[x86] fix assert with horizontal math + broadcast of vector (PR43402)
[llvm-core.git] / lib / CodeGen / ScheduleDAGInstrs.cpp
blob735af2455d724c00635063ab1c20052546437a6b
1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This implements the ScheduleDAGInstrs class, which implements
10 /// re-scheduling of MachineInstrs.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
15 #include "llvm/ADT/IntEqClasses.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/SparseSet.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/CodeGen/LiveIntervals.h"
24 #include "llvm/CodeGen/LivePhysRegs.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineInstrBundle.h"
30 #include "llvm/CodeGen/MachineMemOperand.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/PseudoSourceValue.h"
34 #include "llvm/CodeGen/RegisterPressure.h"
35 #include "llvm/CodeGen/ScheduleDAG.h"
36 #include "llvm/CodeGen/ScheduleDFS.h"
37 #include "llvm/CodeGen/SlotIndexes.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/Config/llvm-config.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Operator.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/IR/Value.h"
48 #include "llvm/MC/LaneBitmask.h"
49 #include "llvm/MC/MCRegisterInfo.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Compiler.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/Format.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <iterator>
60 #include <string>
61 #include <utility>
62 #include <vector>
64 using namespace llvm;
66 #define DEBUG_TYPE "machine-scheduler"
68 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
69 cl::ZeroOrMore, cl::init(false),
70 cl::desc("Enable use of AA during MI DAG construction"));
72 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden,
73 cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction"));
75 // Note: the two options below might be used in tuning compile time vs
76 // output quality. Setting HugeRegion so large that it will never be
77 // reached means best-effort, but may be slow.
79 // When Stores and Loads maps (or NonAliasStores and NonAliasLoads)
80 // together hold this many SUs, a reduction of maps will be done.
81 static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden,
82 cl::init(1000), cl::desc("The limit to use while constructing the DAG "
83 "prior to scheduling, at which point a trade-off "
84 "is made to avoid excessive compile time."));
86 static cl::opt<unsigned> ReductionSize(
87 "dag-maps-reduction-size", cl::Hidden,
88 cl::desc("A huge scheduling region will have maps reduced by this many "
89 "nodes at a time. Defaults to HugeRegion / 2."));
91 static unsigned getReductionSize() {
92 // Always reduce a huge region with half of the elements, except
93 // when user sets this number explicitly.
94 if (ReductionSize.getNumOccurrences() == 0)
95 return HugeRegion / 2;
96 return ReductionSize;
99 static void dumpSUList(ScheduleDAGInstrs::SUList &L) {
100 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
101 dbgs() << "{ ";
102 for (const SUnit *su : L) {
103 dbgs() << "SU(" << su->NodeNum << ")";
104 if (su != L.back())
105 dbgs() << ", ";
107 dbgs() << "}\n";
108 #endif
111 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
112 const MachineLoopInfo *mli,
113 bool RemoveKillFlags)
114 : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()),
115 RemoveKillFlags(RemoveKillFlags),
116 UnknownValue(UndefValue::get(
117 Type::getVoidTy(mf.getFunction().getContext()))), Topo(SUnits, &ExitSU) {
118 DbgValues.clear();
120 const TargetSubtargetInfo &ST = mf.getSubtarget();
121 SchedModel.init(&ST);
124 /// If this machine instr has memory reference information and it can be
125 /// tracked to a normal reference to a known object, return the Value
126 /// for that object. This function returns false the memory location is
127 /// unknown or may alias anything.
128 static bool getUnderlyingObjectsForInstr(const MachineInstr *MI,
129 const MachineFrameInfo &MFI,
130 UnderlyingObjectsVector &Objects,
131 const DataLayout &DL) {
132 auto allMMOsOkay = [&]() {
133 for (const MachineMemOperand *MMO : MI->memoperands()) {
134 // TODO: Figure out whether isAtomic is really necessary (see D57601).
135 if (MMO->isVolatile() || MMO->isAtomic())
136 return false;
138 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) {
139 // Function that contain tail calls don't have unique PseudoSourceValue
140 // objects. Two PseudoSourceValues might refer to the same or
141 // overlapping locations. The client code calling this function assumes
142 // this is not the case. So return a conservative answer of no known
143 // object.
144 if (MFI.hasTailCall())
145 return false;
147 // For now, ignore PseudoSourceValues which may alias LLVM IR values
148 // because the code that uses this function has no way to cope with
149 // such aliases.
150 if (PSV->isAliased(&MFI))
151 return false;
153 bool MayAlias = PSV->mayAlias(&MFI);
154 Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias));
155 } else if (const Value *V = MMO->getValue()) {
156 SmallVector<Value *, 4> Objs;
157 if (!getUnderlyingObjectsForCodeGen(V, Objs, DL))
158 return false;
160 for (Value *V : Objs) {
161 assert(isIdentifiedObject(V));
162 Objects.push_back(UnderlyingObjectsVector::value_type(V, true));
164 } else
165 return false;
167 return true;
170 if (!allMMOsOkay()) {
171 Objects.clear();
172 return false;
175 return true;
178 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
179 BB = bb;
182 void ScheduleDAGInstrs::finishBlock() {
183 // Subclasses should no longer refer to the old block.
184 BB = nullptr;
187 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
188 MachineBasicBlock::iterator begin,
189 MachineBasicBlock::iterator end,
190 unsigned regioninstrs) {
191 assert(bb == BB && "startBlock should set BB");
192 RegionBegin = begin;
193 RegionEnd = end;
194 NumRegionInstrs = regioninstrs;
197 void ScheduleDAGInstrs::exitRegion() {
198 // Nothing to do.
201 void ScheduleDAGInstrs::addSchedBarrierDeps() {
202 MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr;
203 ExitSU.setInstr(ExitMI);
204 // Add dependencies on the defs and uses of the instruction.
205 if (ExitMI) {
206 for (const MachineOperand &MO : ExitMI->operands()) {
207 if (!MO.isReg() || MO.isDef()) continue;
208 Register Reg = MO.getReg();
209 if (Register::isPhysicalRegister(Reg)) {
210 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
211 } else if (Register::isVirtualRegister(Reg) && MO.readsReg()) {
212 addVRegUseDeps(&ExitSU, ExitMI->getOperandNo(&MO));
216 if (!ExitMI || (!ExitMI->isCall() && !ExitMI->isBarrier())) {
217 // For others, e.g. fallthrough, conditional branch, assume the exit
218 // uses all the registers that are livein to the successor blocks.
219 for (const MachineBasicBlock *Succ : BB->successors()) {
220 for (const auto &LI : Succ->liveins()) {
221 if (!Uses.contains(LI.PhysReg))
222 Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg));
228 /// MO is an operand of SU's instruction that defines a physical register. Adds
229 /// data dependencies from SU to any uses of the physical register.
230 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
231 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
232 assert(MO.isDef() && "expect physreg def");
234 // Ask the target if address-backscheduling is desirable, and if so how much.
235 const TargetSubtargetInfo &ST = MF.getSubtarget();
237 // Only use any non-zero latency for real defs/uses, in contrast to
238 // "fake" operands added by regalloc.
239 const MCInstrDesc *DefMIDesc = &SU->getInstr()->getDesc();
240 bool ImplicitPseudoDef = (OperIdx >= DefMIDesc->getNumOperands() &&
241 !DefMIDesc->hasImplicitDefOfPhysReg(MO.getReg()));
242 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
243 Alias.isValid(); ++Alias) {
244 if (!Uses.contains(*Alias))
245 continue;
246 for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
247 SUnit *UseSU = I->SU;
248 if (UseSU == SU)
249 continue;
251 // Adjust the dependence latency using operand def/use information,
252 // then allow the target to perform its own adjustments.
253 int UseOp = I->OpIdx;
254 MachineInstr *RegUse = nullptr;
255 SDep Dep;
256 if (UseOp < 0)
257 Dep = SDep(SU, SDep::Artificial);
258 else {
259 // Set the hasPhysRegDefs only for physreg defs that have a use within
260 // the scheduling region.
261 SU->hasPhysRegDefs = true;
262 Dep = SDep(SU, SDep::Data, *Alias);
263 RegUse = UseSU->getInstr();
265 const MCInstrDesc *UseMIDesc =
266 (RegUse ? &UseSU->getInstr()->getDesc() : nullptr);
267 bool ImplicitPseudoUse =
268 (UseMIDesc && UseOp >= ((int)UseMIDesc->getNumOperands()) &&
269 !UseMIDesc->hasImplicitUseOfPhysReg(*Alias));
270 if (!ImplicitPseudoDef && !ImplicitPseudoUse) {
271 Dep.setLatency(SchedModel.computeOperandLatency(SU->getInstr(), OperIdx,
272 RegUse, UseOp));
273 ST.adjustSchedDependency(SU, UseSU, Dep);
274 } else
275 Dep.setLatency(0);
277 UseSU->addPred(Dep);
282 /// Adds register dependencies (data, anti, and output) from this SUnit
283 /// to following instructions in the same scheduling region that depend the
284 /// physical register referenced at OperIdx.
285 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
286 MachineInstr *MI = SU->getInstr();
287 MachineOperand &MO = MI->getOperand(OperIdx);
288 Register Reg = MO.getReg();
289 // We do not need to track any dependencies for constant registers.
290 if (MRI.isConstantPhysReg(Reg))
291 return;
293 // Optionally add output and anti dependencies. For anti
294 // dependencies we use a latency of 0 because for a multi-issue
295 // target we want to allow the defining instruction to issue
296 // in the same cycle as the using instruction.
297 // TODO: Using a latency of 1 here for output dependencies assumes
298 // there's no cost for reusing registers.
299 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
300 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) {
301 if (!Defs.contains(*Alias))
302 continue;
303 for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
304 SUnit *DefSU = I->SU;
305 if (DefSU == &ExitSU)
306 continue;
307 if (DefSU != SU &&
308 (Kind != SDep::Output || !MO.isDead() ||
309 !DefSU->getInstr()->registerDefIsDead(*Alias))) {
310 if (Kind == SDep::Anti)
311 DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
312 else {
313 SDep Dep(SU, Kind, /*Reg=*/*Alias);
314 Dep.setLatency(
315 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
316 DefSU->addPred(Dep);
322 if (!MO.isDef()) {
323 SU->hasPhysRegUses = true;
324 // Either insert a new Reg2SUnits entry with an empty SUnits list, or
325 // retrieve the existing SUnits list for this register's uses.
326 // Push this SUnit on the use list.
327 Uses.insert(PhysRegSUOper(SU, OperIdx, Reg));
328 if (RemoveKillFlags)
329 MO.setIsKill(false);
330 } else {
331 addPhysRegDataDeps(SU, OperIdx);
333 // Clear previous uses and defs of this register and its subergisters.
334 for (MCSubRegIterator SubReg(Reg, TRI, true); SubReg.isValid(); ++SubReg) {
335 if (Uses.contains(*SubReg))
336 Uses.eraseAll(*SubReg);
337 if (!MO.isDead())
338 Defs.eraseAll(*SubReg);
340 if (MO.isDead() && SU->isCall) {
341 // Calls will not be reordered because of chain dependencies (see
342 // below). Since call operands are dead, calls may continue to be added
343 // to the DefList making dependence checking quadratic in the size of
344 // the block. Instead, we leave only one call at the back of the
345 // DefList.
346 Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
347 Reg2SUnitsMap::iterator B = P.first;
348 Reg2SUnitsMap::iterator I = P.second;
349 for (bool isBegin = I == B; !isBegin; /* empty */) {
350 isBegin = (--I) == B;
351 if (!I->SU->isCall)
352 break;
353 I = Defs.erase(I);
357 // Defs are pushed in the order they are visited and never reordered.
358 Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
362 LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const
364 Register Reg = MO.getReg();
365 // No point in tracking lanemasks if we don't have interesting subregisters.
366 const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
367 if (!RC.HasDisjunctSubRegs)
368 return LaneBitmask::getAll();
370 unsigned SubReg = MO.getSubReg();
371 if (SubReg == 0)
372 return RC.getLaneMask();
373 return TRI->getSubRegIndexLaneMask(SubReg);
376 bool ScheduleDAGInstrs::deadDefHasNoUse(const MachineOperand &MO) {
377 auto RegUse = CurrentVRegUses.find(MO.getReg());
378 if (RegUse == CurrentVRegUses.end())
379 return true;
380 return (RegUse->LaneMask & getLaneMaskForMO(MO)).none();
383 /// Adds register output and data dependencies from this SUnit to instructions
384 /// that occur later in the same scheduling region if they read from or write to
385 /// the virtual register defined at OperIdx.
387 /// TODO: Hoist loop induction variable increments. This has to be
388 /// reevaluated. Generally, IV scheduling should be done before coalescing.
389 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
390 MachineInstr *MI = SU->getInstr();
391 MachineOperand &MO = MI->getOperand(OperIdx);
392 Register Reg = MO.getReg();
394 LaneBitmask DefLaneMask;
395 LaneBitmask KillLaneMask;
396 if (TrackLaneMasks) {
397 bool IsKill = MO.getSubReg() == 0 || MO.isUndef();
398 DefLaneMask = getLaneMaskForMO(MO);
399 // If we have a <read-undef> flag, none of the lane values comes from an
400 // earlier instruction.
401 KillLaneMask = IsKill ? LaneBitmask::getAll() : DefLaneMask;
403 if (MO.getSubReg() != 0 && MO.isUndef()) {
404 // There may be other subregister defs on the same instruction of the same
405 // register in later operands. The lanes of other defs will now be live
406 // after this instruction, so these should not be treated as killed by the
407 // instruction even though they appear to be killed in this one operand.
408 for (int I = OperIdx + 1, E = MI->getNumOperands(); I != E; ++I) {
409 const MachineOperand &OtherMO = MI->getOperand(I);
410 if (OtherMO.isReg() && OtherMO.isDef() && OtherMO.getReg() == Reg)
411 KillLaneMask &= ~getLaneMaskForMO(OtherMO);
415 // Clear undef flag, we'll re-add it later once we know which subregister
416 // Def is first.
417 MO.setIsUndef(false);
418 } else {
419 DefLaneMask = LaneBitmask::getAll();
420 KillLaneMask = LaneBitmask::getAll();
423 if (MO.isDead()) {
424 assert(deadDefHasNoUse(MO) && "Dead defs should have no uses");
425 } else {
426 // Add data dependence to all uses we found so far.
427 const TargetSubtargetInfo &ST = MF.getSubtarget();
428 for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg),
429 E = CurrentVRegUses.end(); I != E; /*empty*/) {
430 LaneBitmask LaneMask = I->LaneMask;
431 // Ignore uses of other lanes.
432 if ((LaneMask & KillLaneMask).none()) {
433 ++I;
434 continue;
437 if ((LaneMask & DefLaneMask).any()) {
438 SUnit *UseSU = I->SU;
439 MachineInstr *Use = UseSU->getInstr();
440 SDep Dep(SU, SDep::Data, Reg);
441 Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use,
442 I->OperandIndex));
443 ST.adjustSchedDependency(SU, UseSU, Dep);
444 UseSU->addPred(Dep);
447 LaneMask &= ~KillLaneMask;
448 // If we found a Def for all lanes of this use, remove it from the list.
449 if (LaneMask.any()) {
450 I->LaneMask = LaneMask;
451 ++I;
452 } else
453 I = CurrentVRegUses.erase(I);
457 // Shortcut: Singly defined vregs do not have output/anti dependencies.
458 if (MRI.hasOneDef(Reg))
459 return;
461 // Add output dependence to the next nearest defs of this vreg.
463 // Unless this definition is dead, the output dependence should be
464 // transitively redundant with antidependencies from this definition's
465 // uses. We're conservative for now until we have a way to guarantee the uses
466 // are not eliminated sometime during scheduling. The output dependence edge
467 // is also useful if output latency exceeds def-use latency.
468 LaneBitmask LaneMask = DefLaneMask;
469 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
470 CurrentVRegDefs.end())) {
471 // Ignore defs for other lanes.
472 if ((V2SU.LaneMask & LaneMask).none())
473 continue;
474 // Add an output dependence.
475 SUnit *DefSU = V2SU.SU;
476 // Ignore additional defs of the same lanes in one instruction. This can
477 // happen because lanemasks are shared for targets with too many
478 // subregisters. We also use some representration tricks/hacks where we
479 // add super-register defs/uses, to imply that although we only access parts
480 // of the reg we care about the full one.
481 if (DefSU == SU)
482 continue;
483 SDep Dep(SU, SDep::Output, Reg);
484 Dep.setLatency(
485 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
486 DefSU->addPred(Dep);
488 // Update current definition. This can get tricky if the def was about a
489 // bigger lanemask before. We then have to shrink it and create a new
490 // VReg2SUnit for the non-overlapping part.
491 LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask;
492 LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask;
493 V2SU.SU = SU;
494 V2SU.LaneMask = OverlapMask;
495 if (NonOverlapMask.any())
496 CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU));
498 // If there was no CurrentVRegDefs entry for some lanes yet, create one.
499 if (LaneMask.any())
500 CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU));
503 /// Adds a register data dependency if the instruction that defines the
504 /// virtual register used at OperIdx is mapped to an SUnit. Add a register
505 /// antidependency from this SUnit to instructions that occur later in the same
506 /// scheduling region if they write the virtual register.
508 /// TODO: Handle ExitSU "uses" properly.
509 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
510 const MachineInstr *MI = SU->getInstr();
511 const MachineOperand &MO = MI->getOperand(OperIdx);
512 Register Reg = MO.getReg();
514 // Remember the use. Data dependencies will be added when we find the def.
515 LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO)
516 : LaneBitmask::getAll();
517 CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU));
519 // Add antidependences to the following defs of the vreg.
520 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
521 CurrentVRegDefs.end())) {
522 // Ignore defs for unrelated lanes.
523 LaneBitmask PrevDefLaneMask = V2SU.LaneMask;
524 if ((PrevDefLaneMask & LaneMask).none())
525 continue;
526 if (V2SU.SU == SU)
527 continue;
529 V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg));
533 /// Returns true if MI is an instruction we are unable to reason about
534 /// (like a call or something with unmodeled side effects).
535 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
536 return MI->isCall() || MI->hasUnmodeledSideEffects() ||
537 (MI->hasOrderedMemoryRef() && !MI->isDereferenceableInvariantLoad(AA));
540 void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb,
541 unsigned Latency) {
542 if (SUa->getInstr()->mayAlias(AAForDep, *SUb->getInstr(), UseTBAA)) {
543 SDep Dep(SUa, SDep::MayAliasMem);
544 Dep.setLatency(Latency);
545 SUb->addPred(Dep);
549 /// Creates an SUnit for each real instruction, numbered in top-down
550 /// topological order. The instruction order A < B, implies that no edge exists
551 /// from B to A.
553 /// Map each real instruction to its SUnit.
555 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may
556 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
557 /// instead of pointers.
559 /// MachineScheduler relies on initSUnits numbering the nodes by their order in
560 /// the original instruction list.
561 void ScheduleDAGInstrs::initSUnits() {
562 // We'll be allocating one SUnit for each real instruction in the region,
563 // which is contained within a basic block.
564 SUnits.reserve(NumRegionInstrs);
566 for (MachineInstr &MI : make_range(RegionBegin, RegionEnd)) {
567 if (MI.isDebugInstr())
568 continue;
570 SUnit *SU = newSUnit(&MI);
571 MISUnitMap[&MI] = SU;
573 SU->isCall = MI.isCall();
574 SU->isCommutable = MI.isCommutable();
576 // Assign the Latency field of SU using target-provided information.
577 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
579 // If this SUnit uses a reserved or unbuffered resource, mark it as such.
581 // Reserved resources block an instruction from issuing and stall the
582 // entire pipeline. These are identified by BufferSize=0.
584 // Unbuffered resources prevent execution of subsequent instructions that
585 // require the same resources. This is used for in-order execution pipelines
586 // within an out-of-order core. These are identified by BufferSize=1.
587 if (SchedModel.hasInstrSchedModel()) {
588 const MCSchedClassDesc *SC = getSchedClass(SU);
589 for (const MCWriteProcResEntry &PRE :
590 make_range(SchedModel.getWriteProcResBegin(SC),
591 SchedModel.getWriteProcResEnd(SC))) {
592 switch (SchedModel.getProcResource(PRE.ProcResourceIdx)->BufferSize) {
593 case 0:
594 SU->hasReservedResource = true;
595 break;
596 case 1:
597 SU->isUnbuffered = true;
598 break;
599 default:
600 break;
607 class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> {
608 /// Current total number of SUs in map.
609 unsigned NumNodes = 0;
611 /// 1 for loads, 0 for stores. (see comment in SUList)
612 unsigned TrueMemOrderLatency;
614 public:
615 Value2SUsMap(unsigned lat = 0) : TrueMemOrderLatency(lat) {}
617 /// To keep NumNodes up to date, insert() is used instead of
618 /// this operator w/ push_back().
619 ValueType &operator[](const SUList &Key) {
620 llvm_unreachable("Don't use. Use insert() instead."); };
622 /// Adds SU to the SUList of V. If Map grows huge, reduce its size by calling
623 /// reduce().
624 void inline insert(SUnit *SU, ValueType V) {
625 MapVector::operator[](V).push_back(SU);
626 NumNodes++;
629 /// Clears the list of SUs mapped to V.
630 void inline clearList(ValueType V) {
631 iterator Itr = find(V);
632 if (Itr != end()) {
633 assert(NumNodes >= Itr->second.size());
634 NumNodes -= Itr->second.size();
636 Itr->second.clear();
640 /// Clears map from all contents.
641 void clear() {
642 MapVector<ValueType, SUList>::clear();
643 NumNodes = 0;
646 unsigned inline size() const { return NumNodes; }
648 /// Counts the number of SUs in this map after a reduction.
649 void reComputeSize() {
650 NumNodes = 0;
651 for (auto &I : *this)
652 NumNodes += I.second.size();
655 unsigned inline getTrueMemOrderLatency() const {
656 return TrueMemOrderLatency;
659 void dump();
662 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
663 Value2SUsMap &Val2SUsMap) {
664 for (auto &I : Val2SUsMap)
665 addChainDependencies(SU, I.second,
666 Val2SUsMap.getTrueMemOrderLatency());
669 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
670 Value2SUsMap &Val2SUsMap,
671 ValueType V) {
672 Value2SUsMap::iterator Itr = Val2SUsMap.find(V);
673 if (Itr != Val2SUsMap.end())
674 addChainDependencies(SU, Itr->second,
675 Val2SUsMap.getTrueMemOrderLatency());
678 void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) {
679 assert(BarrierChain != nullptr);
681 for (auto &I : map) {
682 SUList &sus = I.second;
683 for (auto *SU : sus)
684 SU->addPredBarrier(BarrierChain);
686 map.clear();
689 void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) {
690 assert(BarrierChain != nullptr);
692 // Go through all lists of SUs.
693 for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) {
694 Value2SUsMap::iterator CurrItr = I++;
695 SUList &sus = CurrItr->second;
696 SUList::iterator SUItr = sus.begin(), SUEE = sus.end();
697 for (; SUItr != SUEE; ++SUItr) {
698 // Stop on BarrierChain or any instruction above it.
699 if ((*SUItr)->NodeNum <= BarrierChain->NodeNum)
700 break;
702 (*SUItr)->addPredBarrier(BarrierChain);
705 // Remove also the BarrierChain from list if present.
706 if (SUItr != SUEE && *SUItr == BarrierChain)
707 SUItr++;
709 // Remove all SUs that are now successors of BarrierChain.
710 if (SUItr != sus.begin())
711 sus.erase(sus.begin(), SUItr);
714 // Remove all entries with empty su lists.
715 map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) {
716 return (mapEntry.second.empty()); });
718 // Recompute the size of the map (NumNodes).
719 map.reComputeSize();
722 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
723 RegPressureTracker *RPTracker,
724 PressureDiffs *PDiffs,
725 LiveIntervals *LIS,
726 bool TrackLaneMasks) {
727 const TargetSubtargetInfo &ST = MF.getSubtarget();
728 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
729 : ST.useAA();
730 AAForDep = UseAA ? AA : nullptr;
732 BarrierChain = nullptr;
734 this->TrackLaneMasks = TrackLaneMasks;
735 MISUnitMap.clear();
736 ScheduleDAG::clearDAG();
738 // Create an SUnit for each real instruction.
739 initSUnits();
741 if (PDiffs)
742 PDiffs->init(SUnits.size());
744 // We build scheduling units by walking a block's instruction list
745 // from bottom to top.
747 // Each MIs' memory operand(s) is analyzed to a list of underlying
748 // objects. The SU is then inserted in the SUList(s) mapped from the
749 // Value(s). Each Value thus gets mapped to lists of SUs depending
750 // on it, stores and loads kept separately. Two SUs are trivially
751 // non-aliasing if they both depend on only identified Values and do
752 // not share any common Value.
753 Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/);
755 // Certain memory accesses are known to not alias any SU in Stores
756 // or Loads, and have therefore their own 'NonAlias'
757 // domain. E.g. spill / reload instructions never alias LLVM I/R
758 // Values. It would be nice to assume that this type of memory
759 // accesses always have a proper memory operand modelling, and are
760 // therefore never unanalyzable, but this is conservatively not
761 // done.
762 Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/);
764 // Track all instructions that may raise floating-point exceptions.
765 // These do not depend on one other (or normal loads or stores), but
766 // must not be rescheduled across global barriers. Note that we don't
767 // really need a "map" here since we don't track those MIs by value;
768 // using the same Value2SUsMap data type here is simply a matter of
769 // convenience.
770 Value2SUsMap FPExceptions;
772 // Remove any stale debug info; sometimes BuildSchedGraph is called again
773 // without emitting the info from the previous call.
774 DbgValues.clear();
775 FirstDbgValue = nullptr;
777 assert(Defs.empty() && Uses.empty() &&
778 "Only BuildGraph should update Defs/Uses");
779 Defs.setUniverse(TRI->getNumRegs());
780 Uses.setUniverse(TRI->getNumRegs());
782 assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs");
783 assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses");
784 unsigned NumVirtRegs = MRI.getNumVirtRegs();
785 CurrentVRegDefs.setUniverse(NumVirtRegs);
786 CurrentVRegUses.setUniverse(NumVirtRegs);
788 // Model data dependencies between instructions being scheduled and the
789 // ExitSU.
790 addSchedBarrierDeps();
792 // Walk the list of instructions, from bottom moving up.
793 MachineInstr *DbgMI = nullptr;
794 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
795 MII != MIE; --MII) {
796 MachineInstr &MI = *std::prev(MII);
797 if (DbgMI) {
798 DbgValues.push_back(std::make_pair(DbgMI, &MI));
799 DbgMI = nullptr;
802 if (MI.isDebugValue()) {
803 DbgMI = &MI;
804 continue;
806 if (MI.isDebugLabel())
807 continue;
809 SUnit *SU = MISUnitMap[&MI];
810 assert(SU && "No SUnit mapped to this MI");
812 if (RPTracker) {
813 RegisterOperands RegOpers;
814 RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false);
815 if (TrackLaneMasks) {
816 SlotIndex SlotIdx = LIS->getInstructionIndex(MI);
817 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx);
819 if (PDiffs != nullptr)
820 PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI);
822 if (RPTracker->getPos() == RegionEnd || &*RPTracker->getPos() != &MI)
823 RPTracker->recedeSkipDebugValues();
824 assert(&*RPTracker->getPos() == &MI && "RPTracker in sync");
825 RPTracker->recede(RegOpers);
828 assert(
829 (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) &&
830 "Cannot schedule terminators or labels!");
832 // Add register-based dependencies (data, anti, and output).
833 // For some instructions (calls, returns, inline-asm, etc.) there can
834 // be explicit uses and implicit defs, in which case the use will appear
835 // on the operand list before the def. Do two passes over the operand
836 // list to make sure that defs are processed before any uses.
837 bool HasVRegDef = false;
838 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
839 const MachineOperand &MO = MI.getOperand(j);
840 if (!MO.isReg() || !MO.isDef())
841 continue;
842 Register Reg = MO.getReg();
843 if (Register::isPhysicalRegister(Reg)) {
844 addPhysRegDeps(SU, j);
845 } else if (Register::isVirtualRegister(Reg)) {
846 HasVRegDef = true;
847 addVRegDefDeps(SU, j);
850 // Now process all uses.
851 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
852 const MachineOperand &MO = MI.getOperand(j);
853 // Only look at use operands.
854 // We do not need to check for MO.readsReg() here because subsequent
855 // subregister defs will get output dependence edges and need no
856 // additional use dependencies.
857 if (!MO.isReg() || !MO.isUse())
858 continue;
859 Register Reg = MO.getReg();
860 if (Register::isPhysicalRegister(Reg)) {
861 addPhysRegDeps(SU, j);
862 } else if (Register::isVirtualRegister(Reg) && MO.readsReg()) {
863 addVRegUseDeps(SU, j);
867 // If we haven't seen any uses in this scheduling region, create a
868 // dependence edge to ExitSU to model the live-out latency. This is required
869 // for vreg defs with no in-region use, and prefetches with no vreg def.
871 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
872 // check currently relies on being called before adding chain deps.
873 if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) {
874 SDep Dep(SU, SDep::Artificial);
875 Dep.setLatency(SU->Latency - 1);
876 ExitSU.addPred(Dep);
879 // Add memory dependencies (Note: isStoreToStackSlot and
880 // isLoadFromStackSLot are not usable after stack slots are lowered to
881 // actual addresses).
883 // This is a barrier event that acts as a pivotal node in the DAG.
884 if (isGlobalMemoryObject(AA, &MI)) {
886 // Become the barrier chain.
887 if (BarrierChain)
888 BarrierChain->addPredBarrier(SU);
889 BarrierChain = SU;
891 LLVM_DEBUG(dbgs() << "Global memory object and new barrier chain: SU("
892 << BarrierChain->NodeNum << ").\n";);
894 // Add dependencies against everything below it and clear maps.
895 addBarrierChain(Stores);
896 addBarrierChain(Loads);
897 addBarrierChain(NonAliasStores);
898 addBarrierChain(NonAliasLoads);
899 addBarrierChain(FPExceptions);
901 continue;
904 // Instructions that may raise FP exceptions may not be moved
905 // across any global barriers.
906 if (MI.mayRaiseFPException()) {
907 if (BarrierChain)
908 BarrierChain->addPredBarrier(SU);
910 FPExceptions.insert(SU, UnknownValue);
912 if (FPExceptions.size() >= HugeRegion) {
913 LLVM_DEBUG(dbgs() << "Reducing FPExceptions map.\n";);
914 Value2SUsMap empty;
915 reduceHugeMemNodeMaps(FPExceptions, empty, getReductionSize());
919 // If it's not a store or a variant load, we're done.
920 if (!MI.mayStore() &&
921 !(MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA)))
922 continue;
924 // Always add dependecy edge to BarrierChain if present.
925 if (BarrierChain)
926 BarrierChain->addPredBarrier(SU);
928 // Find the underlying objects for MI. The Objs vector is either
929 // empty, or filled with the Values of memory locations which this
930 // SU depends on.
931 UnderlyingObjectsVector Objs;
932 bool ObjsFound = getUnderlyingObjectsForInstr(&MI, MFI, Objs,
933 MF.getDataLayout());
935 if (MI.mayStore()) {
936 if (!ObjsFound) {
937 // An unknown store depends on all stores and loads.
938 addChainDependencies(SU, Stores);
939 addChainDependencies(SU, NonAliasStores);
940 addChainDependencies(SU, Loads);
941 addChainDependencies(SU, NonAliasLoads);
943 // Map this store to 'UnknownValue'.
944 Stores.insert(SU, UnknownValue);
945 } else {
946 // Add precise dependencies against all previously seen memory
947 // accesses mapped to the same Value(s).
948 for (const UnderlyingObject &UnderlObj : Objs) {
949 ValueType V = UnderlObj.getValue();
950 bool ThisMayAlias = UnderlObj.mayAlias();
952 // Add dependencies to previous stores and loads mapped to V.
953 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
954 addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V);
956 // Update the store map after all chains have been added to avoid adding
957 // self-loop edge if multiple underlying objects are present.
958 for (const UnderlyingObject &UnderlObj : Objs) {
959 ValueType V = UnderlObj.getValue();
960 bool ThisMayAlias = UnderlObj.mayAlias();
962 // Map this store to V.
963 (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V);
965 // The store may have dependencies to unanalyzable loads and
966 // stores.
967 addChainDependencies(SU, Loads, UnknownValue);
968 addChainDependencies(SU, Stores, UnknownValue);
970 } else { // SU is a load.
971 if (!ObjsFound) {
972 // An unknown load depends on all stores.
973 addChainDependencies(SU, Stores);
974 addChainDependencies(SU, NonAliasStores);
976 Loads.insert(SU, UnknownValue);
977 } else {
978 for (const UnderlyingObject &UnderlObj : Objs) {
979 ValueType V = UnderlObj.getValue();
980 bool ThisMayAlias = UnderlObj.mayAlias();
982 // Add precise dependencies against all previously seen stores
983 // mapping to the same Value(s).
984 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
986 // Map this load to V.
987 (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V);
989 // The load may have dependencies to unanalyzable stores.
990 addChainDependencies(SU, Stores, UnknownValue);
994 // Reduce maps if they grow huge.
995 if (Stores.size() + Loads.size() >= HugeRegion) {
996 LLVM_DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";);
997 reduceHugeMemNodeMaps(Stores, Loads, getReductionSize());
999 if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) {
1000 LLVM_DEBUG(
1001 dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";);
1002 reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize());
1006 if (DbgMI)
1007 FirstDbgValue = DbgMI;
1009 Defs.clear();
1010 Uses.clear();
1011 CurrentVRegDefs.clear();
1012 CurrentVRegUses.clear();
1014 Topo.MarkDirty();
1017 raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) {
1018 PSV->printCustom(OS);
1019 return OS;
1022 void ScheduleDAGInstrs::Value2SUsMap::dump() {
1023 for (auto &Itr : *this) {
1024 if (Itr.first.is<const Value*>()) {
1025 const Value *V = Itr.first.get<const Value*>();
1026 if (isa<UndefValue>(V))
1027 dbgs() << "Unknown";
1028 else
1029 V->printAsOperand(dbgs());
1031 else if (Itr.first.is<const PseudoSourceValue*>())
1032 dbgs() << Itr.first.get<const PseudoSourceValue*>();
1033 else
1034 llvm_unreachable("Unknown Value type.");
1036 dbgs() << " : ";
1037 dumpSUList(Itr.second);
1041 void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores,
1042 Value2SUsMap &loads, unsigned N) {
1043 LLVM_DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; stores.dump();
1044 dbgs() << "Loading SUnits:\n"; loads.dump());
1046 // Insert all SU's NodeNums into a vector and sort it.
1047 std::vector<unsigned> NodeNums;
1048 NodeNums.reserve(stores.size() + loads.size());
1049 for (auto &I : stores)
1050 for (auto *SU : I.second)
1051 NodeNums.push_back(SU->NodeNum);
1052 for (auto &I : loads)
1053 for (auto *SU : I.second)
1054 NodeNums.push_back(SU->NodeNum);
1055 llvm::sort(NodeNums);
1057 // The N last elements in NodeNums will be removed, and the SU with
1058 // the lowest NodeNum of them will become the new BarrierChain to
1059 // let the not yet seen SUs have a dependency to the removed SUs.
1060 assert(N <= NodeNums.size());
1061 SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)];
1062 if (BarrierChain) {
1063 // The aliasing and non-aliasing maps reduce independently of each
1064 // other, but share a common BarrierChain. Check if the
1065 // newBarrierChain is above the former one. If it is not, it may
1066 // introduce a loop to use newBarrierChain, so keep the old one.
1067 if (newBarrierChain->NodeNum < BarrierChain->NodeNum) {
1068 BarrierChain->addPredBarrier(newBarrierChain);
1069 BarrierChain = newBarrierChain;
1070 LLVM_DEBUG(dbgs() << "Inserting new barrier chain: SU("
1071 << BarrierChain->NodeNum << ").\n";);
1073 else
1074 LLVM_DEBUG(dbgs() << "Keeping old barrier chain: SU("
1075 << BarrierChain->NodeNum << ").\n";);
1077 else
1078 BarrierChain = newBarrierChain;
1080 insertBarrierChain(stores);
1081 insertBarrierChain(loads);
1083 LLVM_DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; stores.dump();
1084 dbgs() << "Loading SUnits:\n"; loads.dump());
1087 static void toggleKills(const MachineRegisterInfo &MRI, LivePhysRegs &LiveRegs,
1088 MachineInstr &MI, bool addToLiveRegs) {
1089 for (MachineOperand &MO : MI.operands()) {
1090 if (!MO.isReg() || !MO.readsReg())
1091 continue;
1092 Register Reg = MO.getReg();
1093 if (!Reg)
1094 continue;
1096 // Things that are available after the instruction are killed by it.
1097 bool IsKill = LiveRegs.available(MRI, Reg);
1098 MO.setIsKill(IsKill);
1099 if (addToLiveRegs)
1100 LiveRegs.addReg(Reg);
1104 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock &MBB) {
1105 LLVM_DEBUG(dbgs() << "Fixup kills for " << printMBBReference(MBB) << '\n');
1107 LiveRegs.init(*TRI);
1108 LiveRegs.addLiveOuts(MBB);
1110 // Examine block from end to start...
1111 for (MachineInstr &MI : make_range(MBB.rbegin(), MBB.rend())) {
1112 if (MI.isDebugInstr())
1113 continue;
1115 // Update liveness. Registers that are defed but not used in this
1116 // instruction are now dead. Mark register and all subregs as they
1117 // are completely defined.
1118 for (ConstMIBundleOperands O(MI); O.isValid(); ++O) {
1119 const MachineOperand &MO = *O;
1120 if (MO.isReg()) {
1121 if (!MO.isDef())
1122 continue;
1123 Register Reg = MO.getReg();
1124 if (!Reg)
1125 continue;
1126 LiveRegs.removeReg(Reg);
1127 } else if (MO.isRegMask()) {
1128 LiveRegs.removeRegsInMask(MO);
1132 // If there is a bundle header fix it up first.
1133 if (!MI.isBundled()) {
1134 toggleKills(MRI, LiveRegs, MI, true);
1135 } else {
1136 MachineBasicBlock::instr_iterator Bundle = MI.getIterator();
1137 if (MI.isBundle())
1138 toggleKills(MRI, LiveRegs, MI, false);
1140 // Some targets make the (questionable) assumtion that the instructions
1141 // inside the bundle are ordered and consequently only the last use of
1142 // a register inside the bundle can kill it.
1143 MachineBasicBlock::instr_iterator I = std::next(Bundle);
1144 while (I->isBundledWithSucc())
1145 ++I;
1146 do {
1147 if (!I->isDebugInstr())
1148 toggleKills(MRI, LiveRegs, *I, true);
1149 --I;
1150 } while (I != Bundle);
1155 void ScheduleDAGInstrs::dumpNode(const SUnit &SU) const {
1156 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1157 dumpNodeName(SU);
1158 dbgs() << ": ";
1159 SU.getInstr()->dump();
1160 #endif
1163 void ScheduleDAGInstrs::dump() const {
1164 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1165 if (EntrySU.getInstr() != nullptr)
1166 dumpNodeAll(EntrySU);
1167 for (const SUnit &SU : SUnits)
1168 dumpNodeAll(SU);
1169 if (ExitSU.getInstr() != nullptr)
1170 dumpNodeAll(ExitSU);
1171 #endif
1174 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
1175 std::string s;
1176 raw_string_ostream oss(s);
1177 if (SU == &EntrySU)
1178 oss << "<entry>";
1179 else if (SU == &ExitSU)
1180 oss << "<exit>";
1181 else
1182 SU->getInstr()->print(oss, /*SkipOpers=*/true);
1183 return oss.str();
1186 /// Return the basic block label. It is not necessarilly unique because a block
1187 /// contains multiple scheduling regions. But it is fine for visualization.
1188 std::string ScheduleDAGInstrs::getDAGName() const {
1189 return "dag." + BB->getFullName();
1192 bool ScheduleDAGInstrs::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
1193 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
1196 bool ScheduleDAGInstrs::addEdge(SUnit *SuccSU, const SDep &PredDep) {
1197 if (SuccSU != &ExitSU) {
1198 // Do not use WillCreateCycle, it assumes SD scheduling.
1199 // If Pred is reachable from Succ, then the edge creates a cycle.
1200 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
1201 return false;
1202 Topo.AddPredQueued(SuccSU, PredDep.getSUnit());
1204 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
1205 // Return true regardless of whether a new edge needed to be inserted.
1206 return true;
1209 //===----------------------------------------------------------------------===//
1210 // SchedDFSResult Implementation
1211 //===----------------------------------------------------------------------===//
1213 namespace llvm {
1215 /// Internal state used to compute SchedDFSResult.
1216 class SchedDFSImpl {
1217 SchedDFSResult &R;
1219 /// Join DAG nodes into equivalence classes by their subtree.
1220 IntEqClasses SubtreeClasses;
1221 /// List PredSU, SuccSU pairs that represent data edges between subtrees.
1222 std::vector<std::pair<const SUnit *, const SUnit*>> ConnectionPairs;
1224 struct RootData {
1225 unsigned NodeID;
1226 unsigned ParentNodeID; ///< Parent node (member of the parent subtree).
1227 unsigned SubInstrCount = 0; ///< Instr count in this tree only, not
1228 /// children.
1230 RootData(unsigned id): NodeID(id),
1231 ParentNodeID(SchedDFSResult::InvalidSubtreeID) {}
1233 unsigned getSparseSetIndex() const { return NodeID; }
1236 SparseSet<RootData> RootSet;
1238 public:
1239 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
1240 RootSet.setUniverse(R.DFSNodeData.size());
1243 /// Returns true if this node been visited by the DFS traversal.
1245 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
1246 /// ID. Later, SubtreeID is updated but remains valid.
1247 bool isVisited(const SUnit *SU) const {
1248 return R.DFSNodeData[SU->NodeNum].SubtreeID
1249 != SchedDFSResult::InvalidSubtreeID;
1252 /// Initializes this node's instruction count. We don't need to flag the node
1253 /// visited until visitPostorder because the DAG cannot have cycles.
1254 void visitPreorder(const SUnit *SU) {
1255 R.DFSNodeData[SU->NodeNum].InstrCount =
1256 SU->getInstr()->isTransient() ? 0 : 1;
1259 /// Called once for each node after all predecessors are visited. Revisit this
1260 /// node's predecessors and potentially join them now that we know the ILP of
1261 /// the other predecessors.
1262 void visitPostorderNode(const SUnit *SU) {
1263 // Mark this node as the root of a subtree. It may be joined with its
1264 // successors later.
1265 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
1266 RootData RData(SU->NodeNum);
1267 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
1269 // If any predecessors are still in their own subtree, they either cannot be
1270 // joined or are large enough to remain separate. If this parent node's
1271 // total instruction count is not greater than a child subtree by at least
1272 // the subtree limit, then try to join it now since splitting subtrees is
1273 // only useful if multiple high-pressure paths are possible.
1274 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
1275 for (const SDep &PredDep : SU->Preds) {
1276 if (PredDep.getKind() != SDep::Data)
1277 continue;
1278 unsigned PredNum = PredDep.getSUnit()->NodeNum;
1279 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
1280 joinPredSubtree(PredDep, SU, /*CheckLimit=*/false);
1282 // Either link or merge the TreeData entry from the child to the parent.
1283 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
1284 // If the predecessor's parent is invalid, this is a tree edge and the
1285 // current node is the parent.
1286 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
1287 RootSet[PredNum].ParentNodeID = SU->NodeNum;
1289 else if (RootSet.count(PredNum)) {
1290 // The predecessor is not a root, but is still in the root set. This
1291 // must be the new parent that it was just joined to. Note that
1292 // RootSet[PredNum].ParentNodeID may either be invalid or may still be
1293 // set to the original parent.
1294 RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
1295 RootSet.erase(PredNum);
1298 RootSet[SU->NodeNum] = RData;
1301 /// Called once for each tree edge after calling visitPostOrderNode on
1302 /// the predecessor. Increment the parent node's instruction count and
1303 /// preemptively join this subtree to its parent's if it is small enough.
1304 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
1305 R.DFSNodeData[Succ->NodeNum].InstrCount
1306 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
1307 joinPredSubtree(PredDep, Succ);
1310 /// Adds a connection for cross edges.
1311 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
1312 ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
1315 /// Sets each node's subtree ID to the representative ID and record
1316 /// connections between trees.
1317 void finalize() {
1318 SubtreeClasses.compress();
1319 R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
1320 assert(SubtreeClasses.getNumClasses() == RootSet.size()
1321 && "number of roots should match trees");
1322 for (const RootData &Root : RootSet) {
1323 unsigned TreeID = SubtreeClasses[Root.NodeID];
1324 if (Root.ParentNodeID != SchedDFSResult::InvalidSubtreeID)
1325 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[Root.ParentNodeID];
1326 R.DFSTreeData[TreeID].SubInstrCount = Root.SubInstrCount;
1327 // Note that SubInstrCount may be greater than InstrCount if we joined
1328 // subtrees across a cross edge. InstrCount will be attributed to the
1329 // original parent, while SubInstrCount will be attributed to the joined
1330 // parent.
1332 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
1333 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
1334 LLVM_DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
1335 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
1336 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
1337 LLVM_DEBUG(dbgs() << " SU(" << Idx << ") in tree "
1338 << R.DFSNodeData[Idx].SubtreeID << '\n');
1340 for (const std::pair<const SUnit*, const SUnit*> &P : ConnectionPairs) {
1341 unsigned PredTree = SubtreeClasses[P.first->NodeNum];
1342 unsigned SuccTree = SubtreeClasses[P.second->NodeNum];
1343 if (PredTree == SuccTree)
1344 continue;
1345 unsigned Depth = P.first->getDepth();
1346 addConnection(PredTree, SuccTree, Depth);
1347 addConnection(SuccTree, PredTree, Depth);
1351 protected:
1352 /// Joins the predecessor subtree with the successor that is its DFS parent.
1353 /// Applies some heuristics before joining.
1354 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
1355 bool CheckLimit = true) {
1356 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
1358 // Check if the predecessor is already joined.
1359 const SUnit *PredSU = PredDep.getSUnit();
1360 unsigned PredNum = PredSU->NodeNum;
1361 if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
1362 return false;
1364 // Four is the magic number of successors before a node is considered a
1365 // pinch point.
1366 unsigned NumDataSucs = 0;
1367 for (const SDep &SuccDep : PredSU->Succs) {
1368 if (SuccDep.getKind() == SDep::Data) {
1369 if (++NumDataSucs >= 4)
1370 return false;
1373 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
1374 return false;
1375 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
1376 SubtreeClasses.join(Succ->NodeNum, PredNum);
1377 return true;
1380 /// Called by finalize() to record a connection between trees.
1381 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
1382 if (!Depth)
1383 return;
1385 do {
1386 SmallVectorImpl<SchedDFSResult::Connection> &Connections =
1387 R.SubtreeConnections[FromTree];
1388 for (SchedDFSResult::Connection &C : Connections) {
1389 if (C.TreeID == ToTree) {
1390 C.Level = std::max(C.Level, Depth);
1391 return;
1394 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
1395 FromTree = R.DFSTreeData[FromTree].ParentTreeID;
1396 } while (FromTree != SchedDFSResult::InvalidSubtreeID);
1400 } // end namespace llvm
1402 namespace {
1404 /// Manage the stack used by a reverse depth-first search over the DAG.
1405 class SchedDAGReverseDFS {
1406 std::vector<std::pair<const SUnit *, SUnit::const_pred_iterator>> DFSStack;
1408 public:
1409 bool isComplete() const { return DFSStack.empty(); }
1411 void follow(const SUnit *SU) {
1412 DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
1414 void advance() { ++DFSStack.back().second; }
1416 const SDep *backtrack() {
1417 DFSStack.pop_back();
1418 return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second);
1421 const SUnit *getCurr() const { return DFSStack.back().first; }
1423 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
1425 SUnit::const_pred_iterator getPredEnd() const {
1426 return getCurr()->Preds.end();
1430 } // end anonymous namespace
1432 static bool hasDataSucc(const SUnit *SU) {
1433 for (const SDep &SuccDep : SU->Succs) {
1434 if (SuccDep.getKind() == SDep::Data &&
1435 !SuccDep.getSUnit()->isBoundaryNode())
1436 return true;
1438 return false;
1441 /// Computes an ILP metric for all nodes in the subDAG reachable via depth-first
1442 /// search from this root.
1443 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
1444 if (!IsBottomUp)
1445 llvm_unreachable("Top-down ILP metric is unimplemented");
1447 SchedDFSImpl Impl(*this);
1448 for (const SUnit &SU : SUnits) {
1449 if (Impl.isVisited(&SU) || hasDataSucc(&SU))
1450 continue;
1452 SchedDAGReverseDFS DFS;
1453 Impl.visitPreorder(&SU);
1454 DFS.follow(&SU);
1455 while (true) {
1456 // Traverse the leftmost path as far as possible.
1457 while (DFS.getPred() != DFS.getPredEnd()) {
1458 const SDep &PredDep = *DFS.getPred();
1459 DFS.advance();
1460 // Ignore non-data edges.
1461 if (PredDep.getKind() != SDep::Data
1462 || PredDep.getSUnit()->isBoundaryNode()) {
1463 continue;
1465 // An already visited edge is a cross edge, assuming an acyclic DAG.
1466 if (Impl.isVisited(PredDep.getSUnit())) {
1467 Impl.visitCrossEdge(PredDep, DFS.getCurr());
1468 continue;
1470 Impl.visitPreorder(PredDep.getSUnit());
1471 DFS.follow(PredDep.getSUnit());
1473 // Visit the top of the stack in postorder and backtrack.
1474 const SUnit *Child = DFS.getCurr();
1475 const SDep *PredDep = DFS.backtrack();
1476 Impl.visitPostorderNode(Child);
1477 if (PredDep)
1478 Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
1479 if (DFS.isComplete())
1480 break;
1483 Impl.finalize();
1486 /// The root of the given SubtreeID was just scheduled. For all subtrees
1487 /// connected to this tree, record the depth of the connection so that the
1488 /// nearest connected subtrees can be prioritized.
1489 void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
1490 for (const Connection &C : SubtreeConnections[SubtreeID]) {
1491 SubtreeConnectLevels[C.TreeID] =
1492 std::max(SubtreeConnectLevels[C.TreeID], C.Level);
1493 LLVM_DEBUG(dbgs() << " Tree: " << C.TreeID << " @"
1494 << SubtreeConnectLevels[C.TreeID] << '\n');
1498 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1499 LLVM_DUMP_METHOD void ILPValue::print(raw_ostream &OS) const {
1500 OS << InstrCount << " / " << Length << " = ";
1501 if (!Length)
1502 OS << "BADILP";
1503 else
1504 OS << format("%g", ((double)InstrCount / Length));
1507 LLVM_DUMP_METHOD void ILPValue::dump() const {
1508 dbgs() << *this << '\n';
1511 namespace llvm {
1513 LLVM_DUMP_METHOD
1514 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
1515 Val.print(OS);
1516 return OS;
1519 } // end namespace llvm
1521 #endif