1 //===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the interfaces that X86 uses to lower LLVM code into a
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
15 #define LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
17 #include "llvm/CodeGen/CallingConvLower.h"
18 #include "llvm/CodeGen/SelectionDAG.h"
19 #include "llvm/CodeGen/TargetLowering.h"
23 class X86TargetMachine
;
26 // X86 Specific DAG Nodes
27 enum NodeType
: unsigned {
28 // Start the numbering where the builtin ops leave off.
29 FIRST_NUMBER
= ISD::BUILTIN_OP_END
,
36 /// Double shift instructions. These correspond to
37 /// X86::SHLDxx and X86::SHRDxx instructions.
41 /// Bitwise logical AND of floating point values. This corresponds
42 /// to X86::ANDPS or X86::ANDPD.
45 /// Bitwise logical OR of floating point values. This corresponds
46 /// to X86::ORPS or X86::ORPD.
49 /// Bitwise logical XOR of floating point values. This corresponds
50 /// to X86::XORPS or X86::XORPD.
53 /// Bitwise logical ANDNOT of floating point values. This
54 /// corresponds to X86::ANDNPS or X86::ANDNPD.
57 /// These operations represent an abstract X86 call
58 /// instruction, which includes a bunch of information. In particular the
59 /// operands of these node are:
61 /// #0 - The incoming token chain
63 /// #2 - The number of arg bytes the caller pushes on the stack.
64 /// #3 - The number of arg bytes the callee pops off the stack.
65 /// #4 - The value to pass in AL/AX/EAX (optional)
66 /// #5 - The value to pass in DL/DX/EDX (optional)
68 /// The result values of these nodes are:
70 /// #0 - The outgoing token chain
71 /// #1 - The first register result value (optional)
72 /// #2 - The second register result value (optional)
76 /// Same as call except it adds the NoTrack prefix.
79 /// X86 compare and logical compare instructions.
82 /// X86 bit-test instructions.
85 /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
86 /// operand, usually produced by a CMP instruction.
92 // Same as SETCC except it's materialized with a sbb and the value is all
93 // one's or all zero's.
94 SETCC_CARRY
, // R = carry_bit ? ~0 : 0
96 /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
97 /// Operands are two FP values to compare; result is a mask of
98 /// 0s or 1s. Generally DTRT for C/C++ with NaNs.
101 /// X86 FP SETCC, similar to above, but with output as an i1 mask and
102 /// and a version with SAE.
103 FSETCCM
, FSETCCM_SAE
,
105 /// X86 conditional moves. Operand 0 and operand 1 are the two values
106 /// to select from. Operand 2 is the condition code, and operand 3 is the
107 /// flag operand produced by a CMP or TEST instruction.
110 /// X86 conditional branches. Operand 0 is the chain operand, operand 1
111 /// is the block to branch if condition is true, operand 2 is the
112 /// condition code, and operand 3 is the flag operand produced by a CMP
113 /// or TEST instruction.
116 /// BRIND node with NoTrack prefix. Operand 0 is the chain operand and
117 /// operand 1 is the target address.
120 /// Return with a flag operand. Operand 0 is the chain operand, operand
121 /// 1 is the number of bytes of stack to pop.
124 /// Return from interrupt. Operand 0 is the number of bytes to pop.
127 /// Repeat fill, corresponds to X86::REP_STOSx.
130 /// Repeat move, corresponds to X86::REP_MOVSx.
133 /// On Darwin, this node represents the result of the popl
134 /// at function entry, used for PIC code.
137 /// A wrapper node for TargetConstantPool, TargetJumpTable,
138 /// TargetExternalSymbol, TargetGlobalAddress, TargetGlobalTLSAddress,
139 /// MCSymbol and TargetBlockAddress.
142 /// Special wrapper used under X86-64 PIC mode for RIP
143 /// relative displacements.
146 /// Copies a 64-bit value from an MMX vector to the low word
147 /// of an XMM vector, with the high word zero filled.
150 /// Copies a 64-bit value from the low word of an XMM vector
151 /// to an MMX vector.
154 /// Copies a 32-bit value from the low word of a MMX
158 /// Copies a GPR into the low 32-bit word of a MMX vector
159 /// and zero out the high word.
162 /// Extract an 8-bit value from a vector and zero extend it to
163 /// i32, corresponds to X86::PEXTRB.
166 /// Extract a 16-bit value from a vector and zero extend it to
167 /// i32, corresponds to X86::PEXTRW.
170 /// Insert any element of a 4 x float vector into any element
171 /// of a destination 4 x floatvector.
174 /// Insert the lower 8-bits of a 32-bit value to a vector,
175 /// corresponds to X86::PINSRB.
178 /// Insert the lower 16-bits of a 32-bit value to a vector,
179 /// corresponds to X86::PINSRW.
182 /// Shuffle 16 8-bit values within a vector.
185 /// Compute Sum of Absolute Differences.
187 /// Compute Double Block Packed Sum-Absolute-Differences
190 /// Bitwise Logical AND NOT of Packed FP values.
193 /// Blend where the selector is an immediate.
196 /// Dynamic (non-constant condition) vector blend where only the sign bits
197 /// of the condition elements are used. This is used to enforce that the
198 /// condition mask is not valid for generic VSELECT optimizations. This
199 /// is also used to implement the intrinsics.
200 /// Operands are in VSELECT order: MASK, TRUE, FALSE
203 /// Combined add and sub on an FP vector.
206 // FP vector ops with rounding mode.
207 FADD_RND
, FADDS
, FADDS_RND
,
208 FSUB_RND
, FSUBS
, FSUBS_RND
,
209 FMUL_RND
, FMULS
, FMULS_RND
,
210 FDIV_RND
, FDIVS
, FDIVS_RND
,
213 FSQRT_RND
, FSQRTS
, FSQRTS_RND
,
215 // FP vector get exponent.
216 FGETEXP
, FGETEXP_SAE
, FGETEXPS
, FGETEXPS_SAE
,
217 // Extract Normalized Mantissas.
218 VGETMANT
, VGETMANT_SAE
, VGETMANTS
, VGETMANTS_SAE
,
221 SCALEFS
, SCALEFS_RND
,
223 // Unsigned Integer average.
226 /// Integer horizontal add/sub.
230 /// Floating point horizontal add/sub.
234 // Detect Conflicts Within a Vector
237 /// Floating point max and min.
240 /// Commutative FMIN and FMAX.
243 /// Scalar intrinsic floating point max and min.
246 /// Floating point reciprocal-sqrt and reciprocal approximation.
247 /// Note that these typically require refinement
248 /// in order to obtain suitable precision.
251 // AVX-512 reciprocal approximations with a little more precision.
252 RSQRT14
, RSQRT14S
, RCP14
, RCP14S
,
254 // Thread Local Storage.
257 // Thread Local Storage. A call to get the start address
258 // of the TLS block for the current module.
261 // Thread Local Storage. When calling to an OS provided
262 // thunk at the address from an earlier relocation.
265 // Exception Handling helpers.
268 // SjLj exception handling setjmp.
271 // SjLj exception handling longjmp.
274 // SjLj exception handling dispatch.
275 EH_SJLJ_SETUP_DISPATCH
,
277 /// Tail call return. See X86TargetLowering::LowerCall for
278 /// the list of operands.
281 // Vector move to low scalar and zero higher vector elements.
284 // Vector integer truncate.
286 // Vector integer truncate with unsigned/signed saturation.
289 // Masked version of the above. Used when less than a 128-bit result is
290 // produced since the mask only applies to the lower elements and can't
291 // be represented by a select.
292 // SRC, PASSTHRU, MASK
293 VMTRUNC
, VMTRUNCUS
, VMTRUNCS
,
296 VFPEXT
, VFPEXT_SAE
, VFPEXTS
, VFPEXTS_SAE
,
299 VFPROUND
, VFPROUND_RND
, VFPROUNDS
, VFPROUNDS_RND
,
301 // Masked version of above. Used for v2f64->v4f32.
302 // SRC, PASSTHRU, MASK
305 // 128-bit vector logical left / right shift
308 // Vector shift elements
311 // Vector variable shift
314 // Vector shift elements by immediate
317 // Shifts of mask registers.
320 // Bit rotate by immediate
323 // Vector packed double/float comparison.
326 // Vector integer comparisons.
329 // v8i16 Horizontal minimum and position.
334 /// Vector comparison generating mask bits for fp and
335 /// integer signed and unsigned data types.
337 // Vector comparison with SAE for FP values
340 // Arithmetic operations with FLAGS results.
341 ADD
, SUB
, ADC
, SBB
, SMUL
, UMUL
,
344 // Bit field extract.
347 // Zero High Bits Starting with Specified Bit Position.
350 // X86-specific multiply by immediate.
353 // Vector sign bit extraction.
356 // Vector bitwise comparisons.
359 // Vector packed fp sign bitwise comparisons.
362 // OR/AND test for masks.
369 // Several flavors of instructions with vector shuffle behaviors.
370 // Saturated signed/unnsigned packing.
373 // Intra-lane alignr.
375 // AVX512 inter-lane alignr.
381 // VBMI2 Concat & Shift.
386 //Shuffle Packed Values at 128-bit granularity.
402 // Variable Permute (VPERM).
403 // Res = VPERMV MaskV, V0
406 // 3-op Variable Permute (VPERMT2).
407 // Res = VPERMV3 V0, MaskV, V1
410 // Bitwise ternary logic.
412 // Fix Up Special Packed Float32/64 values.
413 VFIXUPIMM
, VFIXUPIMM_SAE
,
414 VFIXUPIMMS
, VFIXUPIMMS_SAE
,
415 // Range Restriction Calculation For Packed Pairs of Float32/64 values.
416 VRANGE
, VRANGE_SAE
, VRANGES
, VRANGES_SAE
,
417 // Reduce - Perform Reduction Transformation on scalar\packed FP.
418 VREDUCE
, VREDUCE_SAE
, VREDUCES
, VREDUCES_SAE
,
419 // RndScale - Round FP Values To Include A Given Number Of Fraction Bits.
420 // Also used by the legacy (V)ROUND intrinsics where we mask out the
421 // scaling part of the immediate.
422 VRNDSCALE
, VRNDSCALE_SAE
, VRNDSCALES
, VRNDSCALES_SAE
,
423 // Tests Types Of a FP Values for packed types.
425 // Tests Types Of a FP Values for scalar types.
428 // Broadcast (splat) scalar or element 0 of a vector. If the operand is
429 // a vector, this node may change the vector length as part of the splat.
431 // Broadcast mask to vector.
433 // Broadcast subvector to vector.
436 /// SSE4A Extraction and Insertion.
439 // XOP arithmetic/logical shifts.
441 // XOP signed/unsigned integer comparisons.
443 // XOP packed permute bytes.
445 // XOP two source permutation.
448 // Vector multiply packed unsigned doubleword integers.
450 // Vector multiply packed signed doubleword integers.
452 // Vector Multiply Packed UnsignedIntegers with Round and Scale.
455 // Multiply and Add Packed Integers.
456 VPMADDUBSW
, VPMADDWD
,
458 // AVX512IFMA multiply and add.
459 // NOTE: These are different than the instruction and perform
461 VPMADD52L
, VPMADD52H
,
470 // We use the target independent ISD::FMA for the non-inverted case.
477 // FMA with rounding mode.
485 // Compress and expand.
492 // Convert Unsigned/Integer to Floating-Point Value with rounding mode.
493 SINT_TO_FP_RND
, UINT_TO_FP_RND
,
494 SCALAR_SINT_TO_FP
, SCALAR_UINT_TO_FP
,
495 SCALAR_SINT_TO_FP_RND
, SCALAR_UINT_TO_FP_RND
,
497 // Vector float/double to signed/unsigned integer.
498 CVTP2SI
, CVTP2UI
, CVTP2SI_RND
, CVTP2UI_RND
,
499 // Scalar float/double to signed/unsigned integer.
500 CVTS2SI
, CVTS2UI
, CVTS2SI_RND
, CVTS2UI_RND
,
502 // Vector float/double to signed/unsigned integer with truncation.
503 CVTTP2SI
, CVTTP2UI
, CVTTP2SI_SAE
, CVTTP2UI_SAE
,
504 // Scalar float/double to signed/unsigned integer with truncation.
505 CVTTS2SI
, CVTTS2UI
, CVTTS2SI_SAE
, CVTTS2UI_SAE
,
507 // Vector signed/unsigned integer to float/double.
510 // Masked versions of above. Used for v2f64->v4f32.
511 // SRC, PASSTHRU, MASK
512 MCVTP2SI
, MCVTP2UI
, MCVTTP2SI
, MCVTTP2UI
,
515 // Vector float to bfloat16.
516 // Convert TWO packed single data to one packed BF16 data
518 // Convert packed single data to packed BF16 data
520 // Masked version of above.
521 // SRC, PASSTHRU, MASK
524 // Dot product of BF16 pairs to accumulated into
525 // packed single precision.
528 // Save xmm argument registers to the stack, according to %al. An operator
529 // is needed so that this can be expanded with control flow.
530 VASTART_SAVE_XMM_REGS
,
532 // Windows's _chkstk call to do stack probing.
535 // For allocating variable amounts of stack space when using
536 // segmented stacks. Check if the current stacklet has enough space, and
537 // falls back to heap allocation if not.
544 // Store FP status word into i16 register.
547 // Store contents of %ah into %eflags.
550 // Get a random integer and indicate whether it is valid in CF.
553 // Get a NIST SP800-90B & C compliant random integer and
554 // indicate whether it is valid in CF.
558 // RDPKRU - Operand 0 is chain. Operand 1 is value for ECX.
559 // WRPKRU - Operand 0 is chain. Operand 1 is value for EDX. Operand 2 is
563 // SSE42 string comparisons.
564 // These nodes produce 3 results, index, mask, and flags. X86ISelDAGToDAG
565 // will emit one or two instructions based on which results are used. If
566 // flags and index/mask this allows us to use a single instruction since
567 // we won't have to pick and opcode for flags. Instead we can rely on the
568 // DAG to CSE everything and decide at isel.
572 // Test if in transactional execution.
576 RSQRT28
, RSQRT28_SAE
, RSQRT28S
, RSQRT28S_SAE
,
577 RCP28
, RCP28_SAE
, RCP28S
, RCP28S_SAE
, EXP2
, EXP2_SAE
,
579 // Conversions between float and half-float.
580 CVTPS2PH
, CVTPH2PS
, CVTPH2PS_SAE
,
582 // Masked version of above.
583 // SRC, RND, PASSTHRU, MASK
586 // Galois Field Arithmetic Instructions
587 GF2P8AFFINEINVQB
, GF2P8AFFINEQB
, GF2P8MULB
,
589 // LWP insert record.
595 // Enqueue Stores Instructions
598 // For avx512-vp2intersect
602 LCMPXCHG_DAG
= ISD::FIRST_TARGET_MEMORY_OPCODE
,
605 LCMPXCHG8_SAVE_EBX_DAG
,
606 LCMPXCHG16_SAVE_RBX_DAG
,
608 /// LOCK-prefixed arithmetic read-modify-write instructions.
609 /// EFLAGS, OUTCHAIN = LADD(INCHAIN, PTR, RHS)
610 LADD
, LSUB
, LOR
, LXOR
, LAND
,
612 // Load, scalar_to_vector, and zero extend.
615 // extract_vector_elt, store.
618 // Store FP control world into i16 memory.
621 /// This instruction implements FP_TO_SINT with the
622 /// integer destination in memory and a FP reg source. This corresponds
623 /// to the X86::FIST*m instructions and the rounding mode change stuff. It
624 /// has two inputs (token chain and address) and two outputs (int value
625 /// and token chain). Memory VT specifies the type to store to.
628 /// This instruction implements SINT_TO_FP with the
629 /// integer source in memory and FP reg result. This corresponds to the
630 /// X86::FILD*m instructions. It has two inputs (token chain and address)
631 /// and two outputs (FP value and token chain). FILD_FLAG also produces a
632 /// flag). The integer source type is specified by the memory VT.
636 /// This instruction implements a fp->int store from FP stack
637 /// slots. This corresponds to the fist instruction. It takes a
638 /// chain operand, value to store, address, and glue. The memory VT
639 /// specifies the type to store as.
642 /// This instruction implements an extending load to FP stack slots.
643 /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
644 /// operand, and ptr to load from. The memory VT specifies the type to
648 /// This instruction implements a truncating store from FP stack
649 /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
650 /// chain operand, value to store, address, and glue. The memory VT
651 /// specifies the type to store as.
654 /// This instruction grabs the address of the next argument
655 /// from a va_list. (reads and modifies the va_list in memory)
658 // Vector truncating store with unsigned/signed saturation
659 VTRUNCSTOREUS
, VTRUNCSTORES
,
660 // Vector truncating masked store with unsigned/signed saturation
661 VMTRUNCSTOREUS
, VMTRUNCSTORES
,
663 // X86 specific gather and scatter
666 // WARNING: Do not add anything in the end unless you want the node to
667 // have memop! In fact, starting from FIRST_TARGET_MEMORY_OPCODE all
668 // opcodes will be thought as target memory ops!
670 } // end namespace X86ISD
672 /// Define some predicates that are used for node matching.
674 /// Returns true if Elt is a constant zero or floating point constant +0.0.
675 bool isZeroNode(SDValue Elt
);
677 /// Returns true of the given offset can be
678 /// fit into displacement field of the instruction.
679 bool isOffsetSuitableForCodeModel(int64_t Offset
, CodeModel::Model M
,
680 bool hasSymbolicDisplacement
= true);
682 /// Determines whether the callee is required to pop its
683 /// own arguments. Callee pop is necessary to support tail calls.
684 bool isCalleePop(CallingConv::ID CallingConv
,
685 bool is64Bit
, bool IsVarArg
, bool GuaranteeTCO
);
687 /// If Op is a constant whose elements are all the same constant or
688 /// undefined, return true and return the constant value in \p SplatVal.
689 bool isConstantSplat(SDValue Op
, APInt
&SplatVal
);
690 } // end namespace X86
692 //===--------------------------------------------------------------------===//
693 // X86 Implementation of the TargetLowering interface
694 class X86TargetLowering final
: public TargetLowering
{
696 explicit X86TargetLowering(const X86TargetMachine
&TM
,
697 const X86Subtarget
&STI
);
699 unsigned getJumpTableEncoding() const override
;
700 bool useSoftFloat() const override
;
702 void markLibCallAttributes(MachineFunction
*MF
, unsigned CC
,
703 ArgListTy
&Args
) const override
;
705 MVT
getScalarShiftAmountTy(const DataLayout
&, EVT VT
) const override
{
710 LowerCustomJumpTableEntry(const MachineJumpTableInfo
*MJTI
,
711 const MachineBasicBlock
*MBB
, unsigned uid
,
712 MCContext
&Ctx
) const override
;
714 /// Returns relocation base for the given PIC jumptable.
715 SDValue
getPICJumpTableRelocBase(SDValue Table
,
716 SelectionDAG
&DAG
) const override
;
718 getPICJumpTableRelocBaseExpr(const MachineFunction
*MF
,
719 unsigned JTI
, MCContext
&Ctx
) const override
;
721 /// Return the desired alignment for ByVal aggregate
722 /// function arguments in the caller parameter area. For X86, aggregates
723 /// that contains are placed at 16-byte boundaries while the rest are at
724 /// 4-byte boundaries.
725 unsigned getByValTypeAlignment(Type
*Ty
,
726 const DataLayout
&DL
) const override
;
728 /// Returns the target specific optimal type for load
729 /// and store operations as a result of memset, memcpy, and memmove
730 /// lowering. If DstAlign is zero that means it's safe to destination
731 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
732 /// means there isn't a need to check it against alignment requirement,
733 /// probably because the source does not need to be loaded. If 'IsMemset' is
734 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
735 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
736 /// source is constant so it does not need to be loaded.
737 /// It returns EVT::Other if the type should be determined using generic
738 /// target-independent logic.
739 EVT
getOptimalMemOpType(uint64_t Size
, unsigned DstAlign
, unsigned SrcAlign
,
740 bool IsMemset
, bool ZeroMemset
, bool MemcpyStrSrc
,
741 const AttributeList
&FuncAttributes
) const override
;
743 /// Returns true if it's safe to use load / store of the
744 /// specified type to expand memcpy / memset inline. This is mostly true
745 /// for all types except for some special cases. For example, on X86
746 /// targets without SSE2 f64 load / store are done with fldl / fstpl which
747 /// also does type conversion. Note the specified type doesn't have to be
748 /// legal as the hook is used before type legalization.
749 bool isSafeMemOpType(MVT VT
) const override
;
751 /// Returns true if the target allows unaligned memory accesses of the
752 /// specified type. Returns whether it is "fast" in the last argument.
753 bool allowsMisalignedMemoryAccesses(EVT VT
, unsigned AS
, unsigned Align
,
754 MachineMemOperand::Flags Flags
,
755 bool *Fast
) const override
;
757 /// Provide custom lowering hooks for some operations.
759 SDValue
LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const override
;
761 /// Places new result values for the node in Results (their number
762 /// and types must exactly match those of the original return values of
763 /// the node), or leaves Results empty, which indicates that the node is not
764 /// to be custom lowered after all.
765 void LowerOperationWrapper(SDNode
*N
,
766 SmallVectorImpl
<SDValue
> &Results
,
767 SelectionDAG
&DAG
) const override
;
769 /// Replace the results of node with an illegal result
770 /// type with new values built out of custom code.
772 void ReplaceNodeResults(SDNode
*N
, SmallVectorImpl
<SDValue
>&Results
,
773 SelectionDAG
&DAG
) const override
;
775 SDValue
PerformDAGCombine(SDNode
*N
, DAGCombinerInfo
&DCI
) const override
;
777 // Return true if it is profitable to combine a BUILD_VECTOR with a
778 // stride-pattern to a shuffle and a truncate.
779 // Example of such a combine:
780 // v4i32 build_vector((extract_elt V, 1),
781 // (extract_elt V, 3),
782 // (extract_elt V, 5),
783 // (extract_elt V, 7))
785 // v4i32 truncate (bitcast (shuffle<1,u,3,u,4,u,5,u,6,u,7,u> V, u) to
787 bool isDesirableToCombineBuildVectorToShuffleTruncate(
788 ArrayRef
<int> ShuffleMask
, EVT SrcVT
, EVT TruncVT
) const override
;
790 /// Return true if the target has native support for
791 /// the specified value type and it is 'desirable' to use the type for the
792 /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
793 /// instruction encodings are longer and some i16 instructions are slow.
794 bool isTypeDesirableForOp(unsigned Opc
, EVT VT
) const override
;
796 /// Return true if the target has native support for the
797 /// specified value type and it is 'desirable' to use the type. e.g. On x86
798 /// i16 is legal, but undesirable since i16 instruction encodings are longer
799 /// and some i16 instructions are slow.
800 bool IsDesirableToPromoteOp(SDValue Op
, EVT
&PVT
) const override
;
802 /// Return 1 if we can compute the negated form of the specified expression
803 /// for the same cost as the expression itself, or 2 if we can compute the
804 /// negated form more cheaply than the expression itself. Else return 0.
805 char isNegatibleForFree(SDValue Op
, SelectionDAG
&DAG
, bool LegalOperations
,
806 bool ForCodeSize
, unsigned Depth
) const override
;
808 /// If isNegatibleForFree returns true, return the newly negated expression.
809 SDValue
getNegatedExpression(SDValue Op
, SelectionDAG
&DAG
,
810 bool LegalOperations
, bool ForCodeSize
,
811 unsigned Depth
) const override
;
814 EmitInstrWithCustomInserter(MachineInstr
&MI
,
815 MachineBasicBlock
*MBB
) const override
;
817 /// This method returns the name of a target specific DAG node.
818 const char *getTargetNodeName(unsigned Opcode
) const override
;
820 /// Do not merge vector stores after legalization because that may conflict
821 /// with x86-specific store splitting optimizations.
822 bool mergeStoresAfterLegalization(EVT MemVT
) const override
{
823 return !MemVT
.isVector();
826 bool canMergeStoresTo(unsigned AddressSpace
, EVT MemVT
,
827 const SelectionDAG
&DAG
) const override
;
829 bool isCheapToSpeculateCttz() const override
;
831 bool isCheapToSpeculateCtlz() const override
;
833 bool isCtlzFast() const override
;
835 bool hasBitPreservingFPLogic(EVT VT
) const override
{
836 return VT
== MVT::f32
|| VT
== MVT::f64
|| VT
.isVector();
839 bool isMultiStoresCheaperThanBitsMerge(EVT LTy
, EVT HTy
) const override
{
840 // If the pair to store is a mixture of float and int values, we will
841 // save two bitwise instructions and one float-to-int instruction and
842 // increase one store instruction. There is potentially a more
843 // significant benefit because it avoids the float->int domain switch
844 // for input value. So It is more likely a win.
845 if ((LTy
.isFloatingPoint() && HTy
.isInteger()) ||
846 (LTy
.isInteger() && HTy
.isFloatingPoint()))
848 // If the pair only contains int values, we will save two bitwise
849 // instructions and increase one store instruction (costing one more
850 // store buffer). Since the benefit is more blurred so we leave
851 // such pair out until we get testcase to prove it is a win.
855 bool isMaskAndCmp0FoldingBeneficial(const Instruction
&AndI
) const override
;
857 bool hasAndNotCompare(SDValue Y
) const override
;
859 bool hasAndNot(SDValue Y
) const override
;
861 bool hasBitTest(SDValue X
, SDValue Y
) const override
;
863 bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
864 SDValue X
, ConstantSDNode
*XC
, ConstantSDNode
*CC
, SDValue Y
,
865 unsigned OldShiftOpcode
, unsigned NewShiftOpcode
,
866 SelectionDAG
&DAG
) const override
;
868 bool shouldFoldConstantShiftPairToMask(const SDNode
*N
,
869 CombineLevel Level
) const override
;
871 bool shouldFoldMaskToVariableShiftPair(SDValue Y
) const override
;
874 shouldTransformSignedTruncationCheck(EVT XVT
,
875 unsigned KeptBits
) const override
{
876 // For vectors, we don't have a preference..
880 auto VTIsOk
= [](EVT VT
) -> bool {
881 return VT
== MVT::i8
|| VT
== MVT::i16
|| VT
== MVT::i32
||
885 // We are ok with KeptBitsVT being byte/word/dword, what MOVS supports.
886 // XVT will be larger than KeptBitsVT.
887 MVT KeptBitsVT
= MVT::getIntegerVT(KeptBits
);
888 return VTIsOk(XVT
) && VTIsOk(KeptBitsVT
);
891 bool shouldExpandShift(SelectionDAG
&DAG
, SDNode
*N
) const override
;
893 bool shouldSplatInsEltVarIndex(EVT VT
) const override
;
895 bool convertSetCCLogicToBitwiseLogic(EVT VT
) const override
{
896 return VT
.isScalarInteger();
899 /// Vector-sized comparisons are fast using PCMPEQ + PMOVMSK or PTEST.
900 MVT
hasFastEqualityCompare(unsigned NumBits
) const override
;
902 /// Return the value type to use for ISD::SETCC.
903 EVT
getSetCCResultType(const DataLayout
&DL
, LLVMContext
&Context
,
904 EVT VT
) const override
;
906 bool targetShrinkDemandedConstant(SDValue Op
, const APInt
&Demanded
,
907 TargetLoweringOpt
&TLO
) const override
;
909 /// Determine which of the bits specified in Mask are known to be either
910 /// zero or one and return them in the KnownZero/KnownOne bitsets.
911 void computeKnownBitsForTargetNode(const SDValue Op
,
913 const APInt
&DemandedElts
,
914 const SelectionDAG
&DAG
,
915 unsigned Depth
= 0) const override
;
917 /// Determine the number of bits in the operation that are sign bits.
918 unsigned ComputeNumSignBitsForTargetNode(SDValue Op
,
919 const APInt
&DemandedElts
,
920 const SelectionDAG
&DAG
,
921 unsigned Depth
) const override
;
923 bool SimplifyDemandedVectorEltsForTargetNode(SDValue Op
,
924 const APInt
&DemandedElts
,
927 TargetLoweringOpt
&TLO
,
928 unsigned Depth
) const override
;
930 bool SimplifyDemandedBitsForTargetNode(SDValue Op
,
931 const APInt
&DemandedBits
,
932 const APInt
&DemandedElts
,
934 TargetLoweringOpt
&TLO
,
935 unsigned Depth
) const override
;
937 SDValue
SimplifyMultipleUseDemandedBitsForTargetNode(
938 SDValue Op
, const APInt
&DemandedBits
, const APInt
&DemandedElts
,
939 SelectionDAG
&DAG
, unsigned Depth
) const override
;
941 const Constant
*getTargetConstantFromLoad(LoadSDNode
*LD
) const override
;
943 SDValue
unwrapAddress(SDValue N
) const override
;
945 SDValue
getReturnAddressFrameIndex(SelectionDAG
&DAG
) const;
947 bool ExpandInlineAsm(CallInst
*CI
) const override
;
949 ConstraintType
getConstraintType(StringRef Constraint
) const override
;
951 /// Examine constraint string and operand type and determine a weight value.
952 /// The operand object must already have been set up with the operand type.
954 getSingleConstraintMatchWeight(AsmOperandInfo
&info
,
955 const char *constraint
) const override
;
957 const char *LowerXConstraint(EVT ConstraintVT
) const override
;
959 /// Lower the specified operand into the Ops vector. If it is invalid, don't
960 /// add anything to Ops. If hasMemory is true it means one of the asm
961 /// constraint of the inline asm instruction being processed is 'm'.
962 void LowerAsmOperandForConstraint(SDValue Op
,
963 std::string
&Constraint
,
964 std::vector
<SDValue
> &Ops
,
965 SelectionDAG
&DAG
) const override
;
968 getInlineAsmMemConstraint(StringRef ConstraintCode
) const override
{
969 if (ConstraintCode
== "i")
970 return InlineAsm::Constraint_i
;
971 else if (ConstraintCode
== "o")
972 return InlineAsm::Constraint_o
;
973 else if (ConstraintCode
== "v")
974 return InlineAsm::Constraint_v
;
975 else if (ConstraintCode
== "X")
976 return InlineAsm::Constraint_X
;
977 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode
);
980 /// Handle Lowering flag assembly outputs.
981 SDValue
LowerAsmOutputForConstraint(SDValue
&Chain
, SDValue
&Flag
, SDLoc DL
,
982 const AsmOperandInfo
&Constraint
,
983 SelectionDAG
&DAG
) const override
;
985 /// Given a physical register constraint
986 /// (e.g. {edx}), return the register number and the register class for the
987 /// register. This should only be used for C_Register constraints. On
988 /// error, this returns a register number of 0.
989 std::pair
<unsigned, const TargetRegisterClass
*>
990 getRegForInlineAsmConstraint(const TargetRegisterInfo
*TRI
,
991 StringRef Constraint
, MVT VT
) const override
;
993 /// Return true if the addressing mode represented
994 /// by AM is legal for this target, for a load/store of the specified type.
995 bool isLegalAddressingMode(const DataLayout
&DL
, const AddrMode
&AM
,
996 Type
*Ty
, unsigned AS
,
997 Instruction
*I
= nullptr) const override
;
999 /// Return true if the specified immediate is legal
1000 /// icmp immediate, that is the target has icmp instructions which can
1001 /// compare a register against the immediate without having to materialize
1002 /// the immediate into a register.
1003 bool isLegalICmpImmediate(int64_t Imm
) const override
;
1005 /// Return true if the specified immediate is legal
1006 /// add immediate, that is the target has add instructions which can
1007 /// add a register and the immediate without having to materialize
1008 /// the immediate into a register.
1009 bool isLegalAddImmediate(int64_t Imm
) const override
;
1011 bool isLegalStoreImmediate(int64_t Imm
) const override
;
1013 /// Return the cost of the scaling factor used in the addressing
1014 /// mode represented by AM for this target, for a load/store
1015 /// of the specified type.
1016 /// If the AM is supported, the return value must be >= 0.
1017 /// If the AM is not supported, it returns a negative value.
1018 int getScalingFactorCost(const DataLayout
&DL
, const AddrMode
&AM
, Type
*Ty
,
1019 unsigned AS
) const override
;
1021 bool isVectorShiftByScalarCheap(Type
*Ty
) const override
;
1023 /// Add x86-specific opcodes to the default list.
1024 bool isBinOp(unsigned Opcode
) const override
;
1026 /// Returns true if the opcode is a commutative binary operation.
1027 bool isCommutativeBinOp(unsigned Opcode
) const override
;
1029 /// Return true if it's free to truncate a value of
1030 /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1031 /// register EAX to i16 by referencing its sub-register AX.
1032 bool isTruncateFree(Type
*Ty1
, Type
*Ty2
) const override
;
1033 bool isTruncateFree(EVT VT1
, EVT VT2
) const override
;
1035 bool allowTruncateForTailCall(Type
*Ty1
, Type
*Ty2
) const override
;
1037 /// Return true if any actual instruction that defines a
1038 /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
1039 /// register. This does not necessarily include registers defined in
1040 /// unknown ways, such as incoming arguments, or copies from unknown
1041 /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1042 /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1043 /// all instructions that define 32-bit values implicit zero-extend the
1044 /// result out to 64 bits.
1045 bool isZExtFree(Type
*Ty1
, Type
*Ty2
) const override
;
1046 bool isZExtFree(EVT VT1
, EVT VT2
) const override
;
1047 bool isZExtFree(SDValue Val
, EVT VT2
) const override
;
1049 /// Return true if folding a vector load into ExtVal (a sign, zero, or any
1050 /// extend node) is profitable.
1051 bool isVectorLoadExtDesirable(SDValue
) const override
;
1053 /// Return true if an FMA operation is faster than a pair of fmul and fadd
1054 /// instructions. fmuladd intrinsics will be expanded to FMAs when this
1055 /// method returns true, otherwise fmuladd is expanded to fmul + fadd.
1056 bool isFMAFasterThanFMulAndFAdd(EVT VT
) const override
;
1058 /// Return true if it's profitable to narrow
1059 /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1060 /// from i32 to i8 but not from i32 to i16.
1061 bool isNarrowingProfitable(EVT VT1
, EVT VT2
) const override
;
1063 /// Given an intrinsic, checks if on the target the intrinsic will need to map
1064 /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
1065 /// true and stores the intrinsic information into the IntrinsicInfo that was
1066 /// passed to the function.
1067 bool getTgtMemIntrinsic(IntrinsicInfo
&Info
, const CallInst
&I
,
1068 MachineFunction
&MF
,
1069 unsigned Intrinsic
) const override
;
1071 /// Returns true if the target can instruction select the
1072 /// specified FP immediate natively. If false, the legalizer will
1073 /// materialize the FP immediate as a load from a constant pool.
1074 bool isFPImmLegal(const APFloat
&Imm
, EVT VT
,
1075 bool ForCodeSize
) const override
;
1077 /// Targets can use this to indicate that they only support *some*
1078 /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a
1079 /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to
1081 bool isShuffleMaskLegal(ArrayRef
<int> Mask
, EVT VT
) const override
;
1083 /// Similar to isShuffleMaskLegal. Targets can use this to indicate if there
1084 /// is a suitable VECTOR_SHUFFLE that can be used to replace a VAND with a
1085 /// constant pool entry.
1086 bool isVectorClearMaskLegal(ArrayRef
<int> Mask
, EVT VT
) const override
;
1088 /// Returns true if lowering to a jump table is allowed.
1089 bool areJTsAllowed(const Function
*Fn
) const override
;
1091 /// If true, then instruction selection should
1092 /// seek to shrink the FP constant of the specified type to a smaller type
1093 /// in order to save space and / or reduce runtime.
1094 bool ShouldShrinkFPConstant(EVT VT
) const override
{
1095 // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
1096 // expensive than a straight movsd. On the other hand, it's important to
1097 // shrink long double fp constant since fldt is very slow.
1098 return !X86ScalarSSEf64
|| VT
== MVT::f80
;
1101 /// Return true if we believe it is correct and profitable to reduce the
1102 /// load node to a smaller type.
1103 bool shouldReduceLoadWidth(SDNode
*Load
, ISD::LoadExtType ExtTy
,
1104 EVT NewVT
) const override
;
1106 /// Return true if the specified scalar FP type is computed in an SSE
1107 /// register, not on the X87 floating point stack.
1108 bool isScalarFPTypeInSSEReg(EVT VT
) const {
1109 return (VT
== MVT::f64
&& X86ScalarSSEf64
) || // f64 is when SSE2
1110 (VT
== MVT::f32
&& X86ScalarSSEf32
); // f32 is when SSE1
1113 /// Returns true if it is beneficial to convert a load of a constant
1114 /// to just the constant itself.
1115 bool shouldConvertConstantLoadToIntImm(const APInt
&Imm
,
1116 Type
*Ty
) const override
;
1118 bool reduceSelectOfFPConstantLoads(EVT CmpOpVT
) const override
;
1120 bool convertSelectOfConstantsToMath(EVT VT
) const override
;
1122 bool decomposeMulByConstant(LLVMContext
&Context
, EVT VT
,
1123 SDValue C
) const override
;
1125 bool shouldUseStrictFP_TO_INT(EVT FpVT
, EVT IntVT
,
1126 bool IsSigned
) const override
;
1128 /// Return true if EXTRACT_SUBVECTOR is cheap for this result type
1129 /// with this index.
1130 bool isExtractSubvectorCheap(EVT ResVT
, EVT SrcVT
,
1131 unsigned Index
) const override
;
1133 /// Scalar ops always have equal or better analysis/performance/power than
1134 /// the vector equivalent, so this always makes sense if the scalar op is
1136 bool shouldScalarizeBinop(SDValue
) const override
;
1138 /// Extract of a scalar FP value from index 0 of a vector is free.
1139 bool isExtractVecEltCheap(EVT VT
, unsigned Index
) const override
{
1140 EVT EltVT
= VT
.getScalarType();
1141 return (EltVT
== MVT::f32
|| EltVT
== MVT::f64
) && Index
== 0;
1144 /// Overflow nodes should get combined/lowered to optimal instructions
1145 /// (they should allow eliminating explicit compares by getting flags from
1147 bool shouldFormOverflowOp(unsigned Opcode
, EVT VT
) const override
;
1149 bool storeOfVectorConstantIsCheap(EVT MemVT
, unsigned NumElem
,
1150 unsigned AddrSpace
) const override
{
1151 // If we can replace more than 2 scalar stores, there will be a reduction
1152 // in instructions even after we add a vector constant load.
1156 bool isLoadBitCastBeneficial(EVT LoadVT
, EVT BitcastVT
,
1157 const SelectionDAG
&DAG
,
1158 const MachineMemOperand
&MMO
) const override
;
1160 /// Intel processors have a unified instruction and data cache
1161 const char * getClearCacheBuiltinName() const override
{
1162 return nullptr; // nothing to do, move along.
1165 unsigned getRegisterByName(const char* RegName
, EVT VT
,
1166 SelectionDAG
&DAG
) const override
;
1168 /// If a physical register, this returns the register that receives the
1169 /// exception address on entry to an EH pad.
1171 getExceptionPointerRegister(const Constant
*PersonalityFn
) const override
;
1173 /// If a physical register, this returns the register that receives the
1174 /// exception typeid on entry to a landing pad.
1176 getExceptionSelectorRegister(const Constant
*PersonalityFn
) const override
;
1178 virtual bool needsFixedCatchObjects() const override
;
1180 /// This method returns a target specific FastISel object,
1181 /// or null if the target does not support "fast" ISel.
1182 FastISel
*createFastISel(FunctionLoweringInfo
&funcInfo
,
1183 const TargetLibraryInfo
*libInfo
) const override
;
1185 /// If the target has a standard location for the stack protector cookie,
1186 /// returns the address of that location. Otherwise, returns nullptr.
1187 Value
*getIRStackGuard(IRBuilder
<> &IRB
) const override
;
1189 bool useLoadStackGuardNode() const override
;
1190 bool useStackGuardXorFP() const override
;
1191 void insertSSPDeclarations(Module
&M
) const override
;
1192 Value
*getSDagStackGuard(const Module
&M
) const override
;
1193 Function
*getSSPStackGuardCheck(const Module
&M
) const override
;
1194 SDValue
emitStackGuardXorFP(SelectionDAG
&DAG
, SDValue Val
,
1195 const SDLoc
&DL
) const override
;
1198 /// Return true if the target stores SafeStack pointer at a fixed offset in
1199 /// some non-standard address space, and populates the address space and
1200 /// offset as appropriate.
1201 Value
*getSafeStackPointerLocation(IRBuilder
<> &IRB
) const override
;
1203 SDValue
BuildFILD(SDValue Op
, EVT SrcVT
, SDValue Chain
, SDValue StackSlot
,
1204 SelectionDAG
&DAG
) const;
1206 bool isNoopAddrSpaceCast(unsigned SrcAS
, unsigned DestAS
) const override
;
1208 /// Customize the preferred legalization strategy for certain types.
1209 LegalizeTypeAction
getPreferredVectorAction(MVT VT
) const override
;
1211 MVT
getRegisterTypeForCallingConv(LLVMContext
&Context
, CallingConv::ID CC
,
1212 EVT VT
) const override
;
1214 unsigned getNumRegistersForCallingConv(LLVMContext
&Context
,
1216 EVT VT
) const override
;
1218 unsigned getVectorTypeBreakdownForCallingConv(
1219 LLVMContext
&Context
, CallingConv::ID CC
, EVT VT
, EVT
&IntermediateVT
,
1220 unsigned &NumIntermediates
, MVT
&RegisterVT
) const override
;
1222 bool isIntDivCheap(EVT VT
, AttributeList Attr
) const override
;
1224 bool supportSwiftError() const override
;
1226 StringRef
getStackProbeSymbolName(MachineFunction
&MF
) const override
;
1228 unsigned getStackProbeSize(MachineFunction
&MF
) const;
1230 bool hasVectorBlend() const override
{ return true; }
1232 unsigned getMaxSupportedInterleaveFactor() const override
{ return 4; }
1234 /// Lower interleaved load(s) into target specific
1235 /// instructions/intrinsics.
1236 bool lowerInterleavedLoad(LoadInst
*LI
,
1237 ArrayRef
<ShuffleVectorInst
*> Shuffles
,
1238 ArrayRef
<unsigned> Indices
,
1239 unsigned Factor
) const override
;
1241 /// Lower interleaved store(s) into target specific
1242 /// instructions/intrinsics.
1243 bool lowerInterleavedStore(StoreInst
*SI
, ShuffleVectorInst
*SVI
,
1244 unsigned Factor
) const override
;
1246 SDValue
expandIndirectJTBranch(const SDLoc
& dl
, SDValue Value
,
1247 SDValue Addr
, SelectionDAG
&DAG
)
1251 std::pair
<const TargetRegisterClass
*, uint8_t>
1252 findRepresentativeClass(const TargetRegisterInfo
*TRI
,
1253 MVT VT
) const override
;
1256 /// Keep a reference to the X86Subtarget around so that we can
1257 /// make the right decision when generating code for different targets.
1258 const X86Subtarget
&Subtarget
;
1260 /// Select between SSE or x87 floating point ops.
1261 /// When SSE is available, use it for f32 operations.
1262 /// When SSE2 is available, use it for f64 operations.
1263 bool X86ScalarSSEf32
;
1264 bool X86ScalarSSEf64
;
1266 /// A list of legal FP immediates.
1267 std::vector
<APFloat
> LegalFPImmediates
;
1269 /// Indicate that this x86 target can instruction
1270 /// select the specified FP immediate natively.
1271 void addLegalFPImmediate(const APFloat
& Imm
) {
1272 LegalFPImmediates
.push_back(Imm
);
1275 SDValue
LowerCallResult(SDValue Chain
, SDValue InFlag
,
1276 CallingConv::ID CallConv
, bool isVarArg
,
1277 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1278 const SDLoc
&dl
, SelectionDAG
&DAG
,
1279 SmallVectorImpl
<SDValue
> &InVals
,
1280 uint32_t *RegMask
) const;
1281 SDValue
LowerMemArgument(SDValue Chain
, CallingConv::ID CallConv
,
1282 const SmallVectorImpl
<ISD::InputArg
> &ArgInfo
,
1283 const SDLoc
&dl
, SelectionDAG
&DAG
,
1284 const CCValAssign
&VA
, MachineFrameInfo
&MFI
,
1286 SDValue
LowerMemOpCallTo(SDValue Chain
, SDValue StackPtr
, SDValue Arg
,
1287 const SDLoc
&dl
, SelectionDAG
&DAG
,
1288 const CCValAssign
&VA
,
1289 ISD::ArgFlagsTy Flags
) const;
1291 // Call lowering helpers.
1293 /// Check whether the call is eligible for tail call optimization. Targets
1294 /// that want to do tail call optimization should implement this function.
1295 bool IsEligibleForTailCallOptimization(SDValue Callee
,
1296 CallingConv::ID CalleeCC
,
1298 bool isCalleeStructRet
,
1299 bool isCallerStructRet
,
1301 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1302 const SmallVectorImpl
<SDValue
> &OutVals
,
1303 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1304 SelectionDAG
& DAG
) const;
1305 SDValue
EmitTailCallLoadRetAddr(SelectionDAG
&DAG
, SDValue
&OutRetAddr
,
1306 SDValue Chain
, bool IsTailCall
,
1307 bool Is64Bit
, int FPDiff
,
1308 const SDLoc
&dl
) const;
1310 unsigned GetAlignedArgumentStackSize(unsigned StackSize
,
1311 SelectionDAG
&DAG
) const;
1313 unsigned getAddressSpace(void) const;
1315 SDValue
FP_TO_INTHelper(SDValue Op
, SelectionDAG
&DAG
, bool isSigned
) const;
1317 SDValue
LowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
) const;
1318 SDValue
LowerVSELECT(SDValue Op
, SelectionDAG
&DAG
) const;
1319 SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) const;
1320 SDValue
LowerINSERT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) const;
1322 unsigned getGlobalWrapperKind(const GlobalValue
*GV
= nullptr,
1323 const unsigned char OpFlags
= 0) const;
1324 SDValue
LowerConstantPool(SDValue Op
, SelectionDAG
&DAG
) const;
1325 SDValue
LowerBlockAddress(SDValue Op
, SelectionDAG
&DAG
) const;
1326 SDValue
LowerGlobalAddress(SDValue Op
, SelectionDAG
&DAG
) const;
1327 SDValue
LowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) const;
1328 SDValue
LowerExternalSymbol(SDValue Op
, SelectionDAG
&DAG
) const;
1330 /// Creates target global address or external symbol nodes for calls or
1332 SDValue
LowerGlobalOrExternal(SDValue Op
, SelectionDAG
&DAG
,
1333 bool ForCall
) const;
1335 SDValue
LowerSINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) const;
1336 SDValue
LowerUINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) const;
1337 SDValue
LowerTRUNCATE(SDValue Op
, SelectionDAG
&DAG
) const;
1338 SDValue
LowerFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
) const;
1339 SDValue
LowerSETCC(SDValue Op
, SelectionDAG
&DAG
) const;
1340 SDValue
LowerSETCCCARRY(SDValue Op
, SelectionDAG
&DAG
) const;
1341 SDValue
LowerSELECT(SDValue Op
, SelectionDAG
&DAG
) const;
1342 SDValue
LowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) const;
1343 SDValue
LowerJumpTable(SDValue Op
, SelectionDAG
&DAG
) const;
1344 SDValue
LowerDYNAMIC_STACKALLOC(SDValue Op
, SelectionDAG
&DAG
) const;
1345 SDValue
LowerVASTART(SDValue Op
, SelectionDAG
&DAG
) const;
1346 SDValue
LowerVAARG(SDValue Op
, SelectionDAG
&DAG
) const;
1347 SDValue
LowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) const;
1348 SDValue
LowerADDROFRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) const;
1349 SDValue
LowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) const;
1350 SDValue
LowerFRAME_TO_ARGS_OFFSET(SDValue Op
, SelectionDAG
&DAG
) const;
1351 SDValue
LowerEH_RETURN(SDValue Op
, SelectionDAG
&DAG
) const;
1352 SDValue
lowerEH_SJLJ_SETJMP(SDValue Op
, SelectionDAG
&DAG
) const;
1353 SDValue
lowerEH_SJLJ_LONGJMP(SDValue Op
, SelectionDAG
&DAG
) const;
1354 SDValue
lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op
, SelectionDAG
&DAG
) const;
1355 SDValue
LowerINIT_TRAMPOLINE(SDValue Op
, SelectionDAG
&DAG
) const;
1356 SDValue
LowerFLT_ROUNDS_(SDValue Op
, SelectionDAG
&DAG
) const;
1357 SDValue
LowerWin64_i128OP(SDValue Op
, SelectionDAG
&DAG
) const;
1358 SDValue
LowerGC_TRANSITION_START(SDValue Op
, SelectionDAG
&DAG
) const;
1359 SDValue
LowerGC_TRANSITION_END(SDValue Op
, SelectionDAG
&DAG
) const;
1360 SDValue
LowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
) const;
1361 SDValue
lowerFaddFsub(SDValue Op
, SelectionDAG
&DAG
) const;
1362 SDValue
LowerFP_EXTEND(SDValue Op
, SelectionDAG
&DAG
) const;
1363 SDValue
LowerFP_ROUND(SDValue Op
, SelectionDAG
&DAG
) const;
1365 SDValue
LowerF128Call(SDValue Op
, SelectionDAG
&DAG
,
1366 RTLIB::Libcall Call
) const;
1369 LowerFormalArguments(SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
1370 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1371 const SDLoc
&dl
, SelectionDAG
&DAG
,
1372 SmallVectorImpl
<SDValue
> &InVals
) const override
;
1373 SDValue
LowerCall(CallLoweringInfo
&CLI
,
1374 SmallVectorImpl
<SDValue
> &InVals
) const override
;
1376 SDValue
LowerReturn(SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
1377 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1378 const SmallVectorImpl
<SDValue
> &OutVals
,
1379 const SDLoc
&dl
, SelectionDAG
&DAG
) const override
;
1381 bool supportSplitCSR(MachineFunction
*MF
) const override
{
1382 return MF
->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS
&&
1383 MF
->getFunction().hasFnAttribute(Attribute::NoUnwind
);
1385 void initializeSplitCSR(MachineBasicBlock
*Entry
) const override
;
1386 void insertCopiesSplitCSR(
1387 MachineBasicBlock
*Entry
,
1388 const SmallVectorImpl
<MachineBasicBlock
*> &Exits
) const override
;
1390 bool isUsedByReturnOnly(SDNode
*N
, SDValue
&Chain
) const override
;
1392 bool mayBeEmittedAsTailCall(const CallInst
*CI
) const override
;
1394 EVT
getTypeForExtReturn(LLVMContext
&Context
, EVT VT
,
1395 ISD::NodeType ExtendKind
) const override
;
1397 bool CanLowerReturn(CallingConv::ID CallConv
, MachineFunction
&MF
,
1399 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1400 LLVMContext
&Context
) const override
;
1402 const MCPhysReg
*getScratchRegisters(CallingConv::ID CC
) const override
;
1404 TargetLoweringBase::AtomicExpansionKind
1405 shouldExpandAtomicLoadInIR(LoadInst
*SI
) const override
;
1406 bool shouldExpandAtomicStoreInIR(StoreInst
*SI
) const override
;
1407 TargetLoweringBase::AtomicExpansionKind
1408 shouldExpandAtomicRMWInIR(AtomicRMWInst
*AI
) const override
;
1411 lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst
*AI
) const override
;
1413 bool lowerAtomicStoreAsStoreSDNode(const StoreInst
&SI
) const override
;
1414 bool lowerAtomicLoadAsLoadSDNode(const LoadInst
&LI
) const override
;
1416 bool needsCmpXchgNb(Type
*MemType
) const;
1418 void SetupEntryBlockForSjLj(MachineInstr
&MI
, MachineBasicBlock
*MBB
,
1419 MachineBasicBlock
*DispatchBB
, int FI
) const;
1421 // Utility function to emit the low-level va_arg code for X86-64.
1423 EmitVAARG64WithCustomInserter(MachineInstr
&MI
,
1424 MachineBasicBlock
*MBB
) const;
1426 /// Utility function to emit the xmm reg save portion of va_start.
1428 EmitVAStartSaveXMMRegsWithCustomInserter(MachineInstr
&BInstr
,
1429 MachineBasicBlock
*BB
) const;
1431 MachineBasicBlock
*EmitLoweredCascadedSelect(MachineInstr
&MI1
,
1433 MachineBasicBlock
*BB
) const;
1435 MachineBasicBlock
*EmitLoweredSelect(MachineInstr
&I
,
1436 MachineBasicBlock
*BB
) const;
1438 MachineBasicBlock
*EmitLoweredAtomicFP(MachineInstr
&I
,
1439 MachineBasicBlock
*BB
) const;
1441 MachineBasicBlock
*EmitLoweredCatchRet(MachineInstr
&MI
,
1442 MachineBasicBlock
*BB
) const;
1444 MachineBasicBlock
*EmitLoweredCatchPad(MachineInstr
&MI
,
1445 MachineBasicBlock
*BB
) const;
1447 MachineBasicBlock
*EmitLoweredSegAlloca(MachineInstr
&MI
,
1448 MachineBasicBlock
*BB
) const;
1450 MachineBasicBlock
*EmitLoweredTLSAddr(MachineInstr
&MI
,
1451 MachineBasicBlock
*BB
) const;
1453 MachineBasicBlock
*EmitLoweredTLSCall(MachineInstr
&MI
,
1454 MachineBasicBlock
*BB
) const;
1456 MachineBasicBlock
*EmitLoweredRetpoline(MachineInstr
&MI
,
1457 MachineBasicBlock
*BB
) const;
1459 MachineBasicBlock
*emitEHSjLjSetJmp(MachineInstr
&MI
,
1460 MachineBasicBlock
*MBB
) const;
1462 void emitSetJmpShadowStackFix(MachineInstr
&MI
,
1463 MachineBasicBlock
*MBB
) const;
1465 MachineBasicBlock
*emitEHSjLjLongJmp(MachineInstr
&MI
,
1466 MachineBasicBlock
*MBB
) const;
1468 MachineBasicBlock
*emitLongJmpShadowStackFix(MachineInstr
&MI
,
1469 MachineBasicBlock
*MBB
) const;
1471 MachineBasicBlock
*emitFMA3Instr(MachineInstr
&MI
,
1472 MachineBasicBlock
*MBB
) const;
1474 MachineBasicBlock
*EmitSjLjDispatchBlock(MachineInstr
&MI
,
1475 MachineBasicBlock
*MBB
) const;
1477 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
1478 /// equivalent, for use with the given x86 condition code.
1479 SDValue
EmitCmp(SDValue Op0
, SDValue Op1
, unsigned X86CC
, const SDLoc
&dl
,
1480 SelectionDAG
&DAG
) const;
1482 /// Convert a comparison if required by the subtarget.
1483 SDValue
ConvertCmpIfNecessary(SDValue Cmp
, SelectionDAG
&DAG
) const;
1485 /// Emit flags for the given setcc condition and operands. Also returns the
1486 /// corresponding X86 condition code constant in X86CC.
1487 SDValue
emitFlagsForSetcc(SDValue Op0
, SDValue Op1
,
1488 ISD::CondCode CC
, const SDLoc
&dl
,
1490 SDValue
&X86CC
) const;
1492 /// Check if replacement of SQRT with RSQRT should be disabled.
1493 bool isFsqrtCheap(SDValue Operand
, SelectionDAG
&DAG
) const override
;
1495 /// Use rsqrt* to speed up sqrt calculations.
1496 SDValue
getSqrtEstimate(SDValue Operand
, SelectionDAG
&DAG
, int Enabled
,
1497 int &RefinementSteps
, bool &UseOneConstNR
,
1498 bool Reciprocal
) const override
;
1500 /// Use rcp* to speed up fdiv calculations.
1501 SDValue
getRecipEstimate(SDValue Operand
, SelectionDAG
&DAG
, int Enabled
,
1502 int &RefinementSteps
) const override
;
1504 /// Reassociate floating point divisions into multiply by reciprocal.
1505 unsigned combineRepeatedFPDivisors() const override
;
1507 SDValue
BuildSDIVPow2(SDNode
*N
, const APInt
&Divisor
, SelectionDAG
&DAG
,
1508 SmallVectorImpl
<SDNode
*> &Created
) const override
;
1512 FastISel
*createFastISel(FunctionLoweringInfo
&funcInfo
,
1513 const TargetLibraryInfo
*libInfo
);
1514 } // end namespace X86
1516 // Base class for all X86 non-masked store operations.
1517 class X86StoreSDNode
: public MemSDNode
{
1519 X86StoreSDNode(unsigned Opcode
, unsigned Order
, const DebugLoc
&dl
,
1520 SDVTList VTs
, EVT MemVT
,
1521 MachineMemOperand
*MMO
)
1522 :MemSDNode(Opcode
, Order
, dl
, VTs
, MemVT
, MMO
) {}
1523 const SDValue
&getValue() const { return getOperand(1); }
1524 const SDValue
&getBasePtr() const { return getOperand(2); }
1526 static bool classof(const SDNode
*N
) {
1527 return N
->getOpcode() == X86ISD::VTRUNCSTORES
||
1528 N
->getOpcode() == X86ISD::VTRUNCSTOREUS
;
1532 // Base class for all X86 masked store operations.
1533 // The class has the same order of operands as MaskedStoreSDNode for
1535 class X86MaskedStoreSDNode
: public MemSDNode
{
1537 X86MaskedStoreSDNode(unsigned Opcode
, unsigned Order
,
1538 const DebugLoc
&dl
, SDVTList VTs
, EVT MemVT
,
1539 MachineMemOperand
*MMO
)
1540 : MemSDNode(Opcode
, Order
, dl
, VTs
, MemVT
, MMO
) {}
1542 const SDValue
&getValue() const { return getOperand(1); }
1543 const SDValue
&getBasePtr() const { return getOperand(2); }
1544 const SDValue
&getMask() const { return getOperand(3); }
1546 static bool classof(const SDNode
*N
) {
1547 return N
->getOpcode() == X86ISD::VMTRUNCSTORES
||
1548 N
->getOpcode() == X86ISD::VMTRUNCSTOREUS
;
1552 // X86 Truncating Store with Signed saturation.
1553 class TruncSStoreSDNode
: public X86StoreSDNode
{
1555 TruncSStoreSDNode(unsigned Order
, const DebugLoc
&dl
,
1556 SDVTList VTs
, EVT MemVT
, MachineMemOperand
*MMO
)
1557 : X86StoreSDNode(X86ISD::VTRUNCSTORES
, Order
, dl
, VTs
, MemVT
, MMO
) {}
1559 static bool classof(const SDNode
*N
) {
1560 return N
->getOpcode() == X86ISD::VTRUNCSTORES
;
1564 // X86 Truncating Store with Unsigned saturation.
1565 class TruncUSStoreSDNode
: public X86StoreSDNode
{
1567 TruncUSStoreSDNode(unsigned Order
, const DebugLoc
&dl
,
1568 SDVTList VTs
, EVT MemVT
, MachineMemOperand
*MMO
)
1569 : X86StoreSDNode(X86ISD::VTRUNCSTOREUS
, Order
, dl
, VTs
, MemVT
, MMO
) {}
1571 static bool classof(const SDNode
*N
) {
1572 return N
->getOpcode() == X86ISD::VTRUNCSTOREUS
;
1576 // X86 Truncating Masked Store with Signed saturation.
1577 class MaskedTruncSStoreSDNode
: public X86MaskedStoreSDNode
{
1579 MaskedTruncSStoreSDNode(unsigned Order
,
1580 const DebugLoc
&dl
, SDVTList VTs
, EVT MemVT
,
1581 MachineMemOperand
*MMO
)
1582 : X86MaskedStoreSDNode(X86ISD::VMTRUNCSTORES
, Order
, dl
, VTs
, MemVT
, MMO
) {}
1584 static bool classof(const SDNode
*N
) {
1585 return N
->getOpcode() == X86ISD::VMTRUNCSTORES
;
1589 // X86 Truncating Masked Store with Unsigned saturation.
1590 class MaskedTruncUSStoreSDNode
: public X86MaskedStoreSDNode
{
1592 MaskedTruncUSStoreSDNode(unsigned Order
,
1593 const DebugLoc
&dl
, SDVTList VTs
, EVT MemVT
,
1594 MachineMemOperand
*MMO
)
1595 : X86MaskedStoreSDNode(X86ISD::VMTRUNCSTOREUS
, Order
, dl
, VTs
, MemVT
, MMO
) {}
1597 static bool classof(const SDNode
*N
) {
1598 return N
->getOpcode() == X86ISD::VMTRUNCSTOREUS
;
1602 // X86 specific Gather/Scatter nodes.
1603 // The class has the same order of operands as MaskedGatherScatterSDNode for
1605 class X86MaskedGatherScatterSDNode
: public MemSDNode
{
1607 X86MaskedGatherScatterSDNode(unsigned Opc
, unsigned Order
,
1608 const DebugLoc
&dl
, SDVTList VTs
, EVT MemVT
,
1609 MachineMemOperand
*MMO
)
1610 : MemSDNode(Opc
, Order
, dl
, VTs
, MemVT
, MMO
) {}
1612 const SDValue
&getBasePtr() const { return getOperand(3); }
1613 const SDValue
&getIndex() const { return getOperand(4); }
1614 const SDValue
&getMask() const { return getOperand(2); }
1615 const SDValue
&getScale() const { return getOperand(5); }
1617 static bool classof(const SDNode
*N
) {
1618 return N
->getOpcode() == X86ISD::MGATHER
||
1619 N
->getOpcode() == X86ISD::MSCATTER
;
1623 class X86MaskedGatherSDNode
: public X86MaskedGatherScatterSDNode
{
1625 X86MaskedGatherSDNode(unsigned Order
, const DebugLoc
&dl
, SDVTList VTs
,
1626 EVT MemVT
, MachineMemOperand
*MMO
)
1627 : X86MaskedGatherScatterSDNode(X86ISD::MGATHER
, Order
, dl
, VTs
, MemVT
,
1630 const SDValue
&getPassThru() const { return getOperand(1); }
1632 static bool classof(const SDNode
*N
) {
1633 return N
->getOpcode() == X86ISD::MGATHER
;
1637 class X86MaskedScatterSDNode
: public X86MaskedGatherScatterSDNode
{
1639 X86MaskedScatterSDNode(unsigned Order
, const DebugLoc
&dl
, SDVTList VTs
,
1640 EVT MemVT
, MachineMemOperand
*MMO
)
1641 : X86MaskedGatherScatterSDNode(X86ISD::MSCATTER
, Order
, dl
, VTs
, MemVT
,
1644 const SDValue
&getValue() const { return getOperand(1); }
1646 static bool classof(const SDNode
*N
) {
1647 return N
->getOpcode() == X86ISD::MSCATTER
;
1651 /// Generate unpacklo/unpackhi shuffle mask.
1652 template <typename T
= int>
1653 void createUnpackShuffleMask(MVT VT
, SmallVectorImpl
<T
> &Mask
, bool Lo
,
1655 assert(Mask
.empty() && "Expected an empty shuffle mask vector");
1656 int NumElts
= VT
.getVectorNumElements();
1657 int NumEltsInLane
= 128 / VT
.getScalarSizeInBits();
1658 for (int i
= 0; i
< NumElts
; ++i
) {
1659 unsigned LaneStart
= (i
/ NumEltsInLane
) * NumEltsInLane
;
1660 int Pos
= (i
% NumEltsInLane
) / 2 + LaneStart
;
1661 Pos
+= (Unary
? 0 : NumElts
* (i
% 2));
1662 Pos
+= (Lo
? 0 : NumEltsInLane
/ 2);
1663 Mask
.push_back(Pos
);
1667 /// Helper function to scale a shuffle or target shuffle mask, replacing each
1668 /// mask index with the scaled sequential indices for an equivalent narrowed
1669 /// mask. This is the reverse process to canWidenShuffleElements, but can
1671 template <typename T
>
1672 void scaleShuffleMask(int Scale
, ArrayRef
<T
> Mask
,
1673 SmallVectorImpl
<T
> &ScaledMask
) {
1674 assert(0 < Scale
&& "Unexpected scaling factor");
1675 size_t NumElts
= Mask
.size();
1676 ScaledMask
.assign(NumElts
* Scale
, -1);
1678 for (int i
= 0; i
!= (int)NumElts
; ++i
) {
1681 // Repeat sentinel values in every mask element.
1683 for (int s
= 0; s
!= Scale
; ++s
)
1684 ScaledMask
[(Scale
* i
) + s
] = M
;
1688 // Scale mask element and increment across each mask element.
1689 for (int s
= 0; s
!= Scale
; ++s
)
1690 ScaledMask
[(Scale
* i
) + s
] = (Scale
* M
) + s
;
1693 } // end namespace llvm
1695 #endif // LLVM_LIB_TARGET_X86_X86ISELLOWERING_H