Another attempt to fix the build bot breaks after r360426
[llvm-core.git] / lib / CodeGen / MachineSink.cpp
blob41db2c88ce5052f912c8168b07ec2579570c1698
1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass moves instructions into successor blocks when possible, so that
10 // they aren't executed on paths where their results aren't needed.
12 // This pass is not intended to be a replacement or a complete alternative
13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
14 // constructs that are not exposed before lowering and instruction selection.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/SparseBitVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
26 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachinePostDominators.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/TargetInstrInfo.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/LLVMContext.h"
40 #include "llvm/IR/DebugInfoMetadata.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/BranchProbability.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <algorithm>
47 #include <cassert>
48 #include <cstdint>
49 #include <map>
50 #include <utility>
51 #include <vector>
53 using namespace llvm;
55 #define DEBUG_TYPE "machine-sink"
57 static cl::opt<bool>
58 SplitEdges("machine-sink-split",
59 cl::desc("Split critical edges during machine sinking"),
60 cl::init(true), cl::Hidden);
62 static cl::opt<bool>
63 UseBlockFreqInfo("machine-sink-bfi",
64 cl::desc("Use block frequency info to find successors to sink"),
65 cl::init(true), cl::Hidden);
67 static cl::opt<unsigned> SplitEdgeProbabilityThreshold(
68 "machine-sink-split-probability-threshold",
69 cl::desc(
70 "Percentage threshold for splitting single-instruction critical edge. "
71 "If the branch threshold is higher than this threshold, we allow "
72 "speculative execution of up to 1 instruction to avoid branching to "
73 "splitted critical edge"),
74 cl::init(40), cl::Hidden);
76 STATISTIC(NumSunk, "Number of machine instructions sunk");
77 STATISTIC(NumSplit, "Number of critical edges split");
78 STATISTIC(NumCoalesces, "Number of copies coalesced");
79 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA");
81 namespace {
83 class MachineSinking : public MachineFunctionPass {
84 const TargetInstrInfo *TII;
85 const TargetRegisterInfo *TRI;
86 MachineRegisterInfo *MRI; // Machine register information
87 MachineDominatorTree *DT; // Machine dominator tree
88 MachinePostDominatorTree *PDT; // Machine post dominator tree
89 MachineLoopInfo *LI;
90 const MachineBlockFrequencyInfo *MBFI;
91 const MachineBranchProbabilityInfo *MBPI;
92 AliasAnalysis *AA;
94 // Remember which edges have been considered for breaking.
95 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8>
96 CEBCandidates;
97 // Remember which edges we are about to split.
98 // This is different from CEBCandidates since those edges
99 // will be split.
100 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit;
102 SparseBitVector<> RegsToClearKillFlags;
104 using AllSuccsCache =
105 std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>;
107 public:
108 static char ID; // Pass identification
110 MachineSinking() : MachineFunctionPass(ID) {
111 initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
114 bool runOnMachineFunction(MachineFunction &MF) override;
116 void getAnalysisUsage(AnalysisUsage &AU) const override {
117 AU.setPreservesCFG();
118 MachineFunctionPass::getAnalysisUsage(AU);
119 AU.addRequired<AAResultsWrapperPass>();
120 AU.addRequired<MachineDominatorTree>();
121 AU.addRequired<MachinePostDominatorTree>();
122 AU.addRequired<MachineLoopInfo>();
123 AU.addRequired<MachineBranchProbabilityInfo>();
124 AU.addPreserved<MachineDominatorTree>();
125 AU.addPreserved<MachinePostDominatorTree>();
126 AU.addPreserved<MachineLoopInfo>();
127 if (UseBlockFreqInfo)
128 AU.addRequired<MachineBlockFrequencyInfo>();
131 void releaseMemory() override {
132 CEBCandidates.clear();
135 private:
136 bool ProcessBlock(MachineBasicBlock &MBB);
137 bool isWorthBreakingCriticalEdge(MachineInstr &MI,
138 MachineBasicBlock *From,
139 MachineBasicBlock *To);
141 /// Postpone the splitting of the given critical
142 /// edge (\p From, \p To).
144 /// We do not split the edges on the fly. Indeed, this invalidates
145 /// the dominance information and thus triggers a lot of updates
146 /// of that information underneath.
147 /// Instead, we postpone all the splits after each iteration of
148 /// the main loop. That way, the information is at least valid
149 /// for the lifetime of an iteration.
151 /// \return True if the edge is marked as toSplit, false otherwise.
152 /// False can be returned if, for instance, this is not profitable.
153 bool PostponeSplitCriticalEdge(MachineInstr &MI,
154 MachineBasicBlock *From,
155 MachineBasicBlock *To,
156 bool BreakPHIEdge);
157 bool SinkInstruction(MachineInstr &MI, bool &SawStore,
159 AllSuccsCache &AllSuccessors);
160 bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
161 MachineBasicBlock *DefMBB,
162 bool &BreakPHIEdge, bool &LocalUse) const;
163 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
164 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
165 bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
166 MachineBasicBlock *MBB,
167 MachineBasicBlock *SuccToSinkTo,
168 AllSuccsCache &AllSuccessors);
170 bool PerformTrivialForwardCoalescing(MachineInstr &MI,
171 MachineBasicBlock *MBB);
173 SmallVector<MachineBasicBlock *, 4> &
174 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
175 AllSuccsCache &AllSuccessors) const;
178 } // end anonymous namespace
180 char MachineSinking::ID = 0;
182 char &llvm::MachineSinkingID = MachineSinking::ID;
184 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE,
185 "Machine code sinking", false, false)
186 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
187 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
188 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
189 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
190 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE,
191 "Machine code sinking", false, false)
193 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI,
194 MachineBasicBlock *MBB) {
195 if (!MI.isCopy())
196 return false;
198 unsigned SrcReg = MI.getOperand(1).getReg();
199 unsigned DstReg = MI.getOperand(0).getReg();
200 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) ||
201 !TargetRegisterInfo::isVirtualRegister(DstReg) ||
202 !MRI->hasOneNonDBGUse(SrcReg))
203 return false;
205 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
206 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
207 if (SRC != DRC)
208 return false;
210 MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
211 if (DefMI->isCopyLike())
212 return false;
213 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
214 LLVM_DEBUG(dbgs() << "*** to: " << MI);
215 MRI->replaceRegWith(DstReg, SrcReg);
216 MI.eraseFromParent();
218 // Conservatively, clear any kill flags, since it's possible that they are no
219 // longer correct.
220 MRI->clearKillFlags(SrcReg);
222 ++NumCoalesces;
223 return true;
226 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
227 /// occur in blocks dominated by the specified block. If any use is in the
228 /// definition block, then return false since it is never legal to move def
229 /// after uses.
230 bool
231 MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
232 MachineBasicBlock *MBB,
233 MachineBasicBlock *DefMBB,
234 bool &BreakPHIEdge,
235 bool &LocalUse) const {
236 assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
237 "Only makes sense for vregs");
239 // Ignore debug uses because debug info doesn't affect the code.
240 if (MRI->use_nodbg_empty(Reg))
241 return true;
243 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
244 // into and they are all PHI nodes. In this case, machine-sink must break
245 // the critical edge first. e.g.
247 // %bb.1: derived from LLVM BB %bb4.preheader
248 // Predecessors according to CFG: %bb.0
249 // ...
250 // %reg16385 = DEC64_32r %reg16437, implicit-def dead %eflags
251 // ...
252 // JE_4 <%bb.37>, implicit %eflags
253 // Successors according to CFG: %bb.37 %bb.2
255 // %bb.2: derived from LLVM BB %bb.nph
256 // Predecessors according to CFG: %bb.0 %bb.1
257 // %reg16386 = PHI %reg16434, %bb.0, %reg16385, %bb.1
258 BreakPHIEdge = true;
259 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
260 MachineInstr *UseInst = MO.getParent();
261 unsigned OpNo = &MO - &UseInst->getOperand(0);
262 MachineBasicBlock *UseBlock = UseInst->getParent();
263 if (!(UseBlock == MBB && UseInst->isPHI() &&
264 UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) {
265 BreakPHIEdge = false;
266 break;
269 if (BreakPHIEdge)
270 return true;
272 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
273 // Determine the block of the use.
274 MachineInstr *UseInst = MO.getParent();
275 unsigned OpNo = &MO - &UseInst->getOperand(0);
276 MachineBasicBlock *UseBlock = UseInst->getParent();
277 if (UseInst->isPHI()) {
278 // PHI nodes use the operand in the predecessor block, not the block with
279 // the PHI.
280 UseBlock = UseInst->getOperand(OpNo+1).getMBB();
281 } else if (UseBlock == DefMBB) {
282 LocalUse = true;
283 return false;
286 // Check that it dominates.
287 if (!DT->dominates(MBB, UseBlock))
288 return false;
291 return true;
294 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
295 if (skipFunction(MF.getFunction()))
296 return false;
298 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n");
300 TII = MF.getSubtarget().getInstrInfo();
301 TRI = MF.getSubtarget().getRegisterInfo();
302 MRI = &MF.getRegInfo();
303 DT = &getAnalysis<MachineDominatorTree>();
304 PDT = &getAnalysis<MachinePostDominatorTree>();
305 LI = &getAnalysis<MachineLoopInfo>();
306 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
307 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
308 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
310 bool EverMadeChange = false;
312 while (true) {
313 bool MadeChange = false;
315 // Process all basic blocks.
316 CEBCandidates.clear();
317 ToSplit.clear();
318 for (auto &MBB: MF)
319 MadeChange |= ProcessBlock(MBB);
321 // If we have anything we marked as toSplit, split it now.
322 for (auto &Pair : ToSplit) {
323 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this);
324 if (NewSucc != nullptr) {
325 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: "
326 << printMBBReference(*Pair.first) << " -- "
327 << printMBBReference(*NewSucc) << " -- "
328 << printMBBReference(*Pair.second) << '\n');
329 MadeChange = true;
330 ++NumSplit;
331 } else
332 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n");
334 // If this iteration over the code changed anything, keep iterating.
335 if (!MadeChange) break;
336 EverMadeChange = true;
339 // Now clear any kill flags for recorded registers.
340 for (auto I : RegsToClearKillFlags)
341 MRI->clearKillFlags(I);
342 RegsToClearKillFlags.clear();
344 return EverMadeChange;
347 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
348 // Can't sink anything out of a block that has less than two successors.
349 if (MBB.succ_size() <= 1 || MBB.empty()) return false;
351 // Don't bother sinking code out of unreachable blocks. In addition to being
352 // unprofitable, it can also lead to infinite looping, because in an
353 // unreachable loop there may be nowhere to stop.
354 if (!DT->isReachableFromEntry(&MBB)) return false;
356 bool MadeChange = false;
358 // Cache all successors, sorted by frequency info and loop depth.
359 AllSuccsCache AllSuccessors;
361 // Walk the basic block bottom-up. Remember if we saw a store.
362 MachineBasicBlock::iterator I = MBB.end();
363 --I;
364 bool ProcessedBegin, SawStore = false;
365 do {
366 MachineInstr &MI = *I; // The instruction to sink.
368 // Predecrement I (if it's not begin) so that it isn't invalidated by
369 // sinking.
370 ProcessedBegin = I == MBB.begin();
371 if (!ProcessedBegin)
372 --I;
374 if (MI.isDebugInstr())
375 continue;
377 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
378 if (Joined) {
379 MadeChange = true;
380 continue;
383 if (SinkInstruction(MI, SawStore, AllSuccessors)) {
384 ++NumSunk;
385 MadeChange = true;
388 // If we just processed the first instruction in the block, we're done.
389 } while (!ProcessedBegin);
391 return MadeChange;
394 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI,
395 MachineBasicBlock *From,
396 MachineBasicBlock *To) {
397 // FIXME: Need much better heuristics.
399 // If the pass has already considered breaking this edge (during this pass
400 // through the function), then let's go ahead and break it. This means
401 // sinking multiple "cheap" instructions into the same block.
402 if (!CEBCandidates.insert(std::make_pair(From, To)).second)
403 return true;
405 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI))
406 return true;
408 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <=
409 BranchProbability(SplitEdgeProbabilityThreshold, 100))
410 return true;
412 // MI is cheap, we probably don't want to break the critical edge for it.
413 // However, if this would allow some definitions of its source operands
414 // to be sunk then it's probably worth it.
415 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
416 const MachineOperand &MO = MI.getOperand(i);
417 if (!MO.isReg() || !MO.isUse())
418 continue;
419 unsigned Reg = MO.getReg();
420 if (Reg == 0)
421 continue;
423 // We don't move live definitions of physical registers,
424 // so sinking their uses won't enable any opportunities.
425 if (TargetRegisterInfo::isPhysicalRegister(Reg))
426 continue;
428 // If this instruction is the only user of a virtual register,
429 // check if breaking the edge will enable sinking
430 // both this instruction and the defining instruction.
431 if (MRI->hasOneNonDBGUse(Reg)) {
432 // If the definition resides in same MBB,
433 // claim it's likely we can sink these together.
434 // If definition resides elsewhere, we aren't
435 // blocking it from being sunk so don't break the edge.
436 MachineInstr *DefMI = MRI->getVRegDef(Reg);
437 if (DefMI->getParent() == MI.getParent())
438 return true;
442 return false;
445 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI,
446 MachineBasicBlock *FromBB,
447 MachineBasicBlock *ToBB,
448 bool BreakPHIEdge) {
449 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
450 return false;
452 // Avoid breaking back edge. From == To means backedge for single BB loop.
453 if (!SplitEdges || FromBB == ToBB)
454 return false;
456 // Check for backedges of more "complex" loops.
457 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
458 LI->isLoopHeader(ToBB))
459 return false;
461 // It's not always legal to break critical edges and sink the computation
462 // to the edge.
464 // %bb.1:
465 // v1024
466 // Beq %bb.3
467 // <fallthrough>
468 // %bb.2:
469 // ... no uses of v1024
470 // <fallthrough>
471 // %bb.3:
472 // ...
473 // = v1024
475 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted:
477 // %bb.1:
478 // ...
479 // Bne %bb.2
480 // %bb.4:
481 // v1024 =
482 // B %bb.3
483 // %bb.2:
484 // ... no uses of v1024
485 // <fallthrough>
486 // %bb.3:
487 // ...
488 // = v1024
490 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3
491 // flow. We need to ensure the new basic block where the computation is
492 // sunk to dominates all the uses.
493 // It's only legal to break critical edge and sink the computation to the
494 // new block if all the predecessors of "To", except for "From", are
495 // not dominated by "From". Given SSA property, this means these
496 // predecessors are dominated by "To".
498 // There is no need to do this check if all the uses are PHI nodes. PHI
499 // sources are only defined on the specific predecessor edges.
500 if (!BreakPHIEdge) {
501 for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
502 E = ToBB->pred_end(); PI != E; ++PI) {
503 if (*PI == FromBB)
504 continue;
505 if (!DT->dominates(ToBB, *PI))
506 return false;
510 ToSplit.insert(std::make_pair(FromBB, ToBB));
512 return true;
515 /// isProfitableToSinkTo - Return true if it is profitable to sink MI.
516 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
517 MachineBasicBlock *MBB,
518 MachineBasicBlock *SuccToSinkTo,
519 AllSuccsCache &AllSuccessors) {
520 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
522 if (MBB == SuccToSinkTo)
523 return false;
525 // It is profitable if SuccToSinkTo does not post dominate current block.
526 if (!PDT->dominates(SuccToSinkTo, MBB))
527 return true;
529 // It is profitable to sink an instruction from a deeper loop to a shallower
530 // loop, even if the latter post-dominates the former (PR21115).
531 if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
532 return true;
534 // Check if only use in post dominated block is PHI instruction.
535 bool NonPHIUse = false;
536 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
537 MachineBasicBlock *UseBlock = UseInst.getParent();
538 if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
539 NonPHIUse = true;
541 if (!NonPHIUse)
542 return true;
544 // If SuccToSinkTo post dominates then also it may be profitable if MI
545 // can further profitably sinked into another block in next round.
546 bool BreakPHIEdge = false;
547 // FIXME - If finding successor is compile time expensive then cache results.
548 if (MachineBasicBlock *MBB2 =
549 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
550 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
552 // If SuccToSinkTo is final destination and it is a post dominator of current
553 // block then it is not profitable to sink MI into SuccToSinkTo block.
554 return false;
557 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly
558 /// computing it if it was not already cached.
559 SmallVector<MachineBasicBlock *, 4> &
560 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
561 AllSuccsCache &AllSuccessors) const {
562 // Do we have the sorted successors in cache ?
563 auto Succs = AllSuccessors.find(MBB);
564 if (Succs != AllSuccessors.end())
565 return Succs->second;
567 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(),
568 MBB->succ_end());
570 // Handle cases where sinking can happen but where the sink point isn't a
571 // successor. For example:
573 // x = computation
574 // if () {} else {}
575 // use x
577 const std::vector<MachineDomTreeNode *> &Children =
578 DT->getNode(MBB)->getChildren();
579 for (const auto &DTChild : Children)
580 // DomTree children of MBB that have MBB as immediate dominator are added.
581 if (DTChild->getIDom()->getBlock() == MI.getParent() &&
582 // Skip MBBs already added to the AllSuccs vector above.
583 !MBB->isSuccessor(DTChild->getBlock()))
584 AllSuccs.push_back(DTChild->getBlock());
586 // Sort Successors according to their loop depth or block frequency info.
587 llvm::stable_sort(
588 AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
589 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
590 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
591 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
592 return HasBlockFreq ? LHSFreq < RHSFreq
593 : LI->getLoopDepth(L) < LI->getLoopDepth(R);
596 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
598 return it.first->second;
601 /// FindSuccToSinkTo - Find a successor to sink this instruction to.
602 MachineBasicBlock *
603 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
604 bool &BreakPHIEdge,
605 AllSuccsCache &AllSuccessors) {
606 assert (MBB && "Invalid MachineBasicBlock!");
608 // Loop over all the operands of the specified instruction. If there is
609 // anything we can't handle, bail out.
611 // SuccToSinkTo - This is the successor to sink this instruction to, once we
612 // decide.
613 MachineBasicBlock *SuccToSinkTo = nullptr;
614 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
615 const MachineOperand &MO = MI.getOperand(i);
616 if (!MO.isReg()) continue; // Ignore non-register operands.
618 unsigned Reg = MO.getReg();
619 if (Reg == 0) continue;
621 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
622 if (MO.isUse()) {
623 // If the physreg has no defs anywhere, it's just an ambient register
624 // and we can freely move its uses. Alternatively, if it's allocatable,
625 // it could get allocated to something with a def during allocation.
626 if (!MRI->isConstantPhysReg(Reg))
627 return nullptr;
628 } else if (!MO.isDead()) {
629 // A def that isn't dead. We can't move it.
630 return nullptr;
632 } else {
633 // Virtual register uses are always safe to sink.
634 if (MO.isUse()) continue;
636 // If it's not safe to move defs of the register class, then abort.
637 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
638 return nullptr;
640 // Virtual register defs can only be sunk if all their uses are in blocks
641 // dominated by one of the successors.
642 if (SuccToSinkTo) {
643 // If a previous operand picked a block to sink to, then this operand
644 // must be sinkable to the same block.
645 bool LocalUse = false;
646 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
647 BreakPHIEdge, LocalUse))
648 return nullptr;
650 continue;
653 // Otherwise, we should look at all the successors and decide which one
654 // we should sink to. If we have reliable block frequency information
655 // (frequency != 0) available, give successors with smaller frequencies
656 // higher priority, otherwise prioritize smaller loop depths.
657 for (MachineBasicBlock *SuccBlock :
658 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
659 bool LocalUse = false;
660 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
661 BreakPHIEdge, LocalUse)) {
662 SuccToSinkTo = SuccBlock;
663 break;
665 if (LocalUse)
666 // Def is used locally, it's never safe to move this def.
667 return nullptr;
670 // If we couldn't find a block to sink to, ignore this instruction.
671 if (!SuccToSinkTo)
672 return nullptr;
673 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
674 return nullptr;
678 // It is not possible to sink an instruction into its own block. This can
679 // happen with loops.
680 if (MBB == SuccToSinkTo)
681 return nullptr;
683 // It's not safe to sink instructions to EH landing pad. Control flow into
684 // landing pad is implicitly defined.
685 if (SuccToSinkTo && SuccToSinkTo->isEHPad())
686 return nullptr;
688 return SuccToSinkTo;
691 /// Return true if MI is likely to be usable as a memory operation by the
692 /// implicit null check optimization.
694 /// This is a "best effort" heuristic, and should not be relied upon for
695 /// correctness. This returning true does not guarantee that the implicit null
696 /// check optimization is legal over MI, and this returning false does not
697 /// guarantee MI cannot possibly be used to do a null check.
698 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI,
699 const TargetInstrInfo *TII,
700 const TargetRegisterInfo *TRI) {
701 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
703 auto *MBB = MI.getParent();
704 if (MBB->pred_size() != 1)
705 return false;
707 auto *PredMBB = *MBB->pred_begin();
708 auto *PredBB = PredMBB->getBasicBlock();
710 // Frontends that don't use implicit null checks have no reason to emit
711 // branches with make.implicit metadata, and this function should always
712 // return false for them.
713 if (!PredBB ||
714 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit))
715 return false;
717 const MachineOperand *BaseOp;
718 int64_t Offset;
719 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI))
720 return false;
722 if (!BaseOp->isReg())
723 return false;
725 if (!(MI.mayLoad() && !MI.isPredicable()))
726 return false;
728 MachineBranchPredicate MBP;
729 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false))
730 return false;
732 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
733 (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
734 MBP.Predicate == MachineBranchPredicate::PRED_EQ) &&
735 MBP.LHS.getReg() == BaseOp->getReg();
738 /// Sink an instruction and its associated debug instructions. If the debug
739 /// instructions to be sunk are already known, they can be provided in DbgVals.
740 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo,
741 MachineBasicBlock::iterator InsertPos,
742 SmallVectorImpl<MachineInstr *> *DbgVals = nullptr) {
743 // If debug values are provided use those, otherwise call collectDebugValues.
744 SmallVector<MachineInstr *, 2> DbgValuesToSink;
745 if (DbgVals)
746 DbgValuesToSink.insert(DbgValuesToSink.begin(),
747 DbgVals->begin(), DbgVals->end());
748 else
749 MI.collectDebugValues(DbgValuesToSink);
751 // If we cannot find a location to use (merge with), then we erase the debug
752 // location to prevent debug-info driven tools from potentially reporting
753 // wrong location information.
754 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end())
755 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(),
756 InsertPos->getDebugLoc()));
757 else
758 MI.setDebugLoc(DebugLoc());
760 // Move the instruction.
761 MachineBasicBlock *ParentBlock = MI.getParent();
762 SuccToSinkTo.splice(InsertPos, ParentBlock, MI,
763 ++MachineBasicBlock::iterator(MI));
765 // Move previously adjacent debug value instructions to the insert position.
766 for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
767 DBE = DbgValuesToSink.end();
768 DBI != DBE; ++DBI) {
769 MachineInstr *DbgMI = *DBI;
770 SuccToSinkTo.splice(InsertPos, ParentBlock, DbgMI,
771 ++MachineBasicBlock::iterator(DbgMI));
775 /// SinkInstruction - Determine whether it is safe to sink the specified machine
776 /// instruction out of its current block into a successor.
777 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore,
778 AllSuccsCache &AllSuccessors) {
779 // Don't sink instructions that the target prefers not to sink.
780 if (!TII->shouldSink(MI))
781 return false;
783 // Check if it's safe to move the instruction.
784 if (!MI.isSafeToMove(AA, SawStore))
785 return false;
787 // Convergent operations may not be made control-dependent on additional
788 // values.
789 if (MI.isConvergent())
790 return false;
792 // Don't break implicit null checks. This is a performance heuristic, and not
793 // required for correctness.
794 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI))
795 return false;
797 // FIXME: This should include support for sinking instructions within the
798 // block they are currently in to shorten the live ranges. We often get
799 // instructions sunk into the top of a large block, but it would be better to
800 // also sink them down before their first use in the block. This xform has to
801 // be careful not to *increase* register pressure though, e.g. sinking
802 // "x = y + z" down if it kills y and z would increase the live ranges of y
803 // and z and only shrink the live range of x.
805 bool BreakPHIEdge = false;
806 MachineBasicBlock *ParentBlock = MI.getParent();
807 MachineBasicBlock *SuccToSinkTo =
808 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
810 // If there are no outputs, it must have side-effects.
811 if (!SuccToSinkTo)
812 return false;
814 // If the instruction to move defines a dead physical register which is live
815 // when leaving the basic block, don't move it because it could turn into a
816 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
817 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
818 const MachineOperand &MO = MI.getOperand(I);
819 if (!MO.isReg()) continue;
820 unsigned Reg = MO.getReg();
821 if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
822 if (SuccToSinkTo->isLiveIn(Reg))
823 return false;
826 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo);
828 // If the block has multiple predecessors, this is a critical edge.
829 // Decide if we can sink along it or need to break the edge.
830 if (SuccToSinkTo->pred_size() > 1) {
831 // We cannot sink a load across a critical edge - there may be stores in
832 // other code paths.
833 bool TryBreak = false;
834 bool store = true;
835 if (!MI.isSafeToMove(AA, store)) {
836 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
837 TryBreak = true;
840 // We don't want to sink across a critical edge if we don't dominate the
841 // successor. We could be introducing calculations to new code paths.
842 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
843 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
844 TryBreak = true;
847 // Don't sink instructions into a loop.
848 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
849 LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n");
850 TryBreak = true;
853 // Otherwise we are OK with sinking along a critical edge.
854 if (!TryBreak)
855 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n");
856 else {
857 // Mark this edge as to be split.
858 // If the edge can actually be split, the next iteration of the main loop
859 // will sink MI in the newly created block.
860 bool Status =
861 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
862 if (!Status)
863 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
864 "break critical edge\n");
865 // The instruction will not be sunk this time.
866 return false;
870 if (BreakPHIEdge) {
871 // BreakPHIEdge is true if all the uses are in the successor MBB being
872 // sunken into and they are all PHI nodes. In this case, machine-sink must
873 // break the critical edge first.
874 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
875 SuccToSinkTo, BreakPHIEdge);
876 if (!Status)
877 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
878 "break critical edge\n");
879 // The instruction will not be sunk this time.
880 return false;
883 // Determine where to insert into. Skip phi nodes.
884 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
885 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
886 ++InsertPos;
888 performSink(MI, *SuccToSinkTo, InsertPos);
890 // Conservatively, clear any kill flags, since it's possible that they are no
891 // longer correct.
892 // Note that we have to clear the kill flags for any register this instruction
893 // uses as we may sink over another instruction which currently kills the
894 // used registers.
895 for (MachineOperand &MO : MI.operands()) {
896 if (MO.isReg() && MO.isUse())
897 RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags.
900 return true;
903 //===----------------------------------------------------------------------===//
904 // This pass is not intended to be a replacement or a complete alternative
905 // for the pre-ra machine sink pass. It is only designed to sink COPY
906 // instructions which should be handled after RA.
908 // This pass sinks COPY instructions into a successor block, if the COPY is not
909 // used in the current block and the COPY is live-in to a single successor
910 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the
911 // copy on paths where their results aren't needed. This also exposes
912 // additional opportunites for dead copy elimination and shrink wrapping.
914 // These copies were either not handled by or are inserted after the MachineSink
915 // pass. As an example of the former case, the MachineSink pass cannot sink
916 // COPY instructions with allocatable source registers; for AArch64 these type
917 // of copy instructions are frequently used to move function parameters (PhyReg)
918 // into virtual registers in the entry block.
920 // For the machine IR below, this pass will sink %w19 in the entry into its
921 // successor (%bb.1) because %w19 is only live-in in %bb.1.
922 // %bb.0:
923 // %wzr = SUBSWri %w1, 1
924 // %w19 = COPY %w0
925 // Bcc 11, %bb.2
926 // %bb.1:
927 // Live Ins: %w19
928 // BL @fun
929 // %w0 = ADDWrr %w0, %w19
930 // RET %w0
931 // %bb.2:
932 // %w0 = COPY %wzr
933 // RET %w0
934 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
935 // able to see %bb.0 as a candidate.
936 //===----------------------------------------------------------------------===//
937 namespace {
939 class PostRAMachineSinking : public MachineFunctionPass {
940 public:
941 bool runOnMachineFunction(MachineFunction &MF) override;
943 static char ID;
944 PostRAMachineSinking() : MachineFunctionPass(ID) {}
945 StringRef getPassName() const override { return "PostRA Machine Sink"; }
947 void getAnalysisUsage(AnalysisUsage &AU) const override {
948 AU.setPreservesCFG();
949 MachineFunctionPass::getAnalysisUsage(AU);
952 MachineFunctionProperties getRequiredProperties() const override {
953 return MachineFunctionProperties().set(
954 MachineFunctionProperties::Property::NoVRegs);
957 private:
958 /// Track which register units have been modified and used.
959 LiveRegUnits ModifiedRegUnits, UsedRegUnits;
961 /// Track DBG_VALUEs of (unmodified) register units.
962 DenseMap<unsigned, TinyPtrVector<MachineInstr*>> SeenDbgInstrs;
964 /// Sink Copy instructions unused in the same block close to their uses in
965 /// successors.
966 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF,
967 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII);
969 } // namespace
971 char PostRAMachineSinking::ID = 0;
972 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID;
974 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink",
975 "PostRA Machine Sink", false, false)
977 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg,
978 const TargetRegisterInfo *TRI) {
979 LiveRegUnits LiveInRegUnits(*TRI);
980 LiveInRegUnits.addLiveIns(MBB);
981 return !LiveInRegUnits.available(Reg);
984 static MachineBasicBlock *
985 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
986 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
987 unsigned Reg, const TargetRegisterInfo *TRI) {
988 // Try to find a single sinkable successor in which Reg is live-in.
989 MachineBasicBlock *BB = nullptr;
990 for (auto *SI : SinkableBBs) {
991 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) {
992 // If BB is set here, Reg is live-in to at least two sinkable successors,
993 // so quit.
994 if (BB)
995 return nullptr;
996 BB = SI;
999 // Reg is not live-in to any sinkable successors.
1000 if (!BB)
1001 return nullptr;
1003 // Check if any register aliased with Reg is live-in in other successors.
1004 for (auto *SI : CurBB.successors()) {
1005 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI))
1006 return nullptr;
1008 return BB;
1011 static MachineBasicBlock *
1012 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1013 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1014 ArrayRef<unsigned> DefedRegsInCopy,
1015 const TargetRegisterInfo *TRI) {
1016 MachineBasicBlock *SingleBB = nullptr;
1017 for (auto DefReg : DefedRegsInCopy) {
1018 MachineBasicBlock *BB =
1019 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI);
1020 if (!BB || (SingleBB && SingleBB != BB))
1021 return nullptr;
1022 SingleBB = BB;
1024 return SingleBB;
1027 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB,
1028 SmallVectorImpl<unsigned> &UsedOpsInCopy,
1029 LiveRegUnits &UsedRegUnits,
1030 const TargetRegisterInfo *TRI) {
1031 for (auto U : UsedOpsInCopy) {
1032 MachineOperand &MO = MI->getOperand(U);
1033 unsigned SrcReg = MO.getReg();
1034 if (!UsedRegUnits.available(SrcReg)) {
1035 MachineBasicBlock::iterator NI = std::next(MI->getIterator());
1036 for (MachineInstr &UI : make_range(NI, CurBB.end())) {
1037 if (UI.killsRegister(SrcReg, TRI)) {
1038 UI.clearRegisterKills(SrcReg, TRI);
1039 MO.setIsKill(true);
1040 break;
1047 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB,
1048 SmallVectorImpl<unsigned> &UsedOpsInCopy,
1049 SmallVectorImpl<unsigned> &DefedRegsInCopy) {
1050 MachineFunction &MF = *SuccBB->getParent();
1051 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1052 for (unsigned DefReg : DefedRegsInCopy)
1053 for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S)
1054 SuccBB->removeLiveIn(*S);
1055 for (auto U : UsedOpsInCopy) {
1056 unsigned Reg = MI->getOperand(U).getReg();
1057 if (!SuccBB->isLiveIn(Reg))
1058 SuccBB->addLiveIn(Reg);
1062 static bool hasRegisterDependency(MachineInstr *MI,
1063 SmallVectorImpl<unsigned> &UsedOpsInCopy,
1064 SmallVectorImpl<unsigned> &DefedRegsInCopy,
1065 LiveRegUnits &ModifiedRegUnits,
1066 LiveRegUnits &UsedRegUnits) {
1067 bool HasRegDependency = false;
1068 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1069 MachineOperand &MO = MI->getOperand(i);
1070 if (!MO.isReg())
1071 continue;
1072 unsigned Reg = MO.getReg();
1073 if (!Reg)
1074 continue;
1075 if (MO.isDef()) {
1076 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) {
1077 HasRegDependency = true;
1078 break;
1080 DefedRegsInCopy.push_back(Reg);
1082 // FIXME: instead of isUse(), readsReg() would be a better fix here,
1083 // For example, we can ignore modifications in reg with undef. However,
1084 // it's not perfectly clear if skipping the internal read is safe in all
1085 // other targets.
1086 } else if (MO.isUse()) {
1087 if (!ModifiedRegUnits.available(Reg)) {
1088 HasRegDependency = true;
1089 break;
1091 UsedOpsInCopy.push_back(i);
1094 return HasRegDependency;
1097 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB,
1098 MachineFunction &MF,
1099 const TargetRegisterInfo *TRI,
1100 const TargetInstrInfo *TII) {
1101 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs;
1102 // FIXME: For now, we sink only to a successor which has a single predecessor
1103 // so that we can directly sink COPY instructions to the successor without
1104 // adding any new block or branch instruction.
1105 for (MachineBasicBlock *SI : CurBB.successors())
1106 if (!SI->livein_empty() && SI->pred_size() == 1)
1107 SinkableBBs.insert(SI);
1109 if (SinkableBBs.empty())
1110 return false;
1112 bool Changed = false;
1114 // Track which registers have been modified and used between the end of the
1115 // block and the current instruction.
1116 ModifiedRegUnits.clear();
1117 UsedRegUnits.clear();
1118 SeenDbgInstrs.clear();
1120 for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) {
1121 MachineInstr *MI = &*I;
1122 ++I;
1124 // Track the operand index for use in Copy.
1125 SmallVector<unsigned, 2> UsedOpsInCopy;
1126 // Track the register number defed in Copy.
1127 SmallVector<unsigned, 2> DefedRegsInCopy;
1129 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching
1130 // for DBG_VALUEs later, record them when they're encountered.
1131 if (MI->isDebugValue()) {
1132 auto &MO = MI->getOperand(0);
1133 if (MO.isReg() && TRI->isPhysicalRegister(MO.getReg())) {
1134 // Bail if we can already tell the sink would be rejected, rather
1135 // than needlessly accumulating lots of DBG_VALUEs.
1136 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1137 ModifiedRegUnits, UsedRegUnits))
1138 continue;
1140 // Record debug use of this register.
1141 SeenDbgInstrs[MO.getReg()].push_back(MI);
1143 continue;
1146 if (MI->isDebugInstr())
1147 continue;
1149 // Do not move any instruction across function call.
1150 if (MI->isCall())
1151 return false;
1153 if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) {
1154 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1155 TRI);
1156 continue;
1159 // Don't sink the COPY if it would violate a register dependency.
1160 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1161 ModifiedRegUnits, UsedRegUnits)) {
1162 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1163 TRI);
1164 continue;
1166 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) &&
1167 "Unexpect SrcReg or DefReg");
1168 MachineBasicBlock *SuccBB =
1169 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI);
1170 // Don't sink if we cannot find a single sinkable successor in which Reg
1171 // is live-in.
1172 if (!SuccBB) {
1173 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1174 TRI);
1175 continue;
1177 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) &&
1178 "Unexpected predecessor");
1180 // Collect DBG_VALUEs that must sink with this copy.
1181 SmallVector<MachineInstr *, 4> DbgValsToSink;
1182 for (auto &MO : MI->operands()) {
1183 if (!MO.isReg() || !MO.isDef())
1184 continue;
1185 unsigned reg = MO.getReg();
1186 for (auto *MI : SeenDbgInstrs.lookup(reg))
1187 DbgValsToSink.push_back(MI);
1190 // Clear the kill flag if SrcReg is killed between MI and the end of the
1191 // block.
1192 clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI);
1193 MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI();
1194 performSink(*MI, *SuccBB, InsertPos, &DbgValsToSink);
1195 updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy);
1197 Changed = true;
1198 ++NumPostRACopySink;
1200 return Changed;
1203 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) {
1204 if (skipFunction(MF.getFunction()))
1205 return false;
1207 bool Changed = false;
1208 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1209 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1211 ModifiedRegUnits.init(*TRI);
1212 UsedRegUnits.init(*TRI);
1213 for (auto &BB : MF)
1214 Changed |= tryToSinkCopy(BB, MF, TRI, TII);
1216 return Changed;