1 //===- MipsISelLowering.cpp - Mips DAG Lowering Implementation ------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the interfaces that Mips uses to lower LLVM code into a
12 //===----------------------------------------------------------------------===//
14 #include "MipsISelLowering.h"
15 #include "MCTargetDesc/MipsBaseInfo.h"
16 #include "MCTargetDesc/MipsInstPrinter.h"
17 #include "MCTargetDesc/MipsMCTargetDesc.h"
18 #include "MipsCCState.h"
19 #include "MipsInstrInfo.h"
20 #include "MipsMachineFunction.h"
21 #include "MipsRegisterInfo.h"
22 #include "MipsSubtarget.h"
23 #include "MipsTargetMachine.h"
24 #include "MipsTargetObjectFile.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/StringSwitch.h"
31 #include "llvm/CodeGen/CallingConvLower.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineJumpTableInfo.h"
40 #include "llvm/CodeGen/MachineMemOperand.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/CodeGen/RuntimeLibcalls.h"
44 #include "llvm/CodeGen/SelectionDAG.h"
45 #include "llvm/CodeGen/SelectionDAGNodes.h"
46 #include "llvm/CodeGen/TargetFrameLowering.h"
47 #include "llvm/CodeGen/TargetInstrInfo.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/ValueTypes.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/Constants.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/DebugLoc.h"
54 #include "llvm/IR/DerivedTypes.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/GlobalValue.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/MC/MCContext.h"
60 #include "llvm/MC/MCRegisterInfo.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CodeGen.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/MachineValueType.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include "llvm/Target/TargetOptions.h"
81 #define DEBUG_TYPE "mips-lower"
83 STATISTIC(NumTailCalls
, "Number of tail calls");
86 NoZeroDivCheck("mno-check-zero-division", cl::Hidden
,
87 cl::desc("MIPS: Don't trap on integer division by zero."),
90 extern cl::opt
<bool> EmitJalrReloc
;
92 static const MCPhysReg Mips64DPRegs
[8] = {
93 Mips::D12_64
, Mips::D13_64
, Mips::D14_64
, Mips::D15_64
,
94 Mips::D16_64
, Mips::D17_64
, Mips::D18_64
, Mips::D19_64
97 // If I is a shifted mask, set the size (Size) and the first bit of the
98 // mask (Pos), and return true.
99 // For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
100 static bool isShiftedMask(uint64_t I
, uint64_t &Pos
, uint64_t &Size
) {
101 if (!isShiftedMask_64(I
))
104 Size
= countPopulation(I
);
105 Pos
= countTrailingZeros(I
);
109 // The MIPS MSA ABI passes vector arguments in the integer register set.
110 // The number of integer registers used is dependant on the ABI used.
111 MVT
MipsTargetLowering::getRegisterTypeForCallingConv(LLVMContext
&Context
,
115 if (Subtarget
.isABI_O32()) {
118 return (VT
.getSizeInBits() == 32) ? MVT::i32
: MVT::i64
;
121 return MipsTargetLowering::getRegisterType(Context
, VT
);
124 unsigned MipsTargetLowering::getNumRegistersForCallingConv(LLVMContext
&Context
,
128 return std::max((VT
.getSizeInBits() / (Subtarget
.isABI_O32() ? 32 : 64)),
130 return MipsTargetLowering::getNumRegisters(Context
, VT
);
133 unsigned MipsTargetLowering::getVectorTypeBreakdownForCallingConv(
134 LLVMContext
&Context
, CallingConv::ID CC
, EVT VT
, EVT
&IntermediateVT
,
135 unsigned &NumIntermediates
, MVT
&RegisterVT
) const {
136 // Break down vector types to either 2 i64s or 4 i32s.
137 RegisterVT
= getRegisterTypeForCallingConv(Context
, CC
, VT
);
138 IntermediateVT
= RegisterVT
;
139 NumIntermediates
= VT
.getSizeInBits() < RegisterVT
.getSizeInBits()
140 ? VT
.getVectorNumElements()
141 : VT
.getSizeInBits() / RegisterVT
.getSizeInBits();
143 return NumIntermediates
;
146 SDValue
MipsTargetLowering::getGlobalReg(SelectionDAG
&DAG
, EVT Ty
) const {
147 MipsFunctionInfo
*FI
= DAG
.getMachineFunction().getInfo
<MipsFunctionInfo
>();
148 return DAG
.getRegister(FI
->getGlobalBaseReg(), Ty
);
151 SDValue
MipsTargetLowering::getTargetNode(GlobalAddressSDNode
*N
, EVT Ty
,
153 unsigned Flag
) const {
154 return DAG
.getTargetGlobalAddress(N
->getGlobal(), SDLoc(N
), Ty
, 0, Flag
);
157 SDValue
MipsTargetLowering::getTargetNode(ExternalSymbolSDNode
*N
, EVT Ty
,
159 unsigned Flag
) const {
160 return DAG
.getTargetExternalSymbol(N
->getSymbol(), Ty
, Flag
);
163 SDValue
MipsTargetLowering::getTargetNode(BlockAddressSDNode
*N
, EVT Ty
,
165 unsigned Flag
) const {
166 return DAG
.getTargetBlockAddress(N
->getBlockAddress(), Ty
, 0, Flag
);
169 SDValue
MipsTargetLowering::getTargetNode(JumpTableSDNode
*N
, EVT Ty
,
171 unsigned Flag
) const {
172 return DAG
.getTargetJumpTable(N
->getIndex(), Ty
, Flag
);
175 SDValue
MipsTargetLowering::getTargetNode(ConstantPoolSDNode
*N
, EVT Ty
,
177 unsigned Flag
) const {
178 return DAG
.getTargetConstantPool(N
->getConstVal(), Ty
, N
->getAlignment(),
179 N
->getOffset(), Flag
);
182 const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode
) const {
183 switch ((MipsISD::NodeType
)Opcode
) {
184 case MipsISD::FIRST_NUMBER
: break;
185 case MipsISD::JmpLink
: return "MipsISD::JmpLink";
186 case MipsISD::TailCall
: return "MipsISD::TailCall";
187 case MipsISD::Highest
: return "MipsISD::Highest";
188 case MipsISD::Higher
: return "MipsISD::Higher";
189 case MipsISD::Hi
: return "MipsISD::Hi";
190 case MipsISD::Lo
: return "MipsISD::Lo";
191 case MipsISD::GotHi
: return "MipsISD::GotHi";
192 case MipsISD::TlsHi
: return "MipsISD::TlsHi";
193 case MipsISD::GPRel
: return "MipsISD::GPRel";
194 case MipsISD::ThreadPointer
: return "MipsISD::ThreadPointer";
195 case MipsISD::Ret
: return "MipsISD::Ret";
196 case MipsISD::ERet
: return "MipsISD::ERet";
197 case MipsISD::EH_RETURN
: return "MipsISD::EH_RETURN";
198 case MipsISD::FMS
: return "MipsISD::FMS";
199 case MipsISD::FPBrcond
: return "MipsISD::FPBrcond";
200 case MipsISD::FPCmp
: return "MipsISD::FPCmp";
201 case MipsISD::FSELECT
: return "MipsISD::FSELECT";
202 case MipsISD::MTC1_D64
: return "MipsISD::MTC1_D64";
203 case MipsISD::CMovFP_T
: return "MipsISD::CMovFP_T";
204 case MipsISD::CMovFP_F
: return "MipsISD::CMovFP_F";
205 case MipsISD::TruncIntFP
: return "MipsISD::TruncIntFP";
206 case MipsISD::MFHI
: return "MipsISD::MFHI";
207 case MipsISD::MFLO
: return "MipsISD::MFLO";
208 case MipsISD::MTLOHI
: return "MipsISD::MTLOHI";
209 case MipsISD::Mult
: return "MipsISD::Mult";
210 case MipsISD::Multu
: return "MipsISD::Multu";
211 case MipsISD::MAdd
: return "MipsISD::MAdd";
212 case MipsISD::MAddu
: return "MipsISD::MAddu";
213 case MipsISD::MSub
: return "MipsISD::MSub";
214 case MipsISD::MSubu
: return "MipsISD::MSubu";
215 case MipsISD::DivRem
: return "MipsISD::DivRem";
216 case MipsISD::DivRemU
: return "MipsISD::DivRemU";
217 case MipsISD::DivRem16
: return "MipsISD::DivRem16";
218 case MipsISD::DivRemU16
: return "MipsISD::DivRemU16";
219 case MipsISD::BuildPairF64
: return "MipsISD::BuildPairF64";
220 case MipsISD::ExtractElementF64
: return "MipsISD::ExtractElementF64";
221 case MipsISD::Wrapper
: return "MipsISD::Wrapper";
222 case MipsISD::DynAlloc
: return "MipsISD::DynAlloc";
223 case MipsISD::Sync
: return "MipsISD::Sync";
224 case MipsISD::Ext
: return "MipsISD::Ext";
225 case MipsISD::Ins
: return "MipsISD::Ins";
226 case MipsISD::CIns
: return "MipsISD::CIns";
227 case MipsISD::LWL
: return "MipsISD::LWL";
228 case MipsISD::LWR
: return "MipsISD::LWR";
229 case MipsISD::SWL
: return "MipsISD::SWL";
230 case MipsISD::SWR
: return "MipsISD::SWR";
231 case MipsISD::LDL
: return "MipsISD::LDL";
232 case MipsISD::LDR
: return "MipsISD::LDR";
233 case MipsISD::SDL
: return "MipsISD::SDL";
234 case MipsISD::SDR
: return "MipsISD::SDR";
235 case MipsISD::EXTP
: return "MipsISD::EXTP";
236 case MipsISD::EXTPDP
: return "MipsISD::EXTPDP";
237 case MipsISD::EXTR_S_H
: return "MipsISD::EXTR_S_H";
238 case MipsISD::EXTR_W
: return "MipsISD::EXTR_W";
239 case MipsISD::EXTR_R_W
: return "MipsISD::EXTR_R_W";
240 case MipsISD::EXTR_RS_W
: return "MipsISD::EXTR_RS_W";
241 case MipsISD::SHILO
: return "MipsISD::SHILO";
242 case MipsISD::MTHLIP
: return "MipsISD::MTHLIP";
243 case MipsISD::MULSAQ_S_W_PH
: return "MipsISD::MULSAQ_S_W_PH";
244 case MipsISD::MAQ_S_W_PHL
: return "MipsISD::MAQ_S_W_PHL";
245 case MipsISD::MAQ_S_W_PHR
: return "MipsISD::MAQ_S_W_PHR";
246 case MipsISD::MAQ_SA_W_PHL
: return "MipsISD::MAQ_SA_W_PHL";
247 case MipsISD::MAQ_SA_W_PHR
: return "MipsISD::MAQ_SA_W_PHR";
248 case MipsISD::DPAU_H_QBL
: return "MipsISD::DPAU_H_QBL";
249 case MipsISD::DPAU_H_QBR
: return "MipsISD::DPAU_H_QBR";
250 case MipsISD::DPSU_H_QBL
: return "MipsISD::DPSU_H_QBL";
251 case MipsISD::DPSU_H_QBR
: return "MipsISD::DPSU_H_QBR";
252 case MipsISD::DPAQ_S_W_PH
: return "MipsISD::DPAQ_S_W_PH";
253 case MipsISD::DPSQ_S_W_PH
: return "MipsISD::DPSQ_S_W_PH";
254 case MipsISD::DPAQ_SA_L_W
: return "MipsISD::DPAQ_SA_L_W";
255 case MipsISD::DPSQ_SA_L_W
: return "MipsISD::DPSQ_SA_L_W";
256 case MipsISD::DPA_W_PH
: return "MipsISD::DPA_W_PH";
257 case MipsISD::DPS_W_PH
: return "MipsISD::DPS_W_PH";
258 case MipsISD::DPAQX_S_W_PH
: return "MipsISD::DPAQX_S_W_PH";
259 case MipsISD::DPAQX_SA_W_PH
: return "MipsISD::DPAQX_SA_W_PH";
260 case MipsISD::DPAX_W_PH
: return "MipsISD::DPAX_W_PH";
261 case MipsISD::DPSX_W_PH
: return "MipsISD::DPSX_W_PH";
262 case MipsISD::DPSQX_S_W_PH
: return "MipsISD::DPSQX_S_W_PH";
263 case MipsISD::DPSQX_SA_W_PH
: return "MipsISD::DPSQX_SA_W_PH";
264 case MipsISD::MULSA_W_PH
: return "MipsISD::MULSA_W_PH";
265 case MipsISD::MULT
: return "MipsISD::MULT";
266 case MipsISD::MULTU
: return "MipsISD::MULTU";
267 case MipsISD::MADD_DSP
: return "MipsISD::MADD_DSP";
268 case MipsISD::MADDU_DSP
: return "MipsISD::MADDU_DSP";
269 case MipsISD::MSUB_DSP
: return "MipsISD::MSUB_DSP";
270 case MipsISD::MSUBU_DSP
: return "MipsISD::MSUBU_DSP";
271 case MipsISD::SHLL_DSP
: return "MipsISD::SHLL_DSP";
272 case MipsISD::SHRA_DSP
: return "MipsISD::SHRA_DSP";
273 case MipsISD::SHRL_DSP
: return "MipsISD::SHRL_DSP";
274 case MipsISD::SETCC_DSP
: return "MipsISD::SETCC_DSP";
275 case MipsISD::SELECT_CC_DSP
: return "MipsISD::SELECT_CC_DSP";
276 case MipsISD::VALL_ZERO
: return "MipsISD::VALL_ZERO";
277 case MipsISD::VANY_ZERO
: return "MipsISD::VANY_ZERO";
278 case MipsISD::VALL_NONZERO
: return "MipsISD::VALL_NONZERO";
279 case MipsISD::VANY_NONZERO
: return "MipsISD::VANY_NONZERO";
280 case MipsISD::VCEQ
: return "MipsISD::VCEQ";
281 case MipsISD::VCLE_S
: return "MipsISD::VCLE_S";
282 case MipsISD::VCLE_U
: return "MipsISD::VCLE_U";
283 case MipsISD::VCLT_S
: return "MipsISD::VCLT_S";
284 case MipsISD::VCLT_U
: return "MipsISD::VCLT_U";
285 case MipsISD::VEXTRACT_SEXT_ELT
: return "MipsISD::VEXTRACT_SEXT_ELT";
286 case MipsISD::VEXTRACT_ZEXT_ELT
: return "MipsISD::VEXTRACT_ZEXT_ELT";
287 case MipsISD::VNOR
: return "MipsISD::VNOR";
288 case MipsISD::VSHF
: return "MipsISD::VSHF";
289 case MipsISD::SHF
: return "MipsISD::SHF";
290 case MipsISD::ILVEV
: return "MipsISD::ILVEV";
291 case MipsISD::ILVOD
: return "MipsISD::ILVOD";
292 case MipsISD::ILVL
: return "MipsISD::ILVL";
293 case MipsISD::ILVR
: return "MipsISD::ILVR";
294 case MipsISD::PCKEV
: return "MipsISD::PCKEV";
295 case MipsISD::PCKOD
: return "MipsISD::PCKOD";
296 case MipsISD::INSVE
: return "MipsISD::INSVE";
301 MipsTargetLowering::MipsTargetLowering(const MipsTargetMachine
&TM
,
302 const MipsSubtarget
&STI
)
303 : TargetLowering(TM
), Subtarget(STI
), ABI(TM
.getABI()) {
304 // Mips does not have i1 type, so use i32 for
305 // setcc operations results (slt, sgt, ...).
306 setBooleanContents(ZeroOrOneBooleanContent
);
307 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent
);
308 // The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA
309 // does. Integer booleans still use 0 and 1.
310 if (Subtarget
.hasMips32r6())
311 setBooleanContents(ZeroOrOneBooleanContent
,
312 ZeroOrNegativeOneBooleanContent
);
314 // Load extented operations for i1 types must be promoted
315 for (MVT VT
: MVT::integer_valuetypes()) {
316 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i1
, Promote
);
317 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i1
, Promote
);
318 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Promote
);
321 // MIPS doesn't have extending float->double load/store. Set LoadExtAction
323 for (MVT VT
: MVT::fp_valuetypes()) {
324 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f32
, Expand
);
325 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f16
, Expand
);
328 // Set LoadExtAction for f16 vectors to Expand
329 for (MVT VT
: MVT::fp_fixedlen_vector_valuetypes()) {
330 MVT F16VT
= MVT::getVectorVT(MVT::f16
, VT
.getVectorNumElements());
332 setLoadExtAction(ISD::EXTLOAD
, VT
, F16VT
, Expand
);
335 setTruncStoreAction(MVT::f32
, MVT::f16
, Expand
);
336 setTruncStoreAction(MVT::f64
, MVT::f16
, Expand
);
338 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
340 // Used by legalize types to correctly generate the setcc result.
341 // Without this, every float setcc comes with a AND/OR with the result,
342 // we don't want this, since the fpcmp result goes to a flag register,
343 // which is used implicitly by brcond and select operations.
344 AddPromotedToType(ISD::SETCC
, MVT::i1
, MVT::i32
);
346 // Mips Custom Operations
347 setOperationAction(ISD::BR_JT
, MVT::Other
, Expand
);
348 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
349 setOperationAction(ISD::BlockAddress
, MVT::i32
, Custom
);
350 setOperationAction(ISD::GlobalTLSAddress
, MVT::i32
, Custom
);
351 setOperationAction(ISD::JumpTable
, MVT::i32
, Custom
);
352 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
353 setOperationAction(ISD::SELECT
, MVT::f32
, Custom
);
354 setOperationAction(ISD::SELECT
, MVT::f64
, Custom
);
355 setOperationAction(ISD::SELECT
, MVT::i32
, Custom
);
356 setOperationAction(ISD::SETCC
, MVT::f32
, Custom
);
357 setOperationAction(ISD::SETCC
, MVT::f64
, Custom
);
358 setOperationAction(ISD::BRCOND
, MVT::Other
, Custom
);
359 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
360 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Custom
);
361 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
363 if (!(TM
.Options
.NoNaNsFPMath
|| Subtarget
.inAbs2008Mode())) {
364 setOperationAction(ISD::FABS
, MVT::f32
, Custom
);
365 setOperationAction(ISD::FABS
, MVT::f64
, Custom
);
368 if (Subtarget
.isGP64bit()) {
369 setOperationAction(ISD::GlobalAddress
, MVT::i64
, Custom
);
370 setOperationAction(ISD::BlockAddress
, MVT::i64
, Custom
);
371 setOperationAction(ISD::GlobalTLSAddress
, MVT::i64
, Custom
);
372 setOperationAction(ISD::JumpTable
, MVT::i64
, Custom
);
373 setOperationAction(ISD::ConstantPool
, MVT::i64
, Custom
);
374 setOperationAction(ISD::SELECT
, MVT::i64
, Custom
);
375 setOperationAction(ISD::LOAD
, MVT::i64
, Custom
);
376 setOperationAction(ISD::STORE
, MVT::i64
, Custom
);
377 setOperationAction(ISD::FP_TO_SINT
, MVT::i64
, Custom
);
378 setOperationAction(ISD::SHL_PARTS
, MVT::i64
, Custom
);
379 setOperationAction(ISD::SRA_PARTS
, MVT::i64
, Custom
);
380 setOperationAction(ISD::SRL_PARTS
, MVT::i64
, Custom
);
383 if (!Subtarget
.isGP64bit()) {
384 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Custom
);
385 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Custom
);
386 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Custom
);
389 setOperationAction(ISD::EH_DWARF_CFA
, MVT::i32
, Custom
);
390 if (Subtarget
.isGP64bit())
391 setOperationAction(ISD::EH_DWARF_CFA
, MVT::i64
, Custom
);
393 setOperationAction(ISD::SDIV
, MVT::i32
, Expand
);
394 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
395 setOperationAction(ISD::UDIV
, MVT::i32
, Expand
);
396 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
397 setOperationAction(ISD::SDIV
, MVT::i64
, Expand
);
398 setOperationAction(ISD::SREM
, MVT::i64
, Expand
);
399 setOperationAction(ISD::UDIV
, MVT::i64
, Expand
);
400 setOperationAction(ISD::UREM
, MVT::i64
, Expand
);
402 // Operations not directly supported by Mips.
403 setOperationAction(ISD::BR_CC
, MVT::f32
, Expand
);
404 setOperationAction(ISD::BR_CC
, MVT::f64
, Expand
);
405 setOperationAction(ISD::BR_CC
, MVT::i32
, Expand
);
406 setOperationAction(ISD::BR_CC
, MVT::i64
, Expand
);
407 setOperationAction(ISD::SELECT_CC
, MVT::i32
, Expand
);
408 setOperationAction(ISD::SELECT_CC
, MVT::i64
, Expand
);
409 setOperationAction(ISD::SELECT_CC
, MVT::f32
, Expand
);
410 setOperationAction(ISD::SELECT_CC
, MVT::f64
, Expand
);
411 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Expand
);
412 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Expand
);
413 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Expand
);
414 setOperationAction(ISD::FP_TO_UINT
, MVT::i64
, Expand
);
415 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
416 if (Subtarget
.hasCnMips()) {
417 setOperationAction(ISD::CTPOP
, MVT::i32
, Legal
);
418 setOperationAction(ISD::CTPOP
, MVT::i64
, Legal
);
420 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
421 setOperationAction(ISD::CTPOP
, MVT::i64
, Expand
);
423 setOperationAction(ISD::CTTZ
, MVT::i32
, Expand
);
424 setOperationAction(ISD::CTTZ
, MVT::i64
, Expand
);
425 setOperationAction(ISD::ROTL
, MVT::i32
, Expand
);
426 setOperationAction(ISD::ROTL
, MVT::i64
, Expand
);
427 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Expand
);
428 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i64
, Expand
);
430 if (!Subtarget
.hasMips32r2())
431 setOperationAction(ISD::ROTR
, MVT::i32
, Expand
);
433 if (!Subtarget
.hasMips64r2())
434 setOperationAction(ISD::ROTR
, MVT::i64
, Expand
);
436 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
437 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
438 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
439 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
440 setOperationAction(ISD::FSINCOS
, MVT::f32
, Expand
);
441 setOperationAction(ISD::FSINCOS
, MVT::f64
, Expand
);
442 setOperationAction(ISD::FPOW
, MVT::f32
, Expand
);
443 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
444 setOperationAction(ISD::FLOG
, MVT::f32
, Expand
);
445 setOperationAction(ISD::FLOG2
, MVT::f32
, Expand
);
446 setOperationAction(ISD::FLOG10
, MVT::f32
, Expand
);
447 setOperationAction(ISD::FEXP
, MVT::f32
, Expand
);
448 setOperationAction(ISD::FMA
, MVT::f32
, Expand
);
449 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
450 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
451 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
453 // Lower f16 conversion operations into library calls
454 setOperationAction(ISD::FP16_TO_FP
, MVT::f32
, Expand
);
455 setOperationAction(ISD::FP_TO_FP16
, MVT::f32
, Expand
);
456 setOperationAction(ISD::FP16_TO_FP
, MVT::f64
, Expand
);
457 setOperationAction(ISD::FP_TO_FP16
, MVT::f64
, Expand
);
459 setOperationAction(ISD::EH_RETURN
, MVT::Other
, Custom
);
461 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
462 setOperationAction(ISD::VAARG
, MVT::Other
, Custom
);
463 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
464 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
466 // Use the default for now
467 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
468 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
470 if (!Subtarget
.isGP64bit()) {
471 setOperationAction(ISD::ATOMIC_LOAD
, MVT::i64
, Expand
);
472 setOperationAction(ISD::ATOMIC_STORE
, MVT::i64
, Expand
);
475 if (!Subtarget
.hasMips32r2()) {
476 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i8
, Expand
);
477 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i16
, Expand
);
480 // MIPS16 lacks MIPS32's clz and clo instructions.
481 if (!Subtarget
.hasMips32() || Subtarget
.inMips16Mode())
482 setOperationAction(ISD::CTLZ
, MVT::i32
, Expand
);
483 if (!Subtarget
.hasMips64())
484 setOperationAction(ISD::CTLZ
, MVT::i64
, Expand
);
486 if (!Subtarget
.hasMips32r2())
487 setOperationAction(ISD::BSWAP
, MVT::i32
, Expand
);
488 if (!Subtarget
.hasMips64r2())
489 setOperationAction(ISD::BSWAP
, MVT::i64
, Expand
);
491 if (Subtarget
.isGP64bit()) {
492 setLoadExtAction(ISD::SEXTLOAD
, MVT::i64
, MVT::i32
, Custom
);
493 setLoadExtAction(ISD::ZEXTLOAD
, MVT::i64
, MVT::i32
, Custom
);
494 setLoadExtAction(ISD::EXTLOAD
, MVT::i64
, MVT::i32
, Custom
);
495 setTruncStoreAction(MVT::i64
, MVT::i32
, Custom
);
498 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
500 setTargetDAGCombine(ISD::SDIVREM
);
501 setTargetDAGCombine(ISD::UDIVREM
);
502 setTargetDAGCombine(ISD::SELECT
);
503 setTargetDAGCombine(ISD::AND
);
504 setTargetDAGCombine(ISD::OR
);
505 setTargetDAGCombine(ISD::ADD
);
506 setTargetDAGCombine(ISD::SUB
);
507 setTargetDAGCombine(ISD::AssertZext
);
508 setTargetDAGCombine(ISD::SHL
);
511 // These libcalls are not available in 32-bit.
512 setLibcallName(RTLIB::SHL_I128
, nullptr);
513 setLibcallName(RTLIB::SRL_I128
, nullptr);
514 setLibcallName(RTLIB::SRA_I128
, nullptr);
517 setMinFunctionAlignment(Subtarget
.isGP64bit() ? llvm::Align(8)
520 // The arguments on the stack are defined in terms of 4-byte slots on O32
521 // and 8-byte slots on N32/N64.
522 setMinStackArgumentAlignment((ABI
.IsN32() || ABI
.IsN64()) ? llvm::Align(8)
525 setStackPointerRegisterToSaveRestore(ABI
.IsN64() ? Mips::SP_64
: Mips::SP
);
527 MaxStoresPerMemcpy
= 16;
529 isMicroMips
= Subtarget
.inMicroMipsMode();
532 const MipsTargetLowering
*MipsTargetLowering::create(const MipsTargetMachine
&TM
,
533 const MipsSubtarget
&STI
) {
534 if (STI
.inMips16Mode())
535 return createMips16TargetLowering(TM
, STI
);
537 return createMipsSETargetLowering(TM
, STI
);
540 // Create a fast isel object.
542 MipsTargetLowering::createFastISel(FunctionLoweringInfo
&funcInfo
,
543 const TargetLibraryInfo
*libInfo
) const {
544 const MipsTargetMachine
&TM
=
545 static_cast<const MipsTargetMachine
&>(funcInfo
.MF
->getTarget());
547 // We support only the standard encoding [MIPS32,MIPS32R5] ISAs.
548 bool UseFastISel
= TM
.Options
.EnableFastISel
&& Subtarget
.hasMips32() &&
549 !Subtarget
.hasMips32r6() && !Subtarget
.inMips16Mode() &&
550 !Subtarget
.inMicroMipsMode();
552 // Disable if either of the following is true:
553 // We do not generate PIC, the ABI is not O32, XGOT is being used.
554 if (!TM
.isPositionIndependent() || !TM
.getABI().IsO32() ||
558 return UseFastISel
? Mips::createFastISel(funcInfo
, libInfo
) : nullptr;
561 EVT
MipsTargetLowering::getSetCCResultType(const DataLayout
&, LLVMContext
&,
565 return VT
.changeVectorElementTypeToInteger();
568 static SDValue
performDivRemCombine(SDNode
*N
, SelectionDAG
&DAG
,
569 TargetLowering::DAGCombinerInfo
&DCI
,
570 const MipsSubtarget
&Subtarget
) {
571 if (DCI
.isBeforeLegalizeOps())
574 EVT Ty
= N
->getValueType(0);
575 unsigned LO
= (Ty
== MVT::i32
) ? Mips::LO0
: Mips::LO0_64
;
576 unsigned HI
= (Ty
== MVT::i32
) ? Mips::HI0
: Mips::HI0_64
;
577 unsigned Opc
= N
->getOpcode() == ISD::SDIVREM
? MipsISD::DivRem16
:
581 SDValue DivRem
= DAG
.getNode(Opc
, DL
, MVT::Glue
,
582 N
->getOperand(0), N
->getOperand(1));
583 SDValue InChain
= DAG
.getEntryNode();
584 SDValue InGlue
= DivRem
;
587 if (N
->hasAnyUseOfValue(0)) {
588 SDValue CopyFromLo
= DAG
.getCopyFromReg(InChain
, DL
, LO
, Ty
,
590 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), CopyFromLo
);
591 InChain
= CopyFromLo
.getValue(1);
592 InGlue
= CopyFromLo
.getValue(2);
596 if (N
->hasAnyUseOfValue(1)) {
597 SDValue CopyFromHi
= DAG
.getCopyFromReg(InChain
, DL
,
599 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), CopyFromHi
);
605 static Mips::CondCode
condCodeToFCC(ISD::CondCode CC
) {
607 default: llvm_unreachable("Unknown fp condition code!");
609 case ISD::SETOEQ
: return Mips::FCOND_OEQ
;
610 case ISD::SETUNE
: return Mips::FCOND_UNE
;
612 case ISD::SETOLT
: return Mips::FCOND_OLT
;
614 case ISD::SETOGT
: return Mips::FCOND_OGT
;
616 case ISD::SETOLE
: return Mips::FCOND_OLE
;
618 case ISD::SETOGE
: return Mips::FCOND_OGE
;
619 case ISD::SETULT
: return Mips::FCOND_ULT
;
620 case ISD::SETULE
: return Mips::FCOND_ULE
;
621 case ISD::SETUGT
: return Mips::FCOND_UGT
;
622 case ISD::SETUGE
: return Mips::FCOND_UGE
;
623 case ISD::SETUO
: return Mips::FCOND_UN
;
624 case ISD::SETO
: return Mips::FCOND_OR
;
626 case ISD::SETONE
: return Mips::FCOND_ONE
;
627 case ISD::SETUEQ
: return Mips::FCOND_UEQ
;
631 /// This function returns true if the floating point conditional branches and
632 /// conditional moves which use condition code CC should be inverted.
633 static bool invertFPCondCodeUser(Mips::CondCode CC
) {
634 if (CC
>= Mips::FCOND_F
&& CC
<= Mips::FCOND_NGT
)
637 assert((CC
>= Mips::FCOND_T
&& CC
<= Mips::FCOND_GT
) &&
638 "Illegal Condition Code");
643 // Creates and returns an FPCmp node from a setcc node.
644 // Returns Op if setcc is not a floating point comparison.
645 static SDValue
createFPCmp(SelectionDAG
&DAG
, const SDValue
&Op
) {
646 // must be a SETCC node
647 if (Op
.getOpcode() != ISD::SETCC
)
650 SDValue LHS
= Op
.getOperand(0);
652 if (!LHS
.getValueType().isFloatingPoint())
655 SDValue RHS
= Op
.getOperand(1);
658 // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
659 // node if necessary.
660 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
662 return DAG
.getNode(MipsISD::FPCmp
, DL
, MVT::Glue
, LHS
, RHS
,
663 DAG
.getConstant(condCodeToFCC(CC
), DL
, MVT::i32
));
666 // Creates and returns a CMovFPT/F node.
667 static SDValue
createCMovFP(SelectionDAG
&DAG
, SDValue Cond
, SDValue True
,
668 SDValue False
, const SDLoc
&DL
) {
669 ConstantSDNode
*CC
= cast
<ConstantSDNode
>(Cond
.getOperand(2));
670 bool invert
= invertFPCondCodeUser((Mips::CondCode
)CC
->getSExtValue());
671 SDValue FCC0
= DAG
.getRegister(Mips::FCC0
, MVT::i32
);
673 return DAG
.getNode((invert
? MipsISD::CMovFP_F
: MipsISD::CMovFP_T
), DL
,
674 True
.getValueType(), True
, FCC0
, False
, Cond
);
677 static SDValue
performSELECTCombine(SDNode
*N
, SelectionDAG
&DAG
,
678 TargetLowering::DAGCombinerInfo
&DCI
,
679 const MipsSubtarget
&Subtarget
) {
680 if (DCI
.isBeforeLegalizeOps())
683 SDValue SetCC
= N
->getOperand(0);
685 if ((SetCC
.getOpcode() != ISD::SETCC
) ||
686 !SetCC
.getOperand(0).getValueType().isInteger())
689 SDValue False
= N
->getOperand(2);
690 EVT FalseTy
= False
.getValueType();
692 if (!FalseTy
.isInteger())
695 ConstantSDNode
*FalseC
= dyn_cast
<ConstantSDNode
>(False
);
697 // If the RHS (False) is 0, we swap the order of the operands
698 // of ISD::SELECT (obviously also inverting the condition) so that we can
699 // take advantage of conditional moves using the $0 register.
701 // return (a != 0) ? x : 0;
709 if (!FalseC
->getZExtValue()) {
710 ISD::CondCode CC
= cast
<CondCodeSDNode
>(SetCC
.getOperand(2))->get();
711 SDValue True
= N
->getOperand(1);
713 SetCC
= DAG
.getSetCC(DL
, SetCC
.getValueType(), SetCC
.getOperand(0),
714 SetCC
.getOperand(1), ISD::getSetCCInverse(CC
, true));
716 return DAG
.getNode(ISD::SELECT
, DL
, FalseTy
, SetCC
, False
, True
);
719 // If both operands are integer constants there's a possibility that we
720 // can do some interesting optimizations.
721 SDValue True
= N
->getOperand(1);
722 ConstantSDNode
*TrueC
= dyn_cast
<ConstantSDNode
>(True
);
724 if (!TrueC
|| !True
.getValueType().isInteger())
727 // We'll also ignore MVT::i64 operands as this optimizations proves
728 // to be ineffective because of the required sign extensions as the result
729 // of a SETCC operator is always MVT::i32 for non-vector types.
730 if (True
.getValueType() == MVT::i64
)
733 int64_t Diff
= TrueC
->getSExtValue() - FalseC
->getSExtValue();
735 // 1) (a < x) ? y : y-1
737 // addiu $reg2, $reg1, y-1
739 return DAG
.getNode(ISD::ADD
, DL
, SetCC
.getValueType(), SetCC
, False
);
741 // 2) (a < x) ? y-1 : y
743 // xor $reg1, $reg1, 1
744 // addiu $reg2, $reg1, y-1
746 ISD::CondCode CC
= cast
<CondCodeSDNode
>(SetCC
.getOperand(2))->get();
747 SetCC
= DAG
.getSetCC(DL
, SetCC
.getValueType(), SetCC
.getOperand(0),
748 SetCC
.getOperand(1), ISD::getSetCCInverse(CC
, true));
749 return DAG
.getNode(ISD::ADD
, DL
, SetCC
.getValueType(), SetCC
, True
);
752 // Could not optimize.
756 static SDValue
performCMovFPCombine(SDNode
*N
, SelectionDAG
&DAG
,
757 TargetLowering::DAGCombinerInfo
&DCI
,
758 const MipsSubtarget
&Subtarget
) {
759 if (DCI
.isBeforeLegalizeOps())
762 SDValue ValueIfTrue
= N
->getOperand(0), ValueIfFalse
= N
->getOperand(2);
764 ConstantSDNode
*FalseC
= dyn_cast
<ConstantSDNode
>(ValueIfFalse
);
765 if (!FalseC
|| FalseC
->getZExtValue())
768 // Since RHS (False) is 0, we swap the order of the True/False operands
769 // (obviously also inverting the condition) so that we can
770 // take advantage of conditional moves using the $0 register.
772 // return (a != 0) ? x : 0;
775 unsigned Opc
= (N
->getOpcode() == MipsISD::CMovFP_T
) ? MipsISD::CMovFP_F
:
778 SDValue FCC
= N
->getOperand(1), Glue
= N
->getOperand(3);
779 return DAG
.getNode(Opc
, SDLoc(N
), ValueIfFalse
.getValueType(),
780 ValueIfFalse
, FCC
, ValueIfTrue
, Glue
);
783 static SDValue
performANDCombine(SDNode
*N
, SelectionDAG
&DAG
,
784 TargetLowering::DAGCombinerInfo
&DCI
,
785 const MipsSubtarget
&Subtarget
) {
786 if (DCI
.isBeforeLegalizeOps() || !Subtarget
.hasExtractInsert())
789 SDValue FirstOperand
= N
->getOperand(0);
790 unsigned FirstOperandOpc
= FirstOperand
.getOpcode();
791 SDValue Mask
= N
->getOperand(1);
792 EVT ValTy
= N
->getValueType(0);
795 uint64_t Pos
= 0, SMPos
, SMSize
;
800 // Op's second operand must be a shifted mask.
801 if (!(CN
= dyn_cast
<ConstantSDNode
>(Mask
)) ||
802 !isShiftedMask(CN
->getZExtValue(), SMPos
, SMSize
))
805 if (FirstOperandOpc
== ISD::SRA
|| FirstOperandOpc
== ISD::SRL
) {
806 // Pattern match EXT.
807 // $dst = and ((sra or srl) $src , pos), (2**size - 1)
808 // => ext $dst, $src, pos, size
810 // The second operand of the shift must be an immediate.
811 if (!(CN
= dyn_cast
<ConstantSDNode
>(FirstOperand
.getOperand(1))))
814 Pos
= CN
->getZExtValue();
816 // Return if the shifted mask does not start at bit 0 or the sum of its size
817 // and Pos exceeds the word's size.
818 if (SMPos
!= 0 || Pos
+ SMSize
> ValTy
.getSizeInBits())
822 NewOperand
= FirstOperand
.getOperand(0);
823 } else if (FirstOperandOpc
== ISD::SHL
&& Subtarget
.hasCnMips()) {
824 // Pattern match CINS.
825 // $dst = and (shl $src , pos), mask
826 // => cins $dst, $src, pos, size
827 // mask is a shifted mask with consecutive 1's, pos = shift amount,
828 // size = population count.
830 // The second operand of the shift must be an immediate.
831 if (!(CN
= dyn_cast
<ConstantSDNode
>(FirstOperand
.getOperand(1))))
834 Pos
= CN
->getZExtValue();
836 if (SMPos
!= Pos
|| Pos
>= ValTy
.getSizeInBits() || SMSize
>= 32 ||
837 Pos
+ SMSize
> ValTy
.getSizeInBits())
840 NewOperand
= FirstOperand
.getOperand(0);
841 // SMSize is 'location' (position) in this case, not size.
845 // Pattern match EXT.
846 // $dst = and $src, (2**size - 1) , if size > 16
847 // => ext $dst, $src, pos, size , pos = 0
849 // If the mask is <= 0xffff, andi can be used instead.
850 if (CN
->getZExtValue() <= 0xffff)
853 // Return if the mask doesn't start at position 0.
858 NewOperand
= FirstOperand
;
860 return DAG
.getNode(Opc
, DL
, ValTy
, NewOperand
,
861 DAG
.getConstant(Pos
, DL
, MVT::i32
),
862 DAG
.getConstant(SMSize
, DL
, MVT::i32
));
865 static SDValue
performORCombine(SDNode
*N
, SelectionDAG
&DAG
,
866 TargetLowering::DAGCombinerInfo
&DCI
,
867 const MipsSubtarget
&Subtarget
) {
868 // Pattern match INS.
869 // $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
870 // where mask1 = (2**size - 1) << pos, mask0 = ~mask1
871 // => ins $dst, $src, size, pos, $src1
872 if (DCI
.isBeforeLegalizeOps() || !Subtarget
.hasExtractInsert())
875 SDValue And0
= N
->getOperand(0), And1
= N
->getOperand(1);
876 uint64_t SMPos0
, SMSize0
, SMPos1
, SMSize1
;
877 ConstantSDNode
*CN
, *CN1
;
879 // See if Op's first operand matches (and $src1 , mask0).
880 if (And0
.getOpcode() != ISD::AND
)
883 if (!(CN
= dyn_cast
<ConstantSDNode
>(And0
.getOperand(1))) ||
884 !isShiftedMask(~CN
->getSExtValue(), SMPos0
, SMSize0
))
887 // See if Op's second operand matches (and (shl $src, pos), mask1).
888 if (And1
.getOpcode() == ISD::AND
&&
889 And1
.getOperand(0).getOpcode() == ISD::SHL
) {
891 if (!(CN
= dyn_cast
<ConstantSDNode
>(And1
.getOperand(1))) ||
892 !isShiftedMask(CN
->getZExtValue(), SMPos1
, SMSize1
))
895 // The shift masks must have the same position and size.
896 if (SMPos0
!= SMPos1
|| SMSize0
!= SMSize1
)
899 SDValue Shl
= And1
.getOperand(0);
901 if (!(CN
= dyn_cast
<ConstantSDNode
>(Shl
.getOperand(1))))
904 unsigned Shamt
= CN
->getZExtValue();
906 // Return if the shift amount and the first bit position of mask are not the
908 EVT ValTy
= N
->getValueType(0);
909 if ((Shamt
!= SMPos0
) || (SMPos0
+ SMSize0
> ValTy
.getSizeInBits()))
913 return DAG
.getNode(MipsISD::Ins
, DL
, ValTy
, Shl
.getOperand(0),
914 DAG
.getConstant(SMPos0
, DL
, MVT::i32
),
915 DAG
.getConstant(SMSize0
, DL
, MVT::i32
),
918 // Pattern match DINS.
919 // $dst = or (and $src, mask0), mask1
920 // where mask0 = ((1 << SMSize0) -1) << SMPos0
921 // => dins $dst, $src, pos, size
922 if (~CN
->getSExtValue() == ((((int64_t)1 << SMSize0
) - 1) << SMPos0
) &&
923 ((SMSize0
+ SMPos0
<= 64 && Subtarget
.hasMips64r2()) ||
924 (SMSize0
+ SMPos0
<= 32))) {
925 // Check if AND instruction has constant as argument
926 bool isConstCase
= And1
.getOpcode() != ISD::AND
;
927 if (And1
.getOpcode() == ISD::AND
) {
928 if (!(CN1
= dyn_cast
<ConstantSDNode
>(And1
->getOperand(1))))
931 if (!(CN1
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1))))
934 // Don't generate INS if constant OR operand doesn't fit into bits
935 // cleared by constant AND operand.
936 if (CN
->getSExtValue() & CN1
->getSExtValue())
940 EVT ValTy
= N
->getOperand(0)->getValueType(0);
944 Const1
= DAG
.getConstant(SMPos0
, DL
, MVT::i32
);
945 SrlX
= DAG
.getNode(ISD::SRL
, DL
, And1
->getValueType(0), And1
, Const1
);
948 MipsISD::Ins
, DL
, N
->getValueType(0),
950 ? DAG
.getConstant(CN1
->getSExtValue() >> SMPos0
, DL
, ValTy
)
952 DAG
.getConstant(SMPos0
, DL
, MVT::i32
),
953 DAG
.getConstant(ValTy
.getSizeInBits() / 8 < 8 ? SMSize0
& 31
956 And0
->getOperand(0));
963 static SDValue
performMADD_MSUBCombine(SDNode
*ROOTNode
, SelectionDAG
&CurDAG
,
964 const MipsSubtarget
&Subtarget
) {
965 // ROOTNode must have a multiplication as an operand for the match to be
967 if (ROOTNode
->getOperand(0).getOpcode() != ISD::MUL
&&
968 ROOTNode
->getOperand(1).getOpcode() != ISD::MUL
)
971 // We don't handle vector types here.
972 if (ROOTNode
->getValueType(0).isVector())
975 // For MIPS64, madd / msub instructions are inefficent to use with 64 bit
977 // (add (mul a b) c) =>
978 // let res = (madd (mthi (drotr c 32))x(mtlo c) a b) in
979 // MIPS64: (or (dsll (mfhi res) 32) (dsrl (dsll (mflo res) 32) 32)
981 // MIPS64R2: (dins (mflo res) (mfhi res) 32 32)
983 // The overhead of setting up the Hi/Lo registers and reassembling the
984 // result makes this a dubious optimzation for MIPS64. The core of the
985 // problem is that Hi/Lo contain the upper and lower 32 bits of the
986 // operand and result.
988 // It requires a chain of 4 add/mul for MIPS64R2 to get better code
989 // density than doing it naively, 5 for MIPS64. Additionally, using
990 // madd/msub on MIPS64 requires the operands actually be 32 bit sign
991 // extended operands, not true 64 bit values.
993 // FIXME: For the moment, disable this completely for MIPS64.
994 if (Subtarget
.hasMips64())
997 SDValue Mult
= ROOTNode
->getOperand(0).getOpcode() == ISD::MUL
998 ? ROOTNode
->getOperand(0)
999 : ROOTNode
->getOperand(1);
1001 SDValue AddOperand
= ROOTNode
->getOperand(0).getOpcode() == ISD::MUL
1002 ? ROOTNode
->getOperand(1)
1003 : ROOTNode
->getOperand(0);
1005 // Transform this to a MADD only if the user of this node is the add.
1006 // If there are other users of the mul, this function returns here.
1007 if (!Mult
.hasOneUse())
1010 // maddu and madd are unusual instructions in that on MIPS64 bits 63..31
1011 // must be in canonical form, i.e. sign extended. For MIPS32, the operands
1012 // of the multiply must have 32 or more sign bits, otherwise we cannot
1013 // perform this optimization. We have to check this here as we're performing
1014 // this optimization pre-legalization.
1015 SDValue MultLHS
= Mult
->getOperand(0);
1016 SDValue MultRHS
= Mult
->getOperand(1);
1018 bool IsSigned
= MultLHS
->getOpcode() == ISD::SIGN_EXTEND
&&
1019 MultRHS
->getOpcode() == ISD::SIGN_EXTEND
;
1020 bool IsUnsigned
= MultLHS
->getOpcode() == ISD::ZERO_EXTEND
&&
1021 MultRHS
->getOpcode() == ISD::ZERO_EXTEND
;
1023 if (!IsSigned
&& !IsUnsigned
)
1026 // Initialize accumulator.
1030 BottomHalf
= CurDAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, AddOperand
,
1031 CurDAG
.getIntPtrConstant(0, DL
));
1033 TopHalf
= CurDAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, AddOperand
,
1034 CurDAG
.getIntPtrConstant(1, DL
));
1035 SDValue ACCIn
= CurDAG
.getNode(MipsISD::MTLOHI
, DL
, MVT::Untyped
,
1039 // Create MipsMAdd(u) / MipsMSub(u) node.
1040 bool IsAdd
= ROOTNode
->getOpcode() == ISD::ADD
;
1041 unsigned Opcode
= IsAdd
? (IsUnsigned
? MipsISD::MAddu
: MipsISD::MAdd
)
1042 : (IsUnsigned
? MipsISD::MSubu
: MipsISD::MSub
);
1043 SDValue MAddOps
[3] = {
1044 CurDAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, Mult
->getOperand(0)),
1045 CurDAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, Mult
->getOperand(1)), ACCIn
};
1046 EVT VTs
[2] = {MVT::i32
, MVT::i32
};
1047 SDValue MAdd
= CurDAG
.getNode(Opcode
, DL
, VTs
, MAddOps
);
1049 SDValue ResLo
= CurDAG
.getNode(MipsISD::MFLO
, DL
, MVT::i32
, MAdd
);
1050 SDValue ResHi
= CurDAG
.getNode(MipsISD::MFHI
, DL
, MVT::i32
, MAdd
);
1052 CurDAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, ResLo
, ResHi
);
1056 static SDValue
performSUBCombine(SDNode
*N
, SelectionDAG
&DAG
,
1057 TargetLowering::DAGCombinerInfo
&DCI
,
1058 const MipsSubtarget
&Subtarget
) {
1059 // (sub v0 (mul v1, v2)) => (msub v1, v2, v0)
1060 if (DCI
.isBeforeLegalizeOps()) {
1061 if (Subtarget
.hasMips32() && !Subtarget
.hasMips32r6() &&
1062 !Subtarget
.inMips16Mode() && N
->getValueType(0) == MVT::i64
)
1063 return performMADD_MSUBCombine(N
, DAG
, Subtarget
);
1071 static SDValue
performADDCombine(SDNode
*N
, SelectionDAG
&DAG
,
1072 TargetLowering::DAGCombinerInfo
&DCI
,
1073 const MipsSubtarget
&Subtarget
) {
1074 // (add v0 (mul v1, v2)) => (madd v1, v2, v0)
1075 if (DCI
.isBeforeLegalizeOps()) {
1076 if (Subtarget
.hasMips32() && !Subtarget
.hasMips32r6() &&
1077 !Subtarget
.inMips16Mode() && N
->getValueType(0) == MVT::i64
)
1078 return performMADD_MSUBCombine(N
, DAG
, Subtarget
);
1083 // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
1084 SDValue Add
= N
->getOperand(1);
1086 if (Add
.getOpcode() != ISD::ADD
)
1089 SDValue Lo
= Add
.getOperand(1);
1091 if ((Lo
.getOpcode() != MipsISD::Lo
) ||
1092 (Lo
.getOperand(0).getOpcode() != ISD::TargetJumpTable
))
1095 EVT ValTy
= N
->getValueType(0);
1098 SDValue Add1
= DAG
.getNode(ISD::ADD
, DL
, ValTy
, N
->getOperand(0),
1100 return DAG
.getNode(ISD::ADD
, DL
, ValTy
, Add1
, Lo
);
1103 static SDValue
performSHLCombine(SDNode
*N
, SelectionDAG
&DAG
,
1104 TargetLowering::DAGCombinerInfo
&DCI
,
1105 const MipsSubtarget
&Subtarget
) {
1106 // Pattern match CINS.
1107 // $dst = shl (and $src , imm), pos
1108 // => cins $dst, $src, pos, size
1110 if (DCI
.isBeforeLegalizeOps() || !Subtarget
.hasCnMips())
1113 SDValue FirstOperand
= N
->getOperand(0);
1114 unsigned FirstOperandOpc
= FirstOperand
.getOpcode();
1115 SDValue SecondOperand
= N
->getOperand(1);
1116 EVT ValTy
= N
->getValueType(0);
1119 uint64_t Pos
= 0, SMPos
, SMSize
;
1123 // The second operand of the shift must be an immediate.
1124 if (!(CN
= dyn_cast
<ConstantSDNode
>(SecondOperand
)))
1127 Pos
= CN
->getZExtValue();
1129 if (Pos
>= ValTy
.getSizeInBits())
1132 if (FirstOperandOpc
!= ISD::AND
)
1135 // AND's second operand must be a shifted mask.
1136 if (!(CN
= dyn_cast
<ConstantSDNode
>(FirstOperand
.getOperand(1))) ||
1137 !isShiftedMask(CN
->getZExtValue(), SMPos
, SMSize
))
1140 // Return if the shifted mask does not start at bit 0 or the sum of its size
1141 // and Pos exceeds the word's size.
1142 if (SMPos
!= 0 || SMSize
> 32 || Pos
+ SMSize
> ValTy
.getSizeInBits())
1145 NewOperand
= FirstOperand
.getOperand(0);
1146 // SMSize is 'location' (position) in this case, not size.
1149 return DAG
.getNode(MipsISD::CIns
, DL
, ValTy
, NewOperand
,
1150 DAG
.getConstant(Pos
, DL
, MVT::i32
),
1151 DAG
.getConstant(SMSize
, DL
, MVT::i32
));
1154 SDValue
MipsTargetLowering::PerformDAGCombine(SDNode
*N
, DAGCombinerInfo
&DCI
)
1156 SelectionDAG
&DAG
= DCI
.DAG
;
1157 unsigned Opc
= N
->getOpcode();
1163 return performDivRemCombine(N
, DAG
, DCI
, Subtarget
);
1165 return performSELECTCombine(N
, DAG
, DCI
, Subtarget
);
1166 case MipsISD::CMovFP_F
:
1167 case MipsISD::CMovFP_T
:
1168 return performCMovFPCombine(N
, DAG
, DCI
, Subtarget
);
1170 return performANDCombine(N
, DAG
, DCI
, Subtarget
);
1172 return performORCombine(N
, DAG
, DCI
, Subtarget
);
1174 return performADDCombine(N
, DAG
, DCI
, Subtarget
);
1176 return performSHLCombine(N
, DAG
, DCI
, Subtarget
);
1178 return performSUBCombine(N
, DAG
, DCI
, Subtarget
);
1184 bool MipsTargetLowering::isCheapToSpeculateCttz() const {
1185 return Subtarget
.hasMips32();
1188 bool MipsTargetLowering::isCheapToSpeculateCtlz() const {
1189 return Subtarget
.hasMips32();
1192 bool MipsTargetLowering::shouldFoldConstantShiftPairToMask(
1193 const SDNode
*N
, CombineLevel Level
) const {
1194 if (N
->getOperand(0).getValueType().isVector())
1200 MipsTargetLowering::LowerOperationWrapper(SDNode
*N
,
1201 SmallVectorImpl
<SDValue
> &Results
,
1202 SelectionDAG
&DAG
) const {
1203 SDValue Res
= LowerOperation(SDValue(N
, 0), DAG
);
1206 for (unsigned I
= 0, E
= Res
->getNumValues(); I
!= E
; ++I
)
1207 Results
.push_back(Res
.getValue(I
));
1211 MipsTargetLowering::ReplaceNodeResults(SDNode
*N
,
1212 SmallVectorImpl
<SDValue
> &Results
,
1213 SelectionDAG
&DAG
) const {
1214 return LowerOperationWrapper(N
, Results
, DAG
);
1217 SDValue
MipsTargetLowering::
1218 LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const
1220 switch (Op
.getOpcode())
1222 case ISD::BRCOND
: return lowerBRCOND(Op
, DAG
);
1223 case ISD::ConstantPool
: return lowerConstantPool(Op
, DAG
);
1224 case ISD::GlobalAddress
: return lowerGlobalAddress(Op
, DAG
);
1225 case ISD::BlockAddress
: return lowerBlockAddress(Op
, DAG
);
1226 case ISD::GlobalTLSAddress
: return lowerGlobalTLSAddress(Op
, DAG
);
1227 case ISD::JumpTable
: return lowerJumpTable(Op
, DAG
);
1228 case ISD::SELECT
: return lowerSELECT(Op
, DAG
);
1229 case ISD::SETCC
: return lowerSETCC(Op
, DAG
);
1230 case ISD::VASTART
: return lowerVASTART(Op
, DAG
);
1231 case ISD::VAARG
: return lowerVAARG(Op
, DAG
);
1232 case ISD::FCOPYSIGN
: return lowerFCOPYSIGN(Op
, DAG
);
1233 case ISD::FABS
: return lowerFABS(Op
, DAG
);
1234 case ISD::FRAMEADDR
: return lowerFRAMEADDR(Op
, DAG
);
1235 case ISD::RETURNADDR
: return lowerRETURNADDR(Op
, DAG
);
1236 case ISD::EH_RETURN
: return lowerEH_RETURN(Op
, DAG
);
1237 case ISD::ATOMIC_FENCE
: return lowerATOMIC_FENCE(Op
, DAG
);
1238 case ISD::SHL_PARTS
: return lowerShiftLeftParts(Op
, DAG
);
1239 case ISD::SRA_PARTS
: return lowerShiftRightParts(Op
, DAG
, true);
1240 case ISD::SRL_PARTS
: return lowerShiftRightParts(Op
, DAG
, false);
1241 case ISD::LOAD
: return lowerLOAD(Op
, DAG
);
1242 case ISD::STORE
: return lowerSTORE(Op
, DAG
);
1243 case ISD::EH_DWARF_CFA
: return lowerEH_DWARF_CFA(Op
, DAG
);
1244 case ISD::FP_TO_SINT
: return lowerFP_TO_SINT(Op
, DAG
);
1249 //===----------------------------------------------------------------------===//
1250 // Lower helper functions
1251 //===----------------------------------------------------------------------===//
1253 // addLiveIn - This helper function adds the specified physical register to the
1254 // MachineFunction as a live in value. It also creates a corresponding
1255 // virtual register for it.
1257 addLiveIn(MachineFunction
&MF
, unsigned PReg
, const TargetRegisterClass
*RC
)
1259 Register VReg
= MF
.getRegInfo().createVirtualRegister(RC
);
1260 MF
.getRegInfo().addLiveIn(PReg
, VReg
);
1264 static MachineBasicBlock
*insertDivByZeroTrap(MachineInstr
&MI
,
1265 MachineBasicBlock
&MBB
,
1266 const TargetInstrInfo
&TII
,
1267 bool Is64Bit
, bool IsMicroMips
) {
1271 // Insert instruction "teq $divisor_reg, $zero, 7".
1272 MachineBasicBlock::iterator
I(MI
);
1273 MachineInstrBuilder MIB
;
1274 MachineOperand
&Divisor
= MI
.getOperand(2);
1275 MIB
= BuildMI(MBB
, std::next(I
), MI
.getDebugLoc(),
1276 TII
.get(IsMicroMips
? Mips::TEQ_MM
: Mips::TEQ
))
1277 .addReg(Divisor
.getReg(), getKillRegState(Divisor
.isKill()))
1281 // Use the 32-bit sub-register if this is a 64-bit division.
1283 MIB
->getOperand(0).setSubReg(Mips::sub_32
);
1285 // Clear Divisor's kill flag.
1286 Divisor
.setIsKill(false);
1288 // We would normally delete the original instruction here but in this case
1289 // we only needed to inject an additional instruction rather than replace it.
1295 MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr
&MI
,
1296 MachineBasicBlock
*BB
) const {
1297 switch (MI
.getOpcode()) {
1299 llvm_unreachable("Unexpected instr type to insert");
1300 case Mips::ATOMIC_LOAD_ADD_I8
:
1301 return emitAtomicBinaryPartword(MI
, BB
, 1);
1302 case Mips::ATOMIC_LOAD_ADD_I16
:
1303 return emitAtomicBinaryPartword(MI
, BB
, 2);
1304 case Mips::ATOMIC_LOAD_ADD_I32
:
1305 return emitAtomicBinary(MI
, BB
);
1306 case Mips::ATOMIC_LOAD_ADD_I64
:
1307 return emitAtomicBinary(MI
, BB
);
1309 case Mips::ATOMIC_LOAD_AND_I8
:
1310 return emitAtomicBinaryPartword(MI
, BB
, 1);
1311 case Mips::ATOMIC_LOAD_AND_I16
:
1312 return emitAtomicBinaryPartword(MI
, BB
, 2);
1313 case Mips::ATOMIC_LOAD_AND_I32
:
1314 return emitAtomicBinary(MI
, BB
);
1315 case Mips::ATOMIC_LOAD_AND_I64
:
1316 return emitAtomicBinary(MI
, BB
);
1318 case Mips::ATOMIC_LOAD_OR_I8
:
1319 return emitAtomicBinaryPartword(MI
, BB
, 1);
1320 case Mips::ATOMIC_LOAD_OR_I16
:
1321 return emitAtomicBinaryPartword(MI
, BB
, 2);
1322 case Mips::ATOMIC_LOAD_OR_I32
:
1323 return emitAtomicBinary(MI
, BB
);
1324 case Mips::ATOMIC_LOAD_OR_I64
:
1325 return emitAtomicBinary(MI
, BB
);
1327 case Mips::ATOMIC_LOAD_XOR_I8
:
1328 return emitAtomicBinaryPartword(MI
, BB
, 1);
1329 case Mips::ATOMIC_LOAD_XOR_I16
:
1330 return emitAtomicBinaryPartword(MI
, BB
, 2);
1331 case Mips::ATOMIC_LOAD_XOR_I32
:
1332 return emitAtomicBinary(MI
, BB
);
1333 case Mips::ATOMIC_LOAD_XOR_I64
:
1334 return emitAtomicBinary(MI
, BB
);
1336 case Mips::ATOMIC_LOAD_NAND_I8
:
1337 return emitAtomicBinaryPartword(MI
, BB
, 1);
1338 case Mips::ATOMIC_LOAD_NAND_I16
:
1339 return emitAtomicBinaryPartword(MI
, BB
, 2);
1340 case Mips::ATOMIC_LOAD_NAND_I32
:
1341 return emitAtomicBinary(MI
, BB
);
1342 case Mips::ATOMIC_LOAD_NAND_I64
:
1343 return emitAtomicBinary(MI
, BB
);
1345 case Mips::ATOMIC_LOAD_SUB_I8
:
1346 return emitAtomicBinaryPartword(MI
, BB
, 1);
1347 case Mips::ATOMIC_LOAD_SUB_I16
:
1348 return emitAtomicBinaryPartword(MI
, BB
, 2);
1349 case Mips::ATOMIC_LOAD_SUB_I32
:
1350 return emitAtomicBinary(MI
, BB
);
1351 case Mips::ATOMIC_LOAD_SUB_I64
:
1352 return emitAtomicBinary(MI
, BB
);
1354 case Mips::ATOMIC_SWAP_I8
:
1355 return emitAtomicBinaryPartword(MI
, BB
, 1);
1356 case Mips::ATOMIC_SWAP_I16
:
1357 return emitAtomicBinaryPartword(MI
, BB
, 2);
1358 case Mips::ATOMIC_SWAP_I32
:
1359 return emitAtomicBinary(MI
, BB
);
1360 case Mips::ATOMIC_SWAP_I64
:
1361 return emitAtomicBinary(MI
, BB
);
1363 case Mips::ATOMIC_CMP_SWAP_I8
:
1364 return emitAtomicCmpSwapPartword(MI
, BB
, 1);
1365 case Mips::ATOMIC_CMP_SWAP_I16
:
1366 return emitAtomicCmpSwapPartword(MI
, BB
, 2);
1367 case Mips::ATOMIC_CMP_SWAP_I32
:
1368 return emitAtomicCmpSwap(MI
, BB
);
1369 case Mips::ATOMIC_CMP_SWAP_I64
:
1370 return emitAtomicCmpSwap(MI
, BB
);
1371 case Mips::PseudoSDIV
:
1372 case Mips::PseudoUDIV
:
1377 return insertDivByZeroTrap(MI
, *BB
, *Subtarget
.getInstrInfo(), false,
1379 case Mips::SDIV_MM_Pseudo
:
1380 case Mips::UDIV_MM_Pseudo
:
1383 case Mips::DIV_MMR6
:
1384 case Mips::DIVU_MMR6
:
1385 case Mips::MOD_MMR6
:
1386 case Mips::MODU_MMR6
:
1387 return insertDivByZeroTrap(MI
, *BB
, *Subtarget
.getInstrInfo(), false, true);
1388 case Mips::PseudoDSDIV
:
1389 case Mips::PseudoDUDIV
:
1394 return insertDivByZeroTrap(MI
, *BB
, *Subtarget
.getInstrInfo(), true, false);
1396 case Mips::PseudoSELECT_I
:
1397 case Mips::PseudoSELECT_I64
:
1398 case Mips::PseudoSELECT_S
:
1399 case Mips::PseudoSELECT_D32
:
1400 case Mips::PseudoSELECT_D64
:
1401 return emitPseudoSELECT(MI
, BB
, false, Mips::BNE
);
1402 case Mips::PseudoSELECTFP_F_I
:
1403 case Mips::PseudoSELECTFP_F_I64
:
1404 case Mips::PseudoSELECTFP_F_S
:
1405 case Mips::PseudoSELECTFP_F_D32
:
1406 case Mips::PseudoSELECTFP_F_D64
:
1407 return emitPseudoSELECT(MI
, BB
, true, Mips::BC1F
);
1408 case Mips::PseudoSELECTFP_T_I
:
1409 case Mips::PseudoSELECTFP_T_I64
:
1410 case Mips::PseudoSELECTFP_T_S
:
1411 case Mips::PseudoSELECTFP_T_D32
:
1412 case Mips::PseudoSELECTFP_T_D64
:
1413 return emitPseudoSELECT(MI
, BB
, true, Mips::BC1T
);
1414 case Mips::PseudoD_SELECT_I
:
1415 case Mips::PseudoD_SELECT_I64
:
1416 return emitPseudoD_SELECT(MI
, BB
);
1420 // This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
1421 // Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
1423 MipsTargetLowering::emitAtomicBinary(MachineInstr
&MI
,
1424 MachineBasicBlock
*BB
) const {
1426 MachineFunction
*MF
= BB
->getParent();
1427 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
1428 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1429 DebugLoc DL
= MI
.getDebugLoc();
1432 switch (MI
.getOpcode()) {
1433 case Mips::ATOMIC_LOAD_ADD_I32
:
1434 AtomicOp
= Mips::ATOMIC_LOAD_ADD_I32_POSTRA
;
1436 case Mips::ATOMIC_LOAD_SUB_I32
:
1437 AtomicOp
= Mips::ATOMIC_LOAD_SUB_I32_POSTRA
;
1439 case Mips::ATOMIC_LOAD_AND_I32
:
1440 AtomicOp
= Mips::ATOMIC_LOAD_AND_I32_POSTRA
;
1442 case Mips::ATOMIC_LOAD_OR_I32
:
1443 AtomicOp
= Mips::ATOMIC_LOAD_OR_I32_POSTRA
;
1445 case Mips::ATOMIC_LOAD_XOR_I32
:
1446 AtomicOp
= Mips::ATOMIC_LOAD_XOR_I32_POSTRA
;
1448 case Mips::ATOMIC_LOAD_NAND_I32
:
1449 AtomicOp
= Mips::ATOMIC_LOAD_NAND_I32_POSTRA
;
1451 case Mips::ATOMIC_SWAP_I32
:
1452 AtomicOp
= Mips::ATOMIC_SWAP_I32_POSTRA
;
1454 case Mips::ATOMIC_LOAD_ADD_I64
:
1455 AtomicOp
= Mips::ATOMIC_LOAD_ADD_I64_POSTRA
;
1457 case Mips::ATOMIC_LOAD_SUB_I64
:
1458 AtomicOp
= Mips::ATOMIC_LOAD_SUB_I64_POSTRA
;
1460 case Mips::ATOMIC_LOAD_AND_I64
:
1461 AtomicOp
= Mips::ATOMIC_LOAD_AND_I64_POSTRA
;
1463 case Mips::ATOMIC_LOAD_OR_I64
:
1464 AtomicOp
= Mips::ATOMIC_LOAD_OR_I64_POSTRA
;
1466 case Mips::ATOMIC_LOAD_XOR_I64
:
1467 AtomicOp
= Mips::ATOMIC_LOAD_XOR_I64_POSTRA
;
1469 case Mips::ATOMIC_LOAD_NAND_I64
:
1470 AtomicOp
= Mips::ATOMIC_LOAD_NAND_I64_POSTRA
;
1472 case Mips::ATOMIC_SWAP_I64
:
1473 AtomicOp
= Mips::ATOMIC_SWAP_I64_POSTRA
;
1476 llvm_unreachable("Unknown pseudo atomic for replacement!");
1479 Register OldVal
= MI
.getOperand(0).getReg();
1480 Register Ptr
= MI
.getOperand(1).getReg();
1481 Register Incr
= MI
.getOperand(2).getReg();
1482 Register Scratch
= RegInfo
.createVirtualRegister(RegInfo
.getRegClass(OldVal
));
1484 MachineBasicBlock::iterator
II(MI
);
1486 // The scratch registers here with the EarlyClobber | Define | Implicit
1487 // flags is used to persuade the register allocator and the machine
1488 // verifier to accept the usage of this register. This has to be a real
1489 // register which has an UNDEF value but is dead after the instruction which
1490 // is unique among the registers chosen for the instruction.
1492 // The EarlyClobber flag has the semantic properties that the operand it is
1493 // attached to is clobbered before the rest of the inputs are read. Hence it
1494 // must be unique among the operands to the instruction.
1495 // The Define flag is needed to coerce the machine verifier that an Undef
1496 // value isn't a problem.
1497 // The Dead flag is needed as the value in scratch isn't used by any other
1498 // instruction. Kill isn't used as Dead is more precise.
1499 // The implicit flag is here due to the interaction between the other flags
1500 // and the machine verifier.
1502 // For correctness purpose, a new pseudo is introduced here. We need this
1503 // new pseudo, so that FastRegisterAllocator does not see an ll/sc sequence
1504 // that is spread over >1 basic blocks. A register allocator which
1505 // introduces (or any codegen infact) a store, can violate the expectations
1508 // An atomic read-modify-write sequence starts with a linked load
1509 // instruction and ends with a store conditional instruction. The atomic
1510 // read-modify-write sequence fails if any of the following conditions
1511 // occur between the execution of ll and sc:
1512 // * A coherent store is completed by another process or coherent I/O
1513 // module into the block of synchronizable physical memory containing
1514 // the word. The size and alignment of the block is
1515 // implementation-dependent.
1516 // * A coherent store is executed between an LL and SC sequence on the
1517 // same processor to the block of synchornizable physical memory
1518 // containing the word.
1521 Register PtrCopy
= RegInfo
.createVirtualRegister(RegInfo
.getRegClass(Ptr
));
1522 Register IncrCopy
= RegInfo
.createVirtualRegister(RegInfo
.getRegClass(Incr
));
1524 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), IncrCopy
).addReg(Incr
);
1525 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), PtrCopy
).addReg(Ptr
);
1527 BuildMI(*BB
, II
, DL
, TII
->get(AtomicOp
))
1528 .addReg(OldVal
, RegState::Define
| RegState::EarlyClobber
)
1531 .addReg(Scratch
, RegState::Define
| RegState::EarlyClobber
|
1532 RegState::Implicit
| RegState::Dead
);
1534 MI
.eraseFromParent();
1539 MachineBasicBlock
*MipsTargetLowering::emitSignExtendToI32InReg(
1540 MachineInstr
&MI
, MachineBasicBlock
*BB
, unsigned Size
, unsigned DstReg
,
1541 unsigned SrcReg
) const {
1542 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1543 const DebugLoc
&DL
= MI
.getDebugLoc();
1545 if (Subtarget
.hasMips32r2() && Size
== 1) {
1546 BuildMI(BB
, DL
, TII
->get(Mips::SEB
), DstReg
).addReg(SrcReg
);
1550 if (Subtarget
.hasMips32r2() && Size
== 2) {
1551 BuildMI(BB
, DL
, TII
->get(Mips::SEH
), DstReg
).addReg(SrcReg
);
1555 MachineFunction
*MF
= BB
->getParent();
1556 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
1557 const TargetRegisterClass
*RC
= getRegClassFor(MVT::i32
);
1558 Register ScrReg
= RegInfo
.createVirtualRegister(RC
);
1561 int64_t ShiftImm
= 32 - (Size
* 8);
1563 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ScrReg
).addReg(SrcReg
).addImm(ShiftImm
);
1564 BuildMI(BB
, DL
, TII
->get(Mips::SRA
), DstReg
).addReg(ScrReg
).addImm(ShiftImm
);
1569 MachineBasicBlock
*MipsTargetLowering::emitAtomicBinaryPartword(
1570 MachineInstr
&MI
, MachineBasicBlock
*BB
, unsigned Size
) const {
1571 assert((Size
== 1 || Size
== 2) &&
1572 "Unsupported size for EmitAtomicBinaryPartial.");
1574 MachineFunction
*MF
= BB
->getParent();
1575 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
1576 const TargetRegisterClass
*RC
= getRegClassFor(MVT::i32
);
1577 const bool ArePtrs64bit
= ABI
.ArePtrs64bit();
1578 const TargetRegisterClass
*RCp
=
1579 getRegClassFor(ArePtrs64bit
? MVT::i64
: MVT::i32
);
1580 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1581 DebugLoc DL
= MI
.getDebugLoc();
1583 Register Dest
= MI
.getOperand(0).getReg();
1584 Register Ptr
= MI
.getOperand(1).getReg();
1585 Register Incr
= MI
.getOperand(2).getReg();
1587 Register AlignedAddr
= RegInfo
.createVirtualRegister(RCp
);
1588 Register ShiftAmt
= RegInfo
.createVirtualRegister(RC
);
1589 Register Mask
= RegInfo
.createVirtualRegister(RC
);
1590 Register Mask2
= RegInfo
.createVirtualRegister(RC
);
1591 Register Incr2
= RegInfo
.createVirtualRegister(RC
);
1592 Register MaskLSB2
= RegInfo
.createVirtualRegister(RCp
);
1593 Register PtrLSB2
= RegInfo
.createVirtualRegister(RC
);
1594 Register MaskUpper
= RegInfo
.createVirtualRegister(RC
);
1595 Register Scratch
= RegInfo
.createVirtualRegister(RC
);
1596 Register Scratch2
= RegInfo
.createVirtualRegister(RC
);
1597 Register Scratch3
= RegInfo
.createVirtualRegister(RC
);
1599 unsigned AtomicOp
= 0;
1600 switch (MI
.getOpcode()) {
1601 case Mips::ATOMIC_LOAD_NAND_I8
:
1602 AtomicOp
= Mips::ATOMIC_LOAD_NAND_I8_POSTRA
;
1604 case Mips::ATOMIC_LOAD_NAND_I16
:
1605 AtomicOp
= Mips::ATOMIC_LOAD_NAND_I16_POSTRA
;
1607 case Mips::ATOMIC_SWAP_I8
:
1608 AtomicOp
= Mips::ATOMIC_SWAP_I8_POSTRA
;
1610 case Mips::ATOMIC_SWAP_I16
:
1611 AtomicOp
= Mips::ATOMIC_SWAP_I16_POSTRA
;
1613 case Mips::ATOMIC_LOAD_ADD_I8
:
1614 AtomicOp
= Mips::ATOMIC_LOAD_ADD_I8_POSTRA
;
1616 case Mips::ATOMIC_LOAD_ADD_I16
:
1617 AtomicOp
= Mips::ATOMIC_LOAD_ADD_I16_POSTRA
;
1619 case Mips::ATOMIC_LOAD_SUB_I8
:
1620 AtomicOp
= Mips::ATOMIC_LOAD_SUB_I8_POSTRA
;
1622 case Mips::ATOMIC_LOAD_SUB_I16
:
1623 AtomicOp
= Mips::ATOMIC_LOAD_SUB_I16_POSTRA
;
1625 case Mips::ATOMIC_LOAD_AND_I8
:
1626 AtomicOp
= Mips::ATOMIC_LOAD_AND_I8_POSTRA
;
1628 case Mips::ATOMIC_LOAD_AND_I16
:
1629 AtomicOp
= Mips::ATOMIC_LOAD_AND_I16_POSTRA
;
1631 case Mips::ATOMIC_LOAD_OR_I8
:
1632 AtomicOp
= Mips::ATOMIC_LOAD_OR_I8_POSTRA
;
1634 case Mips::ATOMIC_LOAD_OR_I16
:
1635 AtomicOp
= Mips::ATOMIC_LOAD_OR_I16_POSTRA
;
1637 case Mips::ATOMIC_LOAD_XOR_I8
:
1638 AtomicOp
= Mips::ATOMIC_LOAD_XOR_I8_POSTRA
;
1640 case Mips::ATOMIC_LOAD_XOR_I16
:
1641 AtomicOp
= Mips::ATOMIC_LOAD_XOR_I16_POSTRA
;
1644 llvm_unreachable("Unknown subword atomic pseudo for expansion!");
1647 // insert new blocks after the current block
1648 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
1649 MachineBasicBlock
*exitMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
1650 MachineFunction::iterator It
= ++BB
->getIterator();
1651 MF
->insert(It
, exitMBB
);
1653 // Transfer the remainder of BB and its successor edges to exitMBB.
1654 exitMBB
->splice(exitMBB
->begin(), BB
,
1655 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
1656 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
1658 BB
->addSuccessor(exitMBB
, BranchProbability::getOne());
1661 // addiu masklsb2,$0,-4 # 0xfffffffc
1662 // and alignedaddr,ptr,masklsb2
1663 // andi ptrlsb2,ptr,3
1664 // sll shiftamt,ptrlsb2,3
1665 // ori maskupper,$0,255 # 0xff
1666 // sll mask,maskupper,shiftamt
1667 // nor mask2,$0,mask
1668 // sll incr2,incr,shiftamt
1670 int64_t MaskImm
= (Size
== 1) ? 255 : 65535;
1671 BuildMI(BB
, DL
, TII
->get(ABI
.GetPtrAddiuOp()), MaskLSB2
)
1672 .addReg(ABI
.GetNullPtr()).addImm(-4);
1673 BuildMI(BB
, DL
, TII
->get(ABI
.GetPtrAndOp()), AlignedAddr
)
1674 .addReg(Ptr
).addReg(MaskLSB2
);
1675 BuildMI(BB
, DL
, TII
->get(Mips::ANDi
), PtrLSB2
)
1676 .addReg(Ptr
, 0, ArePtrs64bit
? Mips::sub_32
: 0).addImm(3);
1677 if (Subtarget
.isLittle()) {
1678 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ShiftAmt
).addReg(PtrLSB2
).addImm(3);
1680 Register Off
= RegInfo
.createVirtualRegister(RC
);
1681 BuildMI(BB
, DL
, TII
->get(Mips::XORi
), Off
)
1682 .addReg(PtrLSB2
).addImm((Size
== 1) ? 3 : 2);
1683 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ShiftAmt
).addReg(Off
).addImm(3);
1685 BuildMI(BB
, DL
, TII
->get(Mips::ORi
), MaskUpper
)
1686 .addReg(Mips::ZERO
).addImm(MaskImm
);
1687 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), Mask
)
1688 .addReg(MaskUpper
).addReg(ShiftAmt
);
1689 BuildMI(BB
, DL
, TII
->get(Mips::NOR
), Mask2
).addReg(Mips::ZERO
).addReg(Mask
);
1690 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), Incr2
).addReg(Incr
).addReg(ShiftAmt
);
1693 // The purposes of the flags on the scratch registers is explained in
1694 // emitAtomicBinary. In summary, we need a scratch register which is going to
1695 // be undef, that is unique among registers chosen for the instruction.
1697 BuildMI(BB
, DL
, TII
->get(AtomicOp
))
1698 .addReg(Dest
, RegState::Define
| RegState::EarlyClobber
)
1699 .addReg(AlignedAddr
)
1704 .addReg(Scratch
, RegState::EarlyClobber
| RegState::Define
|
1705 RegState::Dead
| RegState::Implicit
)
1706 .addReg(Scratch2
, RegState::EarlyClobber
| RegState::Define
|
1707 RegState::Dead
| RegState::Implicit
)
1708 .addReg(Scratch3
, RegState::EarlyClobber
| RegState::Define
|
1709 RegState::Dead
| RegState::Implicit
);
1711 MI
.eraseFromParent(); // The instruction is gone now.
1716 // Lower atomic compare and swap to a pseudo instruction, taking care to
1717 // define a scratch register for the pseudo instruction's expansion. The
1718 // instruction is expanded after the register allocator as to prevent
1719 // the insertion of stores between the linked load and the store conditional.
1722 MipsTargetLowering::emitAtomicCmpSwap(MachineInstr
&MI
,
1723 MachineBasicBlock
*BB
) const {
1725 assert((MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32
||
1726 MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I64
) &&
1727 "Unsupported atomic pseudo for EmitAtomicCmpSwap.");
1729 const unsigned Size
= MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32
? 4 : 8;
1731 MachineFunction
*MF
= BB
->getParent();
1732 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
1733 const TargetRegisterClass
*RC
= getRegClassFor(MVT::getIntegerVT(Size
* 8));
1734 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1735 DebugLoc DL
= MI
.getDebugLoc();
1737 unsigned AtomicOp
= MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32
1738 ? Mips::ATOMIC_CMP_SWAP_I32_POSTRA
1739 : Mips::ATOMIC_CMP_SWAP_I64_POSTRA
;
1740 Register Dest
= MI
.getOperand(0).getReg();
1741 Register Ptr
= MI
.getOperand(1).getReg();
1742 Register OldVal
= MI
.getOperand(2).getReg();
1743 Register NewVal
= MI
.getOperand(3).getReg();
1745 Register Scratch
= MRI
.createVirtualRegister(RC
);
1746 MachineBasicBlock::iterator
II(MI
);
1748 // We need to create copies of the various registers and kill them at the
1749 // atomic pseudo. If the copies are not made, when the atomic is expanded
1750 // after fast register allocation, the spills will end up outside of the
1751 // blocks that their values are defined in, causing livein errors.
1753 Register PtrCopy
= MRI
.createVirtualRegister(MRI
.getRegClass(Ptr
));
1754 Register OldValCopy
= MRI
.createVirtualRegister(MRI
.getRegClass(OldVal
));
1755 Register NewValCopy
= MRI
.createVirtualRegister(MRI
.getRegClass(NewVal
));
1757 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), PtrCopy
).addReg(Ptr
);
1758 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), OldValCopy
).addReg(OldVal
);
1759 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), NewValCopy
).addReg(NewVal
);
1761 // The purposes of the flags on the scratch registers is explained in
1762 // emitAtomicBinary. In summary, we need a scratch register which is going to
1763 // be undef, that is unique among registers chosen for the instruction.
1765 BuildMI(*BB
, II
, DL
, TII
->get(AtomicOp
))
1766 .addReg(Dest
, RegState::Define
| RegState::EarlyClobber
)
1767 .addReg(PtrCopy
, RegState::Kill
)
1768 .addReg(OldValCopy
, RegState::Kill
)
1769 .addReg(NewValCopy
, RegState::Kill
)
1770 .addReg(Scratch
, RegState::EarlyClobber
| RegState::Define
|
1771 RegState::Dead
| RegState::Implicit
);
1773 MI
.eraseFromParent(); // The instruction is gone now.
1778 MachineBasicBlock
*MipsTargetLowering::emitAtomicCmpSwapPartword(
1779 MachineInstr
&MI
, MachineBasicBlock
*BB
, unsigned Size
) const {
1780 assert((Size
== 1 || Size
== 2) &&
1781 "Unsupported size for EmitAtomicCmpSwapPartial.");
1783 MachineFunction
*MF
= BB
->getParent();
1784 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
1785 const TargetRegisterClass
*RC
= getRegClassFor(MVT::i32
);
1786 const bool ArePtrs64bit
= ABI
.ArePtrs64bit();
1787 const TargetRegisterClass
*RCp
=
1788 getRegClassFor(ArePtrs64bit
? MVT::i64
: MVT::i32
);
1789 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1790 DebugLoc DL
= MI
.getDebugLoc();
1792 Register Dest
= MI
.getOperand(0).getReg();
1793 Register Ptr
= MI
.getOperand(1).getReg();
1794 Register CmpVal
= MI
.getOperand(2).getReg();
1795 Register NewVal
= MI
.getOperand(3).getReg();
1797 Register AlignedAddr
= RegInfo
.createVirtualRegister(RCp
);
1798 Register ShiftAmt
= RegInfo
.createVirtualRegister(RC
);
1799 Register Mask
= RegInfo
.createVirtualRegister(RC
);
1800 Register Mask2
= RegInfo
.createVirtualRegister(RC
);
1801 Register ShiftedCmpVal
= RegInfo
.createVirtualRegister(RC
);
1802 Register ShiftedNewVal
= RegInfo
.createVirtualRegister(RC
);
1803 Register MaskLSB2
= RegInfo
.createVirtualRegister(RCp
);
1804 Register PtrLSB2
= RegInfo
.createVirtualRegister(RC
);
1805 Register MaskUpper
= RegInfo
.createVirtualRegister(RC
);
1806 Register MaskedCmpVal
= RegInfo
.createVirtualRegister(RC
);
1807 Register MaskedNewVal
= RegInfo
.createVirtualRegister(RC
);
1808 unsigned AtomicOp
= MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I8
1809 ? Mips::ATOMIC_CMP_SWAP_I8_POSTRA
1810 : Mips::ATOMIC_CMP_SWAP_I16_POSTRA
;
1812 // The scratch registers here with the EarlyClobber | Define | Dead | Implicit
1813 // flags are used to coerce the register allocator and the machine verifier to
1814 // accept the usage of these registers.
1815 // The EarlyClobber flag has the semantic properties that the operand it is
1816 // attached to is clobbered before the rest of the inputs are read. Hence it
1817 // must be unique among the operands to the instruction.
1818 // The Define flag is needed to coerce the machine verifier that an Undef
1819 // value isn't a problem.
1820 // The Dead flag is needed as the value in scratch isn't used by any other
1821 // instruction. Kill isn't used as Dead is more precise.
1822 Register Scratch
= RegInfo
.createVirtualRegister(RC
);
1823 Register Scratch2
= RegInfo
.createVirtualRegister(RC
);
1825 // insert new blocks after the current block
1826 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
1827 MachineBasicBlock
*exitMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
1828 MachineFunction::iterator It
= ++BB
->getIterator();
1829 MF
->insert(It
, exitMBB
);
1831 // Transfer the remainder of BB and its successor edges to exitMBB.
1832 exitMBB
->splice(exitMBB
->begin(), BB
,
1833 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
1834 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
1836 BB
->addSuccessor(exitMBB
, BranchProbability::getOne());
1839 // addiu masklsb2,$0,-4 # 0xfffffffc
1840 // and alignedaddr,ptr,masklsb2
1841 // andi ptrlsb2,ptr,3
1842 // xori ptrlsb2,ptrlsb2,3 # Only for BE
1843 // sll shiftamt,ptrlsb2,3
1844 // ori maskupper,$0,255 # 0xff
1845 // sll mask,maskupper,shiftamt
1846 // nor mask2,$0,mask
1847 // andi maskedcmpval,cmpval,255
1848 // sll shiftedcmpval,maskedcmpval,shiftamt
1849 // andi maskednewval,newval,255
1850 // sll shiftednewval,maskednewval,shiftamt
1851 int64_t MaskImm
= (Size
== 1) ? 255 : 65535;
1852 BuildMI(BB
, DL
, TII
->get(ArePtrs64bit
? Mips::DADDiu
: Mips::ADDiu
), MaskLSB2
)
1853 .addReg(ABI
.GetNullPtr()).addImm(-4);
1854 BuildMI(BB
, DL
, TII
->get(ArePtrs64bit
? Mips::AND64
: Mips::AND
), AlignedAddr
)
1855 .addReg(Ptr
).addReg(MaskLSB2
);
1856 BuildMI(BB
, DL
, TII
->get(Mips::ANDi
), PtrLSB2
)
1857 .addReg(Ptr
, 0, ArePtrs64bit
? Mips::sub_32
: 0).addImm(3);
1858 if (Subtarget
.isLittle()) {
1859 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ShiftAmt
).addReg(PtrLSB2
).addImm(3);
1861 Register Off
= RegInfo
.createVirtualRegister(RC
);
1862 BuildMI(BB
, DL
, TII
->get(Mips::XORi
), Off
)
1863 .addReg(PtrLSB2
).addImm((Size
== 1) ? 3 : 2);
1864 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ShiftAmt
).addReg(Off
).addImm(3);
1866 BuildMI(BB
, DL
, TII
->get(Mips::ORi
), MaskUpper
)
1867 .addReg(Mips::ZERO
).addImm(MaskImm
);
1868 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), Mask
)
1869 .addReg(MaskUpper
).addReg(ShiftAmt
);
1870 BuildMI(BB
, DL
, TII
->get(Mips::NOR
), Mask2
).addReg(Mips::ZERO
).addReg(Mask
);
1871 BuildMI(BB
, DL
, TII
->get(Mips::ANDi
), MaskedCmpVal
)
1872 .addReg(CmpVal
).addImm(MaskImm
);
1873 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), ShiftedCmpVal
)
1874 .addReg(MaskedCmpVal
).addReg(ShiftAmt
);
1875 BuildMI(BB
, DL
, TII
->get(Mips::ANDi
), MaskedNewVal
)
1876 .addReg(NewVal
).addImm(MaskImm
);
1877 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), ShiftedNewVal
)
1878 .addReg(MaskedNewVal
).addReg(ShiftAmt
);
1880 // The purposes of the flags on the scratch registers are explained in
1881 // emitAtomicBinary. In summary, we need a scratch register which is going to
1882 // be undef, that is unique among the register chosen for the instruction.
1884 BuildMI(BB
, DL
, TII
->get(AtomicOp
))
1885 .addReg(Dest
, RegState::Define
| RegState::EarlyClobber
)
1886 .addReg(AlignedAddr
)
1888 .addReg(ShiftedCmpVal
)
1890 .addReg(ShiftedNewVal
)
1892 .addReg(Scratch
, RegState::EarlyClobber
| RegState::Define
|
1893 RegState::Dead
| RegState::Implicit
)
1894 .addReg(Scratch2
, RegState::EarlyClobber
| RegState::Define
|
1895 RegState::Dead
| RegState::Implicit
);
1897 MI
.eraseFromParent(); // The instruction is gone now.
1902 SDValue
MipsTargetLowering::lowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) const {
1903 // The first operand is the chain, the second is the condition, the third is
1904 // the block to branch to if the condition is true.
1905 SDValue Chain
= Op
.getOperand(0);
1906 SDValue Dest
= Op
.getOperand(2);
1909 assert(!Subtarget
.hasMips32r6() && !Subtarget
.hasMips64r6());
1910 SDValue CondRes
= createFPCmp(DAG
, Op
.getOperand(1));
1912 // Return if flag is not set by a floating point comparison.
1913 if (CondRes
.getOpcode() != MipsISD::FPCmp
)
1916 SDValue CCNode
= CondRes
.getOperand(2);
1918 (Mips::CondCode
)cast
<ConstantSDNode
>(CCNode
)->getZExtValue();
1919 unsigned Opc
= invertFPCondCodeUser(CC
) ? Mips::BRANCH_F
: Mips::BRANCH_T
;
1920 SDValue BrCode
= DAG
.getConstant(Opc
, DL
, MVT::i32
);
1921 SDValue FCC0
= DAG
.getRegister(Mips::FCC0
, MVT::i32
);
1922 return DAG
.getNode(MipsISD::FPBrcond
, DL
, Op
.getValueType(), Chain
, BrCode
,
1923 FCC0
, Dest
, CondRes
);
1926 SDValue
MipsTargetLowering::
1927 lowerSELECT(SDValue Op
, SelectionDAG
&DAG
) const
1929 assert(!Subtarget
.hasMips32r6() && !Subtarget
.hasMips64r6());
1930 SDValue Cond
= createFPCmp(DAG
, Op
.getOperand(0));
1932 // Return if flag is not set by a floating point comparison.
1933 if (Cond
.getOpcode() != MipsISD::FPCmp
)
1936 return createCMovFP(DAG
, Cond
, Op
.getOperand(1), Op
.getOperand(2),
1940 SDValue
MipsTargetLowering::lowerSETCC(SDValue Op
, SelectionDAG
&DAG
) const {
1941 assert(!Subtarget
.hasMips32r6() && !Subtarget
.hasMips64r6());
1942 SDValue Cond
= createFPCmp(DAG
, Op
);
1944 assert(Cond
.getOpcode() == MipsISD::FPCmp
&&
1945 "Floating point operand expected.");
1948 SDValue True
= DAG
.getConstant(1, DL
, MVT::i32
);
1949 SDValue False
= DAG
.getConstant(0, DL
, MVT::i32
);
1951 return createCMovFP(DAG
, Cond
, True
, False
, DL
);
1954 SDValue
MipsTargetLowering::lowerGlobalAddress(SDValue Op
,
1955 SelectionDAG
&DAG
) const {
1956 EVT Ty
= Op
.getValueType();
1957 GlobalAddressSDNode
*N
= cast
<GlobalAddressSDNode
>(Op
);
1958 const GlobalValue
*GV
= N
->getGlobal();
1960 if (!isPositionIndependent()) {
1961 const MipsTargetObjectFile
*TLOF
=
1962 static_cast<const MipsTargetObjectFile
*>(
1963 getTargetMachine().getObjFileLowering());
1964 const GlobalObject
*GO
= GV
->getBaseObject();
1965 if (GO
&& TLOF
->IsGlobalInSmallSection(GO
, getTargetMachine()))
1966 // %gp_rel relocation
1967 return getAddrGPRel(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN64());
1969 // %hi/%lo relocation
1970 return Subtarget
.hasSym32() ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
1971 // %highest/%higher/%hi/%lo relocation
1972 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
1975 // Every other architecture would use shouldAssumeDSOLocal in here, but
1977 // * In PIC code mips requires got loads even for local statics!
1978 // * To save on got entries, for local statics the got entry contains the
1979 // page and an additional add instruction takes care of the low bits.
1980 // * It is legal to access a hidden symbol with a non hidden undefined,
1981 // so one cannot guarantee that all access to a hidden symbol will know
1983 // * Mips linkers don't support creating a page and a full got entry for
1985 // * Given all that, we have to use a full got entry for hidden symbols :-(
1986 if (GV
->hasLocalLinkage())
1987 return getAddrLocal(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
1989 if (Subtarget
.useXGOT())
1990 return getAddrGlobalLargeGOT(
1991 N
, SDLoc(N
), Ty
, DAG
, MipsII::MO_GOT_HI16
, MipsII::MO_GOT_LO16
,
1993 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
1995 return getAddrGlobal(
1996 N
, SDLoc(N
), Ty
, DAG
,
1997 (ABI
.IsN32() || ABI
.IsN64()) ? MipsII::MO_GOT_DISP
: MipsII::MO_GOT
,
1998 DAG
.getEntryNode(), MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
2001 SDValue
MipsTargetLowering::lowerBlockAddress(SDValue Op
,
2002 SelectionDAG
&DAG
) const {
2003 BlockAddressSDNode
*N
= cast
<BlockAddressSDNode
>(Op
);
2004 EVT Ty
= Op
.getValueType();
2006 if (!isPositionIndependent())
2007 return Subtarget
.hasSym32() ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
2008 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
2010 return getAddrLocal(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
2013 SDValue
MipsTargetLowering::
2014 lowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) const
2016 // If the relocation model is PIC, use the General Dynamic TLS Model or
2017 // Local Dynamic TLS model, otherwise use the Initial Exec or
2018 // Local Exec TLS Model.
2020 GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
2021 if (DAG
.getTarget().useEmulatedTLS())
2022 return LowerToTLSEmulatedModel(GA
, DAG
);
2025 const GlobalValue
*GV
= GA
->getGlobal();
2026 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
2028 TLSModel::Model model
= getTargetMachine().getTLSModel(GV
);
2030 if (model
== TLSModel::GeneralDynamic
|| model
== TLSModel::LocalDynamic
) {
2031 // General Dynamic and Local Dynamic TLS Model.
2032 unsigned Flag
= (model
== TLSModel::LocalDynamic
) ? MipsII::MO_TLSLDM
2035 SDValue TGA
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0, Flag
);
2036 SDValue Argument
= DAG
.getNode(MipsISD::Wrapper
, DL
, PtrVT
,
2037 getGlobalReg(DAG
, PtrVT
), TGA
);
2038 unsigned PtrSize
= PtrVT
.getSizeInBits();
2039 IntegerType
*PtrTy
= Type::getIntNTy(*DAG
.getContext(), PtrSize
);
2041 SDValue TlsGetAddr
= DAG
.getExternalSymbol("__tls_get_addr", PtrVT
);
2045 Entry
.Node
= Argument
;
2047 Args
.push_back(Entry
);
2049 TargetLowering::CallLoweringInfo
CLI(DAG
);
2051 .setChain(DAG
.getEntryNode())
2052 .setLibCallee(CallingConv::C
, PtrTy
, TlsGetAddr
, std::move(Args
));
2053 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
2055 SDValue Ret
= CallResult
.first
;
2057 if (model
!= TLSModel::LocalDynamic
)
2060 SDValue TGAHi
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2061 MipsII::MO_DTPREL_HI
);
2062 SDValue Hi
= DAG
.getNode(MipsISD::TlsHi
, DL
, PtrVT
, TGAHi
);
2063 SDValue TGALo
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2064 MipsII::MO_DTPREL_LO
);
2065 SDValue Lo
= DAG
.getNode(MipsISD::Lo
, DL
, PtrVT
, TGALo
);
2066 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, Hi
, Ret
);
2067 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, Add
, Lo
);
2071 if (model
== TLSModel::InitialExec
) {
2072 // Initial Exec TLS Model
2073 SDValue TGA
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2074 MipsII::MO_GOTTPREL
);
2075 TGA
= DAG
.getNode(MipsISD::Wrapper
, DL
, PtrVT
, getGlobalReg(DAG
, PtrVT
),
2078 DAG
.getLoad(PtrVT
, DL
, DAG
.getEntryNode(), TGA
, MachinePointerInfo());
2080 // Local Exec TLS Model
2081 assert(model
== TLSModel::LocalExec
);
2082 SDValue TGAHi
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2083 MipsII::MO_TPREL_HI
);
2084 SDValue TGALo
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2085 MipsII::MO_TPREL_LO
);
2086 SDValue Hi
= DAG
.getNode(MipsISD::TlsHi
, DL
, PtrVT
, TGAHi
);
2087 SDValue Lo
= DAG
.getNode(MipsISD::Lo
, DL
, PtrVT
, TGALo
);
2088 Offset
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, Hi
, Lo
);
2091 SDValue ThreadPointer
= DAG
.getNode(MipsISD::ThreadPointer
, DL
, PtrVT
);
2092 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, ThreadPointer
, Offset
);
2095 SDValue
MipsTargetLowering::
2096 lowerJumpTable(SDValue Op
, SelectionDAG
&DAG
) const
2098 JumpTableSDNode
*N
= cast
<JumpTableSDNode
>(Op
);
2099 EVT Ty
= Op
.getValueType();
2101 if (!isPositionIndependent())
2102 return Subtarget
.hasSym32() ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
2103 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
2105 return getAddrLocal(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
2108 SDValue
MipsTargetLowering::
2109 lowerConstantPool(SDValue Op
, SelectionDAG
&DAG
) const
2111 ConstantPoolSDNode
*N
= cast
<ConstantPoolSDNode
>(Op
);
2112 EVT Ty
= Op
.getValueType();
2114 if (!isPositionIndependent()) {
2115 const MipsTargetObjectFile
*TLOF
=
2116 static_cast<const MipsTargetObjectFile
*>(
2117 getTargetMachine().getObjFileLowering());
2119 if (TLOF
->IsConstantInSmallSection(DAG
.getDataLayout(), N
->getConstVal(),
2120 getTargetMachine()))
2121 // %gp_rel relocation
2122 return getAddrGPRel(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN64());
2124 return Subtarget
.hasSym32() ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
2125 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
2128 return getAddrLocal(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
2131 SDValue
MipsTargetLowering::lowerVASTART(SDValue Op
, SelectionDAG
&DAG
) const {
2132 MachineFunction
&MF
= DAG
.getMachineFunction();
2133 MipsFunctionInfo
*FuncInfo
= MF
.getInfo
<MipsFunctionInfo
>();
2136 SDValue FI
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(),
2137 getPointerTy(MF
.getDataLayout()));
2139 // vastart just stores the address of the VarArgsFrameIndex slot into the
2140 // memory location argument.
2141 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
2142 return DAG
.getStore(Op
.getOperand(0), DL
, FI
, Op
.getOperand(1),
2143 MachinePointerInfo(SV
));
2146 SDValue
MipsTargetLowering::lowerVAARG(SDValue Op
, SelectionDAG
&DAG
) const {
2147 SDNode
*Node
= Op
.getNode();
2148 EVT VT
= Node
->getValueType(0);
2149 SDValue Chain
= Node
->getOperand(0);
2150 SDValue VAListPtr
= Node
->getOperand(1);
2151 const llvm::Align Align
=
2152 llvm::MaybeAlign(Node
->getConstantOperandVal(3)).valueOrOne();
2153 const Value
*SV
= cast
<SrcValueSDNode
>(Node
->getOperand(2))->getValue();
2155 unsigned ArgSlotSizeInBytes
= (ABI
.IsN32() || ABI
.IsN64()) ? 8 : 4;
2157 SDValue VAListLoad
= DAG
.getLoad(getPointerTy(DAG
.getDataLayout()), DL
, Chain
,
2158 VAListPtr
, MachinePointerInfo(SV
));
2159 SDValue VAList
= VAListLoad
;
2161 // Re-align the pointer if necessary.
2162 // It should only ever be necessary for 64-bit types on O32 since the minimum
2163 // argument alignment is the same as the maximum type alignment for N32/N64.
2165 // FIXME: We currently align too often. The code generator doesn't notice
2166 // when the pointer is still aligned from the last va_arg (or pair of
2167 // va_args for the i64 on O32 case).
2168 if (Align
> getMinStackArgumentAlignment()) {
2169 VAList
= DAG
.getNode(
2170 ISD::ADD
, DL
, VAList
.getValueType(), VAList
,
2171 DAG
.getConstant(Align
.value() - 1, DL
, VAList
.getValueType()));
2173 VAList
= DAG
.getNode(
2174 ISD::AND
, DL
, VAList
.getValueType(), VAList
,
2175 DAG
.getConstant(-(int64_t)Align
.value(), DL
, VAList
.getValueType()));
2178 // Increment the pointer, VAList, to the next vaarg.
2179 auto &TD
= DAG
.getDataLayout();
2180 unsigned ArgSizeInBytes
=
2181 TD
.getTypeAllocSize(VT
.getTypeForEVT(*DAG
.getContext()));
2183 DAG
.getNode(ISD::ADD
, DL
, VAList
.getValueType(), VAList
,
2184 DAG
.getConstant(alignTo(ArgSizeInBytes
, ArgSlotSizeInBytes
),
2185 DL
, VAList
.getValueType()));
2186 // Store the incremented VAList to the legalized pointer
2187 Chain
= DAG
.getStore(VAListLoad
.getValue(1), DL
, Tmp3
, VAListPtr
,
2188 MachinePointerInfo(SV
));
2190 // In big-endian mode we must adjust the pointer when the load size is smaller
2191 // than the argument slot size. We must also reduce the known alignment to
2192 // match. For example in the N64 ABI, we must add 4 bytes to the offset to get
2193 // the correct half of the slot, and reduce the alignment from 8 (slot
2194 // alignment) down to 4 (type alignment).
2195 if (!Subtarget
.isLittle() && ArgSizeInBytes
< ArgSlotSizeInBytes
) {
2196 unsigned Adjustment
= ArgSlotSizeInBytes
- ArgSizeInBytes
;
2197 VAList
= DAG
.getNode(ISD::ADD
, DL
, VAListPtr
.getValueType(), VAList
,
2198 DAG
.getIntPtrConstant(Adjustment
, DL
));
2200 // Load the actual argument out of the pointer VAList
2201 return DAG
.getLoad(VT
, DL
, Chain
, VAList
, MachinePointerInfo());
2204 static SDValue
lowerFCOPYSIGN32(SDValue Op
, SelectionDAG
&DAG
,
2205 bool HasExtractInsert
) {
2206 EVT TyX
= Op
.getOperand(0).getValueType();
2207 EVT TyY
= Op
.getOperand(1).getValueType();
2209 SDValue Const1
= DAG
.getConstant(1, DL
, MVT::i32
);
2210 SDValue Const31
= DAG
.getConstant(31, DL
, MVT::i32
);
2213 // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2215 SDValue X
= (TyX
== MVT::f32
) ?
2216 DAG
.getNode(ISD::BITCAST
, DL
, MVT::i32
, Op
.getOperand(0)) :
2217 DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
, Op
.getOperand(0),
2219 SDValue Y
= (TyY
== MVT::f32
) ?
2220 DAG
.getNode(ISD::BITCAST
, DL
, MVT::i32
, Op
.getOperand(1)) :
2221 DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
, Op
.getOperand(1),
2224 if (HasExtractInsert
) {
2225 // ext E, Y, 31, 1 ; extract bit31 of Y
2226 // ins X, E, 31, 1 ; insert extracted bit at bit31 of X
2227 SDValue E
= DAG
.getNode(MipsISD::Ext
, DL
, MVT::i32
, Y
, Const31
, Const1
);
2228 Res
= DAG
.getNode(MipsISD::Ins
, DL
, MVT::i32
, E
, Const31
, Const1
, X
);
2231 // srl SrlX, SllX, 1
2233 // sll SllY, SrlX, 31
2234 // or Or, SrlX, SllY
2235 SDValue SllX
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, X
, Const1
);
2236 SDValue SrlX
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SllX
, Const1
);
2237 SDValue SrlY
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, Y
, Const31
);
2238 SDValue SllY
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, SrlY
, Const31
);
2239 Res
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, SrlX
, SllY
);
2242 if (TyX
== MVT::f32
)
2243 return DAG
.getNode(ISD::BITCAST
, DL
, Op
.getOperand(0).getValueType(), Res
);
2245 SDValue LowX
= DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
,
2247 DAG
.getConstant(0, DL
, MVT::i32
));
2248 return DAG
.getNode(MipsISD::BuildPairF64
, DL
, MVT::f64
, LowX
, Res
);
2251 static SDValue
lowerFCOPYSIGN64(SDValue Op
, SelectionDAG
&DAG
,
2252 bool HasExtractInsert
) {
2253 unsigned WidthX
= Op
.getOperand(0).getValueSizeInBits();
2254 unsigned WidthY
= Op
.getOperand(1).getValueSizeInBits();
2255 EVT TyX
= MVT::getIntegerVT(WidthX
), TyY
= MVT::getIntegerVT(WidthY
);
2257 SDValue Const1
= DAG
.getConstant(1, DL
, MVT::i32
);
2259 // Bitcast to integer nodes.
2260 SDValue X
= DAG
.getNode(ISD::BITCAST
, DL
, TyX
, Op
.getOperand(0));
2261 SDValue Y
= DAG
.getNode(ISD::BITCAST
, DL
, TyY
, Op
.getOperand(1));
2263 if (HasExtractInsert
) {
2264 // ext E, Y, width(Y) - 1, 1 ; extract bit width(Y)-1 of Y
2265 // ins X, E, width(X) - 1, 1 ; insert extracted bit at bit width(X)-1 of X
2266 SDValue E
= DAG
.getNode(MipsISD::Ext
, DL
, TyY
, Y
,
2267 DAG
.getConstant(WidthY
- 1, DL
, MVT::i32
), Const1
);
2269 if (WidthX
> WidthY
)
2270 E
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, TyX
, E
);
2271 else if (WidthY
> WidthX
)
2272 E
= DAG
.getNode(ISD::TRUNCATE
, DL
, TyX
, E
);
2274 SDValue I
= DAG
.getNode(MipsISD::Ins
, DL
, TyX
, E
,
2275 DAG
.getConstant(WidthX
- 1, DL
, MVT::i32
), Const1
,
2277 return DAG
.getNode(ISD::BITCAST
, DL
, Op
.getOperand(0).getValueType(), I
);
2280 // (d)sll SllX, X, 1
2281 // (d)srl SrlX, SllX, 1
2282 // (d)srl SrlY, Y, width(Y)-1
2283 // (d)sll SllY, SrlX, width(Y)-1
2284 // or Or, SrlX, SllY
2285 SDValue SllX
= DAG
.getNode(ISD::SHL
, DL
, TyX
, X
, Const1
);
2286 SDValue SrlX
= DAG
.getNode(ISD::SRL
, DL
, TyX
, SllX
, Const1
);
2287 SDValue SrlY
= DAG
.getNode(ISD::SRL
, DL
, TyY
, Y
,
2288 DAG
.getConstant(WidthY
- 1, DL
, MVT::i32
));
2290 if (WidthX
> WidthY
)
2291 SrlY
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, TyX
, SrlY
);
2292 else if (WidthY
> WidthX
)
2293 SrlY
= DAG
.getNode(ISD::TRUNCATE
, DL
, TyX
, SrlY
);
2295 SDValue SllY
= DAG
.getNode(ISD::SHL
, DL
, TyX
, SrlY
,
2296 DAG
.getConstant(WidthX
- 1, DL
, MVT::i32
));
2297 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, TyX
, SrlX
, SllY
);
2298 return DAG
.getNode(ISD::BITCAST
, DL
, Op
.getOperand(0).getValueType(), Or
);
2302 MipsTargetLowering::lowerFCOPYSIGN(SDValue Op
, SelectionDAG
&DAG
) const {
2303 if (Subtarget
.isGP64bit())
2304 return lowerFCOPYSIGN64(Op
, DAG
, Subtarget
.hasExtractInsert());
2306 return lowerFCOPYSIGN32(Op
, DAG
, Subtarget
.hasExtractInsert());
2309 static SDValue
lowerFABS32(SDValue Op
, SelectionDAG
&DAG
,
2310 bool HasExtractInsert
) {
2312 SDValue Res
, Const1
= DAG
.getConstant(1, DL
, MVT::i32
);
2314 // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2316 SDValue X
= (Op
.getValueType() == MVT::f32
)
2317 ? DAG
.getNode(ISD::BITCAST
, DL
, MVT::i32
, Op
.getOperand(0))
2318 : DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
,
2319 Op
.getOperand(0), Const1
);
2322 if (HasExtractInsert
)
2323 Res
= DAG
.getNode(MipsISD::Ins
, DL
, MVT::i32
,
2324 DAG
.getRegister(Mips::ZERO
, MVT::i32
),
2325 DAG
.getConstant(31, DL
, MVT::i32
), Const1
, X
);
2327 // TODO: Provide DAG patterns which transform (and x, cst)
2328 // back to a (shl (srl x (clz cst)) (clz cst)) sequence.
2329 SDValue SllX
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, X
, Const1
);
2330 Res
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SllX
, Const1
);
2333 if (Op
.getValueType() == MVT::f32
)
2334 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f32
, Res
);
2336 // FIXME: For mips32r2, the sequence of (BuildPairF64 (ins (ExtractElementF64
2337 // Op 1), $zero, 31 1) (ExtractElementF64 Op 0)) and the Op has one use, we
2338 // should be able to drop the usage of mfc1/mtc1 and rewrite the register in
2341 DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
, Op
.getOperand(0),
2342 DAG
.getConstant(0, DL
, MVT::i32
));
2343 return DAG
.getNode(MipsISD::BuildPairF64
, DL
, MVT::f64
, LowX
, Res
);
2346 static SDValue
lowerFABS64(SDValue Op
, SelectionDAG
&DAG
,
2347 bool HasExtractInsert
) {
2349 SDValue Res
, Const1
= DAG
.getConstant(1, DL
, MVT::i32
);
2351 // Bitcast to integer node.
2352 SDValue X
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, Op
.getOperand(0));
2355 if (HasExtractInsert
)
2356 Res
= DAG
.getNode(MipsISD::Ins
, DL
, MVT::i64
,
2357 DAG
.getRegister(Mips::ZERO_64
, MVT::i64
),
2358 DAG
.getConstant(63, DL
, MVT::i32
), Const1
, X
);
2360 SDValue SllX
= DAG
.getNode(ISD::SHL
, DL
, MVT::i64
, X
, Const1
);
2361 Res
= DAG
.getNode(ISD::SRL
, DL
, MVT::i64
, SllX
, Const1
);
2364 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f64
, Res
);
2367 SDValue
MipsTargetLowering::lowerFABS(SDValue Op
, SelectionDAG
&DAG
) const {
2368 if ((ABI
.IsN32() || ABI
.IsN64()) && (Op
.getValueType() == MVT::f64
))
2369 return lowerFABS64(Op
, DAG
, Subtarget
.hasExtractInsert());
2371 return lowerFABS32(Op
, DAG
, Subtarget
.hasExtractInsert());
2374 SDValue
MipsTargetLowering::
2375 lowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) const {
2377 if (cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue() != 0) {
2378 DAG
.getContext()->emitError(
2379 "return address can be determined only for current frame");
2383 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
2384 MFI
.setFrameAddressIsTaken(true);
2385 EVT VT
= Op
.getValueType();
2387 SDValue FrameAddr
= DAG
.getCopyFromReg(
2388 DAG
.getEntryNode(), DL
, ABI
.IsN64() ? Mips::FP_64
: Mips::FP
, VT
);
2392 SDValue
MipsTargetLowering::lowerRETURNADDR(SDValue Op
,
2393 SelectionDAG
&DAG
) const {
2394 if (verifyReturnAddressArgumentIsConstant(Op
, DAG
))
2398 if (cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue() != 0) {
2399 DAG
.getContext()->emitError(
2400 "return address can be determined only for current frame");
2404 MachineFunction
&MF
= DAG
.getMachineFunction();
2405 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2406 MVT VT
= Op
.getSimpleValueType();
2407 unsigned RA
= ABI
.IsN64() ? Mips::RA_64
: Mips::RA
;
2408 MFI
.setReturnAddressIsTaken(true);
2410 // Return RA, which contains the return address. Mark it an implicit live-in.
2411 unsigned Reg
= MF
.addLiveIn(RA
, getRegClassFor(VT
));
2412 return DAG
.getCopyFromReg(DAG
.getEntryNode(), SDLoc(Op
), Reg
, VT
);
2415 // An EH_RETURN is the result of lowering llvm.eh.return which in turn is
2416 // generated from __builtin_eh_return (offset, handler)
2417 // The effect of this is to adjust the stack pointer by "offset"
2418 // and then branch to "handler".
2419 SDValue
MipsTargetLowering::lowerEH_RETURN(SDValue Op
, SelectionDAG
&DAG
)
2421 MachineFunction
&MF
= DAG
.getMachineFunction();
2422 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
2424 MipsFI
->setCallsEhReturn();
2425 SDValue Chain
= Op
.getOperand(0);
2426 SDValue Offset
= Op
.getOperand(1);
2427 SDValue Handler
= Op
.getOperand(2);
2429 EVT Ty
= ABI
.IsN64() ? MVT::i64
: MVT::i32
;
2431 // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
2432 // EH_RETURN nodes, so that instructions are emitted back-to-back.
2433 unsigned OffsetReg
= ABI
.IsN64() ? Mips::V1_64
: Mips::V1
;
2434 unsigned AddrReg
= ABI
.IsN64() ? Mips::V0_64
: Mips::V0
;
2435 Chain
= DAG
.getCopyToReg(Chain
, DL
, OffsetReg
, Offset
, SDValue());
2436 Chain
= DAG
.getCopyToReg(Chain
, DL
, AddrReg
, Handler
, Chain
.getValue(1));
2437 return DAG
.getNode(MipsISD::EH_RETURN
, DL
, MVT::Other
, Chain
,
2438 DAG
.getRegister(OffsetReg
, Ty
),
2439 DAG
.getRegister(AddrReg
, getPointerTy(MF
.getDataLayout())),
2443 SDValue
MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op
,
2444 SelectionDAG
&DAG
) const {
2445 // FIXME: Need pseudo-fence for 'singlethread' fences
2446 // FIXME: Set SType for weaker fences where supported/appropriate.
2449 return DAG
.getNode(MipsISD::Sync
, DL
, MVT::Other
, Op
.getOperand(0),
2450 DAG
.getConstant(SType
, DL
, MVT::i32
));
2453 SDValue
MipsTargetLowering::lowerShiftLeftParts(SDValue Op
,
2454 SelectionDAG
&DAG
) const {
2456 MVT VT
= Subtarget
.isGP64bit() ? MVT::i64
: MVT::i32
;
2458 SDValue Lo
= Op
.getOperand(0), Hi
= Op
.getOperand(1);
2459 SDValue Shamt
= Op
.getOperand(2);
2460 // if shamt < (VT.bits):
2461 // lo = (shl lo, shamt)
2462 // hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
2465 // hi = (shl lo, shamt[4:0])
2466 SDValue Not
= DAG
.getNode(ISD::XOR
, DL
, MVT::i32
, Shamt
,
2467 DAG
.getConstant(-1, DL
, MVT::i32
));
2468 SDValue ShiftRight1Lo
= DAG
.getNode(ISD::SRL
, DL
, VT
, Lo
,
2469 DAG
.getConstant(1, DL
, VT
));
2470 SDValue ShiftRightLo
= DAG
.getNode(ISD::SRL
, DL
, VT
, ShiftRight1Lo
, Not
);
2471 SDValue ShiftLeftHi
= DAG
.getNode(ISD::SHL
, DL
, VT
, Hi
, Shamt
);
2472 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, VT
, ShiftLeftHi
, ShiftRightLo
);
2473 SDValue ShiftLeftLo
= DAG
.getNode(ISD::SHL
, DL
, VT
, Lo
, Shamt
);
2474 SDValue Cond
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, Shamt
,
2475 DAG
.getConstant(VT
.getSizeInBits(), DL
, MVT::i32
));
2476 Lo
= DAG
.getNode(ISD::SELECT
, DL
, VT
, Cond
,
2477 DAG
.getConstant(0, DL
, VT
), ShiftLeftLo
);
2478 Hi
= DAG
.getNode(ISD::SELECT
, DL
, VT
, Cond
, ShiftLeftLo
, Or
);
2480 SDValue Ops
[2] = {Lo
, Hi
};
2481 return DAG
.getMergeValues(Ops
, DL
);
2484 SDValue
MipsTargetLowering::lowerShiftRightParts(SDValue Op
, SelectionDAG
&DAG
,
2487 SDValue Lo
= Op
.getOperand(0), Hi
= Op
.getOperand(1);
2488 SDValue Shamt
= Op
.getOperand(2);
2489 MVT VT
= Subtarget
.isGP64bit() ? MVT::i64
: MVT::i32
;
2491 // if shamt < (VT.bits):
2492 // lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
2494 // hi = (sra hi, shamt)
2496 // hi = (srl hi, shamt)
2499 // lo = (sra hi, shamt[4:0])
2500 // hi = (sra hi, 31)
2502 // lo = (srl hi, shamt[4:0])
2504 SDValue Not
= DAG
.getNode(ISD::XOR
, DL
, MVT::i32
, Shamt
,
2505 DAG
.getConstant(-1, DL
, MVT::i32
));
2506 SDValue ShiftLeft1Hi
= DAG
.getNode(ISD::SHL
, DL
, VT
, Hi
,
2507 DAG
.getConstant(1, DL
, VT
));
2508 SDValue ShiftLeftHi
= DAG
.getNode(ISD::SHL
, DL
, VT
, ShiftLeft1Hi
, Not
);
2509 SDValue ShiftRightLo
= DAG
.getNode(ISD::SRL
, DL
, VT
, Lo
, Shamt
);
2510 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, VT
, ShiftLeftHi
, ShiftRightLo
);
2511 SDValue ShiftRightHi
= DAG
.getNode(IsSRA
? ISD::SRA
: ISD::SRL
,
2513 SDValue Cond
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, Shamt
,
2514 DAG
.getConstant(VT
.getSizeInBits(), DL
, MVT::i32
));
2515 SDValue Ext
= DAG
.getNode(ISD::SRA
, DL
, VT
, Hi
,
2516 DAG
.getConstant(VT
.getSizeInBits() - 1, DL
, VT
));
2518 if (!(Subtarget
.hasMips4() || Subtarget
.hasMips32())) {
2519 SDVTList VTList
= DAG
.getVTList(VT
, VT
);
2520 return DAG
.getNode(Subtarget
.isGP64bit() ? Mips::PseudoD_SELECT_I64
2521 : Mips::PseudoD_SELECT_I
,
2522 DL
, VTList
, Cond
, ShiftRightHi
,
2523 IsSRA
? Ext
: DAG
.getConstant(0, DL
, VT
), Or
,
2527 Lo
= DAG
.getNode(ISD::SELECT
, DL
, VT
, Cond
, ShiftRightHi
, Or
);
2528 Hi
= DAG
.getNode(ISD::SELECT
, DL
, VT
, Cond
,
2529 IsSRA
? Ext
: DAG
.getConstant(0, DL
, VT
), ShiftRightHi
);
2531 SDValue Ops
[2] = {Lo
, Hi
};
2532 return DAG
.getMergeValues(Ops
, DL
);
2535 static SDValue
createLoadLR(unsigned Opc
, SelectionDAG
&DAG
, LoadSDNode
*LD
,
2536 SDValue Chain
, SDValue Src
, unsigned Offset
) {
2537 SDValue Ptr
= LD
->getBasePtr();
2538 EVT VT
= LD
->getValueType(0), MemVT
= LD
->getMemoryVT();
2539 EVT BasePtrVT
= Ptr
.getValueType();
2541 SDVTList VTList
= DAG
.getVTList(VT
, MVT::Other
);
2544 Ptr
= DAG
.getNode(ISD::ADD
, DL
, BasePtrVT
, Ptr
,
2545 DAG
.getConstant(Offset
, DL
, BasePtrVT
));
2547 SDValue Ops
[] = { Chain
, Ptr
, Src
};
2548 return DAG
.getMemIntrinsicNode(Opc
, DL
, VTList
, Ops
, MemVT
,
2549 LD
->getMemOperand());
2552 // Expand an unaligned 32 or 64-bit integer load node.
2553 SDValue
MipsTargetLowering::lowerLOAD(SDValue Op
, SelectionDAG
&DAG
) const {
2554 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
2555 EVT MemVT
= LD
->getMemoryVT();
2557 if (Subtarget
.systemSupportsUnalignedAccess())
2560 // Return if load is aligned or if MemVT is neither i32 nor i64.
2561 if ((LD
->getAlignment() >= MemVT
.getSizeInBits() / 8) ||
2562 ((MemVT
!= MVT::i32
) && (MemVT
!= MVT::i64
)))
2565 bool IsLittle
= Subtarget
.isLittle();
2566 EVT VT
= Op
.getValueType();
2567 ISD::LoadExtType ExtType
= LD
->getExtensionType();
2568 SDValue Chain
= LD
->getChain(), Undef
= DAG
.getUNDEF(VT
);
2570 assert((VT
== MVT::i32
) || (VT
== MVT::i64
));
2573 // (set dst, (i64 (load baseptr)))
2575 // (set tmp, (ldl (add baseptr, 7), undef))
2576 // (set dst, (ldr baseptr, tmp))
2577 if ((VT
== MVT::i64
) && (ExtType
== ISD::NON_EXTLOAD
)) {
2578 SDValue LDL
= createLoadLR(MipsISD::LDL
, DAG
, LD
, Chain
, Undef
,
2580 return createLoadLR(MipsISD::LDR
, DAG
, LD
, LDL
.getValue(1), LDL
,
2584 SDValue LWL
= createLoadLR(MipsISD::LWL
, DAG
, LD
, Chain
, Undef
,
2586 SDValue LWR
= createLoadLR(MipsISD::LWR
, DAG
, LD
, LWL
.getValue(1), LWL
,
2590 // (set dst, (i32 (load baseptr))) or
2591 // (set dst, (i64 (sextload baseptr))) or
2592 // (set dst, (i64 (extload baseptr)))
2594 // (set tmp, (lwl (add baseptr, 3), undef))
2595 // (set dst, (lwr baseptr, tmp))
2596 if ((VT
== MVT::i32
) || (ExtType
== ISD::SEXTLOAD
) ||
2597 (ExtType
== ISD::EXTLOAD
))
2600 assert((VT
== MVT::i64
) && (ExtType
== ISD::ZEXTLOAD
));
2603 // (set dst, (i64 (zextload baseptr)))
2605 // (set tmp0, (lwl (add baseptr, 3), undef))
2606 // (set tmp1, (lwr baseptr, tmp0))
2607 // (set tmp2, (shl tmp1, 32))
2608 // (set dst, (srl tmp2, 32))
2610 SDValue Const32
= DAG
.getConstant(32, DL
, MVT::i32
);
2611 SDValue SLL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i64
, LWR
, Const32
);
2612 SDValue SRL
= DAG
.getNode(ISD::SRL
, DL
, MVT::i64
, SLL
, Const32
);
2613 SDValue Ops
[] = { SRL
, LWR
.getValue(1) };
2614 return DAG
.getMergeValues(Ops
, DL
);
2617 static SDValue
createStoreLR(unsigned Opc
, SelectionDAG
&DAG
, StoreSDNode
*SD
,
2618 SDValue Chain
, unsigned Offset
) {
2619 SDValue Ptr
= SD
->getBasePtr(), Value
= SD
->getValue();
2620 EVT MemVT
= SD
->getMemoryVT(), BasePtrVT
= Ptr
.getValueType();
2622 SDVTList VTList
= DAG
.getVTList(MVT::Other
);
2625 Ptr
= DAG
.getNode(ISD::ADD
, DL
, BasePtrVT
, Ptr
,
2626 DAG
.getConstant(Offset
, DL
, BasePtrVT
));
2628 SDValue Ops
[] = { Chain
, Value
, Ptr
};
2629 return DAG
.getMemIntrinsicNode(Opc
, DL
, VTList
, Ops
, MemVT
,
2630 SD
->getMemOperand());
2633 // Expand an unaligned 32 or 64-bit integer store node.
2634 static SDValue
lowerUnalignedIntStore(StoreSDNode
*SD
, SelectionDAG
&DAG
,
2636 SDValue Value
= SD
->getValue(), Chain
= SD
->getChain();
2637 EVT VT
= Value
.getValueType();
2640 // (store val, baseptr) or
2641 // (truncstore val, baseptr)
2643 // (swl val, (add baseptr, 3))
2644 // (swr val, baseptr)
2645 if ((VT
== MVT::i32
) || SD
->isTruncatingStore()) {
2646 SDValue SWL
= createStoreLR(MipsISD::SWL
, DAG
, SD
, Chain
,
2648 return createStoreLR(MipsISD::SWR
, DAG
, SD
, SWL
, IsLittle
? 0 : 3);
2651 assert(VT
== MVT::i64
);
2654 // (store val, baseptr)
2656 // (sdl val, (add baseptr, 7))
2657 // (sdr val, baseptr)
2658 SDValue SDL
= createStoreLR(MipsISD::SDL
, DAG
, SD
, Chain
, IsLittle
? 7 : 0);
2659 return createStoreLR(MipsISD::SDR
, DAG
, SD
, SDL
, IsLittle
? 0 : 7);
2662 // Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
2663 static SDValue
lowerFP_TO_SINT_STORE(StoreSDNode
*SD
, SelectionDAG
&DAG
,
2665 SDValue Val
= SD
->getValue();
2667 if (Val
.getOpcode() != ISD::FP_TO_SINT
||
2668 (Val
.getValueSizeInBits() > 32 && SingleFloat
))
2671 EVT FPTy
= EVT::getFloatingPointVT(Val
.getValueSizeInBits());
2672 SDValue Tr
= DAG
.getNode(MipsISD::TruncIntFP
, SDLoc(Val
), FPTy
,
2674 return DAG
.getStore(SD
->getChain(), SDLoc(SD
), Tr
, SD
->getBasePtr(),
2675 SD
->getPointerInfo(), SD
->getAlignment(),
2676 SD
->getMemOperand()->getFlags());
2679 SDValue
MipsTargetLowering::lowerSTORE(SDValue Op
, SelectionDAG
&DAG
) const {
2680 StoreSDNode
*SD
= cast
<StoreSDNode
>(Op
);
2681 EVT MemVT
= SD
->getMemoryVT();
2683 // Lower unaligned integer stores.
2684 if (!Subtarget
.systemSupportsUnalignedAccess() &&
2685 (SD
->getAlignment() < MemVT
.getSizeInBits() / 8) &&
2686 ((MemVT
== MVT::i32
) || (MemVT
== MVT::i64
)))
2687 return lowerUnalignedIntStore(SD
, DAG
, Subtarget
.isLittle());
2689 return lowerFP_TO_SINT_STORE(SD
, DAG
, Subtarget
.isSingleFloat());
2692 SDValue
MipsTargetLowering::lowerEH_DWARF_CFA(SDValue Op
,
2693 SelectionDAG
&DAG
) const {
2695 // Return a fixed StackObject with offset 0 which points to the old stack
2697 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
2698 EVT ValTy
= Op
->getValueType(0);
2699 int FI
= MFI
.CreateFixedObject(Op
.getValueSizeInBits() / 8, 0, false);
2700 return DAG
.getFrameIndex(FI
, ValTy
);
2703 SDValue
MipsTargetLowering::lowerFP_TO_SINT(SDValue Op
,
2704 SelectionDAG
&DAG
) const {
2705 if (Op
.getValueSizeInBits() > 32 && Subtarget
.isSingleFloat())
2708 EVT FPTy
= EVT::getFloatingPointVT(Op
.getValueSizeInBits());
2709 SDValue Trunc
= DAG
.getNode(MipsISD::TruncIntFP
, SDLoc(Op
), FPTy
,
2711 return DAG
.getNode(ISD::BITCAST
, SDLoc(Op
), Op
.getValueType(), Trunc
);
2714 //===----------------------------------------------------------------------===//
2715 // Calling Convention Implementation
2716 //===----------------------------------------------------------------------===//
2718 //===----------------------------------------------------------------------===//
2719 // TODO: Implement a generic logic using tblgen that can support this.
2720 // Mips O32 ABI rules:
2722 // i32 - Passed in A0, A1, A2, A3 and stack
2723 // f32 - Only passed in f32 registers if no int reg has been used yet to hold
2724 // an argument. Otherwise, passed in A1, A2, A3 and stack.
2725 // f64 - Only passed in two aliased f32 registers if no int reg has been used
2726 // yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2727 // not used, it must be shadowed. If only A3 is available, shadow it and
2729 // vXiX - Received as scalarized i32s, passed in A0 - A3 and the stack.
2730 // vXf32 - Passed in either a pair of registers {A0, A1}, {A2, A3} or {A0 - A3}
2731 // with the remainder spilled to the stack.
2732 // vXf64 - Passed in either {A0, A1, A2, A3} or {A2, A3} and in both cases
2733 // spilling the remainder to the stack.
2735 // For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2736 //===----------------------------------------------------------------------===//
2738 static bool CC_MipsO32(unsigned ValNo
, MVT ValVT
, MVT LocVT
,
2739 CCValAssign::LocInfo LocInfo
, ISD::ArgFlagsTy ArgFlags
,
2740 CCState
&State
, ArrayRef
<MCPhysReg
> F64Regs
) {
2741 const MipsSubtarget
&Subtarget
= static_cast<const MipsSubtarget
&>(
2742 State
.getMachineFunction().getSubtarget());
2744 static const MCPhysReg IntRegs
[] = { Mips::A0
, Mips::A1
, Mips::A2
, Mips::A3
};
2746 const MipsCCState
* MipsState
= static_cast<MipsCCState
*>(&State
);
2748 static const MCPhysReg F32Regs
[] = { Mips::F12
, Mips::F14
};
2750 static const MCPhysReg FloatVectorIntRegs
[] = { Mips::A0
, Mips::A2
};
2752 // Do not process byval args here.
2753 if (ArgFlags
.isByVal())
2756 // Promote i8 and i16
2757 if (ArgFlags
.isInReg() && !Subtarget
.isLittle()) {
2758 if (LocVT
== MVT::i8
|| LocVT
== MVT::i16
|| LocVT
== MVT::i32
) {
2760 if (ArgFlags
.isSExt())
2761 LocInfo
= CCValAssign::SExtUpper
;
2762 else if (ArgFlags
.isZExt())
2763 LocInfo
= CCValAssign::ZExtUpper
;
2765 LocInfo
= CCValAssign::AExtUpper
;
2769 // Promote i8 and i16
2770 if (LocVT
== MVT::i8
|| LocVT
== MVT::i16
) {
2772 if (ArgFlags
.isSExt())
2773 LocInfo
= CCValAssign::SExt
;
2774 else if (ArgFlags
.isZExt())
2775 LocInfo
= CCValAssign::ZExt
;
2777 LocInfo
= CCValAssign::AExt
;
2782 // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2783 // is true: function is vararg, argument is 3rd or higher, there is previous
2784 // argument which is not f32 or f64.
2785 bool AllocateFloatsInIntReg
= State
.isVarArg() || ValNo
> 1 ||
2786 State
.getFirstUnallocated(F32Regs
) != ValNo
;
2787 unsigned OrigAlign
= ArgFlags
.getOrigAlign();
2788 bool isI64
= (ValVT
== MVT::i32
&& OrigAlign
== 8);
2789 bool isVectorFloat
= MipsState
->WasOriginalArgVectorFloat(ValNo
);
2791 // The MIPS vector ABI for floats passes them in a pair of registers
2792 if (ValVT
== MVT::i32
&& isVectorFloat
) {
2793 // This is the start of an vector that was scalarized into an unknown number
2794 // of components. It doesn't matter how many there are. Allocate one of the
2795 // notional 8 byte aligned registers which map onto the argument stack, and
2796 // shadow the register lost to alignment requirements.
2797 if (ArgFlags
.isSplit()) {
2798 Reg
= State
.AllocateReg(FloatVectorIntRegs
);
2799 if (Reg
== Mips::A2
)
2800 State
.AllocateReg(Mips::A1
);
2802 State
.AllocateReg(Mips::A3
);
2804 // If we're an intermediate component of the split, we can just attempt to
2805 // allocate a register directly.
2806 Reg
= State
.AllocateReg(IntRegs
);
2808 } else if (ValVT
== MVT::i32
|| (ValVT
== MVT::f32
&& AllocateFloatsInIntReg
)) {
2809 Reg
= State
.AllocateReg(IntRegs
);
2810 // If this is the first part of an i64 arg,
2811 // the allocated register must be either A0 or A2.
2812 if (isI64
&& (Reg
== Mips::A1
|| Reg
== Mips::A3
))
2813 Reg
= State
.AllocateReg(IntRegs
);
2815 } else if (ValVT
== MVT::f64
&& AllocateFloatsInIntReg
) {
2816 // Allocate int register and shadow next int register. If first
2817 // available register is Mips::A1 or Mips::A3, shadow it too.
2818 Reg
= State
.AllocateReg(IntRegs
);
2819 if (Reg
== Mips::A1
|| Reg
== Mips::A3
)
2820 Reg
= State
.AllocateReg(IntRegs
);
2821 State
.AllocateReg(IntRegs
);
2823 } else if (ValVT
.isFloatingPoint() && !AllocateFloatsInIntReg
) {
2824 // we are guaranteed to find an available float register
2825 if (ValVT
== MVT::f32
) {
2826 Reg
= State
.AllocateReg(F32Regs
);
2827 // Shadow int register
2828 State
.AllocateReg(IntRegs
);
2830 Reg
= State
.AllocateReg(F64Regs
);
2831 // Shadow int registers
2832 unsigned Reg2
= State
.AllocateReg(IntRegs
);
2833 if (Reg2
== Mips::A1
|| Reg2
== Mips::A3
)
2834 State
.AllocateReg(IntRegs
);
2835 State
.AllocateReg(IntRegs
);
2838 llvm_unreachable("Cannot handle this ValVT.");
2841 unsigned Offset
= State
.AllocateStack(ValVT
.getStoreSize(), OrigAlign
);
2842 State
.addLoc(CCValAssign::getMem(ValNo
, ValVT
, Offset
, LocVT
, LocInfo
));
2844 State
.addLoc(CCValAssign::getReg(ValNo
, ValVT
, Reg
, LocVT
, LocInfo
));
2849 static bool CC_MipsO32_FP32(unsigned ValNo
, MVT ValVT
,
2850 MVT LocVT
, CCValAssign::LocInfo LocInfo
,
2851 ISD::ArgFlagsTy ArgFlags
, CCState
&State
) {
2852 static const MCPhysReg F64Regs
[] = { Mips::D6
, Mips::D7
};
2854 return CC_MipsO32(ValNo
, ValVT
, LocVT
, LocInfo
, ArgFlags
, State
, F64Regs
);
2857 static bool CC_MipsO32_FP64(unsigned ValNo
, MVT ValVT
,
2858 MVT LocVT
, CCValAssign::LocInfo LocInfo
,
2859 ISD::ArgFlagsTy ArgFlags
, CCState
&State
) {
2860 static const MCPhysReg F64Regs
[] = { Mips::D12_64
, Mips::D14_64
};
2862 return CC_MipsO32(ValNo
, ValVT
, LocVT
, LocInfo
, ArgFlags
, State
, F64Regs
);
2865 static bool CC_MipsO32(unsigned ValNo
, MVT ValVT
, MVT LocVT
,
2866 CCValAssign::LocInfo LocInfo
, ISD::ArgFlagsTy ArgFlags
,
2867 CCState
&State
) LLVM_ATTRIBUTE_UNUSED
;
2869 #include "MipsGenCallingConv.inc"
2871 CCAssignFn
*MipsTargetLowering::CCAssignFnForCall() const{
2872 return CC_Mips_FixedArg
;
2875 CCAssignFn
*MipsTargetLowering::CCAssignFnForReturn() const{
2878 //===----------------------------------------------------------------------===//
2879 // Call Calling Convention Implementation
2880 //===----------------------------------------------------------------------===//
2882 // Return next O32 integer argument register.
2883 static unsigned getNextIntArgReg(unsigned Reg
) {
2884 assert((Reg
== Mips::A0
) || (Reg
== Mips::A2
));
2885 return (Reg
== Mips::A0
) ? Mips::A1
: Mips::A3
;
2888 SDValue
MipsTargetLowering::passArgOnStack(SDValue StackPtr
, unsigned Offset
,
2889 SDValue Chain
, SDValue Arg
,
2890 const SDLoc
&DL
, bool IsTailCall
,
2891 SelectionDAG
&DAG
) const {
2894 DAG
.getNode(ISD::ADD
, DL
, getPointerTy(DAG
.getDataLayout()), StackPtr
,
2895 DAG
.getIntPtrConstant(Offset
, DL
));
2896 return DAG
.getStore(Chain
, DL
, Arg
, PtrOff
, MachinePointerInfo());
2899 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
2900 int FI
= MFI
.CreateFixedObject(Arg
.getValueSizeInBits() / 8, Offset
, false);
2901 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
2902 return DAG
.getStore(Chain
, DL
, Arg
, FIN
, MachinePointerInfo(),
2903 /* Alignment = */ 0, MachineMemOperand::MOVolatile
);
2906 void MipsTargetLowering::
2907 getOpndList(SmallVectorImpl
<SDValue
> &Ops
,
2908 std::deque
<std::pair
<unsigned, SDValue
>> &RegsToPass
,
2909 bool IsPICCall
, bool GlobalOrExternal
, bool InternalLinkage
,
2910 bool IsCallReloc
, CallLoweringInfo
&CLI
, SDValue Callee
,
2911 SDValue Chain
) const {
2912 // Insert node "GP copy globalreg" before call to function.
2914 // R_MIPS_CALL* operators (emitted when non-internal functions are called
2915 // in PIC mode) allow symbols to be resolved via lazy binding.
2916 // The lazy binding stub requires GP to point to the GOT.
2917 // Note that we don't need GP to point to the GOT for indirect calls
2918 // (when R_MIPS_CALL* is not used for the call) because Mips linker generates
2919 // lazy binding stub for a function only when R_MIPS_CALL* are the only relocs
2920 // used for the function (that is, Mips linker doesn't generate lazy binding
2921 // stub for a function whose address is taken in the program).
2922 if (IsPICCall
&& !InternalLinkage
&& IsCallReloc
) {
2923 unsigned GPReg
= ABI
.IsN64() ? Mips::GP_64
: Mips::GP
;
2924 EVT Ty
= ABI
.IsN64() ? MVT::i64
: MVT::i32
;
2925 RegsToPass
.push_back(std::make_pair(GPReg
, getGlobalReg(CLI
.DAG
, Ty
)));
2928 // Build a sequence of copy-to-reg nodes chained together with token
2929 // chain and flag operands which copy the outgoing args into registers.
2930 // The InFlag in necessary since all emitted instructions must be
2934 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
2935 Chain
= CLI
.DAG
.getCopyToReg(Chain
, CLI
.DL
, RegsToPass
[i
].first
,
2936 RegsToPass
[i
].second
, InFlag
);
2937 InFlag
= Chain
.getValue(1);
2940 // Add argument registers to the end of the list so that they are
2941 // known live into the call.
2942 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
2943 Ops
.push_back(CLI
.DAG
.getRegister(RegsToPass
[i
].first
,
2944 RegsToPass
[i
].second
.getValueType()));
2946 // Add a register mask operand representing the call-preserved registers.
2947 const TargetRegisterInfo
*TRI
= Subtarget
.getRegisterInfo();
2948 const uint32_t *Mask
=
2949 TRI
->getCallPreservedMask(CLI
.DAG
.getMachineFunction(), CLI
.CallConv
);
2950 assert(Mask
&& "Missing call preserved mask for calling convention");
2951 if (Subtarget
.inMips16HardFloat()) {
2952 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(CLI
.Callee
)) {
2953 StringRef Sym
= G
->getGlobal()->getName();
2954 Function
*F
= G
->getGlobal()->getParent()->getFunction(Sym
);
2955 if (F
&& F
->hasFnAttribute("__Mips16RetHelper")) {
2956 Mask
= MipsRegisterInfo::getMips16RetHelperMask();
2960 Ops
.push_back(CLI
.DAG
.getRegisterMask(Mask
));
2962 if (InFlag
.getNode())
2963 Ops
.push_back(InFlag
);
2966 void MipsTargetLowering::AdjustInstrPostInstrSelection(MachineInstr
&MI
,
2967 SDNode
*Node
) const {
2968 switch (MI
.getOpcode()) {
2972 case Mips::JALRPseudo
:
2974 case Mips::JALR64Pseudo
:
2975 case Mips::JALR16_MM
:
2976 case Mips::JALRC16_MMR6
:
2977 case Mips::TAILCALLREG
:
2978 case Mips::TAILCALLREG64
:
2979 case Mips::TAILCALLR6REG
:
2980 case Mips::TAILCALL64R6REG
:
2981 case Mips::TAILCALLREG_MM
:
2982 case Mips::TAILCALLREG_MMR6
: {
2983 if (!EmitJalrReloc
||
2984 Subtarget
.inMips16Mode() ||
2985 !isPositionIndependent() ||
2986 Node
->getNumOperands() < 1 ||
2987 Node
->getOperand(0).getNumOperands() < 2) {
2990 // We are after the callee address, set by LowerCall().
2991 // If added to MI, asm printer will emit .reloc R_MIPS_JALR for the
2993 const SDValue TargetAddr
= Node
->getOperand(0).getOperand(1);
2995 if (const GlobalAddressSDNode
*G
=
2996 dyn_cast_or_null
<const GlobalAddressSDNode
>(TargetAddr
)) {
2997 Sym
= G
->getGlobal()->getName();
2999 else if (const ExternalSymbolSDNode
*ES
=
3000 dyn_cast_or_null
<const ExternalSymbolSDNode
>(TargetAddr
)) {
3001 Sym
= ES
->getSymbol();
3007 MachineFunction
*MF
= MI
.getParent()->getParent();
3008 MCSymbol
*S
= MF
->getContext().getOrCreateSymbol(Sym
);
3009 MI
.addOperand(MachineOperand::CreateMCSymbol(S
, MipsII::MO_JALR
));
3014 /// LowerCall - functions arguments are copied from virtual regs to
3015 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
3017 MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo
&CLI
,
3018 SmallVectorImpl
<SDValue
> &InVals
) const {
3019 SelectionDAG
&DAG
= CLI
.DAG
;
3021 SmallVectorImpl
<ISD::OutputArg
> &Outs
= CLI
.Outs
;
3022 SmallVectorImpl
<SDValue
> &OutVals
= CLI
.OutVals
;
3023 SmallVectorImpl
<ISD::InputArg
> &Ins
= CLI
.Ins
;
3024 SDValue Chain
= CLI
.Chain
;
3025 SDValue Callee
= CLI
.Callee
;
3026 bool &IsTailCall
= CLI
.IsTailCall
;
3027 CallingConv::ID CallConv
= CLI
.CallConv
;
3028 bool IsVarArg
= CLI
.IsVarArg
;
3030 MachineFunction
&MF
= DAG
.getMachineFunction();
3031 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3032 const TargetFrameLowering
*TFL
= Subtarget
.getFrameLowering();
3033 MipsFunctionInfo
*FuncInfo
= MF
.getInfo
<MipsFunctionInfo
>();
3034 bool IsPIC
= isPositionIndependent();
3036 // Analyze operands of the call, assigning locations to each operand.
3037 SmallVector
<CCValAssign
, 16> ArgLocs
;
3039 CallConv
, IsVarArg
, DAG
.getMachineFunction(), ArgLocs
, *DAG
.getContext(),
3040 MipsCCState::getSpecialCallingConvForCallee(Callee
.getNode(), Subtarget
));
3042 const ExternalSymbolSDNode
*ES
=
3043 dyn_cast_or_null
<const ExternalSymbolSDNode
>(Callee
.getNode());
3045 // There is one case where CALLSEQ_START..CALLSEQ_END can be nested, which
3046 // is during the lowering of a call with a byval argument which produces
3047 // a call to memcpy. For the O32 case, this causes the caller to allocate
3048 // stack space for the reserved argument area for the callee, then recursively
3049 // again for the memcpy call. In the NEWABI case, this doesn't occur as those
3050 // ABIs mandate that the callee allocates the reserved argument area. We do
3051 // still produce nested CALLSEQ_START..CALLSEQ_END with zero space though.
3053 // If the callee has a byval argument and memcpy is used, we are mandated
3054 // to already have produced a reserved argument area for the callee for O32.
3055 // Therefore, the reserved argument area can be reused for both calls.
3057 // Other cases of calling memcpy cannot have a chain with a CALLSEQ_START
3058 // present, as we have yet to hook that node onto the chain.
3060 // Hence, the CALLSEQ_START and CALLSEQ_END nodes can be eliminated in this
3061 // case. GCC does a similar trick, in that wherever possible, it calculates
3062 // the maximum out going argument area (including the reserved area), and
3063 // preallocates the stack space on entrance to the caller.
3065 // FIXME: We should do the same for efficiency and space.
3067 // Note: The check on the calling convention below must match
3068 // MipsABIInfo::GetCalleeAllocdArgSizeInBytes().
3069 bool MemcpyInByVal
= ES
&&
3070 StringRef(ES
->getSymbol()) == StringRef("memcpy") &&
3071 CallConv
!= CallingConv::Fast
&&
3072 Chain
.getOpcode() == ISD::CALLSEQ_START
;
3074 // Allocate the reserved argument area. It seems strange to do this from the
3075 // caller side but removing it breaks the frame size calculation.
3076 unsigned ReservedArgArea
=
3077 MemcpyInByVal
? 0 : ABI
.GetCalleeAllocdArgSizeInBytes(CallConv
);
3078 CCInfo
.AllocateStack(ReservedArgArea
, 1);
3080 CCInfo
.AnalyzeCallOperands(Outs
, CC_Mips
, CLI
.getArgs(),
3081 ES
? ES
->getSymbol() : nullptr);
3083 // Get a count of how many bytes are to be pushed on the stack.
3084 unsigned NextStackOffset
= CCInfo
.getNextStackOffset();
3086 // Check if it's really possible to do a tail call. Restrict it to functions
3087 // that are part of this compilation unit.
3088 bool InternalLinkage
= false;
3090 IsTailCall
= isEligibleForTailCallOptimization(
3091 CCInfo
, NextStackOffset
, *MF
.getInfo
<MipsFunctionInfo
>());
3092 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
3093 InternalLinkage
= G
->getGlobal()->hasInternalLinkage();
3094 IsTailCall
&= (InternalLinkage
|| G
->getGlobal()->hasLocalLinkage() ||
3095 G
->getGlobal()->hasPrivateLinkage() ||
3096 G
->getGlobal()->hasHiddenVisibility() ||
3097 G
->getGlobal()->hasProtectedVisibility());
3100 if (!IsTailCall
&& CLI
.CS
&& CLI
.CS
.isMustTailCall())
3101 report_fatal_error("failed to perform tail call elimination on a call "
3102 "site marked musttail");
3107 // Chain is the output chain of the last Load/Store or CopyToReg node.
3108 // ByValChain is the output chain of the last Memcpy node created for copying
3109 // byval arguments to the stack.
3110 unsigned StackAlignment
= TFL
->getStackAlignment();
3111 NextStackOffset
= alignTo(NextStackOffset
, StackAlignment
);
3112 SDValue NextStackOffsetVal
= DAG
.getIntPtrConstant(NextStackOffset
, DL
, true);
3114 if (!(IsTailCall
|| MemcpyInByVal
))
3115 Chain
= DAG
.getCALLSEQ_START(Chain
, NextStackOffset
, 0, DL
);
3118 DAG
.getCopyFromReg(Chain
, DL
, ABI
.IsN64() ? Mips::SP_64
: Mips::SP
,
3119 getPointerTy(DAG
.getDataLayout()));
3121 std::deque
<std::pair
<unsigned, SDValue
>> RegsToPass
;
3122 SmallVector
<SDValue
, 8> MemOpChains
;
3124 CCInfo
.rewindByValRegsInfo();
3126 // Walk the register/memloc assignments, inserting copies/loads.
3127 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3128 SDValue Arg
= OutVals
[i
];
3129 CCValAssign
&VA
= ArgLocs
[i
];
3130 MVT ValVT
= VA
.getValVT(), LocVT
= VA
.getLocVT();
3131 ISD::ArgFlagsTy Flags
= Outs
[i
].Flags
;
3132 bool UseUpperBits
= false;
3135 if (Flags
.isByVal()) {
3136 unsigned FirstByValReg
, LastByValReg
;
3137 unsigned ByValIdx
= CCInfo
.getInRegsParamsProcessed();
3138 CCInfo
.getInRegsParamInfo(ByValIdx
, FirstByValReg
, LastByValReg
);
3140 assert(Flags
.getByValSize() &&
3141 "ByVal args of size 0 should have been ignored by front-end.");
3142 assert(ByValIdx
< CCInfo
.getInRegsParamsCount());
3143 assert(!IsTailCall
&&
3144 "Do not tail-call optimize if there is a byval argument.");
3145 passByValArg(Chain
, DL
, RegsToPass
, MemOpChains
, StackPtr
, MFI
, DAG
, Arg
,
3146 FirstByValReg
, LastByValReg
, Flags
, Subtarget
.isLittle(),
3148 CCInfo
.nextInRegsParam();
3152 // Promote the value if needed.
3153 switch (VA
.getLocInfo()) {
3155 llvm_unreachable("Unknown loc info!");
3156 case CCValAssign::Full
:
3157 if (VA
.isRegLoc()) {
3158 if ((ValVT
== MVT::f32
&& LocVT
== MVT::i32
) ||
3159 (ValVT
== MVT::f64
&& LocVT
== MVT::i64
) ||
3160 (ValVT
== MVT::i64
&& LocVT
== MVT::f64
))
3161 Arg
= DAG
.getNode(ISD::BITCAST
, DL
, LocVT
, Arg
);
3162 else if (ValVT
== MVT::f64
&& LocVT
== MVT::i32
) {
3163 SDValue Lo
= DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
,
3164 Arg
, DAG
.getConstant(0, DL
, MVT::i32
));
3165 SDValue Hi
= DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
,
3166 Arg
, DAG
.getConstant(1, DL
, MVT::i32
));
3167 if (!Subtarget
.isLittle())
3169 Register LocRegLo
= VA
.getLocReg();
3170 unsigned LocRegHigh
= getNextIntArgReg(LocRegLo
);
3171 RegsToPass
.push_back(std::make_pair(LocRegLo
, Lo
));
3172 RegsToPass
.push_back(std::make_pair(LocRegHigh
, Hi
));
3177 case CCValAssign::BCvt
:
3178 Arg
= DAG
.getNode(ISD::BITCAST
, DL
, LocVT
, Arg
);
3180 case CCValAssign::SExtUpper
:
3181 UseUpperBits
= true;
3183 case CCValAssign::SExt
:
3184 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, LocVT
, Arg
);
3186 case CCValAssign::ZExtUpper
:
3187 UseUpperBits
= true;
3189 case CCValAssign::ZExt
:
3190 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, LocVT
, Arg
);
3192 case CCValAssign::AExtUpper
:
3193 UseUpperBits
= true;
3195 case CCValAssign::AExt
:
3196 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, LocVT
, Arg
);
3201 unsigned ValSizeInBits
= Outs
[i
].ArgVT
.getSizeInBits();
3202 unsigned LocSizeInBits
= VA
.getLocVT().getSizeInBits();
3204 ISD::SHL
, DL
, VA
.getLocVT(), Arg
,
3205 DAG
.getConstant(LocSizeInBits
- ValSizeInBits
, DL
, VA
.getLocVT()));
3208 // Arguments that can be passed on register must be kept at
3209 // RegsToPass vector
3210 if (VA
.isRegLoc()) {
3211 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
3215 // Register can't get to this point...
3216 assert(VA
.isMemLoc());
3218 // emit ISD::STORE whichs stores the
3219 // parameter value to a stack Location
3220 MemOpChains
.push_back(passArgOnStack(StackPtr
, VA
.getLocMemOffset(),
3221 Chain
, Arg
, DL
, IsTailCall
, DAG
));
3224 // Transform all store nodes into one single node because all store
3225 // nodes are independent of each other.
3226 if (!MemOpChains
.empty())
3227 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, MemOpChains
);
3229 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3230 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3231 // node so that legalize doesn't hack it.
3233 EVT Ty
= Callee
.getValueType();
3234 bool GlobalOrExternal
= false, IsCallReloc
= false;
3236 // The long-calls feature is ignored in case of PIC.
3237 // While we do not support -mshared / -mno-shared properly,
3238 // ignore long-calls in case of -mabicalls too.
3239 if (!Subtarget
.isABICalls() && !IsPIC
) {
3240 // If the function should be called using "long call",
3241 // get its address into a register to prevent using
3242 // of the `jal` instruction for the direct call.
3243 if (auto *N
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
3244 if (Subtarget
.useLongCalls())
3245 Callee
= Subtarget
.hasSym32()
3246 ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
3247 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
3248 } else if (auto *N
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
3249 bool UseLongCalls
= Subtarget
.useLongCalls();
3250 // If the function has long-call/far/near attribute
3251 // it overrides command line switch pased to the backend.
3252 if (auto *F
= dyn_cast
<Function
>(N
->getGlobal())) {
3253 if (F
->hasFnAttribute("long-call"))
3254 UseLongCalls
= true;
3255 else if (F
->hasFnAttribute("short-call"))
3256 UseLongCalls
= false;
3259 Callee
= Subtarget
.hasSym32()
3260 ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
3261 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
3265 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
3267 const GlobalValue
*Val
= G
->getGlobal();
3268 InternalLinkage
= Val
->hasInternalLinkage();
3270 if (InternalLinkage
)
3271 Callee
= getAddrLocal(G
, DL
, Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
3272 else if (Subtarget
.useXGOT()) {
3273 Callee
= getAddrGlobalLargeGOT(G
, DL
, Ty
, DAG
, MipsII::MO_CALL_HI16
,
3274 MipsII::MO_CALL_LO16
, Chain
,
3275 FuncInfo
->callPtrInfo(Val
));
3278 Callee
= getAddrGlobal(G
, DL
, Ty
, DAG
, MipsII::MO_GOT_CALL
, Chain
,
3279 FuncInfo
->callPtrInfo(Val
));
3283 Callee
= DAG
.getTargetGlobalAddress(G
->getGlobal(), DL
,
3284 getPointerTy(DAG
.getDataLayout()), 0,
3285 MipsII::MO_NO_FLAG
);
3286 GlobalOrExternal
= true;
3288 else if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
3289 const char *Sym
= S
->getSymbol();
3291 if (!IsPIC
) // static
3292 Callee
= DAG
.getTargetExternalSymbol(
3293 Sym
, getPointerTy(DAG
.getDataLayout()), MipsII::MO_NO_FLAG
);
3294 else if (Subtarget
.useXGOT()) {
3295 Callee
= getAddrGlobalLargeGOT(S
, DL
, Ty
, DAG
, MipsII::MO_CALL_HI16
,
3296 MipsII::MO_CALL_LO16
, Chain
,
3297 FuncInfo
->callPtrInfo(Sym
));
3300 Callee
= getAddrGlobal(S
, DL
, Ty
, DAG
, MipsII::MO_GOT_CALL
, Chain
,
3301 FuncInfo
->callPtrInfo(Sym
));
3305 GlobalOrExternal
= true;
3308 SmallVector
<SDValue
, 8> Ops(1, Chain
);
3309 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
3311 getOpndList(Ops
, RegsToPass
, IsPIC
, GlobalOrExternal
, InternalLinkage
,
3312 IsCallReloc
, CLI
, Callee
, Chain
);
3315 MF
.getFrameInfo().setHasTailCall();
3316 return DAG
.getNode(MipsISD::TailCall
, DL
, MVT::Other
, Ops
);
3319 Chain
= DAG
.getNode(MipsISD::JmpLink
, DL
, NodeTys
, Ops
);
3320 SDValue InFlag
= Chain
.getValue(1);
3322 // Create the CALLSEQ_END node in the case of where it is not a call to
3324 if (!(MemcpyInByVal
)) {
3325 Chain
= DAG
.getCALLSEQ_END(Chain
, NextStackOffsetVal
,
3326 DAG
.getIntPtrConstant(0, DL
, true), InFlag
, DL
);
3327 InFlag
= Chain
.getValue(1);
3330 // Handle result values, copying them out of physregs into vregs that we
3332 return LowerCallResult(Chain
, InFlag
, CallConv
, IsVarArg
, Ins
, DL
, DAG
,
3336 /// LowerCallResult - Lower the result values of a call into the
3337 /// appropriate copies out of appropriate physical registers.
3338 SDValue
MipsTargetLowering::LowerCallResult(
3339 SDValue Chain
, SDValue InFlag
, CallingConv::ID CallConv
, bool IsVarArg
,
3340 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&DL
,
3341 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
,
3342 TargetLowering::CallLoweringInfo
&CLI
) const {
3343 // Assign locations to each value returned by this call.
3344 SmallVector
<CCValAssign
, 16> RVLocs
;
3345 MipsCCState
CCInfo(CallConv
, IsVarArg
, DAG
.getMachineFunction(), RVLocs
,
3348 const ExternalSymbolSDNode
*ES
=
3349 dyn_cast_or_null
<const ExternalSymbolSDNode
>(CLI
.Callee
.getNode());
3350 CCInfo
.AnalyzeCallResult(Ins
, RetCC_Mips
, CLI
.RetTy
,
3351 ES
? ES
->getSymbol() : nullptr);
3353 // Copy all of the result registers out of their specified physreg.
3354 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
3355 CCValAssign
&VA
= RVLocs
[i
];
3356 assert(VA
.isRegLoc() && "Can only return in registers!");
3358 SDValue Val
= DAG
.getCopyFromReg(Chain
, DL
, RVLocs
[i
].getLocReg(),
3359 RVLocs
[i
].getLocVT(), InFlag
);
3360 Chain
= Val
.getValue(1);
3361 InFlag
= Val
.getValue(2);
3363 if (VA
.isUpperBitsInLoc()) {
3364 unsigned ValSizeInBits
= Ins
[i
].ArgVT
.getSizeInBits();
3365 unsigned LocSizeInBits
= VA
.getLocVT().getSizeInBits();
3367 VA
.getLocInfo() == CCValAssign::ZExtUpper
? ISD::SRL
: ISD::SRA
;
3369 Shift
, DL
, VA
.getLocVT(), Val
,
3370 DAG
.getConstant(LocSizeInBits
- ValSizeInBits
, DL
, VA
.getLocVT()));
3373 switch (VA
.getLocInfo()) {
3375 llvm_unreachable("Unknown loc info!");
3376 case CCValAssign::Full
:
3378 case CCValAssign::BCvt
:
3379 Val
= DAG
.getNode(ISD::BITCAST
, DL
, VA
.getValVT(), Val
);
3381 case CCValAssign::AExt
:
3382 case CCValAssign::AExtUpper
:
3383 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, VA
.getValVT(), Val
);
3385 case CCValAssign::ZExt
:
3386 case CCValAssign::ZExtUpper
:
3387 Val
= DAG
.getNode(ISD::AssertZext
, DL
, VA
.getLocVT(), Val
,
3388 DAG
.getValueType(VA
.getValVT()));
3389 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, VA
.getValVT(), Val
);
3391 case CCValAssign::SExt
:
3392 case CCValAssign::SExtUpper
:
3393 Val
= DAG
.getNode(ISD::AssertSext
, DL
, VA
.getLocVT(), Val
,
3394 DAG
.getValueType(VA
.getValVT()));
3395 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, VA
.getValVT(), Val
);
3399 InVals
.push_back(Val
);
3405 static SDValue
UnpackFromArgumentSlot(SDValue Val
, const CCValAssign
&VA
,
3406 EVT ArgVT
, const SDLoc
&DL
,
3407 SelectionDAG
&DAG
) {
3408 MVT LocVT
= VA
.getLocVT();
3409 EVT ValVT
= VA
.getValVT();
3411 // Shift into the upper bits if necessary.
3412 switch (VA
.getLocInfo()) {
3415 case CCValAssign::AExtUpper
:
3416 case CCValAssign::SExtUpper
:
3417 case CCValAssign::ZExtUpper
: {
3418 unsigned ValSizeInBits
= ArgVT
.getSizeInBits();
3419 unsigned LocSizeInBits
= VA
.getLocVT().getSizeInBits();
3421 VA
.getLocInfo() == CCValAssign::ZExtUpper
? ISD::SRL
: ISD::SRA
;
3423 Opcode
, DL
, VA
.getLocVT(), Val
,
3424 DAG
.getConstant(LocSizeInBits
- ValSizeInBits
, DL
, VA
.getLocVT()));
3429 // If this is an value smaller than the argument slot size (32-bit for O32,
3430 // 64-bit for N32/N64), it has been promoted in some way to the argument slot
3431 // size. Extract the value and insert any appropriate assertions regarding
3432 // sign/zero extension.
3433 switch (VA
.getLocInfo()) {
3435 llvm_unreachable("Unknown loc info!");
3436 case CCValAssign::Full
:
3438 case CCValAssign::AExtUpper
:
3439 case CCValAssign::AExt
:
3440 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValVT
, Val
);
3442 case CCValAssign::SExtUpper
:
3443 case CCValAssign::SExt
:
3444 Val
= DAG
.getNode(ISD::AssertSext
, DL
, LocVT
, Val
, DAG
.getValueType(ValVT
));
3445 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValVT
, Val
);
3447 case CCValAssign::ZExtUpper
:
3448 case CCValAssign::ZExt
:
3449 Val
= DAG
.getNode(ISD::AssertZext
, DL
, LocVT
, Val
, DAG
.getValueType(ValVT
));
3450 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValVT
, Val
);
3452 case CCValAssign::BCvt
:
3453 Val
= DAG
.getNode(ISD::BITCAST
, DL
, ValVT
, Val
);
3460 //===----------------------------------------------------------------------===//
3461 // Formal Arguments Calling Convention Implementation
3462 //===----------------------------------------------------------------------===//
3463 /// LowerFormalArguments - transform physical registers into virtual registers
3464 /// and generate load operations for arguments places on the stack.
3465 SDValue
MipsTargetLowering::LowerFormalArguments(
3466 SDValue Chain
, CallingConv::ID CallConv
, bool IsVarArg
,
3467 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&DL
,
3468 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
3469 MachineFunction
&MF
= DAG
.getMachineFunction();
3470 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3471 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
3473 MipsFI
->setVarArgsFrameIndex(0);
3475 // Used with vargs to acumulate store chains.
3476 std::vector
<SDValue
> OutChains
;
3478 // Assign locations to all of the incoming arguments.
3479 SmallVector
<CCValAssign
, 16> ArgLocs
;
3480 MipsCCState
CCInfo(CallConv
, IsVarArg
, DAG
.getMachineFunction(), ArgLocs
,
3482 CCInfo
.AllocateStack(ABI
.GetCalleeAllocdArgSizeInBytes(CallConv
), 1);
3483 const Function
&Func
= DAG
.getMachineFunction().getFunction();
3484 Function::const_arg_iterator FuncArg
= Func
.arg_begin();
3486 if (Func
.hasFnAttribute("interrupt") && !Func
.arg_empty())
3488 "Functions with the interrupt attribute cannot have arguments!");
3490 CCInfo
.AnalyzeFormalArguments(Ins
, CC_Mips_FixedArg
);
3491 MipsFI
->setFormalArgInfo(CCInfo
.getNextStackOffset(),
3492 CCInfo
.getInRegsParamsCount() > 0);
3494 unsigned CurArgIdx
= 0;
3495 CCInfo
.rewindByValRegsInfo();
3497 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3498 CCValAssign
&VA
= ArgLocs
[i
];
3499 if (Ins
[i
].isOrigArg()) {
3500 std::advance(FuncArg
, Ins
[i
].getOrigArgIndex() - CurArgIdx
);
3501 CurArgIdx
= Ins
[i
].getOrigArgIndex();
3503 EVT ValVT
= VA
.getValVT();
3504 ISD::ArgFlagsTy Flags
= Ins
[i
].Flags
;
3505 bool IsRegLoc
= VA
.isRegLoc();
3507 if (Flags
.isByVal()) {
3508 assert(Ins
[i
].isOrigArg() && "Byval arguments cannot be implicit");
3509 unsigned FirstByValReg
, LastByValReg
;
3510 unsigned ByValIdx
= CCInfo
.getInRegsParamsProcessed();
3511 CCInfo
.getInRegsParamInfo(ByValIdx
, FirstByValReg
, LastByValReg
);
3513 assert(Flags
.getByValSize() &&
3514 "ByVal args of size 0 should have been ignored by front-end.");
3515 assert(ByValIdx
< CCInfo
.getInRegsParamsCount());
3516 copyByValRegs(Chain
, DL
, OutChains
, DAG
, Flags
, InVals
, &*FuncArg
,
3517 FirstByValReg
, LastByValReg
, VA
, CCInfo
);
3518 CCInfo
.nextInRegsParam();
3522 // Arguments stored on registers
3524 MVT RegVT
= VA
.getLocVT();
3525 Register ArgReg
= VA
.getLocReg();
3526 const TargetRegisterClass
*RC
= getRegClassFor(RegVT
);
3528 // Transform the arguments stored on
3529 // physical registers into virtual ones
3530 unsigned Reg
= addLiveIn(DAG
.getMachineFunction(), ArgReg
, RC
);
3531 SDValue ArgValue
= DAG
.getCopyFromReg(Chain
, DL
, Reg
, RegVT
);
3533 ArgValue
= UnpackFromArgumentSlot(ArgValue
, VA
, Ins
[i
].ArgVT
, DL
, DAG
);
3535 // Handle floating point arguments passed in integer registers and
3536 // long double arguments passed in floating point registers.
3537 if ((RegVT
== MVT::i32
&& ValVT
== MVT::f32
) ||
3538 (RegVT
== MVT::i64
&& ValVT
== MVT::f64
) ||
3539 (RegVT
== MVT::f64
&& ValVT
== MVT::i64
))
3540 ArgValue
= DAG
.getNode(ISD::BITCAST
, DL
, ValVT
, ArgValue
);
3541 else if (ABI
.IsO32() && RegVT
== MVT::i32
&&
3542 ValVT
== MVT::f64
) {
3543 unsigned Reg2
= addLiveIn(DAG
.getMachineFunction(),
3544 getNextIntArgReg(ArgReg
), RC
);
3545 SDValue ArgValue2
= DAG
.getCopyFromReg(Chain
, DL
, Reg2
, RegVT
);
3546 if (!Subtarget
.isLittle())
3547 std::swap(ArgValue
, ArgValue2
);
3548 ArgValue
= DAG
.getNode(MipsISD::BuildPairF64
, DL
, MVT::f64
,
3549 ArgValue
, ArgValue2
);
3552 InVals
.push_back(ArgValue
);
3553 } else { // VA.isRegLoc()
3554 MVT LocVT
= VA
.getLocVT();
3557 // We ought to be able to use LocVT directly but O32 sets it to i32
3558 // when allocating floating point values to integer registers.
3559 // This shouldn't influence how we load the value into registers unless
3560 // we are targeting softfloat.
3561 if (VA
.getValVT().isFloatingPoint() && !Subtarget
.useSoftFloat())
3562 LocVT
= VA
.getValVT();
3566 assert(VA
.isMemLoc());
3568 // The stack pointer offset is relative to the caller stack frame.
3569 int FI
= MFI
.CreateFixedObject(LocVT
.getSizeInBits() / 8,
3570 VA
.getLocMemOffset(), true);
3572 // Create load nodes to retrieve arguments from the stack
3573 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
3574 SDValue ArgValue
= DAG
.getLoad(
3575 LocVT
, DL
, Chain
, FIN
,
3576 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
));
3577 OutChains
.push_back(ArgValue
.getValue(1));
3579 ArgValue
= UnpackFromArgumentSlot(ArgValue
, VA
, Ins
[i
].ArgVT
, DL
, DAG
);
3581 InVals
.push_back(ArgValue
);
3585 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3586 // The mips ABIs for returning structs by value requires that we copy
3587 // the sret argument into $v0 for the return. Save the argument into
3588 // a virtual register so that we can access it from the return points.
3589 if (Ins
[i
].Flags
.isSRet()) {
3590 unsigned Reg
= MipsFI
->getSRetReturnReg();
3592 Reg
= MF
.getRegInfo().createVirtualRegister(
3593 getRegClassFor(ABI
.IsN64() ? MVT::i64
: MVT::i32
));
3594 MipsFI
->setSRetReturnReg(Reg
);
3596 SDValue Copy
= DAG
.getCopyToReg(DAG
.getEntryNode(), DL
, Reg
, InVals
[i
]);
3597 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Copy
, Chain
);
3603 writeVarArgRegs(OutChains
, Chain
, DL
, DAG
, CCInfo
);
3605 // All stores are grouped in one node to allow the matching between
3606 // the size of Ins and InVals. This only happens when on varg functions
3607 if (!OutChains
.empty()) {
3608 OutChains
.push_back(Chain
);
3609 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, OutChains
);
3615 //===----------------------------------------------------------------------===//
3616 // Return Value Calling Convention Implementation
3617 //===----------------------------------------------------------------------===//
3620 MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv
,
3621 MachineFunction
&MF
, bool IsVarArg
,
3622 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
3623 LLVMContext
&Context
) const {
3624 SmallVector
<CCValAssign
, 16> RVLocs
;
3625 MipsCCState
CCInfo(CallConv
, IsVarArg
, MF
, RVLocs
, Context
);
3626 return CCInfo
.CheckReturn(Outs
, RetCC_Mips
);
3630 MipsTargetLowering::shouldSignExtendTypeInLibCall(EVT Type
, bool IsSigned
) const {
3631 if ((ABI
.IsN32() || ABI
.IsN64()) && Type
== MVT::i32
)
3638 MipsTargetLowering::LowerInterruptReturn(SmallVectorImpl
<SDValue
> &RetOps
,
3640 SelectionDAG
&DAG
) const {
3641 MachineFunction
&MF
= DAG
.getMachineFunction();
3642 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
3646 return DAG
.getNode(MipsISD::ERet
, DL
, MVT::Other
, RetOps
);
3650 MipsTargetLowering::LowerReturn(SDValue Chain
, CallingConv::ID CallConv
,
3652 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
3653 const SmallVectorImpl
<SDValue
> &OutVals
,
3654 const SDLoc
&DL
, SelectionDAG
&DAG
) const {
3655 // CCValAssign - represent the assignment of
3656 // the return value to a location
3657 SmallVector
<CCValAssign
, 16> RVLocs
;
3658 MachineFunction
&MF
= DAG
.getMachineFunction();
3660 // CCState - Info about the registers and stack slot.
3661 MipsCCState
CCInfo(CallConv
, IsVarArg
, MF
, RVLocs
, *DAG
.getContext());
3663 // Analyze return values.
3664 CCInfo
.AnalyzeReturn(Outs
, RetCC_Mips
);
3667 SmallVector
<SDValue
, 4> RetOps(1, Chain
);
3669 // Copy the result values into the output registers.
3670 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
3671 SDValue Val
= OutVals
[i
];
3672 CCValAssign
&VA
= RVLocs
[i
];
3673 assert(VA
.isRegLoc() && "Can only return in registers!");
3674 bool UseUpperBits
= false;
3676 switch (VA
.getLocInfo()) {
3678 llvm_unreachable("Unknown loc info!");
3679 case CCValAssign::Full
:
3681 case CCValAssign::BCvt
:
3682 Val
= DAG
.getNode(ISD::BITCAST
, DL
, VA
.getLocVT(), Val
);
3684 case CCValAssign::AExtUpper
:
3685 UseUpperBits
= true;
3687 case CCValAssign::AExt
:
3688 Val
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, VA
.getLocVT(), Val
);
3690 case CCValAssign::ZExtUpper
:
3691 UseUpperBits
= true;
3693 case CCValAssign::ZExt
:
3694 Val
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VA
.getLocVT(), Val
);
3696 case CCValAssign::SExtUpper
:
3697 UseUpperBits
= true;
3699 case CCValAssign::SExt
:
3700 Val
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VA
.getLocVT(), Val
);
3705 unsigned ValSizeInBits
= Outs
[i
].ArgVT
.getSizeInBits();
3706 unsigned LocSizeInBits
= VA
.getLocVT().getSizeInBits();
3708 ISD::SHL
, DL
, VA
.getLocVT(), Val
,
3709 DAG
.getConstant(LocSizeInBits
- ValSizeInBits
, DL
, VA
.getLocVT()));
3712 Chain
= DAG
.getCopyToReg(Chain
, DL
, VA
.getLocReg(), Val
, Flag
);
3714 // Guarantee that all emitted copies are stuck together with flags.
3715 Flag
= Chain
.getValue(1);
3716 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
3719 // The mips ABIs for returning structs by value requires that we copy
3720 // the sret argument into $v0 for the return. We saved the argument into
3721 // a virtual register in the entry block, so now we copy the value out
3723 if (MF
.getFunction().hasStructRetAttr()) {
3724 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
3725 unsigned Reg
= MipsFI
->getSRetReturnReg();
3728 llvm_unreachable("sret virtual register not created in the entry block");
3730 DAG
.getCopyFromReg(Chain
, DL
, Reg
, getPointerTy(DAG
.getDataLayout()));
3731 unsigned V0
= ABI
.IsN64() ? Mips::V0_64
: Mips::V0
;
3733 Chain
= DAG
.getCopyToReg(Chain
, DL
, V0
, Val
, Flag
);
3734 Flag
= Chain
.getValue(1);
3735 RetOps
.push_back(DAG
.getRegister(V0
, getPointerTy(DAG
.getDataLayout())));
3738 RetOps
[0] = Chain
; // Update chain.
3740 // Add the flag if we have it.
3742 RetOps
.push_back(Flag
);
3744 // ISRs must use "eret".
3745 if (DAG
.getMachineFunction().getFunction().hasFnAttribute("interrupt"))
3746 return LowerInterruptReturn(RetOps
, DL
, DAG
);
3748 // Standard return on Mips is a "jr $ra"
3749 return DAG
.getNode(MipsISD::Ret
, DL
, MVT::Other
, RetOps
);
3752 //===----------------------------------------------------------------------===//
3753 // Mips Inline Assembly Support
3754 //===----------------------------------------------------------------------===//
3756 /// getConstraintType - Given a constraint letter, return the type of
3757 /// constraint it is for this target.
3758 MipsTargetLowering::ConstraintType
3759 MipsTargetLowering::getConstraintType(StringRef Constraint
) const {
3760 // Mips specific constraints
3761 // GCC config/mips/constraints.md
3763 // 'd' : An address register. Equivalent to r
3764 // unless generating MIPS16 code.
3765 // 'y' : Equivalent to r; retained for
3766 // backwards compatibility.
3767 // 'c' : A register suitable for use in an indirect
3768 // jump. This will always be $25 for -mabicalls.
3769 // 'l' : The lo register. 1 word storage.
3770 // 'x' : The hilo register pair. Double word storage.
3771 if (Constraint
.size() == 1) {
3772 switch (Constraint
[0]) {
3780 return C_RegisterClass
;
3786 if (Constraint
== "ZC")
3789 return TargetLowering::getConstraintType(Constraint
);
3792 /// Examine constraint type and operand type and determine a weight value.
3793 /// This object must already have been set up with the operand type
3794 /// and the current alternative constraint selected.
3795 TargetLowering::ConstraintWeight
3796 MipsTargetLowering::getSingleConstraintMatchWeight(
3797 AsmOperandInfo
&info
, const char *constraint
) const {
3798 ConstraintWeight weight
= CW_Invalid
;
3799 Value
*CallOperandVal
= info
.CallOperandVal
;
3800 // If we don't have a value, we can't do a match,
3801 // but allow it at the lowest weight.
3802 if (!CallOperandVal
)
3804 Type
*type
= CallOperandVal
->getType();
3805 // Look at the constraint type.
3806 switch (*constraint
) {
3808 weight
= TargetLowering::getSingleConstraintMatchWeight(info
, constraint
);
3812 if (type
->isIntegerTy())
3813 weight
= CW_Register
;
3815 case 'f': // FPU or MSA register
3816 if (Subtarget
.hasMSA() && type
->isVectorTy() &&
3817 cast
<VectorType
>(type
)->getBitWidth() == 128)
3818 weight
= CW_Register
;
3819 else if (type
->isFloatTy())
3820 weight
= CW_Register
;
3822 case 'c': // $25 for indirect jumps
3823 case 'l': // lo register
3824 case 'x': // hilo register pair
3825 if (type
->isIntegerTy())
3826 weight
= CW_SpecificReg
;
3828 case 'I': // signed 16 bit immediate
3829 case 'J': // integer zero
3830 case 'K': // unsigned 16 bit immediate
3831 case 'L': // signed 32 bit immediate where lower 16 bits are 0
3832 case 'N': // immediate in the range of -65535 to -1 (inclusive)
3833 case 'O': // signed 15 bit immediate (+- 16383)
3834 case 'P': // immediate in the range of 65535 to 1 (inclusive)
3835 if (isa
<ConstantInt
>(CallOperandVal
))
3836 weight
= CW_Constant
;
3845 /// This is a helper function to parse a physical register string and split it
3846 /// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
3847 /// that is returned indicates whether parsing was successful. The second flag
3848 /// is true if the numeric part exists.
3849 static std::pair
<bool, bool> parsePhysicalReg(StringRef C
, StringRef
&Prefix
,
3850 unsigned long long &Reg
) {
3851 if (C
.front() != '{' || C
.back() != '}')
3852 return std::make_pair(false, false);
3854 // Search for the first numeric character.
3855 StringRef::const_iterator I
, B
= C
.begin() + 1, E
= C
.end() - 1;
3856 I
= std::find_if(B
, E
, isdigit
);
3858 Prefix
= StringRef(B
, I
- B
);
3860 // The second flag is set to false if no numeric characters were found.
3862 return std::make_pair(true, false);
3864 // Parse the numeric characters.
3865 return std::make_pair(!getAsUnsignedInteger(StringRef(I
, E
- I
), 10, Reg
),
3869 EVT
MipsTargetLowering::getTypeForExtReturn(LLVMContext
&Context
, EVT VT
,
3870 ISD::NodeType
) const {
3871 bool Cond
= !Subtarget
.isABI_O32() && VT
.getSizeInBits() == 32;
3872 EVT MinVT
= getRegisterType(Context
, Cond
? MVT::i64
: MVT::i32
);
3873 return VT
.bitsLT(MinVT
) ? MinVT
: VT
;
3876 std::pair
<unsigned, const TargetRegisterClass
*> MipsTargetLowering::
3877 parseRegForInlineAsmConstraint(StringRef C
, MVT VT
) const {
3878 const TargetRegisterInfo
*TRI
=
3879 Subtarget
.getRegisterInfo();
3880 const TargetRegisterClass
*RC
;
3882 unsigned long long Reg
;
3884 std::pair
<bool, bool> R
= parsePhysicalReg(C
, Prefix
, Reg
);
3887 return std::make_pair(0U, nullptr);
3889 if ((Prefix
== "hi" || Prefix
== "lo")) { // Parse hi/lo.
3890 // No numeric characters follow "hi" or "lo".
3892 return std::make_pair(0U, nullptr);
3894 RC
= TRI
->getRegClass(Prefix
== "hi" ?
3895 Mips::HI32RegClassID
: Mips::LO32RegClassID
);
3896 return std::make_pair(*(RC
->begin()), RC
);
3897 } else if (Prefix
.startswith("$msa")) {
3898 // Parse $msa(ir|csr|access|save|modify|request|map|unmap)
3900 // No numeric characters follow the name.
3902 return std::make_pair(0U, nullptr);
3904 Reg
= StringSwitch
<unsigned long long>(Prefix
)
3905 .Case("$msair", Mips::MSAIR
)
3906 .Case("$msacsr", Mips::MSACSR
)
3907 .Case("$msaaccess", Mips::MSAAccess
)
3908 .Case("$msasave", Mips::MSASave
)
3909 .Case("$msamodify", Mips::MSAModify
)
3910 .Case("$msarequest", Mips::MSARequest
)
3911 .Case("$msamap", Mips::MSAMap
)
3912 .Case("$msaunmap", Mips::MSAUnmap
)
3916 return std::make_pair(0U, nullptr);
3918 RC
= TRI
->getRegClass(Mips::MSACtrlRegClassID
);
3919 return std::make_pair(Reg
, RC
);
3923 return std::make_pair(0U, nullptr);
3925 if (Prefix
== "$f") { // Parse $f0-$f31.
3926 // If the size of FP registers is 64-bit or Reg is an even number, select
3927 // the 64-bit register class. Otherwise, select the 32-bit register class.
3928 if (VT
== MVT::Other
)
3929 VT
= (Subtarget
.isFP64bit() || !(Reg
% 2)) ? MVT::f64
: MVT::f32
;
3931 RC
= getRegClassFor(VT
);
3933 if (RC
== &Mips::AFGR64RegClass
) {
3934 assert(Reg
% 2 == 0);
3937 } else if (Prefix
== "$fcc") // Parse $fcc0-$fcc7.
3938 RC
= TRI
->getRegClass(Mips::FCCRegClassID
);
3939 else if (Prefix
== "$w") { // Parse $w0-$w31.
3940 RC
= getRegClassFor((VT
== MVT::Other
) ? MVT::v16i8
: VT
);
3941 } else { // Parse $0-$31.
3942 assert(Prefix
== "$");
3943 RC
= getRegClassFor((VT
== MVT::Other
) ? MVT::i32
: VT
);
3946 assert(Reg
< RC
->getNumRegs());
3947 return std::make_pair(*(RC
->begin() + Reg
), RC
);
3950 /// Given a register class constraint, like 'r', if this corresponds directly
3951 /// to an LLVM register class, return a register of 0 and the register class
3953 std::pair
<unsigned, const TargetRegisterClass
*>
3954 MipsTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo
*TRI
,
3955 StringRef Constraint
,
3957 if (Constraint
.size() == 1) {
3958 switch (Constraint
[0]) {
3959 case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
3960 case 'y': // Same as 'r'. Exists for compatibility.
3962 if (VT
== MVT::i32
|| VT
== MVT::i16
|| VT
== MVT::i8
) {
3963 if (Subtarget
.inMips16Mode())
3964 return std::make_pair(0U, &Mips::CPU16RegsRegClass
);
3965 return std::make_pair(0U, &Mips::GPR32RegClass
);
3967 if (VT
== MVT::i64
&& !Subtarget
.isGP64bit())
3968 return std::make_pair(0U, &Mips::GPR32RegClass
);
3969 if (VT
== MVT::i64
&& Subtarget
.isGP64bit())
3970 return std::make_pair(0U, &Mips::GPR64RegClass
);
3971 // This will generate an error message
3972 return std::make_pair(0U, nullptr);
3973 case 'f': // FPU or MSA register
3974 if (VT
== MVT::v16i8
)
3975 return std::make_pair(0U, &Mips::MSA128BRegClass
);
3976 else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
)
3977 return std::make_pair(0U, &Mips::MSA128HRegClass
);
3978 else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
)
3979 return std::make_pair(0U, &Mips::MSA128WRegClass
);
3980 else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
)
3981 return std::make_pair(0U, &Mips::MSA128DRegClass
);
3982 else if (VT
== MVT::f32
)
3983 return std::make_pair(0U, &Mips::FGR32RegClass
);
3984 else if ((VT
== MVT::f64
) && (!Subtarget
.isSingleFloat())) {
3985 if (Subtarget
.isFP64bit())
3986 return std::make_pair(0U, &Mips::FGR64RegClass
);
3987 return std::make_pair(0U, &Mips::AFGR64RegClass
);
3990 case 'c': // register suitable for indirect jump
3992 return std::make_pair((unsigned)Mips::T9
, &Mips::GPR32RegClass
);
3994 return std::make_pair((unsigned)Mips::T9_64
, &Mips::GPR64RegClass
);
3995 // This will generate an error message
3996 return std::make_pair(0U, nullptr);
3997 case 'l': // use the `lo` register to store values
3998 // that are no bigger than a word
3999 if (VT
== MVT::i32
|| VT
== MVT::i16
|| VT
== MVT::i8
)
4000 return std::make_pair((unsigned)Mips::LO0
, &Mips::LO32RegClass
);
4001 return std::make_pair((unsigned)Mips::LO0_64
, &Mips::LO64RegClass
);
4002 case 'x': // use the concatenated `hi` and `lo` registers
4003 // to store doubleword values
4004 // Fixme: Not triggering the use of both hi and low
4005 // This will generate an error message
4006 return std::make_pair(0U, nullptr);
4010 std::pair
<unsigned, const TargetRegisterClass
*> R
;
4011 R
= parseRegForInlineAsmConstraint(Constraint
, VT
);
4016 return TargetLowering::getRegForInlineAsmConstraint(TRI
, Constraint
, VT
);
4019 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4020 /// vector. If it is invalid, don't add anything to Ops.
4021 void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
4022 std::string
&Constraint
,
4023 std::vector
<SDValue
>&Ops
,
4024 SelectionDAG
&DAG
) const {
4028 // Only support length 1 constraints for now.
4029 if (Constraint
.length() > 1) return;
4031 char ConstraintLetter
= Constraint
[0];
4032 switch (ConstraintLetter
) {
4033 default: break; // This will fall through to the generic implementation
4034 case 'I': // Signed 16 bit constant
4035 // If this fails, the parent routine will give an error
4036 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4037 EVT Type
= Op
.getValueType();
4038 int64_t Val
= C
->getSExtValue();
4039 if (isInt
<16>(Val
)) {
4040 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4045 case 'J': // integer zero
4046 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4047 EVT Type
= Op
.getValueType();
4048 int64_t Val
= C
->getZExtValue();
4050 Result
= DAG
.getTargetConstant(0, DL
, Type
);
4055 case 'K': // unsigned 16 bit immediate
4056 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4057 EVT Type
= Op
.getValueType();
4058 uint64_t Val
= (uint64_t)C
->getZExtValue();
4059 if (isUInt
<16>(Val
)) {
4060 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4065 case 'L': // signed 32 bit immediate where lower 16 bits are 0
4066 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4067 EVT Type
= Op
.getValueType();
4068 int64_t Val
= C
->getSExtValue();
4069 if ((isInt
<32>(Val
)) && ((Val
& 0xffff) == 0)){
4070 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4075 case 'N': // immediate in the range of -65535 to -1 (inclusive)
4076 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4077 EVT Type
= Op
.getValueType();
4078 int64_t Val
= C
->getSExtValue();
4079 if ((Val
>= -65535) && (Val
<= -1)) {
4080 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4085 case 'O': // signed 15 bit immediate
4086 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4087 EVT Type
= Op
.getValueType();
4088 int64_t Val
= C
->getSExtValue();
4089 if ((isInt
<15>(Val
))) {
4090 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4095 case 'P': // immediate in the range of 1 to 65535 (inclusive)
4096 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4097 EVT Type
= Op
.getValueType();
4098 int64_t Val
= C
->getSExtValue();
4099 if ((Val
<= 65535) && (Val
>= 1)) {
4100 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4107 if (Result
.getNode()) {
4108 Ops
.push_back(Result
);
4112 TargetLowering::LowerAsmOperandForConstraint(Op
, Constraint
, Ops
, DAG
);
4115 bool MipsTargetLowering::isLegalAddressingMode(const DataLayout
&DL
,
4116 const AddrMode
&AM
, Type
*Ty
,
4117 unsigned AS
, Instruction
*I
) const {
4118 // No global is ever allowed as a base.
4123 case 0: // "r+i" or just "i", depending on HasBaseReg.
4126 if (!AM
.HasBaseReg
) // allow "r+i".
4128 return false; // disallow "r+r" or "r+r+i".
4137 MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const {
4138 // The Mips target isn't yet aware of offsets.
4142 EVT
MipsTargetLowering::getOptimalMemOpType(
4143 uint64_t Size
, unsigned DstAlign
, unsigned SrcAlign
, bool IsMemset
,
4144 bool ZeroMemset
, bool MemcpyStrSrc
,
4145 const AttributeList
&FuncAttributes
) const {
4146 if (Subtarget
.hasMips64())
4152 bool MipsTargetLowering::isFPImmLegal(const APFloat
&Imm
, EVT VT
,
4153 bool ForCodeSize
) const {
4154 if (VT
!= MVT::f32
&& VT
!= MVT::f64
)
4156 if (Imm
.isNegZero())
4158 return Imm
.isZero();
4161 unsigned MipsTargetLowering::getJumpTableEncoding() const {
4163 // FIXME: For space reasons this should be: EK_GPRel32BlockAddress.
4164 if (ABI
.IsN64() && isPositionIndependent())
4165 return MachineJumpTableInfo::EK_GPRel64BlockAddress
;
4167 return TargetLowering::getJumpTableEncoding();
4170 bool MipsTargetLowering::useSoftFloat() const {
4171 return Subtarget
.useSoftFloat();
4174 void MipsTargetLowering::copyByValRegs(
4175 SDValue Chain
, const SDLoc
&DL
, std::vector
<SDValue
> &OutChains
,
4176 SelectionDAG
&DAG
, const ISD::ArgFlagsTy
&Flags
,
4177 SmallVectorImpl
<SDValue
> &InVals
, const Argument
*FuncArg
,
4178 unsigned FirstReg
, unsigned LastReg
, const CCValAssign
&VA
,
4179 MipsCCState
&State
) const {
4180 MachineFunction
&MF
= DAG
.getMachineFunction();
4181 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
4182 unsigned GPRSizeInBytes
= Subtarget
.getGPRSizeInBytes();
4183 unsigned NumRegs
= LastReg
- FirstReg
;
4184 unsigned RegAreaSize
= NumRegs
* GPRSizeInBytes
;
4185 unsigned FrameObjSize
= std::max(Flags
.getByValSize(), RegAreaSize
);
4187 ArrayRef
<MCPhysReg
> ByValArgRegs
= ABI
.GetByValArgRegs();
4191 (int)ABI
.GetCalleeAllocdArgSizeInBytes(State
.getCallingConv()) -
4192 (int)((ByValArgRegs
.size() - FirstReg
) * GPRSizeInBytes
);
4194 FrameObjOffset
= VA
.getLocMemOffset();
4196 // Create frame object.
4197 EVT PtrTy
= getPointerTy(DAG
.getDataLayout());
4198 // Make the fixed object stored to mutable so that the load instructions
4199 // referencing it have their memory dependencies added.
4200 // Set the frame object as isAliased which clears the underlying objects
4201 // vector in ScheduleDAGInstrs::buildSchedGraph() resulting in addition of all
4202 // stores as dependencies for loads referencing this fixed object.
4203 int FI
= MFI
.CreateFixedObject(FrameObjSize
, FrameObjOffset
, false, true);
4204 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrTy
);
4205 InVals
.push_back(FIN
);
4210 // Copy arg registers.
4211 MVT RegTy
= MVT::getIntegerVT(GPRSizeInBytes
* 8);
4212 const TargetRegisterClass
*RC
= getRegClassFor(RegTy
);
4214 for (unsigned I
= 0; I
< NumRegs
; ++I
) {
4215 unsigned ArgReg
= ByValArgRegs
[FirstReg
+ I
];
4216 unsigned VReg
= addLiveIn(MF
, ArgReg
, RC
);
4217 unsigned Offset
= I
* GPRSizeInBytes
;
4218 SDValue StorePtr
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, FIN
,
4219 DAG
.getConstant(Offset
, DL
, PtrTy
));
4220 SDValue Store
= DAG
.getStore(Chain
, DL
, DAG
.getRegister(VReg
, RegTy
),
4221 StorePtr
, MachinePointerInfo(FuncArg
, Offset
));
4222 OutChains
.push_back(Store
);
4226 // Copy byVal arg to registers and stack.
4227 void MipsTargetLowering::passByValArg(
4228 SDValue Chain
, const SDLoc
&DL
,
4229 std::deque
<std::pair
<unsigned, SDValue
>> &RegsToPass
,
4230 SmallVectorImpl
<SDValue
> &MemOpChains
, SDValue StackPtr
,
4231 MachineFrameInfo
&MFI
, SelectionDAG
&DAG
, SDValue Arg
, unsigned FirstReg
,
4232 unsigned LastReg
, const ISD::ArgFlagsTy
&Flags
, bool isLittle
,
4233 const CCValAssign
&VA
) const {
4234 unsigned ByValSizeInBytes
= Flags
.getByValSize();
4235 unsigned OffsetInBytes
= 0; // From beginning of struct
4236 unsigned RegSizeInBytes
= Subtarget
.getGPRSizeInBytes();
4237 unsigned Alignment
= std::min(Flags
.getByValAlign(), RegSizeInBytes
);
4238 EVT PtrTy
= getPointerTy(DAG
.getDataLayout()),
4239 RegTy
= MVT::getIntegerVT(RegSizeInBytes
* 8);
4240 unsigned NumRegs
= LastReg
- FirstReg
;
4243 ArrayRef
<MCPhysReg
> ArgRegs
= ABI
.GetByValArgRegs();
4244 bool LeftoverBytes
= (NumRegs
* RegSizeInBytes
> ByValSizeInBytes
);
4247 // Copy words to registers.
4248 for (; I
< NumRegs
- LeftoverBytes
; ++I
, OffsetInBytes
+= RegSizeInBytes
) {
4249 SDValue LoadPtr
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, Arg
,
4250 DAG
.getConstant(OffsetInBytes
, DL
, PtrTy
));
4251 SDValue LoadVal
= DAG
.getLoad(RegTy
, DL
, Chain
, LoadPtr
,
4252 MachinePointerInfo(), Alignment
);
4253 MemOpChains
.push_back(LoadVal
.getValue(1));
4254 unsigned ArgReg
= ArgRegs
[FirstReg
+ I
];
4255 RegsToPass
.push_back(std::make_pair(ArgReg
, LoadVal
));
4258 // Return if the struct has been fully copied.
4259 if (ByValSizeInBytes
== OffsetInBytes
)
4262 // Copy the remainder of the byval argument with sub-word loads and shifts.
4263 if (LeftoverBytes
) {
4266 for (unsigned LoadSizeInBytes
= RegSizeInBytes
/ 2, TotalBytesLoaded
= 0;
4267 OffsetInBytes
< ByValSizeInBytes
; LoadSizeInBytes
/= 2) {
4268 unsigned RemainingSizeInBytes
= ByValSizeInBytes
- OffsetInBytes
;
4270 if (RemainingSizeInBytes
< LoadSizeInBytes
)
4274 SDValue LoadPtr
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, Arg
,
4275 DAG
.getConstant(OffsetInBytes
, DL
,
4277 SDValue LoadVal
= DAG
.getExtLoad(
4278 ISD::ZEXTLOAD
, DL
, RegTy
, Chain
, LoadPtr
, MachinePointerInfo(),
4279 MVT::getIntegerVT(LoadSizeInBytes
* 8), Alignment
);
4280 MemOpChains
.push_back(LoadVal
.getValue(1));
4282 // Shift the loaded value.
4286 Shamt
= TotalBytesLoaded
* 8;
4288 Shamt
= (RegSizeInBytes
- (TotalBytesLoaded
+ LoadSizeInBytes
)) * 8;
4290 SDValue Shift
= DAG
.getNode(ISD::SHL
, DL
, RegTy
, LoadVal
,
4291 DAG
.getConstant(Shamt
, DL
, MVT::i32
));
4294 Val
= DAG
.getNode(ISD::OR
, DL
, RegTy
, Val
, Shift
);
4298 OffsetInBytes
+= LoadSizeInBytes
;
4299 TotalBytesLoaded
+= LoadSizeInBytes
;
4300 Alignment
= std::min(Alignment
, LoadSizeInBytes
);
4303 unsigned ArgReg
= ArgRegs
[FirstReg
+ I
];
4304 RegsToPass
.push_back(std::make_pair(ArgReg
, Val
));
4309 // Copy remainder of byval arg to it with memcpy.
4310 unsigned MemCpySize
= ByValSizeInBytes
- OffsetInBytes
;
4311 SDValue Src
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, Arg
,
4312 DAG
.getConstant(OffsetInBytes
, DL
, PtrTy
));
4313 SDValue Dst
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, StackPtr
,
4314 DAG
.getIntPtrConstant(VA
.getLocMemOffset(), DL
));
4315 Chain
= DAG
.getMemcpy(Chain
, DL
, Dst
, Src
,
4316 DAG
.getConstant(MemCpySize
, DL
, PtrTy
),
4317 Alignment
, /*isVolatile=*/false, /*AlwaysInline=*/false,
4318 /*isTailCall=*/false,
4319 MachinePointerInfo(), MachinePointerInfo());
4320 MemOpChains
.push_back(Chain
);
4323 void MipsTargetLowering::writeVarArgRegs(std::vector
<SDValue
> &OutChains
,
4324 SDValue Chain
, const SDLoc
&DL
,
4326 CCState
&State
) const {
4327 ArrayRef
<MCPhysReg
> ArgRegs
= ABI
.GetVarArgRegs();
4328 unsigned Idx
= State
.getFirstUnallocated(ArgRegs
);
4329 unsigned RegSizeInBytes
= Subtarget
.getGPRSizeInBytes();
4330 MVT RegTy
= MVT::getIntegerVT(RegSizeInBytes
* 8);
4331 const TargetRegisterClass
*RC
= getRegClassFor(RegTy
);
4332 MachineFunction
&MF
= DAG
.getMachineFunction();
4333 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
4334 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
4336 // Offset of the first variable argument from stack pointer.
4339 if (ArgRegs
.size() == Idx
)
4340 VaArgOffset
= alignTo(State
.getNextStackOffset(), RegSizeInBytes
);
4343 (int)ABI
.GetCalleeAllocdArgSizeInBytes(State
.getCallingConv()) -
4344 (int)(RegSizeInBytes
* (ArgRegs
.size() - Idx
));
4347 // Record the frame index of the first variable argument
4348 // which is a value necessary to VASTART.
4349 int FI
= MFI
.CreateFixedObject(RegSizeInBytes
, VaArgOffset
, true);
4350 MipsFI
->setVarArgsFrameIndex(FI
);
4352 // Copy the integer registers that have not been used for argument passing
4353 // to the argument register save area. For O32, the save area is allocated
4354 // in the caller's stack frame, while for N32/64, it is allocated in the
4355 // callee's stack frame.
4356 for (unsigned I
= Idx
; I
< ArgRegs
.size();
4357 ++I
, VaArgOffset
+= RegSizeInBytes
) {
4358 unsigned Reg
= addLiveIn(MF
, ArgRegs
[I
], RC
);
4359 SDValue ArgValue
= DAG
.getCopyFromReg(Chain
, DL
, Reg
, RegTy
);
4360 FI
= MFI
.CreateFixedObject(RegSizeInBytes
, VaArgOffset
, true);
4361 SDValue PtrOff
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
4363 DAG
.getStore(Chain
, DL
, ArgValue
, PtrOff
, MachinePointerInfo());
4364 cast
<StoreSDNode
>(Store
.getNode())->getMemOperand()->setValue(
4366 OutChains
.push_back(Store
);
4370 void MipsTargetLowering::HandleByVal(CCState
*State
, unsigned &Size
,
4371 unsigned Align
) const {
4372 const TargetFrameLowering
*TFL
= Subtarget
.getFrameLowering();
4374 assert(Size
&& "Byval argument's size shouldn't be 0.");
4376 Align
= std::min(Align
, TFL
->getStackAlignment());
4378 unsigned FirstReg
= 0;
4379 unsigned NumRegs
= 0;
4381 if (State
->getCallingConv() != CallingConv::Fast
) {
4382 unsigned RegSizeInBytes
= Subtarget
.getGPRSizeInBytes();
4383 ArrayRef
<MCPhysReg
> IntArgRegs
= ABI
.GetByValArgRegs();
4384 // FIXME: The O32 case actually describes no shadow registers.
4385 const MCPhysReg
*ShadowRegs
=
4386 ABI
.IsO32() ? IntArgRegs
.data() : Mips64DPRegs
;
4388 // We used to check the size as well but we can't do that anymore since
4389 // CCState::HandleByVal() rounds up the size after calling this function.
4390 assert(!(Align
% RegSizeInBytes
) &&
4391 "Byval argument's alignment should be a multiple of"
4394 FirstReg
= State
->getFirstUnallocated(IntArgRegs
);
4396 // If Align > RegSizeInBytes, the first arg register must be even.
4397 // FIXME: This condition happens to do the right thing but it's not the
4398 // right way to test it. We want to check that the stack frame offset
4399 // of the register is aligned.
4400 if ((Align
> RegSizeInBytes
) && (FirstReg
% 2)) {
4401 State
->AllocateReg(IntArgRegs
[FirstReg
], ShadowRegs
[FirstReg
]);
4405 // Mark the registers allocated.
4406 Size
= alignTo(Size
, RegSizeInBytes
);
4407 for (unsigned I
= FirstReg
; Size
> 0 && (I
< IntArgRegs
.size());
4408 Size
-= RegSizeInBytes
, ++I
, ++NumRegs
)
4409 State
->AllocateReg(IntArgRegs
[I
], ShadowRegs
[I
]);
4412 State
->addInRegsParamInfo(FirstReg
, FirstReg
+ NumRegs
);
4415 MachineBasicBlock
*MipsTargetLowering::emitPseudoSELECT(MachineInstr
&MI
,
4416 MachineBasicBlock
*BB
,
4418 unsigned Opc
) const {
4419 assert(!(Subtarget
.hasMips4() || Subtarget
.hasMips32()) &&
4420 "Subtarget already supports SELECT nodes with the use of"
4421 "conditional-move instructions.");
4423 const TargetInstrInfo
*TII
=
4424 Subtarget
.getInstrInfo();
4425 DebugLoc DL
= MI
.getDebugLoc();
4427 // To "insert" a SELECT instruction, we actually have to insert the
4428 // diamond control-flow pattern. The incoming instruction knows the
4429 // destination vreg to set, the condition code register to branch on, the
4430 // true/false values to select between, and a branch opcode to use.
4431 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
4432 MachineFunction::iterator It
= ++BB
->getIterator();
4438 // bNE r1, r0, copy1MBB
4439 // fallthrough --> copy0MBB
4440 MachineBasicBlock
*thisMBB
= BB
;
4441 MachineFunction
*F
= BB
->getParent();
4442 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4443 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4444 F
->insert(It
, copy0MBB
);
4445 F
->insert(It
, sinkMBB
);
4447 // Transfer the remainder of BB and its successor edges to sinkMBB.
4448 sinkMBB
->splice(sinkMBB
->begin(), BB
,
4449 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
4450 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
4452 // Next, add the true and fallthrough blocks as its successors.
4453 BB
->addSuccessor(copy0MBB
);
4454 BB
->addSuccessor(sinkMBB
);
4457 // bc1[tf] cc, sinkMBB
4458 BuildMI(BB
, DL
, TII
->get(Opc
))
4459 .addReg(MI
.getOperand(1).getReg())
4462 // bne rs, $0, sinkMBB
4463 BuildMI(BB
, DL
, TII
->get(Opc
))
4464 .addReg(MI
.getOperand(1).getReg())
4470 // %FalseValue = ...
4471 // # fallthrough to sinkMBB
4474 // Update machine-CFG edges
4475 BB
->addSuccessor(sinkMBB
);
4478 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
4482 BuildMI(*BB
, BB
->begin(), DL
, TII
->get(Mips::PHI
), MI
.getOperand(0).getReg())
4483 .addReg(MI
.getOperand(2).getReg())
4485 .addReg(MI
.getOperand(3).getReg())
4488 MI
.eraseFromParent(); // The pseudo instruction is gone now.
4493 MachineBasicBlock
*MipsTargetLowering::emitPseudoD_SELECT(MachineInstr
&MI
,
4494 MachineBasicBlock
*BB
) const {
4495 assert(!(Subtarget
.hasMips4() || Subtarget
.hasMips32()) &&
4496 "Subtarget already supports SELECT nodes with the use of"
4497 "conditional-move instructions.");
4499 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
4500 DebugLoc DL
= MI
.getDebugLoc();
4502 // D_SELECT substitutes two SELECT nodes that goes one after another and
4503 // have the same condition operand. On machines which don't have
4504 // conditional-move instruction, it reduces unnecessary branch instructions
4505 // which are result of using two diamond patterns that are result of two
4506 // SELECT pseudo instructions.
4507 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
4508 MachineFunction::iterator It
= ++BB
->getIterator();
4514 // bNE r1, r0, copy1MBB
4515 // fallthrough --> copy0MBB
4516 MachineBasicBlock
*thisMBB
= BB
;
4517 MachineFunction
*F
= BB
->getParent();
4518 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4519 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4520 F
->insert(It
, copy0MBB
);
4521 F
->insert(It
, sinkMBB
);
4523 // Transfer the remainder of BB and its successor edges to sinkMBB.
4524 sinkMBB
->splice(sinkMBB
->begin(), BB
,
4525 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
4526 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
4528 // Next, add the true and fallthrough blocks as its successors.
4529 BB
->addSuccessor(copy0MBB
);
4530 BB
->addSuccessor(sinkMBB
);
4532 // bne rs, $0, sinkMBB
4533 BuildMI(BB
, DL
, TII
->get(Mips::BNE
))
4534 .addReg(MI
.getOperand(2).getReg())
4539 // %FalseValue = ...
4540 // # fallthrough to sinkMBB
4543 // Update machine-CFG edges
4544 BB
->addSuccessor(sinkMBB
);
4547 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
4551 // Use two PHI nodes to select two reults
4552 BuildMI(*BB
, BB
->begin(), DL
, TII
->get(Mips::PHI
), MI
.getOperand(0).getReg())
4553 .addReg(MI
.getOperand(3).getReg())
4555 .addReg(MI
.getOperand(5).getReg())
4557 BuildMI(*BB
, BB
->begin(), DL
, TII
->get(Mips::PHI
), MI
.getOperand(1).getReg())
4558 .addReg(MI
.getOperand(4).getReg())
4560 .addReg(MI
.getOperand(6).getReg())
4563 MI
.eraseFromParent(); // The pseudo instruction is gone now.
4568 // FIXME? Maybe this could be a TableGen attribute on some registers and
4569 // this table could be generated automatically from RegInfo.
4570 unsigned MipsTargetLowering::getRegisterByName(const char* RegName
, EVT VT
,
4571 SelectionDAG
&DAG
) const {
4572 // Named registers is expected to be fairly rare. For now, just support $28
4573 // since the linux kernel uses it.
4574 if (Subtarget
.isGP64bit()) {
4575 unsigned Reg
= StringSwitch
<unsigned>(RegName
)
4576 .Case("$28", Mips::GP_64
)
4581 unsigned Reg
= StringSwitch
<unsigned>(RegName
)
4582 .Case("$28", Mips::GP
)
4587 report_fatal_error("Invalid register name global variable");