[x86] fix assert with horizontal math + broadcast of vector (PR43402)
[llvm-core.git] / lib / Target / Mips / MipsISelLowering.cpp
blob57e2c88b2abf95e58307dbd2a0c2cf9a09a643d9
1 //===- MipsISelLowering.cpp - Mips DAG Lowering Implementation ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that Mips uses to lower LLVM code into a
10 // selection DAG.
12 //===----------------------------------------------------------------------===//
14 #include "MipsISelLowering.h"
15 #include "MCTargetDesc/MipsBaseInfo.h"
16 #include "MCTargetDesc/MipsInstPrinter.h"
17 #include "MCTargetDesc/MipsMCTargetDesc.h"
18 #include "MipsCCState.h"
19 #include "MipsInstrInfo.h"
20 #include "MipsMachineFunction.h"
21 #include "MipsRegisterInfo.h"
22 #include "MipsSubtarget.h"
23 #include "MipsTargetMachine.h"
24 #include "MipsTargetObjectFile.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/StringSwitch.h"
31 #include "llvm/CodeGen/CallingConvLower.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineJumpTableInfo.h"
40 #include "llvm/CodeGen/MachineMemOperand.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/CodeGen/RuntimeLibcalls.h"
44 #include "llvm/CodeGen/SelectionDAG.h"
45 #include "llvm/CodeGen/SelectionDAGNodes.h"
46 #include "llvm/CodeGen/TargetFrameLowering.h"
47 #include "llvm/CodeGen/TargetInstrInfo.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/ValueTypes.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/Constants.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/DebugLoc.h"
54 #include "llvm/IR/DerivedTypes.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/GlobalValue.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/MC/MCContext.h"
60 #include "llvm/MC/MCRegisterInfo.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CodeGen.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/MachineValueType.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include "llvm/Target/TargetOptions.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cctype>
73 #include <cstdint>
74 #include <deque>
75 #include <iterator>
76 #include <utility>
77 #include <vector>
79 using namespace llvm;
81 #define DEBUG_TYPE "mips-lower"
83 STATISTIC(NumTailCalls, "Number of tail calls");
85 static cl::opt<bool>
86 NoZeroDivCheck("mno-check-zero-division", cl::Hidden,
87 cl::desc("MIPS: Don't trap on integer division by zero."),
88 cl::init(false));
90 extern cl::opt<bool> EmitJalrReloc;
92 static const MCPhysReg Mips64DPRegs[8] = {
93 Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
94 Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
97 // If I is a shifted mask, set the size (Size) and the first bit of the
98 // mask (Pos), and return true.
99 // For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
100 static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
101 if (!isShiftedMask_64(I))
102 return false;
104 Size = countPopulation(I);
105 Pos = countTrailingZeros(I);
106 return true;
109 // The MIPS MSA ABI passes vector arguments in the integer register set.
110 // The number of integer registers used is dependant on the ABI used.
111 MVT MipsTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
112 CallingConv::ID CC,
113 EVT VT) const {
114 if (VT.isVector()) {
115 if (Subtarget.isABI_O32()) {
116 return MVT::i32;
117 } else {
118 return (VT.getSizeInBits() == 32) ? MVT::i32 : MVT::i64;
121 return MipsTargetLowering::getRegisterType(Context, VT);
124 unsigned MipsTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
125 CallingConv::ID CC,
126 EVT VT) const {
127 if (VT.isVector())
128 return std::max((VT.getSizeInBits() / (Subtarget.isABI_O32() ? 32 : 64)),
129 1U);
130 return MipsTargetLowering::getNumRegisters(Context, VT);
133 unsigned MipsTargetLowering::getVectorTypeBreakdownForCallingConv(
134 LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
135 unsigned &NumIntermediates, MVT &RegisterVT) const {
136 // Break down vector types to either 2 i64s or 4 i32s.
137 RegisterVT = getRegisterTypeForCallingConv(Context, CC, VT);
138 IntermediateVT = RegisterVT;
139 NumIntermediates = VT.getSizeInBits() < RegisterVT.getSizeInBits()
140 ? VT.getVectorNumElements()
141 : VT.getSizeInBits() / RegisterVT.getSizeInBits();
143 return NumIntermediates;
146 SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
147 MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
148 return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
151 SDValue MipsTargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
152 SelectionDAG &DAG,
153 unsigned Flag) const {
154 return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 0, Flag);
157 SDValue MipsTargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty,
158 SelectionDAG &DAG,
159 unsigned Flag) const {
160 return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
163 SDValue MipsTargetLowering::getTargetNode(BlockAddressSDNode *N, EVT Ty,
164 SelectionDAG &DAG,
165 unsigned Flag) const {
166 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
169 SDValue MipsTargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
170 SelectionDAG &DAG,
171 unsigned Flag) const {
172 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
175 SDValue MipsTargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
176 SelectionDAG &DAG,
177 unsigned Flag) const {
178 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
179 N->getOffset(), Flag);
182 const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
183 switch ((MipsISD::NodeType)Opcode) {
184 case MipsISD::FIRST_NUMBER: break;
185 case MipsISD::JmpLink: return "MipsISD::JmpLink";
186 case MipsISD::TailCall: return "MipsISD::TailCall";
187 case MipsISD::Highest: return "MipsISD::Highest";
188 case MipsISD::Higher: return "MipsISD::Higher";
189 case MipsISD::Hi: return "MipsISD::Hi";
190 case MipsISD::Lo: return "MipsISD::Lo";
191 case MipsISD::GotHi: return "MipsISD::GotHi";
192 case MipsISD::TlsHi: return "MipsISD::TlsHi";
193 case MipsISD::GPRel: return "MipsISD::GPRel";
194 case MipsISD::ThreadPointer: return "MipsISD::ThreadPointer";
195 case MipsISD::Ret: return "MipsISD::Ret";
196 case MipsISD::ERet: return "MipsISD::ERet";
197 case MipsISD::EH_RETURN: return "MipsISD::EH_RETURN";
198 case MipsISD::FMS: return "MipsISD::FMS";
199 case MipsISD::FPBrcond: return "MipsISD::FPBrcond";
200 case MipsISD::FPCmp: return "MipsISD::FPCmp";
201 case MipsISD::FSELECT: return "MipsISD::FSELECT";
202 case MipsISD::MTC1_D64: return "MipsISD::MTC1_D64";
203 case MipsISD::CMovFP_T: return "MipsISD::CMovFP_T";
204 case MipsISD::CMovFP_F: return "MipsISD::CMovFP_F";
205 case MipsISD::TruncIntFP: return "MipsISD::TruncIntFP";
206 case MipsISD::MFHI: return "MipsISD::MFHI";
207 case MipsISD::MFLO: return "MipsISD::MFLO";
208 case MipsISD::MTLOHI: return "MipsISD::MTLOHI";
209 case MipsISD::Mult: return "MipsISD::Mult";
210 case MipsISD::Multu: return "MipsISD::Multu";
211 case MipsISD::MAdd: return "MipsISD::MAdd";
212 case MipsISD::MAddu: return "MipsISD::MAddu";
213 case MipsISD::MSub: return "MipsISD::MSub";
214 case MipsISD::MSubu: return "MipsISD::MSubu";
215 case MipsISD::DivRem: return "MipsISD::DivRem";
216 case MipsISD::DivRemU: return "MipsISD::DivRemU";
217 case MipsISD::DivRem16: return "MipsISD::DivRem16";
218 case MipsISD::DivRemU16: return "MipsISD::DivRemU16";
219 case MipsISD::BuildPairF64: return "MipsISD::BuildPairF64";
220 case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
221 case MipsISD::Wrapper: return "MipsISD::Wrapper";
222 case MipsISD::DynAlloc: return "MipsISD::DynAlloc";
223 case MipsISD::Sync: return "MipsISD::Sync";
224 case MipsISD::Ext: return "MipsISD::Ext";
225 case MipsISD::Ins: return "MipsISD::Ins";
226 case MipsISD::CIns: return "MipsISD::CIns";
227 case MipsISD::LWL: return "MipsISD::LWL";
228 case MipsISD::LWR: return "MipsISD::LWR";
229 case MipsISD::SWL: return "MipsISD::SWL";
230 case MipsISD::SWR: return "MipsISD::SWR";
231 case MipsISD::LDL: return "MipsISD::LDL";
232 case MipsISD::LDR: return "MipsISD::LDR";
233 case MipsISD::SDL: return "MipsISD::SDL";
234 case MipsISD::SDR: return "MipsISD::SDR";
235 case MipsISD::EXTP: return "MipsISD::EXTP";
236 case MipsISD::EXTPDP: return "MipsISD::EXTPDP";
237 case MipsISD::EXTR_S_H: return "MipsISD::EXTR_S_H";
238 case MipsISD::EXTR_W: return "MipsISD::EXTR_W";
239 case MipsISD::EXTR_R_W: return "MipsISD::EXTR_R_W";
240 case MipsISD::EXTR_RS_W: return "MipsISD::EXTR_RS_W";
241 case MipsISD::SHILO: return "MipsISD::SHILO";
242 case MipsISD::MTHLIP: return "MipsISD::MTHLIP";
243 case MipsISD::MULSAQ_S_W_PH: return "MipsISD::MULSAQ_S_W_PH";
244 case MipsISD::MAQ_S_W_PHL: return "MipsISD::MAQ_S_W_PHL";
245 case MipsISD::MAQ_S_W_PHR: return "MipsISD::MAQ_S_W_PHR";
246 case MipsISD::MAQ_SA_W_PHL: return "MipsISD::MAQ_SA_W_PHL";
247 case MipsISD::MAQ_SA_W_PHR: return "MipsISD::MAQ_SA_W_PHR";
248 case MipsISD::DPAU_H_QBL: return "MipsISD::DPAU_H_QBL";
249 case MipsISD::DPAU_H_QBR: return "MipsISD::DPAU_H_QBR";
250 case MipsISD::DPSU_H_QBL: return "MipsISD::DPSU_H_QBL";
251 case MipsISD::DPSU_H_QBR: return "MipsISD::DPSU_H_QBR";
252 case MipsISD::DPAQ_S_W_PH: return "MipsISD::DPAQ_S_W_PH";
253 case MipsISD::DPSQ_S_W_PH: return "MipsISD::DPSQ_S_W_PH";
254 case MipsISD::DPAQ_SA_L_W: return "MipsISD::DPAQ_SA_L_W";
255 case MipsISD::DPSQ_SA_L_W: return "MipsISD::DPSQ_SA_L_W";
256 case MipsISD::DPA_W_PH: return "MipsISD::DPA_W_PH";
257 case MipsISD::DPS_W_PH: return "MipsISD::DPS_W_PH";
258 case MipsISD::DPAQX_S_W_PH: return "MipsISD::DPAQX_S_W_PH";
259 case MipsISD::DPAQX_SA_W_PH: return "MipsISD::DPAQX_SA_W_PH";
260 case MipsISD::DPAX_W_PH: return "MipsISD::DPAX_W_PH";
261 case MipsISD::DPSX_W_PH: return "MipsISD::DPSX_W_PH";
262 case MipsISD::DPSQX_S_W_PH: return "MipsISD::DPSQX_S_W_PH";
263 case MipsISD::DPSQX_SA_W_PH: return "MipsISD::DPSQX_SA_W_PH";
264 case MipsISD::MULSA_W_PH: return "MipsISD::MULSA_W_PH";
265 case MipsISD::MULT: return "MipsISD::MULT";
266 case MipsISD::MULTU: return "MipsISD::MULTU";
267 case MipsISD::MADD_DSP: return "MipsISD::MADD_DSP";
268 case MipsISD::MADDU_DSP: return "MipsISD::MADDU_DSP";
269 case MipsISD::MSUB_DSP: return "MipsISD::MSUB_DSP";
270 case MipsISD::MSUBU_DSP: return "MipsISD::MSUBU_DSP";
271 case MipsISD::SHLL_DSP: return "MipsISD::SHLL_DSP";
272 case MipsISD::SHRA_DSP: return "MipsISD::SHRA_DSP";
273 case MipsISD::SHRL_DSP: return "MipsISD::SHRL_DSP";
274 case MipsISD::SETCC_DSP: return "MipsISD::SETCC_DSP";
275 case MipsISD::SELECT_CC_DSP: return "MipsISD::SELECT_CC_DSP";
276 case MipsISD::VALL_ZERO: return "MipsISD::VALL_ZERO";
277 case MipsISD::VANY_ZERO: return "MipsISD::VANY_ZERO";
278 case MipsISD::VALL_NONZERO: return "MipsISD::VALL_NONZERO";
279 case MipsISD::VANY_NONZERO: return "MipsISD::VANY_NONZERO";
280 case MipsISD::VCEQ: return "MipsISD::VCEQ";
281 case MipsISD::VCLE_S: return "MipsISD::VCLE_S";
282 case MipsISD::VCLE_U: return "MipsISD::VCLE_U";
283 case MipsISD::VCLT_S: return "MipsISD::VCLT_S";
284 case MipsISD::VCLT_U: return "MipsISD::VCLT_U";
285 case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT";
286 case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT";
287 case MipsISD::VNOR: return "MipsISD::VNOR";
288 case MipsISD::VSHF: return "MipsISD::VSHF";
289 case MipsISD::SHF: return "MipsISD::SHF";
290 case MipsISD::ILVEV: return "MipsISD::ILVEV";
291 case MipsISD::ILVOD: return "MipsISD::ILVOD";
292 case MipsISD::ILVL: return "MipsISD::ILVL";
293 case MipsISD::ILVR: return "MipsISD::ILVR";
294 case MipsISD::PCKEV: return "MipsISD::PCKEV";
295 case MipsISD::PCKOD: return "MipsISD::PCKOD";
296 case MipsISD::INSVE: return "MipsISD::INSVE";
298 return nullptr;
301 MipsTargetLowering::MipsTargetLowering(const MipsTargetMachine &TM,
302 const MipsSubtarget &STI)
303 : TargetLowering(TM), Subtarget(STI), ABI(TM.getABI()) {
304 // Mips does not have i1 type, so use i32 for
305 // setcc operations results (slt, sgt, ...).
306 setBooleanContents(ZeroOrOneBooleanContent);
307 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
308 // The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA
309 // does. Integer booleans still use 0 and 1.
310 if (Subtarget.hasMips32r6())
311 setBooleanContents(ZeroOrOneBooleanContent,
312 ZeroOrNegativeOneBooleanContent);
314 // Load extented operations for i1 types must be promoted
315 for (MVT VT : MVT::integer_valuetypes()) {
316 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
317 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
318 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
321 // MIPS doesn't have extending float->double load/store. Set LoadExtAction
322 // for f32, f16
323 for (MVT VT : MVT::fp_valuetypes()) {
324 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
325 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
328 // Set LoadExtAction for f16 vectors to Expand
329 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
330 MVT F16VT = MVT::getVectorVT(MVT::f16, VT.getVectorNumElements());
331 if (F16VT.isValid())
332 setLoadExtAction(ISD::EXTLOAD, VT, F16VT, Expand);
335 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
336 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
338 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
340 // Used by legalize types to correctly generate the setcc result.
341 // Without this, every float setcc comes with a AND/OR with the result,
342 // we don't want this, since the fpcmp result goes to a flag register,
343 // which is used implicitly by brcond and select operations.
344 AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
346 // Mips Custom Operations
347 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
348 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
349 setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
350 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
351 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
352 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
353 setOperationAction(ISD::SELECT, MVT::f32, Custom);
354 setOperationAction(ISD::SELECT, MVT::f64, Custom);
355 setOperationAction(ISD::SELECT, MVT::i32, Custom);
356 setOperationAction(ISD::SETCC, MVT::f32, Custom);
357 setOperationAction(ISD::SETCC, MVT::f64, Custom);
358 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
359 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
360 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
361 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
363 if (!(TM.Options.NoNaNsFPMath || Subtarget.inAbs2008Mode())) {
364 setOperationAction(ISD::FABS, MVT::f32, Custom);
365 setOperationAction(ISD::FABS, MVT::f64, Custom);
368 if (Subtarget.isGP64bit()) {
369 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
370 setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
371 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
372 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
373 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
374 setOperationAction(ISD::SELECT, MVT::i64, Custom);
375 setOperationAction(ISD::LOAD, MVT::i64, Custom);
376 setOperationAction(ISD::STORE, MVT::i64, Custom);
377 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
378 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
379 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
380 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
383 if (!Subtarget.isGP64bit()) {
384 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
385 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
386 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
389 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
390 if (Subtarget.isGP64bit())
391 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
393 setOperationAction(ISD::SDIV, MVT::i32, Expand);
394 setOperationAction(ISD::SREM, MVT::i32, Expand);
395 setOperationAction(ISD::UDIV, MVT::i32, Expand);
396 setOperationAction(ISD::UREM, MVT::i32, Expand);
397 setOperationAction(ISD::SDIV, MVT::i64, Expand);
398 setOperationAction(ISD::SREM, MVT::i64, Expand);
399 setOperationAction(ISD::UDIV, MVT::i64, Expand);
400 setOperationAction(ISD::UREM, MVT::i64, Expand);
402 // Operations not directly supported by Mips.
403 setOperationAction(ISD::BR_CC, MVT::f32, Expand);
404 setOperationAction(ISD::BR_CC, MVT::f64, Expand);
405 setOperationAction(ISD::BR_CC, MVT::i32, Expand);
406 setOperationAction(ISD::BR_CC, MVT::i64, Expand);
407 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
408 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
409 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
410 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
411 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
412 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
413 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
414 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
415 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
416 if (Subtarget.hasCnMips()) {
417 setOperationAction(ISD::CTPOP, MVT::i32, Legal);
418 setOperationAction(ISD::CTPOP, MVT::i64, Legal);
419 } else {
420 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
421 setOperationAction(ISD::CTPOP, MVT::i64, Expand);
423 setOperationAction(ISD::CTTZ, MVT::i32, Expand);
424 setOperationAction(ISD::CTTZ, MVT::i64, Expand);
425 setOperationAction(ISD::ROTL, MVT::i32, Expand);
426 setOperationAction(ISD::ROTL, MVT::i64, Expand);
427 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
428 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
430 if (!Subtarget.hasMips32r2())
431 setOperationAction(ISD::ROTR, MVT::i32, Expand);
433 if (!Subtarget.hasMips64r2())
434 setOperationAction(ISD::ROTR, MVT::i64, Expand);
436 setOperationAction(ISD::FSIN, MVT::f32, Expand);
437 setOperationAction(ISD::FSIN, MVT::f64, Expand);
438 setOperationAction(ISD::FCOS, MVT::f32, Expand);
439 setOperationAction(ISD::FCOS, MVT::f64, Expand);
440 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
441 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
442 setOperationAction(ISD::FPOW, MVT::f32, Expand);
443 setOperationAction(ISD::FPOW, MVT::f64, Expand);
444 setOperationAction(ISD::FLOG, MVT::f32, Expand);
445 setOperationAction(ISD::FLOG2, MVT::f32, Expand);
446 setOperationAction(ISD::FLOG10, MVT::f32, Expand);
447 setOperationAction(ISD::FEXP, MVT::f32, Expand);
448 setOperationAction(ISD::FMA, MVT::f32, Expand);
449 setOperationAction(ISD::FMA, MVT::f64, Expand);
450 setOperationAction(ISD::FREM, MVT::f32, Expand);
451 setOperationAction(ISD::FREM, MVT::f64, Expand);
453 // Lower f16 conversion operations into library calls
454 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
455 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
456 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
457 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
459 setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
461 setOperationAction(ISD::VASTART, MVT::Other, Custom);
462 setOperationAction(ISD::VAARG, MVT::Other, Custom);
463 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
464 setOperationAction(ISD::VAEND, MVT::Other, Expand);
466 // Use the default for now
467 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
468 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
470 if (!Subtarget.isGP64bit()) {
471 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand);
472 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
475 if (!Subtarget.hasMips32r2()) {
476 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
477 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
480 // MIPS16 lacks MIPS32's clz and clo instructions.
481 if (!Subtarget.hasMips32() || Subtarget.inMips16Mode())
482 setOperationAction(ISD::CTLZ, MVT::i32, Expand);
483 if (!Subtarget.hasMips64())
484 setOperationAction(ISD::CTLZ, MVT::i64, Expand);
486 if (!Subtarget.hasMips32r2())
487 setOperationAction(ISD::BSWAP, MVT::i32, Expand);
488 if (!Subtarget.hasMips64r2())
489 setOperationAction(ISD::BSWAP, MVT::i64, Expand);
491 if (Subtarget.isGP64bit()) {
492 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, MVT::i32, Custom);
493 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, MVT::i32, Custom);
494 setLoadExtAction(ISD::EXTLOAD, MVT::i64, MVT::i32, Custom);
495 setTruncStoreAction(MVT::i64, MVT::i32, Custom);
498 setOperationAction(ISD::TRAP, MVT::Other, Legal);
500 setTargetDAGCombine(ISD::SDIVREM);
501 setTargetDAGCombine(ISD::UDIVREM);
502 setTargetDAGCombine(ISD::SELECT);
503 setTargetDAGCombine(ISD::AND);
504 setTargetDAGCombine(ISD::OR);
505 setTargetDAGCombine(ISD::ADD);
506 setTargetDAGCombine(ISD::SUB);
507 setTargetDAGCombine(ISD::AssertZext);
508 setTargetDAGCombine(ISD::SHL);
510 if (ABI.IsO32()) {
511 // These libcalls are not available in 32-bit.
512 setLibcallName(RTLIB::SHL_I128, nullptr);
513 setLibcallName(RTLIB::SRL_I128, nullptr);
514 setLibcallName(RTLIB::SRA_I128, nullptr);
517 setMinFunctionAlignment(Subtarget.isGP64bit() ? llvm::Align(8)
518 : llvm::Align(4));
520 // The arguments on the stack are defined in terms of 4-byte slots on O32
521 // and 8-byte slots on N32/N64.
522 setMinStackArgumentAlignment((ABI.IsN32() || ABI.IsN64()) ? llvm::Align(8)
523 : llvm::Align(4));
525 setStackPointerRegisterToSaveRestore(ABI.IsN64() ? Mips::SP_64 : Mips::SP);
527 MaxStoresPerMemcpy = 16;
529 isMicroMips = Subtarget.inMicroMipsMode();
532 const MipsTargetLowering *MipsTargetLowering::create(const MipsTargetMachine &TM,
533 const MipsSubtarget &STI) {
534 if (STI.inMips16Mode())
535 return createMips16TargetLowering(TM, STI);
537 return createMipsSETargetLowering(TM, STI);
540 // Create a fast isel object.
541 FastISel *
542 MipsTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
543 const TargetLibraryInfo *libInfo) const {
544 const MipsTargetMachine &TM =
545 static_cast<const MipsTargetMachine &>(funcInfo.MF->getTarget());
547 // We support only the standard encoding [MIPS32,MIPS32R5] ISAs.
548 bool UseFastISel = TM.Options.EnableFastISel && Subtarget.hasMips32() &&
549 !Subtarget.hasMips32r6() && !Subtarget.inMips16Mode() &&
550 !Subtarget.inMicroMipsMode();
552 // Disable if either of the following is true:
553 // We do not generate PIC, the ABI is not O32, XGOT is being used.
554 if (!TM.isPositionIndependent() || !TM.getABI().IsO32() ||
555 Subtarget.useXGOT())
556 UseFastISel = false;
558 return UseFastISel ? Mips::createFastISel(funcInfo, libInfo) : nullptr;
561 EVT MipsTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
562 EVT VT) const {
563 if (!VT.isVector())
564 return MVT::i32;
565 return VT.changeVectorElementTypeToInteger();
568 static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
569 TargetLowering::DAGCombinerInfo &DCI,
570 const MipsSubtarget &Subtarget) {
571 if (DCI.isBeforeLegalizeOps())
572 return SDValue();
574 EVT Ty = N->getValueType(0);
575 unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64;
576 unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64;
577 unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
578 MipsISD::DivRemU16;
579 SDLoc DL(N);
581 SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
582 N->getOperand(0), N->getOperand(1));
583 SDValue InChain = DAG.getEntryNode();
584 SDValue InGlue = DivRem;
586 // insert MFLO
587 if (N->hasAnyUseOfValue(0)) {
588 SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
589 InGlue);
590 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
591 InChain = CopyFromLo.getValue(1);
592 InGlue = CopyFromLo.getValue(2);
595 // insert MFHI
596 if (N->hasAnyUseOfValue(1)) {
597 SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
598 HI, Ty, InGlue);
599 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
602 return SDValue();
605 static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
606 switch (CC) {
607 default: llvm_unreachable("Unknown fp condition code!");
608 case ISD::SETEQ:
609 case ISD::SETOEQ: return Mips::FCOND_OEQ;
610 case ISD::SETUNE: return Mips::FCOND_UNE;
611 case ISD::SETLT:
612 case ISD::SETOLT: return Mips::FCOND_OLT;
613 case ISD::SETGT:
614 case ISD::SETOGT: return Mips::FCOND_OGT;
615 case ISD::SETLE:
616 case ISD::SETOLE: return Mips::FCOND_OLE;
617 case ISD::SETGE:
618 case ISD::SETOGE: return Mips::FCOND_OGE;
619 case ISD::SETULT: return Mips::FCOND_ULT;
620 case ISD::SETULE: return Mips::FCOND_ULE;
621 case ISD::SETUGT: return Mips::FCOND_UGT;
622 case ISD::SETUGE: return Mips::FCOND_UGE;
623 case ISD::SETUO: return Mips::FCOND_UN;
624 case ISD::SETO: return Mips::FCOND_OR;
625 case ISD::SETNE:
626 case ISD::SETONE: return Mips::FCOND_ONE;
627 case ISD::SETUEQ: return Mips::FCOND_UEQ;
631 /// This function returns true if the floating point conditional branches and
632 /// conditional moves which use condition code CC should be inverted.
633 static bool invertFPCondCodeUser(Mips::CondCode CC) {
634 if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
635 return false;
637 assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
638 "Illegal Condition Code");
640 return true;
643 // Creates and returns an FPCmp node from a setcc node.
644 // Returns Op if setcc is not a floating point comparison.
645 static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
646 // must be a SETCC node
647 if (Op.getOpcode() != ISD::SETCC)
648 return Op;
650 SDValue LHS = Op.getOperand(0);
652 if (!LHS.getValueType().isFloatingPoint())
653 return Op;
655 SDValue RHS = Op.getOperand(1);
656 SDLoc DL(Op);
658 // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
659 // node if necessary.
660 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
662 return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
663 DAG.getConstant(condCodeToFCC(CC), DL, MVT::i32));
666 // Creates and returns a CMovFPT/F node.
667 static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
668 SDValue False, const SDLoc &DL) {
669 ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
670 bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
671 SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
673 return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
674 True.getValueType(), True, FCC0, False, Cond);
677 static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
678 TargetLowering::DAGCombinerInfo &DCI,
679 const MipsSubtarget &Subtarget) {
680 if (DCI.isBeforeLegalizeOps())
681 return SDValue();
683 SDValue SetCC = N->getOperand(0);
685 if ((SetCC.getOpcode() != ISD::SETCC) ||
686 !SetCC.getOperand(0).getValueType().isInteger())
687 return SDValue();
689 SDValue False = N->getOperand(2);
690 EVT FalseTy = False.getValueType();
692 if (!FalseTy.isInteger())
693 return SDValue();
695 ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(False);
697 // If the RHS (False) is 0, we swap the order of the operands
698 // of ISD::SELECT (obviously also inverting the condition) so that we can
699 // take advantage of conditional moves using the $0 register.
700 // Example:
701 // return (a != 0) ? x : 0;
702 // load $reg, x
703 // movz $reg, $0, a
704 if (!FalseC)
705 return SDValue();
707 const SDLoc DL(N);
709 if (!FalseC->getZExtValue()) {
710 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
711 SDValue True = N->getOperand(1);
713 SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
714 SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
716 return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
719 // If both operands are integer constants there's a possibility that we
720 // can do some interesting optimizations.
721 SDValue True = N->getOperand(1);
722 ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(True);
724 if (!TrueC || !True.getValueType().isInteger())
725 return SDValue();
727 // We'll also ignore MVT::i64 operands as this optimizations proves
728 // to be ineffective because of the required sign extensions as the result
729 // of a SETCC operator is always MVT::i32 for non-vector types.
730 if (True.getValueType() == MVT::i64)
731 return SDValue();
733 int64_t Diff = TrueC->getSExtValue() - FalseC->getSExtValue();
735 // 1) (a < x) ? y : y-1
736 // slti $reg1, a, x
737 // addiu $reg2, $reg1, y-1
738 if (Diff == 1)
739 return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, False);
741 // 2) (a < x) ? y-1 : y
742 // slti $reg1, a, x
743 // xor $reg1, $reg1, 1
744 // addiu $reg2, $reg1, y-1
745 if (Diff == -1) {
746 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
747 SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
748 SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
749 return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, True);
752 // Could not optimize.
753 return SDValue();
756 static SDValue performCMovFPCombine(SDNode *N, SelectionDAG &DAG,
757 TargetLowering::DAGCombinerInfo &DCI,
758 const MipsSubtarget &Subtarget) {
759 if (DCI.isBeforeLegalizeOps())
760 return SDValue();
762 SDValue ValueIfTrue = N->getOperand(0), ValueIfFalse = N->getOperand(2);
764 ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(ValueIfFalse);
765 if (!FalseC || FalseC->getZExtValue())
766 return SDValue();
768 // Since RHS (False) is 0, we swap the order of the True/False operands
769 // (obviously also inverting the condition) so that we can
770 // take advantage of conditional moves using the $0 register.
771 // Example:
772 // return (a != 0) ? x : 0;
773 // load $reg, x
774 // movz $reg, $0, a
775 unsigned Opc = (N->getOpcode() == MipsISD::CMovFP_T) ? MipsISD::CMovFP_F :
776 MipsISD::CMovFP_T;
778 SDValue FCC = N->getOperand(1), Glue = N->getOperand(3);
779 return DAG.getNode(Opc, SDLoc(N), ValueIfFalse.getValueType(),
780 ValueIfFalse, FCC, ValueIfTrue, Glue);
783 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
784 TargetLowering::DAGCombinerInfo &DCI,
785 const MipsSubtarget &Subtarget) {
786 if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
787 return SDValue();
789 SDValue FirstOperand = N->getOperand(0);
790 unsigned FirstOperandOpc = FirstOperand.getOpcode();
791 SDValue Mask = N->getOperand(1);
792 EVT ValTy = N->getValueType(0);
793 SDLoc DL(N);
795 uint64_t Pos = 0, SMPos, SMSize;
796 ConstantSDNode *CN;
797 SDValue NewOperand;
798 unsigned Opc;
800 // Op's second operand must be a shifted mask.
801 if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
802 !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
803 return SDValue();
805 if (FirstOperandOpc == ISD::SRA || FirstOperandOpc == ISD::SRL) {
806 // Pattern match EXT.
807 // $dst = and ((sra or srl) $src , pos), (2**size - 1)
808 // => ext $dst, $src, pos, size
810 // The second operand of the shift must be an immediate.
811 if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))))
812 return SDValue();
814 Pos = CN->getZExtValue();
816 // Return if the shifted mask does not start at bit 0 or the sum of its size
817 // and Pos exceeds the word's size.
818 if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
819 return SDValue();
821 Opc = MipsISD::Ext;
822 NewOperand = FirstOperand.getOperand(0);
823 } else if (FirstOperandOpc == ISD::SHL && Subtarget.hasCnMips()) {
824 // Pattern match CINS.
825 // $dst = and (shl $src , pos), mask
826 // => cins $dst, $src, pos, size
827 // mask is a shifted mask with consecutive 1's, pos = shift amount,
828 // size = population count.
830 // The second operand of the shift must be an immediate.
831 if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))))
832 return SDValue();
834 Pos = CN->getZExtValue();
836 if (SMPos != Pos || Pos >= ValTy.getSizeInBits() || SMSize >= 32 ||
837 Pos + SMSize > ValTy.getSizeInBits())
838 return SDValue();
840 NewOperand = FirstOperand.getOperand(0);
841 // SMSize is 'location' (position) in this case, not size.
842 SMSize--;
843 Opc = MipsISD::CIns;
844 } else {
845 // Pattern match EXT.
846 // $dst = and $src, (2**size - 1) , if size > 16
847 // => ext $dst, $src, pos, size , pos = 0
849 // If the mask is <= 0xffff, andi can be used instead.
850 if (CN->getZExtValue() <= 0xffff)
851 return SDValue();
853 // Return if the mask doesn't start at position 0.
854 if (SMPos)
855 return SDValue();
857 Opc = MipsISD::Ext;
858 NewOperand = FirstOperand;
860 return DAG.getNode(Opc, DL, ValTy, NewOperand,
861 DAG.getConstant(Pos, DL, MVT::i32),
862 DAG.getConstant(SMSize, DL, MVT::i32));
865 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
866 TargetLowering::DAGCombinerInfo &DCI,
867 const MipsSubtarget &Subtarget) {
868 // Pattern match INS.
869 // $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
870 // where mask1 = (2**size - 1) << pos, mask0 = ~mask1
871 // => ins $dst, $src, size, pos, $src1
872 if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
873 return SDValue();
875 SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
876 uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
877 ConstantSDNode *CN, *CN1;
879 // See if Op's first operand matches (and $src1 , mask0).
880 if (And0.getOpcode() != ISD::AND)
881 return SDValue();
883 if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
884 !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
885 return SDValue();
887 // See if Op's second operand matches (and (shl $src, pos), mask1).
888 if (And1.getOpcode() == ISD::AND &&
889 And1.getOperand(0).getOpcode() == ISD::SHL) {
891 if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
892 !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
893 return SDValue();
895 // The shift masks must have the same position and size.
896 if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
897 return SDValue();
899 SDValue Shl = And1.getOperand(0);
901 if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
902 return SDValue();
904 unsigned Shamt = CN->getZExtValue();
906 // Return if the shift amount and the first bit position of mask are not the
907 // same.
908 EVT ValTy = N->getValueType(0);
909 if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
910 return SDValue();
912 SDLoc DL(N);
913 return DAG.getNode(MipsISD::Ins, DL, ValTy, Shl.getOperand(0),
914 DAG.getConstant(SMPos0, DL, MVT::i32),
915 DAG.getConstant(SMSize0, DL, MVT::i32),
916 And0.getOperand(0));
917 } else {
918 // Pattern match DINS.
919 // $dst = or (and $src, mask0), mask1
920 // where mask0 = ((1 << SMSize0) -1) << SMPos0
921 // => dins $dst, $src, pos, size
922 if (~CN->getSExtValue() == ((((int64_t)1 << SMSize0) - 1) << SMPos0) &&
923 ((SMSize0 + SMPos0 <= 64 && Subtarget.hasMips64r2()) ||
924 (SMSize0 + SMPos0 <= 32))) {
925 // Check if AND instruction has constant as argument
926 bool isConstCase = And1.getOpcode() != ISD::AND;
927 if (And1.getOpcode() == ISD::AND) {
928 if (!(CN1 = dyn_cast<ConstantSDNode>(And1->getOperand(1))))
929 return SDValue();
930 } else {
931 if (!(CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1))))
932 return SDValue();
934 // Don't generate INS if constant OR operand doesn't fit into bits
935 // cleared by constant AND operand.
936 if (CN->getSExtValue() & CN1->getSExtValue())
937 return SDValue();
939 SDLoc DL(N);
940 EVT ValTy = N->getOperand(0)->getValueType(0);
941 SDValue Const1;
942 SDValue SrlX;
943 if (!isConstCase) {
944 Const1 = DAG.getConstant(SMPos0, DL, MVT::i32);
945 SrlX = DAG.getNode(ISD::SRL, DL, And1->getValueType(0), And1, Const1);
947 return DAG.getNode(
948 MipsISD::Ins, DL, N->getValueType(0),
949 isConstCase
950 ? DAG.getConstant(CN1->getSExtValue() >> SMPos0, DL, ValTy)
951 : SrlX,
952 DAG.getConstant(SMPos0, DL, MVT::i32),
953 DAG.getConstant(ValTy.getSizeInBits() / 8 < 8 ? SMSize0 & 31
954 : SMSize0,
955 DL, MVT::i32),
956 And0->getOperand(0));
959 return SDValue();
963 static SDValue performMADD_MSUBCombine(SDNode *ROOTNode, SelectionDAG &CurDAG,
964 const MipsSubtarget &Subtarget) {
965 // ROOTNode must have a multiplication as an operand for the match to be
966 // successful.
967 if (ROOTNode->getOperand(0).getOpcode() != ISD::MUL &&
968 ROOTNode->getOperand(1).getOpcode() != ISD::MUL)
969 return SDValue();
971 // We don't handle vector types here.
972 if (ROOTNode->getValueType(0).isVector())
973 return SDValue();
975 // For MIPS64, madd / msub instructions are inefficent to use with 64 bit
976 // arithmetic. E.g.
977 // (add (mul a b) c) =>
978 // let res = (madd (mthi (drotr c 32))x(mtlo c) a b) in
979 // MIPS64: (or (dsll (mfhi res) 32) (dsrl (dsll (mflo res) 32) 32)
980 // or
981 // MIPS64R2: (dins (mflo res) (mfhi res) 32 32)
983 // The overhead of setting up the Hi/Lo registers and reassembling the
984 // result makes this a dubious optimzation for MIPS64. The core of the
985 // problem is that Hi/Lo contain the upper and lower 32 bits of the
986 // operand and result.
988 // It requires a chain of 4 add/mul for MIPS64R2 to get better code
989 // density than doing it naively, 5 for MIPS64. Additionally, using
990 // madd/msub on MIPS64 requires the operands actually be 32 bit sign
991 // extended operands, not true 64 bit values.
993 // FIXME: For the moment, disable this completely for MIPS64.
994 if (Subtarget.hasMips64())
995 return SDValue();
997 SDValue Mult = ROOTNode->getOperand(0).getOpcode() == ISD::MUL
998 ? ROOTNode->getOperand(0)
999 : ROOTNode->getOperand(1);
1001 SDValue AddOperand = ROOTNode->getOperand(0).getOpcode() == ISD::MUL
1002 ? ROOTNode->getOperand(1)
1003 : ROOTNode->getOperand(0);
1005 // Transform this to a MADD only if the user of this node is the add.
1006 // If there are other users of the mul, this function returns here.
1007 if (!Mult.hasOneUse())
1008 return SDValue();
1010 // maddu and madd are unusual instructions in that on MIPS64 bits 63..31
1011 // must be in canonical form, i.e. sign extended. For MIPS32, the operands
1012 // of the multiply must have 32 or more sign bits, otherwise we cannot
1013 // perform this optimization. We have to check this here as we're performing
1014 // this optimization pre-legalization.
1015 SDValue MultLHS = Mult->getOperand(0);
1016 SDValue MultRHS = Mult->getOperand(1);
1018 bool IsSigned = MultLHS->getOpcode() == ISD::SIGN_EXTEND &&
1019 MultRHS->getOpcode() == ISD::SIGN_EXTEND;
1020 bool IsUnsigned = MultLHS->getOpcode() == ISD::ZERO_EXTEND &&
1021 MultRHS->getOpcode() == ISD::ZERO_EXTEND;
1023 if (!IsSigned && !IsUnsigned)
1024 return SDValue();
1026 // Initialize accumulator.
1027 SDLoc DL(ROOTNode);
1028 SDValue TopHalf;
1029 SDValue BottomHalf;
1030 BottomHalf = CurDAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, AddOperand,
1031 CurDAG.getIntPtrConstant(0, DL));
1033 TopHalf = CurDAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, AddOperand,
1034 CurDAG.getIntPtrConstant(1, DL));
1035 SDValue ACCIn = CurDAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
1036 BottomHalf,
1037 TopHalf);
1039 // Create MipsMAdd(u) / MipsMSub(u) node.
1040 bool IsAdd = ROOTNode->getOpcode() == ISD::ADD;
1041 unsigned Opcode = IsAdd ? (IsUnsigned ? MipsISD::MAddu : MipsISD::MAdd)
1042 : (IsUnsigned ? MipsISD::MSubu : MipsISD::MSub);
1043 SDValue MAddOps[3] = {
1044 CurDAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mult->getOperand(0)),
1045 CurDAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mult->getOperand(1)), ACCIn};
1046 EVT VTs[2] = {MVT::i32, MVT::i32};
1047 SDValue MAdd = CurDAG.getNode(Opcode, DL, VTs, MAddOps);
1049 SDValue ResLo = CurDAG.getNode(MipsISD::MFLO, DL, MVT::i32, MAdd);
1050 SDValue ResHi = CurDAG.getNode(MipsISD::MFHI, DL, MVT::i32, MAdd);
1051 SDValue Combined =
1052 CurDAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, ResLo, ResHi);
1053 return Combined;
1056 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG,
1057 TargetLowering::DAGCombinerInfo &DCI,
1058 const MipsSubtarget &Subtarget) {
1059 // (sub v0 (mul v1, v2)) => (msub v1, v2, v0)
1060 if (DCI.isBeforeLegalizeOps()) {
1061 if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() &&
1062 !Subtarget.inMips16Mode() && N->getValueType(0) == MVT::i64)
1063 return performMADD_MSUBCombine(N, DAG, Subtarget);
1065 return SDValue();
1068 return SDValue();
1071 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
1072 TargetLowering::DAGCombinerInfo &DCI,
1073 const MipsSubtarget &Subtarget) {
1074 // (add v0 (mul v1, v2)) => (madd v1, v2, v0)
1075 if (DCI.isBeforeLegalizeOps()) {
1076 if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() &&
1077 !Subtarget.inMips16Mode() && N->getValueType(0) == MVT::i64)
1078 return performMADD_MSUBCombine(N, DAG, Subtarget);
1080 return SDValue();
1083 // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
1084 SDValue Add = N->getOperand(1);
1086 if (Add.getOpcode() != ISD::ADD)
1087 return SDValue();
1089 SDValue Lo = Add.getOperand(1);
1091 if ((Lo.getOpcode() != MipsISD::Lo) ||
1092 (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
1093 return SDValue();
1095 EVT ValTy = N->getValueType(0);
1096 SDLoc DL(N);
1098 SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
1099 Add.getOperand(0));
1100 return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
1103 static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG,
1104 TargetLowering::DAGCombinerInfo &DCI,
1105 const MipsSubtarget &Subtarget) {
1106 // Pattern match CINS.
1107 // $dst = shl (and $src , imm), pos
1108 // => cins $dst, $src, pos, size
1110 if (DCI.isBeforeLegalizeOps() || !Subtarget.hasCnMips())
1111 return SDValue();
1113 SDValue FirstOperand = N->getOperand(0);
1114 unsigned FirstOperandOpc = FirstOperand.getOpcode();
1115 SDValue SecondOperand = N->getOperand(1);
1116 EVT ValTy = N->getValueType(0);
1117 SDLoc DL(N);
1119 uint64_t Pos = 0, SMPos, SMSize;
1120 ConstantSDNode *CN;
1121 SDValue NewOperand;
1123 // The second operand of the shift must be an immediate.
1124 if (!(CN = dyn_cast<ConstantSDNode>(SecondOperand)))
1125 return SDValue();
1127 Pos = CN->getZExtValue();
1129 if (Pos >= ValTy.getSizeInBits())
1130 return SDValue();
1132 if (FirstOperandOpc != ISD::AND)
1133 return SDValue();
1135 // AND's second operand must be a shifted mask.
1136 if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))) ||
1137 !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
1138 return SDValue();
1140 // Return if the shifted mask does not start at bit 0 or the sum of its size
1141 // and Pos exceeds the word's size.
1142 if (SMPos != 0 || SMSize > 32 || Pos + SMSize > ValTy.getSizeInBits())
1143 return SDValue();
1145 NewOperand = FirstOperand.getOperand(0);
1146 // SMSize is 'location' (position) in this case, not size.
1147 SMSize--;
1149 return DAG.getNode(MipsISD::CIns, DL, ValTy, NewOperand,
1150 DAG.getConstant(Pos, DL, MVT::i32),
1151 DAG.getConstant(SMSize, DL, MVT::i32));
1154 SDValue MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
1155 const {
1156 SelectionDAG &DAG = DCI.DAG;
1157 unsigned Opc = N->getOpcode();
1159 switch (Opc) {
1160 default: break;
1161 case ISD::SDIVREM:
1162 case ISD::UDIVREM:
1163 return performDivRemCombine(N, DAG, DCI, Subtarget);
1164 case ISD::SELECT:
1165 return performSELECTCombine(N, DAG, DCI, Subtarget);
1166 case MipsISD::CMovFP_F:
1167 case MipsISD::CMovFP_T:
1168 return performCMovFPCombine(N, DAG, DCI, Subtarget);
1169 case ISD::AND:
1170 return performANDCombine(N, DAG, DCI, Subtarget);
1171 case ISD::OR:
1172 return performORCombine(N, DAG, DCI, Subtarget);
1173 case ISD::ADD:
1174 return performADDCombine(N, DAG, DCI, Subtarget);
1175 case ISD::SHL:
1176 return performSHLCombine(N, DAG, DCI, Subtarget);
1177 case ISD::SUB:
1178 return performSUBCombine(N, DAG, DCI, Subtarget);
1181 return SDValue();
1184 bool MipsTargetLowering::isCheapToSpeculateCttz() const {
1185 return Subtarget.hasMips32();
1188 bool MipsTargetLowering::isCheapToSpeculateCtlz() const {
1189 return Subtarget.hasMips32();
1192 bool MipsTargetLowering::shouldFoldConstantShiftPairToMask(
1193 const SDNode *N, CombineLevel Level) const {
1194 if (N->getOperand(0).getValueType().isVector())
1195 return false;
1196 return true;
1199 void
1200 MipsTargetLowering::LowerOperationWrapper(SDNode *N,
1201 SmallVectorImpl<SDValue> &Results,
1202 SelectionDAG &DAG) const {
1203 SDValue Res = LowerOperation(SDValue(N, 0), DAG);
1205 if (Res)
1206 for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
1207 Results.push_back(Res.getValue(I));
1210 void
1211 MipsTargetLowering::ReplaceNodeResults(SDNode *N,
1212 SmallVectorImpl<SDValue> &Results,
1213 SelectionDAG &DAG) const {
1214 return LowerOperationWrapper(N, Results, DAG);
1217 SDValue MipsTargetLowering::
1218 LowerOperation(SDValue Op, SelectionDAG &DAG) const
1220 switch (Op.getOpcode())
1222 case ISD::BRCOND: return lowerBRCOND(Op, DAG);
1223 case ISD::ConstantPool: return lowerConstantPool(Op, DAG);
1224 case ISD::GlobalAddress: return lowerGlobalAddress(Op, DAG);
1225 case ISD::BlockAddress: return lowerBlockAddress(Op, DAG);
1226 case ISD::GlobalTLSAddress: return lowerGlobalTLSAddress(Op, DAG);
1227 case ISD::JumpTable: return lowerJumpTable(Op, DAG);
1228 case ISD::SELECT: return lowerSELECT(Op, DAG);
1229 case ISD::SETCC: return lowerSETCC(Op, DAG);
1230 case ISD::VASTART: return lowerVASTART(Op, DAG);
1231 case ISD::VAARG: return lowerVAARG(Op, DAG);
1232 case ISD::FCOPYSIGN: return lowerFCOPYSIGN(Op, DAG);
1233 case ISD::FABS: return lowerFABS(Op, DAG);
1234 case ISD::FRAMEADDR: return lowerFRAMEADDR(Op, DAG);
1235 case ISD::RETURNADDR: return lowerRETURNADDR(Op, DAG);
1236 case ISD::EH_RETURN: return lowerEH_RETURN(Op, DAG);
1237 case ISD::ATOMIC_FENCE: return lowerATOMIC_FENCE(Op, DAG);
1238 case ISD::SHL_PARTS: return lowerShiftLeftParts(Op, DAG);
1239 case ISD::SRA_PARTS: return lowerShiftRightParts(Op, DAG, true);
1240 case ISD::SRL_PARTS: return lowerShiftRightParts(Op, DAG, false);
1241 case ISD::LOAD: return lowerLOAD(Op, DAG);
1242 case ISD::STORE: return lowerSTORE(Op, DAG);
1243 case ISD::EH_DWARF_CFA: return lowerEH_DWARF_CFA(Op, DAG);
1244 case ISD::FP_TO_SINT: return lowerFP_TO_SINT(Op, DAG);
1246 return SDValue();
1249 //===----------------------------------------------------------------------===//
1250 // Lower helper functions
1251 //===----------------------------------------------------------------------===//
1253 // addLiveIn - This helper function adds the specified physical register to the
1254 // MachineFunction as a live in value. It also creates a corresponding
1255 // virtual register for it.
1256 static unsigned
1257 addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
1259 Register VReg = MF.getRegInfo().createVirtualRegister(RC);
1260 MF.getRegInfo().addLiveIn(PReg, VReg);
1261 return VReg;
1264 static MachineBasicBlock *insertDivByZeroTrap(MachineInstr &MI,
1265 MachineBasicBlock &MBB,
1266 const TargetInstrInfo &TII,
1267 bool Is64Bit, bool IsMicroMips) {
1268 if (NoZeroDivCheck)
1269 return &MBB;
1271 // Insert instruction "teq $divisor_reg, $zero, 7".
1272 MachineBasicBlock::iterator I(MI);
1273 MachineInstrBuilder MIB;
1274 MachineOperand &Divisor = MI.getOperand(2);
1275 MIB = BuildMI(MBB, std::next(I), MI.getDebugLoc(),
1276 TII.get(IsMicroMips ? Mips::TEQ_MM : Mips::TEQ))
1277 .addReg(Divisor.getReg(), getKillRegState(Divisor.isKill()))
1278 .addReg(Mips::ZERO)
1279 .addImm(7);
1281 // Use the 32-bit sub-register if this is a 64-bit division.
1282 if (Is64Bit)
1283 MIB->getOperand(0).setSubReg(Mips::sub_32);
1285 // Clear Divisor's kill flag.
1286 Divisor.setIsKill(false);
1288 // We would normally delete the original instruction here but in this case
1289 // we only needed to inject an additional instruction rather than replace it.
1291 return &MBB;
1294 MachineBasicBlock *
1295 MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1296 MachineBasicBlock *BB) const {
1297 switch (MI.getOpcode()) {
1298 default:
1299 llvm_unreachable("Unexpected instr type to insert");
1300 case Mips::ATOMIC_LOAD_ADD_I8:
1301 return emitAtomicBinaryPartword(MI, BB, 1);
1302 case Mips::ATOMIC_LOAD_ADD_I16:
1303 return emitAtomicBinaryPartword(MI, BB, 2);
1304 case Mips::ATOMIC_LOAD_ADD_I32:
1305 return emitAtomicBinary(MI, BB);
1306 case Mips::ATOMIC_LOAD_ADD_I64:
1307 return emitAtomicBinary(MI, BB);
1309 case Mips::ATOMIC_LOAD_AND_I8:
1310 return emitAtomicBinaryPartword(MI, BB, 1);
1311 case Mips::ATOMIC_LOAD_AND_I16:
1312 return emitAtomicBinaryPartword(MI, BB, 2);
1313 case Mips::ATOMIC_LOAD_AND_I32:
1314 return emitAtomicBinary(MI, BB);
1315 case Mips::ATOMIC_LOAD_AND_I64:
1316 return emitAtomicBinary(MI, BB);
1318 case Mips::ATOMIC_LOAD_OR_I8:
1319 return emitAtomicBinaryPartword(MI, BB, 1);
1320 case Mips::ATOMIC_LOAD_OR_I16:
1321 return emitAtomicBinaryPartword(MI, BB, 2);
1322 case Mips::ATOMIC_LOAD_OR_I32:
1323 return emitAtomicBinary(MI, BB);
1324 case Mips::ATOMIC_LOAD_OR_I64:
1325 return emitAtomicBinary(MI, BB);
1327 case Mips::ATOMIC_LOAD_XOR_I8:
1328 return emitAtomicBinaryPartword(MI, BB, 1);
1329 case Mips::ATOMIC_LOAD_XOR_I16:
1330 return emitAtomicBinaryPartword(MI, BB, 2);
1331 case Mips::ATOMIC_LOAD_XOR_I32:
1332 return emitAtomicBinary(MI, BB);
1333 case Mips::ATOMIC_LOAD_XOR_I64:
1334 return emitAtomicBinary(MI, BB);
1336 case Mips::ATOMIC_LOAD_NAND_I8:
1337 return emitAtomicBinaryPartword(MI, BB, 1);
1338 case Mips::ATOMIC_LOAD_NAND_I16:
1339 return emitAtomicBinaryPartword(MI, BB, 2);
1340 case Mips::ATOMIC_LOAD_NAND_I32:
1341 return emitAtomicBinary(MI, BB);
1342 case Mips::ATOMIC_LOAD_NAND_I64:
1343 return emitAtomicBinary(MI, BB);
1345 case Mips::ATOMIC_LOAD_SUB_I8:
1346 return emitAtomicBinaryPartword(MI, BB, 1);
1347 case Mips::ATOMIC_LOAD_SUB_I16:
1348 return emitAtomicBinaryPartword(MI, BB, 2);
1349 case Mips::ATOMIC_LOAD_SUB_I32:
1350 return emitAtomicBinary(MI, BB);
1351 case Mips::ATOMIC_LOAD_SUB_I64:
1352 return emitAtomicBinary(MI, BB);
1354 case Mips::ATOMIC_SWAP_I8:
1355 return emitAtomicBinaryPartword(MI, BB, 1);
1356 case Mips::ATOMIC_SWAP_I16:
1357 return emitAtomicBinaryPartword(MI, BB, 2);
1358 case Mips::ATOMIC_SWAP_I32:
1359 return emitAtomicBinary(MI, BB);
1360 case Mips::ATOMIC_SWAP_I64:
1361 return emitAtomicBinary(MI, BB);
1363 case Mips::ATOMIC_CMP_SWAP_I8:
1364 return emitAtomicCmpSwapPartword(MI, BB, 1);
1365 case Mips::ATOMIC_CMP_SWAP_I16:
1366 return emitAtomicCmpSwapPartword(MI, BB, 2);
1367 case Mips::ATOMIC_CMP_SWAP_I32:
1368 return emitAtomicCmpSwap(MI, BB);
1369 case Mips::ATOMIC_CMP_SWAP_I64:
1370 return emitAtomicCmpSwap(MI, BB);
1371 case Mips::PseudoSDIV:
1372 case Mips::PseudoUDIV:
1373 case Mips::DIV:
1374 case Mips::DIVU:
1375 case Mips::MOD:
1376 case Mips::MODU:
1377 return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false,
1378 false);
1379 case Mips::SDIV_MM_Pseudo:
1380 case Mips::UDIV_MM_Pseudo:
1381 case Mips::SDIV_MM:
1382 case Mips::UDIV_MM:
1383 case Mips::DIV_MMR6:
1384 case Mips::DIVU_MMR6:
1385 case Mips::MOD_MMR6:
1386 case Mips::MODU_MMR6:
1387 return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false, true);
1388 case Mips::PseudoDSDIV:
1389 case Mips::PseudoDUDIV:
1390 case Mips::DDIV:
1391 case Mips::DDIVU:
1392 case Mips::DMOD:
1393 case Mips::DMODU:
1394 return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), true, false);
1396 case Mips::PseudoSELECT_I:
1397 case Mips::PseudoSELECT_I64:
1398 case Mips::PseudoSELECT_S:
1399 case Mips::PseudoSELECT_D32:
1400 case Mips::PseudoSELECT_D64:
1401 return emitPseudoSELECT(MI, BB, false, Mips::BNE);
1402 case Mips::PseudoSELECTFP_F_I:
1403 case Mips::PseudoSELECTFP_F_I64:
1404 case Mips::PseudoSELECTFP_F_S:
1405 case Mips::PseudoSELECTFP_F_D32:
1406 case Mips::PseudoSELECTFP_F_D64:
1407 return emitPseudoSELECT(MI, BB, true, Mips::BC1F);
1408 case Mips::PseudoSELECTFP_T_I:
1409 case Mips::PseudoSELECTFP_T_I64:
1410 case Mips::PseudoSELECTFP_T_S:
1411 case Mips::PseudoSELECTFP_T_D32:
1412 case Mips::PseudoSELECTFP_T_D64:
1413 return emitPseudoSELECT(MI, BB, true, Mips::BC1T);
1414 case Mips::PseudoD_SELECT_I:
1415 case Mips::PseudoD_SELECT_I64:
1416 return emitPseudoD_SELECT(MI, BB);
1420 // This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
1421 // Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
1422 MachineBasicBlock *
1423 MipsTargetLowering::emitAtomicBinary(MachineInstr &MI,
1424 MachineBasicBlock *BB) const {
1426 MachineFunction *MF = BB->getParent();
1427 MachineRegisterInfo &RegInfo = MF->getRegInfo();
1428 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1429 DebugLoc DL = MI.getDebugLoc();
1431 unsigned AtomicOp;
1432 switch (MI.getOpcode()) {
1433 case Mips::ATOMIC_LOAD_ADD_I32:
1434 AtomicOp = Mips::ATOMIC_LOAD_ADD_I32_POSTRA;
1435 break;
1436 case Mips::ATOMIC_LOAD_SUB_I32:
1437 AtomicOp = Mips::ATOMIC_LOAD_SUB_I32_POSTRA;
1438 break;
1439 case Mips::ATOMIC_LOAD_AND_I32:
1440 AtomicOp = Mips::ATOMIC_LOAD_AND_I32_POSTRA;
1441 break;
1442 case Mips::ATOMIC_LOAD_OR_I32:
1443 AtomicOp = Mips::ATOMIC_LOAD_OR_I32_POSTRA;
1444 break;
1445 case Mips::ATOMIC_LOAD_XOR_I32:
1446 AtomicOp = Mips::ATOMIC_LOAD_XOR_I32_POSTRA;
1447 break;
1448 case Mips::ATOMIC_LOAD_NAND_I32:
1449 AtomicOp = Mips::ATOMIC_LOAD_NAND_I32_POSTRA;
1450 break;
1451 case Mips::ATOMIC_SWAP_I32:
1452 AtomicOp = Mips::ATOMIC_SWAP_I32_POSTRA;
1453 break;
1454 case Mips::ATOMIC_LOAD_ADD_I64:
1455 AtomicOp = Mips::ATOMIC_LOAD_ADD_I64_POSTRA;
1456 break;
1457 case Mips::ATOMIC_LOAD_SUB_I64:
1458 AtomicOp = Mips::ATOMIC_LOAD_SUB_I64_POSTRA;
1459 break;
1460 case Mips::ATOMIC_LOAD_AND_I64:
1461 AtomicOp = Mips::ATOMIC_LOAD_AND_I64_POSTRA;
1462 break;
1463 case Mips::ATOMIC_LOAD_OR_I64:
1464 AtomicOp = Mips::ATOMIC_LOAD_OR_I64_POSTRA;
1465 break;
1466 case Mips::ATOMIC_LOAD_XOR_I64:
1467 AtomicOp = Mips::ATOMIC_LOAD_XOR_I64_POSTRA;
1468 break;
1469 case Mips::ATOMIC_LOAD_NAND_I64:
1470 AtomicOp = Mips::ATOMIC_LOAD_NAND_I64_POSTRA;
1471 break;
1472 case Mips::ATOMIC_SWAP_I64:
1473 AtomicOp = Mips::ATOMIC_SWAP_I64_POSTRA;
1474 break;
1475 default:
1476 llvm_unreachable("Unknown pseudo atomic for replacement!");
1479 Register OldVal = MI.getOperand(0).getReg();
1480 Register Ptr = MI.getOperand(1).getReg();
1481 Register Incr = MI.getOperand(2).getReg();
1482 Register Scratch = RegInfo.createVirtualRegister(RegInfo.getRegClass(OldVal));
1484 MachineBasicBlock::iterator II(MI);
1486 // The scratch registers here with the EarlyClobber | Define | Implicit
1487 // flags is used to persuade the register allocator and the machine
1488 // verifier to accept the usage of this register. This has to be a real
1489 // register which has an UNDEF value but is dead after the instruction which
1490 // is unique among the registers chosen for the instruction.
1492 // The EarlyClobber flag has the semantic properties that the operand it is
1493 // attached to is clobbered before the rest of the inputs are read. Hence it
1494 // must be unique among the operands to the instruction.
1495 // The Define flag is needed to coerce the machine verifier that an Undef
1496 // value isn't a problem.
1497 // The Dead flag is needed as the value in scratch isn't used by any other
1498 // instruction. Kill isn't used as Dead is more precise.
1499 // The implicit flag is here due to the interaction between the other flags
1500 // and the machine verifier.
1502 // For correctness purpose, a new pseudo is introduced here. We need this
1503 // new pseudo, so that FastRegisterAllocator does not see an ll/sc sequence
1504 // that is spread over >1 basic blocks. A register allocator which
1505 // introduces (or any codegen infact) a store, can violate the expectations
1506 // of the hardware.
1508 // An atomic read-modify-write sequence starts with a linked load
1509 // instruction and ends with a store conditional instruction. The atomic
1510 // read-modify-write sequence fails if any of the following conditions
1511 // occur between the execution of ll and sc:
1512 // * A coherent store is completed by another process or coherent I/O
1513 // module into the block of synchronizable physical memory containing
1514 // the word. The size and alignment of the block is
1515 // implementation-dependent.
1516 // * A coherent store is executed between an LL and SC sequence on the
1517 // same processor to the block of synchornizable physical memory
1518 // containing the word.
1521 Register PtrCopy = RegInfo.createVirtualRegister(RegInfo.getRegClass(Ptr));
1522 Register IncrCopy = RegInfo.createVirtualRegister(RegInfo.getRegClass(Incr));
1524 BuildMI(*BB, II, DL, TII->get(Mips::COPY), IncrCopy).addReg(Incr);
1525 BuildMI(*BB, II, DL, TII->get(Mips::COPY), PtrCopy).addReg(Ptr);
1527 BuildMI(*BB, II, DL, TII->get(AtomicOp))
1528 .addReg(OldVal, RegState::Define | RegState::EarlyClobber)
1529 .addReg(PtrCopy)
1530 .addReg(IncrCopy)
1531 .addReg(Scratch, RegState::Define | RegState::EarlyClobber |
1532 RegState::Implicit | RegState::Dead);
1534 MI.eraseFromParent();
1536 return BB;
1539 MachineBasicBlock *MipsTargetLowering::emitSignExtendToI32InReg(
1540 MachineInstr &MI, MachineBasicBlock *BB, unsigned Size, unsigned DstReg,
1541 unsigned SrcReg) const {
1542 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1543 const DebugLoc &DL = MI.getDebugLoc();
1545 if (Subtarget.hasMips32r2() && Size == 1) {
1546 BuildMI(BB, DL, TII->get(Mips::SEB), DstReg).addReg(SrcReg);
1547 return BB;
1550 if (Subtarget.hasMips32r2() && Size == 2) {
1551 BuildMI(BB, DL, TII->get(Mips::SEH), DstReg).addReg(SrcReg);
1552 return BB;
1555 MachineFunction *MF = BB->getParent();
1556 MachineRegisterInfo &RegInfo = MF->getRegInfo();
1557 const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1558 Register ScrReg = RegInfo.createVirtualRegister(RC);
1560 assert(Size < 32);
1561 int64_t ShiftImm = 32 - (Size * 8);
1563 BuildMI(BB, DL, TII->get(Mips::SLL), ScrReg).addReg(SrcReg).addImm(ShiftImm);
1564 BuildMI(BB, DL, TII->get(Mips::SRA), DstReg).addReg(ScrReg).addImm(ShiftImm);
1566 return BB;
1569 MachineBasicBlock *MipsTargetLowering::emitAtomicBinaryPartword(
1570 MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const {
1571 assert((Size == 1 || Size == 2) &&
1572 "Unsupported size for EmitAtomicBinaryPartial.");
1574 MachineFunction *MF = BB->getParent();
1575 MachineRegisterInfo &RegInfo = MF->getRegInfo();
1576 const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1577 const bool ArePtrs64bit = ABI.ArePtrs64bit();
1578 const TargetRegisterClass *RCp =
1579 getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32);
1580 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1581 DebugLoc DL = MI.getDebugLoc();
1583 Register Dest = MI.getOperand(0).getReg();
1584 Register Ptr = MI.getOperand(1).getReg();
1585 Register Incr = MI.getOperand(2).getReg();
1587 Register AlignedAddr = RegInfo.createVirtualRegister(RCp);
1588 Register ShiftAmt = RegInfo.createVirtualRegister(RC);
1589 Register Mask = RegInfo.createVirtualRegister(RC);
1590 Register Mask2 = RegInfo.createVirtualRegister(RC);
1591 Register Incr2 = RegInfo.createVirtualRegister(RC);
1592 Register MaskLSB2 = RegInfo.createVirtualRegister(RCp);
1593 Register PtrLSB2 = RegInfo.createVirtualRegister(RC);
1594 Register MaskUpper = RegInfo.createVirtualRegister(RC);
1595 Register Scratch = RegInfo.createVirtualRegister(RC);
1596 Register Scratch2 = RegInfo.createVirtualRegister(RC);
1597 Register Scratch3 = RegInfo.createVirtualRegister(RC);
1599 unsigned AtomicOp = 0;
1600 switch (MI.getOpcode()) {
1601 case Mips::ATOMIC_LOAD_NAND_I8:
1602 AtomicOp = Mips::ATOMIC_LOAD_NAND_I8_POSTRA;
1603 break;
1604 case Mips::ATOMIC_LOAD_NAND_I16:
1605 AtomicOp = Mips::ATOMIC_LOAD_NAND_I16_POSTRA;
1606 break;
1607 case Mips::ATOMIC_SWAP_I8:
1608 AtomicOp = Mips::ATOMIC_SWAP_I8_POSTRA;
1609 break;
1610 case Mips::ATOMIC_SWAP_I16:
1611 AtomicOp = Mips::ATOMIC_SWAP_I16_POSTRA;
1612 break;
1613 case Mips::ATOMIC_LOAD_ADD_I8:
1614 AtomicOp = Mips::ATOMIC_LOAD_ADD_I8_POSTRA;
1615 break;
1616 case Mips::ATOMIC_LOAD_ADD_I16:
1617 AtomicOp = Mips::ATOMIC_LOAD_ADD_I16_POSTRA;
1618 break;
1619 case Mips::ATOMIC_LOAD_SUB_I8:
1620 AtomicOp = Mips::ATOMIC_LOAD_SUB_I8_POSTRA;
1621 break;
1622 case Mips::ATOMIC_LOAD_SUB_I16:
1623 AtomicOp = Mips::ATOMIC_LOAD_SUB_I16_POSTRA;
1624 break;
1625 case Mips::ATOMIC_LOAD_AND_I8:
1626 AtomicOp = Mips::ATOMIC_LOAD_AND_I8_POSTRA;
1627 break;
1628 case Mips::ATOMIC_LOAD_AND_I16:
1629 AtomicOp = Mips::ATOMIC_LOAD_AND_I16_POSTRA;
1630 break;
1631 case Mips::ATOMIC_LOAD_OR_I8:
1632 AtomicOp = Mips::ATOMIC_LOAD_OR_I8_POSTRA;
1633 break;
1634 case Mips::ATOMIC_LOAD_OR_I16:
1635 AtomicOp = Mips::ATOMIC_LOAD_OR_I16_POSTRA;
1636 break;
1637 case Mips::ATOMIC_LOAD_XOR_I8:
1638 AtomicOp = Mips::ATOMIC_LOAD_XOR_I8_POSTRA;
1639 break;
1640 case Mips::ATOMIC_LOAD_XOR_I16:
1641 AtomicOp = Mips::ATOMIC_LOAD_XOR_I16_POSTRA;
1642 break;
1643 default:
1644 llvm_unreachable("Unknown subword atomic pseudo for expansion!");
1647 // insert new blocks after the current block
1648 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1649 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1650 MachineFunction::iterator It = ++BB->getIterator();
1651 MF->insert(It, exitMBB);
1653 // Transfer the remainder of BB and its successor edges to exitMBB.
1654 exitMBB->splice(exitMBB->begin(), BB,
1655 std::next(MachineBasicBlock::iterator(MI)), BB->end());
1656 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1658 BB->addSuccessor(exitMBB, BranchProbability::getOne());
1660 // thisMBB:
1661 // addiu masklsb2,$0,-4 # 0xfffffffc
1662 // and alignedaddr,ptr,masklsb2
1663 // andi ptrlsb2,ptr,3
1664 // sll shiftamt,ptrlsb2,3
1665 // ori maskupper,$0,255 # 0xff
1666 // sll mask,maskupper,shiftamt
1667 // nor mask2,$0,mask
1668 // sll incr2,incr,shiftamt
1670 int64_t MaskImm = (Size == 1) ? 255 : 65535;
1671 BuildMI(BB, DL, TII->get(ABI.GetPtrAddiuOp()), MaskLSB2)
1672 .addReg(ABI.GetNullPtr()).addImm(-4);
1673 BuildMI(BB, DL, TII->get(ABI.GetPtrAndOp()), AlignedAddr)
1674 .addReg(Ptr).addReg(MaskLSB2);
1675 BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2)
1676 .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3);
1677 if (Subtarget.isLittle()) {
1678 BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1679 } else {
1680 Register Off = RegInfo.createVirtualRegister(RC);
1681 BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1682 .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1683 BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1685 BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1686 .addReg(Mips::ZERO).addImm(MaskImm);
1687 BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1688 .addReg(MaskUpper).addReg(ShiftAmt);
1689 BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1690 BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt);
1693 // The purposes of the flags on the scratch registers is explained in
1694 // emitAtomicBinary. In summary, we need a scratch register which is going to
1695 // be undef, that is unique among registers chosen for the instruction.
1697 BuildMI(BB, DL, TII->get(AtomicOp))
1698 .addReg(Dest, RegState::Define | RegState::EarlyClobber)
1699 .addReg(AlignedAddr)
1700 .addReg(Incr2)
1701 .addReg(Mask)
1702 .addReg(Mask2)
1703 .addReg(ShiftAmt)
1704 .addReg(Scratch, RegState::EarlyClobber | RegState::Define |
1705 RegState::Dead | RegState::Implicit)
1706 .addReg(Scratch2, RegState::EarlyClobber | RegState::Define |
1707 RegState::Dead | RegState::Implicit)
1708 .addReg(Scratch3, RegState::EarlyClobber | RegState::Define |
1709 RegState::Dead | RegState::Implicit);
1711 MI.eraseFromParent(); // The instruction is gone now.
1713 return exitMBB;
1716 // Lower atomic compare and swap to a pseudo instruction, taking care to
1717 // define a scratch register for the pseudo instruction's expansion. The
1718 // instruction is expanded after the register allocator as to prevent
1719 // the insertion of stores between the linked load and the store conditional.
1721 MachineBasicBlock *
1722 MipsTargetLowering::emitAtomicCmpSwap(MachineInstr &MI,
1723 MachineBasicBlock *BB) const {
1725 assert((MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 ||
1726 MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I64) &&
1727 "Unsupported atomic pseudo for EmitAtomicCmpSwap.");
1729 const unsigned Size = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 ? 4 : 8;
1731 MachineFunction *MF = BB->getParent();
1732 MachineRegisterInfo &MRI = MF->getRegInfo();
1733 const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1734 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1735 DebugLoc DL = MI.getDebugLoc();
1737 unsigned AtomicOp = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32
1738 ? Mips::ATOMIC_CMP_SWAP_I32_POSTRA
1739 : Mips::ATOMIC_CMP_SWAP_I64_POSTRA;
1740 Register Dest = MI.getOperand(0).getReg();
1741 Register Ptr = MI.getOperand(1).getReg();
1742 Register OldVal = MI.getOperand(2).getReg();
1743 Register NewVal = MI.getOperand(3).getReg();
1745 Register Scratch = MRI.createVirtualRegister(RC);
1746 MachineBasicBlock::iterator II(MI);
1748 // We need to create copies of the various registers and kill them at the
1749 // atomic pseudo. If the copies are not made, when the atomic is expanded
1750 // after fast register allocation, the spills will end up outside of the
1751 // blocks that their values are defined in, causing livein errors.
1753 Register PtrCopy = MRI.createVirtualRegister(MRI.getRegClass(Ptr));
1754 Register OldValCopy = MRI.createVirtualRegister(MRI.getRegClass(OldVal));
1755 Register NewValCopy = MRI.createVirtualRegister(MRI.getRegClass(NewVal));
1757 BuildMI(*BB, II, DL, TII->get(Mips::COPY), PtrCopy).addReg(Ptr);
1758 BuildMI(*BB, II, DL, TII->get(Mips::COPY), OldValCopy).addReg(OldVal);
1759 BuildMI(*BB, II, DL, TII->get(Mips::COPY), NewValCopy).addReg(NewVal);
1761 // The purposes of the flags on the scratch registers is explained in
1762 // emitAtomicBinary. In summary, we need a scratch register which is going to
1763 // be undef, that is unique among registers chosen for the instruction.
1765 BuildMI(*BB, II, DL, TII->get(AtomicOp))
1766 .addReg(Dest, RegState::Define | RegState::EarlyClobber)
1767 .addReg(PtrCopy, RegState::Kill)
1768 .addReg(OldValCopy, RegState::Kill)
1769 .addReg(NewValCopy, RegState::Kill)
1770 .addReg(Scratch, RegState::EarlyClobber | RegState::Define |
1771 RegState::Dead | RegState::Implicit);
1773 MI.eraseFromParent(); // The instruction is gone now.
1775 return BB;
1778 MachineBasicBlock *MipsTargetLowering::emitAtomicCmpSwapPartword(
1779 MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const {
1780 assert((Size == 1 || Size == 2) &&
1781 "Unsupported size for EmitAtomicCmpSwapPartial.");
1783 MachineFunction *MF = BB->getParent();
1784 MachineRegisterInfo &RegInfo = MF->getRegInfo();
1785 const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1786 const bool ArePtrs64bit = ABI.ArePtrs64bit();
1787 const TargetRegisterClass *RCp =
1788 getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32);
1789 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1790 DebugLoc DL = MI.getDebugLoc();
1792 Register Dest = MI.getOperand(0).getReg();
1793 Register Ptr = MI.getOperand(1).getReg();
1794 Register CmpVal = MI.getOperand(2).getReg();
1795 Register NewVal = MI.getOperand(3).getReg();
1797 Register AlignedAddr = RegInfo.createVirtualRegister(RCp);
1798 Register ShiftAmt = RegInfo.createVirtualRegister(RC);
1799 Register Mask = RegInfo.createVirtualRegister(RC);
1800 Register Mask2 = RegInfo.createVirtualRegister(RC);
1801 Register ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1802 Register ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1803 Register MaskLSB2 = RegInfo.createVirtualRegister(RCp);
1804 Register PtrLSB2 = RegInfo.createVirtualRegister(RC);
1805 Register MaskUpper = RegInfo.createVirtualRegister(RC);
1806 Register MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1807 Register MaskedNewVal = RegInfo.createVirtualRegister(RC);
1808 unsigned AtomicOp = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I8
1809 ? Mips::ATOMIC_CMP_SWAP_I8_POSTRA
1810 : Mips::ATOMIC_CMP_SWAP_I16_POSTRA;
1812 // The scratch registers here with the EarlyClobber | Define | Dead | Implicit
1813 // flags are used to coerce the register allocator and the machine verifier to
1814 // accept the usage of these registers.
1815 // The EarlyClobber flag has the semantic properties that the operand it is
1816 // attached to is clobbered before the rest of the inputs are read. Hence it
1817 // must be unique among the operands to the instruction.
1818 // The Define flag is needed to coerce the machine verifier that an Undef
1819 // value isn't a problem.
1820 // The Dead flag is needed as the value in scratch isn't used by any other
1821 // instruction. Kill isn't used as Dead is more precise.
1822 Register Scratch = RegInfo.createVirtualRegister(RC);
1823 Register Scratch2 = RegInfo.createVirtualRegister(RC);
1825 // insert new blocks after the current block
1826 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1827 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1828 MachineFunction::iterator It = ++BB->getIterator();
1829 MF->insert(It, exitMBB);
1831 // Transfer the remainder of BB and its successor edges to exitMBB.
1832 exitMBB->splice(exitMBB->begin(), BB,
1833 std::next(MachineBasicBlock::iterator(MI)), BB->end());
1834 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1836 BB->addSuccessor(exitMBB, BranchProbability::getOne());
1838 // thisMBB:
1839 // addiu masklsb2,$0,-4 # 0xfffffffc
1840 // and alignedaddr,ptr,masklsb2
1841 // andi ptrlsb2,ptr,3
1842 // xori ptrlsb2,ptrlsb2,3 # Only for BE
1843 // sll shiftamt,ptrlsb2,3
1844 // ori maskupper,$0,255 # 0xff
1845 // sll mask,maskupper,shiftamt
1846 // nor mask2,$0,mask
1847 // andi maskedcmpval,cmpval,255
1848 // sll shiftedcmpval,maskedcmpval,shiftamt
1849 // andi maskednewval,newval,255
1850 // sll shiftednewval,maskednewval,shiftamt
1851 int64_t MaskImm = (Size == 1) ? 255 : 65535;
1852 BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::DADDiu : Mips::ADDiu), MaskLSB2)
1853 .addReg(ABI.GetNullPtr()).addImm(-4);
1854 BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::AND64 : Mips::AND), AlignedAddr)
1855 .addReg(Ptr).addReg(MaskLSB2);
1856 BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2)
1857 .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3);
1858 if (Subtarget.isLittle()) {
1859 BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1860 } else {
1861 Register Off = RegInfo.createVirtualRegister(RC);
1862 BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1863 .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1864 BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1866 BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1867 .addReg(Mips::ZERO).addImm(MaskImm);
1868 BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1869 .addReg(MaskUpper).addReg(ShiftAmt);
1870 BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1871 BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
1872 .addReg(CmpVal).addImm(MaskImm);
1873 BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
1874 .addReg(MaskedCmpVal).addReg(ShiftAmt);
1875 BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
1876 .addReg(NewVal).addImm(MaskImm);
1877 BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
1878 .addReg(MaskedNewVal).addReg(ShiftAmt);
1880 // The purposes of the flags on the scratch registers are explained in
1881 // emitAtomicBinary. In summary, we need a scratch register which is going to
1882 // be undef, that is unique among the register chosen for the instruction.
1884 BuildMI(BB, DL, TII->get(AtomicOp))
1885 .addReg(Dest, RegState::Define | RegState::EarlyClobber)
1886 .addReg(AlignedAddr)
1887 .addReg(Mask)
1888 .addReg(ShiftedCmpVal)
1889 .addReg(Mask2)
1890 .addReg(ShiftedNewVal)
1891 .addReg(ShiftAmt)
1892 .addReg(Scratch, RegState::EarlyClobber | RegState::Define |
1893 RegState::Dead | RegState::Implicit)
1894 .addReg(Scratch2, RegState::EarlyClobber | RegState::Define |
1895 RegState::Dead | RegState::Implicit);
1897 MI.eraseFromParent(); // The instruction is gone now.
1899 return exitMBB;
1902 SDValue MipsTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
1903 // The first operand is the chain, the second is the condition, the third is
1904 // the block to branch to if the condition is true.
1905 SDValue Chain = Op.getOperand(0);
1906 SDValue Dest = Op.getOperand(2);
1907 SDLoc DL(Op);
1909 assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
1910 SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
1912 // Return if flag is not set by a floating point comparison.
1913 if (CondRes.getOpcode() != MipsISD::FPCmp)
1914 return Op;
1916 SDValue CCNode = CondRes.getOperand(2);
1917 Mips::CondCode CC =
1918 (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1919 unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
1920 SDValue BrCode = DAG.getConstant(Opc, DL, MVT::i32);
1921 SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
1922 return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
1923 FCC0, Dest, CondRes);
1926 SDValue MipsTargetLowering::
1927 lowerSELECT(SDValue Op, SelectionDAG &DAG) const
1929 assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
1930 SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
1932 // Return if flag is not set by a floating point comparison.
1933 if (Cond.getOpcode() != MipsISD::FPCmp)
1934 return Op;
1936 return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1937 SDLoc(Op));
1940 SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1941 assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
1942 SDValue Cond = createFPCmp(DAG, Op);
1944 assert(Cond.getOpcode() == MipsISD::FPCmp &&
1945 "Floating point operand expected.");
1947 SDLoc DL(Op);
1948 SDValue True = DAG.getConstant(1, DL, MVT::i32);
1949 SDValue False = DAG.getConstant(0, DL, MVT::i32);
1951 return createCMovFP(DAG, Cond, True, False, DL);
1954 SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
1955 SelectionDAG &DAG) const {
1956 EVT Ty = Op.getValueType();
1957 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
1958 const GlobalValue *GV = N->getGlobal();
1960 if (!isPositionIndependent()) {
1961 const MipsTargetObjectFile *TLOF =
1962 static_cast<const MipsTargetObjectFile *>(
1963 getTargetMachine().getObjFileLowering());
1964 const GlobalObject *GO = GV->getBaseObject();
1965 if (GO && TLOF->IsGlobalInSmallSection(GO, getTargetMachine()))
1966 // %gp_rel relocation
1967 return getAddrGPRel(N, SDLoc(N), Ty, DAG, ABI.IsN64());
1969 // %hi/%lo relocation
1970 return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
1971 // %highest/%higher/%hi/%lo relocation
1972 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
1975 // Every other architecture would use shouldAssumeDSOLocal in here, but
1976 // mips is special.
1977 // * In PIC code mips requires got loads even for local statics!
1978 // * To save on got entries, for local statics the got entry contains the
1979 // page and an additional add instruction takes care of the low bits.
1980 // * It is legal to access a hidden symbol with a non hidden undefined,
1981 // so one cannot guarantee that all access to a hidden symbol will know
1982 // it is hidden.
1983 // * Mips linkers don't support creating a page and a full got entry for
1984 // the same symbol.
1985 // * Given all that, we have to use a full got entry for hidden symbols :-(
1986 if (GV->hasLocalLinkage())
1987 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
1989 if (Subtarget.useXGOT())
1990 return getAddrGlobalLargeGOT(
1991 N, SDLoc(N), Ty, DAG, MipsII::MO_GOT_HI16, MipsII::MO_GOT_LO16,
1992 DAG.getEntryNode(),
1993 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
1995 return getAddrGlobal(
1996 N, SDLoc(N), Ty, DAG,
1997 (ABI.IsN32() || ABI.IsN64()) ? MipsII::MO_GOT_DISP : MipsII::MO_GOT,
1998 DAG.getEntryNode(), MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2001 SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
2002 SelectionDAG &DAG) const {
2003 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
2004 EVT Ty = Op.getValueType();
2006 if (!isPositionIndependent())
2007 return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
2008 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
2010 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
2013 SDValue MipsTargetLowering::
2014 lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
2016 // If the relocation model is PIC, use the General Dynamic TLS Model or
2017 // Local Dynamic TLS model, otherwise use the Initial Exec or
2018 // Local Exec TLS Model.
2020 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2021 if (DAG.getTarget().useEmulatedTLS())
2022 return LowerToTLSEmulatedModel(GA, DAG);
2024 SDLoc DL(GA);
2025 const GlobalValue *GV = GA->getGlobal();
2026 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2028 TLSModel::Model model = getTargetMachine().getTLSModel(GV);
2030 if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
2031 // General Dynamic and Local Dynamic TLS Model.
2032 unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
2033 : MipsII::MO_TLSGD;
2035 SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
2036 SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
2037 getGlobalReg(DAG, PtrVT), TGA);
2038 unsigned PtrSize = PtrVT.getSizeInBits();
2039 IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
2041 SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
2043 ArgListTy Args;
2044 ArgListEntry Entry;
2045 Entry.Node = Argument;
2046 Entry.Ty = PtrTy;
2047 Args.push_back(Entry);
2049 TargetLowering::CallLoweringInfo CLI(DAG);
2050 CLI.setDebugLoc(DL)
2051 .setChain(DAG.getEntryNode())
2052 .setLibCallee(CallingConv::C, PtrTy, TlsGetAddr, std::move(Args));
2053 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2055 SDValue Ret = CallResult.first;
2057 if (model != TLSModel::LocalDynamic)
2058 return Ret;
2060 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2061 MipsII::MO_DTPREL_HI);
2062 SDValue Hi = DAG.getNode(MipsISD::TlsHi, DL, PtrVT, TGAHi);
2063 SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2064 MipsII::MO_DTPREL_LO);
2065 SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
2066 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
2067 return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
2070 SDValue Offset;
2071 if (model == TLSModel::InitialExec) {
2072 // Initial Exec TLS Model
2073 SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2074 MipsII::MO_GOTTPREL);
2075 TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
2076 TGA);
2077 Offset =
2078 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), TGA, MachinePointerInfo());
2079 } else {
2080 // Local Exec TLS Model
2081 assert(model == TLSModel::LocalExec);
2082 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2083 MipsII::MO_TPREL_HI);
2084 SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2085 MipsII::MO_TPREL_LO);
2086 SDValue Hi = DAG.getNode(MipsISD::TlsHi, DL, PtrVT, TGAHi);
2087 SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
2088 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2091 SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
2092 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
2095 SDValue MipsTargetLowering::
2096 lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
2098 JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
2099 EVT Ty = Op.getValueType();
2101 if (!isPositionIndependent())
2102 return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
2103 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
2105 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
2108 SDValue MipsTargetLowering::
2109 lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
2111 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
2112 EVT Ty = Op.getValueType();
2114 if (!isPositionIndependent()) {
2115 const MipsTargetObjectFile *TLOF =
2116 static_cast<const MipsTargetObjectFile *>(
2117 getTargetMachine().getObjFileLowering());
2119 if (TLOF->IsConstantInSmallSection(DAG.getDataLayout(), N->getConstVal(),
2120 getTargetMachine()))
2121 // %gp_rel relocation
2122 return getAddrGPRel(N, SDLoc(N), Ty, DAG, ABI.IsN64());
2124 return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
2125 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
2128 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
2131 SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2132 MachineFunction &MF = DAG.getMachineFunction();
2133 MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
2135 SDLoc DL(Op);
2136 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2137 getPointerTy(MF.getDataLayout()));
2139 // vastart just stores the address of the VarArgsFrameIndex slot into the
2140 // memory location argument.
2141 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2142 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
2143 MachinePointerInfo(SV));
2146 SDValue MipsTargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const {
2147 SDNode *Node = Op.getNode();
2148 EVT VT = Node->getValueType(0);
2149 SDValue Chain = Node->getOperand(0);
2150 SDValue VAListPtr = Node->getOperand(1);
2151 const llvm::Align Align =
2152 llvm::MaybeAlign(Node->getConstantOperandVal(3)).valueOrOne();
2153 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2154 SDLoc DL(Node);
2155 unsigned ArgSlotSizeInBytes = (ABI.IsN32() || ABI.IsN64()) ? 8 : 4;
2157 SDValue VAListLoad = DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL, Chain,
2158 VAListPtr, MachinePointerInfo(SV));
2159 SDValue VAList = VAListLoad;
2161 // Re-align the pointer if necessary.
2162 // It should only ever be necessary for 64-bit types on O32 since the minimum
2163 // argument alignment is the same as the maximum type alignment for N32/N64.
2165 // FIXME: We currently align too often. The code generator doesn't notice
2166 // when the pointer is still aligned from the last va_arg (or pair of
2167 // va_args for the i64 on O32 case).
2168 if (Align > getMinStackArgumentAlignment()) {
2169 VAList = DAG.getNode(
2170 ISD::ADD, DL, VAList.getValueType(), VAList,
2171 DAG.getConstant(Align.value() - 1, DL, VAList.getValueType()));
2173 VAList = DAG.getNode(
2174 ISD::AND, DL, VAList.getValueType(), VAList,
2175 DAG.getConstant(-(int64_t)Align.value(), DL, VAList.getValueType()));
2178 // Increment the pointer, VAList, to the next vaarg.
2179 auto &TD = DAG.getDataLayout();
2180 unsigned ArgSizeInBytes =
2181 TD.getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext()));
2182 SDValue Tmp3 =
2183 DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList,
2184 DAG.getConstant(alignTo(ArgSizeInBytes, ArgSlotSizeInBytes),
2185 DL, VAList.getValueType()));
2186 // Store the incremented VAList to the legalized pointer
2187 Chain = DAG.getStore(VAListLoad.getValue(1), DL, Tmp3, VAListPtr,
2188 MachinePointerInfo(SV));
2190 // In big-endian mode we must adjust the pointer when the load size is smaller
2191 // than the argument slot size. We must also reduce the known alignment to
2192 // match. For example in the N64 ABI, we must add 4 bytes to the offset to get
2193 // the correct half of the slot, and reduce the alignment from 8 (slot
2194 // alignment) down to 4 (type alignment).
2195 if (!Subtarget.isLittle() && ArgSizeInBytes < ArgSlotSizeInBytes) {
2196 unsigned Adjustment = ArgSlotSizeInBytes - ArgSizeInBytes;
2197 VAList = DAG.getNode(ISD::ADD, DL, VAListPtr.getValueType(), VAList,
2198 DAG.getIntPtrConstant(Adjustment, DL));
2200 // Load the actual argument out of the pointer VAList
2201 return DAG.getLoad(VT, DL, Chain, VAList, MachinePointerInfo());
2204 static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG,
2205 bool HasExtractInsert) {
2206 EVT TyX = Op.getOperand(0).getValueType();
2207 EVT TyY = Op.getOperand(1).getValueType();
2208 SDLoc DL(Op);
2209 SDValue Const1 = DAG.getConstant(1, DL, MVT::i32);
2210 SDValue Const31 = DAG.getConstant(31, DL, MVT::i32);
2211 SDValue Res;
2213 // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2214 // to i32.
2215 SDValue X = (TyX == MVT::f32) ?
2216 DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
2217 DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
2218 Const1);
2219 SDValue Y = (TyY == MVT::f32) ?
2220 DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
2221 DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
2222 Const1);
2224 if (HasExtractInsert) {
2225 // ext E, Y, 31, 1 ; extract bit31 of Y
2226 // ins X, E, 31, 1 ; insert extracted bit at bit31 of X
2227 SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
2228 Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
2229 } else {
2230 // sll SllX, X, 1
2231 // srl SrlX, SllX, 1
2232 // srl SrlY, Y, 31
2233 // sll SllY, SrlX, 31
2234 // or Or, SrlX, SllY
2235 SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
2236 SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
2237 SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
2238 SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
2239 Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
2242 if (TyX == MVT::f32)
2243 return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
2245 SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2246 Op.getOperand(0),
2247 DAG.getConstant(0, DL, MVT::i32));
2248 return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
2251 static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG,
2252 bool HasExtractInsert) {
2253 unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
2254 unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
2255 EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
2256 SDLoc DL(Op);
2257 SDValue Const1 = DAG.getConstant(1, DL, MVT::i32);
2259 // Bitcast to integer nodes.
2260 SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
2261 SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
2263 if (HasExtractInsert) {
2264 // ext E, Y, width(Y) - 1, 1 ; extract bit width(Y)-1 of Y
2265 // ins X, E, width(X) - 1, 1 ; insert extracted bit at bit width(X)-1 of X
2266 SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
2267 DAG.getConstant(WidthY - 1, DL, MVT::i32), Const1);
2269 if (WidthX > WidthY)
2270 E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
2271 else if (WidthY > WidthX)
2272 E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
2274 SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
2275 DAG.getConstant(WidthX - 1, DL, MVT::i32), Const1,
2277 return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
2280 // (d)sll SllX, X, 1
2281 // (d)srl SrlX, SllX, 1
2282 // (d)srl SrlY, Y, width(Y)-1
2283 // (d)sll SllY, SrlX, width(Y)-1
2284 // or Or, SrlX, SllY
2285 SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
2286 SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
2287 SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
2288 DAG.getConstant(WidthY - 1, DL, MVT::i32));
2290 if (WidthX > WidthY)
2291 SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
2292 else if (WidthY > WidthX)
2293 SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
2295 SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
2296 DAG.getConstant(WidthX - 1, DL, MVT::i32));
2297 SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
2298 return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
2301 SDValue
2302 MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
2303 if (Subtarget.isGP64bit())
2304 return lowerFCOPYSIGN64(Op, DAG, Subtarget.hasExtractInsert());
2306 return lowerFCOPYSIGN32(Op, DAG, Subtarget.hasExtractInsert());
2309 static SDValue lowerFABS32(SDValue Op, SelectionDAG &DAG,
2310 bool HasExtractInsert) {
2311 SDLoc DL(Op);
2312 SDValue Res, Const1 = DAG.getConstant(1, DL, MVT::i32);
2314 // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2315 // to i32.
2316 SDValue X = (Op.getValueType() == MVT::f32)
2317 ? DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0))
2318 : DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2319 Op.getOperand(0), Const1);
2321 // Clear MSB.
2322 if (HasExtractInsert)
2323 Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
2324 DAG.getRegister(Mips::ZERO, MVT::i32),
2325 DAG.getConstant(31, DL, MVT::i32), Const1, X);
2326 else {
2327 // TODO: Provide DAG patterns which transform (and x, cst)
2328 // back to a (shl (srl x (clz cst)) (clz cst)) sequence.
2329 SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
2330 Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
2333 if (Op.getValueType() == MVT::f32)
2334 return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
2336 // FIXME: For mips32r2, the sequence of (BuildPairF64 (ins (ExtractElementF64
2337 // Op 1), $zero, 31 1) (ExtractElementF64 Op 0)) and the Op has one use, we
2338 // should be able to drop the usage of mfc1/mtc1 and rewrite the register in
2339 // place.
2340 SDValue LowX =
2341 DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
2342 DAG.getConstant(0, DL, MVT::i32));
2343 return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
2346 static SDValue lowerFABS64(SDValue Op, SelectionDAG &DAG,
2347 bool HasExtractInsert) {
2348 SDLoc DL(Op);
2349 SDValue Res, Const1 = DAG.getConstant(1, DL, MVT::i32);
2351 // Bitcast to integer node.
2352 SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
2354 // Clear MSB.
2355 if (HasExtractInsert)
2356 Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
2357 DAG.getRegister(Mips::ZERO_64, MVT::i64),
2358 DAG.getConstant(63, DL, MVT::i32), Const1, X);
2359 else {
2360 SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
2361 Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
2364 return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
2367 SDValue MipsTargetLowering::lowerFABS(SDValue Op, SelectionDAG &DAG) const {
2368 if ((ABI.IsN32() || ABI.IsN64()) && (Op.getValueType() == MVT::f64))
2369 return lowerFABS64(Op, DAG, Subtarget.hasExtractInsert());
2371 return lowerFABS32(Op, DAG, Subtarget.hasExtractInsert());
2374 SDValue MipsTargetLowering::
2375 lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
2376 // check the depth
2377 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) {
2378 DAG.getContext()->emitError(
2379 "return address can be determined only for current frame");
2380 return SDValue();
2383 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2384 MFI.setFrameAddressIsTaken(true);
2385 EVT VT = Op.getValueType();
2386 SDLoc DL(Op);
2387 SDValue FrameAddr = DAG.getCopyFromReg(
2388 DAG.getEntryNode(), DL, ABI.IsN64() ? Mips::FP_64 : Mips::FP, VT);
2389 return FrameAddr;
2392 SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
2393 SelectionDAG &DAG) const {
2394 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
2395 return SDValue();
2397 // check the depth
2398 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) {
2399 DAG.getContext()->emitError(
2400 "return address can be determined only for current frame");
2401 return SDValue();
2404 MachineFunction &MF = DAG.getMachineFunction();
2405 MachineFrameInfo &MFI = MF.getFrameInfo();
2406 MVT VT = Op.getSimpleValueType();
2407 unsigned RA = ABI.IsN64() ? Mips::RA_64 : Mips::RA;
2408 MFI.setReturnAddressIsTaken(true);
2410 // Return RA, which contains the return address. Mark it an implicit live-in.
2411 unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
2412 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT);
2415 // An EH_RETURN is the result of lowering llvm.eh.return which in turn is
2416 // generated from __builtin_eh_return (offset, handler)
2417 // The effect of this is to adjust the stack pointer by "offset"
2418 // and then branch to "handler".
2419 SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
2420 const {
2421 MachineFunction &MF = DAG.getMachineFunction();
2422 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2424 MipsFI->setCallsEhReturn();
2425 SDValue Chain = Op.getOperand(0);
2426 SDValue Offset = Op.getOperand(1);
2427 SDValue Handler = Op.getOperand(2);
2428 SDLoc DL(Op);
2429 EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32;
2431 // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
2432 // EH_RETURN nodes, so that instructions are emitted back-to-back.
2433 unsigned OffsetReg = ABI.IsN64() ? Mips::V1_64 : Mips::V1;
2434 unsigned AddrReg = ABI.IsN64() ? Mips::V0_64 : Mips::V0;
2435 Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
2436 Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
2437 return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
2438 DAG.getRegister(OffsetReg, Ty),
2439 DAG.getRegister(AddrReg, getPointerTy(MF.getDataLayout())),
2440 Chain.getValue(1));
2443 SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
2444 SelectionDAG &DAG) const {
2445 // FIXME: Need pseudo-fence for 'singlethread' fences
2446 // FIXME: Set SType for weaker fences where supported/appropriate.
2447 unsigned SType = 0;
2448 SDLoc DL(Op);
2449 return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
2450 DAG.getConstant(SType, DL, MVT::i32));
2453 SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
2454 SelectionDAG &DAG) const {
2455 SDLoc DL(Op);
2456 MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32;
2458 SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2459 SDValue Shamt = Op.getOperand(2);
2460 // if shamt < (VT.bits):
2461 // lo = (shl lo, shamt)
2462 // hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
2463 // else:
2464 // lo = 0
2465 // hi = (shl lo, shamt[4:0])
2466 SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2467 DAG.getConstant(-1, DL, MVT::i32));
2468 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo,
2469 DAG.getConstant(1, DL, VT));
2470 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, Not);
2471 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
2472 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
2473 SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
2474 SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2475 DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32));
2476 Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2477 DAG.getConstant(0, DL, VT), ShiftLeftLo);
2478 Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftLeftLo, Or);
2480 SDValue Ops[2] = {Lo, Hi};
2481 return DAG.getMergeValues(Ops, DL);
2484 SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
2485 bool IsSRA) const {
2486 SDLoc DL(Op);
2487 SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2488 SDValue Shamt = Op.getOperand(2);
2489 MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32;
2491 // if shamt < (VT.bits):
2492 // lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
2493 // if isSRA:
2494 // hi = (sra hi, shamt)
2495 // else:
2496 // hi = (srl hi, shamt)
2497 // else:
2498 // if isSRA:
2499 // lo = (sra hi, shamt[4:0])
2500 // hi = (sra hi, 31)
2501 // else:
2502 // lo = (srl hi, shamt[4:0])
2503 // hi = 0
2504 SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2505 DAG.getConstant(-1, DL, MVT::i32));
2506 SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, VT, Hi,
2507 DAG.getConstant(1, DL, VT));
2508 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, ShiftLeft1Hi, Not);
2509 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
2510 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
2511 SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL,
2512 DL, VT, Hi, Shamt);
2513 SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2514 DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32));
2515 SDValue Ext = DAG.getNode(ISD::SRA, DL, VT, Hi,
2516 DAG.getConstant(VT.getSizeInBits() - 1, DL, VT));
2518 if (!(Subtarget.hasMips4() || Subtarget.hasMips32())) {
2519 SDVTList VTList = DAG.getVTList(VT, VT);
2520 return DAG.getNode(Subtarget.isGP64bit() ? Mips::PseudoD_SELECT_I64
2521 : Mips::PseudoD_SELECT_I,
2522 DL, VTList, Cond, ShiftRightHi,
2523 IsSRA ? Ext : DAG.getConstant(0, DL, VT), Or,
2524 ShiftRightHi);
2527 Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftRightHi, Or);
2528 Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2529 IsSRA ? Ext : DAG.getConstant(0, DL, VT), ShiftRightHi);
2531 SDValue Ops[2] = {Lo, Hi};
2532 return DAG.getMergeValues(Ops, DL);
2535 static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
2536 SDValue Chain, SDValue Src, unsigned Offset) {
2537 SDValue Ptr = LD->getBasePtr();
2538 EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
2539 EVT BasePtrVT = Ptr.getValueType();
2540 SDLoc DL(LD);
2541 SDVTList VTList = DAG.getVTList(VT, MVT::Other);
2543 if (Offset)
2544 Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2545 DAG.getConstant(Offset, DL, BasePtrVT));
2547 SDValue Ops[] = { Chain, Ptr, Src };
2548 return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
2549 LD->getMemOperand());
2552 // Expand an unaligned 32 or 64-bit integer load node.
2553 SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2554 LoadSDNode *LD = cast<LoadSDNode>(Op);
2555 EVT MemVT = LD->getMemoryVT();
2557 if (Subtarget.systemSupportsUnalignedAccess())
2558 return Op;
2560 // Return if load is aligned or if MemVT is neither i32 nor i64.
2561 if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2562 ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2563 return SDValue();
2565 bool IsLittle = Subtarget.isLittle();
2566 EVT VT = Op.getValueType();
2567 ISD::LoadExtType ExtType = LD->getExtensionType();
2568 SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
2570 assert((VT == MVT::i32) || (VT == MVT::i64));
2572 // Expand
2573 // (set dst, (i64 (load baseptr)))
2574 // to
2575 // (set tmp, (ldl (add baseptr, 7), undef))
2576 // (set dst, (ldr baseptr, tmp))
2577 if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
2578 SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
2579 IsLittle ? 7 : 0);
2580 return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
2581 IsLittle ? 0 : 7);
2584 SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
2585 IsLittle ? 3 : 0);
2586 SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
2587 IsLittle ? 0 : 3);
2589 // Expand
2590 // (set dst, (i32 (load baseptr))) or
2591 // (set dst, (i64 (sextload baseptr))) or
2592 // (set dst, (i64 (extload baseptr)))
2593 // to
2594 // (set tmp, (lwl (add baseptr, 3), undef))
2595 // (set dst, (lwr baseptr, tmp))
2596 if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
2597 (ExtType == ISD::EXTLOAD))
2598 return LWR;
2600 assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
2602 // Expand
2603 // (set dst, (i64 (zextload baseptr)))
2604 // to
2605 // (set tmp0, (lwl (add baseptr, 3), undef))
2606 // (set tmp1, (lwr baseptr, tmp0))
2607 // (set tmp2, (shl tmp1, 32))
2608 // (set dst, (srl tmp2, 32))
2609 SDLoc DL(LD);
2610 SDValue Const32 = DAG.getConstant(32, DL, MVT::i32);
2611 SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
2612 SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2613 SDValue Ops[] = { SRL, LWR.getValue(1) };
2614 return DAG.getMergeValues(Ops, DL);
2617 static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2618 SDValue Chain, unsigned Offset) {
2619 SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2620 EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2621 SDLoc DL(SD);
2622 SDVTList VTList = DAG.getVTList(MVT::Other);
2624 if (Offset)
2625 Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2626 DAG.getConstant(Offset, DL, BasePtrVT));
2628 SDValue Ops[] = { Chain, Value, Ptr };
2629 return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
2630 SD->getMemOperand());
2633 // Expand an unaligned 32 or 64-bit integer store node.
2634 static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG,
2635 bool IsLittle) {
2636 SDValue Value = SD->getValue(), Chain = SD->getChain();
2637 EVT VT = Value.getValueType();
2639 // Expand
2640 // (store val, baseptr) or
2641 // (truncstore val, baseptr)
2642 // to
2643 // (swl val, (add baseptr, 3))
2644 // (swr val, baseptr)
2645 if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2646 SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
2647 IsLittle ? 3 : 0);
2648 return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2651 assert(VT == MVT::i64);
2653 // Expand
2654 // (store val, baseptr)
2655 // to
2656 // (sdl val, (add baseptr, 7))
2657 // (sdr val, baseptr)
2658 SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2659 return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2662 // Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
2663 static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG,
2664 bool SingleFloat) {
2665 SDValue Val = SD->getValue();
2667 if (Val.getOpcode() != ISD::FP_TO_SINT ||
2668 (Val.getValueSizeInBits() > 32 && SingleFloat))
2669 return SDValue();
2671 EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits());
2672 SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy,
2673 Val.getOperand(0));
2674 return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(),
2675 SD->getPointerInfo(), SD->getAlignment(),
2676 SD->getMemOperand()->getFlags());
2679 SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2680 StoreSDNode *SD = cast<StoreSDNode>(Op);
2681 EVT MemVT = SD->getMemoryVT();
2683 // Lower unaligned integer stores.
2684 if (!Subtarget.systemSupportsUnalignedAccess() &&
2685 (SD->getAlignment() < MemVT.getSizeInBits() / 8) &&
2686 ((MemVT == MVT::i32) || (MemVT == MVT::i64)))
2687 return lowerUnalignedIntStore(SD, DAG, Subtarget.isLittle());
2689 return lowerFP_TO_SINT_STORE(SD, DAG, Subtarget.isSingleFloat());
2692 SDValue MipsTargetLowering::lowerEH_DWARF_CFA(SDValue Op,
2693 SelectionDAG &DAG) const {
2695 // Return a fixed StackObject with offset 0 which points to the old stack
2696 // pointer.
2697 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2698 EVT ValTy = Op->getValueType(0);
2699 int FI = MFI.CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
2700 return DAG.getFrameIndex(FI, ValTy);
2703 SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
2704 SelectionDAG &DAG) const {
2705 if (Op.getValueSizeInBits() > 32 && Subtarget.isSingleFloat())
2706 return SDValue();
2708 EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
2709 SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy,
2710 Op.getOperand(0));
2711 return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc);
2714 //===----------------------------------------------------------------------===//
2715 // Calling Convention Implementation
2716 //===----------------------------------------------------------------------===//
2718 //===----------------------------------------------------------------------===//
2719 // TODO: Implement a generic logic using tblgen that can support this.
2720 // Mips O32 ABI rules:
2721 // ---
2722 // i32 - Passed in A0, A1, A2, A3 and stack
2723 // f32 - Only passed in f32 registers if no int reg has been used yet to hold
2724 // an argument. Otherwise, passed in A1, A2, A3 and stack.
2725 // f64 - Only passed in two aliased f32 registers if no int reg has been used
2726 // yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2727 // not used, it must be shadowed. If only A3 is available, shadow it and
2728 // go to stack.
2729 // vXiX - Received as scalarized i32s, passed in A0 - A3 and the stack.
2730 // vXf32 - Passed in either a pair of registers {A0, A1}, {A2, A3} or {A0 - A3}
2731 // with the remainder spilled to the stack.
2732 // vXf64 - Passed in either {A0, A1, A2, A3} or {A2, A3} and in both cases
2733 // spilling the remainder to the stack.
2735 // For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2736 //===----------------------------------------------------------------------===//
2738 static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
2739 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
2740 CCState &State, ArrayRef<MCPhysReg> F64Regs) {
2741 const MipsSubtarget &Subtarget = static_cast<const MipsSubtarget &>(
2742 State.getMachineFunction().getSubtarget());
2744 static const MCPhysReg IntRegs[] = { Mips::A0, Mips::A1, Mips::A2, Mips::A3 };
2746 const MipsCCState * MipsState = static_cast<MipsCCState *>(&State);
2748 static const MCPhysReg F32Regs[] = { Mips::F12, Mips::F14 };
2750 static const MCPhysReg FloatVectorIntRegs[] = { Mips::A0, Mips::A2 };
2752 // Do not process byval args here.
2753 if (ArgFlags.isByVal())
2754 return true;
2756 // Promote i8 and i16
2757 if (ArgFlags.isInReg() && !Subtarget.isLittle()) {
2758 if (LocVT == MVT::i8 || LocVT == MVT::i16 || LocVT == MVT::i32) {
2759 LocVT = MVT::i32;
2760 if (ArgFlags.isSExt())
2761 LocInfo = CCValAssign::SExtUpper;
2762 else if (ArgFlags.isZExt())
2763 LocInfo = CCValAssign::ZExtUpper;
2764 else
2765 LocInfo = CCValAssign::AExtUpper;
2769 // Promote i8 and i16
2770 if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2771 LocVT = MVT::i32;
2772 if (ArgFlags.isSExt())
2773 LocInfo = CCValAssign::SExt;
2774 else if (ArgFlags.isZExt())
2775 LocInfo = CCValAssign::ZExt;
2776 else
2777 LocInfo = CCValAssign::AExt;
2780 unsigned Reg;
2782 // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2783 // is true: function is vararg, argument is 3rd or higher, there is previous
2784 // argument which is not f32 or f64.
2785 bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1 ||
2786 State.getFirstUnallocated(F32Regs) != ValNo;
2787 unsigned OrigAlign = ArgFlags.getOrigAlign();
2788 bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2789 bool isVectorFloat = MipsState->WasOriginalArgVectorFloat(ValNo);
2791 // The MIPS vector ABI for floats passes them in a pair of registers
2792 if (ValVT == MVT::i32 && isVectorFloat) {
2793 // This is the start of an vector that was scalarized into an unknown number
2794 // of components. It doesn't matter how many there are. Allocate one of the
2795 // notional 8 byte aligned registers which map onto the argument stack, and
2796 // shadow the register lost to alignment requirements.
2797 if (ArgFlags.isSplit()) {
2798 Reg = State.AllocateReg(FloatVectorIntRegs);
2799 if (Reg == Mips::A2)
2800 State.AllocateReg(Mips::A1);
2801 else if (Reg == 0)
2802 State.AllocateReg(Mips::A3);
2803 } else {
2804 // If we're an intermediate component of the split, we can just attempt to
2805 // allocate a register directly.
2806 Reg = State.AllocateReg(IntRegs);
2808 } else if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2809 Reg = State.AllocateReg(IntRegs);
2810 // If this is the first part of an i64 arg,
2811 // the allocated register must be either A0 or A2.
2812 if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2813 Reg = State.AllocateReg(IntRegs);
2814 LocVT = MVT::i32;
2815 } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2816 // Allocate int register and shadow next int register. If first
2817 // available register is Mips::A1 or Mips::A3, shadow it too.
2818 Reg = State.AllocateReg(IntRegs);
2819 if (Reg == Mips::A1 || Reg == Mips::A3)
2820 Reg = State.AllocateReg(IntRegs);
2821 State.AllocateReg(IntRegs);
2822 LocVT = MVT::i32;
2823 } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2824 // we are guaranteed to find an available float register
2825 if (ValVT == MVT::f32) {
2826 Reg = State.AllocateReg(F32Regs);
2827 // Shadow int register
2828 State.AllocateReg(IntRegs);
2829 } else {
2830 Reg = State.AllocateReg(F64Regs);
2831 // Shadow int registers
2832 unsigned Reg2 = State.AllocateReg(IntRegs);
2833 if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2834 State.AllocateReg(IntRegs);
2835 State.AllocateReg(IntRegs);
2837 } else
2838 llvm_unreachable("Cannot handle this ValVT.");
2840 if (!Reg) {
2841 unsigned Offset = State.AllocateStack(ValVT.getStoreSize(), OrigAlign);
2842 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2843 } else
2844 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2846 return false;
2849 static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT,
2850 MVT LocVT, CCValAssign::LocInfo LocInfo,
2851 ISD::ArgFlagsTy ArgFlags, CCState &State) {
2852 static const MCPhysReg F64Regs[] = { Mips::D6, Mips::D7 };
2854 return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2857 static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT,
2858 MVT LocVT, CCValAssign::LocInfo LocInfo,
2859 ISD::ArgFlagsTy ArgFlags, CCState &State) {
2860 static const MCPhysReg F64Regs[] = { Mips::D12_64, Mips::D14_64 };
2862 return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2865 static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
2866 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
2867 CCState &State) LLVM_ATTRIBUTE_UNUSED;
2869 #include "MipsGenCallingConv.inc"
2871 CCAssignFn *MipsTargetLowering::CCAssignFnForCall() const{
2872 return CC_Mips_FixedArg;
2875 CCAssignFn *MipsTargetLowering::CCAssignFnForReturn() const{
2876 return RetCC_Mips;
2878 //===----------------------------------------------------------------------===//
2879 // Call Calling Convention Implementation
2880 //===----------------------------------------------------------------------===//
2882 // Return next O32 integer argument register.
2883 static unsigned getNextIntArgReg(unsigned Reg) {
2884 assert((Reg == Mips::A0) || (Reg == Mips::A2));
2885 return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2888 SDValue MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
2889 SDValue Chain, SDValue Arg,
2890 const SDLoc &DL, bool IsTailCall,
2891 SelectionDAG &DAG) const {
2892 if (!IsTailCall) {
2893 SDValue PtrOff =
2894 DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr,
2895 DAG.getIntPtrConstant(Offset, DL));
2896 return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo());
2899 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2900 int FI = MFI.CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
2901 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
2902 return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
2903 /* Alignment = */ 0, MachineMemOperand::MOVolatile);
2906 void MipsTargetLowering::
2907 getOpndList(SmallVectorImpl<SDValue> &Ops,
2908 std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
2909 bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
2910 bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
2911 SDValue Chain) const {
2912 // Insert node "GP copy globalreg" before call to function.
2914 // R_MIPS_CALL* operators (emitted when non-internal functions are called
2915 // in PIC mode) allow symbols to be resolved via lazy binding.
2916 // The lazy binding stub requires GP to point to the GOT.
2917 // Note that we don't need GP to point to the GOT for indirect calls
2918 // (when R_MIPS_CALL* is not used for the call) because Mips linker generates
2919 // lazy binding stub for a function only when R_MIPS_CALL* are the only relocs
2920 // used for the function (that is, Mips linker doesn't generate lazy binding
2921 // stub for a function whose address is taken in the program).
2922 if (IsPICCall && !InternalLinkage && IsCallReloc) {
2923 unsigned GPReg = ABI.IsN64() ? Mips::GP_64 : Mips::GP;
2924 EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32;
2925 RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
2928 // Build a sequence of copy-to-reg nodes chained together with token
2929 // chain and flag operands which copy the outgoing args into registers.
2930 // The InFlag in necessary since all emitted instructions must be
2931 // stuck together.
2932 SDValue InFlag;
2934 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2935 Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
2936 RegsToPass[i].second, InFlag);
2937 InFlag = Chain.getValue(1);
2940 // Add argument registers to the end of the list so that they are
2941 // known live into the call.
2942 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2943 Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
2944 RegsToPass[i].second.getValueType()));
2946 // Add a register mask operand representing the call-preserved registers.
2947 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2948 const uint32_t *Mask =
2949 TRI->getCallPreservedMask(CLI.DAG.getMachineFunction(), CLI.CallConv);
2950 assert(Mask && "Missing call preserved mask for calling convention");
2951 if (Subtarget.inMips16HardFloat()) {
2952 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
2953 StringRef Sym = G->getGlobal()->getName();
2954 Function *F = G->getGlobal()->getParent()->getFunction(Sym);
2955 if (F && F->hasFnAttribute("__Mips16RetHelper")) {
2956 Mask = MipsRegisterInfo::getMips16RetHelperMask();
2960 Ops.push_back(CLI.DAG.getRegisterMask(Mask));
2962 if (InFlag.getNode())
2963 Ops.push_back(InFlag);
2966 void MipsTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
2967 SDNode *Node) const {
2968 switch (MI.getOpcode()) {
2969 default:
2970 return;
2971 case Mips::JALR:
2972 case Mips::JALRPseudo:
2973 case Mips::JALR64:
2974 case Mips::JALR64Pseudo:
2975 case Mips::JALR16_MM:
2976 case Mips::JALRC16_MMR6:
2977 case Mips::TAILCALLREG:
2978 case Mips::TAILCALLREG64:
2979 case Mips::TAILCALLR6REG:
2980 case Mips::TAILCALL64R6REG:
2981 case Mips::TAILCALLREG_MM:
2982 case Mips::TAILCALLREG_MMR6: {
2983 if (!EmitJalrReloc ||
2984 Subtarget.inMips16Mode() ||
2985 !isPositionIndependent() ||
2986 Node->getNumOperands() < 1 ||
2987 Node->getOperand(0).getNumOperands() < 2) {
2988 return;
2990 // We are after the callee address, set by LowerCall().
2991 // If added to MI, asm printer will emit .reloc R_MIPS_JALR for the
2992 // symbol.
2993 const SDValue TargetAddr = Node->getOperand(0).getOperand(1);
2994 StringRef Sym;
2995 if (const GlobalAddressSDNode *G =
2996 dyn_cast_or_null<const GlobalAddressSDNode>(TargetAddr)) {
2997 Sym = G->getGlobal()->getName();
2999 else if (const ExternalSymbolSDNode *ES =
3000 dyn_cast_or_null<const ExternalSymbolSDNode>(TargetAddr)) {
3001 Sym = ES->getSymbol();
3004 if (Sym.empty())
3005 return;
3007 MachineFunction *MF = MI.getParent()->getParent();
3008 MCSymbol *S = MF->getContext().getOrCreateSymbol(Sym);
3009 MI.addOperand(MachineOperand::CreateMCSymbol(S, MipsII::MO_JALR));
3014 /// LowerCall - functions arguments are copied from virtual regs to
3015 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
3016 SDValue
3017 MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
3018 SmallVectorImpl<SDValue> &InVals) const {
3019 SelectionDAG &DAG = CLI.DAG;
3020 SDLoc DL = CLI.DL;
3021 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
3022 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
3023 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
3024 SDValue Chain = CLI.Chain;
3025 SDValue Callee = CLI.Callee;
3026 bool &IsTailCall = CLI.IsTailCall;
3027 CallingConv::ID CallConv = CLI.CallConv;
3028 bool IsVarArg = CLI.IsVarArg;
3030 MachineFunction &MF = DAG.getMachineFunction();
3031 MachineFrameInfo &MFI = MF.getFrameInfo();
3032 const TargetFrameLowering *TFL = Subtarget.getFrameLowering();
3033 MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
3034 bool IsPIC = isPositionIndependent();
3036 // Analyze operands of the call, assigning locations to each operand.
3037 SmallVector<CCValAssign, 16> ArgLocs;
3038 MipsCCState CCInfo(
3039 CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext(),
3040 MipsCCState::getSpecialCallingConvForCallee(Callee.getNode(), Subtarget));
3042 const ExternalSymbolSDNode *ES =
3043 dyn_cast_or_null<const ExternalSymbolSDNode>(Callee.getNode());
3045 // There is one case where CALLSEQ_START..CALLSEQ_END can be nested, which
3046 // is during the lowering of a call with a byval argument which produces
3047 // a call to memcpy. For the O32 case, this causes the caller to allocate
3048 // stack space for the reserved argument area for the callee, then recursively
3049 // again for the memcpy call. In the NEWABI case, this doesn't occur as those
3050 // ABIs mandate that the callee allocates the reserved argument area. We do
3051 // still produce nested CALLSEQ_START..CALLSEQ_END with zero space though.
3053 // If the callee has a byval argument and memcpy is used, we are mandated
3054 // to already have produced a reserved argument area for the callee for O32.
3055 // Therefore, the reserved argument area can be reused for both calls.
3057 // Other cases of calling memcpy cannot have a chain with a CALLSEQ_START
3058 // present, as we have yet to hook that node onto the chain.
3060 // Hence, the CALLSEQ_START and CALLSEQ_END nodes can be eliminated in this
3061 // case. GCC does a similar trick, in that wherever possible, it calculates
3062 // the maximum out going argument area (including the reserved area), and
3063 // preallocates the stack space on entrance to the caller.
3065 // FIXME: We should do the same for efficiency and space.
3067 // Note: The check on the calling convention below must match
3068 // MipsABIInfo::GetCalleeAllocdArgSizeInBytes().
3069 bool MemcpyInByVal = ES &&
3070 StringRef(ES->getSymbol()) == StringRef("memcpy") &&
3071 CallConv != CallingConv::Fast &&
3072 Chain.getOpcode() == ISD::CALLSEQ_START;
3074 // Allocate the reserved argument area. It seems strange to do this from the
3075 // caller side but removing it breaks the frame size calculation.
3076 unsigned ReservedArgArea =
3077 MemcpyInByVal ? 0 : ABI.GetCalleeAllocdArgSizeInBytes(CallConv);
3078 CCInfo.AllocateStack(ReservedArgArea, 1);
3080 CCInfo.AnalyzeCallOperands(Outs, CC_Mips, CLI.getArgs(),
3081 ES ? ES->getSymbol() : nullptr);
3083 // Get a count of how many bytes are to be pushed on the stack.
3084 unsigned NextStackOffset = CCInfo.getNextStackOffset();
3086 // Check if it's really possible to do a tail call. Restrict it to functions
3087 // that are part of this compilation unit.
3088 bool InternalLinkage = false;
3089 if (IsTailCall) {
3090 IsTailCall = isEligibleForTailCallOptimization(
3091 CCInfo, NextStackOffset, *MF.getInfo<MipsFunctionInfo>());
3092 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3093 InternalLinkage = G->getGlobal()->hasInternalLinkage();
3094 IsTailCall &= (InternalLinkage || G->getGlobal()->hasLocalLinkage() ||
3095 G->getGlobal()->hasPrivateLinkage() ||
3096 G->getGlobal()->hasHiddenVisibility() ||
3097 G->getGlobal()->hasProtectedVisibility());
3100 if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall())
3101 report_fatal_error("failed to perform tail call elimination on a call "
3102 "site marked musttail");
3104 if (IsTailCall)
3105 ++NumTailCalls;
3107 // Chain is the output chain of the last Load/Store or CopyToReg node.
3108 // ByValChain is the output chain of the last Memcpy node created for copying
3109 // byval arguments to the stack.
3110 unsigned StackAlignment = TFL->getStackAlignment();
3111 NextStackOffset = alignTo(NextStackOffset, StackAlignment);
3112 SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, DL, true);
3114 if (!(IsTailCall || MemcpyInByVal))
3115 Chain = DAG.getCALLSEQ_START(Chain, NextStackOffset, 0, DL);
3117 SDValue StackPtr =
3118 DAG.getCopyFromReg(Chain, DL, ABI.IsN64() ? Mips::SP_64 : Mips::SP,
3119 getPointerTy(DAG.getDataLayout()));
3121 std::deque<std::pair<unsigned, SDValue>> RegsToPass;
3122 SmallVector<SDValue, 8> MemOpChains;
3124 CCInfo.rewindByValRegsInfo();
3126 // Walk the register/memloc assignments, inserting copies/loads.
3127 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3128 SDValue Arg = OutVals[i];
3129 CCValAssign &VA = ArgLocs[i];
3130 MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
3131 ISD::ArgFlagsTy Flags = Outs[i].Flags;
3132 bool UseUpperBits = false;
3134 // ByVal Arg.
3135 if (Flags.isByVal()) {
3136 unsigned FirstByValReg, LastByValReg;
3137 unsigned ByValIdx = CCInfo.getInRegsParamsProcessed();
3138 CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg);
3140 assert(Flags.getByValSize() &&
3141 "ByVal args of size 0 should have been ignored by front-end.");
3142 assert(ByValIdx < CCInfo.getInRegsParamsCount());
3143 assert(!IsTailCall &&
3144 "Do not tail-call optimize if there is a byval argument.");
3145 passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
3146 FirstByValReg, LastByValReg, Flags, Subtarget.isLittle(),
3147 VA);
3148 CCInfo.nextInRegsParam();
3149 continue;
3152 // Promote the value if needed.
3153 switch (VA.getLocInfo()) {
3154 default:
3155 llvm_unreachable("Unknown loc info!");
3156 case CCValAssign::Full:
3157 if (VA.isRegLoc()) {
3158 if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
3159 (ValVT == MVT::f64 && LocVT == MVT::i64) ||
3160 (ValVT == MVT::i64 && LocVT == MVT::f64))
3161 Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
3162 else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
3163 SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
3164 Arg, DAG.getConstant(0, DL, MVT::i32));
3165 SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
3166 Arg, DAG.getConstant(1, DL, MVT::i32));
3167 if (!Subtarget.isLittle())
3168 std::swap(Lo, Hi);
3169 Register LocRegLo = VA.getLocReg();
3170 unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
3171 RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
3172 RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
3173 continue;
3176 break;
3177 case CCValAssign::BCvt:
3178 Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
3179 break;
3180 case CCValAssign::SExtUpper:
3181 UseUpperBits = true;
3182 LLVM_FALLTHROUGH;
3183 case CCValAssign::SExt:
3184 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
3185 break;
3186 case CCValAssign::ZExtUpper:
3187 UseUpperBits = true;
3188 LLVM_FALLTHROUGH;
3189 case CCValAssign::ZExt:
3190 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
3191 break;
3192 case CCValAssign::AExtUpper:
3193 UseUpperBits = true;
3194 LLVM_FALLTHROUGH;
3195 case CCValAssign::AExt:
3196 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
3197 break;
3200 if (UseUpperBits) {
3201 unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits();
3202 unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3203 Arg = DAG.getNode(
3204 ISD::SHL, DL, VA.getLocVT(), Arg,
3205 DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
3208 // Arguments that can be passed on register must be kept at
3209 // RegsToPass vector
3210 if (VA.isRegLoc()) {
3211 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3212 continue;
3215 // Register can't get to this point...
3216 assert(VA.isMemLoc());
3218 // emit ISD::STORE whichs stores the
3219 // parameter value to a stack Location
3220 MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
3221 Chain, Arg, DL, IsTailCall, DAG));
3224 // Transform all store nodes into one single node because all store
3225 // nodes are independent of each other.
3226 if (!MemOpChains.empty())
3227 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3229 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3230 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3231 // node so that legalize doesn't hack it.
3233 EVT Ty = Callee.getValueType();
3234 bool GlobalOrExternal = false, IsCallReloc = false;
3236 // The long-calls feature is ignored in case of PIC.
3237 // While we do not support -mshared / -mno-shared properly,
3238 // ignore long-calls in case of -mabicalls too.
3239 if (!Subtarget.isABICalls() && !IsPIC) {
3240 // If the function should be called using "long call",
3241 // get its address into a register to prevent using
3242 // of the `jal` instruction for the direct call.
3243 if (auto *N = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3244 if (Subtarget.useLongCalls())
3245 Callee = Subtarget.hasSym32()
3246 ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
3247 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
3248 } else if (auto *N = dyn_cast<GlobalAddressSDNode>(Callee)) {
3249 bool UseLongCalls = Subtarget.useLongCalls();
3250 // If the function has long-call/far/near attribute
3251 // it overrides command line switch pased to the backend.
3252 if (auto *F = dyn_cast<Function>(N->getGlobal())) {
3253 if (F->hasFnAttribute("long-call"))
3254 UseLongCalls = true;
3255 else if (F->hasFnAttribute("short-call"))
3256 UseLongCalls = false;
3258 if (UseLongCalls)
3259 Callee = Subtarget.hasSym32()
3260 ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
3261 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
3265 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3266 if (IsPIC) {
3267 const GlobalValue *Val = G->getGlobal();
3268 InternalLinkage = Val->hasInternalLinkage();
3270 if (InternalLinkage)
3271 Callee = getAddrLocal(G, DL, Ty, DAG, ABI.IsN32() || ABI.IsN64());
3272 else if (Subtarget.useXGOT()) {
3273 Callee = getAddrGlobalLargeGOT(G, DL, Ty, DAG, MipsII::MO_CALL_HI16,
3274 MipsII::MO_CALL_LO16, Chain,
3275 FuncInfo->callPtrInfo(Val));
3276 IsCallReloc = true;
3277 } else {
3278 Callee = getAddrGlobal(G, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
3279 FuncInfo->callPtrInfo(Val));
3280 IsCallReloc = true;
3282 } else
3283 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL,
3284 getPointerTy(DAG.getDataLayout()), 0,
3285 MipsII::MO_NO_FLAG);
3286 GlobalOrExternal = true;
3288 else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3289 const char *Sym = S->getSymbol();
3291 if (!IsPIC) // static
3292 Callee = DAG.getTargetExternalSymbol(
3293 Sym, getPointerTy(DAG.getDataLayout()), MipsII::MO_NO_FLAG);
3294 else if (Subtarget.useXGOT()) {
3295 Callee = getAddrGlobalLargeGOT(S, DL, Ty, DAG, MipsII::MO_CALL_HI16,
3296 MipsII::MO_CALL_LO16, Chain,
3297 FuncInfo->callPtrInfo(Sym));
3298 IsCallReloc = true;
3299 } else { // PIC
3300 Callee = getAddrGlobal(S, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
3301 FuncInfo->callPtrInfo(Sym));
3302 IsCallReloc = true;
3305 GlobalOrExternal = true;
3308 SmallVector<SDValue, 8> Ops(1, Chain);
3309 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3311 getOpndList(Ops, RegsToPass, IsPIC, GlobalOrExternal, InternalLinkage,
3312 IsCallReloc, CLI, Callee, Chain);
3314 if (IsTailCall) {
3315 MF.getFrameInfo().setHasTailCall();
3316 return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, Ops);
3319 Chain = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, Ops);
3320 SDValue InFlag = Chain.getValue(1);
3322 // Create the CALLSEQ_END node in the case of where it is not a call to
3323 // memcpy.
3324 if (!(MemcpyInByVal)) {
3325 Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
3326 DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
3327 InFlag = Chain.getValue(1);
3330 // Handle result values, copying them out of physregs into vregs that we
3331 // return.
3332 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3333 InVals, CLI);
3336 /// LowerCallResult - Lower the result values of a call into the
3337 /// appropriate copies out of appropriate physical registers.
3338 SDValue MipsTargetLowering::LowerCallResult(
3339 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
3340 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
3341 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
3342 TargetLowering::CallLoweringInfo &CLI) const {
3343 // Assign locations to each value returned by this call.
3344 SmallVector<CCValAssign, 16> RVLocs;
3345 MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
3346 *DAG.getContext());
3348 const ExternalSymbolSDNode *ES =
3349 dyn_cast_or_null<const ExternalSymbolSDNode>(CLI.Callee.getNode());
3350 CCInfo.AnalyzeCallResult(Ins, RetCC_Mips, CLI.RetTy,
3351 ES ? ES->getSymbol() : nullptr);
3353 // Copy all of the result registers out of their specified physreg.
3354 for (unsigned i = 0; i != RVLocs.size(); ++i) {
3355 CCValAssign &VA = RVLocs[i];
3356 assert(VA.isRegLoc() && "Can only return in registers!");
3358 SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
3359 RVLocs[i].getLocVT(), InFlag);
3360 Chain = Val.getValue(1);
3361 InFlag = Val.getValue(2);
3363 if (VA.isUpperBitsInLoc()) {
3364 unsigned ValSizeInBits = Ins[i].ArgVT.getSizeInBits();
3365 unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3366 unsigned Shift =
3367 VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA;
3368 Val = DAG.getNode(
3369 Shift, DL, VA.getLocVT(), Val,
3370 DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
3373 switch (VA.getLocInfo()) {
3374 default:
3375 llvm_unreachable("Unknown loc info!");
3376 case CCValAssign::Full:
3377 break;
3378 case CCValAssign::BCvt:
3379 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
3380 break;
3381 case CCValAssign::AExt:
3382 case CCValAssign::AExtUpper:
3383 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
3384 break;
3385 case CCValAssign::ZExt:
3386 case CCValAssign::ZExtUpper:
3387 Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
3388 DAG.getValueType(VA.getValVT()));
3389 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
3390 break;
3391 case CCValAssign::SExt:
3392 case CCValAssign::SExtUpper:
3393 Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
3394 DAG.getValueType(VA.getValVT()));
3395 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
3396 break;
3399 InVals.push_back(Val);
3402 return Chain;
3405 static SDValue UnpackFromArgumentSlot(SDValue Val, const CCValAssign &VA,
3406 EVT ArgVT, const SDLoc &DL,
3407 SelectionDAG &DAG) {
3408 MVT LocVT = VA.getLocVT();
3409 EVT ValVT = VA.getValVT();
3411 // Shift into the upper bits if necessary.
3412 switch (VA.getLocInfo()) {
3413 default:
3414 break;
3415 case CCValAssign::AExtUpper:
3416 case CCValAssign::SExtUpper:
3417 case CCValAssign::ZExtUpper: {
3418 unsigned ValSizeInBits = ArgVT.getSizeInBits();
3419 unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3420 unsigned Opcode =
3421 VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA;
3422 Val = DAG.getNode(
3423 Opcode, DL, VA.getLocVT(), Val,
3424 DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
3425 break;
3429 // If this is an value smaller than the argument slot size (32-bit for O32,
3430 // 64-bit for N32/N64), it has been promoted in some way to the argument slot
3431 // size. Extract the value and insert any appropriate assertions regarding
3432 // sign/zero extension.
3433 switch (VA.getLocInfo()) {
3434 default:
3435 llvm_unreachable("Unknown loc info!");
3436 case CCValAssign::Full:
3437 break;
3438 case CCValAssign::AExtUpper:
3439 case CCValAssign::AExt:
3440 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
3441 break;
3442 case CCValAssign::SExtUpper:
3443 case CCValAssign::SExt:
3444 Val = DAG.getNode(ISD::AssertSext, DL, LocVT, Val, DAG.getValueType(ValVT));
3445 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
3446 break;
3447 case CCValAssign::ZExtUpper:
3448 case CCValAssign::ZExt:
3449 Val = DAG.getNode(ISD::AssertZext, DL, LocVT, Val, DAG.getValueType(ValVT));
3450 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
3451 break;
3452 case CCValAssign::BCvt:
3453 Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
3454 break;
3457 return Val;
3460 //===----------------------------------------------------------------------===//
3461 // Formal Arguments Calling Convention Implementation
3462 //===----------------------------------------------------------------------===//
3463 /// LowerFormalArguments - transform physical registers into virtual registers
3464 /// and generate load operations for arguments places on the stack.
3465 SDValue MipsTargetLowering::LowerFormalArguments(
3466 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
3467 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
3468 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3469 MachineFunction &MF = DAG.getMachineFunction();
3470 MachineFrameInfo &MFI = MF.getFrameInfo();
3471 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3473 MipsFI->setVarArgsFrameIndex(0);
3475 // Used with vargs to acumulate store chains.
3476 std::vector<SDValue> OutChains;
3478 // Assign locations to all of the incoming arguments.
3479 SmallVector<CCValAssign, 16> ArgLocs;
3480 MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
3481 *DAG.getContext());
3482 CCInfo.AllocateStack(ABI.GetCalleeAllocdArgSizeInBytes(CallConv), 1);
3483 const Function &Func = DAG.getMachineFunction().getFunction();
3484 Function::const_arg_iterator FuncArg = Func.arg_begin();
3486 if (Func.hasFnAttribute("interrupt") && !Func.arg_empty())
3487 report_fatal_error(
3488 "Functions with the interrupt attribute cannot have arguments!");
3490 CCInfo.AnalyzeFormalArguments(Ins, CC_Mips_FixedArg);
3491 MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
3492 CCInfo.getInRegsParamsCount() > 0);
3494 unsigned CurArgIdx = 0;
3495 CCInfo.rewindByValRegsInfo();
3497 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3498 CCValAssign &VA = ArgLocs[i];
3499 if (Ins[i].isOrigArg()) {
3500 std::advance(FuncArg, Ins[i].getOrigArgIndex() - CurArgIdx);
3501 CurArgIdx = Ins[i].getOrigArgIndex();
3503 EVT ValVT = VA.getValVT();
3504 ISD::ArgFlagsTy Flags = Ins[i].Flags;
3505 bool IsRegLoc = VA.isRegLoc();
3507 if (Flags.isByVal()) {
3508 assert(Ins[i].isOrigArg() && "Byval arguments cannot be implicit");
3509 unsigned FirstByValReg, LastByValReg;
3510 unsigned ByValIdx = CCInfo.getInRegsParamsProcessed();
3511 CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg);
3513 assert(Flags.getByValSize() &&
3514 "ByVal args of size 0 should have been ignored by front-end.");
3515 assert(ByValIdx < CCInfo.getInRegsParamsCount());
3516 copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
3517 FirstByValReg, LastByValReg, VA, CCInfo);
3518 CCInfo.nextInRegsParam();
3519 continue;
3522 // Arguments stored on registers
3523 if (IsRegLoc) {
3524 MVT RegVT = VA.getLocVT();
3525 Register ArgReg = VA.getLocReg();
3526 const TargetRegisterClass *RC = getRegClassFor(RegVT);
3528 // Transform the arguments stored on
3529 // physical registers into virtual ones
3530 unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
3531 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
3533 ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG);
3535 // Handle floating point arguments passed in integer registers and
3536 // long double arguments passed in floating point registers.
3537 if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
3538 (RegVT == MVT::i64 && ValVT == MVT::f64) ||
3539 (RegVT == MVT::f64 && ValVT == MVT::i64))
3540 ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
3541 else if (ABI.IsO32() && RegVT == MVT::i32 &&
3542 ValVT == MVT::f64) {
3543 unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
3544 getNextIntArgReg(ArgReg), RC);
3545 SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
3546 if (!Subtarget.isLittle())
3547 std::swap(ArgValue, ArgValue2);
3548 ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
3549 ArgValue, ArgValue2);
3552 InVals.push_back(ArgValue);
3553 } else { // VA.isRegLoc()
3554 MVT LocVT = VA.getLocVT();
3556 if (ABI.IsO32()) {
3557 // We ought to be able to use LocVT directly but O32 sets it to i32
3558 // when allocating floating point values to integer registers.
3559 // This shouldn't influence how we load the value into registers unless
3560 // we are targeting softfloat.
3561 if (VA.getValVT().isFloatingPoint() && !Subtarget.useSoftFloat())
3562 LocVT = VA.getValVT();
3565 // sanity check
3566 assert(VA.isMemLoc());
3568 // The stack pointer offset is relative to the caller stack frame.
3569 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
3570 VA.getLocMemOffset(), true);
3572 // Create load nodes to retrieve arguments from the stack
3573 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3574 SDValue ArgValue = DAG.getLoad(
3575 LocVT, DL, Chain, FIN,
3576 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
3577 OutChains.push_back(ArgValue.getValue(1));
3579 ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG);
3581 InVals.push_back(ArgValue);
3585 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3586 // The mips ABIs for returning structs by value requires that we copy
3587 // the sret argument into $v0 for the return. Save the argument into
3588 // a virtual register so that we can access it from the return points.
3589 if (Ins[i].Flags.isSRet()) {
3590 unsigned Reg = MipsFI->getSRetReturnReg();
3591 if (!Reg) {
3592 Reg = MF.getRegInfo().createVirtualRegister(
3593 getRegClassFor(ABI.IsN64() ? MVT::i64 : MVT::i32));
3594 MipsFI->setSRetReturnReg(Reg);
3596 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[i]);
3597 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
3598 break;
3602 if (IsVarArg)
3603 writeVarArgRegs(OutChains, Chain, DL, DAG, CCInfo);
3605 // All stores are grouped in one node to allow the matching between
3606 // the size of Ins and InVals. This only happens when on varg functions
3607 if (!OutChains.empty()) {
3608 OutChains.push_back(Chain);
3609 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
3612 return Chain;
3615 //===----------------------------------------------------------------------===//
3616 // Return Value Calling Convention Implementation
3617 //===----------------------------------------------------------------------===//
3619 bool
3620 MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
3621 MachineFunction &MF, bool IsVarArg,
3622 const SmallVectorImpl<ISD::OutputArg> &Outs,
3623 LLVMContext &Context) const {
3624 SmallVector<CCValAssign, 16> RVLocs;
3625 MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
3626 return CCInfo.CheckReturn(Outs, RetCC_Mips);
3629 bool
3630 MipsTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
3631 if ((ABI.IsN32() || ABI.IsN64()) && Type == MVT::i32)
3632 return true;
3634 return IsSigned;
3637 SDValue
3638 MipsTargetLowering::LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
3639 const SDLoc &DL,
3640 SelectionDAG &DAG) const {
3641 MachineFunction &MF = DAG.getMachineFunction();
3642 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3644 MipsFI->setISR();
3646 return DAG.getNode(MipsISD::ERet, DL, MVT::Other, RetOps);
3649 SDValue
3650 MipsTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
3651 bool IsVarArg,
3652 const SmallVectorImpl<ISD::OutputArg> &Outs,
3653 const SmallVectorImpl<SDValue> &OutVals,
3654 const SDLoc &DL, SelectionDAG &DAG) const {
3655 // CCValAssign - represent the assignment of
3656 // the return value to a location
3657 SmallVector<CCValAssign, 16> RVLocs;
3658 MachineFunction &MF = DAG.getMachineFunction();
3660 // CCState - Info about the registers and stack slot.
3661 MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
3663 // Analyze return values.
3664 CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
3666 SDValue Flag;
3667 SmallVector<SDValue, 4> RetOps(1, Chain);
3669 // Copy the result values into the output registers.
3670 for (unsigned i = 0; i != RVLocs.size(); ++i) {
3671 SDValue Val = OutVals[i];
3672 CCValAssign &VA = RVLocs[i];
3673 assert(VA.isRegLoc() && "Can only return in registers!");
3674 bool UseUpperBits = false;
3676 switch (VA.getLocInfo()) {
3677 default:
3678 llvm_unreachable("Unknown loc info!");
3679 case CCValAssign::Full:
3680 break;
3681 case CCValAssign::BCvt:
3682 Val = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Val);
3683 break;
3684 case CCValAssign::AExtUpper:
3685 UseUpperBits = true;
3686 LLVM_FALLTHROUGH;
3687 case CCValAssign::AExt:
3688 Val = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Val);
3689 break;
3690 case CCValAssign::ZExtUpper:
3691 UseUpperBits = true;
3692 LLVM_FALLTHROUGH;
3693 case CCValAssign::ZExt:
3694 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Val);
3695 break;
3696 case CCValAssign::SExtUpper:
3697 UseUpperBits = true;
3698 LLVM_FALLTHROUGH;
3699 case CCValAssign::SExt:
3700 Val = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Val);
3701 break;
3704 if (UseUpperBits) {
3705 unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits();
3706 unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3707 Val = DAG.getNode(
3708 ISD::SHL, DL, VA.getLocVT(), Val,
3709 DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
3712 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
3714 // Guarantee that all emitted copies are stuck together with flags.
3715 Flag = Chain.getValue(1);
3716 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3719 // The mips ABIs for returning structs by value requires that we copy
3720 // the sret argument into $v0 for the return. We saved the argument into
3721 // a virtual register in the entry block, so now we copy the value out
3722 // and into $v0.
3723 if (MF.getFunction().hasStructRetAttr()) {
3724 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3725 unsigned Reg = MipsFI->getSRetReturnReg();
3727 if (!Reg)
3728 llvm_unreachable("sret virtual register not created in the entry block");
3729 SDValue Val =
3730 DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout()));
3731 unsigned V0 = ABI.IsN64() ? Mips::V0_64 : Mips::V0;
3733 Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
3734 Flag = Chain.getValue(1);
3735 RetOps.push_back(DAG.getRegister(V0, getPointerTy(DAG.getDataLayout())));
3738 RetOps[0] = Chain; // Update chain.
3740 // Add the flag if we have it.
3741 if (Flag.getNode())
3742 RetOps.push_back(Flag);
3744 // ISRs must use "eret".
3745 if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt"))
3746 return LowerInterruptReturn(RetOps, DL, DAG);
3748 // Standard return on Mips is a "jr $ra"
3749 return DAG.getNode(MipsISD::Ret, DL, MVT::Other, RetOps);
3752 //===----------------------------------------------------------------------===//
3753 // Mips Inline Assembly Support
3754 //===----------------------------------------------------------------------===//
3756 /// getConstraintType - Given a constraint letter, return the type of
3757 /// constraint it is for this target.
3758 MipsTargetLowering::ConstraintType
3759 MipsTargetLowering::getConstraintType(StringRef Constraint) const {
3760 // Mips specific constraints
3761 // GCC config/mips/constraints.md
3763 // 'd' : An address register. Equivalent to r
3764 // unless generating MIPS16 code.
3765 // 'y' : Equivalent to r; retained for
3766 // backwards compatibility.
3767 // 'c' : A register suitable for use in an indirect
3768 // jump. This will always be $25 for -mabicalls.
3769 // 'l' : The lo register. 1 word storage.
3770 // 'x' : The hilo register pair. Double word storage.
3771 if (Constraint.size() == 1) {
3772 switch (Constraint[0]) {
3773 default : break;
3774 case 'd':
3775 case 'y':
3776 case 'f':
3777 case 'c':
3778 case 'l':
3779 case 'x':
3780 return C_RegisterClass;
3781 case 'R':
3782 return C_Memory;
3786 if (Constraint == "ZC")
3787 return C_Memory;
3789 return TargetLowering::getConstraintType(Constraint);
3792 /// Examine constraint type and operand type and determine a weight value.
3793 /// This object must already have been set up with the operand type
3794 /// and the current alternative constraint selected.
3795 TargetLowering::ConstraintWeight
3796 MipsTargetLowering::getSingleConstraintMatchWeight(
3797 AsmOperandInfo &info, const char *constraint) const {
3798 ConstraintWeight weight = CW_Invalid;
3799 Value *CallOperandVal = info.CallOperandVal;
3800 // If we don't have a value, we can't do a match,
3801 // but allow it at the lowest weight.
3802 if (!CallOperandVal)
3803 return CW_Default;
3804 Type *type = CallOperandVal->getType();
3805 // Look at the constraint type.
3806 switch (*constraint) {
3807 default:
3808 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3809 break;
3810 case 'd':
3811 case 'y':
3812 if (type->isIntegerTy())
3813 weight = CW_Register;
3814 break;
3815 case 'f': // FPU or MSA register
3816 if (Subtarget.hasMSA() && type->isVectorTy() &&
3817 cast<VectorType>(type)->getBitWidth() == 128)
3818 weight = CW_Register;
3819 else if (type->isFloatTy())
3820 weight = CW_Register;
3821 break;
3822 case 'c': // $25 for indirect jumps
3823 case 'l': // lo register
3824 case 'x': // hilo register pair
3825 if (type->isIntegerTy())
3826 weight = CW_SpecificReg;
3827 break;
3828 case 'I': // signed 16 bit immediate
3829 case 'J': // integer zero
3830 case 'K': // unsigned 16 bit immediate
3831 case 'L': // signed 32 bit immediate where lower 16 bits are 0
3832 case 'N': // immediate in the range of -65535 to -1 (inclusive)
3833 case 'O': // signed 15 bit immediate (+- 16383)
3834 case 'P': // immediate in the range of 65535 to 1 (inclusive)
3835 if (isa<ConstantInt>(CallOperandVal))
3836 weight = CW_Constant;
3837 break;
3838 case 'R':
3839 weight = CW_Memory;
3840 break;
3842 return weight;
3845 /// This is a helper function to parse a physical register string and split it
3846 /// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
3847 /// that is returned indicates whether parsing was successful. The second flag
3848 /// is true if the numeric part exists.
3849 static std::pair<bool, bool> parsePhysicalReg(StringRef C, StringRef &Prefix,
3850 unsigned long long &Reg) {
3851 if (C.front() != '{' || C.back() != '}')
3852 return std::make_pair(false, false);
3854 // Search for the first numeric character.
3855 StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1;
3856 I = std::find_if(B, E, isdigit);
3858 Prefix = StringRef(B, I - B);
3860 // The second flag is set to false if no numeric characters were found.
3861 if (I == E)
3862 return std::make_pair(true, false);
3864 // Parse the numeric characters.
3865 return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg),
3866 true);
3869 EVT MipsTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT,
3870 ISD::NodeType) const {
3871 bool Cond = !Subtarget.isABI_O32() && VT.getSizeInBits() == 32;
3872 EVT MinVT = getRegisterType(Context, Cond ? MVT::i64 : MVT::i32);
3873 return VT.bitsLT(MinVT) ? MinVT : VT;
3876 std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering::
3877 parseRegForInlineAsmConstraint(StringRef C, MVT VT) const {
3878 const TargetRegisterInfo *TRI =
3879 Subtarget.getRegisterInfo();
3880 const TargetRegisterClass *RC;
3881 StringRef Prefix;
3882 unsigned long long Reg;
3884 std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg);
3886 if (!R.first)
3887 return std::make_pair(0U, nullptr);
3889 if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo.
3890 // No numeric characters follow "hi" or "lo".
3891 if (R.second)
3892 return std::make_pair(0U, nullptr);
3894 RC = TRI->getRegClass(Prefix == "hi" ?
3895 Mips::HI32RegClassID : Mips::LO32RegClassID);
3896 return std::make_pair(*(RC->begin()), RC);
3897 } else if (Prefix.startswith("$msa")) {
3898 // Parse $msa(ir|csr|access|save|modify|request|map|unmap)
3900 // No numeric characters follow the name.
3901 if (R.second)
3902 return std::make_pair(0U, nullptr);
3904 Reg = StringSwitch<unsigned long long>(Prefix)
3905 .Case("$msair", Mips::MSAIR)
3906 .Case("$msacsr", Mips::MSACSR)
3907 .Case("$msaaccess", Mips::MSAAccess)
3908 .Case("$msasave", Mips::MSASave)
3909 .Case("$msamodify", Mips::MSAModify)
3910 .Case("$msarequest", Mips::MSARequest)
3911 .Case("$msamap", Mips::MSAMap)
3912 .Case("$msaunmap", Mips::MSAUnmap)
3913 .Default(0);
3915 if (!Reg)
3916 return std::make_pair(0U, nullptr);
3918 RC = TRI->getRegClass(Mips::MSACtrlRegClassID);
3919 return std::make_pair(Reg, RC);
3922 if (!R.second)
3923 return std::make_pair(0U, nullptr);
3925 if (Prefix == "$f") { // Parse $f0-$f31.
3926 // If the size of FP registers is 64-bit or Reg is an even number, select
3927 // the 64-bit register class. Otherwise, select the 32-bit register class.
3928 if (VT == MVT::Other)
3929 VT = (Subtarget.isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32;
3931 RC = getRegClassFor(VT);
3933 if (RC == &Mips::AFGR64RegClass) {
3934 assert(Reg % 2 == 0);
3935 Reg >>= 1;
3937 } else if (Prefix == "$fcc") // Parse $fcc0-$fcc7.
3938 RC = TRI->getRegClass(Mips::FCCRegClassID);
3939 else if (Prefix == "$w") { // Parse $w0-$w31.
3940 RC = getRegClassFor((VT == MVT::Other) ? MVT::v16i8 : VT);
3941 } else { // Parse $0-$31.
3942 assert(Prefix == "$");
3943 RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT);
3946 assert(Reg < RC->getNumRegs());
3947 return std::make_pair(*(RC->begin() + Reg), RC);
3950 /// Given a register class constraint, like 'r', if this corresponds directly
3951 /// to an LLVM register class, return a register of 0 and the register class
3952 /// pointer.
3953 std::pair<unsigned, const TargetRegisterClass *>
3954 MipsTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
3955 StringRef Constraint,
3956 MVT VT) const {
3957 if (Constraint.size() == 1) {
3958 switch (Constraint[0]) {
3959 case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
3960 case 'y': // Same as 'r'. Exists for compatibility.
3961 case 'r':
3962 if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
3963 if (Subtarget.inMips16Mode())
3964 return std::make_pair(0U, &Mips::CPU16RegsRegClass);
3965 return std::make_pair(0U, &Mips::GPR32RegClass);
3967 if (VT == MVT::i64 && !Subtarget.isGP64bit())
3968 return std::make_pair(0U, &Mips::GPR32RegClass);
3969 if (VT == MVT::i64 && Subtarget.isGP64bit())
3970 return std::make_pair(0U, &Mips::GPR64RegClass);
3971 // This will generate an error message
3972 return std::make_pair(0U, nullptr);
3973 case 'f': // FPU or MSA register
3974 if (VT == MVT::v16i8)
3975 return std::make_pair(0U, &Mips::MSA128BRegClass);
3976 else if (VT == MVT::v8i16 || VT == MVT::v8f16)
3977 return std::make_pair(0U, &Mips::MSA128HRegClass);
3978 else if (VT == MVT::v4i32 || VT == MVT::v4f32)
3979 return std::make_pair(0U, &Mips::MSA128WRegClass);
3980 else if (VT == MVT::v2i64 || VT == MVT::v2f64)
3981 return std::make_pair(0U, &Mips::MSA128DRegClass);
3982 else if (VT == MVT::f32)
3983 return std::make_pair(0U, &Mips::FGR32RegClass);
3984 else if ((VT == MVT::f64) && (!Subtarget.isSingleFloat())) {
3985 if (Subtarget.isFP64bit())
3986 return std::make_pair(0U, &Mips::FGR64RegClass);
3987 return std::make_pair(0U, &Mips::AFGR64RegClass);
3989 break;
3990 case 'c': // register suitable for indirect jump
3991 if (VT == MVT::i32)
3992 return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass);
3993 if (VT == MVT::i64)
3994 return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass);
3995 // This will generate an error message
3996 return std::make_pair(0U, nullptr);
3997 case 'l': // use the `lo` register to store values
3998 // that are no bigger than a word
3999 if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8)
4000 return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass);
4001 return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass);
4002 case 'x': // use the concatenated `hi` and `lo` registers
4003 // to store doubleword values
4004 // Fixme: Not triggering the use of both hi and low
4005 // This will generate an error message
4006 return std::make_pair(0U, nullptr);
4010 std::pair<unsigned, const TargetRegisterClass *> R;
4011 R = parseRegForInlineAsmConstraint(Constraint, VT);
4013 if (R.second)
4014 return R;
4016 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
4019 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4020 /// vector. If it is invalid, don't add anything to Ops.
4021 void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4022 std::string &Constraint,
4023 std::vector<SDValue>&Ops,
4024 SelectionDAG &DAG) const {
4025 SDLoc DL(Op);
4026 SDValue Result;
4028 // Only support length 1 constraints for now.
4029 if (Constraint.length() > 1) return;
4031 char ConstraintLetter = Constraint[0];
4032 switch (ConstraintLetter) {
4033 default: break; // This will fall through to the generic implementation
4034 case 'I': // Signed 16 bit constant
4035 // If this fails, the parent routine will give an error
4036 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4037 EVT Type = Op.getValueType();
4038 int64_t Val = C->getSExtValue();
4039 if (isInt<16>(Val)) {
4040 Result = DAG.getTargetConstant(Val, DL, Type);
4041 break;
4044 return;
4045 case 'J': // integer zero
4046 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4047 EVT Type = Op.getValueType();
4048 int64_t Val = C->getZExtValue();
4049 if (Val == 0) {
4050 Result = DAG.getTargetConstant(0, DL, Type);
4051 break;
4054 return;
4055 case 'K': // unsigned 16 bit immediate
4056 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4057 EVT Type = Op.getValueType();
4058 uint64_t Val = (uint64_t)C->getZExtValue();
4059 if (isUInt<16>(Val)) {
4060 Result = DAG.getTargetConstant(Val, DL, Type);
4061 break;
4064 return;
4065 case 'L': // signed 32 bit immediate where lower 16 bits are 0
4066 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4067 EVT Type = Op.getValueType();
4068 int64_t Val = C->getSExtValue();
4069 if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
4070 Result = DAG.getTargetConstant(Val, DL, Type);
4071 break;
4074 return;
4075 case 'N': // immediate in the range of -65535 to -1 (inclusive)
4076 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4077 EVT Type = Op.getValueType();
4078 int64_t Val = C->getSExtValue();
4079 if ((Val >= -65535) && (Val <= -1)) {
4080 Result = DAG.getTargetConstant(Val, DL, Type);
4081 break;
4084 return;
4085 case 'O': // signed 15 bit immediate
4086 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4087 EVT Type = Op.getValueType();
4088 int64_t Val = C->getSExtValue();
4089 if ((isInt<15>(Val))) {
4090 Result = DAG.getTargetConstant(Val, DL, Type);
4091 break;
4094 return;
4095 case 'P': // immediate in the range of 1 to 65535 (inclusive)
4096 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4097 EVT Type = Op.getValueType();
4098 int64_t Val = C->getSExtValue();
4099 if ((Val <= 65535) && (Val >= 1)) {
4100 Result = DAG.getTargetConstant(Val, DL, Type);
4101 break;
4104 return;
4107 if (Result.getNode()) {
4108 Ops.push_back(Result);
4109 return;
4112 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
4115 bool MipsTargetLowering::isLegalAddressingMode(const DataLayout &DL,
4116 const AddrMode &AM, Type *Ty,
4117 unsigned AS, Instruction *I) const {
4118 // No global is ever allowed as a base.
4119 if (AM.BaseGV)
4120 return false;
4122 switch (AM.Scale) {
4123 case 0: // "r+i" or just "i", depending on HasBaseReg.
4124 break;
4125 case 1:
4126 if (!AM.HasBaseReg) // allow "r+i".
4127 break;
4128 return false; // disallow "r+r" or "r+r+i".
4129 default:
4130 return false;
4133 return true;
4136 bool
4137 MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
4138 // The Mips target isn't yet aware of offsets.
4139 return false;
4142 EVT MipsTargetLowering::getOptimalMemOpType(
4143 uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
4144 bool ZeroMemset, bool MemcpyStrSrc,
4145 const AttributeList &FuncAttributes) const {
4146 if (Subtarget.hasMips64())
4147 return MVT::i64;
4149 return MVT::i32;
4152 bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
4153 bool ForCodeSize) const {
4154 if (VT != MVT::f32 && VT != MVT::f64)
4155 return false;
4156 if (Imm.isNegZero())
4157 return false;
4158 return Imm.isZero();
4161 unsigned MipsTargetLowering::getJumpTableEncoding() const {
4163 // FIXME: For space reasons this should be: EK_GPRel32BlockAddress.
4164 if (ABI.IsN64() && isPositionIndependent())
4165 return MachineJumpTableInfo::EK_GPRel64BlockAddress;
4167 return TargetLowering::getJumpTableEncoding();
4170 bool MipsTargetLowering::useSoftFloat() const {
4171 return Subtarget.useSoftFloat();
4174 void MipsTargetLowering::copyByValRegs(
4175 SDValue Chain, const SDLoc &DL, std::vector<SDValue> &OutChains,
4176 SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
4177 SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
4178 unsigned FirstReg, unsigned LastReg, const CCValAssign &VA,
4179 MipsCCState &State) const {
4180 MachineFunction &MF = DAG.getMachineFunction();
4181 MachineFrameInfo &MFI = MF.getFrameInfo();
4182 unsigned GPRSizeInBytes = Subtarget.getGPRSizeInBytes();
4183 unsigned NumRegs = LastReg - FirstReg;
4184 unsigned RegAreaSize = NumRegs * GPRSizeInBytes;
4185 unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
4186 int FrameObjOffset;
4187 ArrayRef<MCPhysReg> ByValArgRegs = ABI.GetByValArgRegs();
4189 if (RegAreaSize)
4190 FrameObjOffset =
4191 (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) -
4192 (int)((ByValArgRegs.size() - FirstReg) * GPRSizeInBytes);
4193 else
4194 FrameObjOffset = VA.getLocMemOffset();
4196 // Create frame object.
4197 EVT PtrTy = getPointerTy(DAG.getDataLayout());
4198 // Make the fixed object stored to mutable so that the load instructions
4199 // referencing it have their memory dependencies added.
4200 // Set the frame object as isAliased which clears the underlying objects
4201 // vector in ScheduleDAGInstrs::buildSchedGraph() resulting in addition of all
4202 // stores as dependencies for loads referencing this fixed object.
4203 int FI = MFI.CreateFixedObject(FrameObjSize, FrameObjOffset, false, true);
4204 SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4205 InVals.push_back(FIN);
4207 if (!NumRegs)
4208 return;
4210 // Copy arg registers.
4211 MVT RegTy = MVT::getIntegerVT(GPRSizeInBytes * 8);
4212 const TargetRegisterClass *RC = getRegClassFor(RegTy);
4214 for (unsigned I = 0; I < NumRegs; ++I) {
4215 unsigned ArgReg = ByValArgRegs[FirstReg + I];
4216 unsigned VReg = addLiveIn(MF, ArgReg, RC);
4217 unsigned Offset = I * GPRSizeInBytes;
4218 SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
4219 DAG.getConstant(Offset, DL, PtrTy));
4220 SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
4221 StorePtr, MachinePointerInfo(FuncArg, Offset));
4222 OutChains.push_back(Store);
4226 // Copy byVal arg to registers and stack.
4227 void MipsTargetLowering::passByValArg(
4228 SDValue Chain, const SDLoc &DL,
4229 std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
4230 SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
4231 MachineFrameInfo &MFI, SelectionDAG &DAG, SDValue Arg, unsigned FirstReg,
4232 unsigned LastReg, const ISD::ArgFlagsTy &Flags, bool isLittle,
4233 const CCValAssign &VA) const {
4234 unsigned ByValSizeInBytes = Flags.getByValSize();
4235 unsigned OffsetInBytes = 0; // From beginning of struct
4236 unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
4237 unsigned Alignment = std::min(Flags.getByValAlign(), RegSizeInBytes);
4238 EVT PtrTy = getPointerTy(DAG.getDataLayout()),
4239 RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
4240 unsigned NumRegs = LastReg - FirstReg;
4242 if (NumRegs) {
4243 ArrayRef<MCPhysReg> ArgRegs = ABI.GetByValArgRegs();
4244 bool LeftoverBytes = (NumRegs * RegSizeInBytes > ByValSizeInBytes);
4245 unsigned I = 0;
4247 // Copy words to registers.
4248 for (; I < NumRegs - LeftoverBytes; ++I, OffsetInBytes += RegSizeInBytes) {
4249 SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4250 DAG.getConstant(OffsetInBytes, DL, PtrTy));
4251 SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
4252 MachinePointerInfo(), Alignment);
4253 MemOpChains.push_back(LoadVal.getValue(1));
4254 unsigned ArgReg = ArgRegs[FirstReg + I];
4255 RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
4258 // Return if the struct has been fully copied.
4259 if (ByValSizeInBytes == OffsetInBytes)
4260 return;
4262 // Copy the remainder of the byval argument with sub-word loads and shifts.
4263 if (LeftoverBytes) {
4264 SDValue Val;
4266 for (unsigned LoadSizeInBytes = RegSizeInBytes / 2, TotalBytesLoaded = 0;
4267 OffsetInBytes < ByValSizeInBytes; LoadSizeInBytes /= 2) {
4268 unsigned RemainingSizeInBytes = ByValSizeInBytes - OffsetInBytes;
4270 if (RemainingSizeInBytes < LoadSizeInBytes)
4271 continue;
4273 // Load subword.
4274 SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4275 DAG.getConstant(OffsetInBytes, DL,
4276 PtrTy));
4277 SDValue LoadVal = DAG.getExtLoad(
4278 ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr, MachinePointerInfo(),
4279 MVT::getIntegerVT(LoadSizeInBytes * 8), Alignment);
4280 MemOpChains.push_back(LoadVal.getValue(1));
4282 // Shift the loaded value.
4283 unsigned Shamt;
4285 if (isLittle)
4286 Shamt = TotalBytesLoaded * 8;
4287 else
4288 Shamt = (RegSizeInBytes - (TotalBytesLoaded + LoadSizeInBytes)) * 8;
4290 SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
4291 DAG.getConstant(Shamt, DL, MVT::i32));
4293 if (Val.getNode())
4294 Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
4295 else
4296 Val = Shift;
4298 OffsetInBytes += LoadSizeInBytes;
4299 TotalBytesLoaded += LoadSizeInBytes;
4300 Alignment = std::min(Alignment, LoadSizeInBytes);
4303 unsigned ArgReg = ArgRegs[FirstReg + I];
4304 RegsToPass.push_back(std::make_pair(ArgReg, Val));
4305 return;
4309 // Copy remainder of byval arg to it with memcpy.
4310 unsigned MemCpySize = ByValSizeInBytes - OffsetInBytes;
4311 SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4312 DAG.getConstant(OffsetInBytes, DL, PtrTy));
4313 SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
4314 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
4315 Chain = DAG.getMemcpy(Chain, DL, Dst, Src,
4316 DAG.getConstant(MemCpySize, DL, PtrTy),
4317 Alignment, /*isVolatile=*/false, /*AlwaysInline=*/false,
4318 /*isTailCall=*/false,
4319 MachinePointerInfo(), MachinePointerInfo());
4320 MemOpChains.push_back(Chain);
4323 void MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
4324 SDValue Chain, const SDLoc &DL,
4325 SelectionDAG &DAG,
4326 CCState &State) const {
4327 ArrayRef<MCPhysReg> ArgRegs = ABI.GetVarArgRegs();
4328 unsigned Idx = State.getFirstUnallocated(ArgRegs);
4329 unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
4330 MVT RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
4331 const TargetRegisterClass *RC = getRegClassFor(RegTy);
4332 MachineFunction &MF = DAG.getMachineFunction();
4333 MachineFrameInfo &MFI = MF.getFrameInfo();
4334 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
4336 // Offset of the first variable argument from stack pointer.
4337 int VaArgOffset;
4339 if (ArgRegs.size() == Idx)
4340 VaArgOffset = alignTo(State.getNextStackOffset(), RegSizeInBytes);
4341 else {
4342 VaArgOffset =
4343 (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) -
4344 (int)(RegSizeInBytes * (ArgRegs.size() - Idx));
4347 // Record the frame index of the first variable argument
4348 // which is a value necessary to VASTART.
4349 int FI = MFI.CreateFixedObject(RegSizeInBytes, VaArgOffset, true);
4350 MipsFI->setVarArgsFrameIndex(FI);
4352 // Copy the integer registers that have not been used for argument passing
4353 // to the argument register save area. For O32, the save area is allocated
4354 // in the caller's stack frame, while for N32/64, it is allocated in the
4355 // callee's stack frame.
4356 for (unsigned I = Idx; I < ArgRegs.size();
4357 ++I, VaArgOffset += RegSizeInBytes) {
4358 unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
4359 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
4360 FI = MFI.CreateFixedObject(RegSizeInBytes, VaArgOffset, true);
4361 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
4362 SDValue Store =
4363 DAG.getStore(Chain, DL, ArgValue, PtrOff, MachinePointerInfo());
4364 cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(
4365 (Value *)nullptr);
4366 OutChains.push_back(Store);
4370 void MipsTargetLowering::HandleByVal(CCState *State, unsigned &Size,
4371 unsigned Align) const {
4372 const TargetFrameLowering *TFL = Subtarget.getFrameLowering();
4374 assert(Size && "Byval argument's size shouldn't be 0.");
4376 Align = std::min(Align, TFL->getStackAlignment());
4378 unsigned FirstReg = 0;
4379 unsigned NumRegs = 0;
4381 if (State->getCallingConv() != CallingConv::Fast) {
4382 unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
4383 ArrayRef<MCPhysReg> IntArgRegs = ABI.GetByValArgRegs();
4384 // FIXME: The O32 case actually describes no shadow registers.
4385 const MCPhysReg *ShadowRegs =
4386 ABI.IsO32() ? IntArgRegs.data() : Mips64DPRegs;
4388 // We used to check the size as well but we can't do that anymore since
4389 // CCState::HandleByVal() rounds up the size after calling this function.
4390 assert(!(Align % RegSizeInBytes) &&
4391 "Byval argument's alignment should be a multiple of"
4392 "RegSizeInBytes.");
4394 FirstReg = State->getFirstUnallocated(IntArgRegs);
4396 // If Align > RegSizeInBytes, the first arg register must be even.
4397 // FIXME: This condition happens to do the right thing but it's not the
4398 // right way to test it. We want to check that the stack frame offset
4399 // of the register is aligned.
4400 if ((Align > RegSizeInBytes) && (FirstReg % 2)) {
4401 State->AllocateReg(IntArgRegs[FirstReg], ShadowRegs[FirstReg]);
4402 ++FirstReg;
4405 // Mark the registers allocated.
4406 Size = alignTo(Size, RegSizeInBytes);
4407 for (unsigned I = FirstReg; Size > 0 && (I < IntArgRegs.size());
4408 Size -= RegSizeInBytes, ++I, ++NumRegs)
4409 State->AllocateReg(IntArgRegs[I], ShadowRegs[I]);
4412 State->addInRegsParamInfo(FirstReg, FirstReg + NumRegs);
4415 MachineBasicBlock *MipsTargetLowering::emitPseudoSELECT(MachineInstr &MI,
4416 MachineBasicBlock *BB,
4417 bool isFPCmp,
4418 unsigned Opc) const {
4419 assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) &&
4420 "Subtarget already supports SELECT nodes with the use of"
4421 "conditional-move instructions.");
4423 const TargetInstrInfo *TII =
4424 Subtarget.getInstrInfo();
4425 DebugLoc DL = MI.getDebugLoc();
4427 // To "insert" a SELECT instruction, we actually have to insert the
4428 // diamond control-flow pattern. The incoming instruction knows the
4429 // destination vreg to set, the condition code register to branch on, the
4430 // true/false values to select between, and a branch opcode to use.
4431 const BasicBlock *LLVM_BB = BB->getBasicBlock();
4432 MachineFunction::iterator It = ++BB->getIterator();
4434 // thisMBB:
4435 // ...
4436 // TrueVal = ...
4437 // setcc r1, r2, r3
4438 // bNE r1, r0, copy1MBB
4439 // fallthrough --> copy0MBB
4440 MachineBasicBlock *thisMBB = BB;
4441 MachineFunction *F = BB->getParent();
4442 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4443 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4444 F->insert(It, copy0MBB);
4445 F->insert(It, sinkMBB);
4447 // Transfer the remainder of BB and its successor edges to sinkMBB.
4448 sinkMBB->splice(sinkMBB->begin(), BB,
4449 std::next(MachineBasicBlock::iterator(MI)), BB->end());
4450 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4452 // Next, add the true and fallthrough blocks as its successors.
4453 BB->addSuccessor(copy0MBB);
4454 BB->addSuccessor(sinkMBB);
4456 if (isFPCmp) {
4457 // bc1[tf] cc, sinkMBB
4458 BuildMI(BB, DL, TII->get(Opc))
4459 .addReg(MI.getOperand(1).getReg())
4460 .addMBB(sinkMBB);
4461 } else {
4462 // bne rs, $0, sinkMBB
4463 BuildMI(BB, DL, TII->get(Opc))
4464 .addReg(MI.getOperand(1).getReg())
4465 .addReg(Mips::ZERO)
4466 .addMBB(sinkMBB);
4469 // copy0MBB:
4470 // %FalseValue = ...
4471 // # fallthrough to sinkMBB
4472 BB = copy0MBB;
4474 // Update machine-CFG edges
4475 BB->addSuccessor(sinkMBB);
4477 // sinkMBB:
4478 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
4479 // ...
4480 BB = sinkMBB;
4482 BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
4483 .addReg(MI.getOperand(2).getReg())
4484 .addMBB(thisMBB)
4485 .addReg(MI.getOperand(3).getReg())
4486 .addMBB(copy0MBB);
4488 MI.eraseFromParent(); // The pseudo instruction is gone now.
4490 return BB;
4493 MachineBasicBlock *MipsTargetLowering::emitPseudoD_SELECT(MachineInstr &MI,
4494 MachineBasicBlock *BB) const {
4495 assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) &&
4496 "Subtarget already supports SELECT nodes with the use of"
4497 "conditional-move instructions.");
4499 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
4500 DebugLoc DL = MI.getDebugLoc();
4502 // D_SELECT substitutes two SELECT nodes that goes one after another and
4503 // have the same condition operand. On machines which don't have
4504 // conditional-move instruction, it reduces unnecessary branch instructions
4505 // which are result of using two diamond patterns that are result of two
4506 // SELECT pseudo instructions.
4507 const BasicBlock *LLVM_BB = BB->getBasicBlock();
4508 MachineFunction::iterator It = ++BB->getIterator();
4510 // thisMBB:
4511 // ...
4512 // TrueVal = ...
4513 // setcc r1, r2, r3
4514 // bNE r1, r0, copy1MBB
4515 // fallthrough --> copy0MBB
4516 MachineBasicBlock *thisMBB = BB;
4517 MachineFunction *F = BB->getParent();
4518 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4519 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4520 F->insert(It, copy0MBB);
4521 F->insert(It, sinkMBB);
4523 // Transfer the remainder of BB and its successor edges to sinkMBB.
4524 sinkMBB->splice(sinkMBB->begin(), BB,
4525 std::next(MachineBasicBlock::iterator(MI)), BB->end());
4526 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4528 // Next, add the true and fallthrough blocks as its successors.
4529 BB->addSuccessor(copy0MBB);
4530 BB->addSuccessor(sinkMBB);
4532 // bne rs, $0, sinkMBB
4533 BuildMI(BB, DL, TII->get(Mips::BNE))
4534 .addReg(MI.getOperand(2).getReg())
4535 .addReg(Mips::ZERO)
4536 .addMBB(sinkMBB);
4538 // copy0MBB:
4539 // %FalseValue = ...
4540 // # fallthrough to sinkMBB
4541 BB = copy0MBB;
4543 // Update machine-CFG edges
4544 BB->addSuccessor(sinkMBB);
4546 // sinkMBB:
4547 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
4548 // ...
4549 BB = sinkMBB;
4551 // Use two PHI nodes to select two reults
4552 BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
4553 .addReg(MI.getOperand(3).getReg())
4554 .addMBB(thisMBB)
4555 .addReg(MI.getOperand(5).getReg())
4556 .addMBB(copy0MBB);
4557 BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(1).getReg())
4558 .addReg(MI.getOperand(4).getReg())
4559 .addMBB(thisMBB)
4560 .addReg(MI.getOperand(6).getReg())
4561 .addMBB(copy0MBB);
4563 MI.eraseFromParent(); // The pseudo instruction is gone now.
4565 return BB;
4568 // FIXME? Maybe this could be a TableGen attribute on some registers and
4569 // this table could be generated automatically from RegInfo.
4570 unsigned MipsTargetLowering::getRegisterByName(const char* RegName, EVT VT,
4571 SelectionDAG &DAG) const {
4572 // Named registers is expected to be fairly rare. For now, just support $28
4573 // since the linux kernel uses it.
4574 if (Subtarget.isGP64bit()) {
4575 unsigned Reg = StringSwitch<unsigned>(RegName)
4576 .Case("$28", Mips::GP_64)
4577 .Default(0);
4578 if (Reg)
4579 return Reg;
4580 } else {
4581 unsigned Reg = StringSwitch<unsigned>(RegName)
4582 .Case("$28", Mips::GP)
4583 .Default(0);
4584 if (Reg)
4585 return Reg;
4587 report_fatal_error("Invalid register name global variable");