistsTableBaseSym());
2289 return TableEnd;
2292 // Emit locations into the .debug_loc/.debug_rnglists section.
2293 void DwarfDebug::emitDebugLoc() {
2294 if (DebugLocs.getLists().empty())
2295 return;
2297 bool IsLocLists = getDwarfVersion() >= 5;
2298 MCSymbol *TableEnd = nullptr;
2299 if (IsLocLists) {
2300 Asm->OutStreamer->SwitchSection(
2301 Asm->getObjFileLowering().getDwarfLoclistsSection());
2302 TableEnd = emitLoclistsTableHeader(Asm, useSplitDwarf() ? SkeletonHolder
2303 : InfoHolder);
2304 } else {
2305 Asm->OutStreamer->SwitchSection(
2306 Asm->getObjFileLowering().getDwarfLocSection());
2309 unsigned char Size = Asm->MAI->getCodePointerSize();
2310 for (const auto &List : DebugLocs.getLists()) {
2311 Asm->OutStreamer->EmitLabel(List.Label);
2313 const DwarfCompileUnit *CU = List.CU;
2314 const MCSymbol *Base = CU->getBaseAddress();
2315 for (const auto &Entry : DebugLocs.getEntries(List)) {
2316 if (Base) {
2317 // Set up the range. This range is relative to the entry point of the
2318 // compile unit. This is a hard coded 0 for low_pc when we're emitting
2319 // ranges, or the DW_AT_low_pc on the compile unit otherwise.
2320 if (IsLocLists) {
2321 Asm->OutStreamer->AddComment("DW_LLE_offset_pair");
2322 Asm->OutStreamer->EmitIntValue(dwarf::DW_LLE_offset_pair, 1);
2323 Asm->OutStreamer->AddComment(" starting offset");
2324 Asm->EmitLabelDifferenceAsULEB128(Entry.BeginSym, Base);
2325 Asm->OutStreamer->AddComment(" ending offset");
2326 Asm->EmitLabelDifferenceAsULEB128(Entry.EndSym, Base);
2327 } else {
2328 Asm->EmitLabelDifference(Entry.BeginSym, Base, Size);
2329 Asm->EmitLabelDifference(Entry.EndSym, Base, Size);
2332 emitDebugLocEntryLocation(Entry, CU);
2333 continue;
2336 // We have no base address.
2337 if (IsLocLists) {
2338 // TODO: Use DW_LLE_base_addressx + DW_LLE_offset_pair, or
2339 // DW_LLE_startx_length in case if there is only a single range.
2340 // That should reduce the size of the debug data emited.
2341 // For now just use the DW_LLE_startx_length for all cases.
2342 Asm->OutStreamer->AddComment("DW_LLE_startx_length");
2343 Asm->emitInt8(dwarf::DW_LLE_startx_length);
2344 Asm->OutStreamer->AddComment(" start idx");
2345 Asm->EmitULEB128(AddrPool.getIndex(Entry.BeginSym));
2346 Asm->OutStreamer->AddComment(" length");
2347 Asm->EmitLabelDifferenceAsULEB128(Entry.EndSym, Entry.BeginSym);
2348 } else {
2349 Asm->OutStreamer->EmitSymbolValue(Entry.BeginSym, Size);
2350 Asm->OutStreamer->EmitSymbolValue(Entry.EndSym, Size);
2353 emitDebugLocEntryLocation(Entry, CU);
2356 if (IsLocLists) {
2357 // .debug_loclists section ends with DW_LLE_end_of_list.
2358 Asm->OutStreamer->AddComment("DW_LLE_end_of_list");
2359 Asm->OutStreamer->EmitIntValue(dwarf::DW_LLE_end_of_list, 1);
2360 } else {
2361 // Terminate the .debug_loc list with two 0 values.
2362 Asm->OutStreamer->EmitIntValue(0, Size);
2363 Asm->OutStreamer->EmitIntValue(0, Size);
2367 if (TableEnd)
2368 Asm->OutStreamer->EmitLabel(TableEnd);
2371 void DwarfDebug::emitDebugLocDWO() {
2372 for (const auto &List : DebugLocs.getLists()) {
2373 Asm->OutStreamer->SwitchSection(
2374 Asm->getObjFileLowering().getDwarfLocDWOSection());
2375 Asm->OutStreamer->EmitLabel(List.Label);
2376 for (const auto &Entry : DebugLocs.getEntries(List)) {
2377 // GDB only supports startx_length in pre-standard split-DWARF.
2378 // (in v5 standard loclists, it currently* /only/ supports base_address +
2379 // offset_pair, so the implementations can't really share much since they
2380 // need to use different representations)
2381 // * as of October 2018, at least
2382 // Ideally/in v5, this could use SectionLabels to reuse existing addresses
2383 // in the address pool to minimize object size/relocations.
2384 Asm->emitInt8(dwarf::DW_LLE_startx_length);
2385 unsigned idx = AddrPool.getIndex(Entry.BeginSym);
2386 Asm->EmitULEB128(idx);
2387 Asm->EmitLabelDifference(Entry.EndSym, Entry.BeginSym, 4);
2389 emitDebugLocEntryLocation(Entry, List.CU);
2391 Asm->emitInt8(dwarf::DW_LLE_end_of_list);
2395 struct ArangeSpan {
2396 const MCSymbol *Start, *End;
2399 // Emit a debug aranges section, containing a CU lookup for any
2400 // address we can tie back to a CU.
2401 void DwarfDebug::emitDebugARanges() {
2402 // Provides a unique id per text section.
2403 MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap;
2405 // Filter labels by section.
2406 for (const SymbolCU &SCU : ArangeLabels) {
2407 if (SCU.Sym->isInSection()) {
2408 // Make a note of this symbol and it's section.
2409 MCSection *Section = &SCU.Sym->getSection();
2410 if (!Section->getKind().isMetadata())
2411 SectionMap[Section].push_back(SCU);
2412 } else {
2413 // Some symbols (e.g. common/bss on mach-o) can have no section but still
2414 // appear in the output. This sucks as we rely on sections to build
2415 // arange spans. We can do it without, but it's icky.
2416 SectionMap[nullptr].push_back(SCU);
2420 DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans;
2422 for (auto &I : SectionMap) {
2423 MCSection *Section = I.first;
2424 SmallVector<SymbolCU, 8> &List = I.second;
2425 if (List.size() < 1)
2426 continue;
2428 // If we have no section (e.g. common), just write out
2429 // individual spans for each symbol.
2430 if (!Section) {
2431 for (const SymbolCU &Cur : List) {
2432 ArangeSpan Span;
2433 Span.Start = Cur.Sym;
2434 Span.End = nullptr;
2435 assert(Cur.CU);
2436 Spans[Cur.CU].push_back(Span);
2438 continue;
2441 // Sort the symbols by offset within the section.
2442 llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) {
2443 unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0;
2444 unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0;
2446 // Symbols with no order assigned should be placed at the end.
2447 // (e.g. section end labels)
2448 if (IA == 0)
2449 return false;
2450 if (IB == 0)
2451 return true;
2452 return IA < IB;
2455 // Insert a final terminator.
2456 List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section)));
2458 // Build spans between each label.
2459 const MCSymbol *StartSym = List[0].Sym;
2460 for (size_t n = 1, e = List.size(); n < e; n++) {
2461 const SymbolCU &Prev = List[n - 1];
2462 const SymbolCU &Cur = List[n];
2464 // Try and build the longest span we can within the same CU.
2465 if (Cur.CU != Prev.CU) {
2466 ArangeSpan Span;
2467 Span.Start = StartSym;
2468 Span.End = Cur.Sym;
2469 assert(Prev.CU);
2470 Spans[Prev.CU].push_back(Span);
2471 StartSym = Cur.Sym;
2476 // Start the dwarf aranges section.
2477 Asm->OutStreamer->SwitchSection(
2478 Asm->getObjFileLowering().getDwarfARangesSection());
2480 unsigned PtrSize = Asm->MAI->getCodePointerSize();
2482 // Build a list of CUs used.
2483 std::vector<DwarfCompileUnit *> CUs;
2484 for (const auto &it : Spans) {
2485 DwarfCompileUnit *CU = it.first;
2486 CUs.push_back(CU);
2489 // Sort the CU list (again, to ensure consistent output order).
2490 llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) {
2491 return A->getUniqueID() < B->getUniqueID();
2494 // Emit an arange table for each CU we used.
2495 for (DwarfCompileUnit *CU : CUs) {
2496 std::vector<ArangeSpan> &List = Spans[CU];
2498 // Describe the skeleton CU's offset and length, not the dwo file's.
2499 if (auto *Skel = CU->getSkeleton())
2500 CU = Skel;
2502 // Emit size of content not including length itself.
2503 unsigned ContentSize =
2504 sizeof(int16_t) + // DWARF ARange version number
2505 sizeof(int32_t) + // Offset of CU in the .debug_info section
2506 sizeof(int8_t) + // Pointer Size (in bytes)
2507 sizeof(int8_t); // Segment Size (in bytes)
2509 unsigned TupleSize = PtrSize * 2;
2511 // 7.20 in the Dwarf specs requires the table to be aligned to a tuple.
2512 unsigned Padding = offsetToAlignment(sizeof(int32_t) + ContentSize,
2513 llvm::Align(TupleSize));
2515 ContentSize += Padding;
2516 ContentSize += (List.size() + 1) * TupleSize;
2518 // For each compile unit, write the list of spans it covers.
2519 Asm->OutStreamer->AddComment("Length of ARange Set");
2520 Asm->emitInt32(ContentSize);
2521 Asm->OutStreamer->AddComment("DWARF Arange version number");
2522 Asm->emitInt16(dwarf::DW_ARANGES_VERSION);
2523 Asm->OutStreamer->AddComment("Offset Into Debug Info Section");
2524 emitSectionReference(*CU);
2525 Asm->OutStreamer->AddComment("Address Size (in bytes)");
2526 Asm->emitInt8(PtrSize);
2527 Asm->OutStreamer->AddComment("Segment Size (in bytes)");
2528 Asm->emitInt8(0);
2530 Asm->OutStreamer->emitFill(Padding, 0xff);
2532 for (const ArangeSpan &Span : List) {
2533 Asm->EmitLabelReference(Span.Start, PtrSize);
2535 // Calculate the size as being from the span start to it's end.
2536 if (Span.End) {
2537 Asm->EmitLabelDifference(Span.End, Span.Start, PtrSize);
2538 } else {
2539 // For symbols without an end marker (e.g. common), we
2540 // write a single arange entry containing just that one symbol.
2541 uint64_t Size = SymSize[Span.Start];
2542 if (Size == 0)
2543 Size = 1;
2545 Asm->OutStreamer->EmitIntValue(Size, PtrSize);
2549 Asm->OutStreamer->AddComment("ARange terminator");
2550 Asm->OutStreamer->EmitIntValue(0, PtrSize);
2551 Asm->OutStreamer->EmitIntValue(0, PtrSize);
2555 /// Emit a single range list. We handle both DWARF v5 and earlier.
2556 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm,
2557 const RangeSpanList &List) {
2559 auto DwarfVersion = DD.getDwarfVersion();
2560 // Emit our symbol so we can find the beginning of the range.
2561 Asm->OutStreamer->EmitLabel(List.getSym());
2562 // Gather all the ranges that apply to the same section so they can share
2563 // a base address entry.
2564 MapVector<const MCSection *, std::vector<const RangeSpan *>> SectionRanges;
2565 // Size for our labels.
2566 auto Size = Asm->MAI->getCodePointerSize();
2568 for (const RangeSpan &Range : List.getRanges())
2569 SectionRanges[&Range.getStart()->getSection()].push_back(&Range);
2571 const DwarfCompileUnit &CU = List.getCU();
2572 const MCSymbol *CUBase = CU.getBaseAddress();
2573 bool BaseIsSet = false;
2574 for (const auto &P : SectionRanges) {
2575 // Don't bother with a base address entry if there's only one range in
2576 // this section in this range list - for example ranges for a CU will
2577 // usually consist of single regions from each of many sections
2578 // (-ffunction-sections, or just C++ inline functions) except under LTO
2579 // or optnone where there may be holes in a single CU's section
2580 // contributions.
2581 auto *Base = CUBase;
2582 if (!Base && (P.second.size() > 1 || DwarfVersion < 5) &&
2583 (CU.getCUNode()->getRangesBaseAddress() || DwarfVersion >= 5)) {
2584 BaseIsSet = true;
2585 // FIXME/use care: This may not be a useful base address if it's not
2586 // the lowest address/range in this object.
2587 Base = P.second.front()->getStart();
2588 if (DwarfVersion >= 5) {
2589 Base = DD.getSectionLabel(&Base->getSection());
2590 Asm->OutStreamer->AddComment("DW_RLE_base_addressx");
2591 Asm->OutStreamer->EmitIntValue(dwarf::DW_RLE_base_addressx, 1);
2592 Asm->OutStreamer->AddComment(" base address index");
2593 Asm->EmitULEB128(DD.getAddressPool().getIndex(Base));
2594 } else {
2595 Asm->OutStreamer->EmitIntValue(-1, Size);
2596 Asm->OutStreamer->AddComment(" base address");
2597 Asm->OutStreamer->EmitSymbolValue(Base, Size);
2599 } else if (BaseIsSet && DwarfVersion < 5) {
2600 BaseIsSet = false;
2601 assert(!Base);
2602 Asm->OutStreamer->EmitIntValue(-1, Size);
2603 Asm->OutStreamer->EmitIntValue(0, Size);
2606 for (const auto *RS : P.second) {
2607 const MCSymbol *Begin = RS->getStart();
2608 const MCSymbol *End = RS->getEnd();
2609 assert(Begin && "Range without a begin symbol?");
2610 assert(End && "Range without an end symbol?");
2611 if (Base) {
2612 if (DwarfVersion >= 5) {
2613 // Emit DW_RLE_offset_pair when we have a base.
2614 Asm->OutStreamer->AddComment("DW_RLE_offset_pair");
2615 Asm->OutStreamer->EmitIntValue(dwarf::DW_RLE_offset_pair, 1);
2616 Asm->OutStreamer->AddComment(" starting offset");
2617 Asm->EmitLabelDifferenceAsULEB128(Begin, Base);
2618 Asm->OutStreamer->AddComment(" ending offset");
2619 Asm->EmitLabelDifferenceAsULEB128(End, Base);
2620 } else {
2621 Asm->EmitLabelDifference(Begin, Base, Size);
2622 Asm->EmitLabelDifference(End, Base, Size);
2624 } else if (DwarfVersion >= 5) {
2625 Asm->OutStreamer->AddComment("DW_RLE_startx_length");
2626 Asm->OutStreamer->EmitIntValue(dwarf::DW_RLE_startx_length, 1);
2627 Asm->OutStreamer->AddComment(" start index");
2628 Asm->EmitULEB128(DD.getAddressPool().getIndex(Begin));
2629 Asm->OutStreamer->AddComment(" length");
2630 Asm->EmitLabelDifferenceAsULEB128(End, Begin);
2631 } else {
2632 Asm->OutStreamer->EmitSymbolValue(Begin, Size);
2633 Asm->OutStreamer->EmitSymbolValue(End, Size);
2637 if (DwarfVersion >= 5) {
2638 Asm->OutStreamer->AddComment("DW_RLE_end_of_list");
2639 Asm->OutStreamer->EmitIntValue(dwarf::DW_RLE_end_of_list, 1);
2640 } else {
2641 // Terminate the list with two 0 values.
2642 Asm->OutStreamer->EmitIntValue(0, Size);
2643 Asm->OutStreamer->EmitIntValue(0, Size);
2647 static void emitDebugRangesImpl(DwarfDebug &DD, AsmPrinter *Asm,
2648 const DwarfFile &Holder, MCSymbol *TableEnd) {
2649 for (const RangeSpanList &List : Holder.getRangeLists())
2650 emitRangeList(DD, Asm, List);
2652 if (TableEnd)
2653 Asm->OutStreamer->EmitLabel(TableEnd);
2656 /// Emit address ranges into the .debug_ranges section or into the DWARF v5
2657 /// .debug_rnglists section.
2658 void DwarfDebug::emitDebugRanges() {
2659 if (CUMap.empty())
2660 return;
2662 const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2664 if (Holder.getRangeLists().empty())
2665 return;
2667 assert(useRangesSection());
2668 assert(llvm::none_of(CUMap, [](const decltype(CUMap)::value_type &Pair) {
2669 return Pair.second->getCUNode()->isDebugDirectivesOnly();
2670 }));
2672 // Start the dwarf ranges section.
2673 MCSymbol *TableEnd = nullptr;
2674 if (getDwarfVersion() >= 5) {
2675 Asm->OutStreamer->SwitchSection(
2676 Asm->getObjFileLowering().getDwarfRnglistsSection());
2677 TableEnd = emitRnglistsTableHeader(Asm, Holder);
2678 } else
2679 Asm->OutStreamer->SwitchSection(
2680 Asm->getObjFileLowering().getDwarfRangesSection());
2682 emitDebugRangesImpl(*this, Asm, Holder, TableEnd);
2685 void DwarfDebug::emitDebugRangesDWO() {
2686 assert(useSplitDwarf());
2688 if (CUMap.empty())
2689 return;
2691 const auto &Holder = InfoHolder;
2693 if (Holder.getRangeLists().empty())
2694 return;
2696 assert(getDwarfVersion() >= 5);
2697 assert(useRangesSection());
2698 assert(llvm::none_of(CUMap, [](const decltype(CUMap)::value_type &Pair) {
2699 return Pair.second->getCUNode()->isDebugDirectivesOnly();
2700 }));
2702 // Start the dwarf ranges section.
2703 Asm->OutStreamer->SwitchSection(
2704 Asm->getObjFileLowering().getDwarfRnglistsDWOSection());
2705 MCSymbol *TableEnd = emitRnglistsTableHeader(Asm, Holder);
2707 emitDebugRangesImpl(*this, Asm, Holder, TableEnd);
2710 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) {
2711 for (auto *MN : Nodes) {
2712 if (auto *M = dyn_cast<DIMacro>(MN))
2713 emitMacro(*M);
2714 else if (auto *F = dyn_cast<DIMacroFile>(MN))
2715 emitMacroFile(*F, U);
2716 else
2717 llvm_unreachable("Unexpected DI type!");
2721 void DwarfDebug::emitMacro(DIMacro &M) {
2722 Asm->EmitULEB128(M.getMacinfoType());
2723 Asm->EmitULEB128(M.getLine());
2724 StringRef Name = M.getName();
2725 StringRef Value = M.getValue();
2726 Asm->OutStreamer->EmitBytes(Name);
2727 if (!Value.empty()) {
2728 // There should be one space between macro name and macro value.
2729 Asm->emitInt8(' ');
2730 Asm->OutStreamer->EmitBytes(Value);
2732 Asm->emitInt8('\0');
2735 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) {
2736 assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file);
2737 Asm->EmitULEB128(dwarf::DW_MACINFO_start_file);
2738 Asm->EmitULEB128(F.getLine());
2739 Asm->EmitULEB128(U.getOrCreateSourceID(F.getFile()));
2740 handleMacroNodes(F.getElements(), U);
2741 Asm->EmitULEB128(dwarf::DW_MACINFO_end_file);
2744 /// Emit macros into a debug macinfo section.
2745 void DwarfDebug::emitDebugMacinfo() {
2746 if (CUMap.empty())
2747 return;
2749 if (llvm::all_of(CUMap, [](const decltype(CUMap)::value_type &Pair) {
2750 return Pair.second->getCUNode()->isDebugDirectivesOnly();
2752 return;
2754 // Start the dwarf macinfo section.
2755 Asm->OutStreamer->SwitchSection(
2756 Asm->getObjFileLowering().getDwarfMacinfoSection());
2758 for (const auto &P : CUMap) {
2759 auto &TheCU = *P.second;
2760 if (TheCU.getCUNode()->isDebugDirectivesOnly())
2761 continue;
2762 auto *SkCU = TheCU.getSkeleton();
2763 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
2764 auto *CUNode = cast<DICompileUnit>(P.first);
2765 DIMacroNodeArray Macros = CUNode->getMacros();
2766 if (!Macros.empty()) {
2767 Asm->OutStreamer->EmitLabel(U.getMacroLabelBegin());
2768 handleMacroNodes(Macros, U);
2771 Asm->OutStreamer->AddComment("End Of Macro List Mark");
2772 Asm->emitInt8(0);
2775 // DWARF5 Experimental Separate Dwarf emitters.
2777 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die,
2778 std::unique_ptr<DwarfCompileUnit> NewU) {
2780 if (!CompilationDir.empty())
2781 NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
2783 addGnuPubAttributes(*NewU, Die);
2785 SkeletonHolder.addUnit(std::move(NewU));
2788 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) {
2790 auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
2791 CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder);
2792 DwarfCompileUnit &NewCU = *OwnedUnit;
2793 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
2795 NewCU.initStmtList();
2797 if (useSegmentedStringOffsetsTable())
2798 NewCU.addStringOffsetsStart();
2800 initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit));
2802 return NewCU;
2805 // Emit the .debug_info.dwo section for separated dwarf. This contains the
2806 // compile units that would normally be in debug_info.
2807 void DwarfDebug::emitDebugInfoDWO() {
2808 assert(useSplitDwarf() && "No split dwarf debug info?");
2809 // Don't emit relocations into the dwo file.
2810 InfoHolder.emitUnits(/* UseOffsets */ true);
2813 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the
2814 // abbreviations for the .debug_info.dwo section.
2815 void DwarfDebug::emitDebugAbbrevDWO() {
2816 assert(useSplitDwarf() && "No split dwarf?");
2817 InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection());
2820 void DwarfDebug::emitDebugLineDWO() {
2821 assert(useSplitDwarf() && "No split dwarf?");
2822 SplitTypeUnitFileTable.Emit(
2823 *Asm->OutStreamer, MCDwarfLineTableParams(),
2824 Asm->getObjFileLowering().getDwarfLineDWOSection());
2827 void DwarfDebug::emitStringOffsetsTableHeaderDWO() {
2828 assert(useSplitDwarf() && "No split dwarf?");
2829 InfoHolder.getStringPool().emitStringOffsetsTableHeader(
2830 *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(),
2831 InfoHolder.getStringOffsetsStartSym());
2834 // Emit the .debug_str.dwo section for separated dwarf. This contains the
2835 // string section and is identical in format to traditional .debug_str
2836 // sections.
2837 void DwarfDebug::emitDebugStrDWO() {
2838 if (useSegmentedStringOffsetsTable())
2839 emitStringOffsetsTableHeaderDWO();
2840 assert(useSplitDwarf() && "No split dwarf?");
2841 MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection();
2842 InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(),
2843 OffSec, /* UseRelativeOffsets = */ false);
2846 // Emit address pool.
2847 void DwarfDebug::emitDebugAddr() {
2848 AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection());
2851 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) {
2852 if (!useSplitDwarf())
2853 return nullptr;
2854 const DICompileUnit *DIUnit = CU.getCUNode();
2855 SplitTypeUnitFileTable.maybeSetRootFile(
2856 DIUnit->getDirectory(), DIUnit->getFilename(),
2857 CU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource());
2858 return &SplitTypeUnitFileTable;
2861 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) {
2862 MD5 Hash;
2863 Hash.update(Identifier);
2864 // ... take the least significant 8 bytes and return those. Our MD5
2865 // implementation always returns its results in little endian, so we actually
2866 // need the "high" word.
2867 MD5::MD5Result Result;
2868 Hash.final(Result);
2869 return Result.high();
2872 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
2873 StringRef Identifier, DIE &RefDie,
2874 const DICompositeType *CTy) {
2875 // Fast path if we're building some type units and one has already used the
2876 // address pool we know we're going to throw away all this work anyway, so
2877 // don't bother building dependent types.
2878 if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed())
2879 return;
2881 auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0));
2882 if (!Ins.second) {
2883 CU.addDIETypeSignature(RefDie, Ins.first->second);
2884 return;
2887 bool TopLevelType = TypeUnitsUnderConstruction.empty();
2888 AddrPool.resetUsedFlag();
2890 auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder,
2891 getDwoLineTable(CU));
2892 DwarfTypeUnit &NewTU = *OwnedUnit;
2893 DIE &UnitDie = NewTU.getUnitDie();
2894 TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy);
2896 NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
2897 CU.getLanguage());
2899 uint64_t Signature = makeTypeSignature(Identifier);
2900 NewTU.setTypeSignature(Signature);
2901 Ins.first->second = Signature;
2903 if (useSplitDwarf()) {
2904 MCSection *Section =
2905 getDwarfVersion() <= 4
2906 ? Asm->getObjFileLowering().getDwarfTypesDWOSection()
2907 : Asm->getObjFileLowering().getDwarfInfoDWOSection();
2908 NewTU.setSection(Section);
2909 } else {
2910 MCSection *Section =
2911 getDwarfVersion() <= 4
2912 ? Asm->getObjFileLowering().getDwarfTypesSection(Signature)
2913 : Asm->getObjFileLowering().getDwarfInfoSection(Signature);
2914 NewTU.setSection(Section);
2915 // Non-split type units reuse the compile unit's line table.
2916 CU.applyStmtList(UnitDie);
2919 // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type
2920 // units.
2921 if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
2922 NewTU.addStringOffsetsStart();
2924 NewTU.setType(NewTU.createTypeDIE(CTy));
2926 if (TopLevelType) {
2927 auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction);
2928 TypeUnitsUnderConstruction.clear();
2930 // Types referencing entries in the address table cannot be placed in type
2931 // units.
2932 if (AddrPool.hasBeenUsed()) {
2934 // Remove all the types built while building this type.
2935 // This is pessimistic as some of these types might not be dependent on
2936 // the type that used an address.
2937 for (const auto &TU : TypeUnitsToAdd)
2938 TypeSignatures.erase(TU.second);
2940 // Construct this type in the CU directly.
2941 // This is inefficient because all the dependent types will be rebuilt
2942 // from scratch, including building them in type units, discovering that
2943 // they depend on addresses, throwing them out and rebuilding them.
2944 CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy));
2945 return;
2948 // If the type wasn't dependent on fission addresses, finish adding the type
2949 // and all its dependent types.
2950 for (auto &TU : TypeUnitsToAdd) {
2951 InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get());
2952 InfoHolder.emitUnit(TU.first.get(), useSplitDwarf());
2955 CU.addDIETypeSignature(RefDie, Signature);
2958 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD)
2959 : DD(DD),
2960 TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)) {
2961 DD->TypeUnitsUnderConstruction.clear();
2962 assert(TypeUnitsUnderConstruction.empty() || !DD->AddrPool.hasBeenUsed());
2965 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() {
2966 DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction);
2967 DD->AddrPool.resetUsedFlag();
2970 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() {
2971 return NonTypeUnitContext(this);
2974 // Add the Name along with its companion DIE to the appropriate accelerator
2975 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for
2976 // AccelTableKind::Apple, we use the table we got as an argument). If
2977 // accelerator tables are disabled, this function does nothing.
2978 template <typename DataT>
2979 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU,
2980 AccelTable<DataT> &AppleAccel, StringRef Name,
2981 const DIE &Die) {
2982 if (getAccelTableKind() == AccelTableKind::None)
2983 return;
2985 if (getAccelTableKind() != AccelTableKind::Apple &&
2986 CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default)
2987 return;
2989 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2990 DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name);
2992 switch (getAccelTableKind()) {
2993 case AccelTableKind::Apple:
2994 AppleAccel.addName(Ref, Die);
2995 break;
2996 case AccelTableKind::Dwarf:
2997 AccelDebugNames.addName(Ref, Die);
2998 break;
2999 case AccelTableKind::Default:
3000 llvm_unreachable("Default should have already been resolved.");
3001 case AccelTableKind::None:
3002 llvm_unreachable("None handled above");
3006 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name,
3007 const DIE &Die) {
3008 addAccelNameImpl(CU, AccelNames, Name, Die);
3011 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name,
3012 const DIE &Die) {
3013 // ObjC names go only into the Apple accelerator tables.
3014 if (getAccelTableKind() == AccelTableKind::Apple)
3015 addAccelNameImpl(CU, AccelObjC, Name, Die);
3018 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name,
3019 const DIE &Die) {
3020 addAccelNameImpl(CU, AccelNamespace, Name, Die);
3023 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name,
3024 const DIE &Die, char Flags) {
3025 addAccelNameImpl(CU, AccelTypes, Name, Die);
3028 uint16_t DwarfDebug::getDwarfVersion() const {
3029 return Asm->OutStreamer->getContext().getDwarfVersion();
3032 void DwarfDebug::addSectionLabel(const MCSymbol *Sym) {
3033 SectionLabels.insert(std::make_pair(&Sym->getSection(), Sym));
3036 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) {
3037 return SectionLabels.find(S)->second;