Another attempt to fix the build bot breaks after r360426
[llvm-core.git] / lib / CodeGen / TargetLoweringBase.cpp
blob661674ff50a1660ca5c4a6324b32d7b69a1abddd
1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLoweringBase class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ADT/BitVector.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/CodeGen/ISDOpcodes.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/RuntimeLibcalls.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/CodeGen/TargetLowering.h"
33 #include "llvm/CodeGen/TargetOpcodes.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/ValueTypes.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/Support/BranchProbability.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MachineValueType.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include <algorithm>
55 #include <cassert>
56 #include <cstddef>
57 #include <cstdint>
58 #include <cstring>
59 #include <iterator>
60 #include <string>
61 #include <tuple>
62 #include <utility>
64 using namespace llvm;
66 static cl::opt<bool> JumpIsExpensiveOverride(
67 "jump-is-expensive", cl::init(false),
68 cl::desc("Do not create extra branches to split comparison logic."),
69 cl::Hidden);
71 static cl::opt<unsigned> MinimumJumpTableEntries
72 ("min-jump-table-entries", cl::init(4), cl::Hidden,
73 cl::desc("Set minimum number of entries to use a jump table."));
75 static cl::opt<unsigned> MaximumJumpTableSize
76 ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
77 cl::desc("Set maximum size of jump tables."));
79 /// Minimum jump table density for normal functions.
80 static cl::opt<unsigned>
81 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
82 cl::desc("Minimum density for building a jump table in "
83 "a normal function"));
85 /// Minimum jump table density for -Os or -Oz functions.
86 static cl::opt<unsigned> OptsizeJumpTableDensity(
87 "optsize-jump-table-density", cl::init(40), cl::Hidden,
88 cl::desc("Minimum density for building a jump table in "
89 "an optsize function"));
91 static bool darwinHasSinCos(const Triple &TT) {
92 assert(TT.isOSDarwin() && "should be called with darwin triple");
93 // Don't bother with 32 bit x86.
94 if (TT.getArch() == Triple::x86)
95 return false;
96 // Macos < 10.9 has no sincos_stret.
97 if (TT.isMacOSX())
98 return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
99 // iOS < 7.0 has no sincos_stret.
100 if (TT.isiOS())
101 return !TT.isOSVersionLT(7, 0);
102 // Any other darwin such as WatchOS/TvOS is new enough.
103 return true;
106 // Although this default value is arbitrary, it is not random. It is assumed
107 // that a condition that evaluates the same way by a higher percentage than this
108 // is best represented as control flow. Therefore, the default value N should be
109 // set such that the win from N% correct executions is greater than the loss
110 // from (100 - N)% mispredicted executions for the majority of intended targets.
111 static cl::opt<int> MinPercentageForPredictableBranch(
112 "min-predictable-branch", cl::init(99),
113 cl::desc("Minimum percentage (0-100) that a condition must be either true "
114 "or false to assume that the condition is predictable"),
115 cl::Hidden);
117 void TargetLoweringBase::InitLibcalls(const Triple &TT) {
118 #define HANDLE_LIBCALL(code, name) \
119 setLibcallName(RTLIB::code, name);
120 #include "llvm/IR/RuntimeLibcalls.def"
121 #undef HANDLE_LIBCALL
122 // Initialize calling conventions to their default.
123 for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
124 setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);
126 // A few names are different on particular architectures or environments.
127 if (TT.isOSDarwin()) {
128 // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
129 // of the gnueabi-style __gnu_*_ieee.
130 // FIXME: What about other targets?
131 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
132 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
134 // Some darwins have an optimized __bzero/bzero function.
135 switch (TT.getArch()) {
136 case Triple::x86:
137 case Triple::x86_64:
138 if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
139 setLibcallName(RTLIB::BZERO, "__bzero");
140 break;
141 case Triple::aarch64:
142 setLibcallName(RTLIB::BZERO, "bzero");
143 break;
144 default:
145 break;
148 if (darwinHasSinCos(TT)) {
149 setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
150 setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
151 if (TT.isWatchABI()) {
152 setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
153 CallingConv::ARM_AAPCS_VFP);
154 setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
155 CallingConv::ARM_AAPCS_VFP);
158 } else {
159 setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
160 setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
163 if (TT.isGNUEnvironment() || TT.isOSFuchsia() ||
164 (TT.isAndroid() && !TT.isAndroidVersionLT(9))) {
165 setLibcallName(RTLIB::SINCOS_F32, "sincosf");
166 setLibcallName(RTLIB::SINCOS_F64, "sincos");
167 setLibcallName(RTLIB::SINCOS_F80, "sincosl");
168 setLibcallName(RTLIB::SINCOS_F128, "sincosl");
169 setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
172 if (TT.isOSOpenBSD()) {
173 setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
177 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
178 /// UNKNOWN_LIBCALL if there is none.
179 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
180 if (OpVT == MVT::f16) {
181 if (RetVT == MVT::f32)
182 return FPEXT_F16_F32;
183 } else if (OpVT == MVT::f32) {
184 if (RetVT == MVT::f64)
185 return FPEXT_F32_F64;
186 if (RetVT == MVT::f128)
187 return FPEXT_F32_F128;
188 if (RetVT == MVT::ppcf128)
189 return FPEXT_F32_PPCF128;
190 } else if (OpVT == MVT::f64) {
191 if (RetVT == MVT::f128)
192 return FPEXT_F64_F128;
193 else if (RetVT == MVT::ppcf128)
194 return FPEXT_F64_PPCF128;
195 } else if (OpVT == MVT::f80) {
196 if (RetVT == MVT::f128)
197 return FPEXT_F80_F128;
200 return UNKNOWN_LIBCALL;
203 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
204 /// UNKNOWN_LIBCALL if there is none.
205 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
206 if (RetVT == MVT::f16) {
207 if (OpVT == MVT::f32)
208 return FPROUND_F32_F16;
209 if (OpVT == MVT::f64)
210 return FPROUND_F64_F16;
211 if (OpVT == MVT::f80)
212 return FPROUND_F80_F16;
213 if (OpVT == MVT::f128)
214 return FPROUND_F128_F16;
215 if (OpVT == MVT::ppcf128)
216 return FPROUND_PPCF128_F16;
217 } else if (RetVT == MVT::f32) {
218 if (OpVT == MVT::f64)
219 return FPROUND_F64_F32;
220 if (OpVT == MVT::f80)
221 return FPROUND_F80_F32;
222 if (OpVT == MVT::f128)
223 return FPROUND_F128_F32;
224 if (OpVT == MVT::ppcf128)
225 return FPROUND_PPCF128_F32;
226 } else if (RetVT == MVT::f64) {
227 if (OpVT == MVT::f80)
228 return FPROUND_F80_F64;
229 if (OpVT == MVT::f128)
230 return FPROUND_F128_F64;
231 if (OpVT == MVT::ppcf128)
232 return FPROUND_PPCF128_F64;
233 } else if (RetVT == MVT::f80) {
234 if (OpVT == MVT::f128)
235 return FPROUND_F128_F80;
238 return UNKNOWN_LIBCALL;
241 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
242 /// UNKNOWN_LIBCALL if there is none.
243 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
244 if (OpVT == MVT::f32) {
245 if (RetVT == MVT::i32)
246 return FPTOSINT_F32_I32;
247 if (RetVT == MVT::i64)
248 return FPTOSINT_F32_I64;
249 if (RetVT == MVT::i128)
250 return FPTOSINT_F32_I128;
251 } else if (OpVT == MVT::f64) {
252 if (RetVT == MVT::i32)
253 return FPTOSINT_F64_I32;
254 if (RetVT == MVT::i64)
255 return FPTOSINT_F64_I64;
256 if (RetVT == MVT::i128)
257 return FPTOSINT_F64_I128;
258 } else if (OpVT == MVT::f80) {
259 if (RetVT == MVT::i32)
260 return FPTOSINT_F80_I32;
261 if (RetVT == MVT::i64)
262 return FPTOSINT_F80_I64;
263 if (RetVT == MVT::i128)
264 return FPTOSINT_F80_I128;
265 } else if (OpVT == MVT::f128) {
266 if (RetVT == MVT::i32)
267 return FPTOSINT_F128_I32;
268 if (RetVT == MVT::i64)
269 return FPTOSINT_F128_I64;
270 if (RetVT == MVT::i128)
271 return FPTOSINT_F128_I128;
272 } else if (OpVT == MVT::ppcf128) {
273 if (RetVT == MVT::i32)
274 return FPTOSINT_PPCF128_I32;
275 if (RetVT == MVT::i64)
276 return FPTOSINT_PPCF128_I64;
277 if (RetVT == MVT::i128)
278 return FPTOSINT_PPCF128_I128;
280 return UNKNOWN_LIBCALL;
283 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
284 /// UNKNOWN_LIBCALL if there is none.
285 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
286 if (OpVT == MVT::f32) {
287 if (RetVT == MVT::i32)
288 return FPTOUINT_F32_I32;
289 if (RetVT == MVT::i64)
290 return FPTOUINT_F32_I64;
291 if (RetVT == MVT::i128)
292 return FPTOUINT_F32_I128;
293 } else if (OpVT == MVT::f64) {
294 if (RetVT == MVT::i32)
295 return FPTOUINT_F64_I32;
296 if (RetVT == MVT::i64)
297 return FPTOUINT_F64_I64;
298 if (RetVT == MVT::i128)
299 return FPTOUINT_F64_I128;
300 } else if (OpVT == MVT::f80) {
301 if (RetVT == MVT::i32)
302 return FPTOUINT_F80_I32;
303 if (RetVT == MVT::i64)
304 return FPTOUINT_F80_I64;
305 if (RetVT == MVT::i128)
306 return FPTOUINT_F80_I128;
307 } else if (OpVT == MVT::f128) {
308 if (RetVT == MVT::i32)
309 return FPTOUINT_F128_I32;
310 if (RetVT == MVT::i64)
311 return FPTOUINT_F128_I64;
312 if (RetVT == MVT::i128)
313 return FPTOUINT_F128_I128;
314 } else if (OpVT == MVT::ppcf128) {
315 if (RetVT == MVT::i32)
316 return FPTOUINT_PPCF128_I32;
317 if (RetVT == MVT::i64)
318 return FPTOUINT_PPCF128_I64;
319 if (RetVT == MVT::i128)
320 return FPTOUINT_PPCF128_I128;
322 return UNKNOWN_LIBCALL;
325 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
326 /// UNKNOWN_LIBCALL if there is none.
327 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
328 if (OpVT == MVT::i32) {
329 if (RetVT == MVT::f32)
330 return SINTTOFP_I32_F32;
331 if (RetVT == MVT::f64)
332 return SINTTOFP_I32_F64;
333 if (RetVT == MVT::f80)
334 return SINTTOFP_I32_F80;
335 if (RetVT == MVT::f128)
336 return SINTTOFP_I32_F128;
337 if (RetVT == MVT::ppcf128)
338 return SINTTOFP_I32_PPCF128;
339 } else if (OpVT == MVT::i64) {
340 if (RetVT == MVT::f32)
341 return SINTTOFP_I64_F32;
342 if (RetVT == MVT::f64)
343 return SINTTOFP_I64_F64;
344 if (RetVT == MVT::f80)
345 return SINTTOFP_I64_F80;
346 if (RetVT == MVT::f128)
347 return SINTTOFP_I64_F128;
348 if (RetVT == MVT::ppcf128)
349 return SINTTOFP_I64_PPCF128;
350 } else if (OpVT == MVT::i128) {
351 if (RetVT == MVT::f32)
352 return SINTTOFP_I128_F32;
353 if (RetVT == MVT::f64)
354 return SINTTOFP_I128_F64;
355 if (RetVT == MVT::f80)
356 return SINTTOFP_I128_F80;
357 if (RetVT == MVT::f128)
358 return SINTTOFP_I128_F128;
359 if (RetVT == MVT::ppcf128)
360 return SINTTOFP_I128_PPCF128;
362 return UNKNOWN_LIBCALL;
365 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
366 /// UNKNOWN_LIBCALL if there is none.
367 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
368 if (OpVT == MVT::i32) {
369 if (RetVT == MVT::f32)
370 return UINTTOFP_I32_F32;
371 if (RetVT == MVT::f64)
372 return UINTTOFP_I32_F64;
373 if (RetVT == MVT::f80)
374 return UINTTOFP_I32_F80;
375 if (RetVT == MVT::f128)
376 return UINTTOFP_I32_F128;
377 if (RetVT == MVT::ppcf128)
378 return UINTTOFP_I32_PPCF128;
379 } else if (OpVT == MVT::i64) {
380 if (RetVT == MVT::f32)
381 return UINTTOFP_I64_F32;
382 if (RetVT == MVT::f64)
383 return UINTTOFP_I64_F64;
384 if (RetVT == MVT::f80)
385 return UINTTOFP_I64_F80;
386 if (RetVT == MVT::f128)
387 return UINTTOFP_I64_F128;
388 if (RetVT == MVT::ppcf128)
389 return UINTTOFP_I64_PPCF128;
390 } else if (OpVT == MVT::i128) {
391 if (RetVT == MVT::f32)
392 return UINTTOFP_I128_F32;
393 if (RetVT == MVT::f64)
394 return UINTTOFP_I128_F64;
395 if (RetVT == MVT::f80)
396 return UINTTOFP_I128_F80;
397 if (RetVT == MVT::f128)
398 return UINTTOFP_I128_F128;
399 if (RetVT == MVT::ppcf128)
400 return UINTTOFP_I128_PPCF128;
402 return UNKNOWN_LIBCALL;
405 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
406 #define OP_TO_LIBCALL(Name, Enum) \
407 case Name: \
408 switch (VT.SimpleTy) { \
409 default: \
410 return UNKNOWN_LIBCALL; \
411 case MVT::i8: \
412 return Enum##_1; \
413 case MVT::i16: \
414 return Enum##_2; \
415 case MVT::i32: \
416 return Enum##_4; \
417 case MVT::i64: \
418 return Enum##_8; \
419 case MVT::i128: \
420 return Enum##_16; \
423 switch (Opc) {
424 OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
425 OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
426 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
427 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
428 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
429 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
430 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
431 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
432 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
433 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
434 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
435 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
438 #undef OP_TO_LIBCALL
440 return UNKNOWN_LIBCALL;
443 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
444 switch (ElementSize) {
445 case 1:
446 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
447 case 2:
448 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
449 case 4:
450 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
451 case 8:
452 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
453 case 16:
454 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
455 default:
456 return UNKNOWN_LIBCALL;
460 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
461 switch (ElementSize) {
462 case 1:
463 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
464 case 2:
465 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
466 case 4:
467 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
468 case 8:
469 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
470 case 16:
471 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
472 default:
473 return UNKNOWN_LIBCALL;
477 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
478 switch (ElementSize) {
479 case 1:
480 return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
481 case 2:
482 return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
483 case 4:
484 return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
485 case 8:
486 return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
487 case 16:
488 return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
489 default:
490 return UNKNOWN_LIBCALL;
494 /// InitCmpLibcallCCs - Set default comparison libcall CC.
495 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
496 memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
497 CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
498 CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
499 CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
500 CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
501 CCs[RTLIB::UNE_F32] = ISD::SETNE;
502 CCs[RTLIB::UNE_F64] = ISD::SETNE;
503 CCs[RTLIB::UNE_F128] = ISD::SETNE;
504 CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
505 CCs[RTLIB::OGE_F32] = ISD::SETGE;
506 CCs[RTLIB::OGE_F64] = ISD::SETGE;
507 CCs[RTLIB::OGE_F128] = ISD::SETGE;
508 CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
509 CCs[RTLIB::OLT_F32] = ISD::SETLT;
510 CCs[RTLIB::OLT_F64] = ISD::SETLT;
511 CCs[RTLIB::OLT_F128] = ISD::SETLT;
512 CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
513 CCs[RTLIB::OLE_F32] = ISD::SETLE;
514 CCs[RTLIB::OLE_F64] = ISD::SETLE;
515 CCs[RTLIB::OLE_F128] = ISD::SETLE;
516 CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
517 CCs[RTLIB::OGT_F32] = ISD::SETGT;
518 CCs[RTLIB::OGT_F64] = ISD::SETGT;
519 CCs[RTLIB::OGT_F128] = ISD::SETGT;
520 CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
521 CCs[RTLIB::UO_F32] = ISD::SETNE;
522 CCs[RTLIB::UO_F64] = ISD::SETNE;
523 CCs[RTLIB::UO_F128] = ISD::SETNE;
524 CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
525 CCs[RTLIB::O_F32] = ISD::SETEQ;
526 CCs[RTLIB::O_F64] = ISD::SETEQ;
527 CCs[RTLIB::O_F128] = ISD::SETEQ;
528 CCs[RTLIB::O_PPCF128] = ISD::SETEQ;
531 /// NOTE: The TargetMachine owns TLOF.
532 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
533 initActions();
535 // Perform these initializations only once.
536 MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
537 MaxLoadsPerMemcmp = 8;
538 MaxGluedStoresPerMemcpy = 0;
539 MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
540 MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
541 UseUnderscoreSetJmp = false;
542 UseUnderscoreLongJmp = false;
543 HasMultipleConditionRegisters = false;
544 HasExtractBitsInsn = false;
545 JumpIsExpensive = JumpIsExpensiveOverride;
546 PredictableSelectIsExpensive = false;
547 EnableExtLdPromotion = false;
548 StackPointerRegisterToSaveRestore = 0;
549 BooleanContents = UndefinedBooleanContent;
550 BooleanFloatContents = UndefinedBooleanContent;
551 BooleanVectorContents = UndefinedBooleanContent;
552 SchedPreferenceInfo = Sched::ILP;
553 JumpBufSize = 0;
554 JumpBufAlignment = 0;
555 MinFunctionAlignment = 0;
556 PrefFunctionAlignment = 0;
557 PrefLoopAlignment = 0;
558 GatherAllAliasesMaxDepth = 18;
559 MinStackArgumentAlignment = 1;
560 // TODO: the default will be switched to 0 in the next commit, along
561 // with the Target-specific changes necessary.
562 MaxAtomicSizeInBitsSupported = 1024;
564 MinCmpXchgSizeInBits = 0;
565 SupportsUnalignedAtomics = false;
567 std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
569 InitLibcalls(TM.getTargetTriple());
570 InitCmpLibcallCCs(CmpLibcallCCs);
573 void TargetLoweringBase::initActions() {
574 // All operations default to being supported.
575 memset(OpActions, 0, sizeof(OpActions));
576 memset(LoadExtActions, 0, sizeof(LoadExtActions));
577 memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
578 memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
579 memset(CondCodeActions, 0, sizeof(CondCodeActions));
580 std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
581 std::fill(std::begin(TargetDAGCombineArray),
582 std::end(TargetDAGCombineArray), 0);
584 for (MVT VT : MVT::fp_valuetypes()) {
585 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
586 if (IntVT.isValid()) {
587 setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
588 AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
592 // Set default actions for various operations.
593 for (MVT VT : MVT::all_valuetypes()) {
594 // Default all indexed load / store to expand.
595 for (unsigned IM = (unsigned)ISD::PRE_INC;
596 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
597 setIndexedLoadAction(IM, VT, Expand);
598 setIndexedStoreAction(IM, VT, Expand);
601 // Most backends expect to see the node which just returns the value loaded.
602 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
604 // These operations default to expand.
605 setOperationAction(ISD::FGETSIGN, VT, Expand);
606 setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
607 setOperationAction(ISD::FMINNUM, VT, Expand);
608 setOperationAction(ISD::FMAXNUM, VT, Expand);
609 setOperationAction(ISD::FMINNUM_IEEE, VT, Expand);
610 setOperationAction(ISD::FMAXNUM_IEEE, VT, Expand);
611 setOperationAction(ISD::FMINIMUM, VT, Expand);
612 setOperationAction(ISD::FMAXIMUM, VT, Expand);
613 setOperationAction(ISD::FMAD, VT, Expand);
614 setOperationAction(ISD::SMIN, VT, Expand);
615 setOperationAction(ISD::SMAX, VT, Expand);
616 setOperationAction(ISD::UMIN, VT, Expand);
617 setOperationAction(ISD::UMAX, VT, Expand);
618 setOperationAction(ISD::ABS, VT, Expand);
619 setOperationAction(ISD::FSHL, VT, Expand);
620 setOperationAction(ISD::FSHR, VT, Expand);
621 setOperationAction(ISD::SADDSAT, VT, Expand);
622 setOperationAction(ISD::UADDSAT, VT, Expand);
623 setOperationAction(ISD::SSUBSAT, VT, Expand);
624 setOperationAction(ISD::USUBSAT, VT, Expand);
625 setOperationAction(ISD::SMULFIX, VT, Expand);
626 setOperationAction(ISD::UMULFIX, VT, Expand);
628 // Overflow operations default to expand
629 setOperationAction(ISD::SADDO, VT, Expand);
630 setOperationAction(ISD::SSUBO, VT, Expand);
631 setOperationAction(ISD::UADDO, VT, Expand);
632 setOperationAction(ISD::USUBO, VT, Expand);
633 setOperationAction(ISD::SMULO, VT, Expand);
634 setOperationAction(ISD::UMULO, VT, Expand);
636 // ADDCARRY operations default to expand
637 setOperationAction(ISD::ADDCARRY, VT, Expand);
638 setOperationAction(ISD::SUBCARRY, VT, Expand);
639 setOperationAction(ISD::SETCCCARRY, VT, Expand);
641 // ADDC/ADDE/SUBC/SUBE default to expand.
642 setOperationAction(ISD::ADDC, VT, Expand);
643 setOperationAction(ISD::ADDE, VT, Expand);
644 setOperationAction(ISD::SUBC, VT, Expand);
645 setOperationAction(ISD::SUBE, VT, Expand);
647 // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
648 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
649 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
651 setOperationAction(ISD::BITREVERSE, VT, Expand);
653 // These library functions default to expand.
654 setOperationAction(ISD::FROUND, VT, Expand);
655 setOperationAction(ISD::FPOWI, VT, Expand);
657 // These operations default to expand for vector types.
658 if (VT.isVector()) {
659 setOperationAction(ISD::FCOPYSIGN, VT, Expand);
660 setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
661 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
662 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
665 // For most targets @llvm.get.dynamic.area.offset just returns 0.
666 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
668 // Vector reduction default to expand.
669 setOperationAction(ISD::VECREDUCE_FADD, VT, Expand);
670 setOperationAction(ISD::VECREDUCE_FMUL, VT, Expand);
671 setOperationAction(ISD::VECREDUCE_ADD, VT, Expand);
672 setOperationAction(ISD::VECREDUCE_MUL, VT, Expand);
673 setOperationAction(ISD::VECREDUCE_AND, VT, Expand);
674 setOperationAction(ISD::VECREDUCE_OR, VT, Expand);
675 setOperationAction(ISD::VECREDUCE_XOR, VT, Expand);
676 setOperationAction(ISD::VECREDUCE_SMAX, VT, Expand);
677 setOperationAction(ISD::VECREDUCE_SMIN, VT, Expand);
678 setOperationAction(ISD::VECREDUCE_UMAX, VT, Expand);
679 setOperationAction(ISD::VECREDUCE_UMIN, VT, Expand);
680 setOperationAction(ISD::VECREDUCE_FMAX, VT, Expand);
681 setOperationAction(ISD::VECREDUCE_FMIN, VT, Expand);
684 // Most targets ignore the @llvm.prefetch intrinsic.
685 setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
687 // Most targets also ignore the @llvm.readcyclecounter intrinsic.
688 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
690 // ConstantFP nodes default to expand. Targets can either change this to
691 // Legal, in which case all fp constants are legal, or use isFPImmLegal()
692 // to optimize expansions for certain constants.
693 setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
694 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
695 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
696 setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
697 setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
699 // These library functions default to expand.
700 for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
701 setOperationAction(ISD::FCBRT, VT, Expand);
702 setOperationAction(ISD::FLOG , VT, Expand);
703 setOperationAction(ISD::FLOG2, VT, Expand);
704 setOperationAction(ISD::FLOG10, VT, Expand);
705 setOperationAction(ISD::FEXP , VT, Expand);
706 setOperationAction(ISD::FEXP2, VT, Expand);
707 setOperationAction(ISD::FFLOOR, VT, Expand);
708 setOperationAction(ISD::FNEARBYINT, VT, Expand);
709 setOperationAction(ISD::FCEIL, VT, Expand);
710 setOperationAction(ISD::FRINT, VT, Expand);
711 setOperationAction(ISD::FTRUNC, VT, Expand);
712 setOperationAction(ISD::FROUND, VT, Expand);
715 // Default ISD::TRAP to expand (which turns it into abort).
716 setOperationAction(ISD::TRAP, MVT::Other, Expand);
718 // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
719 // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
720 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
723 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
724 EVT) const {
725 return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
728 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
729 bool LegalTypes) const {
730 assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
731 if (LHSTy.isVector())
732 return LHSTy;
733 return LegalTypes ? getScalarShiftAmountTy(DL, LHSTy)
734 : getPointerTy(DL);
737 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
738 assert(isTypeLegal(VT));
739 switch (Op) {
740 default:
741 return false;
742 case ISD::SDIV:
743 case ISD::UDIV:
744 case ISD::SREM:
745 case ISD::UREM:
746 return true;
750 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
751 // If the command-line option was specified, ignore this request.
752 if (!JumpIsExpensiveOverride.getNumOccurrences())
753 JumpIsExpensive = isExpensive;
756 TargetLoweringBase::LegalizeKind
757 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
758 // If this is a simple type, use the ComputeRegisterProp mechanism.
759 if (VT.isSimple()) {
760 MVT SVT = VT.getSimpleVT();
761 assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
762 MVT NVT = TransformToType[SVT.SimpleTy];
763 LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
765 assert((LA == TypeLegal || LA == TypeSoftenFloat ||
766 ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger) &&
767 "Promote may not follow Expand or Promote");
769 if (LA == TypeSplitVector)
770 return LegalizeKind(LA,
771 EVT::getVectorVT(Context, SVT.getVectorElementType(),
772 SVT.getVectorNumElements() / 2));
773 if (LA == TypeScalarizeVector)
774 return LegalizeKind(LA, SVT.getVectorElementType());
775 return LegalizeKind(LA, NVT);
778 // Handle Extended Scalar Types.
779 if (!VT.isVector()) {
780 assert(VT.isInteger() && "Float types must be simple");
781 unsigned BitSize = VT.getSizeInBits();
782 // First promote to a power-of-two size, then expand if necessary.
783 if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
784 EVT NVT = VT.getRoundIntegerType(Context);
785 assert(NVT != VT && "Unable to round integer VT");
786 LegalizeKind NextStep = getTypeConversion(Context, NVT);
787 // Avoid multi-step promotion.
788 if (NextStep.first == TypePromoteInteger)
789 return NextStep;
790 // Return rounded integer type.
791 return LegalizeKind(TypePromoteInteger, NVT);
794 return LegalizeKind(TypeExpandInteger,
795 EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
798 // Handle vector types.
799 unsigned NumElts = VT.getVectorNumElements();
800 EVT EltVT = VT.getVectorElementType();
802 // Vectors with only one element are always scalarized.
803 if (NumElts == 1)
804 return LegalizeKind(TypeScalarizeVector, EltVT);
806 // Try to widen vector elements until the element type is a power of two and
807 // promote it to a legal type later on, for example:
808 // <3 x i8> -> <4 x i8> -> <4 x i32>
809 if (EltVT.isInteger()) {
810 // Vectors with a number of elements that is not a power of two are always
811 // widened, for example <3 x i8> -> <4 x i8>.
812 if (!VT.isPow2VectorType()) {
813 NumElts = (unsigned)NextPowerOf2(NumElts);
814 EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
815 return LegalizeKind(TypeWidenVector, NVT);
818 // Examine the element type.
819 LegalizeKind LK = getTypeConversion(Context, EltVT);
821 // If type is to be expanded, split the vector.
822 // <4 x i140> -> <2 x i140>
823 if (LK.first == TypeExpandInteger)
824 return LegalizeKind(TypeSplitVector,
825 EVT::getVectorVT(Context, EltVT, NumElts / 2));
827 // Promote the integer element types until a legal vector type is found
828 // or until the element integer type is too big. If a legal type was not
829 // found, fallback to the usual mechanism of widening/splitting the
830 // vector.
831 EVT OldEltVT = EltVT;
832 while (true) {
833 // Increase the bitwidth of the element to the next pow-of-two
834 // (which is greater than 8 bits).
835 EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
836 .getRoundIntegerType(Context);
838 // Stop trying when getting a non-simple element type.
839 // Note that vector elements may be greater than legal vector element
840 // types. Example: X86 XMM registers hold 64bit element on 32bit
841 // systems.
842 if (!EltVT.isSimple())
843 break;
845 // Build a new vector type and check if it is legal.
846 MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
847 // Found a legal promoted vector type.
848 if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
849 return LegalizeKind(TypePromoteInteger,
850 EVT::getVectorVT(Context, EltVT, NumElts));
853 // Reset the type to the unexpanded type if we did not find a legal vector
854 // type with a promoted vector element type.
855 EltVT = OldEltVT;
858 // Try to widen the vector until a legal type is found.
859 // If there is no wider legal type, split the vector.
860 while (true) {
861 // Round up to the next power of 2.
862 NumElts = (unsigned)NextPowerOf2(NumElts);
864 // If there is no simple vector type with this many elements then there
865 // cannot be a larger legal vector type. Note that this assumes that
866 // there are no skipped intermediate vector types in the simple types.
867 if (!EltVT.isSimple())
868 break;
869 MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
870 if (LargerVector == MVT())
871 break;
873 // If this type is legal then widen the vector.
874 if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
875 return LegalizeKind(TypeWidenVector, LargerVector);
878 // Widen odd vectors to next power of two.
879 if (!VT.isPow2VectorType()) {
880 EVT NVT = VT.getPow2VectorType(Context);
881 return LegalizeKind(TypeWidenVector, NVT);
884 // Vectors with illegal element types are expanded.
885 EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
886 return LegalizeKind(TypeSplitVector, NVT);
889 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
890 unsigned &NumIntermediates,
891 MVT &RegisterVT,
892 TargetLoweringBase *TLI) {
893 // Figure out the right, legal destination reg to copy into.
894 unsigned NumElts = VT.getVectorNumElements();
895 MVT EltTy = VT.getVectorElementType();
897 unsigned NumVectorRegs = 1;
899 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
900 // could break down into LHS/RHS like LegalizeDAG does.
901 if (!isPowerOf2_32(NumElts)) {
902 NumVectorRegs = NumElts;
903 NumElts = 1;
906 // Divide the input until we get to a supported size. This will always
907 // end with a scalar if the target doesn't support vectors.
908 while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
909 NumElts >>= 1;
910 NumVectorRegs <<= 1;
913 NumIntermediates = NumVectorRegs;
915 MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
916 if (!TLI->isTypeLegal(NewVT))
917 NewVT = EltTy;
918 IntermediateVT = NewVT;
920 unsigned NewVTSize = NewVT.getSizeInBits();
922 // Convert sizes such as i33 to i64.
923 if (!isPowerOf2_32(NewVTSize))
924 NewVTSize = NextPowerOf2(NewVTSize);
926 MVT DestVT = TLI->getRegisterType(NewVT);
927 RegisterVT = DestVT;
928 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
929 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
931 // Otherwise, promotion or legal types use the same number of registers as
932 // the vector decimated to the appropriate level.
933 return NumVectorRegs;
936 /// isLegalRC - Return true if the value types that can be represented by the
937 /// specified register class are all legal.
938 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
939 const TargetRegisterClass &RC) const {
940 for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
941 if (isTypeLegal(*I))
942 return true;
943 return false;
946 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
947 /// sequence of memory operands that is recognized by PrologEpilogInserter.
948 MachineBasicBlock *
949 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
950 MachineBasicBlock *MBB) const {
951 MachineInstr *MI = &InitialMI;
952 MachineFunction &MF = *MI->getMF();
953 MachineFrameInfo &MFI = MF.getFrameInfo();
955 // We're handling multiple types of operands here:
956 // PATCHPOINT MetaArgs - live-in, read only, direct
957 // STATEPOINT Deopt Spill - live-through, read only, indirect
958 // STATEPOINT Deopt Alloca - live-through, read only, direct
959 // (We're currently conservative and mark the deopt slots read/write in
960 // practice.)
961 // STATEPOINT GC Spill - live-through, read/write, indirect
962 // STATEPOINT GC Alloca - live-through, read/write, direct
963 // The live-in vs live-through is handled already (the live through ones are
964 // all stack slots), but we need to handle the different type of stackmap
965 // operands and memory effects here.
967 // MI changes inside this loop as we grow operands.
968 for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
969 MachineOperand &MO = MI->getOperand(OperIdx);
970 if (!MO.isFI())
971 continue;
973 // foldMemoryOperand builds a new MI after replacing a single FI operand
974 // with the canonical set of five x86 addressing-mode operands.
975 int FI = MO.getIndex();
976 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
978 // Copy operands before the frame-index.
979 for (unsigned i = 0; i < OperIdx; ++i)
980 MIB.add(MI->getOperand(i));
981 // Add frame index operands recognized by stackmaps.cpp
982 if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
983 // indirect-mem-ref tag, size, #FI, offset.
984 // Used for spills inserted by StatepointLowering. This codepath is not
985 // used for patchpoints/stackmaps at all, for these spilling is done via
986 // foldMemoryOperand callback only.
987 assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
988 MIB.addImm(StackMaps::IndirectMemRefOp);
989 MIB.addImm(MFI.getObjectSize(FI));
990 MIB.add(MI->getOperand(OperIdx));
991 MIB.addImm(0);
992 } else {
993 // direct-mem-ref tag, #FI, offset.
994 // Used by patchpoint, and direct alloca arguments to statepoints
995 MIB.addImm(StackMaps::DirectMemRefOp);
996 MIB.add(MI->getOperand(OperIdx));
997 MIB.addImm(0);
999 // Copy the operands after the frame index.
1000 for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
1001 MIB.add(MI->getOperand(i));
1003 // Inherit previous memory operands.
1004 MIB.cloneMemRefs(*MI);
1005 assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1007 // Add a new memory operand for this FI.
1008 assert(MFI.getObjectOffset(FI) != -1);
1010 // Note: STATEPOINT MMOs are added during SelectionDAG. STACKMAP, and
1011 // PATCHPOINT should be updated to do the same. (TODO)
1012 if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1013 auto Flags = MachineMemOperand::MOLoad;
1014 MachineMemOperand *MMO = MF.getMachineMemOperand(
1015 MachinePointerInfo::getFixedStack(MF, FI), Flags,
1016 MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI));
1017 MIB->addMemOperand(MF, MMO);
1020 // Replace the instruction and update the operand index.
1021 MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1022 OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
1023 MI->eraseFromParent();
1024 MI = MIB;
1026 return MBB;
1029 MachineBasicBlock *
1030 TargetLoweringBase::emitXRayCustomEvent(MachineInstr &MI,
1031 MachineBasicBlock *MBB) const {
1032 assert(MI.getOpcode() == TargetOpcode::PATCHABLE_EVENT_CALL &&
1033 "Called emitXRayCustomEvent on the wrong MI!");
1034 auto &MF = *MI.getMF();
1035 auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1036 for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1037 MIB.add(MI.getOperand(OpIdx));
1039 MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1040 MI.eraseFromParent();
1041 return MBB;
1044 MachineBasicBlock *
1045 TargetLoweringBase::emitXRayTypedEvent(MachineInstr &MI,
1046 MachineBasicBlock *MBB) const {
1047 assert(MI.getOpcode() == TargetOpcode::PATCHABLE_TYPED_EVENT_CALL &&
1048 "Called emitXRayTypedEvent on the wrong MI!");
1049 auto &MF = *MI.getMF();
1050 auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1051 for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1052 MIB.add(MI.getOperand(OpIdx));
1054 MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1055 MI.eraseFromParent();
1056 return MBB;
1059 /// findRepresentativeClass - Return the largest legal super-reg register class
1060 /// of the register class for the specified type and its associated "cost".
1061 // This function is in TargetLowering because it uses RegClassForVT which would
1062 // need to be moved to TargetRegisterInfo and would necessitate moving
1063 // isTypeLegal over as well - a massive change that would just require
1064 // TargetLowering having a TargetRegisterInfo class member that it would use.
1065 std::pair<const TargetRegisterClass *, uint8_t>
1066 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1067 MVT VT) const {
1068 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1069 if (!RC)
1070 return std::make_pair(RC, 0);
1072 // Compute the set of all super-register classes.
1073 BitVector SuperRegRC(TRI->getNumRegClasses());
1074 for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1075 SuperRegRC.setBitsInMask(RCI.getMask());
1077 // Find the first legal register class with the largest spill size.
1078 const TargetRegisterClass *BestRC = RC;
1079 for (unsigned i : SuperRegRC.set_bits()) {
1080 const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1081 // We want the largest possible spill size.
1082 if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1083 continue;
1084 if (!isLegalRC(*TRI, *SuperRC))
1085 continue;
1086 BestRC = SuperRC;
1088 return std::make_pair(BestRC, 1);
1091 /// computeRegisterProperties - Once all of the register classes are added,
1092 /// this allows us to compute derived properties we expose.
1093 void TargetLoweringBase::computeRegisterProperties(
1094 const TargetRegisterInfo *TRI) {
1095 static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
1096 "Too many value types for ValueTypeActions to hold!");
1098 // Everything defaults to needing one register.
1099 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1100 NumRegistersForVT[i] = 1;
1101 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1103 // ...except isVoid, which doesn't need any registers.
1104 NumRegistersForVT[MVT::isVoid] = 0;
1106 // Find the largest integer register class.
1107 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1108 for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1109 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1111 // Every integer value type larger than this largest register takes twice as
1112 // many registers to represent as the previous ValueType.
1113 for (unsigned ExpandedReg = LargestIntReg + 1;
1114 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1115 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1116 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1117 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1118 ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1119 TypeExpandInteger);
1122 // Inspect all of the ValueType's smaller than the largest integer
1123 // register to see which ones need promotion.
1124 unsigned LegalIntReg = LargestIntReg;
1125 for (unsigned IntReg = LargestIntReg - 1;
1126 IntReg >= (unsigned)MVT::i1; --IntReg) {
1127 MVT IVT = (MVT::SimpleValueType)IntReg;
1128 if (isTypeLegal(IVT)) {
1129 LegalIntReg = IntReg;
1130 } else {
1131 RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1132 (MVT::SimpleValueType)LegalIntReg;
1133 ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1137 // ppcf128 type is really two f64's.
1138 if (!isTypeLegal(MVT::ppcf128)) {
1139 if (isTypeLegal(MVT::f64)) {
1140 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1141 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1142 TransformToType[MVT::ppcf128] = MVT::f64;
1143 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1144 } else {
1145 NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1146 RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1147 TransformToType[MVT::ppcf128] = MVT::i128;
1148 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1152 // Decide how to handle f128. If the target does not have native f128 support,
1153 // expand it to i128 and we will be generating soft float library calls.
1154 if (!isTypeLegal(MVT::f128)) {
1155 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1156 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1157 TransformToType[MVT::f128] = MVT::i128;
1158 ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1161 // Decide how to handle f64. If the target does not have native f64 support,
1162 // expand it to i64 and we will be generating soft float library calls.
1163 if (!isTypeLegal(MVT::f64)) {
1164 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1165 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1166 TransformToType[MVT::f64] = MVT::i64;
1167 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1170 // Decide how to handle f32. If the target does not have native f32 support,
1171 // expand it to i32 and we will be generating soft float library calls.
1172 if (!isTypeLegal(MVT::f32)) {
1173 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1174 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1175 TransformToType[MVT::f32] = MVT::i32;
1176 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1179 // Decide how to handle f16. If the target does not have native f16 support,
1180 // promote it to f32, because there are no f16 library calls (except for
1181 // conversions).
1182 if (!isTypeLegal(MVT::f16)) {
1183 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1184 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1185 TransformToType[MVT::f16] = MVT::f32;
1186 ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1189 // Loop over all of the vector value types to see which need transformations.
1190 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1191 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1192 MVT VT = (MVT::SimpleValueType) i;
1193 if (isTypeLegal(VT))
1194 continue;
1196 MVT EltVT = VT.getVectorElementType();
1197 unsigned NElts = VT.getVectorNumElements();
1198 bool IsLegalWiderType = false;
1199 LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1200 switch (PreferredAction) {
1201 case TypePromoteInteger:
1202 // Try to promote the elements of integer vectors. If no legal
1203 // promotion was found, fall through to the widen-vector method.
1204 for (unsigned nVT = i + 1; nVT <= MVT::LAST_INTEGER_VECTOR_VALUETYPE; ++nVT) {
1205 MVT SVT = (MVT::SimpleValueType) nVT;
1206 // Promote vectors of integers to vectors with the same number
1207 // of elements, with a wider element type.
1208 if (SVT.getScalarSizeInBits() > EltVT.getSizeInBits() &&
1209 SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)) {
1210 TransformToType[i] = SVT;
1211 RegisterTypeForVT[i] = SVT;
1212 NumRegistersForVT[i] = 1;
1213 ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1214 IsLegalWiderType = true;
1215 break;
1218 if (IsLegalWiderType)
1219 break;
1220 LLVM_FALLTHROUGH;
1222 case TypeWidenVector:
1223 // Try to widen the vector.
1224 for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1225 MVT SVT = (MVT::SimpleValueType) nVT;
1226 if (SVT.getVectorElementType() == EltVT
1227 && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) {
1228 TransformToType[i] = SVT;
1229 RegisterTypeForVT[i] = SVT;
1230 NumRegistersForVT[i] = 1;
1231 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1232 IsLegalWiderType = true;
1233 break;
1236 if (IsLegalWiderType)
1237 break;
1238 LLVM_FALLTHROUGH;
1240 case TypeSplitVector:
1241 case TypeScalarizeVector: {
1242 MVT IntermediateVT;
1243 MVT RegisterVT;
1244 unsigned NumIntermediates;
1245 NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1246 NumIntermediates, RegisterVT, this);
1247 RegisterTypeForVT[i] = RegisterVT;
1249 MVT NVT = VT.getPow2VectorType();
1250 if (NVT == VT) {
1251 // Type is already a power of 2. The default action is to split.
1252 TransformToType[i] = MVT::Other;
1253 if (PreferredAction == TypeScalarizeVector)
1254 ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1255 else if (PreferredAction == TypeSplitVector)
1256 ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1257 else
1258 // Set type action according to the number of elements.
1259 ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector
1260 : TypeSplitVector);
1261 } else {
1262 TransformToType[i] = NVT;
1263 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1265 break;
1267 default:
1268 llvm_unreachable("Unknown vector legalization action!");
1272 // Determine the 'representative' register class for each value type.
1273 // An representative register class is the largest (meaning one which is
1274 // not a sub-register class / subreg register class) legal register class for
1275 // a group of value types. For example, on i386, i8, i16, and i32
1276 // representative would be GR32; while on x86_64 it's GR64.
1277 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1278 const TargetRegisterClass* RRC;
1279 uint8_t Cost;
1280 std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1281 RepRegClassForVT[i] = RRC;
1282 RepRegClassCostForVT[i] = Cost;
1286 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1287 EVT VT) const {
1288 assert(!VT.isVector() && "No default SetCC type for vectors!");
1289 return getPointerTy(DL).SimpleTy;
1292 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1293 return MVT::i32; // return the default value
1296 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1297 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
1298 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1299 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1301 /// This method returns the number of registers needed, and the VT for each
1302 /// register. It also returns the VT and quantity of the intermediate values
1303 /// before they are promoted/expanded.
1304 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1305 EVT &IntermediateVT,
1306 unsigned &NumIntermediates,
1307 MVT &RegisterVT) const {
1308 unsigned NumElts = VT.getVectorNumElements();
1310 // If there is a wider vector type with the same element type as this one,
1311 // or a promoted vector type that has the same number of elements which
1312 // are wider, then we should convert to that legal vector type.
1313 // This handles things like <2 x float> -> <4 x float> and
1314 // <4 x i1> -> <4 x i32>.
1315 LegalizeTypeAction TA = getTypeAction(Context, VT);
1316 if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1317 EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1318 if (isTypeLegal(RegisterEVT)) {
1319 IntermediateVT = RegisterEVT;
1320 RegisterVT = RegisterEVT.getSimpleVT();
1321 NumIntermediates = 1;
1322 return 1;
1326 // Figure out the right, legal destination reg to copy into.
1327 EVT EltTy = VT.getVectorElementType();
1329 unsigned NumVectorRegs = 1;
1331 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
1332 // could break down into LHS/RHS like LegalizeDAG does.
1333 if (!isPowerOf2_32(NumElts)) {
1334 NumVectorRegs = NumElts;
1335 NumElts = 1;
1338 // Divide the input until we get to a supported size. This will always
1339 // end with a scalar if the target doesn't support vectors.
1340 while (NumElts > 1 && !isTypeLegal(
1341 EVT::getVectorVT(Context, EltTy, NumElts))) {
1342 NumElts >>= 1;
1343 NumVectorRegs <<= 1;
1346 NumIntermediates = NumVectorRegs;
1348 EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
1349 if (!isTypeLegal(NewVT))
1350 NewVT = EltTy;
1351 IntermediateVT = NewVT;
1353 MVT DestVT = getRegisterType(Context, NewVT);
1354 RegisterVT = DestVT;
1355 unsigned NewVTSize = NewVT.getSizeInBits();
1357 // Convert sizes such as i33 to i64.
1358 if (!isPowerOf2_32(NewVTSize))
1359 NewVTSize = NextPowerOf2(NewVTSize);
1361 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
1362 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1364 // Otherwise, promotion or legal types use the same number of registers as
1365 // the vector decimated to the appropriate level.
1366 return NumVectorRegs;
1369 /// Get the EVTs and ArgFlags collections that represent the legalized return
1370 /// type of the given function. This does not require a DAG or a return value,
1371 /// and is suitable for use before any DAGs for the function are constructed.
1372 /// TODO: Move this out of TargetLowering.cpp.
1373 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
1374 AttributeList attr,
1375 SmallVectorImpl<ISD::OutputArg> &Outs,
1376 const TargetLowering &TLI, const DataLayout &DL) {
1377 SmallVector<EVT, 4> ValueVTs;
1378 ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1379 unsigned NumValues = ValueVTs.size();
1380 if (NumValues == 0) return;
1382 for (unsigned j = 0, f = NumValues; j != f; ++j) {
1383 EVT VT = ValueVTs[j];
1384 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1386 if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1387 ExtendKind = ISD::SIGN_EXTEND;
1388 else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1389 ExtendKind = ISD::ZERO_EXTEND;
1391 // FIXME: C calling convention requires the return type to be promoted to
1392 // at least 32-bit. But this is not necessary for non-C calling
1393 // conventions. The frontend should mark functions whose return values
1394 // require promoting with signext or zeroext attributes.
1395 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1396 MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1397 if (VT.bitsLT(MinVT))
1398 VT = MinVT;
1401 unsigned NumParts =
1402 TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1403 MVT PartVT =
1404 TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1406 // 'inreg' on function refers to return value
1407 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1408 if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg))
1409 Flags.setInReg();
1411 // Propagate extension type if any
1412 if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1413 Flags.setSExt();
1414 else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1415 Flags.setZExt();
1417 for (unsigned i = 0; i < NumParts; ++i)
1418 Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0));
1422 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1423 /// function arguments in the caller parameter area. This is the actual
1424 /// alignment, not its logarithm.
1425 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1426 const DataLayout &DL) const {
1427 return DL.getABITypeAlignment(Ty);
1430 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1431 const DataLayout &DL, EVT VT,
1432 unsigned AddrSpace,
1433 unsigned Alignment,
1434 bool *Fast) const {
1435 // Check if the specified alignment is sufficient based on the data layout.
1436 // TODO: While using the data layout works in practice, a better solution
1437 // would be to implement this check directly (make this a virtual function).
1438 // For example, the ABI alignment may change based on software platform while
1439 // this function should only be affected by hardware implementation.
1440 Type *Ty = VT.getTypeForEVT(Context);
1441 if (Alignment >= DL.getABITypeAlignment(Ty)) {
1442 // Assume that an access that meets the ABI-specified alignment is fast.
1443 if (Fast != nullptr)
1444 *Fast = true;
1445 return true;
1448 // This is a misaligned access.
1449 return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Fast);
1452 BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const {
1453 return BranchProbability(MinPercentageForPredictableBranch, 100);
1456 //===----------------------------------------------------------------------===//
1457 // TargetTransformInfo Helpers
1458 //===----------------------------------------------------------------------===//
1460 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1461 enum InstructionOpcodes {
1462 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1463 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1464 #include "llvm/IR/Instruction.def"
1466 switch (static_cast<InstructionOpcodes>(Opcode)) {
1467 case Ret: return 0;
1468 case Br: return 0;
1469 case Switch: return 0;
1470 case IndirectBr: return 0;
1471 case Invoke: return 0;
1472 case CallBr: return 0;
1473 case Resume: return 0;
1474 case Unreachable: return 0;
1475 case CleanupRet: return 0;
1476 case CatchRet: return 0;
1477 case CatchPad: return 0;
1478 case CatchSwitch: return 0;
1479 case CleanupPad: return 0;
1480 case FNeg: return ISD::FNEG;
1481 case Add: return ISD::ADD;
1482 case FAdd: return ISD::FADD;
1483 case Sub: return ISD::SUB;
1484 case FSub: return ISD::FSUB;
1485 case Mul: return ISD::MUL;
1486 case FMul: return ISD::FMUL;
1487 case UDiv: return ISD::UDIV;
1488 case SDiv: return ISD::SDIV;
1489 case FDiv: return ISD::FDIV;
1490 case URem: return ISD::UREM;
1491 case SRem: return ISD::SREM;
1492 case FRem: return ISD::FREM;
1493 case Shl: return ISD::SHL;
1494 case LShr: return ISD::SRL;
1495 case AShr: return ISD::SRA;
1496 case And: return ISD::AND;
1497 case Or: return ISD::OR;
1498 case Xor: return ISD::XOR;
1499 case Alloca: return 0;
1500 case Load: return ISD::LOAD;
1501 case Store: return ISD::STORE;
1502 case GetElementPtr: return 0;
1503 case Fence: return 0;
1504 case AtomicCmpXchg: return 0;
1505 case AtomicRMW: return 0;
1506 case Trunc: return ISD::TRUNCATE;
1507 case ZExt: return ISD::ZERO_EXTEND;
1508 case SExt: return ISD::SIGN_EXTEND;
1509 case FPToUI: return ISD::FP_TO_UINT;
1510 case FPToSI: return ISD::FP_TO_SINT;
1511 case UIToFP: return ISD::UINT_TO_FP;
1512 case SIToFP: return ISD::SINT_TO_FP;
1513 case FPTrunc: return ISD::FP_ROUND;
1514 case FPExt: return ISD::FP_EXTEND;
1515 case PtrToInt: return ISD::BITCAST;
1516 case IntToPtr: return ISD::BITCAST;
1517 case BitCast: return ISD::BITCAST;
1518 case AddrSpaceCast: return ISD::ADDRSPACECAST;
1519 case ICmp: return ISD::SETCC;
1520 case FCmp: return ISD::SETCC;
1521 case PHI: return 0;
1522 case Call: return 0;
1523 case Select: return ISD::SELECT;
1524 case UserOp1: return 0;
1525 case UserOp2: return 0;
1526 case VAArg: return 0;
1527 case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1528 case InsertElement: return ISD::INSERT_VECTOR_ELT;
1529 case ShuffleVector: return ISD::VECTOR_SHUFFLE;
1530 case ExtractValue: return ISD::MERGE_VALUES;
1531 case InsertValue: return ISD::MERGE_VALUES;
1532 case LandingPad: return 0;
1535 llvm_unreachable("Unknown instruction type encountered!");
1538 std::pair<int, MVT>
1539 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
1540 Type *Ty) const {
1541 LLVMContext &C = Ty->getContext();
1542 EVT MTy = getValueType(DL, Ty);
1544 int Cost = 1;
1545 // We keep legalizing the type until we find a legal kind. We assume that
1546 // the only operation that costs anything is the split. After splitting
1547 // we need to handle two types.
1548 while (true) {
1549 LegalizeKind LK = getTypeConversion(C, MTy);
1551 if (LK.first == TypeLegal)
1552 return std::make_pair(Cost, MTy.getSimpleVT());
1554 if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1555 Cost *= 2;
1557 // Do not loop with f128 type.
1558 if (MTy == LK.second)
1559 return std::make_pair(Cost, MTy.getSimpleVT());
1561 // Keep legalizing the type.
1562 MTy = LK.second;
1566 Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB,
1567 bool UseTLS) const {
1568 // compiler-rt provides a variable with a magic name. Targets that do not
1569 // link with compiler-rt may also provide such a variable.
1570 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1571 const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1572 auto UnsafeStackPtr =
1573 dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1575 Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1577 if (!UnsafeStackPtr) {
1578 auto TLSModel = UseTLS ?
1579 GlobalValue::InitialExecTLSModel :
1580 GlobalValue::NotThreadLocal;
1581 // The global variable is not defined yet, define it ourselves.
1582 // We use the initial-exec TLS model because we do not support the
1583 // variable living anywhere other than in the main executable.
1584 UnsafeStackPtr = new GlobalVariable(
1585 *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1586 UnsafeStackPtrVar, nullptr, TLSModel);
1587 } else {
1588 // The variable exists, check its type and attributes.
1589 if (UnsafeStackPtr->getValueType() != StackPtrTy)
1590 report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1591 if (UseTLS != UnsafeStackPtr->isThreadLocal())
1592 report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1593 (UseTLS ? "" : "not ") + "be thread-local");
1595 return UnsafeStackPtr;
1598 Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
1599 if (!TM.getTargetTriple().isAndroid())
1600 return getDefaultSafeStackPointerLocation(IRB, true);
1602 // Android provides a libc function to retrieve the address of the current
1603 // thread's unsafe stack pointer.
1604 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1605 Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1606 FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address",
1607 StackPtrTy->getPointerTo(0));
1608 return IRB.CreateCall(Fn);
1611 //===----------------------------------------------------------------------===//
1612 // Loop Strength Reduction hooks
1613 //===----------------------------------------------------------------------===//
1615 /// isLegalAddressingMode - Return true if the addressing mode represented
1616 /// by AM is legal for this target, for a load/store of the specified type.
1617 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1618 const AddrMode &AM, Type *Ty,
1619 unsigned AS, Instruction *I) const {
1620 // The default implementation of this implements a conservative RISCy, r+r and
1621 // r+i addr mode.
1623 // Allows a sign-extended 16-bit immediate field.
1624 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1625 return false;
1627 // No global is ever allowed as a base.
1628 if (AM.BaseGV)
1629 return false;
1631 // Only support r+r,
1632 switch (AM.Scale) {
1633 case 0: // "r+i" or just "i", depending on HasBaseReg.
1634 break;
1635 case 1:
1636 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
1637 return false;
1638 // Otherwise we have r+r or r+i.
1639 break;
1640 case 2:
1641 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
1642 return false;
1643 // Allow 2*r as r+r.
1644 break;
1645 default: // Don't allow n * r
1646 return false;
1649 return true;
1652 //===----------------------------------------------------------------------===//
1653 // Stack Protector
1654 //===----------------------------------------------------------------------===//
1656 // For OpenBSD return its special guard variable. Otherwise return nullptr,
1657 // so that SelectionDAG handle SSP.
1658 Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const {
1659 if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1660 Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1661 PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
1662 return M.getOrInsertGlobal("__guard_local", PtrTy);
1664 return nullptr;
1667 // Currently only support "standard" __stack_chk_guard.
1668 // TODO: add LOAD_STACK_GUARD support.
1669 void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
1670 if (!M.getNamedValue("__stack_chk_guard"))
1671 new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false,
1672 GlobalVariable::ExternalLinkage,
1673 nullptr, "__stack_chk_guard");
1676 // Currently only support "standard" __stack_chk_guard.
1677 // TODO: add LOAD_STACK_GUARD support.
1678 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
1679 return M.getNamedValue("__stack_chk_guard");
1682 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
1683 return nullptr;
1686 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
1687 return MinimumJumpTableEntries;
1690 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
1691 MinimumJumpTableEntries = Val;
1694 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
1695 return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
1698 unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
1699 return MaximumJumpTableSize;
1702 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
1703 MaximumJumpTableSize = Val;
1706 //===----------------------------------------------------------------------===//
1707 // Reciprocal Estimates
1708 //===----------------------------------------------------------------------===//
1710 /// Get the reciprocal estimate attribute string for a function that will
1711 /// override the target defaults.
1712 static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
1713 const Function &F = MF.getFunction();
1714 return F.getFnAttribute("reciprocal-estimates").getValueAsString();
1717 /// Construct a string for the given reciprocal operation of the given type.
1718 /// This string should match the corresponding option to the front-end's
1719 /// "-mrecip" flag assuming those strings have been passed through in an
1720 /// attribute string. For example, "vec-divf" for a division of a vXf32.
1721 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
1722 std::string Name = VT.isVector() ? "vec-" : "";
1724 Name += IsSqrt ? "sqrt" : "div";
1726 // TODO: Handle "half" or other float types?
1727 if (VT.getScalarType() == MVT::f64) {
1728 Name += "d";
1729 } else {
1730 assert(VT.getScalarType() == MVT::f32 &&
1731 "Unexpected FP type for reciprocal estimate");
1732 Name += "f";
1735 return Name;
1738 /// Return the character position and value (a single numeric character) of a
1739 /// customized refinement operation in the input string if it exists. Return
1740 /// false if there is no customized refinement step count.
1741 static bool parseRefinementStep(StringRef In, size_t &Position,
1742 uint8_t &Value) {
1743 const char RefStepToken = ':';
1744 Position = In.find(RefStepToken);
1745 if (Position == StringRef::npos)
1746 return false;
1748 StringRef RefStepString = In.substr(Position + 1);
1749 // Allow exactly one numeric character for the additional refinement
1750 // step parameter.
1751 if (RefStepString.size() == 1) {
1752 char RefStepChar = RefStepString[0];
1753 if (RefStepChar >= '0' && RefStepChar <= '9') {
1754 Value = RefStepChar - '0';
1755 return true;
1758 report_fatal_error("Invalid refinement step for -recip.");
1761 /// For the input attribute string, return one of the ReciprocalEstimate enum
1762 /// status values (enabled, disabled, or not specified) for this operation on
1763 /// the specified data type.
1764 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
1765 if (Override.empty())
1766 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1768 SmallVector<StringRef, 4> OverrideVector;
1769 Override.split(OverrideVector, ',');
1770 unsigned NumArgs = OverrideVector.size();
1772 // Check if "all", "none", or "default" was specified.
1773 if (NumArgs == 1) {
1774 // Look for an optional setting of the number of refinement steps needed
1775 // for this type of reciprocal operation.
1776 size_t RefPos;
1777 uint8_t RefSteps;
1778 if (parseRefinementStep(Override, RefPos, RefSteps)) {
1779 // Split the string for further processing.
1780 Override = Override.substr(0, RefPos);
1783 // All reciprocal types are enabled.
1784 if (Override == "all")
1785 return TargetLoweringBase::ReciprocalEstimate::Enabled;
1787 // All reciprocal types are disabled.
1788 if (Override == "none")
1789 return TargetLoweringBase::ReciprocalEstimate::Disabled;
1791 // Target defaults for enablement are used.
1792 if (Override == "default")
1793 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1796 // The attribute string may omit the size suffix ('f'/'d').
1797 std::string VTName = getReciprocalOpName(IsSqrt, VT);
1798 std::string VTNameNoSize = VTName;
1799 VTNameNoSize.pop_back();
1800 static const char DisabledPrefix = '!';
1802 for (StringRef RecipType : OverrideVector) {
1803 size_t RefPos;
1804 uint8_t RefSteps;
1805 if (parseRefinementStep(RecipType, RefPos, RefSteps))
1806 RecipType = RecipType.substr(0, RefPos);
1808 // Ignore the disablement token for string matching.
1809 bool IsDisabled = RecipType[0] == DisabledPrefix;
1810 if (IsDisabled)
1811 RecipType = RecipType.substr(1);
1813 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
1814 return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
1815 : TargetLoweringBase::ReciprocalEstimate::Enabled;
1818 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1821 /// For the input attribute string, return the customized refinement step count
1822 /// for this operation on the specified data type. If the step count does not
1823 /// exist, return the ReciprocalEstimate enum value for unspecified.
1824 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
1825 if (Override.empty())
1826 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1828 SmallVector<StringRef, 4> OverrideVector;
1829 Override.split(OverrideVector, ',');
1830 unsigned NumArgs = OverrideVector.size();
1832 // Check if "all", "default", or "none" was specified.
1833 if (NumArgs == 1) {
1834 // Look for an optional setting of the number of refinement steps needed
1835 // for this type of reciprocal operation.
1836 size_t RefPos;
1837 uint8_t RefSteps;
1838 if (!parseRefinementStep(Override, RefPos, RefSteps))
1839 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1841 // Split the string for further processing.
1842 Override = Override.substr(0, RefPos);
1843 assert(Override != "none" &&
1844 "Disabled reciprocals, but specifed refinement steps?");
1846 // If this is a general override, return the specified number of steps.
1847 if (Override == "all" || Override == "default")
1848 return RefSteps;
1851 // The attribute string may omit the size suffix ('f'/'d').
1852 std::string VTName = getReciprocalOpName(IsSqrt, VT);
1853 std::string VTNameNoSize = VTName;
1854 VTNameNoSize.pop_back();
1856 for (StringRef RecipType : OverrideVector) {
1857 size_t RefPos;
1858 uint8_t RefSteps;
1859 if (!parseRefinementStep(RecipType, RefPos, RefSteps))
1860 continue;
1862 RecipType = RecipType.substr(0, RefPos);
1863 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
1864 return RefSteps;
1867 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1870 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
1871 MachineFunction &MF) const {
1872 return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
1875 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
1876 MachineFunction &MF) const {
1877 return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
1880 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
1881 MachineFunction &MF) const {
1882 return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
1885 int TargetLoweringBase::getDivRefinementSteps(EVT VT,
1886 MachineFunction &MF) const {
1887 return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
1890 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
1891 MF.getRegInfo().freezeReservedRegs(MF);