[x86] fix assert with horizontal math + broadcast of vector (PR43402)
[llvm-core.git] / lib / Target / SystemZ / SystemZMachineScheduler.cpp
blobeb9745f71b7dbca4a177898e32977756049891fe
1 //-- SystemZMachineScheduler.cpp - SystemZ Scheduler Interface -*- C++ -*---==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // -------------------------- Post RA scheduling ---------------------------- //
10 // SystemZPostRASchedStrategy is a scheduling strategy which is plugged into
11 // the MachineScheduler. It has a sorted Available set of SUs and a pickNode()
12 // implementation that looks to optimize decoder grouping and balance the
13 // usage of processor resources. Scheduler states are saved for the end
14 // region of each MBB, so that a successor block can learn from it.
15 //===----------------------------------------------------------------------===//
17 #include "SystemZMachineScheduler.h"
19 using namespace llvm;
21 #define DEBUG_TYPE "machine-scheduler"
23 #ifndef NDEBUG
24 // Print the set of SUs
25 void SystemZPostRASchedStrategy::SUSet::
26 dump(SystemZHazardRecognizer &HazardRec) const {
27 dbgs() << "{";
28 for (auto &SU : *this) {
29 HazardRec.dumpSU(SU, dbgs());
30 if (SU != *rbegin())
31 dbgs() << ", ";
33 dbgs() << "}\n";
35 #endif
37 // Try to find a single predecessor that would be interesting for the
38 // scheduler in the top-most region of MBB.
39 static MachineBasicBlock *getSingleSchedPred(MachineBasicBlock *MBB,
40 const MachineLoop *Loop) {
41 MachineBasicBlock *PredMBB = nullptr;
42 if (MBB->pred_size() == 1)
43 PredMBB = *MBB->pred_begin();
45 // The loop header has two predecessors, return the latch, but not for a
46 // single block loop.
47 if (MBB->pred_size() == 2 && Loop != nullptr && Loop->getHeader() == MBB) {
48 for (auto I = MBB->pred_begin(); I != MBB->pred_end(); ++I)
49 if (Loop->contains(*I))
50 PredMBB = (*I == MBB ? nullptr : *I);
53 assert ((PredMBB == nullptr || !Loop || Loop->contains(PredMBB))
54 && "Loop MBB should not consider predecessor outside of loop.");
56 return PredMBB;
59 void SystemZPostRASchedStrategy::
60 advanceTo(MachineBasicBlock::iterator NextBegin) {
61 MachineBasicBlock::iterator LastEmittedMI = HazardRec->getLastEmittedMI();
62 MachineBasicBlock::iterator I =
63 ((LastEmittedMI != nullptr && LastEmittedMI->getParent() == MBB) ?
64 std::next(LastEmittedMI) : MBB->begin());
66 for (; I != NextBegin; ++I) {
67 if (I->isPosition() || I->isDebugInstr())
68 continue;
69 HazardRec->emitInstruction(&*I);
73 void SystemZPostRASchedStrategy::initialize(ScheduleDAGMI *dag) {
74 LLVM_DEBUG(HazardRec->dumpState(););
77 void SystemZPostRASchedStrategy::enterMBB(MachineBasicBlock *NextMBB) {
78 assert ((SchedStates.find(NextMBB) == SchedStates.end()) &&
79 "Entering MBB twice?");
80 LLVM_DEBUG(dbgs() << "** Entering " << printMBBReference(*NextMBB));
82 MBB = NextMBB;
84 /// Create a HazardRec for MBB, save it in SchedStates and set HazardRec to
85 /// point to it.
86 HazardRec = SchedStates[MBB] = new SystemZHazardRecognizer(TII, &SchedModel);
87 LLVM_DEBUG(const MachineLoop *Loop = MLI->getLoopFor(MBB);
88 if (Loop && Loop->getHeader() == MBB) dbgs() << " (Loop header)";
89 dbgs() << ":\n";);
91 // Try to take over the state from a single predecessor, if it has been
92 // scheduled. If this is not possible, we are done.
93 MachineBasicBlock *SinglePredMBB =
94 getSingleSchedPred(MBB, MLI->getLoopFor(MBB));
95 if (SinglePredMBB == nullptr ||
96 SchedStates.find(SinglePredMBB) == SchedStates.end())
97 return;
99 LLVM_DEBUG(dbgs() << "** Continued scheduling from "
100 << printMBBReference(*SinglePredMBB) << "\n";);
102 HazardRec->copyState(SchedStates[SinglePredMBB]);
103 LLVM_DEBUG(HazardRec->dumpState(););
105 // Emit incoming terminator(s). Be optimistic and assume that branch
106 // prediction will generally do "the right thing".
107 for (MachineBasicBlock::iterator I = SinglePredMBB->getFirstTerminator();
108 I != SinglePredMBB->end(); I++) {
109 LLVM_DEBUG(dbgs() << "** Emitting incoming branch: "; I->dump(););
110 bool TakenBranch = (I->isBranch() &&
111 (TII->getBranchInfo(*I).isIndirect() ||
112 TII->getBranchInfo(*I).getMBBTarget() == MBB));
113 HazardRec->emitInstruction(&*I, TakenBranch);
114 if (TakenBranch)
115 break;
119 void SystemZPostRASchedStrategy::leaveMBB() {
120 LLVM_DEBUG(dbgs() << "** Leaving " << printMBBReference(*MBB) << "\n";);
122 // Advance to first terminator. The successor block will handle terminators
123 // dependent on CFG layout (T/NT branch etc).
124 advanceTo(MBB->getFirstTerminator());
127 SystemZPostRASchedStrategy::
128 SystemZPostRASchedStrategy(const MachineSchedContext *C)
129 : MLI(C->MLI),
130 TII(static_cast<const SystemZInstrInfo *>
131 (C->MF->getSubtarget().getInstrInfo())),
132 MBB(nullptr), HazardRec(nullptr) {
133 const TargetSubtargetInfo *ST = &C->MF->getSubtarget();
134 SchedModel.init(ST);
137 SystemZPostRASchedStrategy::~SystemZPostRASchedStrategy() {
138 // Delete hazard recognizers kept around for each MBB.
139 for (auto I : SchedStates) {
140 SystemZHazardRecognizer *hazrec = I.second;
141 delete hazrec;
145 void SystemZPostRASchedStrategy::initPolicy(MachineBasicBlock::iterator Begin,
146 MachineBasicBlock::iterator End,
147 unsigned NumRegionInstrs) {
148 // Don't emit the terminators.
149 if (Begin->isTerminator())
150 return;
152 // Emit any instructions before start of region.
153 advanceTo(Begin);
156 // Pick the next node to schedule.
157 SUnit *SystemZPostRASchedStrategy::pickNode(bool &IsTopNode) {
158 // Only scheduling top-down.
159 IsTopNode = true;
161 if (Available.empty())
162 return nullptr;
164 // If only one choice, return it.
165 if (Available.size() == 1) {
166 LLVM_DEBUG(dbgs() << "** Only one: ";
167 HazardRec->dumpSU(*Available.begin(), dbgs()); dbgs() << "\n";);
168 return *Available.begin();
171 // All nodes that are possible to schedule are stored in the Available set.
172 LLVM_DEBUG(dbgs() << "** Available: "; Available.dump(*HazardRec););
174 Candidate Best;
175 for (auto *SU : Available) {
177 // SU is the next candidate to be compared against current Best.
178 Candidate c(SU, *HazardRec);
180 // Remeber which SU is the best candidate.
181 if (Best.SU == nullptr || c < Best) {
182 Best = c;
183 LLVM_DEBUG(dbgs() << "** Best so far: ";);
184 } else
185 LLVM_DEBUG(dbgs() << "** Tried : ";);
186 LLVM_DEBUG(HazardRec->dumpSU(c.SU, dbgs()); c.dumpCosts();
187 dbgs() << " Height:" << c.SU->getHeight(); dbgs() << "\n";);
189 // Once we know we have seen all SUs that affect grouping or use unbuffered
190 // resources, we can stop iterating if Best looks good.
191 if (!SU->isScheduleHigh && Best.noCost())
192 break;
195 assert (Best.SU != nullptr);
196 return Best.SU;
199 SystemZPostRASchedStrategy::Candidate::
200 Candidate(SUnit *SU_, SystemZHazardRecognizer &HazardRec) : Candidate() {
201 SU = SU_;
203 // Check the grouping cost. For a node that must begin / end a
204 // group, it is positive if it would do so prematurely, or negative
205 // if it would fit naturally into the schedule.
206 GroupingCost = HazardRec.groupingCost(SU);
208 // Check the resources cost for this SU.
209 ResourcesCost = HazardRec.resourcesCost(SU);
212 bool SystemZPostRASchedStrategy::Candidate::
213 operator<(const Candidate &other) {
215 // Check decoder grouping.
216 if (GroupingCost < other.GroupingCost)
217 return true;
218 if (GroupingCost > other.GroupingCost)
219 return false;
221 // Compare the use of resources.
222 if (ResourcesCost < other.ResourcesCost)
223 return true;
224 if (ResourcesCost > other.ResourcesCost)
225 return false;
227 // Higher SU is otherwise generally better.
228 if (SU->getHeight() > other.SU->getHeight())
229 return true;
230 if (SU->getHeight() < other.SU->getHeight())
231 return false;
233 // If all same, fall back to original order.
234 if (SU->NodeNum < other.SU->NodeNum)
235 return true;
237 return false;
240 void SystemZPostRASchedStrategy::schedNode(SUnit *SU, bool IsTopNode) {
241 LLVM_DEBUG(dbgs() << "** Scheduling SU(" << SU->NodeNum << ") ";
242 if (Available.size() == 1) dbgs() << "(only one) ";
243 Candidate c(SU, *HazardRec); c.dumpCosts(); dbgs() << "\n";);
245 // Remove SU from Available set and update HazardRec.
246 Available.erase(SU);
247 HazardRec->EmitInstruction(SU);
250 void SystemZPostRASchedStrategy::releaseTopNode(SUnit *SU) {
251 // Set isScheduleHigh flag on all SUs that we want to consider first in
252 // pickNode().
253 const MCSchedClassDesc *SC = HazardRec->getSchedClass(SU);
254 bool AffectsGrouping = (SC->isValid() && (SC->BeginGroup || SC->EndGroup));
255 SU->isScheduleHigh = (AffectsGrouping || SU->isUnbuffered);
257 // Put all released SUs in the Available set.
258 Available.insert(SU);