1 //===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "SystemZTargetMachine.h"
10 #include "MCTargetDesc/SystemZMCTargetDesc.h"
12 #include "SystemZMachineScheduler.h"
13 #include "SystemZTargetTransformInfo.h"
14 #include "TargetInfo/SystemZTargetInfo.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/Analysis/TargetTransformInfo.h"
20 #include "llvm/CodeGen/Passes.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/CodeGen/TargetPassConfig.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/Support/CodeGen.h"
25 #include "llvm/Support/TargetRegistry.h"
26 #include "llvm/Target/TargetLoweringObjectFile.h"
27 #include "llvm/Transforms/Scalar.h"
32 extern "C" void LLVMInitializeSystemZTarget() {
33 // Register the target.
34 RegisterTargetMachine
<SystemZTargetMachine
> X(getTheSystemZTarget());
37 // Determine whether we use the vector ABI.
38 static bool UsesVectorABI(StringRef CPU
, StringRef FS
) {
39 // We use the vector ABI whenever the vector facility is avaiable.
40 // This is the case by default if CPU is z13 or later, and can be
41 // overridden via "[+-]vector" feature string elements.
42 bool VectorABI
= true;
43 if (CPU
.empty() || CPU
== "generic" ||
44 CPU
== "z10" || CPU
== "z196" || CPU
== "zEC12")
47 SmallVector
<StringRef
, 3> Features
;
48 FS
.split(Features
, ',', -1, false /* KeepEmpty */);
49 for (auto &Feature
: Features
) {
50 if (Feature
== "vector" || Feature
== "+vector")
52 if (Feature
== "-vector")
59 static std::string
computeDataLayout(const Triple
&TT
, StringRef CPU
,
61 bool VectorABI
= UsesVectorABI(CPU
, FS
);
68 Ret
+= DataLayout::getManglingComponent(TT
);
70 // Make sure that global data has at least 16 bits of alignment by
71 // default, so that we can refer to it using LARL. We don't have any
72 // special requirements for stack variables though.
73 Ret
+= "-i1:8:16-i8:8:16";
75 // 64-bit integers are naturally aligned.
78 // 128-bit floats are aligned only to 64 bits.
81 // When using the vector ABI, 128-bit vectors are also aligned to 64 bits.
85 // We prefer 16 bits of aligned for all globals; see above.
88 // Integer registers are 32 or 64 bits.
94 static Reloc::Model
getEffectiveRelocModel(Optional
<Reloc::Model
> RM
) {
95 // Static code is suitable for use in a dynamic executable; there is no
96 // separate DynamicNoPIC model.
97 if (!RM
.hasValue() || *RM
== Reloc::DynamicNoPIC
)
102 // For SystemZ we define the models as follows:
104 // Small: BRASL can call any function and will use a stub if necessary.
105 // Locally-binding symbols will always be in range of LARL.
107 // Medium: BRASL can call any function and will use a stub if necessary.
108 // GOT slots and locally-defined text will always be in range
109 // of LARL, but other symbols might not be.
111 // Large: Equivalent to Medium for now.
113 // Kernel: Equivalent to Medium for now.
115 // This means that any PIC module smaller than 4GB meets the
116 // requirements of Small, so Small seems like the best default there.
118 // All symbols bind locally in a non-PIC module, so the choice is less
119 // obvious. There are two cases:
121 // - When creating an executable, PLTs and copy relocations allow
122 // us to treat external symbols as part of the executable.
123 // Any executable smaller than 4GB meets the requirements of Small,
124 // so that seems like the best default.
126 // - When creating JIT code, stubs will be in range of BRASL if the
127 // image is less than 4GB in size. GOT entries will likewise be
128 // in range of LARL. However, the JIT environment has no equivalent
129 // of copy relocs, so locally-binding data symbols might not be in
130 // the range of LARL. We need the Medium model in that case.
131 static CodeModel::Model
132 getEffectiveSystemZCodeModel(Optional
<CodeModel::Model
> CM
, Reloc::Model RM
,
135 if (*CM
== CodeModel::Tiny
)
136 report_fatal_error("Target does not support the tiny CodeModel", false);
137 if (*CM
== CodeModel::Kernel
)
138 report_fatal_error("Target does not support the kernel CodeModel", false);
142 return RM
== Reloc::PIC_
? CodeModel::Small
: CodeModel::Medium
;
143 return CodeModel::Small
;
146 SystemZTargetMachine::SystemZTargetMachine(const Target
&T
, const Triple
&TT
,
147 StringRef CPU
, StringRef FS
,
148 const TargetOptions
&Options
,
149 Optional
<Reloc::Model
> RM
,
150 Optional
<CodeModel::Model
> CM
,
151 CodeGenOpt::Level OL
, bool JIT
)
153 T
, computeDataLayout(TT
, CPU
, FS
), TT
, CPU
, FS
, Options
,
154 getEffectiveRelocModel(RM
),
155 getEffectiveSystemZCodeModel(CM
, getEffectiveRelocModel(RM
), JIT
),
157 TLOF(std::make_unique
<TargetLoweringObjectFileELF
>()),
158 Subtarget(TT
, CPU
, FS
, *this) {
162 SystemZTargetMachine::~SystemZTargetMachine() = default;
166 /// SystemZ Code Generator Pass Configuration Options.
167 class SystemZPassConfig
: public TargetPassConfig
{
169 SystemZPassConfig(SystemZTargetMachine
&TM
, PassManagerBase
&PM
)
170 : TargetPassConfig(TM
, PM
) {}
172 SystemZTargetMachine
&getSystemZTargetMachine() const {
173 return getTM
<SystemZTargetMachine
>();
177 createPostMachineScheduler(MachineSchedContext
*C
) const override
{
178 return new ScheduleDAGMI(C
,
179 std::make_unique
<SystemZPostRASchedStrategy
>(C
),
180 /*RemoveKillFlags=*/true);
183 void addIRPasses() override
;
184 bool addInstSelector() override
;
185 bool addILPOpts() override
;
186 void addPostRewrite() override
;
187 void addPreSched2() override
;
188 void addPreEmitPass() override
;
191 } // end anonymous namespace
193 void SystemZPassConfig::addIRPasses() {
194 if (getOptLevel() != CodeGenOpt::None
) {
195 addPass(createSystemZTDCPass());
196 addPass(createLoopDataPrefetchPass());
199 TargetPassConfig::addIRPasses();
202 bool SystemZPassConfig::addInstSelector() {
203 addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel()));
205 if (getOptLevel() != CodeGenOpt::None
)
206 addPass(createSystemZLDCleanupPass(getSystemZTargetMachine()));
211 bool SystemZPassConfig::addILPOpts() {
212 addPass(&EarlyIfConverterID
);
216 void SystemZPassConfig::addPostRewrite() {
217 addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
220 void SystemZPassConfig::addPreSched2() {
221 // PostRewrite needs to be run at -O0 also (in which case addPostRewrite()
223 if (getOptLevel() == CodeGenOpt::None
)
224 addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
226 if (getOptLevel() != CodeGenOpt::None
)
227 addPass(&IfConverterID
);
230 void SystemZPassConfig::addPreEmitPass() {
231 // Do instruction shortening before compare elimination because some
232 // vector instructions will be shortened into opcodes that compare
233 // elimination recognizes.
234 if (getOptLevel() != CodeGenOpt::None
)
235 addPass(createSystemZShortenInstPass(getSystemZTargetMachine()), false);
237 // We eliminate comparisons here rather than earlier because some
238 // transformations can change the set of available CC values and we
239 // generally want those transformations to have priority. This is
240 // especially true in the commonest case where the result of the comparison
241 // is used by a single in-range branch instruction, since we will then
242 // be able to fuse the compare and the branch instead.
244 // For example, two-address NILF can sometimes be converted into
245 // three-address RISBLG. NILF produces a CC value that indicates whether
246 // the low word is zero, but RISBLG does not modify CC at all. On the
247 // other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG.
248 // The CC value produced by NILL isn't useful for our purposes, but the
249 // value produced by RISBG can be used for any comparison with zero
250 // (not just equality). So there are some transformations that lose
251 // CC values (while still being worthwhile) and others that happen to make
252 // the CC result more useful than it was originally.
254 // Another reason is that we only want to use BRANCH ON COUNT in cases
255 // where we know that the count register is not going to be spilled.
257 // Doing it so late makes it more likely that a register will be reused
258 // between the comparison and the branch, but it isn't clear whether
259 // preventing that would be a win or not.
260 if (getOptLevel() != CodeGenOpt::None
)
261 addPass(createSystemZElimComparePass(getSystemZTargetMachine()), false);
262 addPass(createSystemZLongBranchPass(getSystemZTargetMachine()));
264 // Do final scheduling after all other optimizations, to get an
265 // optimal input for the decoder (branch relaxation must happen
266 // after block placement).
267 if (getOptLevel() != CodeGenOpt::None
)
268 addPass(&PostMachineSchedulerID
);
271 TargetPassConfig
*SystemZTargetMachine::createPassConfig(PassManagerBase
&PM
) {
272 return new SystemZPassConfig(*this, PM
);
276 SystemZTargetMachine::getTargetTransformInfo(const Function
&F
) {
277 return TargetTransformInfo(SystemZTTIImpl(this, F
));