1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 /// \file This implements the ScheduleDAGInstrs class, which implements
10 /// re-scheduling of MachineInstrs.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
15 #include "llvm/ADT/IntEqClasses.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/SparseSet.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/CodeGen/LiveIntervals.h"
24 #include "llvm/CodeGen/LivePhysRegs.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineInstrBundle.h"
30 #include "llvm/CodeGen/MachineMemOperand.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/PseudoSourceValue.h"
34 #include "llvm/CodeGen/RegisterPressure.h"
35 #include "llvm/CodeGen/ScheduleDAG.h"
36 #include "llvm/CodeGen/ScheduleDFS.h"
37 #include "llvm/CodeGen/SlotIndexes.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/Config/llvm-config.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Operator.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/IR/Value.h"
48 #include "llvm/MC/LaneBitmask.h"
49 #include "llvm/MC/MCRegisterInfo.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Compiler.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/Format.h"
56 #include "llvm/Support/raw_ostream.h"
66 #define DEBUG_TYPE "machine-scheduler"
68 static cl::opt
<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden
,
69 cl::ZeroOrMore
, cl::init(false),
70 cl::desc("Enable use of AA during MI DAG construction"));
72 static cl::opt
<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden
,
73 cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction"));
75 // Note: the two options below might be used in tuning compile time vs
76 // output quality. Setting HugeRegion so large that it will never be
77 // reached means best-effort, but may be slow.
79 // When Stores and Loads maps (or NonAliasStores and NonAliasLoads)
80 // together hold this many SUs, a reduction of maps will be done.
81 static cl::opt
<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden
,
82 cl::init(1000), cl::desc("The limit to use while constructing the DAG "
83 "prior to scheduling, at which point a trade-off "
84 "is made to avoid excessive compile time."));
86 static cl::opt
<unsigned> ReductionSize(
87 "dag-maps-reduction-size", cl::Hidden
,
88 cl::desc("A huge scheduling region will have maps reduced by this many "
89 "nodes at a time. Defaults to HugeRegion / 2."));
91 static unsigned getReductionSize() {
92 // Always reduce a huge region with half of the elements, except
93 // when user sets this number explicitly.
94 if (ReductionSize
.getNumOccurrences() == 0)
95 return HugeRegion
/ 2;
99 static void dumpSUList(ScheduleDAGInstrs::SUList
&L
) {
100 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
102 for (const SUnit
*su
: L
) {
103 dbgs() << "SU(" << su
->NodeNum
<< ")";
111 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction
&mf
,
112 const MachineLoopInfo
*mli
,
113 bool RemoveKillFlags
)
114 : ScheduleDAG(mf
), MLI(mli
), MFI(mf
.getFrameInfo()),
115 RemoveKillFlags(RemoveKillFlags
),
116 UnknownValue(UndefValue::get(
117 Type::getVoidTy(mf
.getFunction().getContext()))), Topo(SUnits
, &ExitSU
) {
120 const TargetSubtargetInfo
&ST
= mf
.getSubtarget();
121 SchedModel
.init(&ST
);
124 /// If this machine instr has memory reference information and it can be
125 /// tracked to a normal reference to a known object, return the Value
126 /// for that object. This function returns false the memory location is
127 /// unknown or may alias anything.
128 static bool getUnderlyingObjectsForInstr(const MachineInstr
*MI
,
129 const MachineFrameInfo
&MFI
,
130 UnderlyingObjectsVector
&Objects
,
131 const DataLayout
&DL
) {
132 auto allMMOsOkay
= [&]() {
133 for (const MachineMemOperand
*MMO
: MI
->memoperands()) {
134 // TODO: Figure out whether isAtomic is really necessary (see D57601).
135 if (MMO
->isVolatile() || MMO
->isAtomic())
138 if (const PseudoSourceValue
*PSV
= MMO
->getPseudoValue()) {
139 // Function that contain tail calls don't have unique PseudoSourceValue
140 // objects. Two PseudoSourceValues might refer to the same or
141 // overlapping locations. The client code calling this function assumes
142 // this is not the case. So return a conservative answer of no known
144 if (MFI
.hasTailCall())
147 // For now, ignore PseudoSourceValues which may alias LLVM IR values
148 // because the code that uses this function has no way to cope with
150 if (PSV
->isAliased(&MFI
))
153 bool MayAlias
= PSV
->mayAlias(&MFI
);
154 Objects
.push_back(UnderlyingObjectsVector::value_type(PSV
, MayAlias
));
155 } else if (const Value
*V
= MMO
->getValue()) {
156 SmallVector
<Value
*, 4> Objs
;
157 if (!getUnderlyingObjectsForCodeGen(V
, Objs
, DL
))
160 for (Value
*V
: Objs
) {
161 assert(isIdentifiedObject(V
));
162 Objects
.push_back(UnderlyingObjectsVector::value_type(V
, true));
170 if (!allMMOsOkay()) {
178 void ScheduleDAGInstrs::startBlock(MachineBasicBlock
*bb
) {
182 void ScheduleDAGInstrs::finishBlock() {
183 // Subclasses should no longer refer to the old block.
187 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock
*bb
,
188 MachineBasicBlock::iterator begin
,
189 MachineBasicBlock::iterator end
,
190 unsigned regioninstrs
) {
191 assert(bb
== BB
&& "startBlock should set BB");
194 NumRegionInstrs
= regioninstrs
;
197 void ScheduleDAGInstrs::exitRegion() {
201 void ScheduleDAGInstrs::addSchedBarrierDeps() {
202 MachineInstr
*ExitMI
= RegionEnd
!= BB
->end() ? &*RegionEnd
: nullptr;
203 ExitSU
.setInstr(ExitMI
);
204 // Add dependencies on the defs and uses of the instruction.
206 for (const MachineOperand
&MO
: ExitMI
->operands()) {
207 if (!MO
.isReg() || MO
.isDef()) continue;
208 Register Reg
= MO
.getReg();
209 if (Register::isPhysicalRegister(Reg
)) {
210 Uses
.insert(PhysRegSUOper(&ExitSU
, -1, Reg
));
211 } else if (Register::isVirtualRegister(Reg
) && MO
.readsReg()) {
212 addVRegUseDeps(&ExitSU
, ExitMI
->getOperandNo(&MO
));
216 if (!ExitMI
|| (!ExitMI
->isCall() && !ExitMI
->isBarrier())) {
217 // For others, e.g. fallthrough, conditional branch, assume the exit
218 // uses all the registers that are livein to the successor blocks.
219 for (const MachineBasicBlock
*Succ
: BB
->successors()) {
220 for (const auto &LI
: Succ
->liveins()) {
221 if (!Uses
.contains(LI
.PhysReg
))
222 Uses
.insert(PhysRegSUOper(&ExitSU
, -1, LI
.PhysReg
));
228 /// MO is an operand of SU's instruction that defines a physical register. Adds
229 /// data dependencies from SU to any uses of the physical register.
230 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit
*SU
, unsigned OperIdx
) {
231 const MachineOperand
&MO
= SU
->getInstr()->getOperand(OperIdx
);
232 assert(MO
.isDef() && "expect physreg def");
234 // Ask the target if address-backscheduling is desirable, and if so how much.
235 const TargetSubtargetInfo
&ST
= MF
.getSubtarget();
237 // Only use any non-zero latency for real defs/uses, in contrast to
238 // "fake" operands added by regalloc.
239 const MCInstrDesc
*DefMIDesc
= &SU
->getInstr()->getDesc();
240 bool ImplicitPseudoDef
= (OperIdx
>= DefMIDesc
->getNumOperands() &&
241 !DefMIDesc
->hasImplicitDefOfPhysReg(MO
.getReg()));
242 for (MCRegAliasIterator
Alias(MO
.getReg(), TRI
, true);
243 Alias
.isValid(); ++Alias
) {
244 if (!Uses
.contains(*Alias
))
246 for (Reg2SUnitsMap::iterator I
= Uses
.find(*Alias
); I
!= Uses
.end(); ++I
) {
247 SUnit
*UseSU
= I
->SU
;
251 // Adjust the dependence latency using operand def/use information,
252 // then allow the target to perform its own adjustments.
253 int UseOp
= I
->OpIdx
;
254 MachineInstr
*RegUse
= nullptr;
257 Dep
= SDep(SU
, SDep::Artificial
);
259 // Set the hasPhysRegDefs only for physreg defs that have a use within
260 // the scheduling region.
261 SU
->hasPhysRegDefs
= true;
262 Dep
= SDep(SU
, SDep::Data
, *Alias
);
263 RegUse
= UseSU
->getInstr();
265 const MCInstrDesc
*UseMIDesc
=
266 (RegUse
? &UseSU
->getInstr()->getDesc() : nullptr);
267 bool ImplicitPseudoUse
=
268 (UseMIDesc
&& UseOp
>= ((int)UseMIDesc
->getNumOperands()) &&
269 !UseMIDesc
->hasImplicitUseOfPhysReg(*Alias
));
270 if (!ImplicitPseudoDef
&& !ImplicitPseudoUse
) {
271 Dep
.setLatency(SchedModel
.computeOperandLatency(SU
->getInstr(), OperIdx
,
273 ST
.adjustSchedDependency(SU
, UseSU
, Dep
);
282 /// Adds register dependencies (data, anti, and output) from this SUnit
283 /// to following instructions in the same scheduling region that depend the
284 /// physical register referenced at OperIdx.
285 void ScheduleDAGInstrs::addPhysRegDeps(SUnit
*SU
, unsigned OperIdx
) {
286 MachineInstr
*MI
= SU
->getInstr();
287 MachineOperand
&MO
= MI
->getOperand(OperIdx
);
288 Register Reg
= MO
.getReg();
289 // We do not need to track any dependencies for constant registers.
290 if (MRI
.isConstantPhysReg(Reg
))
293 // Optionally add output and anti dependencies. For anti
294 // dependencies we use a latency of 0 because for a multi-issue
295 // target we want to allow the defining instruction to issue
296 // in the same cycle as the using instruction.
297 // TODO: Using a latency of 1 here for output dependencies assumes
298 // there's no cost for reusing registers.
299 SDep::Kind Kind
= MO
.isUse() ? SDep::Anti
: SDep::Output
;
300 for (MCRegAliasIterator
Alias(Reg
, TRI
, true); Alias
.isValid(); ++Alias
) {
301 if (!Defs
.contains(*Alias
))
303 for (Reg2SUnitsMap::iterator I
= Defs
.find(*Alias
); I
!= Defs
.end(); ++I
) {
304 SUnit
*DefSU
= I
->SU
;
305 if (DefSU
== &ExitSU
)
308 (Kind
!= SDep::Output
|| !MO
.isDead() ||
309 !DefSU
->getInstr()->registerDefIsDead(*Alias
))) {
310 if (Kind
== SDep::Anti
)
311 DefSU
->addPred(SDep(SU
, Kind
, /*Reg=*/*Alias
));
313 SDep
Dep(SU
, Kind
, /*Reg=*/*Alias
);
315 SchedModel
.computeOutputLatency(MI
, OperIdx
, DefSU
->getInstr()));
323 SU
->hasPhysRegUses
= true;
324 // Either insert a new Reg2SUnits entry with an empty SUnits list, or
325 // retrieve the existing SUnits list for this register's uses.
326 // Push this SUnit on the use list.
327 Uses
.insert(PhysRegSUOper(SU
, OperIdx
, Reg
));
331 addPhysRegDataDeps(SU
, OperIdx
);
333 // Clear previous uses and defs of this register and its subergisters.
334 for (MCSubRegIterator
SubReg(Reg
, TRI
, true); SubReg
.isValid(); ++SubReg
) {
335 if (Uses
.contains(*SubReg
))
336 Uses
.eraseAll(*SubReg
);
338 Defs
.eraseAll(*SubReg
);
340 if (MO
.isDead() && SU
->isCall
) {
341 // Calls will not be reordered because of chain dependencies (see
342 // below). Since call operands are dead, calls may continue to be added
343 // to the DefList making dependence checking quadratic in the size of
344 // the block. Instead, we leave only one call at the back of the
346 Reg2SUnitsMap::RangePair P
= Defs
.equal_range(Reg
);
347 Reg2SUnitsMap::iterator B
= P
.first
;
348 Reg2SUnitsMap::iterator I
= P
.second
;
349 for (bool isBegin
= I
== B
; !isBegin
; /* empty */) {
350 isBegin
= (--I
) == B
;
357 // Defs are pushed in the order they are visited and never reordered.
358 Defs
.insert(PhysRegSUOper(SU
, OperIdx
, Reg
));
362 LaneBitmask
ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand
&MO
) const
364 Register Reg
= MO
.getReg();
365 // No point in tracking lanemasks if we don't have interesting subregisters.
366 const TargetRegisterClass
&RC
= *MRI
.getRegClass(Reg
);
367 if (!RC
.HasDisjunctSubRegs
)
368 return LaneBitmask::getAll();
370 unsigned SubReg
= MO
.getSubReg();
372 return RC
.getLaneMask();
373 return TRI
->getSubRegIndexLaneMask(SubReg
);
376 bool ScheduleDAGInstrs::deadDefHasNoUse(const MachineOperand
&MO
) {
377 auto RegUse
= CurrentVRegUses
.find(MO
.getReg());
378 if (RegUse
== CurrentVRegUses
.end())
380 return (RegUse
->LaneMask
& getLaneMaskForMO(MO
)).none();
383 /// Adds register output and data dependencies from this SUnit to instructions
384 /// that occur later in the same scheduling region if they read from or write to
385 /// the virtual register defined at OperIdx.
387 /// TODO: Hoist loop induction variable increments. This has to be
388 /// reevaluated. Generally, IV scheduling should be done before coalescing.
389 void ScheduleDAGInstrs::addVRegDefDeps(SUnit
*SU
, unsigned OperIdx
) {
390 MachineInstr
*MI
= SU
->getInstr();
391 MachineOperand
&MO
= MI
->getOperand(OperIdx
);
392 Register Reg
= MO
.getReg();
394 LaneBitmask DefLaneMask
;
395 LaneBitmask KillLaneMask
;
396 if (TrackLaneMasks
) {
397 bool IsKill
= MO
.getSubReg() == 0 || MO
.isUndef();
398 DefLaneMask
= getLaneMaskForMO(MO
);
399 // If we have a <read-undef> flag, none of the lane values comes from an
400 // earlier instruction.
401 KillLaneMask
= IsKill
? LaneBitmask::getAll() : DefLaneMask
;
403 if (MO
.getSubReg() != 0 && MO
.isUndef()) {
404 // There may be other subregister defs on the same instruction of the same
405 // register in later operands. The lanes of other defs will now be live
406 // after this instruction, so these should not be treated as killed by the
407 // instruction even though they appear to be killed in this one operand.
408 for (int I
= OperIdx
+ 1, E
= MI
->getNumOperands(); I
!= E
; ++I
) {
409 const MachineOperand
&OtherMO
= MI
->getOperand(I
);
410 if (OtherMO
.isReg() && OtherMO
.isDef() && OtherMO
.getReg() == Reg
)
411 KillLaneMask
&= ~getLaneMaskForMO(OtherMO
);
415 // Clear undef flag, we'll re-add it later once we know which subregister
417 MO
.setIsUndef(false);
419 DefLaneMask
= LaneBitmask::getAll();
420 KillLaneMask
= LaneBitmask::getAll();
424 assert(deadDefHasNoUse(MO
) && "Dead defs should have no uses");
426 // Add data dependence to all uses we found so far.
427 const TargetSubtargetInfo
&ST
= MF
.getSubtarget();
428 for (VReg2SUnitOperIdxMultiMap::iterator I
= CurrentVRegUses
.find(Reg
),
429 E
= CurrentVRegUses
.end(); I
!= E
; /*empty*/) {
430 LaneBitmask LaneMask
= I
->LaneMask
;
431 // Ignore uses of other lanes.
432 if ((LaneMask
& KillLaneMask
).none()) {
437 if ((LaneMask
& DefLaneMask
).any()) {
438 SUnit
*UseSU
= I
->SU
;
439 MachineInstr
*Use
= UseSU
->getInstr();
440 SDep
Dep(SU
, SDep::Data
, Reg
);
441 Dep
.setLatency(SchedModel
.computeOperandLatency(MI
, OperIdx
, Use
,
443 ST
.adjustSchedDependency(SU
, UseSU
, Dep
);
447 LaneMask
&= ~KillLaneMask
;
448 // If we found a Def for all lanes of this use, remove it from the list.
449 if (LaneMask
.any()) {
450 I
->LaneMask
= LaneMask
;
453 I
= CurrentVRegUses
.erase(I
);
457 // Shortcut: Singly defined vregs do not have output/anti dependencies.
458 if (MRI
.hasOneDef(Reg
))
461 // Add output dependence to the next nearest defs of this vreg.
463 // Unless this definition is dead, the output dependence should be
464 // transitively redundant with antidependencies from this definition's
465 // uses. We're conservative for now until we have a way to guarantee the uses
466 // are not eliminated sometime during scheduling. The output dependence edge
467 // is also useful if output latency exceeds def-use latency.
468 LaneBitmask LaneMask
= DefLaneMask
;
469 for (VReg2SUnit
&V2SU
: make_range(CurrentVRegDefs
.find(Reg
),
470 CurrentVRegDefs
.end())) {
471 // Ignore defs for other lanes.
472 if ((V2SU
.LaneMask
& LaneMask
).none())
474 // Add an output dependence.
475 SUnit
*DefSU
= V2SU
.SU
;
476 // Ignore additional defs of the same lanes in one instruction. This can
477 // happen because lanemasks are shared for targets with too many
478 // subregisters. We also use some representration tricks/hacks where we
479 // add super-register defs/uses, to imply that although we only access parts
480 // of the reg we care about the full one.
483 SDep
Dep(SU
, SDep::Output
, Reg
);
485 SchedModel
.computeOutputLatency(MI
, OperIdx
, DefSU
->getInstr()));
488 // Update current definition. This can get tricky if the def was about a
489 // bigger lanemask before. We then have to shrink it and create a new
490 // VReg2SUnit for the non-overlapping part.
491 LaneBitmask OverlapMask
= V2SU
.LaneMask
& LaneMask
;
492 LaneBitmask NonOverlapMask
= V2SU
.LaneMask
& ~LaneMask
;
494 V2SU
.LaneMask
= OverlapMask
;
495 if (NonOverlapMask
.any())
496 CurrentVRegDefs
.insert(VReg2SUnit(Reg
, NonOverlapMask
, DefSU
));
498 // If there was no CurrentVRegDefs entry for some lanes yet, create one.
500 CurrentVRegDefs
.insert(VReg2SUnit(Reg
, LaneMask
, SU
));
503 /// Adds a register data dependency if the instruction that defines the
504 /// virtual register used at OperIdx is mapped to an SUnit. Add a register
505 /// antidependency from this SUnit to instructions that occur later in the same
506 /// scheduling region if they write the virtual register.
508 /// TODO: Handle ExitSU "uses" properly.
509 void ScheduleDAGInstrs::addVRegUseDeps(SUnit
*SU
, unsigned OperIdx
) {
510 const MachineInstr
*MI
= SU
->getInstr();
511 const MachineOperand
&MO
= MI
->getOperand(OperIdx
);
512 Register Reg
= MO
.getReg();
514 // Remember the use. Data dependencies will be added when we find the def.
515 LaneBitmask LaneMask
= TrackLaneMasks
? getLaneMaskForMO(MO
)
516 : LaneBitmask::getAll();
517 CurrentVRegUses
.insert(VReg2SUnitOperIdx(Reg
, LaneMask
, OperIdx
, SU
));
519 // Add antidependences to the following defs of the vreg.
520 for (VReg2SUnit
&V2SU
: make_range(CurrentVRegDefs
.find(Reg
),
521 CurrentVRegDefs
.end())) {
522 // Ignore defs for unrelated lanes.
523 LaneBitmask PrevDefLaneMask
= V2SU
.LaneMask
;
524 if ((PrevDefLaneMask
& LaneMask
).none())
529 V2SU
.SU
->addPred(SDep(SU
, SDep::Anti
, Reg
));
533 /// Returns true if MI is an instruction we are unable to reason about
534 /// (like a call or something with unmodeled side effects).
535 static inline bool isGlobalMemoryObject(AliasAnalysis
*AA
, MachineInstr
*MI
) {
536 return MI
->isCall() || MI
->hasUnmodeledSideEffects() ||
537 (MI
->hasOrderedMemoryRef() && !MI
->isDereferenceableInvariantLoad(AA
));
540 void ScheduleDAGInstrs::addChainDependency (SUnit
*SUa
, SUnit
*SUb
,
542 if (SUa
->getInstr()->mayAlias(AAForDep
, *SUb
->getInstr(), UseTBAA
)) {
543 SDep
Dep(SUa
, SDep::MayAliasMem
);
544 Dep
.setLatency(Latency
);
549 /// Creates an SUnit for each real instruction, numbered in top-down
550 /// topological order. The instruction order A < B, implies that no edge exists
553 /// Map each real instruction to its SUnit.
555 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may
556 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
557 /// instead of pointers.
559 /// MachineScheduler relies on initSUnits numbering the nodes by their order in
560 /// the original instruction list.
561 void ScheduleDAGInstrs::initSUnits() {
562 // We'll be allocating one SUnit for each real instruction in the region,
563 // which is contained within a basic block.
564 SUnits
.reserve(NumRegionInstrs
);
566 for (MachineInstr
&MI
: make_range(RegionBegin
, RegionEnd
)) {
567 if (MI
.isDebugInstr())
570 SUnit
*SU
= newSUnit(&MI
);
571 MISUnitMap
[&MI
] = SU
;
573 SU
->isCall
= MI
.isCall();
574 SU
->isCommutable
= MI
.isCommutable();
576 // Assign the Latency field of SU using target-provided information.
577 SU
->Latency
= SchedModel
.computeInstrLatency(SU
->getInstr());
579 // If this SUnit uses a reserved or unbuffered resource, mark it as such.
581 // Reserved resources block an instruction from issuing and stall the
582 // entire pipeline. These are identified by BufferSize=0.
584 // Unbuffered resources prevent execution of subsequent instructions that
585 // require the same resources. This is used for in-order execution pipelines
586 // within an out-of-order core. These are identified by BufferSize=1.
587 if (SchedModel
.hasInstrSchedModel()) {
588 const MCSchedClassDesc
*SC
= getSchedClass(SU
);
589 for (const MCWriteProcResEntry
&PRE
:
590 make_range(SchedModel
.getWriteProcResBegin(SC
),
591 SchedModel
.getWriteProcResEnd(SC
))) {
592 switch (SchedModel
.getProcResource(PRE
.ProcResourceIdx
)->BufferSize
) {
594 SU
->hasReservedResource
= true;
597 SU
->isUnbuffered
= true;
607 class ScheduleDAGInstrs::Value2SUsMap
: public MapVector
<ValueType
, SUList
> {
608 /// Current total number of SUs in map.
609 unsigned NumNodes
= 0;
611 /// 1 for loads, 0 for stores. (see comment in SUList)
612 unsigned TrueMemOrderLatency
;
615 Value2SUsMap(unsigned lat
= 0) : TrueMemOrderLatency(lat
) {}
617 /// To keep NumNodes up to date, insert() is used instead of
618 /// this operator w/ push_back().
619 ValueType
&operator[](const SUList
&Key
) {
620 llvm_unreachable("Don't use. Use insert() instead."); };
622 /// Adds SU to the SUList of V. If Map grows huge, reduce its size by calling
624 void inline insert(SUnit
*SU
, ValueType V
) {
625 MapVector::operator[](V
).push_back(SU
);
629 /// Clears the list of SUs mapped to V.
630 void inline clearList(ValueType V
) {
631 iterator Itr
= find(V
);
633 assert(NumNodes
>= Itr
->second
.size());
634 NumNodes
-= Itr
->second
.size();
640 /// Clears map from all contents.
642 MapVector
<ValueType
, SUList
>::clear();
646 unsigned inline size() const { return NumNodes
; }
648 /// Counts the number of SUs in this map after a reduction.
649 void reComputeSize() {
651 for (auto &I
: *this)
652 NumNodes
+= I
.second
.size();
655 unsigned inline getTrueMemOrderLatency() const {
656 return TrueMemOrderLatency
;
662 void ScheduleDAGInstrs::addChainDependencies(SUnit
*SU
,
663 Value2SUsMap
&Val2SUsMap
) {
664 for (auto &I
: Val2SUsMap
)
665 addChainDependencies(SU
, I
.second
,
666 Val2SUsMap
.getTrueMemOrderLatency());
669 void ScheduleDAGInstrs::addChainDependencies(SUnit
*SU
,
670 Value2SUsMap
&Val2SUsMap
,
672 Value2SUsMap::iterator Itr
= Val2SUsMap
.find(V
);
673 if (Itr
!= Val2SUsMap
.end())
674 addChainDependencies(SU
, Itr
->second
,
675 Val2SUsMap
.getTrueMemOrderLatency());
678 void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap
&map
) {
679 assert(BarrierChain
!= nullptr);
681 for (auto &I
: map
) {
682 SUList
&sus
= I
.second
;
684 SU
->addPredBarrier(BarrierChain
);
689 void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap
&map
) {
690 assert(BarrierChain
!= nullptr);
692 // Go through all lists of SUs.
693 for (Value2SUsMap::iterator I
= map
.begin(), EE
= map
.end(); I
!= EE
;) {
694 Value2SUsMap::iterator CurrItr
= I
++;
695 SUList
&sus
= CurrItr
->second
;
696 SUList::iterator SUItr
= sus
.begin(), SUEE
= sus
.end();
697 for (; SUItr
!= SUEE
; ++SUItr
) {
698 // Stop on BarrierChain or any instruction above it.
699 if ((*SUItr
)->NodeNum
<= BarrierChain
->NodeNum
)
702 (*SUItr
)->addPredBarrier(BarrierChain
);
705 // Remove also the BarrierChain from list if present.
706 if (SUItr
!= SUEE
&& *SUItr
== BarrierChain
)
709 // Remove all SUs that are now successors of BarrierChain.
710 if (SUItr
!= sus
.begin())
711 sus
.erase(sus
.begin(), SUItr
);
714 // Remove all entries with empty su lists.
715 map
.remove_if([&](std::pair
<ValueType
, SUList
> &mapEntry
) {
716 return (mapEntry
.second
.empty()); });
718 // Recompute the size of the map (NumNodes).
722 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis
*AA
,
723 RegPressureTracker
*RPTracker
,
724 PressureDiffs
*PDiffs
,
726 bool TrackLaneMasks
) {
727 const TargetSubtargetInfo
&ST
= MF
.getSubtarget();
728 bool UseAA
= EnableAASchedMI
.getNumOccurrences() > 0 ? EnableAASchedMI
730 AAForDep
= UseAA
? AA
: nullptr;
732 BarrierChain
= nullptr;
734 this->TrackLaneMasks
= TrackLaneMasks
;
736 ScheduleDAG::clearDAG();
738 // Create an SUnit for each real instruction.
742 PDiffs
->init(SUnits
.size());
744 // We build scheduling units by walking a block's instruction list
745 // from bottom to top.
747 // Each MIs' memory operand(s) is analyzed to a list of underlying
748 // objects. The SU is then inserted in the SUList(s) mapped from the
749 // Value(s). Each Value thus gets mapped to lists of SUs depending
750 // on it, stores and loads kept separately. Two SUs are trivially
751 // non-aliasing if they both depend on only identified Values and do
752 // not share any common Value.
753 Value2SUsMap Stores
, Loads(1 /*TrueMemOrderLatency*/);
755 // Certain memory accesses are known to not alias any SU in Stores
756 // or Loads, and have therefore their own 'NonAlias'
757 // domain. E.g. spill / reload instructions never alias LLVM I/R
758 // Values. It would be nice to assume that this type of memory
759 // accesses always have a proper memory operand modelling, and are
760 // therefore never unanalyzable, but this is conservatively not
762 Value2SUsMap NonAliasStores
, NonAliasLoads(1 /*TrueMemOrderLatency*/);
764 // Track all instructions that may raise floating-point exceptions.
765 // These do not depend on one other (or normal loads or stores), but
766 // must not be rescheduled across global barriers. Note that we don't
767 // really need a "map" here since we don't track those MIs by value;
768 // using the same Value2SUsMap data type here is simply a matter of
770 Value2SUsMap FPExceptions
;
772 // Remove any stale debug info; sometimes BuildSchedGraph is called again
773 // without emitting the info from the previous call.
775 FirstDbgValue
= nullptr;
777 assert(Defs
.empty() && Uses
.empty() &&
778 "Only BuildGraph should update Defs/Uses");
779 Defs
.setUniverse(TRI
->getNumRegs());
780 Uses
.setUniverse(TRI
->getNumRegs());
782 assert(CurrentVRegDefs
.empty() && "nobody else should use CurrentVRegDefs");
783 assert(CurrentVRegUses
.empty() && "nobody else should use CurrentVRegUses");
784 unsigned NumVirtRegs
= MRI
.getNumVirtRegs();
785 CurrentVRegDefs
.setUniverse(NumVirtRegs
);
786 CurrentVRegUses
.setUniverse(NumVirtRegs
);
788 // Model data dependencies between instructions being scheduled and the
790 addSchedBarrierDeps();
792 // Walk the list of instructions, from bottom moving up.
793 MachineInstr
*DbgMI
= nullptr;
794 for (MachineBasicBlock::iterator MII
= RegionEnd
, MIE
= RegionBegin
;
796 MachineInstr
&MI
= *std::prev(MII
);
798 DbgValues
.push_back(std::make_pair(DbgMI
, &MI
));
802 if (MI
.isDebugValue()) {
806 if (MI
.isDebugLabel())
809 SUnit
*SU
= MISUnitMap
[&MI
];
810 assert(SU
&& "No SUnit mapped to this MI");
813 RegisterOperands RegOpers
;
814 RegOpers
.collect(MI
, *TRI
, MRI
, TrackLaneMasks
, false);
815 if (TrackLaneMasks
) {
816 SlotIndex SlotIdx
= LIS
->getInstructionIndex(MI
);
817 RegOpers
.adjustLaneLiveness(*LIS
, MRI
, SlotIdx
);
819 if (PDiffs
!= nullptr)
820 PDiffs
->addInstruction(SU
->NodeNum
, RegOpers
, MRI
);
822 if (RPTracker
->getPos() == RegionEnd
|| &*RPTracker
->getPos() != &MI
)
823 RPTracker
->recedeSkipDebugValues();
824 assert(&*RPTracker
->getPos() == &MI
&& "RPTracker in sync");
825 RPTracker
->recede(RegOpers
);
829 (CanHandleTerminators
|| (!MI
.isTerminator() && !MI
.isPosition())) &&
830 "Cannot schedule terminators or labels!");
832 // Add register-based dependencies (data, anti, and output).
833 // For some instructions (calls, returns, inline-asm, etc.) there can
834 // be explicit uses and implicit defs, in which case the use will appear
835 // on the operand list before the def. Do two passes over the operand
836 // list to make sure that defs are processed before any uses.
837 bool HasVRegDef
= false;
838 for (unsigned j
= 0, n
= MI
.getNumOperands(); j
!= n
; ++j
) {
839 const MachineOperand
&MO
= MI
.getOperand(j
);
840 if (!MO
.isReg() || !MO
.isDef())
842 Register Reg
= MO
.getReg();
843 if (Register::isPhysicalRegister(Reg
)) {
844 addPhysRegDeps(SU
, j
);
845 } else if (Register::isVirtualRegister(Reg
)) {
847 addVRegDefDeps(SU
, j
);
850 // Now process all uses.
851 for (unsigned j
= 0, n
= MI
.getNumOperands(); j
!= n
; ++j
) {
852 const MachineOperand
&MO
= MI
.getOperand(j
);
853 // Only look at use operands.
854 // We do not need to check for MO.readsReg() here because subsequent
855 // subregister defs will get output dependence edges and need no
856 // additional use dependencies.
857 if (!MO
.isReg() || !MO
.isUse())
859 Register Reg
= MO
.getReg();
860 if (Register::isPhysicalRegister(Reg
)) {
861 addPhysRegDeps(SU
, j
);
862 } else if (Register::isVirtualRegister(Reg
) && MO
.readsReg()) {
863 addVRegUseDeps(SU
, j
);
867 // If we haven't seen any uses in this scheduling region, create a
868 // dependence edge to ExitSU to model the live-out latency. This is required
869 // for vreg defs with no in-region use, and prefetches with no vreg def.
871 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
872 // check currently relies on being called before adding chain deps.
873 if (SU
->NumSuccs
== 0 && SU
->Latency
> 1 && (HasVRegDef
|| MI
.mayLoad())) {
874 SDep
Dep(SU
, SDep::Artificial
);
875 Dep
.setLatency(SU
->Latency
- 1);
879 // Add memory dependencies (Note: isStoreToStackSlot and
880 // isLoadFromStackSLot are not usable after stack slots are lowered to
881 // actual addresses).
883 // This is a barrier event that acts as a pivotal node in the DAG.
884 if (isGlobalMemoryObject(AA
, &MI
)) {
886 // Become the barrier chain.
888 BarrierChain
->addPredBarrier(SU
);
891 LLVM_DEBUG(dbgs() << "Global memory object and new barrier chain: SU("
892 << BarrierChain
->NodeNum
<< ").\n";);
894 // Add dependencies against everything below it and clear maps.
895 addBarrierChain(Stores
);
896 addBarrierChain(Loads
);
897 addBarrierChain(NonAliasStores
);
898 addBarrierChain(NonAliasLoads
);
899 addBarrierChain(FPExceptions
);
904 // Instructions that may raise FP exceptions may not be moved
905 // across any global barriers.
906 if (MI
.mayRaiseFPException()) {
908 BarrierChain
->addPredBarrier(SU
);
910 FPExceptions
.insert(SU
, UnknownValue
);
912 if (FPExceptions
.size() >= HugeRegion
) {
913 LLVM_DEBUG(dbgs() << "Reducing FPExceptions map.\n";);
915 reduceHugeMemNodeMaps(FPExceptions
, empty
, getReductionSize());
919 // If it's not a store or a variant load, we're done.
920 if (!MI
.mayStore() &&
921 !(MI
.mayLoad() && !MI
.isDereferenceableInvariantLoad(AA
)))
924 // Always add dependecy edge to BarrierChain if present.
926 BarrierChain
->addPredBarrier(SU
);
928 // Find the underlying objects for MI. The Objs vector is either
929 // empty, or filled with the Values of memory locations which this
931 UnderlyingObjectsVector Objs
;
932 bool ObjsFound
= getUnderlyingObjectsForInstr(&MI
, MFI
, Objs
,
937 // An unknown store depends on all stores and loads.
938 addChainDependencies(SU
, Stores
);
939 addChainDependencies(SU
, NonAliasStores
);
940 addChainDependencies(SU
, Loads
);
941 addChainDependencies(SU
, NonAliasLoads
);
943 // Map this store to 'UnknownValue'.
944 Stores
.insert(SU
, UnknownValue
);
946 // Add precise dependencies against all previously seen memory
947 // accesses mapped to the same Value(s).
948 for (const UnderlyingObject
&UnderlObj
: Objs
) {
949 ValueType V
= UnderlObj
.getValue();
950 bool ThisMayAlias
= UnderlObj
.mayAlias();
952 // Add dependencies to previous stores and loads mapped to V.
953 addChainDependencies(SU
, (ThisMayAlias
? Stores
: NonAliasStores
), V
);
954 addChainDependencies(SU
, (ThisMayAlias
? Loads
: NonAliasLoads
), V
);
956 // Update the store map after all chains have been added to avoid adding
957 // self-loop edge if multiple underlying objects are present.
958 for (const UnderlyingObject
&UnderlObj
: Objs
) {
959 ValueType V
= UnderlObj
.getValue();
960 bool ThisMayAlias
= UnderlObj
.mayAlias();
962 // Map this store to V.
963 (ThisMayAlias
? Stores
: NonAliasStores
).insert(SU
, V
);
965 // The store may have dependencies to unanalyzable loads and
967 addChainDependencies(SU
, Loads
, UnknownValue
);
968 addChainDependencies(SU
, Stores
, UnknownValue
);
970 } else { // SU is a load.
972 // An unknown load depends on all stores.
973 addChainDependencies(SU
, Stores
);
974 addChainDependencies(SU
, NonAliasStores
);
976 Loads
.insert(SU
, UnknownValue
);
978 for (const UnderlyingObject
&UnderlObj
: Objs
) {
979 ValueType V
= UnderlObj
.getValue();
980 bool ThisMayAlias
= UnderlObj
.mayAlias();
982 // Add precise dependencies against all previously seen stores
983 // mapping to the same Value(s).
984 addChainDependencies(SU
, (ThisMayAlias
? Stores
: NonAliasStores
), V
);
986 // Map this load to V.
987 (ThisMayAlias
? Loads
: NonAliasLoads
).insert(SU
, V
);
989 // The load may have dependencies to unanalyzable stores.
990 addChainDependencies(SU
, Stores
, UnknownValue
);
994 // Reduce maps if they grow huge.
995 if (Stores
.size() + Loads
.size() >= HugeRegion
) {
996 LLVM_DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";);
997 reduceHugeMemNodeMaps(Stores
, Loads
, getReductionSize());
999 if (NonAliasStores
.size() + NonAliasLoads
.size() >= HugeRegion
) {
1001 dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";);
1002 reduceHugeMemNodeMaps(NonAliasStores
, NonAliasLoads
, getReductionSize());
1007 FirstDbgValue
= DbgMI
;
1011 CurrentVRegDefs
.clear();
1012 CurrentVRegUses
.clear();
1017 raw_ostream
&llvm::operator<<(raw_ostream
&OS
, const PseudoSourceValue
* PSV
) {
1018 PSV
->printCustom(OS
);
1022 void ScheduleDAGInstrs::Value2SUsMap::dump() {
1023 for (auto &Itr
: *this) {
1024 if (Itr
.first
.is
<const Value
*>()) {
1025 const Value
*V
= Itr
.first
.get
<const Value
*>();
1026 if (isa
<UndefValue
>(V
))
1027 dbgs() << "Unknown";
1029 V
->printAsOperand(dbgs());
1031 else if (Itr
.first
.is
<const PseudoSourceValue
*>())
1032 dbgs() << Itr
.first
.get
<const PseudoSourceValue
*>();
1034 llvm_unreachable("Unknown Value type.");
1037 dumpSUList(Itr
.second
);
1041 void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap
&stores
,
1042 Value2SUsMap
&loads
, unsigned N
) {
1043 LLVM_DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; stores
.dump();
1044 dbgs() << "Loading SUnits:\n"; loads
.dump());
1046 // Insert all SU's NodeNums into a vector and sort it.
1047 std::vector
<unsigned> NodeNums
;
1048 NodeNums
.reserve(stores
.size() + loads
.size());
1049 for (auto &I
: stores
)
1050 for (auto *SU
: I
.second
)
1051 NodeNums
.push_back(SU
->NodeNum
);
1052 for (auto &I
: loads
)
1053 for (auto *SU
: I
.second
)
1054 NodeNums
.push_back(SU
->NodeNum
);
1055 llvm::sort(NodeNums
);
1057 // The N last elements in NodeNums will be removed, and the SU with
1058 // the lowest NodeNum of them will become the new BarrierChain to
1059 // let the not yet seen SUs have a dependency to the removed SUs.
1060 assert(N
<= NodeNums
.size());
1061 SUnit
*newBarrierChain
= &SUnits
[*(NodeNums
.end() - N
)];
1063 // The aliasing and non-aliasing maps reduce independently of each
1064 // other, but share a common BarrierChain. Check if the
1065 // newBarrierChain is above the former one. If it is not, it may
1066 // introduce a loop to use newBarrierChain, so keep the old one.
1067 if (newBarrierChain
->NodeNum
< BarrierChain
->NodeNum
) {
1068 BarrierChain
->addPredBarrier(newBarrierChain
);
1069 BarrierChain
= newBarrierChain
;
1070 LLVM_DEBUG(dbgs() << "Inserting new barrier chain: SU("
1071 << BarrierChain
->NodeNum
<< ").\n";);
1074 LLVM_DEBUG(dbgs() << "Keeping old barrier chain: SU("
1075 << BarrierChain
->NodeNum
<< ").\n";);
1078 BarrierChain
= newBarrierChain
;
1080 insertBarrierChain(stores
);
1081 insertBarrierChain(loads
);
1083 LLVM_DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; stores
.dump();
1084 dbgs() << "Loading SUnits:\n"; loads
.dump());
1087 static void toggleKills(const MachineRegisterInfo
&MRI
, LivePhysRegs
&LiveRegs
,
1088 MachineInstr
&MI
, bool addToLiveRegs
) {
1089 for (MachineOperand
&MO
: MI
.operands()) {
1090 if (!MO
.isReg() || !MO
.readsReg())
1092 Register Reg
= MO
.getReg();
1096 // Things that are available after the instruction are killed by it.
1097 bool IsKill
= LiveRegs
.available(MRI
, Reg
);
1098 MO
.setIsKill(IsKill
);
1100 LiveRegs
.addReg(Reg
);
1104 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock
&MBB
) {
1105 LLVM_DEBUG(dbgs() << "Fixup kills for " << printMBBReference(MBB
) << '\n');
1107 LiveRegs
.init(*TRI
);
1108 LiveRegs
.addLiveOuts(MBB
);
1110 // Examine block from end to start...
1111 for (MachineInstr
&MI
: make_range(MBB
.rbegin(), MBB
.rend())) {
1112 if (MI
.isDebugInstr())
1115 // Update liveness. Registers that are defed but not used in this
1116 // instruction are now dead. Mark register and all subregs as they
1117 // are completely defined.
1118 for (ConstMIBundleOperands
O(MI
); O
.isValid(); ++O
) {
1119 const MachineOperand
&MO
= *O
;
1123 Register Reg
= MO
.getReg();
1126 LiveRegs
.removeReg(Reg
);
1127 } else if (MO
.isRegMask()) {
1128 LiveRegs
.removeRegsInMask(MO
);
1132 // If there is a bundle header fix it up first.
1133 if (!MI
.isBundled()) {
1134 toggleKills(MRI
, LiveRegs
, MI
, true);
1136 MachineBasicBlock::instr_iterator Bundle
= MI
.getIterator();
1138 toggleKills(MRI
, LiveRegs
, MI
, false);
1140 // Some targets make the (questionable) assumtion that the instructions
1141 // inside the bundle are ordered and consequently only the last use of
1142 // a register inside the bundle can kill it.
1143 MachineBasicBlock::instr_iterator I
= std::next(Bundle
);
1144 while (I
->isBundledWithSucc())
1147 if (!I
->isDebugInstr())
1148 toggleKills(MRI
, LiveRegs
, *I
, true);
1150 } while (I
!= Bundle
);
1155 void ScheduleDAGInstrs::dumpNode(const SUnit
&SU
) const {
1156 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1159 SU
.getInstr()->dump();
1163 void ScheduleDAGInstrs::dump() const {
1164 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1165 if (EntrySU
.getInstr() != nullptr)
1166 dumpNodeAll(EntrySU
);
1167 for (const SUnit
&SU
: SUnits
)
1169 if (ExitSU
.getInstr() != nullptr)
1170 dumpNodeAll(ExitSU
);
1174 std::string
ScheduleDAGInstrs::getGraphNodeLabel(const SUnit
*SU
) const {
1176 raw_string_ostream
oss(s
);
1179 else if (SU
== &ExitSU
)
1182 SU
->getInstr()->print(oss
, /*SkipOpers=*/true);
1186 /// Return the basic block label. It is not necessarilly unique because a block
1187 /// contains multiple scheduling regions. But it is fine for visualization.
1188 std::string
ScheduleDAGInstrs::getDAGName() const {
1189 return "dag." + BB
->getFullName();
1192 bool ScheduleDAGInstrs::canAddEdge(SUnit
*SuccSU
, SUnit
*PredSU
) {
1193 return SuccSU
== &ExitSU
|| !Topo
.IsReachable(PredSU
, SuccSU
);
1196 bool ScheduleDAGInstrs::addEdge(SUnit
*SuccSU
, const SDep
&PredDep
) {
1197 if (SuccSU
!= &ExitSU
) {
1198 // Do not use WillCreateCycle, it assumes SD scheduling.
1199 // If Pred is reachable from Succ, then the edge creates a cycle.
1200 if (Topo
.IsReachable(PredDep
.getSUnit(), SuccSU
))
1202 Topo
.AddPredQueued(SuccSU
, PredDep
.getSUnit());
1204 SuccSU
->addPred(PredDep
, /*Required=*/!PredDep
.isArtificial());
1205 // Return true regardless of whether a new edge needed to be inserted.
1209 //===----------------------------------------------------------------------===//
1210 // SchedDFSResult Implementation
1211 //===----------------------------------------------------------------------===//
1215 /// Internal state used to compute SchedDFSResult.
1216 class SchedDFSImpl
{
1219 /// Join DAG nodes into equivalence classes by their subtree.
1220 IntEqClasses SubtreeClasses
;
1221 /// List PredSU, SuccSU pairs that represent data edges between subtrees.
1222 std::vector
<std::pair
<const SUnit
*, const SUnit
*>> ConnectionPairs
;
1226 unsigned ParentNodeID
; ///< Parent node (member of the parent subtree).
1227 unsigned SubInstrCount
= 0; ///< Instr count in this tree only, not
1230 RootData(unsigned id
): NodeID(id
),
1231 ParentNodeID(SchedDFSResult::InvalidSubtreeID
) {}
1233 unsigned getSparseSetIndex() const { return NodeID
; }
1236 SparseSet
<RootData
> RootSet
;
1239 SchedDFSImpl(SchedDFSResult
&r
): R(r
), SubtreeClasses(R
.DFSNodeData
.size()) {
1240 RootSet
.setUniverse(R
.DFSNodeData
.size());
1243 /// Returns true if this node been visited by the DFS traversal.
1245 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
1246 /// ID. Later, SubtreeID is updated but remains valid.
1247 bool isVisited(const SUnit
*SU
) const {
1248 return R
.DFSNodeData
[SU
->NodeNum
].SubtreeID
1249 != SchedDFSResult::InvalidSubtreeID
;
1252 /// Initializes this node's instruction count. We don't need to flag the node
1253 /// visited until visitPostorder because the DAG cannot have cycles.
1254 void visitPreorder(const SUnit
*SU
) {
1255 R
.DFSNodeData
[SU
->NodeNum
].InstrCount
=
1256 SU
->getInstr()->isTransient() ? 0 : 1;
1259 /// Called once for each node after all predecessors are visited. Revisit this
1260 /// node's predecessors and potentially join them now that we know the ILP of
1261 /// the other predecessors.
1262 void visitPostorderNode(const SUnit
*SU
) {
1263 // Mark this node as the root of a subtree. It may be joined with its
1264 // successors later.
1265 R
.DFSNodeData
[SU
->NodeNum
].SubtreeID
= SU
->NodeNum
;
1266 RootData
RData(SU
->NodeNum
);
1267 RData
.SubInstrCount
= SU
->getInstr()->isTransient() ? 0 : 1;
1269 // If any predecessors are still in their own subtree, they either cannot be
1270 // joined or are large enough to remain separate. If this parent node's
1271 // total instruction count is not greater than a child subtree by at least
1272 // the subtree limit, then try to join it now since splitting subtrees is
1273 // only useful if multiple high-pressure paths are possible.
1274 unsigned InstrCount
= R
.DFSNodeData
[SU
->NodeNum
].InstrCount
;
1275 for (const SDep
&PredDep
: SU
->Preds
) {
1276 if (PredDep
.getKind() != SDep::Data
)
1278 unsigned PredNum
= PredDep
.getSUnit()->NodeNum
;
1279 if ((InstrCount
- R
.DFSNodeData
[PredNum
].InstrCount
) < R
.SubtreeLimit
)
1280 joinPredSubtree(PredDep
, SU
, /*CheckLimit=*/false);
1282 // Either link or merge the TreeData entry from the child to the parent.
1283 if (R
.DFSNodeData
[PredNum
].SubtreeID
== PredNum
) {
1284 // If the predecessor's parent is invalid, this is a tree edge and the
1285 // current node is the parent.
1286 if (RootSet
[PredNum
].ParentNodeID
== SchedDFSResult::InvalidSubtreeID
)
1287 RootSet
[PredNum
].ParentNodeID
= SU
->NodeNum
;
1289 else if (RootSet
.count(PredNum
)) {
1290 // The predecessor is not a root, but is still in the root set. This
1291 // must be the new parent that it was just joined to. Note that
1292 // RootSet[PredNum].ParentNodeID may either be invalid or may still be
1293 // set to the original parent.
1294 RData
.SubInstrCount
+= RootSet
[PredNum
].SubInstrCount
;
1295 RootSet
.erase(PredNum
);
1298 RootSet
[SU
->NodeNum
] = RData
;
1301 /// Called once for each tree edge after calling visitPostOrderNode on
1302 /// the predecessor. Increment the parent node's instruction count and
1303 /// preemptively join this subtree to its parent's if it is small enough.
1304 void visitPostorderEdge(const SDep
&PredDep
, const SUnit
*Succ
) {
1305 R
.DFSNodeData
[Succ
->NodeNum
].InstrCount
1306 += R
.DFSNodeData
[PredDep
.getSUnit()->NodeNum
].InstrCount
;
1307 joinPredSubtree(PredDep
, Succ
);
1310 /// Adds a connection for cross edges.
1311 void visitCrossEdge(const SDep
&PredDep
, const SUnit
*Succ
) {
1312 ConnectionPairs
.push_back(std::make_pair(PredDep
.getSUnit(), Succ
));
1315 /// Sets each node's subtree ID to the representative ID and record
1316 /// connections between trees.
1318 SubtreeClasses
.compress();
1319 R
.DFSTreeData
.resize(SubtreeClasses
.getNumClasses());
1320 assert(SubtreeClasses
.getNumClasses() == RootSet
.size()
1321 && "number of roots should match trees");
1322 for (const RootData
&Root
: RootSet
) {
1323 unsigned TreeID
= SubtreeClasses
[Root
.NodeID
];
1324 if (Root
.ParentNodeID
!= SchedDFSResult::InvalidSubtreeID
)
1325 R
.DFSTreeData
[TreeID
].ParentTreeID
= SubtreeClasses
[Root
.ParentNodeID
];
1326 R
.DFSTreeData
[TreeID
].SubInstrCount
= Root
.SubInstrCount
;
1327 // Note that SubInstrCount may be greater than InstrCount if we joined
1328 // subtrees across a cross edge. InstrCount will be attributed to the
1329 // original parent, while SubInstrCount will be attributed to the joined
1332 R
.SubtreeConnections
.resize(SubtreeClasses
.getNumClasses());
1333 R
.SubtreeConnectLevels
.resize(SubtreeClasses
.getNumClasses());
1334 LLVM_DEBUG(dbgs() << R
.getNumSubtrees() << " subtrees:\n");
1335 for (unsigned Idx
= 0, End
= R
.DFSNodeData
.size(); Idx
!= End
; ++Idx
) {
1336 R
.DFSNodeData
[Idx
].SubtreeID
= SubtreeClasses
[Idx
];
1337 LLVM_DEBUG(dbgs() << " SU(" << Idx
<< ") in tree "
1338 << R
.DFSNodeData
[Idx
].SubtreeID
<< '\n');
1340 for (const std::pair
<const SUnit
*, const SUnit
*> &P
: ConnectionPairs
) {
1341 unsigned PredTree
= SubtreeClasses
[P
.first
->NodeNum
];
1342 unsigned SuccTree
= SubtreeClasses
[P
.second
->NodeNum
];
1343 if (PredTree
== SuccTree
)
1345 unsigned Depth
= P
.first
->getDepth();
1346 addConnection(PredTree
, SuccTree
, Depth
);
1347 addConnection(SuccTree
, PredTree
, Depth
);
1352 /// Joins the predecessor subtree with the successor that is its DFS parent.
1353 /// Applies some heuristics before joining.
1354 bool joinPredSubtree(const SDep
&PredDep
, const SUnit
*Succ
,
1355 bool CheckLimit
= true) {
1356 assert(PredDep
.getKind() == SDep::Data
&& "Subtrees are for data edges");
1358 // Check if the predecessor is already joined.
1359 const SUnit
*PredSU
= PredDep
.getSUnit();
1360 unsigned PredNum
= PredSU
->NodeNum
;
1361 if (R
.DFSNodeData
[PredNum
].SubtreeID
!= PredNum
)
1364 // Four is the magic number of successors before a node is considered a
1366 unsigned NumDataSucs
= 0;
1367 for (const SDep
&SuccDep
: PredSU
->Succs
) {
1368 if (SuccDep
.getKind() == SDep::Data
) {
1369 if (++NumDataSucs
>= 4)
1373 if (CheckLimit
&& R
.DFSNodeData
[PredNum
].InstrCount
> R
.SubtreeLimit
)
1375 R
.DFSNodeData
[PredNum
].SubtreeID
= Succ
->NodeNum
;
1376 SubtreeClasses
.join(Succ
->NodeNum
, PredNum
);
1380 /// Called by finalize() to record a connection between trees.
1381 void addConnection(unsigned FromTree
, unsigned ToTree
, unsigned Depth
) {
1386 SmallVectorImpl
<SchedDFSResult::Connection
> &Connections
=
1387 R
.SubtreeConnections
[FromTree
];
1388 for (SchedDFSResult::Connection
&C
: Connections
) {
1389 if (C
.TreeID
== ToTree
) {
1390 C
.Level
= std::max(C
.Level
, Depth
);
1394 Connections
.push_back(SchedDFSResult::Connection(ToTree
, Depth
));
1395 FromTree
= R
.DFSTreeData
[FromTree
].ParentTreeID
;
1396 } while (FromTree
!= SchedDFSResult::InvalidSubtreeID
);
1400 } // end namespace llvm
1404 /// Manage the stack used by a reverse depth-first search over the DAG.
1405 class SchedDAGReverseDFS
{
1406 std::vector
<std::pair
<const SUnit
*, SUnit::const_pred_iterator
>> DFSStack
;
1409 bool isComplete() const { return DFSStack
.empty(); }
1411 void follow(const SUnit
*SU
) {
1412 DFSStack
.push_back(std::make_pair(SU
, SU
->Preds
.begin()));
1414 void advance() { ++DFSStack
.back().second
; }
1416 const SDep
*backtrack() {
1417 DFSStack
.pop_back();
1418 return DFSStack
.empty() ? nullptr : std::prev(DFSStack
.back().second
);
1421 const SUnit
*getCurr() const { return DFSStack
.back().first
; }
1423 SUnit::const_pred_iterator
getPred() const { return DFSStack
.back().second
; }
1425 SUnit::const_pred_iterator
getPredEnd() const {
1426 return getCurr()->Preds
.end();
1430 } // end anonymous namespace
1432 static bool hasDataSucc(const SUnit
*SU
) {
1433 for (const SDep
&SuccDep
: SU
->Succs
) {
1434 if (SuccDep
.getKind() == SDep::Data
&&
1435 !SuccDep
.getSUnit()->isBoundaryNode())
1441 /// Computes an ILP metric for all nodes in the subDAG reachable via depth-first
1442 /// search from this root.
1443 void SchedDFSResult::compute(ArrayRef
<SUnit
> SUnits
) {
1445 llvm_unreachable("Top-down ILP metric is unimplemented");
1447 SchedDFSImpl
Impl(*this);
1448 for (const SUnit
&SU
: SUnits
) {
1449 if (Impl
.isVisited(&SU
) || hasDataSucc(&SU
))
1452 SchedDAGReverseDFS DFS
;
1453 Impl
.visitPreorder(&SU
);
1456 // Traverse the leftmost path as far as possible.
1457 while (DFS
.getPred() != DFS
.getPredEnd()) {
1458 const SDep
&PredDep
= *DFS
.getPred();
1460 // Ignore non-data edges.
1461 if (PredDep
.getKind() != SDep::Data
1462 || PredDep
.getSUnit()->isBoundaryNode()) {
1465 // An already visited edge is a cross edge, assuming an acyclic DAG.
1466 if (Impl
.isVisited(PredDep
.getSUnit())) {
1467 Impl
.visitCrossEdge(PredDep
, DFS
.getCurr());
1470 Impl
.visitPreorder(PredDep
.getSUnit());
1471 DFS
.follow(PredDep
.getSUnit());
1473 // Visit the top of the stack in postorder and backtrack.
1474 const SUnit
*Child
= DFS
.getCurr();
1475 const SDep
*PredDep
= DFS
.backtrack();
1476 Impl
.visitPostorderNode(Child
);
1478 Impl
.visitPostorderEdge(*PredDep
, DFS
.getCurr());
1479 if (DFS
.isComplete())
1486 /// The root of the given SubtreeID was just scheduled. For all subtrees
1487 /// connected to this tree, record the depth of the connection so that the
1488 /// nearest connected subtrees can be prioritized.
1489 void SchedDFSResult::scheduleTree(unsigned SubtreeID
) {
1490 for (const Connection
&C
: SubtreeConnections
[SubtreeID
]) {
1491 SubtreeConnectLevels
[C
.TreeID
] =
1492 std::max(SubtreeConnectLevels
[C
.TreeID
], C
.Level
);
1493 LLVM_DEBUG(dbgs() << " Tree: " << C
.TreeID
<< " @"
1494 << SubtreeConnectLevels
[C
.TreeID
] << '\n');
1498 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1499 LLVM_DUMP_METHOD
void ILPValue::print(raw_ostream
&OS
) const {
1500 OS
<< InstrCount
<< " / " << Length
<< " = ";
1504 OS
<< format("%g", ((double)InstrCount
/ Length
));
1507 LLVM_DUMP_METHOD
void ILPValue::dump() const {
1508 dbgs() << *this << '\n';
1514 raw_ostream
&operator<<(raw_ostream
&OS
, const ILPValue
&Val
) {
1519 } // end namespace llvm