1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This is the parent TargetLowering class for hardware code gen
13 //===----------------------------------------------------------------------===//
15 #define AMDGPU_LOG2E_F 1.44269504088896340735992468100189214f
16 #define AMDGPU_LN2_F 0.693147180559945309417232121458176568f
17 #define AMDGPU_LN10_F 2.30258509299404568401799145468436421f
19 #include "AMDGPUISelLowering.h"
21 #include "AMDGPUCallLowering.h"
22 #include "AMDGPUFrameLowering.h"
23 #include "AMDGPURegisterInfo.h"
24 #include "AMDGPUSubtarget.h"
25 #include "AMDGPUTargetMachine.h"
26 #include "Utils/AMDGPUBaseInfo.h"
27 #include "R600MachineFunctionInfo.h"
28 #include "SIInstrInfo.h"
29 #include "SIMachineFunctionInfo.h"
30 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/CallingConvLower.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/SelectionDAG.h"
36 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DiagnosticInfo.h"
39 #include "llvm/Support/KnownBits.h"
42 #include "AMDGPUGenCallingConv.inc"
44 // Find a larger type to do a load / store of a vector with.
45 EVT
AMDGPUTargetLowering::getEquivalentMemType(LLVMContext
&Ctx
, EVT VT
) {
46 unsigned StoreSize
= VT
.getStoreSizeInBits();
48 return EVT::getIntegerVT(Ctx
, StoreSize
);
50 assert(StoreSize
% 32 == 0 && "Store size not a multiple of 32");
51 return EVT::getVectorVT(Ctx
, MVT::i32
, StoreSize
/ 32);
54 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op
, SelectionDAG
&DAG
) {
55 EVT VT
= Op
.getValueType();
56 KnownBits Known
= DAG
.computeKnownBits(Op
);
57 return VT
.getSizeInBits() - Known
.countMinLeadingZeros();
60 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op
, SelectionDAG
&DAG
) {
61 EVT VT
= Op
.getValueType();
63 // In order for this to be a signed 24-bit value, bit 23, must
65 return VT
.getSizeInBits() - DAG
.ComputeNumSignBits(Op
);
68 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine
&TM
,
69 const AMDGPUSubtarget
&STI
)
70 : TargetLowering(TM
), Subtarget(&STI
) {
71 // Lower floating point store/load to integer store/load to reduce the number
72 // of patterns in tablegen.
73 setOperationAction(ISD::LOAD
, MVT::f32
, Promote
);
74 AddPromotedToType(ISD::LOAD
, MVT::f32
, MVT::i32
);
76 setOperationAction(ISD::LOAD
, MVT::v2f32
, Promote
);
77 AddPromotedToType(ISD::LOAD
, MVT::v2f32
, MVT::v2i32
);
79 setOperationAction(ISD::LOAD
, MVT::v3f32
, Promote
);
80 AddPromotedToType(ISD::LOAD
, MVT::v3f32
, MVT::v3i32
);
82 setOperationAction(ISD::LOAD
, MVT::v4f32
, Promote
);
83 AddPromotedToType(ISD::LOAD
, MVT::v4f32
, MVT::v4i32
);
85 setOperationAction(ISD::LOAD
, MVT::v5f32
, Promote
);
86 AddPromotedToType(ISD::LOAD
, MVT::v5f32
, MVT::v5i32
);
88 setOperationAction(ISD::LOAD
, MVT::v8f32
, Promote
);
89 AddPromotedToType(ISD::LOAD
, MVT::v8f32
, MVT::v8i32
);
91 setOperationAction(ISD::LOAD
, MVT::v16f32
, Promote
);
92 AddPromotedToType(ISD::LOAD
, MVT::v16f32
, MVT::v16i32
);
94 setOperationAction(ISD::LOAD
, MVT::v32f32
, Promote
);
95 AddPromotedToType(ISD::LOAD
, MVT::v32f32
, MVT::v32i32
);
97 setOperationAction(ISD::LOAD
, MVT::i64
, Promote
);
98 AddPromotedToType(ISD::LOAD
, MVT::i64
, MVT::v2i32
);
100 setOperationAction(ISD::LOAD
, MVT::v2i64
, Promote
);
101 AddPromotedToType(ISD::LOAD
, MVT::v2i64
, MVT::v4i32
);
103 setOperationAction(ISD::LOAD
, MVT::f64
, Promote
);
104 AddPromotedToType(ISD::LOAD
, MVT::f64
, MVT::v2i32
);
106 setOperationAction(ISD::LOAD
, MVT::v2f64
, Promote
);
107 AddPromotedToType(ISD::LOAD
, MVT::v2f64
, MVT::v4i32
);
109 // There are no 64-bit extloads. These should be done as a 32-bit extload and
110 // an extension to 64-bit.
111 for (MVT VT
: MVT::integer_valuetypes()) {
112 setLoadExtAction(ISD::EXTLOAD
, MVT::i64
, VT
, Expand
);
113 setLoadExtAction(ISD::SEXTLOAD
, MVT::i64
, VT
, Expand
);
114 setLoadExtAction(ISD::ZEXTLOAD
, MVT::i64
, VT
, Expand
);
117 for (MVT VT
: MVT::integer_valuetypes()) {
121 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Promote
);
122 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i8
, Legal
);
123 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i16
, Legal
);
124 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i32
, Expand
);
126 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i1
, Promote
);
127 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i8
, Legal
);
128 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i16
, Legal
);
129 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i32
, Expand
);
131 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i1
, Promote
);
132 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i8
, Legal
);
133 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i16
, Legal
);
134 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i32
, Expand
);
137 for (MVT VT
: MVT::integer_fixedlen_vector_valuetypes()) {
138 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::v2i8
, Expand
);
139 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::v2i8
, Expand
);
140 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::v2i8
, Expand
);
141 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::v4i8
, Expand
);
142 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::v4i8
, Expand
);
143 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::v4i8
, Expand
);
144 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::v2i16
, Expand
);
145 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::v2i16
, Expand
);
146 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::v2i16
, Expand
);
147 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::v3i16
, Expand
);
148 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::v3i16
, Expand
);
149 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::v3i16
, Expand
);
150 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::v4i16
, Expand
);
151 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::v4i16
, Expand
);
152 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::v4i16
, Expand
);
155 setLoadExtAction(ISD::EXTLOAD
, MVT::f32
, MVT::f16
, Expand
);
156 setLoadExtAction(ISD::EXTLOAD
, MVT::v2f32
, MVT::v2f16
, Expand
);
157 setLoadExtAction(ISD::EXTLOAD
, MVT::v3f32
, MVT::v3f16
, Expand
);
158 setLoadExtAction(ISD::EXTLOAD
, MVT::v4f32
, MVT::v4f16
, Expand
);
159 setLoadExtAction(ISD::EXTLOAD
, MVT::v8f32
, MVT::v8f16
, Expand
);
160 setLoadExtAction(ISD::EXTLOAD
, MVT::v16f32
, MVT::v16f16
, Expand
);
161 setLoadExtAction(ISD::EXTLOAD
, MVT::v32f32
, MVT::v32f16
, Expand
);
163 setLoadExtAction(ISD::EXTLOAD
, MVT::f64
, MVT::f32
, Expand
);
164 setLoadExtAction(ISD::EXTLOAD
, MVT::v2f64
, MVT::v2f32
, Expand
);
165 setLoadExtAction(ISD::EXTLOAD
, MVT::v4f64
, MVT::v4f32
, Expand
);
166 setLoadExtAction(ISD::EXTLOAD
, MVT::v8f64
, MVT::v8f32
, Expand
);
168 setLoadExtAction(ISD::EXTLOAD
, MVT::f64
, MVT::f16
, Expand
);
169 setLoadExtAction(ISD::EXTLOAD
, MVT::v2f64
, MVT::v2f16
, Expand
);
170 setLoadExtAction(ISD::EXTLOAD
, MVT::v4f64
, MVT::v4f16
, Expand
);
171 setLoadExtAction(ISD::EXTLOAD
, MVT::v8f64
, MVT::v8f16
, Expand
);
173 setOperationAction(ISD::STORE
, MVT::f32
, Promote
);
174 AddPromotedToType(ISD::STORE
, MVT::f32
, MVT::i32
);
176 setOperationAction(ISD::STORE
, MVT::v2f32
, Promote
);
177 AddPromotedToType(ISD::STORE
, MVT::v2f32
, MVT::v2i32
);
179 setOperationAction(ISD::STORE
, MVT::v3f32
, Promote
);
180 AddPromotedToType(ISD::STORE
, MVT::v3f32
, MVT::v3i32
);
182 setOperationAction(ISD::STORE
, MVT::v4f32
, Promote
);
183 AddPromotedToType(ISD::STORE
, MVT::v4f32
, MVT::v4i32
);
185 setOperationAction(ISD::STORE
, MVT::v5f32
, Promote
);
186 AddPromotedToType(ISD::STORE
, MVT::v5f32
, MVT::v5i32
);
188 setOperationAction(ISD::STORE
, MVT::v8f32
, Promote
);
189 AddPromotedToType(ISD::STORE
, MVT::v8f32
, MVT::v8i32
);
191 setOperationAction(ISD::STORE
, MVT::v16f32
, Promote
);
192 AddPromotedToType(ISD::STORE
, MVT::v16f32
, MVT::v16i32
);
194 setOperationAction(ISD::STORE
, MVT::v32f32
, Promote
);
195 AddPromotedToType(ISD::STORE
, MVT::v32f32
, MVT::v32i32
);
197 setOperationAction(ISD::STORE
, MVT::i64
, Promote
);
198 AddPromotedToType(ISD::STORE
, MVT::i64
, MVT::v2i32
);
200 setOperationAction(ISD::STORE
, MVT::v2i64
, Promote
);
201 AddPromotedToType(ISD::STORE
, MVT::v2i64
, MVT::v4i32
);
203 setOperationAction(ISD::STORE
, MVT::f64
, Promote
);
204 AddPromotedToType(ISD::STORE
, MVT::f64
, MVT::v2i32
);
206 setOperationAction(ISD::STORE
, MVT::v2f64
, Promote
);
207 AddPromotedToType(ISD::STORE
, MVT::v2f64
, MVT::v4i32
);
209 setTruncStoreAction(MVT::i64
, MVT::i1
, Expand
);
210 setTruncStoreAction(MVT::i64
, MVT::i8
, Expand
);
211 setTruncStoreAction(MVT::i64
, MVT::i16
, Expand
);
212 setTruncStoreAction(MVT::i64
, MVT::i32
, Expand
);
214 setTruncStoreAction(MVT::v2i64
, MVT::v2i1
, Expand
);
215 setTruncStoreAction(MVT::v2i64
, MVT::v2i8
, Expand
);
216 setTruncStoreAction(MVT::v2i64
, MVT::v2i16
, Expand
);
217 setTruncStoreAction(MVT::v2i64
, MVT::v2i32
, Expand
);
219 setTruncStoreAction(MVT::f32
, MVT::f16
, Expand
);
220 setTruncStoreAction(MVT::v2f32
, MVT::v2f16
, Expand
);
221 setTruncStoreAction(MVT::v3f32
, MVT::v3f16
, Expand
);
222 setTruncStoreAction(MVT::v4f32
, MVT::v4f16
, Expand
);
223 setTruncStoreAction(MVT::v8f32
, MVT::v8f16
, Expand
);
224 setTruncStoreAction(MVT::v16f32
, MVT::v16f16
, Expand
);
225 setTruncStoreAction(MVT::v32f32
, MVT::v32f16
, Expand
);
227 setTruncStoreAction(MVT::f64
, MVT::f16
, Expand
);
228 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
230 setTruncStoreAction(MVT::v2f64
, MVT::v2f32
, Expand
);
231 setTruncStoreAction(MVT::v2f64
, MVT::v2f16
, Expand
);
233 setTruncStoreAction(MVT::v4f64
, MVT::v4f32
, Expand
);
234 setTruncStoreAction(MVT::v4f64
, MVT::v4f16
, Expand
);
236 setTruncStoreAction(MVT::v8f64
, MVT::v8f32
, Expand
);
237 setTruncStoreAction(MVT::v8f64
, MVT::v8f16
, Expand
);
240 setOperationAction(ISD::Constant
, MVT::i32
, Legal
);
241 setOperationAction(ISD::Constant
, MVT::i64
, Legal
);
242 setOperationAction(ISD::ConstantFP
, MVT::f32
, Legal
);
243 setOperationAction(ISD::ConstantFP
, MVT::f64
, Legal
);
245 setOperationAction(ISD::BR_JT
, MVT::Other
, Expand
);
246 setOperationAction(ISD::BRIND
, MVT::Other
, Expand
);
248 // This is totally unsupported, just custom lower to produce an error.
249 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Custom
);
251 // Library functions. These default to Expand, but we have instructions
253 setOperationAction(ISD::FCEIL
, MVT::f32
, Legal
);
254 setOperationAction(ISD::FEXP2
, MVT::f32
, Legal
);
255 setOperationAction(ISD::FPOW
, MVT::f32
, Legal
);
256 setOperationAction(ISD::FLOG2
, MVT::f32
, Legal
);
257 setOperationAction(ISD::FABS
, MVT::f32
, Legal
);
258 setOperationAction(ISD::FFLOOR
, MVT::f32
, Legal
);
259 setOperationAction(ISD::FRINT
, MVT::f32
, Legal
);
260 setOperationAction(ISD::FTRUNC
, MVT::f32
, Legal
);
261 setOperationAction(ISD::FMINNUM
, MVT::f32
, Legal
);
262 setOperationAction(ISD::FMAXNUM
, MVT::f32
, Legal
);
264 setOperationAction(ISD::FROUND
, MVT::f32
, Custom
);
265 setOperationAction(ISD::FROUND
, MVT::f64
, Custom
);
267 setOperationAction(ISD::FLOG
, MVT::f32
, Custom
);
268 setOperationAction(ISD::FLOG10
, MVT::f32
, Custom
);
269 setOperationAction(ISD::FEXP
, MVT::f32
, Custom
);
272 setOperationAction(ISD::FNEARBYINT
, MVT::f32
, Custom
);
273 setOperationAction(ISD::FNEARBYINT
, MVT::f64
, Custom
);
275 setOperationAction(ISD::FREM
, MVT::f32
, Custom
);
276 setOperationAction(ISD::FREM
, MVT::f64
, Custom
);
278 // Expand to fneg + fadd.
279 setOperationAction(ISD::FSUB
, MVT::f64
, Expand
);
281 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v3i32
, Custom
);
282 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v3f32
, Custom
);
283 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v4i32
, Custom
);
284 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v4f32
, Custom
);
285 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v5i32
, Custom
);
286 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v5f32
, Custom
);
287 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v8i32
, Custom
);
288 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v8f32
, Custom
);
289 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v2f32
, Custom
);
290 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v2i32
, Custom
);
291 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v3f32
, Custom
);
292 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v3i32
, Custom
);
293 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v4f32
, Custom
);
294 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v4i32
, Custom
);
295 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v5f32
, Custom
);
296 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v5i32
, Custom
);
297 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v8f32
, Custom
);
298 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v8i32
, Custom
);
299 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v16f32
, Custom
);
300 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v16i32
, Custom
);
301 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v32f32
, Custom
);
302 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v32i32
, Custom
);
304 setOperationAction(ISD::FP16_TO_FP
, MVT::f64
, Expand
);
305 setOperationAction(ISD::FP_TO_FP16
, MVT::f64
, Custom
);
306 setOperationAction(ISD::FP_TO_FP16
, MVT::f32
, Custom
);
308 const MVT ScalarIntVTs
[] = { MVT::i32
, MVT::i64
};
309 for (MVT VT
: ScalarIntVTs
) {
310 // These should use [SU]DIVREM, so set them to expand
311 setOperationAction(ISD::SDIV
, VT
, Expand
);
312 setOperationAction(ISD::UDIV
, VT
, Expand
);
313 setOperationAction(ISD::SREM
, VT
, Expand
);
314 setOperationAction(ISD::UREM
, VT
, Expand
);
316 // GPU does not have divrem function for signed or unsigned.
317 setOperationAction(ISD::SDIVREM
, VT
, Custom
);
318 setOperationAction(ISD::UDIVREM
, VT
, Custom
);
320 // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
321 setOperationAction(ISD::SMUL_LOHI
, VT
, Expand
);
322 setOperationAction(ISD::UMUL_LOHI
, VT
, Expand
);
324 setOperationAction(ISD::BSWAP
, VT
, Expand
);
325 setOperationAction(ISD::CTTZ
, VT
, Expand
);
326 setOperationAction(ISD::CTLZ
, VT
, Expand
);
328 // AMDGPU uses ADDC/SUBC/ADDE/SUBE
329 setOperationAction(ISD::ADDC
, VT
, Legal
);
330 setOperationAction(ISD::SUBC
, VT
, Legal
);
331 setOperationAction(ISD::ADDE
, VT
, Legal
);
332 setOperationAction(ISD::SUBE
, VT
, Legal
);
335 // The hardware supports 32-bit ROTR, but not ROTL.
336 setOperationAction(ISD::ROTL
, MVT::i32
, Expand
);
337 setOperationAction(ISD::ROTL
, MVT::i64
, Expand
);
338 setOperationAction(ISD::ROTR
, MVT::i64
, Expand
);
340 setOperationAction(ISD::MUL
, MVT::i64
, Expand
);
341 setOperationAction(ISD::MULHU
, MVT::i64
, Expand
);
342 setOperationAction(ISD::MULHS
, MVT::i64
, Expand
);
343 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Custom
);
344 setOperationAction(ISD::SINT_TO_FP
, MVT::i64
, Custom
);
345 setOperationAction(ISD::FP_TO_SINT
, MVT::i64
, Custom
);
346 setOperationAction(ISD::FP_TO_UINT
, MVT::i64
, Custom
);
347 setOperationAction(ISD::SELECT_CC
, MVT::i64
, Expand
);
349 setOperationAction(ISD::SMIN
, MVT::i32
, Legal
);
350 setOperationAction(ISD::UMIN
, MVT::i32
, Legal
);
351 setOperationAction(ISD::SMAX
, MVT::i32
, Legal
);
352 setOperationAction(ISD::UMAX
, MVT::i32
, Legal
);
354 setOperationAction(ISD::CTTZ
, MVT::i64
, Custom
);
355 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::i64
, Custom
);
356 setOperationAction(ISD::CTLZ
, MVT::i64
, Custom
);
357 setOperationAction(ISD::CTLZ_ZERO_UNDEF
, MVT::i64
, Custom
);
359 static const MVT::SimpleValueType VectorIntTypes
[] = {
360 MVT::v2i32
, MVT::v3i32
, MVT::v4i32
, MVT::v5i32
363 for (MVT VT
: VectorIntTypes
) {
364 // Expand the following operations for the current type by default.
365 setOperationAction(ISD::ADD
, VT
, Expand
);
366 setOperationAction(ISD::AND
, VT
, Expand
);
367 setOperationAction(ISD::FP_TO_SINT
, VT
, Expand
);
368 setOperationAction(ISD::FP_TO_UINT
, VT
, Expand
);
369 setOperationAction(ISD::MUL
, VT
, Expand
);
370 setOperationAction(ISD::MULHU
, VT
, Expand
);
371 setOperationAction(ISD::MULHS
, VT
, Expand
);
372 setOperationAction(ISD::OR
, VT
, Expand
);
373 setOperationAction(ISD::SHL
, VT
, Expand
);
374 setOperationAction(ISD::SRA
, VT
, Expand
);
375 setOperationAction(ISD::SRL
, VT
, Expand
);
376 setOperationAction(ISD::ROTL
, VT
, Expand
);
377 setOperationAction(ISD::ROTR
, VT
, Expand
);
378 setOperationAction(ISD::SUB
, VT
, Expand
);
379 setOperationAction(ISD::SINT_TO_FP
, VT
, Expand
);
380 setOperationAction(ISD::UINT_TO_FP
, VT
, Expand
);
381 setOperationAction(ISD::SDIV
, VT
, Expand
);
382 setOperationAction(ISD::UDIV
, VT
, Expand
);
383 setOperationAction(ISD::SREM
, VT
, Expand
);
384 setOperationAction(ISD::UREM
, VT
, Expand
);
385 setOperationAction(ISD::SMUL_LOHI
, VT
, Expand
);
386 setOperationAction(ISD::UMUL_LOHI
, VT
, Expand
);
387 setOperationAction(ISD::SDIVREM
, VT
, Custom
);
388 setOperationAction(ISD::UDIVREM
, VT
, Expand
);
389 setOperationAction(ISD::SELECT
, VT
, Expand
);
390 setOperationAction(ISD::VSELECT
, VT
, Expand
);
391 setOperationAction(ISD::SELECT_CC
, VT
, Expand
);
392 setOperationAction(ISD::XOR
, VT
, Expand
);
393 setOperationAction(ISD::BSWAP
, VT
, Expand
);
394 setOperationAction(ISD::CTPOP
, VT
, Expand
);
395 setOperationAction(ISD::CTTZ
, VT
, Expand
);
396 setOperationAction(ISD::CTLZ
, VT
, Expand
);
397 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Expand
);
398 setOperationAction(ISD::SETCC
, VT
, Expand
);
401 static const MVT::SimpleValueType FloatVectorTypes
[] = {
402 MVT::v2f32
, MVT::v3f32
, MVT::v4f32
, MVT::v5f32
405 for (MVT VT
: FloatVectorTypes
) {
406 setOperationAction(ISD::FABS
, VT
, Expand
);
407 setOperationAction(ISD::FMINNUM
, VT
, Expand
);
408 setOperationAction(ISD::FMAXNUM
, VT
, Expand
);
409 setOperationAction(ISD::FADD
, VT
, Expand
);
410 setOperationAction(ISD::FCEIL
, VT
, Expand
);
411 setOperationAction(ISD::FCOS
, VT
, Expand
);
412 setOperationAction(ISD::FDIV
, VT
, Expand
);
413 setOperationAction(ISD::FEXP2
, VT
, Expand
);
414 setOperationAction(ISD::FEXP
, VT
, Expand
);
415 setOperationAction(ISD::FLOG2
, VT
, Expand
);
416 setOperationAction(ISD::FREM
, VT
, Expand
);
417 setOperationAction(ISD::FLOG
, VT
, Expand
);
418 setOperationAction(ISD::FLOG10
, VT
, Expand
);
419 setOperationAction(ISD::FPOW
, VT
, Expand
);
420 setOperationAction(ISD::FFLOOR
, VT
, Expand
);
421 setOperationAction(ISD::FTRUNC
, VT
, Expand
);
422 setOperationAction(ISD::FMUL
, VT
, Expand
);
423 setOperationAction(ISD::FMA
, VT
, Expand
);
424 setOperationAction(ISD::FRINT
, VT
, Expand
);
425 setOperationAction(ISD::FNEARBYINT
, VT
, Expand
);
426 setOperationAction(ISD::FSQRT
, VT
, Expand
);
427 setOperationAction(ISD::FSIN
, VT
, Expand
);
428 setOperationAction(ISD::FSUB
, VT
, Expand
);
429 setOperationAction(ISD::FNEG
, VT
, Expand
);
430 setOperationAction(ISD::VSELECT
, VT
, Expand
);
431 setOperationAction(ISD::SELECT_CC
, VT
, Expand
);
432 setOperationAction(ISD::FCOPYSIGN
, VT
, Expand
);
433 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Expand
);
434 setOperationAction(ISD::SETCC
, VT
, Expand
);
435 setOperationAction(ISD::FCANONICALIZE
, VT
, Expand
);
438 // This causes using an unrolled select operation rather than expansion with
439 // bit operations. This is in general better, but the alternative using BFI
440 // instructions may be better if the select sources are SGPRs.
441 setOperationAction(ISD::SELECT
, MVT::v2f32
, Promote
);
442 AddPromotedToType(ISD::SELECT
, MVT::v2f32
, MVT::v2i32
);
444 setOperationAction(ISD::SELECT
, MVT::v3f32
, Promote
);
445 AddPromotedToType(ISD::SELECT
, MVT::v3f32
, MVT::v3i32
);
447 setOperationAction(ISD::SELECT
, MVT::v4f32
, Promote
);
448 AddPromotedToType(ISD::SELECT
, MVT::v4f32
, MVT::v4i32
);
450 setOperationAction(ISD::SELECT
, MVT::v5f32
, Promote
);
451 AddPromotedToType(ISD::SELECT
, MVT::v5f32
, MVT::v5i32
);
453 // There are no libcalls of any kind.
454 for (int I
= 0; I
< RTLIB::UNKNOWN_LIBCALL
; ++I
)
455 setLibcallName(static_cast<RTLIB::Libcall
>(I
), nullptr);
457 setBooleanContents(ZeroOrNegativeOneBooleanContent
);
458 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent
);
460 setSchedulingPreference(Sched::RegPressure
);
461 setJumpIsExpensive(true);
463 // FIXME: This is only partially true. If we have to do vector compares, any
464 // SGPR pair can be a condition register. If we have a uniform condition, we
465 // are better off doing SALU operations, where there is only one SCC. For now,
466 // we don't have a way of knowing during instruction selection if a condition
467 // will be uniform and we always use vector compares. Assume we are using
468 // vector compares until that is fixed.
469 setHasMultipleConditionRegisters(true);
471 setMinCmpXchgSizeInBits(32);
472 setSupportsUnalignedAtomics(false);
474 PredictableSelectIsExpensive
= false;
476 // We want to find all load dependencies for long chains of stores to enable
477 // merging into very wide vectors. The problem is with vectors with > 4
478 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
479 // vectors are a legal type, even though we have to split the loads
480 // usually. When we can more precisely specify load legality per address
481 // space, we should be able to make FindBetterChain/MergeConsecutiveStores
482 // smarter so that they can figure out what to do in 2 iterations without all
483 // N > 4 stores on the same chain.
484 GatherAllAliasesMaxDepth
= 16;
486 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
487 // about these during lowering.
488 MaxStoresPerMemcpy
= 0xffffffff;
489 MaxStoresPerMemmove
= 0xffffffff;
490 MaxStoresPerMemset
= 0xffffffff;
492 setTargetDAGCombine(ISD::BITCAST
);
493 setTargetDAGCombine(ISD::SHL
);
494 setTargetDAGCombine(ISD::SRA
);
495 setTargetDAGCombine(ISD::SRL
);
496 setTargetDAGCombine(ISD::TRUNCATE
);
497 setTargetDAGCombine(ISD::MUL
);
498 setTargetDAGCombine(ISD::MULHU
);
499 setTargetDAGCombine(ISD::MULHS
);
500 setTargetDAGCombine(ISD::SELECT
);
501 setTargetDAGCombine(ISD::SELECT_CC
);
502 setTargetDAGCombine(ISD::STORE
);
503 setTargetDAGCombine(ISD::FADD
);
504 setTargetDAGCombine(ISD::FSUB
);
505 setTargetDAGCombine(ISD::FNEG
);
506 setTargetDAGCombine(ISD::FABS
);
507 setTargetDAGCombine(ISD::AssertZext
);
508 setTargetDAGCombine(ISD::AssertSext
);
509 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN
);
512 //===----------------------------------------------------------------------===//
513 // Target Information
514 //===----------------------------------------------------------------------===//
517 static bool fnegFoldsIntoOp(unsigned Opc
) {
526 case ISD::FMINNUM_IEEE
:
527 case ISD::FMAXNUM_IEEE
:
531 case ISD::FNEARBYINT
:
532 case ISD::FCANONICALIZE
:
534 case AMDGPUISD::RCP_LEGACY
:
535 case AMDGPUISD::RCP_IFLAG
:
536 case AMDGPUISD::SIN_HW
:
537 case AMDGPUISD::FMUL_LEGACY
:
538 case AMDGPUISD::FMIN_LEGACY
:
539 case AMDGPUISD::FMAX_LEGACY
:
540 case AMDGPUISD::FMED3
:
547 /// \p returns true if the operation will definitely need to use a 64-bit
548 /// encoding, and thus will use a VOP3 encoding regardless of the source
551 static bool opMustUseVOP3Encoding(const SDNode
*N
, MVT VT
) {
552 return N
->getNumOperands() > 2 || VT
== MVT::f64
;
555 // Most FP instructions support source modifiers, but this could be refined
558 static bool hasSourceMods(const SDNode
*N
) {
559 if (isa
<MemSDNode
>(N
))
562 switch (N
->getOpcode()) {
568 case ISD::INLINEASM_BR
:
569 case AMDGPUISD::INTERP_P1
:
570 case AMDGPUISD::INTERP_P2
:
571 case AMDGPUISD::DIV_SCALE
:
573 // TODO: Should really be looking at the users of the bitcast. These are
574 // problematic because bitcasts are used to legalize all stores to integer
583 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode
*N
,
584 unsigned CostThreshold
) {
585 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
586 // it is truly free to use a source modifier in all cases. If there are
587 // multiple users but for each one will necessitate using VOP3, there will be
588 // a code size increase. Try to avoid increasing code size unless we know it
589 // will save on the instruction count.
590 unsigned NumMayIncreaseSize
= 0;
591 MVT VT
= N
->getValueType(0).getScalarType().getSimpleVT();
593 // XXX - Should this limit number of uses to check?
594 for (const SDNode
*U
: N
->uses()) {
595 if (!hasSourceMods(U
))
598 if (!opMustUseVOP3Encoding(U
, VT
)) {
599 if (++NumMayIncreaseSize
> CostThreshold
)
607 MVT
AMDGPUTargetLowering::getVectorIdxTy(const DataLayout
&) const {
611 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType
) const {
615 // The backend supports 32 and 64 bit floating point immediates.
616 // FIXME: Why are we reporting vectors of FP immediates as legal?
617 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat
&Imm
, EVT VT
,
618 bool ForCodeSize
) const {
619 EVT ScalarVT
= VT
.getScalarType();
620 return (ScalarVT
== MVT::f32
|| ScalarVT
== MVT::f64
||
621 (ScalarVT
== MVT::f16
&& Subtarget
->has16BitInsts()));
624 // We don't want to shrink f64 / f32 constants.
625 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT
) const {
626 EVT ScalarVT
= VT
.getScalarType();
627 return (ScalarVT
!= MVT::f32
&& ScalarVT
!= MVT::f64
);
630 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode
*N
,
631 ISD::LoadExtType ExtTy
,
633 // TODO: This may be worth removing. Check regression tests for diffs.
634 if (!TargetLoweringBase::shouldReduceLoadWidth(N
, ExtTy
, NewVT
))
637 unsigned NewSize
= NewVT
.getStoreSizeInBits();
639 // If we are reducing to a 32-bit load, this is always better.
643 EVT OldVT
= N
->getValueType(0);
644 unsigned OldSize
= OldVT
.getStoreSizeInBits();
646 MemSDNode
*MN
= cast
<MemSDNode
>(N
);
647 unsigned AS
= MN
->getAddressSpace();
648 // Do not shrink an aligned scalar load to sub-dword.
649 // Scalar engine cannot do sub-dword loads.
650 if (OldSize
>= 32 && NewSize
< 32 && MN
->getAlignment() >= 4 &&
651 (AS
== AMDGPUAS::CONSTANT_ADDRESS
||
652 AS
== AMDGPUAS::CONSTANT_ADDRESS_32BIT
||
653 (isa
<LoadSDNode
>(N
) &&
654 AS
== AMDGPUAS::GLOBAL_ADDRESS
&& MN
->isInvariant())) &&
655 AMDGPUInstrInfo::isUniformMMO(MN
->getMemOperand()))
658 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
659 // extloads, so doing one requires using a buffer_load. In cases where we
660 // still couldn't use a scalar load, using the wider load shouldn't really
663 // If the old size already had to be an extload, there's no harm in continuing
664 // to reduce the width.
665 return (OldSize
< 32);
668 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy
, EVT CastTy
,
669 const SelectionDAG
&DAG
,
670 const MachineMemOperand
&MMO
) const {
672 assert(LoadTy
.getSizeInBits() == CastTy
.getSizeInBits());
674 if (LoadTy
.getScalarType() == MVT::i32
)
677 unsigned LScalarSize
= LoadTy
.getScalarSizeInBits();
678 unsigned CastScalarSize
= CastTy
.getScalarSizeInBits();
680 if ((LScalarSize
>= CastScalarSize
) && (CastScalarSize
< 32))
684 return allowsMemoryAccess(*DAG
.getContext(), DAG
.getDataLayout(), CastTy
,
688 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
689 // profitable with the expansion for 64-bit since it's generally good to
691 // FIXME: These should really have the size as a parameter.
692 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
696 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
700 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode
* N
) const {
701 switch (N
->getOpcode()) {
704 case ISD::EntryToken
:
705 case ISD::TokenFactor
:
707 case ISD::INTRINSIC_WO_CHAIN
:
709 unsigned IntrID
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
713 case Intrinsic::amdgcn_readfirstlane
:
714 case Intrinsic::amdgcn_readlane
:
721 if (cast
<LoadSDNode
>(N
)->getMemOperand()->getAddrSpace() ==
722 AMDGPUAS::CONSTANT_ADDRESS_32BIT
)
730 //===---------------------------------------------------------------------===//
732 //===---------------------------------------------------------------------===//
734 bool AMDGPUTargetLowering::isFAbsFree(EVT VT
) const {
735 assert(VT
.isFloatingPoint());
737 // Packed operations do not have a fabs modifier.
738 return VT
== MVT::f32
|| VT
== MVT::f64
||
739 (Subtarget
->has16BitInsts() && VT
== MVT::f16
);
742 bool AMDGPUTargetLowering::isFNegFree(EVT VT
) const {
743 assert(VT
.isFloatingPoint());
744 return VT
== MVT::f32
|| VT
== MVT::f64
||
745 (Subtarget
->has16BitInsts() && VT
== MVT::f16
) ||
746 (Subtarget
->hasVOP3PInsts() && VT
== MVT::v2f16
);
749 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT
,
755 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT
) const {
756 // There are few operations which truly have vector input operands. Any vector
757 // operation is going to involve operations on each component, and a
758 // build_vector will be a copy per element, so it always makes sense to use a
759 // build_vector input in place of the extracted element to avoid a copy into a
762 // We should probably only do this if all users are extracts only, but this
763 // should be the common case.
767 bool AMDGPUTargetLowering::isTruncateFree(EVT Source
, EVT Dest
) const {
768 // Truncate is just accessing a subregister.
770 unsigned SrcSize
= Source
.getSizeInBits();
771 unsigned DestSize
= Dest
.getSizeInBits();
773 return DestSize
< SrcSize
&& DestSize
% 32 == 0 ;
776 bool AMDGPUTargetLowering::isTruncateFree(Type
*Source
, Type
*Dest
) const {
777 // Truncate is just accessing a subregister.
779 unsigned SrcSize
= Source
->getScalarSizeInBits();
780 unsigned DestSize
= Dest
->getScalarSizeInBits();
782 if (DestSize
== 16 && Subtarget
->has16BitInsts())
783 return SrcSize
>= 32;
785 return DestSize
< SrcSize
&& DestSize
% 32 == 0;
788 bool AMDGPUTargetLowering::isZExtFree(Type
*Src
, Type
*Dest
) const {
789 unsigned SrcSize
= Src
->getScalarSizeInBits();
790 unsigned DestSize
= Dest
->getScalarSizeInBits();
792 if (SrcSize
== 16 && Subtarget
->has16BitInsts())
793 return DestSize
>= 32;
795 return SrcSize
== 32 && DestSize
== 64;
798 bool AMDGPUTargetLowering::isZExtFree(EVT Src
, EVT Dest
) const {
799 // Any register load of a 64-bit value really requires 2 32-bit moves. For all
800 // practical purposes, the extra mov 0 to load a 64-bit is free. As used,
801 // this will enable reducing 64-bit operations the 32-bit, which is always
805 return Dest
== MVT::i32
||Dest
== MVT::i64
;
807 return Src
== MVT::i32
&& Dest
== MVT::i64
;
810 bool AMDGPUTargetLowering::isZExtFree(SDValue Val
, EVT VT2
) const {
811 return isZExtFree(Val
.getValueType(), VT2
);
814 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT
, EVT DestVT
) const {
815 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
816 // limited number of native 64-bit operations. Shrinking an operation to fit
817 // in a single 32-bit register should always be helpful. As currently used,
818 // this is much less general than the name suggests, and is only used in
819 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
820 // not profitable, and may actually be harmful.
821 return SrcVT
.getSizeInBits() > 32 && DestVT
.getSizeInBits() == 32;
824 //===---------------------------------------------------------------------===//
825 // TargetLowering Callbacks
826 //===---------------------------------------------------------------------===//
828 CCAssignFn
*AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC
,
831 case CallingConv::AMDGPU_VS
:
832 case CallingConv::AMDGPU_GS
:
833 case CallingConv::AMDGPU_PS
:
834 case CallingConv::AMDGPU_CS
:
835 case CallingConv::AMDGPU_HS
:
836 case CallingConv::AMDGPU_ES
:
837 case CallingConv::AMDGPU_LS
:
840 case CallingConv::Fast
:
841 case CallingConv::Cold
:
842 return CC_AMDGPU_Func
;
843 case CallingConv::AMDGPU_KERNEL
:
844 case CallingConv::SPIR_KERNEL
:
846 report_fatal_error("Unsupported calling convention for call");
850 CCAssignFn
*AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC
,
853 case CallingConv::AMDGPU_KERNEL
:
854 case CallingConv::SPIR_KERNEL
:
855 llvm_unreachable("kernels should not be handled here");
856 case CallingConv::AMDGPU_VS
:
857 case CallingConv::AMDGPU_GS
:
858 case CallingConv::AMDGPU_PS
:
859 case CallingConv::AMDGPU_CS
:
860 case CallingConv::AMDGPU_HS
:
861 case CallingConv::AMDGPU_ES
:
862 case CallingConv::AMDGPU_LS
:
863 return RetCC_SI_Shader
;
865 case CallingConv::Fast
:
866 case CallingConv::Cold
:
867 return RetCC_AMDGPU_Func
;
869 report_fatal_error("Unsupported calling convention.");
873 /// The SelectionDAGBuilder will automatically promote function arguments
874 /// with illegal types. However, this does not work for the AMDGPU targets
875 /// since the function arguments are stored in memory as these illegal types.
876 /// In order to handle this properly we need to get the original types sizes
877 /// from the LLVM IR Function and fixup the ISD:InputArg values before
878 /// passing them to AnalyzeFormalArguments()
880 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
881 /// input values across multiple registers. Each item in the Ins array
882 /// represents a single value that will be stored in registers. Ins[x].VT is
883 /// the value type of the value that will be stored in the register, so
884 /// whatever SDNode we lower the argument to needs to be this type.
886 /// In order to correctly lower the arguments we need to know the size of each
887 /// argument. Since Ins[x].VT gives us the size of the register that will
888 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
889 /// for the orignal function argument so that we can deduce the correct memory
890 /// type to use for Ins[x]. In most cases the correct memory type will be
891 /// Ins[x].ArgVT. However, this will not always be the case. If, for example,
892 /// we have a kernel argument of type v8i8, this argument will be split into
893 /// 8 parts and each part will be represented by its own item in the Ins array.
894 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
895 /// the argument before it was split. From this, we deduce that the memory type
896 /// for each individual part is i8. We pass the memory type as LocVT to the
897 /// calling convention analysis function and the register type (Ins[x].VT) as
899 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(
901 const SmallVectorImpl
<ISD::InputArg
> &Ins
) const {
902 const MachineFunction
&MF
= State
.getMachineFunction();
903 const Function
&Fn
= MF
.getFunction();
904 LLVMContext
&Ctx
= Fn
.getParent()->getContext();
905 const AMDGPUSubtarget
&ST
= AMDGPUSubtarget::get(MF
);
906 const unsigned ExplicitOffset
= ST
.getExplicitKernelArgOffset(Fn
);
907 CallingConv::ID CC
= Fn
.getCallingConv();
909 unsigned MaxAlign
= 1;
910 uint64_t ExplicitArgOffset
= 0;
911 const DataLayout
&DL
= Fn
.getParent()->getDataLayout();
913 unsigned InIndex
= 0;
915 for (const Argument
&Arg
: Fn
.args()) {
916 Type
*BaseArgTy
= Arg
.getType();
917 unsigned Align
= DL
.getABITypeAlignment(BaseArgTy
);
918 MaxAlign
= std::max(Align
, MaxAlign
);
919 unsigned AllocSize
= DL
.getTypeAllocSize(BaseArgTy
);
921 uint64_t ArgOffset
= alignTo(ExplicitArgOffset
, Align
) + ExplicitOffset
;
922 ExplicitArgOffset
= alignTo(ExplicitArgOffset
, Align
) + AllocSize
;
924 // We're basically throwing away everything passed into us and starting over
925 // to get accurate in-memory offsets. The "PartOffset" is completely useless
926 // to us as computed in Ins.
928 // We also need to figure out what type legalization is trying to do to get
929 // the correct memory offsets.
931 SmallVector
<EVT
, 16> ValueVTs
;
932 SmallVector
<uint64_t, 16> Offsets
;
933 ComputeValueVTs(*this, DL
, BaseArgTy
, ValueVTs
, &Offsets
, ArgOffset
);
935 for (unsigned Value
= 0, NumValues
= ValueVTs
.size();
936 Value
!= NumValues
; ++Value
) {
937 uint64_t BasePartOffset
= Offsets
[Value
];
939 EVT ArgVT
= ValueVTs
[Value
];
941 MVT RegisterVT
= getRegisterTypeForCallingConv(Ctx
, CC
, ArgVT
);
942 unsigned NumRegs
= getNumRegistersForCallingConv(Ctx
, CC
, ArgVT
);
945 // This argument is not split, so the IR type is the memory type.
946 if (ArgVT
.isExtended()) {
947 // We have an extended type, like i24, so we should just use the
953 } else if (ArgVT
.isVector() && RegisterVT
.isVector() &&
954 ArgVT
.getScalarType() == RegisterVT
.getScalarType()) {
955 assert(ArgVT
.getVectorNumElements() > RegisterVT
.getVectorNumElements());
956 // We have a vector value which has been split into a vector with
957 // the same scalar type, but fewer elements. This should handle
958 // all the floating-point vector types.
960 } else if (ArgVT
.isVector() &&
961 ArgVT
.getVectorNumElements() == NumRegs
) {
962 // This arg has been split so that each element is stored in a separate
964 MemVT
= ArgVT
.getScalarType();
965 } else if (ArgVT
.isExtended()) {
966 // We have an extended type, like i65.
969 unsigned MemoryBits
= ArgVT
.getStoreSizeInBits() / NumRegs
;
970 assert(ArgVT
.getStoreSizeInBits() % NumRegs
== 0);
971 if (RegisterVT
.isInteger()) {
972 MemVT
= EVT::getIntegerVT(State
.getContext(), MemoryBits
);
973 } else if (RegisterVT
.isVector()) {
974 assert(!RegisterVT
.getScalarType().isFloatingPoint());
975 unsigned NumElements
= RegisterVT
.getVectorNumElements();
976 assert(MemoryBits
% NumElements
== 0);
977 // This vector type has been split into another vector type with
978 // a different elements size.
979 EVT ScalarVT
= EVT::getIntegerVT(State
.getContext(),
980 MemoryBits
/ NumElements
);
981 MemVT
= EVT::getVectorVT(State
.getContext(), ScalarVT
, NumElements
);
983 llvm_unreachable("cannot deduce memory type.");
987 // Convert one element vectors to scalar.
988 if (MemVT
.isVector() && MemVT
.getVectorNumElements() == 1)
989 MemVT
= MemVT
.getScalarType();
991 // Round up vec3/vec5 argument.
992 if (MemVT
.isVector() && !MemVT
.isPow2VectorType()) {
993 assert(MemVT
.getVectorNumElements() == 3 ||
994 MemVT
.getVectorNumElements() == 5);
995 MemVT
= MemVT
.getPow2VectorType(State
.getContext());
998 unsigned PartOffset
= 0;
999 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
1000 State
.addLoc(CCValAssign::getCustomMem(InIndex
++, RegisterVT
,
1001 BasePartOffset
+ PartOffset
,
1002 MemVT
.getSimpleVT(),
1003 CCValAssign::Full
));
1004 PartOffset
+= MemVT
.getStoreSize();
1010 SDValue
AMDGPUTargetLowering::LowerReturn(
1011 SDValue Chain
, CallingConv::ID CallConv
,
1013 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1014 const SmallVectorImpl
<SDValue
> &OutVals
,
1015 const SDLoc
&DL
, SelectionDAG
&DAG
) const {
1016 // FIXME: Fails for r600 tests
1017 //assert(!isVarArg && Outs.empty() && OutVals.empty() &&
1018 // "wave terminate should not have return values");
1019 return DAG
.getNode(AMDGPUISD::ENDPGM
, DL
, MVT::Other
, Chain
);
1022 //===---------------------------------------------------------------------===//
1023 // Target specific lowering
1024 //===---------------------------------------------------------------------===//
1026 /// Selects the correct CCAssignFn for a given CallingConvention value.
1027 CCAssignFn
*AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC
,
1029 return AMDGPUCallLowering::CCAssignFnForCall(CC
, IsVarArg
);
1032 CCAssignFn
*AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC
,
1034 return AMDGPUCallLowering::CCAssignFnForReturn(CC
, IsVarArg
);
1037 SDValue
AMDGPUTargetLowering::addTokenForArgument(SDValue Chain
,
1039 MachineFrameInfo
&MFI
,
1040 int ClobberedFI
) const {
1041 SmallVector
<SDValue
, 8> ArgChains
;
1042 int64_t FirstByte
= MFI
.getObjectOffset(ClobberedFI
);
1043 int64_t LastByte
= FirstByte
+ MFI
.getObjectSize(ClobberedFI
) - 1;
1045 // Include the original chain at the beginning of the list. When this is
1046 // used by target LowerCall hooks, this helps legalize find the
1047 // CALLSEQ_BEGIN node.
1048 ArgChains
.push_back(Chain
);
1050 // Add a chain value for each stack argument corresponding
1051 for (SDNode::use_iterator U
= DAG
.getEntryNode().getNode()->use_begin(),
1052 UE
= DAG
.getEntryNode().getNode()->use_end();
1054 if (LoadSDNode
*L
= dyn_cast
<LoadSDNode
>(*U
)) {
1055 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(L
->getBasePtr())) {
1056 if (FI
->getIndex() < 0) {
1057 int64_t InFirstByte
= MFI
.getObjectOffset(FI
->getIndex());
1058 int64_t InLastByte
= InFirstByte
;
1059 InLastByte
+= MFI
.getObjectSize(FI
->getIndex()) - 1;
1061 if ((InFirstByte
<= FirstByte
&& FirstByte
<= InLastByte
) ||
1062 (FirstByte
<= InFirstByte
&& InFirstByte
<= LastByte
))
1063 ArgChains
.push_back(SDValue(L
, 1));
1069 // Build a tokenfactor for all the chains.
1070 return DAG
.getNode(ISD::TokenFactor
, SDLoc(Chain
), MVT::Other
, ArgChains
);
1073 SDValue
AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo
&CLI
,
1074 SmallVectorImpl
<SDValue
> &InVals
,
1075 StringRef Reason
) const {
1076 SDValue Callee
= CLI
.Callee
;
1077 SelectionDAG
&DAG
= CLI
.DAG
;
1079 const Function
&Fn
= DAG
.getMachineFunction().getFunction();
1081 StringRef
FuncName("<unknown>");
1083 if (const ExternalSymbolSDNode
*G
= dyn_cast
<ExternalSymbolSDNode
>(Callee
))
1084 FuncName
= G
->getSymbol();
1085 else if (const GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
1086 FuncName
= G
->getGlobal()->getName();
1088 DiagnosticInfoUnsupported
NoCalls(
1089 Fn
, Reason
+ FuncName
, CLI
.DL
.getDebugLoc());
1090 DAG
.getContext()->diagnose(NoCalls
);
1092 if (!CLI
.IsTailCall
) {
1093 for (unsigned I
= 0, E
= CLI
.Ins
.size(); I
!= E
; ++I
)
1094 InVals
.push_back(DAG
.getUNDEF(CLI
.Ins
[I
].VT
));
1097 return DAG
.getEntryNode();
1100 SDValue
AMDGPUTargetLowering::LowerCall(CallLoweringInfo
&CLI
,
1101 SmallVectorImpl
<SDValue
> &InVals
) const {
1102 return lowerUnhandledCall(CLI
, InVals
, "unsupported call to function ");
1105 SDValue
AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op
,
1106 SelectionDAG
&DAG
) const {
1107 const Function
&Fn
= DAG
.getMachineFunction().getFunction();
1109 DiagnosticInfoUnsupported
NoDynamicAlloca(Fn
, "unsupported dynamic alloca",
1110 SDLoc(Op
).getDebugLoc());
1111 DAG
.getContext()->diagnose(NoDynamicAlloca
);
1112 auto Ops
= {DAG
.getConstant(0, SDLoc(), Op
.getValueType()), Op
.getOperand(0)};
1113 return DAG
.getMergeValues(Ops
, SDLoc());
1116 SDValue
AMDGPUTargetLowering::LowerOperation(SDValue Op
,
1117 SelectionDAG
&DAG
) const {
1118 switch (Op
.getOpcode()) {
1120 Op
->print(errs(), &DAG
);
1121 llvm_unreachable("Custom lowering code for this"
1122 "instruction is not implemented yet!");
1124 case ISD::SIGN_EXTEND_INREG
: return LowerSIGN_EXTEND_INREG(Op
, DAG
);
1125 case ISD::CONCAT_VECTORS
: return LowerCONCAT_VECTORS(Op
, DAG
);
1126 case ISD::EXTRACT_SUBVECTOR
: return LowerEXTRACT_SUBVECTOR(Op
, DAG
);
1127 case ISD::UDIVREM
: return LowerUDIVREM(Op
, DAG
);
1128 case ISD::SDIVREM
: return LowerSDIVREM(Op
, DAG
);
1129 case ISD::FREM
: return LowerFREM(Op
, DAG
);
1130 case ISD::FCEIL
: return LowerFCEIL(Op
, DAG
);
1131 case ISD::FTRUNC
: return LowerFTRUNC(Op
, DAG
);
1132 case ISD::FRINT
: return LowerFRINT(Op
, DAG
);
1133 case ISD::FNEARBYINT
: return LowerFNEARBYINT(Op
, DAG
);
1134 case ISD::FROUND
: return LowerFROUND(Op
, DAG
);
1135 case ISD::FFLOOR
: return LowerFFLOOR(Op
, DAG
);
1137 return LowerFLOG(Op
, DAG
, 1 / AMDGPU_LOG2E_F
);
1139 return LowerFLOG(Op
, DAG
, AMDGPU_LN2_F
/ AMDGPU_LN10_F
);
1141 return lowerFEXP(Op
, DAG
);
1142 case ISD::SINT_TO_FP
: return LowerSINT_TO_FP(Op
, DAG
);
1143 case ISD::UINT_TO_FP
: return LowerUINT_TO_FP(Op
, DAG
);
1144 case ISD::FP_TO_FP16
: return LowerFP_TO_FP16(Op
, DAG
);
1145 case ISD::FP_TO_SINT
: return LowerFP_TO_SINT(Op
, DAG
);
1146 case ISD::FP_TO_UINT
: return LowerFP_TO_UINT(Op
, DAG
);
1148 case ISD::CTTZ_ZERO_UNDEF
:
1150 case ISD::CTLZ_ZERO_UNDEF
:
1151 return LowerCTLZ_CTTZ(Op
, DAG
);
1152 case ISD::DYNAMIC_STACKALLOC
: return LowerDYNAMIC_STACKALLOC(Op
, DAG
);
1157 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode
*N
,
1158 SmallVectorImpl
<SDValue
> &Results
,
1159 SelectionDAG
&DAG
) const {
1160 switch (N
->getOpcode()) {
1161 case ISD::SIGN_EXTEND_INREG
:
1162 // Different parts of legalization seem to interpret which type of
1163 // sign_extend_inreg is the one to check for custom lowering. The extended
1164 // from type is what really matters, but some places check for custom
1165 // lowering of the result type. This results in trying to use
1166 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
1167 // nothing here and let the illegal result integer be handled normally.
1174 bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue
*GV
) {
1175 const GlobalVariable
*GVar
= dyn_cast
<GlobalVariable
>(GV
);
1176 if (!GVar
|| !GVar
->hasInitializer())
1179 return !isa
<UndefValue
>(GVar
->getInitializer());
1182 SDValue
AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction
* MFI
,
1184 SelectionDAG
&DAG
) const {
1186 const DataLayout
&DL
= DAG
.getDataLayout();
1187 GlobalAddressSDNode
*G
= cast
<GlobalAddressSDNode
>(Op
);
1188 const GlobalValue
*GV
= G
->getGlobal();
1190 if (G
->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS
||
1191 G
->getAddressSpace() == AMDGPUAS::REGION_ADDRESS
) {
1192 if (!MFI
->isEntryFunction()) {
1193 const Function
&Fn
= DAG
.getMachineFunction().getFunction();
1194 DiagnosticInfoUnsupported
BadLDSDecl(
1195 Fn
, "local memory global used by non-kernel function", SDLoc(Op
).getDebugLoc());
1196 DAG
.getContext()->diagnose(BadLDSDecl
);
1199 // XXX: What does the value of G->getOffset() mean?
1200 assert(G
->getOffset() == 0 &&
1201 "Do not know what to do with an non-zero offset");
1203 // TODO: We could emit code to handle the initialization somewhere.
1204 if (!hasDefinedInitializer(GV
)) {
1205 unsigned Offset
= MFI
->allocateLDSGlobal(DL
, *GV
);
1206 return DAG
.getConstant(Offset
, SDLoc(Op
), Op
.getValueType());
1210 const Function
&Fn
= DAG
.getMachineFunction().getFunction();
1211 DiagnosticInfoUnsupported
BadInit(
1212 Fn
, "unsupported initializer for address space", SDLoc(Op
).getDebugLoc());
1213 DAG
.getContext()->diagnose(BadInit
);
1217 SDValue
AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op
,
1218 SelectionDAG
&DAG
) const {
1219 SmallVector
<SDValue
, 8> Args
;
1221 EVT VT
= Op
.getValueType();
1222 if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
1224 SDValue Lo
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::i32
, Op
.getOperand(0));
1225 SDValue Hi
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::i32
, Op
.getOperand(1));
1227 SDValue BV
= DAG
.getBuildVector(MVT::v2i32
, SL
, { Lo
, Hi
});
1228 return DAG
.getNode(ISD::BITCAST
, SL
, VT
, BV
);
1231 for (const SDUse
&U
: Op
->ops())
1232 DAG
.ExtractVectorElements(U
.get(), Args
);
1234 return DAG
.getBuildVector(Op
.getValueType(), SDLoc(Op
), Args
);
1237 SDValue
AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op
,
1238 SelectionDAG
&DAG
) const {
1240 SmallVector
<SDValue
, 8> Args
;
1241 unsigned Start
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
1242 EVT VT
= Op
.getValueType();
1243 DAG
.ExtractVectorElements(Op
.getOperand(0), Args
, Start
,
1244 VT
.getVectorNumElements());
1246 return DAG
.getBuildVector(Op
.getValueType(), SDLoc(Op
), Args
);
1249 /// Generate Min/Max node
1250 SDValue
AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc
&DL
, EVT VT
,
1251 SDValue LHS
, SDValue RHS
,
1252 SDValue True
, SDValue False
,
1254 DAGCombinerInfo
&DCI
) const {
1255 if (!(LHS
== True
&& RHS
== False
) && !(LHS
== False
&& RHS
== True
))
1258 SelectionDAG
&DAG
= DCI
.DAG
;
1259 ISD::CondCode CCOpcode
= cast
<CondCodeSDNode
>(CC
)->get();
1268 case ISD::SETFALSE2
:
1277 return DAG
.getNode(AMDGPUISD::FMIN_LEGACY
, DL
, VT
, RHS
, LHS
);
1278 return DAG
.getNode(AMDGPUISD::FMAX_LEGACY
, DL
, VT
, LHS
, RHS
);
1284 // Ordered. Assume ordered for undefined.
1286 // Only do this after legalization to avoid interfering with other combines
1287 // which might occur.
1288 if (DCI
.getDAGCombineLevel() < AfterLegalizeDAG
&&
1289 !DCI
.isCalledByLegalizer())
1292 // We need to permute the operands to get the correct NaN behavior. The
1293 // selected operand is the second one based on the failing compare with NaN,
1294 // so permute it based on the compare type the hardware uses.
1296 return DAG
.getNode(AMDGPUISD::FMIN_LEGACY
, DL
, VT
, LHS
, RHS
);
1297 return DAG
.getNode(AMDGPUISD::FMAX_LEGACY
, DL
, VT
, RHS
, LHS
);
1302 return DAG
.getNode(AMDGPUISD::FMAX_LEGACY
, DL
, VT
, RHS
, LHS
);
1303 return DAG
.getNode(AMDGPUISD::FMIN_LEGACY
, DL
, VT
, LHS
, RHS
);
1309 if (DCI
.getDAGCombineLevel() < AfterLegalizeDAG
&&
1310 !DCI
.isCalledByLegalizer())
1314 return DAG
.getNode(AMDGPUISD::FMAX_LEGACY
, DL
, VT
, LHS
, RHS
);
1315 return DAG
.getNode(AMDGPUISD::FMIN_LEGACY
, DL
, VT
, RHS
, LHS
);
1317 case ISD::SETCC_INVALID
:
1318 llvm_unreachable("Invalid setcc condcode!");
1323 std::pair
<SDValue
, SDValue
>
1324 AMDGPUTargetLowering::split64BitValue(SDValue Op
, SelectionDAG
&DAG
) const {
1327 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Op
);
1329 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
1330 const SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
1332 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, Zero
);
1333 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, One
);
1335 return std::make_pair(Lo
, Hi
);
1338 SDValue
AMDGPUTargetLowering::getLoHalf64(SDValue Op
, SelectionDAG
&DAG
) const {
1341 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Op
);
1342 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
1343 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, Zero
);
1346 SDValue
AMDGPUTargetLowering::getHiHalf64(SDValue Op
, SelectionDAG
&DAG
) const {
1349 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Op
);
1350 const SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
1351 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, One
);
1354 // Split a vector type into two parts. The first part is a power of two vector.
1355 // The second part is whatever is left over, and is a scalar if it would
1356 // otherwise be a 1-vector.
1358 AMDGPUTargetLowering::getSplitDestVTs(const EVT
&VT
, SelectionDAG
&DAG
) const {
1360 EVT EltVT
= VT
.getVectorElementType();
1361 unsigned NumElts
= VT
.getVectorNumElements();
1362 unsigned LoNumElts
= PowerOf2Ceil((NumElts
+ 1) / 2);
1363 LoVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, LoNumElts
);
1364 HiVT
= NumElts
- LoNumElts
== 1
1366 : EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElts
- LoNumElts
);
1367 return std::make_pair(LoVT
, HiVT
);
1370 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be
1372 std::pair
<SDValue
, SDValue
>
1373 AMDGPUTargetLowering::splitVector(const SDValue
&N
, const SDLoc
&DL
,
1374 const EVT
&LoVT
, const EVT
&HiVT
,
1375 SelectionDAG
&DAG
) const {
1376 assert(LoVT
.getVectorNumElements() +
1377 (HiVT
.isVector() ? HiVT
.getVectorNumElements() : 1) <=
1378 N
.getValueType().getVectorNumElements() &&
1379 "More vector elements requested than available!");
1380 auto IdxTy
= getVectorIdxTy(DAG
.getDataLayout());
1381 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, LoVT
, N
,
1382 DAG
.getConstant(0, DL
, IdxTy
));
1383 SDValue Hi
= DAG
.getNode(
1384 HiVT
.isVector() ? ISD::EXTRACT_SUBVECTOR
: ISD::EXTRACT_VECTOR_ELT
, DL
,
1385 HiVT
, N
, DAG
.getConstant(LoVT
.getVectorNumElements(), DL
, IdxTy
));
1386 return std::make_pair(Lo
, Hi
);
1389 SDValue
AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op
,
1390 SelectionDAG
&DAG
) const {
1391 LoadSDNode
*Load
= cast
<LoadSDNode
>(Op
);
1392 EVT VT
= Op
.getValueType();
1395 // If this is a 2 element vector, we really want to scalarize and not create
1396 // weird 1 element vectors.
1397 if (VT
.getVectorNumElements() == 2)
1398 return scalarizeVectorLoad(Load
, DAG
);
1400 SDValue BasePtr
= Load
->getBasePtr();
1401 EVT MemVT
= Load
->getMemoryVT();
1404 const MachinePointerInfo
&SrcValue
= Load
->getMemOperand()->getPointerInfo();
1407 EVT LoMemVT
, HiMemVT
;
1410 std::tie(LoVT
, HiVT
) = getSplitDestVTs(VT
, DAG
);
1411 std::tie(LoMemVT
, HiMemVT
) = getSplitDestVTs(MemVT
, DAG
);
1412 std::tie(Lo
, Hi
) = splitVector(Op
, SL
, LoVT
, HiVT
, DAG
);
1414 unsigned Size
= LoMemVT
.getStoreSize();
1415 unsigned BaseAlign
= Load
->getAlignment();
1416 unsigned HiAlign
= MinAlign(BaseAlign
, Size
);
1418 SDValue LoLoad
= DAG
.getExtLoad(Load
->getExtensionType(), SL
, LoVT
,
1419 Load
->getChain(), BasePtr
, SrcValue
, LoMemVT
,
1420 BaseAlign
, Load
->getMemOperand()->getFlags());
1421 SDValue HiPtr
= DAG
.getObjectPtrOffset(SL
, BasePtr
, Size
);
1423 DAG
.getExtLoad(Load
->getExtensionType(), SL
, HiVT
, Load
->getChain(),
1424 HiPtr
, SrcValue
.getWithOffset(LoMemVT
.getStoreSize()),
1425 HiMemVT
, HiAlign
, Load
->getMemOperand()->getFlags());
1427 auto IdxTy
= getVectorIdxTy(DAG
.getDataLayout());
1430 // This is the case that the vector is power of two so was evenly split.
1431 Join
= DAG
.getNode(ISD::CONCAT_VECTORS
, SL
, VT
, LoLoad
, HiLoad
);
1433 Join
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, SL
, VT
, DAG
.getUNDEF(VT
), LoLoad
,
1434 DAG
.getConstant(0, SL
, IdxTy
));
1435 Join
= DAG
.getNode(HiVT
.isVector() ? ISD::INSERT_SUBVECTOR
1436 : ISD::INSERT_VECTOR_ELT
,
1437 SL
, VT
, Join
, HiLoad
,
1438 DAG
.getConstant(LoVT
.getVectorNumElements(), SL
, IdxTy
));
1441 SDValue Ops
[] = {Join
, DAG
.getNode(ISD::TokenFactor
, SL
, MVT::Other
,
1442 LoLoad
.getValue(1), HiLoad
.getValue(1))};
1444 return DAG
.getMergeValues(Ops
, SL
);
1447 // Widen a vector load from vec3 to vec4.
1448 SDValue
AMDGPUTargetLowering::WidenVectorLoad(SDValue Op
,
1449 SelectionDAG
&DAG
) const {
1450 LoadSDNode
*Load
= cast
<LoadSDNode
>(Op
);
1451 EVT VT
= Op
.getValueType();
1452 assert(VT
.getVectorNumElements() == 3);
1453 SDValue BasePtr
= Load
->getBasePtr();
1454 EVT MemVT
= Load
->getMemoryVT();
1456 const MachinePointerInfo
&SrcValue
= Load
->getMemOperand()->getPointerInfo();
1457 unsigned BaseAlign
= Load
->getAlignment();
1460 EVT::getVectorVT(*DAG
.getContext(), VT
.getVectorElementType(), 4);
1462 EVT::getVectorVT(*DAG
.getContext(), MemVT
.getVectorElementType(), 4);
1463 SDValue WideLoad
= DAG
.getExtLoad(
1464 Load
->getExtensionType(), SL
, WideVT
, Load
->getChain(), BasePtr
, SrcValue
,
1465 WideMemVT
, BaseAlign
, Load
->getMemOperand()->getFlags());
1466 return DAG
.getMergeValues(
1467 {DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, SL
, VT
, WideLoad
,
1468 DAG
.getConstant(0, SL
, getVectorIdxTy(DAG
.getDataLayout()))),
1469 WideLoad
.getValue(1)},
1473 SDValue
AMDGPUTargetLowering::SplitVectorStore(SDValue Op
,
1474 SelectionDAG
&DAG
) const {
1475 StoreSDNode
*Store
= cast
<StoreSDNode
>(Op
);
1476 SDValue Val
= Store
->getValue();
1477 EVT VT
= Val
.getValueType();
1479 // If this is a 2 element vector, we really want to scalarize and not create
1480 // weird 1 element vectors.
1481 if (VT
.getVectorNumElements() == 2)
1482 return scalarizeVectorStore(Store
, DAG
);
1484 EVT MemVT
= Store
->getMemoryVT();
1485 SDValue Chain
= Store
->getChain();
1486 SDValue BasePtr
= Store
->getBasePtr();
1490 EVT LoMemVT
, HiMemVT
;
1493 std::tie(LoVT
, HiVT
) = getSplitDestVTs(VT
, DAG
);
1494 std::tie(LoMemVT
, HiMemVT
) = getSplitDestVTs(MemVT
, DAG
);
1495 std::tie(Lo
, Hi
) = splitVector(Val
, SL
, LoVT
, HiVT
, DAG
);
1497 SDValue HiPtr
= DAG
.getObjectPtrOffset(SL
, BasePtr
, LoMemVT
.getStoreSize());
1499 const MachinePointerInfo
&SrcValue
= Store
->getMemOperand()->getPointerInfo();
1500 unsigned BaseAlign
= Store
->getAlignment();
1501 unsigned Size
= LoMemVT
.getStoreSize();
1502 unsigned HiAlign
= MinAlign(BaseAlign
, Size
);
1505 DAG
.getTruncStore(Chain
, SL
, Lo
, BasePtr
, SrcValue
, LoMemVT
, BaseAlign
,
1506 Store
->getMemOperand()->getFlags());
1508 DAG
.getTruncStore(Chain
, SL
, Hi
, HiPtr
, SrcValue
.getWithOffset(Size
),
1509 HiMemVT
, HiAlign
, Store
->getMemOperand()->getFlags());
1511 return DAG
.getNode(ISD::TokenFactor
, SL
, MVT::Other
, LoStore
, HiStore
);
1514 // This is a shortcut for integer division because we have fast i32<->f32
1515 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1516 // float is enough to accurately represent up to a 24-bit signed integer.
1517 SDValue
AMDGPUTargetLowering::LowerDIVREM24(SDValue Op
, SelectionDAG
&DAG
,
1520 EVT VT
= Op
.getValueType();
1521 SDValue LHS
= Op
.getOperand(0);
1522 SDValue RHS
= Op
.getOperand(1);
1523 MVT IntVT
= MVT::i32
;
1524 MVT FltVT
= MVT::f32
;
1526 unsigned LHSSignBits
= DAG
.ComputeNumSignBits(LHS
);
1527 if (LHSSignBits
< 9)
1530 unsigned RHSSignBits
= DAG
.ComputeNumSignBits(RHS
);
1531 if (RHSSignBits
< 9)
1534 unsigned BitSize
= VT
.getSizeInBits();
1535 unsigned SignBits
= std::min(LHSSignBits
, RHSSignBits
);
1536 unsigned DivBits
= BitSize
- SignBits
;
1540 ISD::NodeType ToFp
= Sign
? ISD::SINT_TO_FP
: ISD::UINT_TO_FP
;
1541 ISD::NodeType ToInt
= Sign
? ISD::FP_TO_SINT
: ISD::FP_TO_UINT
;
1543 SDValue jq
= DAG
.getConstant(1, DL
, IntVT
);
1546 // char|short jq = ia ^ ib;
1547 jq
= DAG
.getNode(ISD::XOR
, DL
, VT
, LHS
, RHS
);
1549 // jq = jq >> (bitsize - 2)
1550 jq
= DAG
.getNode(ISD::SRA
, DL
, VT
, jq
,
1551 DAG
.getConstant(BitSize
- 2, DL
, VT
));
1554 jq
= DAG
.getNode(ISD::OR
, DL
, VT
, jq
, DAG
.getConstant(1, DL
, VT
));
1557 // int ia = (int)LHS;
1560 // int ib, (int)RHS;
1563 // float fa = (float)ia;
1564 SDValue fa
= DAG
.getNode(ToFp
, DL
, FltVT
, ia
);
1566 // float fb = (float)ib;
1567 SDValue fb
= DAG
.getNode(ToFp
, DL
, FltVT
, ib
);
1569 SDValue fq
= DAG
.getNode(ISD::FMUL
, DL
, FltVT
,
1570 fa
, DAG
.getNode(AMDGPUISD::RCP
, DL
, FltVT
, fb
));
1573 fq
= DAG
.getNode(ISD::FTRUNC
, DL
, FltVT
, fq
);
1575 // float fqneg = -fq;
1576 SDValue fqneg
= DAG
.getNode(ISD::FNEG
, DL
, FltVT
, fq
);
1578 // float fr = mad(fqneg, fb, fa);
1579 unsigned OpCode
= Subtarget
->hasFP32Denormals() ?
1580 (unsigned)AMDGPUISD::FMAD_FTZ
:
1581 (unsigned)ISD::FMAD
;
1582 SDValue fr
= DAG
.getNode(OpCode
, DL
, FltVT
, fqneg
, fb
, fa
);
1584 // int iq = (int)fq;
1585 SDValue iq
= DAG
.getNode(ToInt
, DL
, IntVT
, fq
);
1588 fr
= DAG
.getNode(ISD::FABS
, DL
, FltVT
, fr
);
1591 fb
= DAG
.getNode(ISD::FABS
, DL
, FltVT
, fb
);
1593 EVT SetCCVT
= getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
1595 // int cv = fr >= fb;
1596 SDValue cv
= DAG
.getSetCC(DL
, SetCCVT
, fr
, fb
, ISD::SETOGE
);
1598 // jq = (cv ? jq : 0);
1599 jq
= DAG
.getNode(ISD::SELECT
, DL
, VT
, cv
, jq
, DAG
.getConstant(0, DL
, VT
));
1602 SDValue Div
= DAG
.getNode(ISD::ADD
, DL
, VT
, iq
, jq
);
1604 // Rem needs compensation, it's easier to recompute it
1605 SDValue Rem
= DAG
.getNode(ISD::MUL
, DL
, VT
, Div
, RHS
);
1606 Rem
= DAG
.getNode(ISD::SUB
, DL
, VT
, LHS
, Rem
);
1608 // Truncate to number of bits this divide really is.
1611 = DAG
.getValueType(EVT::getIntegerVT(*DAG
.getContext(), DivBits
));
1612 Div
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, VT
, Div
, InRegSize
);
1613 Rem
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, VT
, Rem
, InRegSize
);
1615 SDValue TruncMask
= DAG
.getConstant((UINT64_C(1) << DivBits
) - 1, DL
, VT
);
1616 Div
= DAG
.getNode(ISD::AND
, DL
, VT
, Div
, TruncMask
);
1617 Rem
= DAG
.getNode(ISD::AND
, DL
, VT
, Rem
, TruncMask
);
1620 return DAG
.getMergeValues({ Div
, Rem
}, DL
);
1623 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op
,
1625 SmallVectorImpl
<SDValue
> &Results
) const {
1627 EVT VT
= Op
.getValueType();
1629 assert(VT
== MVT::i64
&& "LowerUDIVREM64 expects an i64");
1631 EVT HalfVT
= VT
.getHalfSizedIntegerVT(*DAG
.getContext());
1633 SDValue One
= DAG
.getConstant(1, DL
, HalfVT
);
1634 SDValue Zero
= DAG
.getConstant(0, DL
, HalfVT
);
1637 SDValue LHS
= Op
.getOperand(0);
1638 SDValue LHS_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, LHS
, Zero
);
1639 SDValue LHS_Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, LHS
, One
);
1641 SDValue RHS
= Op
.getOperand(1);
1642 SDValue RHS_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, RHS
, Zero
);
1643 SDValue RHS_Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, RHS
, One
);
1645 if (DAG
.MaskedValueIsZero(RHS
, APInt::getHighBitsSet(64, 32)) &&
1646 DAG
.MaskedValueIsZero(LHS
, APInt::getHighBitsSet(64, 32))) {
1648 SDValue Res
= DAG
.getNode(ISD::UDIVREM
, DL
, DAG
.getVTList(HalfVT
, HalfVT
),
1651 SDValue DIV
= DAG
.getBuildVector(MVT::v2i32
, DL
, {Res
.getValue(0), Zero
});
1652 SDValue REM
= DAG
.getBuildVector(MVT::v2i32
, DL
, {Res
.getValue(1), Zero
});
1654 Results
.push_back(DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, DIV
));
1655 Results
.push_back(DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, REM
));
1659 if (isTypeLegal(MVT::i64
)) {
1660 // Compute denominator reciprocal.
1661 unsigned FMAD
= Subtarget
->hasFP32Denormals() ?
1662 (unsigned)AMDGPUISD::FMAD_FTZ
:
1663 (unsigned)ISD::FMAD
;
1665 SDValue Cvt_Lo
= DAG
.getNode(ISD::UINT_TO_FP
, DL
, MVT::f32
, RHS_Lo
);
1666 SDValue Cvt_Hi
= DAG
.getNode(ISD::UINT_TO_FP
, DL
, MVT::f32
, RHS_Hi
);
1667 SDValue Mad1
= DAG
.getNode(FMAD
, DL
, MVT::f32
, Cvt_Hi
,
1668 DAG
.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL
, MVT::f32
),
1670 SDValue Rcp
= DAG
.getNode(AMDGPUISD::RCP
, DL
, MVT::f32
, Mad1
);
1671 SDValue Mul1
= DAG
.getNode(ISD::FMUL
, DL
, MVT::f32
, Rcp
,
1672 DAG
.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL
, MVT::f32
));
1673 SDValue Mul2
= DAG
.getNode(ISD::FMUL
, DL
, MVT::f32
, Mul1
,
1674 DAG
.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL
, MVT::f32
));
1675 SDValue Trunc
= DAG
.getNode(ISD::FTRUNC
, DL
, MVT::f32
, Mul2
);
1676 SDValue Mad2
= DAG
.getNode(FMAD
, DL
, MVT::f32
, Trunc
,
1677 DAG
.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL
, MVT::f32
),
1679 SDValue Rcp_Lo
= DAG
.getNode(ISD::FP_TO_UINT
, DL
, HalfVT
, Mad2
);
1680 SDValue Rcp_Hi
= DAG
.getNode(ISD::FP_TO_UINT
, DL
, HalfVT
, Trunc
);
1681 SDValue Rcp64
= DAG
.getBitcast(VT
,
1682 DAG
.getBuildVector(MVT::v2i32
, DL
, {Rcp_Lo
, Rcp_Hi
}));
1684 SDValue Zero64
= DAG
.getConstant(0, DL
, VT
);
1685 SDValue One64
= DAG
.getConstant(1, DL
, VT
);
1686 SDValue Zero1
= DAG
.getConstant(0, DL
, MVT::i1
);
1687 SDVTList HalfCarryVT
= DAG
.getVTList(HalfVT
, MVT::i1
);
1689 SDValue Neg_RHS
= DAG
.getNode(ISD::SUB
, DL
, VT
, Zero64
, RHS
);
1690 SDValue Mullo1
= DAG
.getNode(ISD::MUL
, DL
, VT
, Neg_RHS
, Rcp64
);
1691 SDValue Mulhi1
= DAG
.getNode(ISD::MULHU
, DL
, VT
, Rcp64
, Mullo1
);
1692 SDValue Mulhi1_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, Mulhi1
,
1694 SDValue Mulhi1_Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, Mulhi1
,
1697 SDValue Add1_Lo
= DAG
.getNode(ISD::ADDCARRY
, DL
, HalfCarryVT
, Rcp_Lo
,
1699 SDValue Add1_Hi
= DAG
.getNode(ISD::ADDCARRY
, DL
, HalfCarryVT
, Rcp_Hi
,
1700 Mulhi1_Hi
, Add1_Lo
.getValue(1));
1701 SDValue Add1_HiNc
= DAG
.getNode(ISD::ADD
, DL
, HalfVT
, Rcp_Hi
, Mulhi1_Hi
);
1702 SDValue Add1
= DAG
.getBitcast(VT
,
1703 DAG
.getBuildVector(MVT::v2i32
, DL
, {Add1_Lo
, Add1_Hi
}));
1705 SDValue Mullo2
= DAG
.getNode(ISD::MUL
, DL
, VT
, Neg_RHS
, Add1
);
1706 SDValue Mulhi2
= DAG
.getNode(ISD::MULHU
, DL
, VT
, Add1
, Mullo2
);
1707 SDValue Mulhi2_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, Mulhi2
,
1709 SDValue Mulhi2_Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, Mulhi2
,
1712 SDValue Add2_Lo
= DAG
.getNode(ISD::ADDCARRY
, DL
, HalfCarryVT
, Add1_Lo
,
1714 SDValue Add2_HiC
= DAG
.getNode(ISD::ADDCARRY
, DL
, HalfCarryVT
, Add1_HiNc
,
1715 Mulhi2_Hi
, Add1_Lo
.getValue(1));
1716 SDValue Add2_Hi
= DAG
.getNode(ISD::ADDCARRY
, DL
, HalfCarryVT
, Add2_HiC
,
1717 Zero
, Add2_Lo
.getValue(1));
1718 SDValue Add2
= DAG
.getBitcast(VT
,
1719 DAG
.getBuildVector(MVT::v2i32
, DL
, {Add2_Lo
, Add2_Hi
}));
1720 SDValue Mulhi3
= DAG
.getNode(ISD::MULHU
, DL
, VT
, LHS
, Add2
);
1722 SDValue Mul3
= DAG
.getNode(ISD::MUL
, DL
, VT
, RHS
, Mulhi3
);
1724 SDValue Mul3_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, Mul3
, Zero
);
1725 SDValue Mul3_Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, Mul3
, One
);
1726 SDValue Sub1_Lo
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, LHS_Lo
,
1728 SDValue Sub1_Hi
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, LHS_Hi
,
1729 Mul3_Hi
, Sub1_Lo
.getValue(1));
1730 SDValue Sub1_Mi
= DAG
.getNode(ISD::SUB
, DL
, HalfVT
, LHS_Hi
, Mul3_Hi
);
1731 SDValue Sub1
= DAG
.getBitcast(VT
,
1732 DAG
.getBuildVector(MVT::v2i32
, DL
, {Sub1_Lo
, Sub1_Hi
}));
1734 SDValue MinusOne
= DAG
.getConstant(0xffffffffu
, DL
, HalfVT
);
1735 SDValue C1
= DAG
.getSelectCC(DL
, Sub1_Hi
, RHS_Hi
, MinusOne
, Zero
,
1737 SDValue C2
= DAG
.getSelectCC(DL
, Sub1_Lo
, RHS_Lo
, MinusOne
, Zero
,
1739 SDValue C3
= DAG
.getSelectCC(DL
, Sub1_Hi
, RHS_Hi
, C2
, C1
, ISD::SETEQ
);
1741 // TODO: Here and below portions of the code can be enclosed into if/endif.
1742 // Currently control flow is unconditional and we have 4 selects after
1743 // potential endif to substitute PHIs.
1746 SDValue Sub2_Lo
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, Sub1_Lo
,
1748 SDValue Sub2_Mi
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, Sub1_Mi
,
1749 RHS_Hi
, Sub1_Lo
.getValue(1));
1750 SDValue Sub2_Hi
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, Sub2_Mi
,
1751 Zero
, Sub2_Lo
.getValue(1));
1752 SDValue Sub2
= DAG
.getBitcast(VT
,
1753 DAG
.getBuildVector(MVT::v2i32
, DL
, {Sub2_Lo
, Sub2_Hi
}));
1755 SDValue Add3
= DAG
.getNode(ISD::ADD
, DL
, VT
, Mulhi3
, One64
);
1757 SDValue C4
= DAG
.getSelectCC(DL
, Sub2_Hi
, RHS_Hi
, MinusOne
, Zero
,
1759 SDValue C5
= DAG
.getSelectCC(DL
, Sub2_Lo
, RHS_Lo
, MinusOne
, Zero
,
1761 SDValue C6
= DAG
.getSelectCC(DL
, Sub2_Hi
, RHS_Hi
, C5
, C4
, ISD::SETEQ
);
1764 SDValue Add4
= DAG
.getNode(ISD::ADD
, DL
, VT
, Add3
, One64
);
1766 SDValue Sub3_Lo
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, Sub2_Lo
,
1768 SDValue Sub3_Mi
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, Sub2_Mi
,
1769 RHS_Hi
, Sub2_Lo
.getValue(1));
1770 SDValue Sub3_Hi
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, Sub3_Mi
,
1771 Zero
, Sub3_Lo
.getValue(1));
1772 SDValue Sub3
= DAG
.getBitcast(VT
,
1773 DAG
.getBuildVector(MVT::v2i32
, DL
, {Sub3_Lo
, Sub3_Hi
}));
1778 SDValue Sel1
= DAG
.getSelectCC(DL
, C6
, Zero
, Add4
, Add3
, ISD::SETNE
);
1779 SDValue Div
= DAG
.getSelectCC(DL
, C3
, Zero
, Sel1
, Mulhi3
, ISD::SETNE
);
1781 SDValue Sel2
= DAG
.getSelectCC(DL
, C6
, Zero
, Sub3
, Sub2
, ISD::SETNE
);
1782 SDValue Rem
= DAG
.getSelectCC(DL
, C3
, Zero
, Sel2
, Sub1
, ISD::SETNE
);
1784 Results
.push_back(Div
);
1785 Results
.push_back(Rem
);
1791 // Get Speculative values
1792 SDValue DIV_Part
= DAG
.getNode(ISD::UDIV
, DL
, HalfVT
, LHS_Hi
, RHS_Lo
);
1793 SDValue REM_Part
= DAG
.getNode(ISD::UREM
, DL
, HalfVT
, LHS_Hi
, RHS_Lo
);
1795 SDValue REM_Lo
= DAG
.getSelectCC(DL
, RHS_Hi
, Zero
, REM_Part
, LHS_Hi
, ISD::SETEQ
);
1796 SDValue REM
= DAG
.getBuildVector(MVT::v2i32
, DL
, {REM_Lo
, Zero
});
1797 REM
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, REM
);
1799 SDValue DIV_Hi
= DAG
.getSelectCC(DL
, RHS_Hi
, Zero
, DIV_Part
, Zero
, ISD::SETEQ
);
1800 SDValue DIV_Lo
= Zero
;
1802 const unsigned halfBitWidth
= HalfVT
.getSizeInBits();
1804 for (unsigned i
= 0; i
< halfBitWidth
; ++i
) {
1805 const unsigned bitPos
= halfBitWidth
- i
- 1;
1806 SDValue POS
= DAG
.getConstant(bitPos
, DL
, HalfVT
);
1807 // Get value of high bit
1808 SDValue HBit
= DAG
.getNode(ISD::SRL
, DL
, HalfVT
, LHS_Lo
, POS
);
1809 HBit
= DAG
.getNode(ISD::AND
, DL
, HalfVT
, HBit
, One
);
1810 HBit
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, HBit
);
1813 REM
= DAG
.getNode(ISD::SHL
, DL
, VT
, REM
, DAG
.getConstant(1, DL
, VT
));
1815 REM
= DAG
.getNode(ISD::OR
, DL
, VT
, REM
, HBit
);
1817 SDValue BIT
= DAG
.getConstant(1ULL << bitPos
, DL
, HalfVT
);
1818 SDValue realBIT
= DAG
.getSelectCC(DL
, REM
, RHS
, BIT
, Zero
, ISD::SETUGE
);
1820 DIV_Lo
= DAG
.getNode(ISD::OR
, DL
, HalfVT
, DIV_Lo
, realBIT
);
1823 SDValue REM_sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, REM
, RHS
);
1824 REM
= DAG
.getSelectCC(DL
, REM
, RHS
, REM_sub
, REM
, ISD::SETUGE
);
1827 SDValue DIV
= DAG
.getBuildVector(MVT::v2i32
, DL
, {DIV_Lo
, DIV_Hi
});
1828 DIV
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, DIV
);
1829 Results
.push_back(DIV
);
1830 Results
.push_back(REM
);
1833 SDValue
AMDGPUTargetLowering::LowerUDIVREM(SDValue Op
,
1834 SelectionDAG
&DAG
) const {
1836 EVT VT
= Op
.getValueType();
1838 if (VT
== MVT::i64
) {
1839 SmallVector
<SDValue
, 2> Results
;
1840 LowerUDIVREM64(Op
, DAG
, Results
);
1841 return DAG
.getMergeValues(Results
, DL
);
1844 if (VT
== MVT::i32
) {
1845 if (SDValue Res
= LowerDIVREM24(Op
, DAG
, false))
1849 SDValue Num
= Op
.getOperand(0);
1850 SDValue Den
= Op
.getOperand(1);
1852 // RCP = URECIP(Den) = 2^32 / Den + e
1853 // e is rounding error.
1854 SDValue RCP
= DAG
.getNode(AMDGPUISD::URECIP
, DL
, VT
, Den
);
1856 // RCP_LO = mul(RCP, Den) */
1857 SDValue RCP_LO
= DAG
.getNode(ISD::MUL
, DL
, VT
, RCP
, Den
);
1859 // RCP_HI = mulhu (RCP, Den) */
1860 SDValue RCP_HI
= DAG
.getNode(ISD::MULHU
, DL
, VT
, RCP
, Den
);
1862 // NEG_RCP_LO = -RCP_LO
1863 SDValue NEG_RCP_LO
= DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
),
1866 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1867 SDValue ABS_RCP_LO
= DAG
.getSelectCC(DL
, RCP_HI
, DAG
.getConstant(0, DL
, VT
),
1870 // Calculate the rounding error from the URECIP instruction
1871 // E = mulhu(ABS_RCP_LO, RCP)
1872 SDValue E
= DAG
.getNode(ISD::MULHU
, DL
, VT
, ABS_RCP_LO
, RCP
);
1874 // RCP_A_E = RCP + E
1875 SDValue RCP_A_E
= DAG
.getNode(ISD::ADD
, DL
, VT
, RCP
, E
);
1877 // RCP_S_E = RCP - E
1878 SDValue RCP_S_E
= DAG
.getNode(ISD::SUB
, DL
, VT
, RCP
, E
);
1880 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1881 SDValue Tmp0
= DAG
.getSelectCC(DL
, RCP_HI
, DAG
.getConstant(0, DL
, VT
),
1884 // Quotient = mulhu(Tmp0, Num)
1885 SDValue Quotient
= DAG
.getNode(ISD::MULHU
, DL
, VT
, Tmp0
, Num
);
1887 // Num_S_Remainder = Quotient * Den
1888 SDValue Num_S_Remainder
= DAG
.getNode(ISD::MUL
, DL
, VT
, Quotient
, Den
);
1890 // Remainder = Num - Num_S_Remainder
1891 SDValue Remainder
= DAG
.getNode(ISD::SUB
, DL
, VT
, Num
, Num_S_Remainder
);
1893 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1894 SDValue Remainder_GE_Den
= DAG
.getSelectCC(DL
, Remainder
, Den
,
1895 DAG
.getConstant(-1, DL
, VT
),
1896 DAG
.getConstant(0, DL
, VT
),
1898 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1899 SDValue Remainder_GE_Zero
= DAG
.getSelectCC(DL
, Num
,
1901 DAG
.getConstant(-1, DL
, VT
),
1902 DAG
.getConstant(0, DL
, VT
),
1904 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1905 SDValue Tmp1
= DAG
.getNode(ISD::AND
, DL
, VT
, Remainder_GE_Den
,
1908 // Calculate Division result:
1910 // Quotient_A_One = Quotient + 1
1911 SDValue Quotient_A_One
= DAG
.getNode(ISD::ADD
, DL
, VT
, Quotient
,
1912 DAG
.getConstant(1, DL
, VT
));
1914 // Quotient_S_One = Quotient - 1
1915 SDValue Quotient_S_One
= DAG
.getNode(ISD::SUB
, DL
, VT
, Quotient
,
1916 DAG
.getConstant(1, DL
, VT
));
1918 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1919 SDValue Div
= DAG
.getSelectCC(DL
, Tmp1
, DAG
.getConstant(0, DL
, VT
),
1920 Quotient
, Quotient_A_One
, ISD::SETEQ
);
1922 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1923 Div
= DAG
.getSelectCC(DL
, Remainder_GE_Zero
, DAG
.getConstant(0, DL
, VT
),
1924 Quotient_S_One
, Div
, ISD::SETEQ
);
1926 // Calculate Rem result:
1928 // Remainder_S_Den = Remainder - Den
1929 SDValue Remainder_S_Den
= DAG
.getNode(ISD::SUB
, DL
, VT
, Remainder
, Den
);
1931 // Remainder_A_Den = Remainder + Den
1932 SDValue Remainder_A_Den
= DAG
.getNode(ISD::ADD
, DL
, VT
, Remainder
, Den
);
1934 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1935 SDValue Rem
= DAG
.getSelectCC(DL
, Tmp1
, DAG
.getConstant(0, DL
, VT
),
1936 Remainder
, Remainder_S_Den
, ISD::SETEQ
);
1938 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1939 Rem
= DAG
.getSelectCC(DL
, Remainder_GE_Zero
, DAG
.getConstant(0, DL
, VT
),
1940 Remainder_A_Den
, Rem
, ISD::SETEQ
);
1945 return DAG
.getMergeValues(Ops
, DL
);
1948 SDValue
AMDGPUTargetLowering::LowerSDIVREM(SDValue Op
,
1949 SelectionDAG
&DAG
) const {
1951 EVT VT
= Op
.getValueType();
1953 SDValue LHS
= Op
.getOperand(0);
1954 SDValue RHS
= Op
.getOperand(1);
1956 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
1957 SDValue NegOne
= DAG
.getConstant(-1, DL
, VT
);
1959 if (VT
== MVT::i32
) {
1960 if (SDValue Res
= LowerDIVREM24(Op
, DAG
, true))
1964 if (VT
== MVT::i64
&&
1965 DAG
.ComputeNumSignBits(LHS
) > 32 &&
1966 DAG
.ComputeNumSignBits(RHS
) > 32) {
1967 EVT HalfVT
= VT
.getHalfSizedIntegerVT(*DAG
.getContext());
1970 SDValue LHS_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, LHS
, Zero
);
1971 SDValue RHS_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, RHS
, Zero
);
1972 SDValue DIVREM
= DAG
.getNode(ISD::SDIVREM
, DL
, DAG
.getVTList(HalfVT
, HalfVT
),
1975 DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, DIVREM
.getValue(0)),
1976 DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, DIVREM
.getValue(1))
1978 return DAG
.getMergeValues(Res
, DL
);
1981 SDValue LHSign
= DAG
.getSelectCC(DL
, LHS
, Zero
, NegOne
, Zero
, ISD::SETLT
);
1982 SDValue RHSign
= DAG
.getSelectCC(DL
, RHS
, Zero
, NegOne
, Zero
, ISD::SETLT
);
1983 SDValue DSign
= DAG
.getNode(ISD::XOR
, DL
, VT
, LHSign
, RHSign
);
1984 SDValue RSign
= LHSign
; // Remainder sign is the same as LHS
1986 LHS
= DAG
.getNode(ISD::ADD
, DL
, VT
, LHS
, LHSign
);
1987 RHS
= DAG
.getNode(ISD::ADD
, DL
, VT
, RHS
, RHSign
);
1989 LHS
= DAG
.getNode(ISD::XOR
, DL
, VT
, LHS
, LHSign
);
1990 RHS
= DAG
.getNode(ISD::XOR
, DL
, VT
, RHS
, RHSign
);
1992 SDValue Div
= DAG
.getNode(ISD::UDIVREM
, DL
, DAG
.getVTList(VT
, VT
), LHS
, RHS
);
1993 SDValue Rem
= Div
.getValue(1);
1995 Div
= DAG
.getNode(ISD::XOR
, DL
, VT
, Div
, DSign
);
1996 Rem
= DAG
.getNode(ISD::XOR
, DL
, VT
, Rem
, RSign
);
1998 Div
= DAG
.getNode(ISD::SUB
, DL
, VT
, Div
, DSign
);
1999 Rem
= DAG
.getNode(ISD::SUB
, DL
, VT
, Rem
, RSign
);
2005 return DAG
.getMergeValues(Res
, DL
);
2008 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
2009 SDValue
AMDGPUTargetLowering::LowerFREM(SDValue Op
, SelectionDAG
&DAG
) const {
2011 EVT VT
= Op
.getValueType();
2012 SDValue X
= Op
.getOperand(0);
2013 SDValue Y
= Op
.getOperand(1);
2015 // TODO: Should this propagate fast-math-flags?
2017 SDValue Div
= DAG
.getNode(ISD::FDIV
, SL
, VT
, X
, Y
);
2018 SDValue Floor
= DAG
.getNode(ISD::FTRUNC
, SL
, VT
, Div
);
2019 SDValue Mul
= DAG
.getNode(ISD::FMUL
, SL
, VT
, Floor
, Y
);
2021 return DAG
.getNode(ISD::FSUB
, SL
, VT
, X
, Mul
);
2024 SDValue
AMDGPUTargetLowering::LowerFCEIL(SDValue Op
, SelectionDAG
&DAG
) const {
2026 SDValue Src
= Op
.getOperand(0);
2028 // result = trunc(src)
2029 // if (src > 0.0 && src != result)
2032 SDValue Trunc
= DAG
.getNode(ISD::FTRUNC
, SL
, MVT::f64
, Src
);
2034 const SDValue Zero
= DAG
.getConstantFP(0.0, SL
, MVT::f64
);
2035 const SDValue One
= DAG
.getConstantFP(1.0, SL
, MVT::f64
);
2038 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), MVT::f64
);
2040 SDValue Lt0
= DAG
.getSetCC(SL
, SetCCVT
, Src
, Zero
, ISD::SETOGT
);
2041 SDValue NeTrunc
= DAG
.getSetCC(SL
, SetCCVT
, Src
, Trunc
, ISD::SETONE
);
2042 SDValue And
= DAG
.getNode(ISD::AND
, SL
, SetCCVT
, Lt0
, NeTrunc
);
2044 SDValue Add
= DAG
.getNode(ISD::SELECT
, SL
, MVT::f64
, And
, One
, Zero
);
2045 // TODO: Should this propagate fast-math-flags?
2046 return DAG
.getNode(ISD::FADD
, SL
, MVT::f64
, Trunc
, Add
);
2049 static SDValue
extractF64Exponent(SDValue Hi
, const SDLoc
&SL
,
2050 SelectionDAG
&DAG
) {
2051 const unsigned FractBits
= 52;
2052 const unsigned ExpBits
= 11;
2054 SDValue ExpPart
= DAG
.getNode(AMDGPUISD::BFE_U32
, SL
, MVT::i32
,
2056 DAG
.getConstant(FractBits
- 32, SL
, MVT::i32
),
2057 DAG
.getConstant(ExpBits
, SL
, MVT::i32
));
2058 SDValue Exp
= DAG
.getNode(ISD::SUB
, SL
, MVT::i32
, ExpPart
,
2059 DAG
.getConstant(1023, SL
, MVT::i32
));
2064 SDValue
AMDGPUTargetLowering::LowerFTRUNC(SDValue Op
, SelectionDAG
&DAG
) const {
2066 SDValue Src
= Op
.getOperand(0);
2068 assert(Op
.getValueType() == MVT::f64
);
2070 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
2071 const SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
2073 SDValue VecSrc
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Src
);
2075 // Extract the upper half, since this is where we will find the sign and
2077 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, VecSrc
, One
);
2079 SDValue Exp
= extractF64Exponent(Hi
, SL
, DAG
);
2081 const unsigned FractBits
= 52;
2083 // Extract the sign bit.
2084 const SDValue SignBitMask
= DAG
.getConstant(UINT32_C(1) << 31, SL
, MVT::i32
);
2085 SDValue SignBit
= DAG
.getNode(ISD::AND
, SL
, MVT::i32
, Hi
, SignBitMask
);
2087 // Extend back to 64-bits.
2088 SDValue SignBit64
= DAG
.getBuildVector(MVT::v2i32
, SL
, {Zero
, SignBit
});
2089 SignBit64
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, SignBit64
);
2091 SDValue BcInt
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, Src
);
2092 const SDValue FractMask
2093 = DAG
.getConstant((UINT64_C(1) << FractBits
) - 1, SL
, MVT::i64
);
2095 SDValue Shr
= DAG
.getNode(ISD::SRA
, SL
, MVT::i64
, FractMask
, Exp
);
2096 SDValue Not
= DAG
.getNOT(SL
, Shr
, MVT::i64
);
2097 SDValue Tmp0
= DAG
.getNode(ISD::AND
, SL
, MVT::i64
, BcInt
, Not
);
2100 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), MVT::i32
);
2102 const SDValue FiftyOne
= DAG
.getConstant(FractBits
- 1, SL
, MVT::i32
);
2104 SDValue ExpLt0
= DAG
.getSetCC(SL
, SetCCVT
, Exp
, Zero
, ISD::SETLT
);
2105 SDValue ExpGt51
= DAG
.getSetCC(SL
, SetCCVT
, Exp
, FiftyOne
, ISD::SETGT
);
2107 SDValue Tmp1
= DAG
.getNode(ISD::SELECT
, SL
, MVT::i64
, ExpLt0
, SignBit64
, Tmp0
);
2108 SDValue Tmp2
= DAG
.getNode(ISD::SELECT
, SL
, MVT::i64
, ExpGt51
, BcInt
, Tmp1
);
2110 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::f64
, Tmp2
);
2113 SDValue
AMDGPUTargetLowering::LowerFRINT(SDValue Op
, SelectionDAG
&DAG
) const {
2115 SDValue Src
= Op
.getOperand(0);
2117 assert(Op
.getValueType() == MVT::f64
);
2119 APFloat
C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
2120 SDValue C1
= DAG
.getConstantFP(C1Val
, SL
, MVT::f64
);
2121 SDValue CopySign
= DAG
.getNode(ISD::FCOPYSIGN
, SL
, MVT::f64
, C1
, Src
);
2123 // TODO: Should this propagate fast-math-flags?
2125 SDValue Tmp1
= DAG
.getNode(ISD::FADD
, SL
, MVT::f64
, Src
, CopySign
);
2126 SDValue Tmp2
= DAG
.getNode(ISD::FSUB
, SL
, MVT::f64
, Tmp1
, CopySign
);
2128 SDValue Fabs
= DAG
.getNode(ISD::FABS
, SL
, MVT::f64
, Src
);
2130 APFloat
C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
2131 SDValue C2
= DAG
.getConstantFP(C2Val
, SL
, MVT::f64
);
2134 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), MVT::f64
);
2135 SDValue Cond
= DAG
.getSetCC(SL
, SetCCVT
, Fabs
, C2
, ISD::SETOGT
);
2137 return DAG
.getSelect(SL
, MVT::f64
, Cond
, Src
, Tmp2
);
2140 SDValue
AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op
, SelectionDAG
&DAG
) const {
2141 // FNEARBYINT and FRINT are the same, except in their handling of FP
2142 // exceptions. Those aren't really meaningful for us, and OpenCL only has
2143 // rint, so just treat them as equivalent.
2144 return DAG
.getNode(ISD::FRINT
, SDLoc(Op
), Op
.getValueType(), Op
.getOperand(0));
2147 // XXX - May require not supporting f32 denormals?
2149 // Don't handle v2f16. The extra instructions to scalarize and repack around the
2150 // compare and vselect end up producing worse code than scalarizing the whole
2152 SDValue
AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op
, SelectionDAG
&DAG
) const {
2154 SDValue X
= Op
.getOperand(0);
2155 EVT VT
= Op
.getValueType();
2157 SDValue T
= DAG
.getNode(ISD::FTRUNC
, SL
, VT
, X
);
2159 // TODO: Should this propagate fast-math-flags?
2161 SDValue Diff
= DAG
.getNode(ISD::FSUB
, SL
, VT
, X
, T
);
2163 SDValue AbsDiff
= DAG
.getNode(ISD::FABS
, SL
, VT
, Diff
);
2165 const SDValue Zero
= DAG
.getConstantFP(0.0, SL
, VT
);
2166 const SDValue One
= DAG
.getConstantFP(1.0, SL
, VT
);
2167 const SDValue Half
= DAG
.getConstantFP(0.5, SL
, VT
);
2169 SDValue SignOne
= DAG
.getNode(ISD::FCOPYSIGN
, SL
, VT
, One
, X
);
2172 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
2174 SDValue Cmp
= DAG
.getSetCC(SL
, SetCCVT
, AbsDiff
, Half
, ISD::SETOGE
);
2176 SDValue Sel
= DAG
.getNode(ISD::SELECT
, SL
, VT
, Cmp
, SignOne
, Zero
);
2178 return DAG
.getNode(ISD::FADD
, SL
, VT
, T
, Sel
);
2181 SDValue
AMDGPUTargetLowering::LowerFROUND64(SDValue Op
, SelectionDAG
&DAG
) const {
2183 SDValue X
= Op
.getOperand(0);
2185 SDValue L
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, X
);
2187 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
2188 const SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
2189 const SDValue NegOne
= DAG
.getConstant(-1, SL
, MVT::i32
);
2190 const SDValue FiftyOne
= DAG
.getConstant(51, SL
, MVT::i32
);
2192 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), MVT::i32
);
2194 SDValue BC
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, X
);
2196 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, BC
, One
);
2198 SDValue Exp
= extractF64Exponent(Hi
, SL
, DAG
);
2200 const SDValue Mask
= DAG
.getConstant(INT64_C(0x000fffffffffffff), SL
,
2203 SDValue M
= DAG
.getNode(ISD::SRA
, SL
, MVT::i64
, Mask
, Exp
);
2204 SDValue D
= DAG
.getNode(ISD::SRA
, SL
, MVT::i64
,
2205 DAG
.getConstant(INT64_C(0x0008000000000000), SL
,
2209 SDValue Tmp0
= DAG
.getNode(ISD::AND
, SL
, MVT::i64
, L
, M
);
2210 SDValue Tmp1
= DAG
.getSetCC(SL
, SetCCVT
,
2211 DAG
.getConstant(0, SL
, MVT::i64
), Tmp0
,
2214 SDValue Tmp2
= DAG
.getNode(ISD::SELECT
, SL
, MVT::i64
, Tmp1
,
2215 D
, DAG
.getConstant(0, SL
, MVT::i64
));
2216 SDValue K
= DAG
.getNode(ISD::ADD
, SL
, MVT::i64
, L
, Tmp2
);
2218 K
= DAG
.getNode(ISD::AND
, SL
, MVT::i64
, K
, DAG
.getNOT(SL
, M
, MVT::i64
));
2219 K
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::f64
, K
);
2221 SDValue ExpLt0
= DAG
.getSetCC(SL
, SetCCVT
, Exp
, Zero
, ISD::SETLT
);
2222 SDValue ExpGt51
= DAG
.getSetCC(SL
, SetCCVT
, Exp
, FiftyOne
, ISD::SETGT
);
2223 SDValue ExpEqNegOne
= DAG
.getSetCC(SL
, SetCCVT
, NegOne
, Exp
, ISD::SETEQ
);
2225 SDValue Mag
= DAG
.getNode(ISD::SELECT
, SL
, MVT::f64
,
2227 DAG
.getConstantFP(1.0, SL
, MVT::f64
),
2228 DAG
.getConstantFP(0.0, SL
, MVT::f64
));
2230 SDValue S
= DAG
.getNode(ISD::FCOPYSIGN
, SL
, MVT::f64
, Mag
, X
);
2232 K
= DAG
.getNode(ISD::SELECT
, SL
, MVT::f64
, ExpLt0
, S
, K
);
2233 K
= DAG
.getNode(ISD::SELECT
, SL
, MVT::f64
, ExpGt51
, X
, K
);
2238 SDValue
AMDGPUTargetLowering::LowerFROUND(SDValue Op
, SelectionDAG
&DAG
) const {
2239 EVT VT
= Op
.getValueType();
2241 if (VT
== MVT::f32
|| VT
== MVT::f16
)
2242 return LowerFROUND32_16(Op
, DAG
);
2245 return LowerFROUND64(Op
, DAG
);
2247 llvm_unreachable("unhandled type");
2250 SDValue
AMDGPUTargetLowering::LowerFFLOOR(SDValue Op
, SelectionDAG
&DAG
) const {
2252 SDValue Src
= Op
.getOperand(0);
2254 // result = trunc(src);
2255 // if (src < 0.0 && src != result)
2258 SDValue Trunc
= DAG
.getNode(ISD::FTRUNC
, SL
, MVT::f64
, Src
);
2260 const SDValue Zero
= DAG
.getConstantFP(0.0, SL
, MVT::f64
);
2261 const SDValue NegOne
= DAG
.getConstantFP(-1.0, SL
, MVT::f64
);
2264 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), MVT::f64
);
2266 SDValue Lt0
= DAG
.getSetCC(SL
, SetCCVT
, Src
, Zero
, ISD::SETOLT
);
2267 SDValue NeTrunc
= DAG
.getSetCC(SL
, SetCCVT
, Src
, Trunc
, ISD::SETONE
);
2268 SDValue And
= DAG
.getNode(ISD::AND
, SL
, SetCCVT
, Lt0
, NeTrunc
);
2270 SDValue Add
= DAG
.getNode(ISD::SELECT
, SL
, MVT::f64
, And
, NegOne
, Zero
);
2271 // TODO: Should this propagate fast-math-flags?
2272 return DAG
.getNode(ISD::FADD
, SL
, MVT::f64
, Trunc
, Add
);
2275 SDValue
AMDGPUTargetLowering::LowerFLOG(SDValue Op
, SelectionDAG
&DAG
,
2276 double Log2BaseInverted
) const {
2277 EVT VT
= Op
.getValueType();
2280 SDValue Operand
= Op
.getOperand(0);
2281 SDValue Log2Operand
= DAG
.getNode(ISD::FLOG2
, SL
, VT
, Operand
);
2282 SDValue Log2BaseInvertedOperand
= DAG
.getConstantFP(Log2BaseInverted
, SL
, VT
);
2284 return DAG
.getNode(ISD::FMUL
, SL
, VT
, Log2Operand
, Log2BaseInvertedOperand
);
2287 // Return M_LOG2E of appropriate type
2288 static SDValue
getLog2EVal(SelectionDAG
&DAG
, const SDLoc
&SL
, EVT VT
) {
2289 switch (VT
.getScalarType().getSimpleVT().SimpleTy
) {
2291 return DAG
.getConstantFP(1.44269504088896340735992468100189214f
, SL
, VT
);
2293 return DAG
.getConstantFP(
2294 APFloat(APFloat::IEEEhalf(), "1.44269504088896340735992468100189214"),
2297 return DAG
.getConstantFP(
2298 APFloat(APFloat::IEEEdouble(), "0x1.71547652b82fep+0"), SL
, VT
);
2300 llvm_unreachable("unsupported fp type");
2304 // exp2(M_LOG2E_F * f);
2305 SDValue
AMDGPUTargetLowering::lowerFEXP(SDValue Op
, SelectionDAG
&DAG
) const {
2306 EVT VT
= Op
.getValueType();
2308 SDValue Src
= Op
.getOperand(0);
2310 const SDValue K
= getLog2EVal(DAG
, SL
, VT
);
2311 SDValue Mul
= DAG
.getNode(ISD::FMUL
, SL
, VT
, Src
, K
, Op
->getFlags());
2312 return DAG
.getNode(ISD::FEXP2
, SL
, VT
, Mul
, Op
->getFlags());
2315 static bool isCtlzOpc(unsigned Opc
) {
2316 return Opc
== ISD::CTLZ
|| Opc
== ISD::CTLZ_ZERO_UNDEF
;
2319 static bool isCttzOpc(unsigned Opc
) {
2320 return Opc
== ISD::CTTZ
|| Opc
== ISD::CTTZ_ZERO_UNDEF
;
2323 SDValue
AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op
, SelectionDAG
&DAG
) const {
2325 SDValue Src
= Op
.getOperand(0);
2326 bool ZeroUndef
= Op
.getOpcode() == ISD::CTTZ_ZERO_UNDEF
||
2327 Op
.getOpcode() == ISD::CTLZ_ZERO_UNDEF
;
2329 unsigned ISDOpc
, NewOpc
;
2330 if (isCtlzOpc(Op
.getOpcode())) {
2331 ISDOpc
= ISD::CTLZ_ZERO_UNDEF
;
2332 NewOpc
= AMDGPUISD::FFBH_U32
;
2333 } else if (isCttzOpc(Op
.getOpcode())) {
2334 ISDOpc
= ISD::CTTZ_ZERO_UNDEF
;
2335 NewOpc
= AMDGPUISD::FFBL_B32
;
2337 llvm_unreachable("Unexpected OPCode!!!");
2340 if (ZeroUndef
&& Src
.getValueType() == MVT::i32
)
2341 return DAG
.getNode(NewOpc
, SL
, MVT::i32
, Src
);
2343 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Src
);
2345 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
2346 const SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
2348 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, Zero
);
2349 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, One
);
2351 EVT SetCCVT
= getSetCCResultType(DAG
.getDataLayout(),
2352 *DAG
.getContext(), MVT::i32
);
2354 SDValue HiOrLo
= isCtlzOpc(Op
.getOpcode()) ? Hi
: Lo
;
2355 SDValue Hi0orLo0
= DAG
.getSetCC(SL
, SetCCVT
, HiOrLo
, Zero
, ISD::SETEQ
);
2357 SDValue OprLo
= DAG
.getNode(ISDOpc
, SL
, MVT::i32
, Lo
);
2358 SDValue OprHi
= DAG
.getNode(ISDOpc
, SL
, MVT::i32
, Hi
);
2360 const SDValue Bits32
= DAG
.getConstant(32, SL
, MVT::i32
);
2361 SDValue Add
, NewOpr
;
2362 if (isCtlzOpc(Op
.getOpcode())) {
2363 Add
= DAG
.getNode(ISD::ADD
, SL
, MVT::i32
, OprLo
, Bits32
);
2364 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
2365 NewOpr
= DAG
.getNode(ISD::SELECT
, SL
, MVT::i32
, Hi0orLo0
, Add
, OprHi
);
2367 Add
= DAG
.getNode(ISD::ADD
, SL
, MVT::i32
, OprHi
, Bits32
);
2368 // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x))
2369 NewOpr
= DAG
.getNode(ISD::SELECT
, SL
, MVT::i32
, Hi0orLo0
, Add
, OprLo
);
2373 // Test if the full 64-bit input is zero.
2375 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
2376 // which we probably don't want.
2377 SDValue LoOrHi
= isCtlzOpc(Op
.getOpcode()) ? Lo
: Hi
;
2378 SDValue Lo0OrHi0
= DAG
.getSetCC(SL
, SetCCVT
, LoOrHi
, Zero
, ISD::SETEQ
);
2379 SDValue SrcIsZero
= DAG
.getNode(ISD::AND
, SL
, SetCCVT
, Lo0OrHi0
, Hi0orLo0
);
2381 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
2382 // with the same cycles, otherwise it is slower.
2383 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
2384 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
2386 const SDValue Bits32
= DAG
.getConstant(64, SL
, MVT::i32
);
2388 // The instruction returns -1 for 0 input, but the defined intrinsic
2389 // behavior is to return the number of bits.
2390 NewOpr
= DAG
.getNode(ISD::SELECT
, SL
, MVT::i32
,
2391 SrcIsZero
, Bits32
, NewOpr
);
2394 return DAG
.getNode(ISD::ZERO_EXTEND
, SL
, MVT::i64
, NewOpr
);
2397 SDValue
AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op
, SelectionDAG
&DAG
,
2398 bool Signed
) const {
2402 // uint lz = clz(u);
2403 // uint e = (u != 0) ? 127U + 63U - lz : 0;
2404 // u = (u << lz) & 0x7fffffffffffffffUL;
2405 // ulong t = u & 0xffffffffffUL;
2406 // uint v = (e << 23) | (uint)(u >> 40);
2407 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
2408 // return as_float(v + r);
2413 // long s = l >> 63;
2414 // float r = cul2f((l + s) ^ s);
2415 // return s ? -r : r;
2419 SDValue Src
= Op
.getOperand(0);
2424 const SDValue SignBit
= DAG
.getConstant(63, SL
, MVT::i64
);
2425 S
= DAG
.getNode(ISD::SRA
, SL
, MVT::i64
, L
, SignBit
);
2427 SDValue LPlusS
= DAG
.getNode(ISD::ADD
, SL
, MVT::i64
, L
, S
);
2428 L
= DAG
.getNode(ISD::XOR
, SL
, MVT::i64
, LPlusS
, S
);
2431 EVT SetCCVT
= getSetCCResultType(DAG
.getDataLayout(),
2432 *DAG
.getContext(), MVT::f32
);
2435 SDValue ZeroI32
= DAG
.getConstant(0, SL
, MVT::i32
);
2436 SDValue ZeroI64
= DAG
.getConstant(0, SL
, MVT::i64
);
2437 SDValue LZ
= DAG
.getNode(ISD::CTLZ_ZERO_UNDEF
, SL
, MVT::i64
, L
);
2438 LZ
= DAG
.getNode(ISD::TRUNCATE
, SL
, MVT::i32
, LZ
);
2440 SDValue K
= DAG
.getConstant(127U + 63U, SL
, MVT::i32
);
2441 SDValue E
= DAG
.getSelect(SL
, MVT::i32
,
2442 DAG
.getSetCC(SL
, SetCCVT
, L
, ZeroI64
, ISD::SETNE
),
2443 DAG
.getNode(ISD::SUB
, SL
, MVT::i32
, K
, LZ
),
2446 SDValue U
= DAG
.getNode(ISD::AND
, SL
, MVT::i64
,
2447 DAG
.getNode(ISD::SHL
, SL
, MVT::i64
, L
, LZ
),
2448 DAG
.getConstant((-1ULL) >> 1, SL
, MVT::i64
));
2450 SDValue T
= DAG
.getNode(ISD::AND
, SL
, MVT::i64
, U
,
2451 DAG
.getConstant(0xffffffffffULL
, SL
, MVT::i64
));
2453 SDValue UShl
= DAG
.getNode(ISD::SRL
, SL
, MVT::i64
,
2454 U
, DAG
.getConstant(40, SL
, MVT::i64
));
2456 SDValue V
= DAG
.getNode(ISD::OR
, SL
, MVT::i32
,
2457 DAG
.getNode(ISD::SHL
, SL
, MVT::i32
, E
, DAG
.getConstant(23, SL
, MVT::i32
)),
2458 DAG
.getNode(ISD::TRUNCATE
, SL
, MVT::i32
, UShl
));
2460 SDValue C
= DAG
.getConstant(0x8000000000ULL
, SL
, MVT::i64
);
2461 SDValue RCmp
= DAG
.getSetCC(SL
, SetCCVT
, T
, C
, ISD::SETUGT
);
2462 SDValue TCmp
= DAG
.getSetCC(SL
, SetCCVT
, T
, C
, ISD::SETEQ
);
2464 SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
2466 SDValue VTrunc1
= DAG
.getNode(ISD::AND
, SL
, MVT::i32
, V
, One
);
2468 SDValue R
= DAG
.getSelect(SL
, MVT::i32
,
2471 DAG
.getSelect(SL
, MVT::i32
, TCmp
, VTrunc1
, ZeroI32
));
2472 R
= DAG
.getNode(ISD::ADD
, SL
, MVT::i32
, V
, R
);
2473 R
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::f32
, R
);
2478 SDValue RNeg
= DAG
.getNode(ISD::FNEG
, SL
, MVT::f32
, R
);
2479 return DAG
.getSelect(SL
, MVT::f32
, DAG
.getSExtOrTrunc(S
, SL
, SetCCVT
), RNeg
, R
);
2482 SDValue
AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op
, SelectionDAG
&DAG
,
2483 bool Signed
) const {
2485 SDValue Src
= Op
.getOperand(0);
2487 SDValue BC
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Src
);
2489 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, BC
,
2490 DAG
.getConstant(0, SL
, MVT::i32
));
2491 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, BC
,
2492 DAG
.getConstant(1, SL
, MVT::i32
));
2494 SDValue CvtHi
= DAG
.getNode(Signed
? ISD::SINT_TO_FP
: ISD::UINT_TO_FP
,
2497 SDValue CvtLo
= DAG
.getNode(ISD::UINT_TO_FP
, SL
, MVT::f64
, Lo
);
2499 SDValue LdExp
= DAG
.getNode(AMDGPUISD::LDEXP
, SL
, MVT::f64
, CvtHi
,
2500 DAG
.getConstant(32, SL
, MVT::i32
));
2501 // TODO: Should this propagate fast-math-flags?
2502 return DAG
.getNode(ISD::FADD
, SL
, MVT::f64
, LdExp
, CvtLo
);
2505 SDValue
AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op
,
2506 SelectionDAG
&DAG
) const {
2507 assert(Op
.getOperand(0).getValueType() == MVT::i64
&&
2508 "operation should be legal");
2510 // TODO: Factor out code common with LowerSINT_TO_FP.
2512 EVT DestVT
= Op
.getValueType();
2513 if (Subtarget
->has16BitInsts() && DestVT
== MVT::f16
) {
2515 SDValue Src
= Op
.getOperand(0);
2517 SDValue IntToFp32
= DAG
.getNode(Op
.getOpcode(), DL
, MVT::f32
, Src
);
2518 SDValue FPRoundFlag
= DAG
.getIntPtrConstant(0, SDLoc(Op
));
2520 DAG
.getNode(ISD::FP_ROUND
, DL
, MVT::f16
, IntToFp32
, FPRoundFlag
);
2525 if (DestVT
== MVT::f32
)
2526 return LowerINT_TO_FP32(Op
, DAG
, false);
2528 assert(DestVT
== MVT::f64
);
2529 return LowerINT_TO_FP64(Op
, DAG
, false);
2532 SDValue
AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op
,
2533 SelectionDAG
&DAG
) const {
2534 assert(Op
.getOperand(0).getValueType() == MVT::i64
&&
2535 "operation should be legal");
2537 // TODO: Factor out code common with LowerUINT_TO_FP.
2539 EVT DestVT
= Op
.getValueType();
2540 if (Subtarget
->has16BitInsts() && DestVT
== MVT::f16
) {
2542 SDValue Src
= Op
.getOperand(0);
2544 SDValue IntToFp32
= DAG
.getNode(Op
.getOpcode(), DL
, MVT::f32
, Src
);
2545 SDValue FPRoundFlag
= DAG
.getIntPtrConstant(0, SDLoc(Op
));
2547 DAG
.getNode(ISD::FP_ROUND
, DL
, MVT::f16
, IntToFp32
, FPRoundFlag
);
2552 if (DestVT
== MVT::f32
)
2553 return LowerINT_TO_FP32(Op
, DAG
, true);
2555 assert(DestVT
== MVT::f64
);
2556 return LowerINT_TO_FP64(Op
, DAG
, true);
2559 SDValue
AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op
, SelectionDAG
&DAG
,
2560 bool Signed
) const {
2563 SDValue Src
= Op
.getOperand(0);
2565 SDValue Trunc
= DAG
.getNode(ISD::FTRUNC
, SL
, MVT::f64
, Src
);
2567 SDValue K0
= DAG
.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL
,
2569 SDValue K1
= DAG
.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL
,
2571 // TODO: Should this propagate fast-math-flags?
2572 SDValue Mul
= DAG
.getNode(ISD::FMUL
, SL
, MVT::f64
, Trunc
, K0
);
2574 SDValue FloorMul
= DAG
.getNode(ISD::FFLOOR
, SL
, MVT::f64
, Mul
);
2577 SDValue Fma
= DAG
.getNode(ISD::FMA
, SL
, MVT::f64
, FloorMul
, K1
, Trunc
);
2579 SDValue Hi
= DAG
.getNode(Signed
? ISD::FP_TO_SINT
: ISD::FP_TO_UINT
, SL
,
2580 MVT::i32
, FloorMul
);
2581 SDValue Lo
= DAG
.getNode(ISD::FP_TO_UINT
, SL
, MVT::i32
, Fma
);
2583 SDValue Result
= DAG
.getBuildVector(MVT::v2i32
, SL
, {Lo
, Hi
});
2585 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, Result
);
2588 SDValue
AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op
, SelectionDAG
&DAG
) const {
2590 SDValue N0
= Op
.getOperand(0);
2592 // Convert to target node to get known bits
2593 if (N0
.getValueType() == MVT::f32
)
2594 return DAG
.getNode(AMDGPUISD::FP_TO_FP16
, DL
, Op
.getValueType(), N0
);
2596 if (getTargetMachine().Options
.UnsafeFPMath
) {
2597 // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2601 assert(N0
.getSimpleValueType() == MVT::f64
);
2603 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2604 const unsigned ExpMask
= 0x7ff;
2605 const unsigned ExpBiasf64
= 1023;
2606 const unsigned ExpBiasf16
= 15;
2607 SDValue Zero
= DAG
.getConstant(0, DL
, MVT::i32
);
2608 SDValue One
= DAG
.getConstant(1, DL
, MVT::i32
);
2609 SDValue U
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, N0
);
2610 SDValue UH
= DAG
.getNode(ISD::SRL
, DL
, MVT::i64
, U
,
2611 DAG
.getConstant(32, DL
, MVT::i64
));
2612 UH
= DAG
.getZExtOrTrunc(UH
, DL
, MVT::i32
);
2613 U
= DAG
.getZExtOrTrunc(U
, DL
, MVT::i32
);
2614 SDValue E
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, UH
,
2615 DAG
.getConstant(20, DL
, MVT::i64
));
2616 E
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, E
,
2617 DAG
.getConstant(ExpMask
, DL
, MVT::i32
));
2618 // Subtract the fp64 exponent bias (1023) to get the real exponent and
2619 // add the f16 bias (15) to get the biased exponent for the f16 format.
2620 E
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, E
,
2621 DAG
.getConstant(-ExpBiasf64
+ ExpBiasf16
, DL
, MVT::i32
));
2623 SDValue M
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, UH
,
2624 DAG
.getConstant(8, DL
, MVT::i32
));
2625 M
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, M
,
2626 DAG
.getConstant(0xffe, DL
, MVT::i32
));
2628 SDValue MaskedSig
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, UH
,
2629 DAG
.getConstant(0x1ff, DL
, MVT::i32
));
2630 MaskedSig
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, MaskedSig
, U
);
2632 SDValue Lo40Set
= DAG
.getSelectCC(DL
, MaskedSig
, Zero
, Zero
, One
, ISD::SETEQ
);
2633 M
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, M
, Lo40Set
);
2635 // (M != 0 ? 0x0200 : 0) | 0x7c00;
2636 SDValue I
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
,
2637 DAG
.getSelectCC(DL
, M
, Zero
, DAG
.getConstant(0x0200, DL
, MVT::i32
),
2638 Zero
, ISD::SETNE
), DAG
.getConstant(0x7c00, DL
, MVT::i32
));
2640 // N = M | (E << 12);
2641 SDValue N
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, M
,
2642 DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, E
,
2643 DAG
.getConstant(12, DL
, MVT::i32
)));
2645 // B = clamp(1-E, 0, 13);
2646 SDValue OneSubExp
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
2648 SDValue B
= DAG
.getNode(ISD::SMAX
, DL
, MVT::i32
, OneSubExp
, Zero
);
2649 B
= DAG
.getNode(ISD::SMIN
, DL
, MVT::i32
, B
,
2650 DAG
.getConstant(13, DL
, MVT::i32
));
2652 SDValue SigSetHigh
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, M
,
2653 DAG
.getConstant(0x1000, DL
, MVT::i32
));
2655 SDValue D
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SigSetHigh
, B
);
2656 SDValue D0
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, D
, B
);
2657 SDValue D1
= DAG
.getSelectCC(DL
, D0
, SigSetHigh
, One
, Zero
, ISD::SETNE
);
2658 D
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, D
, D1
);
2660 SDValue V
= DAG
.getSelectCC(DL
, E
, One
, D
, N
, ISD::SETLT
);
2661 SDValue VLow3
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, V
,
2662 DAG
.getConstant(0x7, DL
, MVT::i32
));
2663 V
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, V
,
2664 DAG
.getConstant(2, DL
, MVT::i32
));
2665 SDValue V0
= DAG
.getSelectCC(DL
, VLow3
, DAG
.getConstant(3, DL
, MVT::i32
),
2666 One
, Zero
, ISD::SETEQ
);
2667 SDValue V1
= DAG
.getSelectCC(DL
, VLow3
, DAG
.getConstant(5, DL
, MVT::i32
),
2668 One
, Zero
, ISD::SETGT
);
2669 V1
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, V0
, V1
);
2670 V
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, V
, V1
);
2672 V
= DAG
.getSelectCC(DL
, E
, DAG
.getConstant(30, DL
, MVT::i32
),
2673 DAG
.getConstant(0x7c00, DL
, MVT::i32
), V
, ISD::SETGT
);
2674 V
= DAG
.getSelectCC(DL
, E
, DAG
.getConstant(1039, DL
, MVT::i32
),
2677 // Extract the sign bit.
2678 SDValue Sign
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, UH
,
2679 DAG
.getConstant(16, DL
, MVT::i32
));
2680 Sign
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, Sign
,
2681 DAG
.getConstant(0x8000, DL
, MVT::i32
));
2683 V
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, Sign
, V
);
2684 return DAG
.getZExtOrTrunc(V
, DL
, Op
.getValueType());
2687 SDValue
AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op
,
2688 SelectionDAG
&DAG
) const {
2689 SDValue Src
= Op
.getOperand(0);
2691 // TODO: Factor out code common with LowerFP_TO_UINT.
2693 EVT SrcVT
= Src
.getValueType();
2694 if (Subtarget
->has16BitInsts() && SrcVT
== MVT::f16
) {
2697 SDValue FPExtend
= DAG
.getNode(ISD::FP_EXTEND
, DL
, MVT::f32
, Src
);
2699 DAG
.getNode(Op
.getOpcode(), DL
, MVT::i64
, FPExtend
);
2704 if (Op
.getValueType() == MVT::i64
&& Src
.getValueType() == MVT::f64
)
2705 return LowerFP64_TO_INT(Op
, DAG
, true);
2710 SDValue
AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op
,
2711 SelectionDAG
&DAG
) const {
2712 SDValue Src
= Op
.getOperand(0);
2714 // TODO: Factor out code common with LowerFP_TO_SINT.
2716 EVT SrcVT
= Src
.getValueType();
2717 if (Subtarget
->has16BitInsts() && SrcVT
== MVT::f16
) {
2720 SDValue FPExtend
= DAG
.getNode(ISD::FP_EXTEND
, DL
, MVT::f32
, Src
);
2722 DAG
.getNode(Op
.getOpcode(), DL
, MVT::i64
, FPExtend
);
2727 if (Op
.getValueType() == MVT::i64
&& Src
.getValueType() == MVT::f64
)
2728 return LowerFP64_TO_INT(Op
, DAG
, false);
2733 SDValue
AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op
,
2734 SelectionDAG
&DAG
) const {
2735 EVT ExtraVT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
2736 MVT VT
= Op
.getSimpleValueType();
2737 MVT ScalarVT
= VT
.getScalarType();
2739 assert(VT
.isVector());
2741 SDValue Src
= Op
.getOperand(0);
2744 // TODO: Don't scalarize on Evergreen?
2745 unsigned NElts
= VT
.getVectorNumElements();
2746 SmallVector
<SDValue
, 8> Args
;
2747 DAG
.ExtractVectorElements(Src
, Args
, 0, NElts
);
2749 SDValue VTOp
= DAG
.getValueType(ExtraVT
.getScalarType());
2750 for (unsigned I
= 0; I
< NElts
; ++I
)
2751 Args
[I
] = DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, ScalarVT
, Args
[I
], VTOp
);
2753 return DAG
.getBuildVector(VT
, DL
, Args
);
2756 //===----------------------------------------------------------------------===//
2757 // Custom DAG optimizations
2758 //===----------------------------------------------------------------------===//
2760 static bool isU24(SDValue Op
, SelectionDAG
&DAG
) {
2761 return AMDGPUTargetLowering::numBitsUnsigned(Op
, DAG
) <= 24;
2764 static bool isI24(SDValue Op
, SelectionDAG
&DAG
) {
2765 EVT VT
= Op
.getValueType();
2766 return VT
.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2767 // as unsigned 24-bit values.
2768 AMDGPUTargetLowering::numBitsSigned(Op
, DAG
) < 24;
2771 static SDValue
simplifyI24(SDNode
*Node24
,
2772 TargetLowering::DAGCombinerInfo
&DCI
) {
2773 SelectionDAG
&DAG
= DCI
.DAG
;
2774 bool IsIntrin
= Node24
->getOpcode() == ISD::INTRINSIC_WO_CHAIN
;
2776 SDValue LHS
= IsIntrin
? Node24
->getOperand(1) : Node24
->getOperand(0);
2777 SDValue RHS
= IsIntrin
? Node24
->getOperand(2) : Node24
->getOperand(1);
2778 unsigned NewOpcode
= Node24
->getOpcode();
2780 unsigned IID
= cast
<ConstantSDNode
>(Node24
->getOperand(0))->getZExtValue();
2781 NewOpcode
= IID
== Intrinsic::amdgcn_mul_i24
?
2782 AMDGPUISD::MUL_I24
: AMDGPUISD::MUL_U24
;
2785 APInt Demanded
= APInt::getLowBitsSet(LHS
.getValueSizeInBits(), 24);
2787 // First try to simplify using GetDemandedBits which allows the operands to
2788 // have other uses, but will only perform simplifications that involve
2789 // bypassing some nodes for this user.
2790 SDValue DemandedLHS
= DAG
.GetDemandedBits(LHS
, Demanded
);
2791 SDValue DemandedRHS
= DAG
.GetDemandedBits(RHS
, Demanded
);
2792 if (DemandedLHS
|| DemandedRHS
)
2793 return DAG
.getNode(NewOpcode
, SDLoc(Node24
), Node24
->getVTList(),
2794 DemandedLHS
? DemandedLHS
: LHS
,
2795 DemandedRHS
? DemandedRHS
: RHS
);
2797 // Now try SimplifyDemandedBits which can simplify the nodes used by our
2798 // operands if this node is the only user.
2799 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2800 if (TLI
.SimplifyDemandedBits(LHS
, Demanded
, DCI
))
2801 return SDValue(Node24
, 0);
2802 if (TLI
.SimplifyDemandedBits(RHS
, Demanded
, DCI
))
2803 return SDValue(Node24
, 0);
2808 template <typename IntTy
>
2809 static SDValue
constantFoldBFE(SelectionDAG
&DAG
, IntTy Src0
, uint32_t Offset
,
2810 uint32_t Width
, const SDLoc
&DL
) {
2811 if (Width
+ Offset
< 32) {
2812 uint32_t Shl
= static_cast<uint32_t>(Src0
) << (32 - Offset
- Width
);
2813 IntTy Result
= static_cast<IntTy
>(Shl
) >> (32 - Width
);
2814 return DAG
.getConstant(Result
, DL
, MVT::i32
);
2817 return DAG
.getConstant(Src0
>> Offset
, DL
, MVT::i32
);
2820 static bool hasVolatileUser(SDNode
*Val
) {
2821 for (SDNode
*U
: Val
->uses()) {
2822 if (MemSDNode
*M
= dyn_cast
<MemSDNode
>(U
)) {
2823 if (M
->isVolatile())
2831 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT
) const {
2832 // i32 vectors are the canonical memory type.
2833 if (VT
.getScalarType() == MVT::i32
|| isTypeLegal(VT
))
2836 if (!VT
.isByteSized())
2839 unsigned Size
= VT
.getStoreSize();
2841 if ((Size
== 1 || Size
== 2 || Size
== 4) && !VT
.isVector())
2844 if (Size
== 3 || (Size
> 4 && (Size
% 4 != 0)))
2850 // Find a load or store from corresponding pattern root.
2851 // Roots may be build_vector, bitconvert or their combinations.
2852 static MemSDNode
* findMemSDNode(SDNode
*N
) {
2853 N
= AMDGPUTargetLowering::stripBitcast(SDValue(N
,0)).getNode();
2854 if (MemSDNode
*MN
= dyn_cast
<MemSDNode
>(N
))
2856 assert(isa
<BuildVectorSDNode
>(N
));
2857 for (SDValue V
: N
->op_values())
2859 dyn_cast
<MemSDNode
>(AMDGPUTargetLowering::stripBitcast(V
)))
2861 llvm_unreachable("cannot find MemSDNode in the pattern!");
2864 bool AMDGPUTargetLowering::SelectFlatOffset(bool IsSigned
,
2870 SDValue
&SLC
) const {
2871 const GCNSubtarget
&ST
=
2872 DAG
.getMachineFunction().getSubtarget
<GCNSubtarget
>();
2873 int64_t OffsetVal
= 0;
2875 if (ST
.hasFlatInstOffsets() &&
2876 (!ST
.hasFlatSegmentOffsetBug() ||
2877 findMemSDNode(N
)->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS
) &&
2878 DAG
.isBaseWithConstantOffset(Addr
)) {
2879 SDValue N0
= Addr
.getOperand(0);
2880 SDValue N1
= Addr
.getOperand(1);
2881 int64_t COffsetVal
= cast
<ConstantSDNode
>(N1
)->getSExtValue();
2883 const SIInstrInfo
*TII
= ST
.getInstrInfo();
2884 if (TII
->isLegalFLATOffset(COffsetVal
, findMemSDNode(N
)->getAddressSpace(),
2887 OffsetVal
= COffsetVal
;
2892 Offset
= DAG
.getTargetConstant(OffsetVal
, SDLoc(), MVT::i16
);
2893 SLC
= DAG
.getTargetConstant(0, SDLoc(), MVT::i1
);
2898 // Replace load of an illegal type with a store of a bitcast to a friendlier
2900 SDValue
AMDGPUTargetLowering::performLoadCombine(SDNode
*N
,
2901 DAGCombinerInfo
&DCI
) const {
2902 if (!DCI
.isBeforeLegalize())
2905 LoadSDNode
*LN
= cast
<LoadSDNode
>(N
);
2906 if (LN
->isVolatile() || !ISD::isNormalLoad(LN
) || hasVolatileUser(LN
))
2910 SelectionDAG
&DAG
= DCI
.DAG
;
2911 EVT VT
= LN
->getMemoryVT();
2913 unsigned Size
= VT
.getStoreSize();
2914 unsigned Align
= LN
->getAlignment();
2915 if (Align
< Size
&& isTypeLegal(VT
)) {
2917 unsigned AS
= LN
->getAddressSpace();
2919 // Expand unaligned loads earlier than legalization. Due to visitation order
2920 // problems during legalization, the emitted instructions to pack and unpack
2921 // the bytes again are not eliminated in the case of an unaligned copy.
2922 if (!allowsMisalignedMemoryAccesses(
2923 VT
, AS
, Align
, LN
->getMemOperand()->getFlags(), &IsFast
)) {
2925 return scalarizeVectorLoad(LN
, DAG
);
2928 std::tie(Ops
[0], Ops
[1]) = expandUnalignedLoad(LN
, DAG
);
2929 return DAG
.getMergeValues(Ops
, SDLoc(N
));
2936 if (!shouldCombineMemoryType(VT
))
2939 EVT NewVT
= getEquivalentMemType(*DAG
.getContext(), VT
);
2942 = DAG
.getLoad(NewVT
, SL
, LN
->getChain(),
2943 LN
->getBasePtr(), LN
->getMemOperand());
2945 SDValue BC
= DAG
.getNode(ISD::BITCAST
, SL
, VT
, NewLoad
);
2946 DCI
.CombineTo(N
, BC
, NewLoad
.getValue(1));
2947 return SDValue(N
, 0);
2950 // Replace store of an illegal type with a store of a bitcast to a friendlier
2952 SDValue
AMDGPUTargetLowering::performStoreCombine(SDNode
*N
,
2953 DAGCombinerInfo
&DCI
) const {
2954 if (!DCI
.isBeforeLegalize())
2957 StoreSDNode
*SN
= cast
<StoreSDNode
>(N
);
2958 if (SN
->isVolatile() || !ISD::isNormalStore(SN
))
2961 EVT VT
= SN
->getMemoryVT();
2962 unsigned Size
= VT
.getStoreSize();
2965 SelectionDAG
&DAG
= DCI
.DAG
;
2966 unsigned Align
= SN
->getAlignment();
2967 if (Align
< Size
&& isTypeLegal(VT
)) {
2969 unsigned AS
= SN
->getAddressSpace();
2971 // Expand unaligned stores earlier than legalization. Due to visitation
2972 // order problems during legalization, the emitted instructions to pack and
2973 // unpack the bytes again are not eliminated in the case of an unaligned
2975 if (!allowsMisalignedMemoryAccesses(
2976 VT
, AS
, Align
, SN
->getMemOperand()->getFlags(), &IsFast
)) {
2978 return scalarizeVectorStore(SN
, DAG
);
2980 return expandUnalignedStore(SN
, DAG
);
2987 if (!shouldCombineMemoryType(VT
))
2990 EVT NewVT
= getEquivalentMemType(*DAG
.getContext(), VT
);
2991 SDValue Val
= SN
->getValue();
2993 //DCI.AddToWorklist(Val.getNode());
2995 bool OtherUses
= !Val
.hasOneUse();
2996 SDValue CastVal
= DAG
.getNode(ISD::BITCAST
, SL
, NewVT
, Val
);
2998 SDValue CastBack
= DAG
.getNode(ISD::BITCAST
, SL
, VT
, CastVal
);
2999 DAG
.ReplaceAllUsesOfValueWith(Val
, CastBack
);
3002 return DAG
.getStore(SN
->getChain(), SL
, CastVal
,
3003 SN
->getBasePtr(), SN
->getMemOperand());
3006 // FIXME: This should go in generic DAG combiner with an isTruncateFree check,
3007 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
3009 SDValue
AMDGPUTargetLowering::performAssertSZExtCombine(SDNode
*N
,
3010 DAGCombinerInfo
&DCI
) const {
3011 SelectionDAG
&DAG
= DCI
.DAG
;
3012 SDValue N0
= N
->getOperand(0);
3014 // (vt2 (assertzext (truncate vt0:x), vt1)) ->
3015 // (vt2 (truncate (assertzext vt0:x, vt1)))
3016 if (N0
.getOpcode() == ISD::TRUNCATE
) {
3017 SDValue N1
= N
->getOperand(1);
3018 EVT ExtVT
= cast
<VTSDNode
>(N1
)->getVT();
3021 SDValue Src
= N0
.getOperand(0);
3022 EVT SrcVT
= Src
.getValueType();
3023 if (SrcVT
.bitsGE(ExtVT
)) {
3024 SDValue NewInReg
= DAG
.getNode(N
->getOpcode(), SL
, SrcVT
, Src
, N1
);
3025 return DAG
.getNode(ISD::TRUNCATE
, SL
, N
->getValueType(0), NewInReg
);
3032 SDValue
AMDGPUTargetLowering::performIntrinsicWOChainCombine(
3033 SDNode
*N
, DAGCombinerInfo
&DCI
) const {
3034 unsigned IID
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
3036 case Intrinsic::amdgcn_mul_i24
:
3037 case Intrinsic::amdgcn_mul_u24
:
3038 return simplifyI24(N
, DCI
);
3044 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the
3045 /// binary operation \p Opc to it with the corresponding constant operands.
3046 SDValue
AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
3047 DAGCombinerInfo
&DCI
, const SDLoc
&SL
,
3048 unsigned Opc
, SDValue LHS
,
3049 uint32_t ValLo
, uint32_t ValHi
) const {
3050 SelectionDAG
&DAG
= DCI
.DAG
;
3052 std::tie(Lo
, Hi
) = split64BitValue(LHS
, DAG
);
3054 SDValue LoRHS
= DAG
.getConstant(ValLo
, SL
, MVT::i32
);
3055 SDValue HiRHS
= DAG
.getConstant(ValHi
, SL
, MVT::i32
);
3057 SDValue LoAnd
= DAG
.getNode(Opc
, SL
, MVT::i32
, Lo
, LoRHS
);
3058 SDValue HiAnd
= DAG
.getNode(Opc
, SL
, MVT::i32
, Hi
, HiRHS
);
3060 // Re-visit the ands. It's possible we eliminated one of them and it could
3061 // simplify the vector.
3062 DCI
.AddToWorklist(Lo
.getNode());
3063 DCI
.AddToWorklist(Hi
.getNode());
3065 SDValue Vec
= DAG
.getBuildVector(MVT::v2i32
, SL
, {LoAnd
, HiAnd
});
3066 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, Vec
);
3069 SDValue
AMDGPUTargetLowering::performShlCombine(SDNode
*N
,
3070 DAGCombinerInfo
&DCI
) const {
3071 EVT VT
= N
->getValueType(0);
3073 ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
3077 SDValue LHS
= N
->getOperand(0);
3078 unsigned RHSVal
= RHS
->getZExtValue();
3083 SelectionDAG
&DAG
= DCI
.DAG
;
3085 switch (LHS
->getOpcode()) {
3088 case ISD::ZERO_EXTEND
:
3089 case ISD::SIGN_EXTEND
:
3090 case ISD::ANY_EXTEND
: {
3091 SDValue X
= LHS
->getOperand(0);
3093 if (VT
== MVT::i32
&& RHSVal
== 16 && X
.getValueType() == MVT::i16
&&
3094 isOperationLegal(ISD::BUILD_VECTOR
, MVT::v2i16
)) {
3095 // Prefer build_vector as the canonical form if packed types are legal.
3096 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x
3097 SDValue Vec
= DAG
.getBuildVector(MVT::v2i16
, SL
,
3098 { DAG
.getConstant(0, SL
, MVT::i16
), LHS
->getOperand(0) });
3099 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i32
, Vec
);
3102 // shl (ext x) => zext (shl x), if shift does not overflow int
3105 KnownBits Known
= DAG
.computeKnownBits(X
);
3106 unsigned LZ
= Known
.countMinLeadingZeros();
3109 EVT XVT
= X
.getValueType();
3110 SDValue Shl
= DAG
.getNode(ISD::SHL
, SL
, XVT
, X
, SDValue(RHS
, 0));
3111 return DAG
.getZExtOrTrunc(Shl
, SL
, VT
);
3118 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
3120 // On some subtargets, 64-bit shift is a quarter rate instruction. In the
3121 // common case, splitting this into a move and a 32-bit shift is faster and
3122 // the same code size.
3126 SDValue ShiftAmt
= DAG
.getConstant(RHSVal
- 32, SL
, MVT::i32
);
3128 SDValue Lo
= DAG
.getNode(ISD::TRUNCATE
, SL
, MVT::i32
, LHS
);
3129 SDValue NewShift
= DAG
.getNode(ISD::SHL
, SL
, MVT::i32
, Lo
, ShiftAmt
);
3131 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
3133 SDValue Vec
= DAG
.getBuildVector(MVT::v2i32
, SL
, {Zero
, NewShift
});
3134 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, Vec
);
3137 SDValue
AMDGPUTargetLowering::performSraCombine(SDNode
*N
,
3138 DAGCombinerInfo
&DCI
) const {
3139 if (N
->getValueType(0) != MVT::i64
)
3142 const ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
3146 SelectionDAG
&DAG
= DCI
.DAG
;
3148 unsigned RHSVal
= RHS
->getZExtValue();
3150 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
3152 SDValue Hi
= getHiHalf64(N
->getOperand(0), DAG
);
3153 SDValue NewShift
= DAG
.getNode(ISD::SRA
, SL
, MVT::i32
, Hi
,
3154 DAG
.getConstant(31, SL
, MVT::i32
));
3156 SDValue BuildVec
= DAG
.getBuildVector(MVT::v2i32
, SL
, {Hi
, NewShift
});
3157 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, BuildVec
);
3160 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
3162 SDValue Hi
= getHiHalf64(N
->getOperand(0), DAG
);
3163 SDValue NewShift
= DAG
.getNode(ISD::SRA
, SL
, MVT::i32
, Hi
,
3164 DAG
.getConstant(31, SL
, MVT::i32
));
3165 SDValue BuildVec
= DAG
.getBuildVector(MVT::v2i32
, SL
, {NewShift
, NewShift
});
3166 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, BuildVec
);
3172 SDValue
AMDGPUTargetLowering::performSrlCombine(SDNode
*N
,
3173 DAGCombinerInfo
&DCI
) const {
3174 auto *RHS
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
3178 EVT VT
= N
->getValueType(0);
3179 SDValue LHS
= N
->getOperand(0);
3180 unsigned ShiftAmt
= RHS
->getZExtValue();
3181 SelectionDAG
&DAG
= DCI
.DAG
;
3184 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1)
3185 // this improves the ability to match BFE patterns in isel.
3186 if (LHS
.getOpcode() == ISD::AND
) {
3187 if (auto *Mask
= dyn_cast
<ConstantSDNode
>(LHS
.getOperand(1))) {
3188 if (Mask
->getAPIntValue().isShiftedMask() &&
3189 Mask
->getAPIntValue().countTrailingZeros() == ShiftAmt
) {
3192 DAG
.getNode(ISD::SRL
, SL
, VT
, LHS
.getOperand(0), N
->getOperand(1)),
3193 DAG
.getNode(ISD::SRL
, SL
, VT
, LHS
.getOperand(1), N
->getOperand(1)));
3204 // srl i64:x, C for C >= 32
3206 // build_pair (srl hi_32(x), C - 32), 0
3207 SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
3208 SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
3210 SDValue VecOp
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, LHS
);
3211 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, VecOp
, One
);
3213 SDValue NewConst
= DAG
.getConstant(ShiftAmt
- 32, SL
, MVT::i32
);
3214 SDValue NewShift
= DAG
.getNode(ISD::SRL
, SL
, MVT::i32
, Hi
, NewConst
);
3216 SDValue BuildPair
= DAG
.getBuildVector(MVT::v2i32
, SL
, {NewShift
, Zero
});
3218 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, BuildPair
);
3221 SDValue
AMDGPUTargetLowering::performTruncateCombine(
3222 SDNode
*N
, DAGCombinerInfo
&DCI
) const {
3224 SelectionDAG
&DAG
= DCI
.DAG
;
3225 EVT VT
= N
->getValueType(0);
3226 SDValue Src
= N
->getOperand(0);
3228 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x)
3229 if (Src
.getOpcode() == ISD::BITCAST
&& !VT
.isVector()) {
3230 SDValue Vec
= Src
.getOperand(0);
3231 if (Vec
.getOpcode() == ISD::BUILD_VECTOR
) {
3232 SDValue Elt0
= Vec
.getOperand(0);
3233 EVT EltVT
= Elt0
.getValueType();
3234 if (VT
.getSizeInBits() <= EltVT
.getSizeInBits()) {
3235 if (EltVT
.isFloatingPoint()) {
3236 Elt0
= DAG
.getNode(ISD::BITCAST
, SL
,
3237 EltVT
.changeTypeToInteger(), Elt0
);
3240 return DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, Elt0
);
3245 // Equivalent of above for accessing the high element of a vector as an
3246 // integer operation.
3247 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y)
3248 if (Src
.getOpcode() == ISD::SRL
&& !VT
.isVector()) {
3249 if (auto K
= isConstOrConstSplat(Src
.getOperand(1))) {
3250 if (2 * K
->getZExtValue() == Src
.getValueType().getScalarSizeInBits()) {
3251 SDValue BV
= stripBitcast(Src
.getOperand(0));
3252 if (BV
.getOpcode() == ISD::BUILD_VECTOR
&&
3253 BV
.getValueType().getVectorNumElements() == 2) {
3254 SDValue SrcElt
= BV
.getOperand(1);
3255 EVT SrcEltVT
= SrcElt
.getValueType();
3256 if (SrcEltVT
.isFloatingPoint()) {
3257 SrcElt
= DAG
.getNode(ISD::BITCAST
, SL
,
3258 SrcEltVT
.changeTypeToInteger(), SrcElt
);
3261 return DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, SrcElt
);
3267 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit.
3269 // i16 (trunc (srl i64:x, K)), K <= 16 ->
3270 // i16 (trunc (srl (i32 (trunc x), K)))
3271 if (VT
.getScalarSizeInBits() < 32) {
3272 EVT SrcVT
= Src
.getValueType();
3273 if (SrcVT
.getScalarSizeInBits() > 32 &&
3274 (Src
.getOpcode() == ISD::SRL
||
3275 Src
.getOpcode() == ISD::SRA
||
3276 Src
.getOpcode() == ISD::SHL
)) {
3277 SDValue Amt
= Src
.getOperand(1);
3278 KnownBits Known
= DAG
.computeKnownBits(Amt
);
3279 unsigned Size
= VT
.getScalarSizeInBits();
3280 if ((Known
.isConstant() && Known
.getConstant().ule(Size
)) ||
3281 (Known
.getBitWidth() - Known
.countMinLeadingZeros() <= Log2_32(Size
))) {
3282 EVT MidVT
= VT
.isVector() ?
3283 EVT::getVectorVT(*DAG
.getContext(), MVT::i32
,
3284 VT
.getVectorNumElements()) : MVT::i32
;
3286 EVT NewShiftVT
= getShiftAmountTy(MidVT
, DAG
.getDataLayout());
3287 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SL
, MidVT
,
3289 DCI
.AddToWorklist(Trunc
.getNode());
3291 if (Amt
.getValueType() != NewShiftVT
) {
3292 Amt
= DAG
.getZExtOrTrunc(Amt
, SL
, NewShiftVT
);
3293 DCI
.AddToWorklist(Amt
.getNode());
3296 SDValue ShrunkShift
= DAG
.getNode(Src
.getOpcode(), SL
, MidVT
,
3298 return DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, ShrunkShift
);
3306 // We need to specifically handle i64 mul here to avoid unnecessary conversion
3307 // instructions. If we only match on the legalized i64 mul expansion,
3308 // SimplifyDemandedBits will be unable to remove them because there will be
3309 // multiple uses due to the separate mul + mulh[su].
3310 static SDValue
getMul24(SelectionDAG
&DAG
, const SDLoc
&SL
,
3311 SDValue N0
, SDValue N1
, unsigned Size
, bool Signed
) {
3313 unsigned MulOpc
= Signed
? AMDGPUISD::MUL_I24
: AMDGPUISD::MUL_U24
;
3314 return DAG
.getNode(MulOpc
, SL
, MVT::i32
, N0
, N1
);
3317 // Because we want to eliminate extension instructions before the
3318 // operation, we need to create a single user here (i.e. not the separate
3319 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it.
3321 unsigned MulOpc
= Signed
? AMDGPUISD::MUL_LOHI_I24
: AMDGPUISD::MUL_LOHI_U24
;
3323 SDValue Mul
= DAG
.getNode(MulOpc
, SL
,
3324 DAG
.getVTList(MVT::i32
, MVT::i32
), N0
, N1
);
3326 return DAG
.getNode(ISD::BUILD_PAIR
, SL
, MVT::i64
,
3327 Mul
.getValue(0), Mul
.getValue(1));
3330 SDValue
AMDGPUTargetLowering::performMulCombine(SDNode
*N
,
3331 DAGCombinerInfo
&DCI
) const {
3332 EVT VT
= N
->getValueType(0);
3334 unsigned Size
= VT
.getSizeInBits();
3335 if (VT
.isVector() || Size
> 64)
3338 // There are i16 integer mul/mad.
3339 if (Subtarget
->has16BitInsts() && VT
.getScalarType().bitsLE(MVT::i16
))
3342 SelectionDAG
&DAG
= DCI
.DAG
;
3345 SDValue N0
= N
->getOperand(0);
3346 SDValue N1
= N
->getOperand(1);
3348 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends
3349 // in the source into any_extends if the result of the mul is truncated. Since
3350 // we can assume the high bits are whatever we want, use the underlying value
3351 // to avoid the unknown high bits from interfering.
3352 if (N0
.getOpcode() == ISD::ANY_EXTEND
)
3353 N0
= N0
.getOperand(0);
3355 if (N1
.getOpcode() == ISD::ANY_EXTEND
)
3356 N1
= N1
.getOperand(0);
3360 if (Subtarget
->hasMulU24() && isU24(N0
, DAG
) && isU24(N1
, DAG
)) {
3361 N0
= DAG
.getZExtOrTrunc(N0
, DL
, MVT::i32
);
3362 N1
= DAG
.getZExtOrTrunc(N1
, DL
, MVT::i32
);
3363 Mul
= getMul24(DAG
, DL
, N0
, N1
, Size
, false);
3364 } else if (Subtarget
->hasMulI24() && isI24(N0
, DAG
) && isI24(N1
, DAG
)) {
3365 N0
= DAG
.getSExtOrTrunc(N0
, DL
, MVT::i32
);
3366 N1
= DAG
.getSExtOrTrunc(N1
, DL
, MVT::i32
);
3367 Mul
= getMul24(DAG
, DL
, N0
, N1
, Size
, true);
3372 // We need to use sext even for MUL_U24, because MUL_U24 is used
3373 // for signed multiply of 8 and 16-bit types.
3374 return DAG
.getSExtOrTrunc(Mul
, DL
, VT
);
3377 SDValue
AMDGPUTargetLowering::performMulhsCombine(SDNode
*N
,
3378 DAGCombinerInfo
&DCI
) const {
3379 EVT VT
= N
->getValueType(0);
3381 if (!Subtarget
->hasMulI24() || VT
.isVector())
3384 SelectionDAG
&DAG
= DCI
.DAG
;
3387 SDValue N0
= N
->getOperand(0);
3388 SDValue N1
= N
->getOperand(1);
3390 if (!isI24(N0
, DAG
) || !isI24(N1
, DAG
))
3393 N0
= DAG
.getSExtOrTrunc(N0
, DL
, MVT::i32
);
3394 N1
= DAG
.getSExtOrTrunc(N1
, DL
, MVT::i32
);
3396 SDValue Mulhi
= DAG
.getNode(AMDGPUISD::MULHI_I24
, DL
, MVT::i32
, N0
, N1
);
3397 DCI
.AddToWorklist(Mulhi
.getNode());
3398 return DAG
.getSExtOrTrunc(Mulhi
, DL
, VT
);
3401 SDValue
AMDGPUTargetLowering::performMulhuCombine(SDNode
*N
,
3402 DAGCombinerInfo
&DCI
) const {
3403 EVT VT
= N
->getValueType(0);
3405 if (!Subtarget
->hasMulU24() || VT
.isVector() || VT
.getSizeInBits() > 32)
3408 SelectionDAG
&DAG
= DCI
.DAG
;
3411 SDValue N0
= N
->getOperand(0);
3412 SDValue N1
= N
->getOperand(1);
3414 if (!isU24(N0
, DAG
) || !isU24(N1
, DAG
))
3417 N0
= DAG
.getZExtOrTrunc(N0
, DL
, MVT::i32
);
3418 N1
= DAG
.getZExtOrTrunc(N1
, DL
, MVT::i32
);
3420 SDValue Mulhi
= DAG
.getNode(AMDGPUISD::MULHI_U24
, DL
, MVT::i32
, N0
, N1
);
3421 DCI
.AddToWorklist(Mulhi
.getNode());
3422 return DAG
.getZExtOrTrunc(Mulhi
, DL
, VT
);
3425 SDValue
AMDGPUTargetLowering::performMulLoHi24Combine(
3426 SDNode
*N
, DAGCombinerInfo
&DCI
) const {
3427 SelectionDAG
&DAG
= DCI
.DAG
;
3429 // Simplify demanded bits before splitting into multiple users.
3430 if (SDValue V
= simplifyI24(N
, DCI
))
3433 SDValue N0
= N
->getOperand(0);
3434 SDValue N1
= N
->getOperand(1);
3436 bool Signed
= (N
->getOpcode() == AMDGPUISD::MUL_LOHI_I24
);
3438 unsigned MulLoOpc
= Signed
? AMDGPUISD::MUL_I24
: AMDGPUISD::MUL_U24
;
3439 unsigned MulHiOpc
= Signed
? AMDGPUISD::MULHI_I24
: AMDGPUISD::MULHI_U24
;
3443 SDValue MulLo
= DAG
.getNode(MulLoOpc
, SL
, MVT::i32
, N0
, N1
);
3444 SDValue MulHi
= DAG
.getNode(MulHiOpc
, SL
, MVT::i32
, N0
, N1
);
3445 return DAG
.getMergeValues({ MulLo
, MulHi
}, SL
);
3448 static bool isNegativeOne(SDValue Val
) {
3449 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Val
))
3450 return C
->isAllOnesValue();
3454 SDValue
AMDGPUTargetLowering::getFFBX_U32(SelectionDAG
&DAG
,
3457 unsigned Opc
) const {
3458 EVT VT
= Op
.getValueType();
3459 EVT LegalVT
= getTypeToTransformTo(*DAG
.getContext(), VT
);
3460 if (LegalVT
!= MVT::i32
&& (Subtarget
->has16BitInsts() &&
3461 LegalVT
!= MVT::i16
))
3465 Op
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, MVT::i32
, Op
);
3467 SDValue FFBX
= DAG
.getNode(Opc
, DL
, MVT::i32
, Op
);
3469 FFBX
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, FFBX
);
3474 // The native instructions return -1 on 0 input. Optimize out a select that
3475 // produces -1 on 0.
3477 // TODO: If zero is not undef, we could also do this if the output is compared
3478 // against the bitwidth.
3480 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
3481 SDValue
AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc
&SL
, SDValue Cond
,
3482 SDValue LHS
, SDValue RHS
,
3483 DAGCombinerInfo
&DCI
) const {
3484 ConstantSDNode
*CmpRhs
= dyn_cast
<ConstantSDNode
>(Cond
.getOperand(1));
3485 if (!CmpRhs
|| !CmpRhs
->isNullValue())
3488 SelectionDAG
&DAG
= DCI
.DAG
;
3489 ISD::CondCode CCOpcode
= cast
<CondCodeSDNode
>(Cond
.getOperand(2))->get();
3490 SDValue CmpLHS
= Cond
.getOperand(0);
3492 unsigned Opc
= isCttzOpc(RHS
.getOpcode()) ? AMDGPUISD::FFBL_B32
:
3493 AMDGPUISD::FFBH_U32
;
3495 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
3496 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
3497 if (CCOpcode
== ISD::SETEQ
&&
3498 (isCtlzOpc(RHS
.getOpcode()) || isCttzOpc(RHS
.getOpcode())) &&
3499 RHS
.getOperand(0) == CmpLHS
&&
3500 isNegativeOne(LHS
)) {
3501 return getFFBX_U32(DAG
, CmpLHS
, SL
, Opc
);
3504 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
3505 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
3506 if (CCOpcode
== ISD::SETNE
&&
3507 (isCtlzOpc(LHS
.getOpcode()) || isCttzOpc(RHS
.getOpcode())) &&
3508 LHS
.getOperand(0) == CmpLHS
&&
3509 isNegativeOne(RHS
)) {
3510 return getFFBX_U32(DAG
, CmpLHS
, SL
, Opc
);
3516 static SDValue
distributeOpThroughSelect(TargetLowering::DAGCombinerInfo
&DCI
,
3522 SelectionDAG
&DAG
= DCI
.DAG
;
3523 EVT VT
= N1
.getValueType();
3525 SDValue NewSelect
= DAG
.getNode(ISD::SELECT
, SL
, VT
, Cond
,
3526 N1
.getOperand(0), N2
.getOperand(0));
3527 DCI
.AddToWorklist(NewSelect
.getNode());
3528 return DAG
.getNode(Op
, SL
, VT
, NewSelect
);
3531 // Pull a free FP operation out of a select so it may fold into uses.
3533 // select c, (fneg x), (fneg y) -> fneg (select c, x, y)
3534 // select c, (fneg x), k -> fneg (select c, x, (fneg k))
3536 // select c, (fabs x), (fabs y) -> fabs (select c, x, y)
3537 // select c, (fabs x), +k -> fabs (select c, x, k)
3538 static SDValue
foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo
&DCI
,
3540 SelectionDAG
&DAG
= DCI
.DAG
;
3541 SDValue Cond
= N
.getOperand(0);
3542 SDValue LHS
= N
.getOperand(1);
3543 SDValue RHS
= N
.getOperand(2);
3545 EVT VT
= N
.getValueType();
3546 if ((LHS
.getOpcode() == ISD::FABS
&& RHS
.getOpcode() == ISD::FABS
) ||
3547 (LHS
.getOpcode() == ISD::FNEG
&& RHS
.getOpcode() == ISD::FNEG
)) {
3548 return distributeOpThroughSelect(DCI
, LHS
.getOpcode(),
3549 SDLoc(N
), Cond
, LHS
, RHS
);
3553 if (RHS
.getOpcode() == ISD::FABS
|| RHS
.getOpcode() == ISD::FNEG
) {
3554 std::swap(LHS
, RHS
);
3558 // TODO: Support vector constants.
3559 ConstantFPSDNode
*CRHS
= dyn_cast
<ConstantFPSDNode
>(RHS
);
3560 if ((LHS
.getOpcode() == ISD::FNEG
|| LHS
.getOpcode() == ISD::FABS
) && CRHS
) {
3562 // If one side is an fneg/fabs and the other is a constant, we can push the
3563 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
3564 SDValue NewLHS
= LHS
.getOperand(0);
3565 SDValue NewRHS
= RHS
;
3567 // Careful: if the neg can be folded up, don't try to pull it back down.
3568 bool ShouldFoldNeg
= true;
3570 if (NewLHS
.hasOneUse()) {
3571 unsigned Opc
= NewLHS
.getOpcode();
3572 if (LHS
.getOpcode() == ISD::FNEG
&& fnegFoldsIntoOp(Opc
))
3573 ShouldFoldNeg
= false;
3574 if (LHS
.getOpcode() == ISD::FABS
&& Opc
== ISD::FMUL
)
3575 ShouldFoldNeg
= false;
3578 if (ShouldFoldNeg
) {
3579 if (LHS
.getOpcode() == ISD::FNEG
)
3580 NewRHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, RHS
);
3581 else if (CRHS
->isNegative())
3585 std::swap(NewLHS
, NewRHS
);
3587 SDValue NewSelect
= DAG
.getNode(ISD::SELECT
, SL
, VT
,
3588 Cond
, NewLHS
, NewRHS
);
3589 DCI
.AddToWorklist(NewSelect
.getNode());
3590 return DAG
.getNode(LHS
.getOpcode(), SL
, VT
, NewSelect
);
3598 SDValue
AMDGPUTargetLowering::performSelectCombine(SDNode
*N
,
3599 DAGCombinerInfo
&DCI
) const {
3600 if (SDValue Folded
= foldFreeOpFromSelect(DCI
, SDValue(N
, 0)))
3603 SDValue Cond
= N
->getOperand(0);
3604 if (Cond
.getOpcode() != ISD::SETCC
)
3607 EVT VT
= N
->getValueType(0);
3608 SDValue LHS
= Cond
.getOperand(0);
3609 SDValue RHS
= Cond
.getOperand(1);
3610 SDValue CC
= Cond
.getOperand(2);
3612 SDValue True
= N
->getOperand(1);
3613 SDValue False
= N
->getOperand(2);
3615 if (Cond
.hasOneUse()) { // TODO: Look for multiple select uses.
3616 SelectionDAG
&DAG
= DCI
.DAG
;
3617 if (DAG
.isConstantValueOfAnyType(True
) &&
3618 !DAG
.isConstantValueOfAnyType(False
)) {
3619 // Swap cmp + select pair to move constant to false input.
3620 // This will allow using VOPC cndmasks more often.
3621 // select (setcc x, y), k, x -> select (setccinv x, y), x, k
3624 ISD::CondCode NewCC
= getSetCCInverse(cast
<CondCodeSDNode
>(CC
)->get(),
3625 LHS
.getValueType().isInteger());
3627 SDValue NewCond
= DAG
.getSetCC(SL
, Cond
.getValueType(), LHS
, RHS
, NewCC
);
3628 return DAG
.getNode(ISD::SELECT
, SL
, VT
, NewCond
, False
, True
);
3631 if (VT
== MVT::f32
&& Subtarget
->hasFminFmaxLegacy()) {
3633 = combineFMinMaxLegacy(SDLoc(N
), VT
, LHS
, RHS
, True
, False
, CC
, DCI
);
3634 // Revisit this node so we can catch min3/max3/med3 patterns.
3635 //DCI.AddToWorklist(MinMax.getNode());
3640 // There's no reason to not do this if the condition has other uses.
3641 return performCtlz_CttzCombine(SDLoc(N
), Cond
, True
, False
, DCI
);
3644 static bool isInv2Pi(const APFloat
&APF
) {
3645 static const APFloat
KF16(APFloat::IEEEhalf(), APInt(16, 0x3118));
3646 static const APFloat
KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983));
3647 static const APFloat
KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882));
3649 return APF
.bitwiseIsEqual(KF16
) ||
3650 APF
.bitwiseIsEqual(KF32
) ||
3651 APF
.bitwiseIsEqual(KF64
);
3654 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an
3655 // additional cost to negate them.
3656 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N
) const {
3657 if (const ConstantFPSDNode
*C
= isConstOrConstSplatFP(N
)) {
3658 if (C
->isZero() && !C
->isNegative())
3661 if (Subtarget
->hasInv2PiInlineImm() && isInv2Pi(C
->getValueAPF()))
3668 static unsigned inverseMinMax(unsigned Opc
) {
3671 return ISD::FMINNUM
;
3673 return ISD::FMAXNUM
;
3674 case ISD::FMAXNUM_IEEE
:
3675 return ISD::FMINNUM_IEEE
;
3676 case ISD::FMINNUM_IEEE
:
3677 return ISD::FMAXNUM_IEEE
;
3678 case AMDGPUISD::FMAX_LEGACY
:
3679 return AMDGPUISD::FMIN_LEGACY
;
3680 case AMDGPUISD::FMIN_LEGACY
:
3681 return AMDGPUISD::FMAX_LEGACY
;
3683 llvm_unreachable("invalid min/max opcode");
3687 SDValue
AMDGPUTargetLowering::performFNegCombine(SDNode
*N
,
3688 DAGCombinerInfo
&DCI
) const {
3689 SelectionDAG
&DAG
= DCI
.DAG
;
3690 SDValue N0
= N
->getOperand(0);
3691 EVT VT
= N
->getValueType(0);
3693 unsigned Opc
= N0
.getOpcode();
3695 // If the input has multiple uses and we can either fold the negate down, or
3696 // the other uses cannot, give up. This both prevents unprofitable
3697 // transformations and infinite loops: we won't repeatedly try to fold around
3698 // a negate that has no 'good' form.
3699 if (N0
.hasOneUse()) {
3700 // This may be able to fold into the source, but at a code size cost. Don't
3701 // fold if the fold into the user is free.
3702 if (allUsesHaveSourceMods(N
, 0))
3705 if (fnegFoldsIntoOp(Opc
) &&
3706 (allUsesHaveSourceMods(N
) || !allUsesHaveSourceMods(N0
.getNode())))
3713 if (!mayIgnoreSignedZero(N0
))
3716 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
3717 SDValue LHS
= N0
.getOperand(0);
3718 SDValue RHS
= N0
.getOperand(1);
3720 if (LHS
.getOpcode() != ISD::FNEG
)
3721 LHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, LHS
);
3723 LHS
= LHS
.getOperand(0);
3725 if (RHS
.getOpcode() != ISD::FNEG
)
3726 RHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, RHS
);
3728 RHS
= RHS
.getOperand(0);
3730 SDValue Res
= DAG
.getNode(ISD::FADD
, SL
, VT
, LHS
, RHS
, N0
->getFlags());
3731 if (Res
.getOpcode() != ISD::FADD
)
3732 return SDValue(); // Op got folded away.
3733 if (!N0
.hasOneUse())
3734 DAG
.ReplaceAllUsesWith(N0
, DAG
.getNode(ISD::FNEG
, SL
, VT
, Res
));
3738 case AMDGPUISD::FMUL_LEGACY
: {
3739 // (fneg (fmul x, y)) -> (fmul x, (fneg y))
3740 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
3741 SDValue LHS
= N0
.getOperand(0);
3742 SDValue RHS
= N0
.getOperand(1);
3744 if (LHS
.getOpcode() == ISD::FNEG
)
3745 LHS
= LHS
.getOperand(0);
3746 else if (RHS
.getOpcode() == ISD::FNEG
)
3747 RHS
= RHS
.getOperand(0);
3749 RHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, RHS
);
3751 SDValue Res
= DAG
.getNode(Opc
, SL
, VT
, LHS
, RHS
, N0
->getFlags());
3752 if (Res
.getOpcode() != Opc
)
3753 return SDValue(); // Op got folded away.
3754 if (!N0
.hasOneUse())
3755 DAG
.ReplaceAllUsesWith(N0
, DAG
.getNode(ISD::FNEG
, SL
, VT
, Res
));
3760 if (!mayIgnoreSignedZero(N0
))
3763 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
3764 SDValue LHS
= N0
.getOperand(0);
3765 SDValue MHS
= N0
.getOperand(1);
3766 SDValue RHS
= N0
.getOperand(2);
3768 if (LHS
.getOpcode() == ISD::FNEG
)
3769 LHS
= LHS
.getOperand(0);
3770 else if (MHS
.getOpcode() == ISD::FNEG
)
3771 MHS
= MHS
.getOperand(0);
3773 MHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, MHS
);
3775 if (RHS
.getOpcode() != ISD::FNEG
)
3776 RHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, RHS
);
3778 RHS
= RHS
.getOperand(0);
3780 SDValue Res
= DAG
.getNode(Opc
, SL
, VT
, LHS
, MHS
, RHS
);
3781 if (Res
.getOpcode() != Opc
)
3782 return SDValue(); // Op got folded away.
3783 if (!N0
.hasOneUse())
3784 DAG
.ReplaceAllUsesWith(N0
, DAG
.getNode(ISD::FNEG
, SL
, VT
, Res
));
3789 case ISD::FMAXNUM_IEEE
:
3790 case ISD::FMINNUM_IEEE
:
3791 case AMDGPUISD::FMAX_LEGACY
:
3792 case AMDGPUISD::FMIN_LEGACY
: {
3793 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
3794 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
3795 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
3796 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
3798 SDValue LHS
= N0
.getOperand(0);
3799 SDValue RHS
= N0
.getOperand(1);
3801 // 0 doesn't have a negated inline immediate.
3802 // TODO: This constant check should be generalized to other operations.
3803 if (isConstantCostlierToNegate(RHS
))
3806 SDValue NegLHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, LHS
);
3807 SDValue NegRHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, RHS
);
3808 unsigned Opposite
= inverseMinMax(Opc
);
3810 SDValue Res
= DAG
.getNode(Opposite
, SL
, VT
, NegLHS
, NegRHS
, N0
->getFlags());
3811 if (Res
.getOpcode() != Opposite
)
3812 return SDValue(); // Op got folded away.
3813 if (!N0
.hasOneUse())
3814 DAG
.ReplaceAllUsesWith(N0
, DAG
.getNode(ISD::FNEG
, SL
, VT
, Res
));
3817 case AMDGPUISD::FMED3
: {
3819 for (unsigned I
= 0; I
< 3; ++I
)
3820 Ops
[I
] = DAG
.getNode(ISD::FNEG
, SL
, VT
, N0
->getOperand(I
), N0
->getFlags());
3822 SDValue Res
= DAG
.getNode(AMDGPUISD::FMED3
, SL
, VT
, Ops
, N0
->getFlags());
3823 if (Res
.getOpcode() != AMDGPUISD::FMED3
)
3824 return SDValue(); // Op got folded away.
3825 if (!N0
.hasOneUse())
3826 DAG
.ReplaceAllUsesWith(N0
, DAG
.getNode(ISD::FNEG
, SL
, VT
, Res
));
3829 case ISD::FP_EXTEND
:
3832 case ISD::FNEARBYINT
: // XXX - Should fround be handled?
3834 case ISD::FCANONICALIZE
:
3835 case AMDGPUISD::RCP
:
3836 case AMDGPUISD::RCP_LEGACY
:
3837 case AMDGPUISD::RCP_IFLAG
:
3838 case AMDGPUISD::SIN_HW
: {
3839 SDValue CvtSrc
= N0
.getOperand(0);
3840 if (CvtSrc
.getOpcode() == ISD::FNEG
) {
3841 // (fneg (fp_extend (fneg x))) -> (fp_extend x)
3842 // (fneg (rcp (fneg x))) -> (rcp x)
3843 return DAG
.getNode(Opc
, SL
, VT
, CvtSrc
.getOperand(0));
3846 if (!N0
.hasOneUse())
3849 // (fneg (fp_extend x)) -> (fp_extend (fneg x))
3850 // (fneg (rcp x)) -> (rcp (fneg x))
3851 SDValue Neg
= DAG
.getNode(ISD::FNEG
, SL
, CvtSrc
.getValueType(), CvtSrc
);
3852 return DAG
.getNode(Opc
, SL
, VT
, Neg
, N0
->getFlags());
3854 case ISD::FP_ROUND
: {
3855 SDValue CvtSrc
= N0
.getOperand(0);
3857 if (CvtSrc
.getOpcode() == ISD::FNEG
) {
3858 // (fneg (fp_round (fneg x))) -> (fp_round x)
3859 return DAG
.getNode(ISD::FP_ROUND
, SL
, VT
,
3860 CvtSrc
.getOperand(0), N0
.getOperand(1));
3863 if (!N0
.hasOneUse())
3866 // (fneg (fp_round x)) -> (fp_round (fneg x))
3867 SDValue Neg
= DAG
.getNode(ISD::FNEG
, SL
, CvtSrc
.getValueType(), CvtSrc
);
3868 return DAG
.getNode(ISD::FP_ROUND
, SL
, VT
, Neg
, N0
.getOperand(1));
3870 case ISD::FP16_TO_FP
: {
3871 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
3872 // f16, but legalization of f16 fneg ends up pulling it out of the source.
3873 // Put the fneg back as a legal source operation that can be matched later.
3876 SDValue Src
= N0
.getOperand(0);
3877 EVT SrcVT
= Src
.getValueType();
3879 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
3880 SDValue IntFNeg
= DAG
.getNode(ISD::XOR
, SL
, SrcVT
, Src
,
3881 DAG
.getConstant(0x8000, SL
, SrcVT
));
3882 return DAG
.getNode(ISD::FP16_TO_FP
, SL
, N
->getValueType(0), IntFNeg
);
3889 SDValue
AMDGPUTargetLowering::performFAbsCombine(SDNode
*N
,
3890 DAGCombinerInfo
&DCI
) const {
3891 SelectionDAG
&DAG
= DCI
.DAG
;
3892 SDValue N0
= N
->getOperand(0);
3894 if (!N0
.hasOneUse())
3897 switch (N0
.getOpcode()) {
3898 case ISD::FP16_TO_FP
: {
3899 assert(!Subtarget
->has16BitInsts() && "should only see if f16 is illegal");
3901 SDValue Src
= N0
.getOperand(0);
3902 EVT SrcVT
= Src
.getValueType();
3904 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
3905 SDValue IntFAbs
= DAG
.getNode(ISD::AND
, SL
, SrcVT
, Src
,
3906 DAG
.getConstant(0x7fff, SL
, SrcVT
));
3907 return DAG
.getNode(ISD::FP16_TO_FP
, SL
, N
->getValueType(0), IntFAbs
);
3914 SDValue
AMDGPUTargetLowering::performRcpCombine(SDNode
*N
,
3915 DAGCombinerInfo
&DCI
) const {
3916 const auto *CFP
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(0));
3920 // XXX - Should this flush denormals?
3921 const APFloat
&Val
= CFP
->getValueAPF();
3922 APFloat
One(Val
.getSemantics(), "1.0");
3923 return DCI
.DAG
.getConstantFP(One
/ Val
, SDLoc(N
), N
->getValueType(0));
3926 SDValue
AMDGPUTargetLowering::PerformDAGCombine(SDNode
*N
,
3927 DAGCombinerInfo
&DCI
) const {
3928 SelectionDAG
&DAG
= DCI
.DAG
;
3931 switch(N
->getOpcode()) {
3934 case ISD::BITCAST
: {
3935 EVT DestVT
= N
->getValueType(0);
3937 // Push casts through vector builds. This helps avoid emitting a large
3938 // number of copies when materializing floating point vector constants.
3940 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
3941 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
3942 if (DestVT
.isVector()) {
3943 SDValue Src
= N
->getOperand(0);
3944 if (Src
.getOpcode() == ISD::BUILD_VECTOR
) {
3945 EVT SrcVT
= Src
.getValueType();
3946 unsigned NElts
= DestVT
.getVectorNumElements();
3948 if (SrcVT
.getVectorNumElements() == NElts
) {
3949 EVT DestEltVT
= DestVT
.getVectorElementType();
3951 SmallVector
<SDValue
, 8> CastedElts
;
3953 for (unsigned I
= 0, E
= SrcVT
.getVectorNumElements(); I
!= E
; ++I
) {
3954 SDValue Elt
= Src
.getOperand(I
);
3955 CastedElts
.push_back(DAG
.getNode(ISD::BITCAST
, DL
, DestEltVT
, Elt
));
3958 return DAG
.getBuildVector(DestVT
, SL
, CastedElts
);
3963 if (DestVT
.getSizeInBits() != 64 && !DestVT
.isVector())
3966 // Fold bitcasts of constants.
3968 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
3969 // TODO: Generalize and move to DAGCombiner
3970 SDValue Src
= N
->getOperand(0);
3971 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Src
)) {
3972 if (Src
.getValueType() == MVT::i64
) {
3974 uint64_t CVal
= C
->getZExtValue();
3975 SDValue BV
= DAG
.getNode(ISD::BUILD_VECTOR
, SL
, MVT::v2i32
,
3976 DAG
.getConstant(Lo_32(CVal
), SL
, MVT::i32
),
3977 DAG
.getConstant(Hi_32(CVal
), SL
, MVT::i32
));
3978 return DAG
.getNode(ISD::BITCAST
, SL
, DestVT
, BV
);
3982 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Src
)) {
3983 const APInt
&Val
= C
->getValueAPF().bitcastToAPInt();
3985 uint64_t CVal
= Val
.getZExtValue();
3986 SDValue Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, SL
, MVT::v2i32
,
3987 DAG
.getConstant(Lo_32(CVal
), SL
, MVT::i32
),
3988 DAG
.getConstant(Hi_32(CVal
), SL
, MVT::i32
));
3990 return DAG
.getNode(ISD::BITCAST
, SL
, DestVT
, Vec
);
3996 if (DCI
.getDAGCombineLevel() < AfterLegalizeDAG
)
3999 return performShlCombine(N
, DCI
);
4002 if (DCI
.getDAGCombineLevel() < AfterLegalizeDAG
)
4005 return performSrlCombine(N
, DCI
);
4008 if (DCI
.getDAGCombineLevel() < AfterLegalizeDAG
)
4011 return performSraCombine(N
, DCI
);
4014 return performTruncateCombine(N
, DCI
);
4016 return performMulCombine(N
, DCI
);
4018 return performMulhsCombine(N
, DCI
);
4020 return performMulhuCombine(N
, DCI
);
4021 case AMDGPUISD::MUL_I24
:
4022 case AMDGPUISD::MUL_U24
:
4023 case AMDGPUISD::MULHI_I24
:
4024 case AMDGPUISD::MULHI_U24
: {
4025 if (SDValue V
= simplifyI24(N
, DCI
))
4029 case AMDGPUISD::MUL_LOHI_I24
:
4030 case AMDGPUISD::MUL_LOHI_U24
:
4031 return performMulLoHi24Combine(N
, DCI
);
4033 return performSelectCombine(N
, DCI
);
4035 return performFNegCombine(N
, DCI
);
4037 return performFAbsCombine(N
, DCI
);
4038 case AMDGPUISD::BFE_I32
:
4039 case AMDGPUISD::BFE_U32
: {
4040 assert(!N
->getValueType(0).isVector() &&
4041 "Vector handling of BFE not implemented");
4042 ConstantSDNode
*Width
= dyn_cast
<ConstantSDNode
>(N
->getOperand(2));
4046 uint32_t WidthVal
= Width
->getZExtValue() & 0x1f;
4048 return DAG
.getConstant(0, DL
, MVT::i32
);
4050 ConstantSDNode
*Offset
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
4054 SDValue BitsFrom
= N
->getOperand(0);
4055 uint32_t OffsetVal
= Offset
->getZExtValue() & 0x1f;
4057 bool Signed
= N
->getOpcode() == AMDGPUISD::BFE_I32
;
4059 if (OffsetVal
== 0) {
4060 // This is already sign / zero extended, so try to fold away extra BFEs.
4061 unsigned SignBits
= Signed
? (32 - WidthVal
+ 1) : (32 - WidthVal
);
4063 unsigned OpSignBits
= DAG
.ComputeNumSignBits(BitsFrom
);
4064 if (OpSignBits
>= SignBits
)
4067 EVT SmallVT
= EVT::getIntegerVT(*DAG
.getContext(), WidthVal
);
4069 // This is a sign_extend_inreg. Replace it to take advantage of existing
4070 // DAG Combines. If not eliminated, we will match back to BFE during
4073 // TODO: The sext_inreg of extended types ends, although we can could
4074 // handle them in a single BFE.
4075 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, MVT::i32
, BitsFrom
,
4076 DAG
.getValueType(SmallVT
));
4079 return DAG
.getZeroExtendInReg(BitsFrom
, DL
, SmallVT
);
4082 if (ConstantSDNode
*CVal
= dyn_cast
<ConstantSDNode
>(BitsFrom
)) {
4084 return constantFoldBFE
<int32_t>(DAG
,
4085 CVal
->getSExtValue(),
4091 return constantFoldBFE
<uint32_t>(DAG
,
4092 CVal
->getZExtValue(),
4098 if ((OffsetVal
+ WidthVal
) >= 32 &&
4099 !(Subtarget
->hasSDWA() && OffsetVal
== 16 && WidthVal
== 16)) {
4100 SDValue ShiftVal
= DAG
.getConstant(OffsetVal
, DL
, MVT::i32
);
4101 return DAG
.getNode(Signed
? ISD::SRA
: ISD::SRL
, DL
, MVT::i32
,
4102 BitsFrom
, ShiftVal
);
4105 if (BitsFrom
.hasOneUse()) {
4106 APInt Demanded
= APInt::getBitsSet(32,
4108 OffsetVal
+ WidthVal
);
4111 TargetLowering::TargetLoweringOpt
TLO(DAG
, !DCI
.isBeforeLegalize(),
4112 !DCI
.isBeforeLegalizeOps());
4113 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4114 if (TLI
.ShrinkDemandedConstant(BitsFrom
, Demanded
, TLO
) ||
4115 TLI
.SimplifyDemandedBits(BitsFrom
, Demanded
, Known
, TLO
)) {
4116 DCI
.CommitTargetLoweringOpt(TLO
);
4123 return performLoadCombine(N
, DCI
);
4125 return performStoreCombine(N
, DCI
);
4126 case AMDGPUISD::RCP
:
4127 case AMDGPUISD::RCP_IFLAG
:
4128 return performRcpCombine(N
, DCI
);
4129 case ISD::AssertZext
:
4130 case ISD::AssertSext
:
4131 return performAssertSZExtCombine(N
, DCI
);
4132 case ISD::INTRINSIC_WO_CHAIN
:
4133 return performIntrinsicWOChainCombine(N
, DCI
);
4138 //===----------------------------------------------------------------------===//
4140 //===----------------------------------------------------------------------===//
4142 SDValue
AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG
&DAG
,
4143 const TargetRegisterClass
*RC
,
4144 unsigned Reg
, EVT VT
,
4146 bool RawReg
) const {
4147 MachineFunction
&MF
= DAG
.getMachineFunction();
4148 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
4151 if (!MRI
.isLiveIn(Reg
)) {
4152 VReg
= MRI
.createVirtualRegister(RC
);
4153 MRI
.addLiveIn(Reg
, VReg
);
4155 VReg
= MRI
.getLiveInVirtReg(Reg
);
4159 return DAG
.getRegister(VReg
, VT
);
4161 return DAG
.getCopyFromReg(DAG
.getEntryNode(), SL
, VReg
, VT
);
4164 // This may be called multiple times, and nothing prevents creating multiple
4165 // objects at the same offset. See if we already defined this object.
4166 static int getOrCreateFixedStackObject(MachineFrameInfo
&MFI
, unsigned Size
,
4168 for (int I
= MFI
.getObjectIndexBegin(); I
< 0; ++I
) {
4169 if (MFI
.getObjectOffset(I
) == Offset
) {
4170 assert(MFI
.getObjectSize(I
) == Size
);
4175 return MFI
.CreateFixedObject(Size
, Offset
, true);
4178 SDValue
AMDGPUTargetLowering::loadStackInputValue(SelectionDAG
&DAG
,
4181 int64_t Offset
) const {
4182 MachineFunction
&MF
= DAG
.getMachineFunction();
4183 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
4184 int FI
= getOrCreateFixedStackObject(MFI
, VT
.getStoreSize(), Offset
);
4186 auto SrcPtrInfo
= MachinePointerInfo::getStack(MF
, Offset
);
4187 SDValue Ptr
= DAG
.getFrameIndex(FI
, MVT::i32
);
4189 return DAG
.getLoad(VT
, SL
, DAG
.getEntryNode(), Ptr
, SrcPtrInfo
, 4,
4190 MachineMemOperand::MODereferenceable
|
4191 MachineMemOperand::MOInvariant
);
4194 SDValue
AMDGPUTargetLowering::storeStackInputValue(SelectionDAG
&DAG
,
4198 int64_t Offset
) const {
4199 MachineFunction
&MF
= DAG
.getMachineFunction();
4200 MachinePointerInfo DstInfo
= MachinePointerInfo::getStack(MF
, Offset
);
4202 SDValue Ptr
= DAG
.getConstant(Offset
, SL
, MVT::i32
);
4203 SDValue Store
= DAG
.getStore(Chain
, SL
, ArgVal
, Ptr
, DstInfo
, 4,
4204 MachineMemOperand::MODereferenceable
);
4208 SDValue
AMDGPUTargetLowering::loadInputValue(SelectionDAG
&DAG
,
4209 const TargetRegisterClass
*RC
,
4210 EVT VT
, const SDLoc
&SL
,
4211 const ArgDescriptor
&Arg
) const {
4212 assert(Arg
&& "Attempting to load missing argument");
4214 SDValue V
= Arg
.isRegister() ?
4215 CreateLiveInRegister(DAG
, RC
, Arg
.getRegister(), VT
, SL
) :
4216 loadStackInputValue(DAG
, VT
, SL
, Arg
.getStackOffset());
4218 if (!Arg
.isMasked())
4221 unsigned Mask
= Arg
.getMask();
4222 unsigned Shift
= countTrailingZeros
<unsigned>(Mask
);
4223 V
= DAG
.getNode(ISD::SRL
, SL
, VT
, V
,
4224 DAG
.getShiftAmountConstant(Shift
, VT
, SL
));
4225 return DAG
.getNode(ISD::AND
, SL
, VT
, V
,
4226 DAG
.getConstant(Mask
>> Shift
, SL
, VT
));
4229 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
4230 const MachineFunction
&MF
, const ImplicitParameter Param
) const {
4231 const AMDGPUMachineFunction
*MFI
= MF
.getInfo
<AMDGPUMachineFunction
>();
4232 const AMDGPUSubtarget
&ST
=
4233 AMDGPUSubtarget::get(getTargetMachine(), MF
.getFunction());
4234 unsigned ExplicitArgOffset
= ST
.getExplicitKernelArgOffset(MF
.getFunction());
4235 unsigned Alignment
= ST
.getAlignmentForImplicitArgPtr();
4236 uint64_t ArgOffset
= alignTo(MFI
->getExplicitKernArgSize(), Alignment
) +
4242 return ArgOffset
+ 4;
4244 llvm_unreachable("unexpected implicit parameter type");
4247 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
4249 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode
) const {
4250 switch ((AMDGPUISD::NodeType
)Opcode
) {
4251 case AMDGPUISD::FIRST_NUMBER
: break;
4253 NODE_NAME_CASE(UMUL
);
4254 NODE_NAME_CASE(BRANCH_COND
);
4258 NODE_NAME_CASE(ELSE
)
4259 NODE_NAME_CASE(LOOP
)
4260 NODE_NAME_CASE(CALL
)
4261 NODE_NAME_CASE(TC_RETURN
)
4262 NODE_NAME_CASE(TRAP
)
4263 NODE_NAME_CASE(RET_FLAG
)
4264 NODE_NAME_CASE(RETURN_TO_EPILOG
)
4265 NODE_NAME_CASE(ENDPGM
)
4266 NODE_NAME_CASE(DWORDADDR
)
4267 NODE_NAME_CASE(FRACT
)
4268 NODE_NAME_CASE(SETCC
)
4269 NODE_NAME_CASE(SETREG
)
4270 NODE_NAME_CASE(DENORM_MODE
)
4271 NODE_NAME_CASE(FMA_W_CHAIN
)
4272 NODE_NAME_CASE(FMUL_W_CHAIN
)
4273 NODE_NAME_CASE(CLAMP
)
4274 NODE_NAME_CASE(COS_HW
)
4275 NODE_NAME_CASE(SIN_HW
)
4276 NODE_NAME_CASE(FMAX_LEGACY
)
4277 NODE_NAME_CASE(FMIN_LEGACY
)
4278 NODE_NAME_CASE(FMAX3
)
4279 NODE_NAME_CASE(SMAX3
)
4280 NODE_NAME_CASE(UMAX3
)
4281 NODE_NAME_CASE(FMIN3
)
4282 NODE_NAME_CASE(SMIN3
)
4283 NODE_NAME_CASE(UMIN3
)
4284 NODE_NAME_CASE(FMED3
)
4285 NODE_NAME_CASE(SMED3
)
4286 NODE_NAME_CASE(UMED3
)
4287 NODE_NAME_CASE(FDOT2
)
4288 NODE_NAME_CASE(URECIP
)
4289 NODE_NAME_CASE(DIV_SCALE
)
4290 NODE_NAME_CASE(DIV_FMAS
)
4291 NODE_NAME_CASE(DIV_FIXUP
)
4292 NODE_NAME_CASE(FMAD_FTZ
)
4293 NODE_NAME_CASE(TRIG_PREOP
)
4296 NODE_NAME_CASE(RCP_LEGACY
)
4297 NODE_NAME_CASE(RSQ_LEGACY
)
4298 NODE_NAME_CASE(RCP_IFLAG
)
4299 NODE_NAME_CASE(FMUL_LEGACY
)
4300 NODE_NAME_CASE(RSQ_CLAMP
)
4301 NODE_NAME_CASE(LDEXP
)
4302 NODE_NAME_CASE(FP_CLASS
)
4303 NODE_NAME_CASE(DOT4
)
4304 NODE_NAME_CASE(CARRY
)
4305 NODE_NAME_CASE(BORROW
)
4306 NODE_NAME_CASE(BFE_U32
)
4307 NODE_NAME_CASE(BFE_I32
)
4310 NODE_NAME_CASE(FFBH_U32
)
4311 NODE_NAME_CASE(FFBH_I32
)
4312 NODE_NAME_CASE(FFBL_B32
)
4313 NODE_NAME_CASE(MUL_U24
)
4314 NODE_NAME_CASE(MUL_I24
)
4315 NODE_NAME_CASE(MULHI_U24
)
4316 NODE_NAME_CASE(MULHI_I24
)
4317 NODE_NAME_CASE(MUL_LOHI_U24
)
4318 NODE_NAME_CASE(MUL_LOHI_I24
)
4319 NODE_NAME_CASE(MAD_U24
)
4320 NODE_NAME_CASE(MAD_I24
)
4321 NODE_NAME_CASE(MAD_I64_I32
)
4322 NODE_NAME_CASE(MAD_U64_U32
)
4323 NODE_NAME_CASE(PERM
)
4324 NODE_NAME_CASE(TEXTURE_FETCH
)
4325 NODE_NAME_CASE(EXPORT
)
4326 NODE_NAME_CASE(EXPORT_DONE
)
4327 NODE_NAME_CASE(R600_EXPORT
)
4328 NODE_NAME_CASE(CONST_ADDRESS
)
4329 NODE_NAME_CASE(REGISTER_LOAD
)
4330 NODE_NAME_CASE(REGISTER_STORE
)
4331 NODE_NAME_CASE(SAMPLE
)
4332 NODE_NAME_CASE(SAMPLEB
)
4333 NODE_NAME_CASE(SAMPLED
)
4334 NODE_NAME_CASE(SAMPLEL
)
4335 NODE_NAME_CASE(CVT_F32_UBYTE0
)
4336 NODE_NAME_CASE(CVT_F32_UBYTE1
)
4337 NODE_NAME_CASE(CVT_F32_UBYTE2
)
4338 NODE_NAME_CASE(CVT_F32_UBYTE3
)
4339 NODE_NAME_CASE(CVT_PKRTZ_F16_F32
)
4340 NODE_NAME_CASE(CVT_PKNORM_I16_F32
)
4341 NODE_NAME_CASE(CVT_PKNORM_U16_F32
)
4342 NODE_NAME_CASE(CVT_PK_I16_I32
)
4343 NODE_NAME_CASE(CVT_PK_U16_U32
)
4344 NODE_NAME_CASE(FP_TO_FP16
)
4345 NODE_NAME_CASE(FP16_ZEXT
)
4346 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR
)
4347 NODE_NAME_CASE(CONST_DATA_PTR
)
4348 NODE_NAME_CASE(PC_ADD_REL_OFFSET
)
4350 NODE_NAME_CASE(KILL
)
4351 NODE_NAME_CASE(DUMMY_CHAIN
)
4352 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER
: break;
4353 NODE_NAME_CASE(INTERP_MOV
)
4354 NODE_NAME_CASE(INTERP_P1
)
4355 NODE_NAME_CASE(INTERP_P2
)
4356 NODE_NAME_CASE(INTERP_P1LL_F16
)
4357 NODE_NAME_CASE(INTERP_P1LV_F16
)
4358 NODE_NAME_CASE(INTERP_P2_F16
)
4359 NODE_NAME_CASE(LOAD_D16_HI
)
4360 NODE_NAME_CASE(LOAD_D16_LO
)
4361 NODE_NAME_CASE(LOAD_D16_HI_I8
)
4362 NODE_NAME_CASE(LOAD_D16_HI_U8
)
4363 NODE_NAME_CASE(LOAD_D16_LO_I8
)
4364 NODE_NAME_CASE(LOAD_D16_LO_U8
)
4365 NODE_NAME_CASE(STORE_MSKOR
)
4366 NODE_NAME_CASE(LOAD_CONSTANT
)
4367 NODE_NAME_CASE(TBUFFER_STORE_FORMAT
)
4368 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16
)
4369 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT
)
4370 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16
)
4371 NODE_NAME_CASE(DS_ORDERED_COUNT
)
4372 NODE_NAME_CASE(ATOMIC_CMP_SWAP
)
4373 NODE_NAME_CASE(ATOMIC_INC
)
4374 NODE_NAME_CASE(ATOMIC_DEC
)
4375 NODE_NAME_CASE(ATOMIC_LOAD_FMIN
)
4376 NODE_NAME_CASE(ATOMIC_LOAD_FMAX
)
4377 NODE_NAME_CASE(BUFFER_LOAD
)
4378 NODE_NAME_CASE(BUFFER_LOAD_UBYTE
)
4379 NODE_NAME_CASE(BUFFER_LOAD_USHORT
)
4380 NODE_NAME_CASE(BUFFER_LOAD_BYTE
)
4381 NODE_NAME_CASE(BUFFER_LOAD_SHORT
)
4382 NODE_NAME_CASE(BUFFER_LOAD_FORMAT
)
4383 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16
)
4384 NODE_NAME_CASE(SBUFFER_LOAD
)
4385 NODE_NAME_CASE(BUFFER_STORE
)
4386 NODE_NAME_CASE(BUFFER_STORE_BYTE
)
4387 NODE_NAME_CASE(BUFFER_STORE_SHORT
)
4388 NODE_NAME_CASE(BUFFER_STORE_FORMAT
)
4389 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16
)
4390 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP
)
4391 NODE_NAME_CASE(BUFFER_ATOMIC_ADD
)
4392 NODE_NAME_CASE(BUFFER_ATOMIC_SUB
)
4393 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN
)
4394 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN
)
4395 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX
)
4396 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX
)
4397 NODE_NAME_CASE(BUFFER_ATOMIC_AND
)
4398 NODE_NAME_CASE(BUFFER_ATOMIC_OR
)
4399 NODE_NAME_CASE(BUFFER_ATOMIC_XOR
)
4400 NODE_NAME_CASE(BUFFER_ATOMIC_INC
)
4401 NODE_NAME_CASE(BUFFER_ATOMIC_DEC
)
4402 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP
)
4403 NODE_NAME_CASE(BUFFER_ATOMIC_FADD
)
4404 NODE_NAME_CASE(BUFFER_ATOMIC_PK_FADD
)
4405 NODE_NAME_CASE(ATOMIC_FADD
)
4406 NODE_NAME_CASE(ATOMIC_PK_FADD
)
4408 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER
: break;
4413 SDValue
AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand
,
4414 SelectionDAG
&DAG
, int Enabled
,
4415 int &RefinementSteps
,
4416 bool &UseOneConstNR
,
4417 bool Reciprocal
) const {
4418 EVT VT
= Operand
.getValueType();
4420 if (VT
== MVT::f32
) {
4421 RefinementSteps
= 0;
4422 return DAG
.getNode(AMDGPUISD::RSQ
, SDLoc(Operand
), VT
, Operand
);
4425 // TODO: There is also f64 rsq instruction, but the documentation is less
4426 // clear on its precision.
4431 SDValue
AMDGPUTargetLowering::getRecipEstimate(SDValue Operand
,
4432 SelectionDAG
&DAG
, int Enabled
,
4433 int &RefinementSteps
) const {
4434 EVT VT
= Operand
.getValueType();
4436 if (VT
== MVT::f32
) {
4437 // Reciprocal, < 1 ulp error.
4439 // This reciprocal approximation converges to < 0.5 ulp error with one
4440 // newton rhapson performed with two fused multiple adds (FMAs).
4442 RefinementSteps
= 0;
4443 return DAG
.getNode(AMDGPUISD::RCP
, SDLoc(Operand
), VT
, Operand
);
4446 // TODO: There is also f64 rcp instruction, but the documentation is less
4447 // clear on its precision.
4452 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
4453 const SDValue Op
, KnownBits
&Known
,
4454 const APInt
&DemandedElts
, const SelectionDAG
&DAG
, unsigned Depth
) const {
4456 Known
.resetAll(); // Don't know anything.
4458 unsigned Opc
= Op
.getOpcode();
4463 case AMDGPUISD::CARRY
:
4464 case AMDGPUISD::BORROW
: {
4465 Known
.Zero
= APInt::getHighBitsSet(32, 31);
4469 case AMDGPUISD::BFE_I32
:
4470 case AMDGPUISD::BFE_U32
: {
4471 ConstantSDNode
*CWidth
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
4475 uint32_t Width
= CWidth
->getZExtValue() & 0x1f;
4477 if (Opc
== AMDGPUISD::BFE_U32
)
4478 Known
.Zero
= APInt::getHighBitsSet(32, 32 - Width
);
4482 case AMDGPUISD::FP_TO_FP16
:
4483 case AMDGPUISD::FP16_ZEXT
: {
4484 unsigned BitWidth
= Known
.getBitWidth();
4486 // High bits are zero.
4487 Known
.Zero
= APInt::getHighBitsSet(BitWidth
, BitWidth
- 16);
4490 case AMDGPUISD::MUL_U24
:
4491 case AMDGPUISD::MUL_I24
: {
4492 KnownBits LHSKnown
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+ 1);
4493 KnownBits RHSKnown
= DAG
.computeKnownBits(Op
.getOperand(1), Depth
+ 1);
4494 unsigned TrailZ
= LHSKnown
.countMinTrailingZeros() +
4495 RHSKnown
.countMinTrailingZeros();
4496 Known
.Zero
.setLowBits(std::min(TrailZ
, 32u));
4498 // Truncate to 24 bits.
4499 LHSKnown
= LHSKnown
.trunc(24);
4500 RHSKnown
= RHSKnown
.trunc(24);
4502 bool Negative
= false;
4503 if (Opc
== AMDGPUISD::MUL_I24
) {
4504 unsigned LHSValBits
= 24 - LHSKnown
.countMinSignBits();
4505 unsigned RHSValBits
= 24 - RHSKnown
.countMinSignBits();
4506 unsigned MaxValBits
= std::min(LHSValBits
+ RHSValBits
, 32u);
4507 if (MaxValBits
>= 32)
4509 bool LHSNegative
= LHSKnown
.isNegative();
4510 bool LHSPositive
= LHSKnown
.isNonNegative();
4511 bool RHSNegative
= RHSKnown
.isNegative();
4512 bool RHSPositive
= RHSKnown
.isNonNegative();
4513 if ((!LHSNegative
&& !LHSPositive
) || (!RHSNegative
&& !RHSPositive
))
4515 Negative
= (LHSNegative
&& RHSPositive
) || (LHSPositive
&& RHSNegative
);
4517 Known
.One
.setHighBits(32 - MaxValBits
);
4519 Known
.Zero
.setHighBits(32 - MaxValBits
);
4521 unsigned LHSValBits
= 24 - LHSKnown
.countMinLeadingZeros();
4522 unsigned RHSValBits
= 24 - RHSKnown
.countMinLeadingZeros();
4523 unsigned MaxValBits
= std::min(LHSValBits
+ RHSValBits
, 32u);
4524 if (MaxValBits
>= 32)
4526 Known
.Zero
.setHighBits(32 - MaxValBits
);
4530 case AMDGPUISD::PERM
: {
4531 ConstantSDNode
*CMask
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
4535 KnownBits LHSKnown
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+ 1);
4536 KnownBits RHSKnown
= DAG
.computeKnownBits(Op
.getOperand(1), Depth
+ 1);
4537 unsigned Sel
= CMask
->getZExtValue();
4539 for (unsigned I
= 0; I
< 32; I
+= 8) {
4540 unsigned SelBits
= Sel
& 0xff;
4543 Known
.One
|= ((RHSKnown
.One
.getZExtValue() >> SelBits
) & 0xff) << I
;
4544 Known
.Zero
|= ((RHSKnown
.Zero
.getZExtValue() >> SelBits
) & 0xff) << I
;
4545 } else if (SelBits
< 7) {
4546 SelBits
= (SelBits
& 3) * 8;
4547 Known
.One
|= ((LHSKnown
.One
.getZExtValue() >> SelBits
) & 0xff) << I
;
4548 Known
.Zero
|= ((LHSKnown
.Zero
.getZExtValue() >> SelBits
) & 0xff) << I
;
4549 } else if (SelBits
== 0x0c) {
4550 Known
.Zero
|= 0xFFull
<< I
;
4551 } else if (SelBits
> 0x0c) {
4552 Known
.One
|= 0xFFull
<< I
;
4558 case AMDGPUISD::BUFFER_LOAD_UBYTE
: {
4559 Known
.Zero
.setHighBits(24);
4562 case AMDGPUISD::BUFFER_LOAD_USHORT
: {
4563 Known
.Zero
.setHighBits(16);
4566 case AMDGPUISD::LDS
: {
4567 auto GA
= cast
<GlobalAddressSDNode
>(Op
.getOperand(0).getNode());
4568 unsigned Align
= GA
->getGlobal()->getAlignment();
4570 Known
.Zero
.setHighBits(16);
4572 Known
.Zero
.setLowBits(Log2_32(Align
));
4575 case ISD::INTRINSIC_WO_CHAIN
: {
4576 unsigned IID
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
4578 case Intrinsic::amdgcn_mbcnt_lo
:
4579 case Intrinsic::amdgcn_mbcnt_hi
: {
4580 const GCNSubtarget
&ST
=
4581 DAG
.getMachineFunction().getSubtarget
<GCNSubtarget
>();
4582 // These return at most the wavefront size - 1.
4583 unsigned Size
= Op
.getValueType().getSizeInBits();
4584 Known
.Zero
.setHighBits(Size
- ST
.getWavefrontSizeLog2());
4594 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
4595 SDValue Op
, const APInt
&DemandedElts
, const SelectionDAG
&DAG
,
4596 unsigned Depth
) const {
4597 switch (Op
.getOpcode()) {
4598 case AMDGPUISD::BFE_I32
: {
4599 ConstantSDNode
*Width
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
4603 unsigned SignBits
= 32 - Width
->getZExtValue() + 1;
4604 if (!isNullConstant(Op
.getOperand(1)))
4607 // TODO: Could probably figure something out with non-0 offsets.
4608 unsigned Op0SignBits
= DAG
.ComputeNumSignBits(Op
.getOperand(0), Depth
+ 1);
4609 return std::max(SignBits
, Op0SignBits
);
4612 case AMDGPUISD::BFE_U32
: {
4613 ConstantSDNode
*Width
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
4614 return Width
? 32 - (Width
->getZExtValue() & 0x1f) : 1;
4617 case AMDGPUISD::CARRY
:
4618 case AMDGPUISD::BORROW
:
4620 case AMDGPUISD::BUFFER_LOAD_BYTE
:
4622 case AMDGPUISD::BUFFER_LOAD_SHORT
:
4624 case AMDGPUISD::BUFFER_LOAD_UBYTE
:
4626 case AMDGPUISD::BUFFER_LOAD_USHORT
:
4628 case AMDGPUISD::FP_TO_FP16
:
4629 case AMDGPUISD::FP16_ZEXT
:
4636 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op
,
4637 const SelectionDAG
&DAG
,
4639 unsigned Depth
) const {
4640 unsigned Opcode
= Op
.getOpcode();
4642 case AMDGPUISD::FMIN_LEGACY
:
4643 case AMDGPUISD::FMAX_LEGACY
: {
4647 // TODO: Can check no nans on one of the operands for each one, but which
4651 case AMDGPUISD::FMUL_LEGACY
:
4652 case AMDGPUISD::CVT_PKRTZ_F16_F32
: {
4655 return DAG
.isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1) &&
4656 DAG
.isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1);
4658 case AMDGPUISD::FMED3
:
4659 case AMDGPUISD::FMIN3
:
4660 case AMDGPUISD::FMAX3
:
4661 case AMDGPUISD::FMAD_FTZ
: {
4664 return DAG
.isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1) &&
4665 DAG
.isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1) &&
4666 DAG
.isKnownNeverNaN(Op
.getOperand(2), SNaN
, Depth
+ 1);
4668 case AMDGPUISD::CVT_F32_UBYTE0
:
4669 case AMDGPUISD::CVT_F32_UBYTE1
:
4670 case AMDGPUISD::CVT_F32_UBYTE2
:
4671 case AMDGPUISD::CVT_F32_UBYTE3
:
4674 case AMDGPUISD::RCP
:
4675 case AMDGPUISD::RSQ
:
4676 case AMDGPUISD::RCP_LEGACY
:
4677 case AMDGPUISD::RSQ_LEGACY
:
4678 case AMDGPUISD::RSQ_CLAMP
: {
4682 // TODO: Need is known positive check.
4685 case AMDGPUISD::LDEXP
:
4686 case AMDGPUISD::FRACT
: {
4689 return DAG
.isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1);
4691 case AMDGPUISD::DIV_SCALE
:
4692 case AMDGPUISD::DIV_FMAS
:
4693 case AMDGPUISD::DIV_FIXUP
:
4694 case AMDGPUISD::TRIG_PREOP
:
4695 // TODO: Refine on operands.
4697 case AMDGPUISD::SIN_HW
:
4698 case AMDGPUISD::COS_HW
: {
4699 // TODO: Need check for infinity
4702 case ISD::INTRINSIC_WO_CHAIN
: {
4703 unsigned IntrinsicID
4704 = cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
4705 // TODO: Handle more intrinsics
4706 switch (IntrinsicID
) {
4707 case Intrinsic::amdgcn_cubeid
:
4710 case Intrinsic::amdgcn_frexp_mant
: {
4713 return DAG
.isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1);
4715 case Intrinsic::amdgcn_cvt_pkrtz
: {
4718 return DAG
.isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1) &&
4719 DAG
.isKnownNeverNaN(Op
.getOperand(2), SNaN
, Depth
+ 1);
4721 case Intrinsic::amdgcn_fdot2
:
4722 // TODO: Refine on operand
4733 TargetLowering::AtomicExpansionKind
4734 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst
*RMW
) const {
4735 switch (RMW
->getOperation()) {
4736 case AtomicRMWInst::Nand
:
4737 case AtomicRMWInst::FAdd
:
4738 case AtomicRMWInst::FSub
:
4739 return AtomicExpansionKind::CmpXChg
;
4741 return AtomicExpansionKind::None
;