Another attempt to fix the build bot breaks after r360426
[llvm-core.git] / lib / IR / Verifier.cpp
blob8c77e8deaf8bfe7ec42c304b28a038b3ba16b09e
1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the function verifier interface, that can be used for some
10 // sanity checking of input to the system.
12 // Note that this does not provide full `Java style' security and verifications,
13 // instead it just tries to ensure that code is well-formed.
15 // * Both of a binary operator's parameters are of the same type
16 // * Verify that the indices of mem access instructions match other operands
17 // * Verify that arithmetic and other things are only performed on first-class
18 // types. Verify that shifts & logicals only happen on integrals f.e.
19 // * All of the constants in a switch statement are of the correct type
20 // * The code is in valid SSA form
21 // * It should be illegal to put a label into any other type (like a structure)
22 // or to return one. [except constant arrays!]
23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24 // * PHI nodes must have an entry for each predecessor, with no extras.
25 // * PHI nodes must be the first thing in a basic block, all grouped together
26 // * PHI nodes must have at least one entry
27 // * All basic blocks should only end with terminator insts, not contain them
28 // * The entry node to a function must not have predecessors
29 // * All Instructions must be embedded into a basic block
30 // * Functions cannot take a void-typed parameter
31 // * Verify that a function's argument list agrees with it's declared type.
32 // * It is illegal to specify a name for a void value.
33 // * It is illegal to have a internal global value with no initializer
34 // * It is illegal to have a ret instruction that returns a value that does not
35 // agree with the function return value type.
36 // * Function call argument types match the function prototype
37 // * A landing pad is defined by a landingpad instruction, and can be jumped to
38 // only by the unwind edge of an invoke instruction.
39 // * A landingpad instruction must be the first non-PHI instruction in the
40 // block.
41 // * Landingpad instructions must be in a function with a personality function.
42 // * All other things that are tested by asserts spread about the code...
44 //===----------------------------------------------------------------------===//
46 #include "llvm/IR/Verifier.h"
47 #include "llvm/ADT/APFloat.h"
48 #include "llvm/ADT/APInt.h"
49 #include "llvm/ADT/ArrayRef.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/MapVector.h"
52 #include "llvm/ADT/Optional.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/StringExtras.h"
58 #include "llvm/ADT/StringMap.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/Twine.h"
61 #include "llvm/ADT/ilist.h"
62 #include "llvm/BinaryFormat/Dwarf.h"
63 #include "llvm/IR/Argument.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/CallingConv.h"
68 #include "llvm/IR/Comdat.h"
69 #include "llvm/IR/Constant.h"
70 #include "llvm/IR/ConstantRange.h"
71 #include "llvm/IR/Constants.h"
72 #include "llvm/IR/DataLayout.h"
73 #include "llvm/IR/DebugInfo.h"
74 #include "llvm/IR/DebugInfoMetadata.h"
75 #include "llvm/IR/DebugLoc.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/Dominators.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GlobalAlias.h"
80 #include "llvm/IR/GlobalValue.h"
81 #include "llvm/IR/GlobalVariable.h"
82 #include "llvm/IR/InlineAsm.h"
83 #include "llvm/IR/InstVisitor.h"
84 #include "llvm/IR/InstrTypes.h"
85 #include "llvm/IR/Instruction.h"
86 #include "llvm/IR/Instructions.h"
87 #include "llvm/IR/IntrinsicInst.h"
88 #include "llvm/IR/Intrinsics.h"
89 #include "llvm/IR/LLVMContext.h"
90 #include "llvm/IR/Metadata.h"
91 #include "llvm/IR/Module.h"
92 #include "llvm/IR/ModuleSlotTracker.h"
93 #include "llvm/IR/PassManager.h"
94 #include "llvm/IR/Statepoint.h"
95 #include "llvm/IR/Type.h"
96 #include "llvm/IR/Use.h"
97 #include "llvm/IR/User.h"
98 #include "llvm/IR/Value.h"
99 #include "llvm/Pass.h"
100 #include "llvm/Support/AtomicOrdering.h"
101 #include "llvm/Support/Casting.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MathExtras.h"
106 #include "llvm/Support/raw_ostream.h"
107 #include <algorithm>
108 #include <cassert>
109 #include <cstdint>
110 #include <memory>
111 #include <string>
112 #include <utility>
114 using namespace llvm;
116 namespace llvm {
118 struct VerifierSupport {
119 raw_ostream *OS;
120 const Module &M;
121 ModuleSlotTracker MST;
122 const DataLayout &DL;
123 LLVMContext &Context;
125 /// Track the brokenness of the module while recursively visiting.
126 bool Broken = false;
127 /// Broken debug info can be "recovered" from by stripping the debug info.
128 bool BrokenDebugInfo = false;
129 /// Whether to treat broken debug info as an error.
130 bool TreatBrokenDebugInfoAsError = true;
132 explicit VerifierSupport(raw_ostream *OS, const Module &M)
133 : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {}
135 private:
136 void Write(const Module *M) {
137 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
140 void Write(const Value *V) {
141 if (V)
142 Write(*V);
145 void Write(const Value &V) {
146 if (isa<Instruction>(V)) {
147 V.print(*OS, MST);
148 *OS << '\n';
149 } else {
150 V.printAsOperand(*OS, true, MST);
151 *OS << '\n';
155 void Write(const Metadata *MD) {
156 if (!MD)
157 return;
158 MD->print(*OS, MST, &M);
159 *OS << '\n';
162 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
163 Write(MD.get());
166 void Write(const NamedMDNode *NMD) {
167 if (!NMD)
168 return;
169 NMD->print(*OS, MST);
170 *OS << '\n';
173 void Write(Type *T) {
174 if (!T)
175 return;
176 *OS << ' ' << *T;
179 void Write(const Comdat *C) {
180 if (!C)
181 return;
182 *OS << *C;
185 void Write(const APInt *AI) {
186 if (!AI)
187 return;
188 *OS << *AI << '\n';
191 void Write(const unsigned i) { *OS << i << '\n'; }
193 template <typename T> void Write(ArrayRef<T> Vs) {
194 for (const T &V : Vs)
195 Write(V);
198 template <typename T1, typename... Ts>
199 void WriteTs(const T1 &V1, const Ts &... Vs) {
200 Write(V1);
201 WriteTs(Vs...);
204 template <typename... Ts> void WriteTs() {}
206 public:
207 /// A check failed, so printout out the condition and the message.
209 /// This provides a nice place to put a breakpoint if you want to see why
210 /// something is not correct.
211 void CheckFailed(const Twine &Message) {
212 if (OS)
213 *OS << Message << '\n';
214 Broken = true;
217 /// A check failed (with values to print).
219 /// This calls the Message-only version so that the above is easier to set a
220 /// breakpoint on.
221 template <typename T1, typename... Ts>
222 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
223 CheckFailed(Message);
224 if (OS)
225 WriteTs(V1, Vs...);
228 /// A debug info check failed.
229 void DebugInfoCheckFailed(const Twine &Message) {
230 if (OS)
231 *OS << Message << '\n';
232 Broken |= TreatBrokenDebugInfoAsError;
233 BrokenDebugInfo = true;
236 /// A debug info check failed (with values to print).
237 template <typename T1, typename... Ts>
238 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
239 const Ts &... Vs) {
240 DebugInfoCheckFailed(Message);
241 if (OS)
242 WriteTs(V1, Vs...);
246 } // namespace llvm
248 namespace {
250 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
251 friend class InstVisitor<Verifier>;
253 DominatorTree DT;
255 /// When verifying a basic block, keep track of all of the
256 /// instructions we have seen so far.
258 /// This allows us to do efficient dominance checks for the case when an
259 /// instruction has an operand that is an instruction in the same block.
260 SmallPtrSet<Instruction *, 16> InstsInThisBlock;
262 /// Keep track of the metadata nodes that have been checked already.
263 SmallPtrSet<const Metadata *, 32> MDNodes;
265 /// Keep track which DISubprogram is attached to which function.
266 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
268 /// Track all DICompileUnits visited.
269 SmallPtrSet<const Metadata *, 2> CUVisited;
271 /// The result type for a landingpad.
272 Type *LandingPadResultTy;
274 /// Whether we've seen a call to @llvm.localescape in this function
275 /// already.
276 bool SawFrameEscape;
278 /// Whether the current function has a DISubprogram attached to it.
279 bool HasDebugInfo = false;
281 /// Whether source was present on the first DIFile encountered in each CU.
282 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;
284 /// Stores the count of how many objects were passed to llvm.localescape for a
285 /// given function and the largest index passed to llvm.localrecover.
286 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
288 // Maps catchswitches and cleanuppads that unwind to siblings to the
289 // terminators that indicate the unwind, used to detect cycles therein.
290 MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
292 /// Cache of constants visited in search of ConstantExprs.
293 SmallPtrSet<const Constant *, 32> ConstantExprVisited;
295 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
296 SmallVector<const Function *, 4> DeoptimizeDeclarations;
298 // Verify that this GlobalValue is only used in this module.
299 // This map is used to avoid visiting uses twice. We can arrive at a user
300 // twice, if they have multiple operands. In particular for very large
301 // constant expressions, we can arrive at a particular user many times.
302 SmallPtrSet<const Value *, 32> GlobalValueVisited;
304 // Keeps track of duplicate function argument debug info.
305 SmallVector<const DILocalVariable *, 16> DebugFnArgs;
307 TBAAVerifier TBAAVerifyHelper;
309 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
311 public:
312 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
313 const Module &M)
314 : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
315 SawFrameEscape(false), TBAAVerifyHelper(this) {
316 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
319 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
321 bool verify(const Function &F) {
322 assert(F.getParent() == &M &&
323 "An instance of this class only works with a specific module!");
325 // First ensure the function is well-enough formed to compute dominance
326 // information, and directly compute a dominance tree. We don't rely on the
327 // pass manager to provide this as it isolates us from a potentially
328 // out-of-date dominator tree and makes it significantly more complex to run
329 // this code outside of a pass manager.
330 // FIXME: It's really gross that we have to cast away constness here.
331 if (!F.empty())
332 DT.recalculate(const_cast<Function &>(F));
334 for (const BasicBlock &BB : F) {
335 if (!BB.empty() && BB.back().isTerminator())
336 continue;
338 if (OS) {
339 *OS << "Basic Block in function '" << F.getName()
340 << "' does not have terminator!\n";
341 BB.printAsOperand(*OS, true, MST);
342 *OS << "\n";
344 return false;
347 Broken = false;
348 // FIXME: We strip const here because the inst visitor strips const.
349 visit(const_cast<Function &>(F));
350 verifySiblingFuncletUnwinds();
351 InstsInThisBlock.clear();
352 DebugFnArgs.clear();
353 LandingPadResultTy = nullptr;
354 SawFrameEscape = false;
355 SiblingFuncletInfo.clear();
357 return !Broken;
360 /// Verify the module that this instance of \c Verifier was initialized with.
361 bool verify() {
362 Broken = false;
364 // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
365 for (const Function &F : M)
366 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
367 DeoptimizeDeclarations.push_back(&F);
369 // Now that we've visited every function, verify that we never asked to
370 // recover a frame index that wasn't escaped.
371 verifyFrameRecoverIndices();
372 for (const GlobalVariable &GV : M.globals())
373 visitGlobalVariable(GV);
375 for (const GlobalAlias &GA : M.aliases())
376 visitGlobalAlias(GA);
378 for (const NamedMDNode &NMD : M.named_metadata())
379 visitNamedMDNode(NMD);
381 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
382 visitComdat(SMEC.getValue());
384 visitModuleFlags(M);
385 visitModuleIdents(M);
386 visitModuleCommandLines(M);
388 verifyCompileUnits();
390 verifyDeoptimizeCallingConvs();
391 DISubprogramAttachments.clear();
392 return !Broken;
395 private:
396 // Verification methods...
397 void visitGlobalValue(const GlobalValue &GV);
398 void visitGlobalVariable(const GlobalVariable &GV);
399 void visitGlobalAlias(const GlobalAlias &GA);
400 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
401 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
402 const GlobalAlias &A, const Constant &C);
403 void visitNamedMDNode(const NamedMDNode &NMD);
404 void visitMDNode(const MDNode &MD);
405 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
406 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
407 void visitComdat(const Comdat &C);
408 void visitModuleIdents(const Module &M);
409 void visitModuleCommandLines(const Module &M);
410 void visitModuleFlags(const Module &M);
411 void visitModuleFlag(const MDNode *Op,
412 DenseMap<const MDString *, const MDNode *> &SeenIDs,
413 SmallVectorImpl<const MDNode *> &Requirements);
414 void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
415 void visitFunction(const Function &F);
416 void visitBasicBlock(BasicBlock &BB);
417 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
418 void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
420 template <class Ty> bool isValidMetadataArray(const MDTuple &N);
421 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
422 #include "llvm/IR/Metadata.def"
423 void visitDIScope(const DIScope &N);
424 void visitDIVariable(const DIVariable &N);
425 void visitDILexicalBlockBase(const DILexicalBlockBase &N);
426 void visitDITemplateParameter(const DITemplateParameter &N);
428 void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
430 // InstVisitor overrides...
431 using InstVisitor<Verifier>::visit;
432 void visit(Instruction &I);
434 void visitTruncInst(TruncInst &I);
435 void visitZExtInst(ZExtInst &I);
436 void visitSExtInst(SExtInst &I);
437 void visitFPTruncInst(FPTruncInst &I);
438 void visitFPExtInst(FPExtInst &I);
439 void visitFPToUIInst(FPToUIInst &I);
440 void visitFPToSIInst(FPToSIInst &I);
441 void visitUIToFPInst(UIToFPInst &I);
442 void visitSIToFPInst(SIToFPInst &I);
443 void visitIntToPtrInst(IntToPtrInst &I);
444 void visitPtrToIntInst(PtrToIntInst &I);
445 void visitBitCastInst(BitCastInst &I);
446 void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
447 void visitPHINode(PHINode &PN);
448 void visitCallBase(CallBase &Call);
449 void visitUnaryOperator(UnaryOperator &U);
450 void visitBinaryOperator(BinaryOperator &B);
451 void visitICmpInst(ICmpInst &IC);
452 void visitFCmpInst(FCmpInst &FC);
453 void visitExtractElementInst(ExtractElementInst &EI);
454 void visitInsertElementInst(InsertElementInst &EI);
455 void visitShuffleVectorInst(ShuffleVectorInst &EI);
456 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
457 void visitCallInst(CallInst &CI);
458 void visitInvokeInst(InvokeInst &II);
459 void visitGetElementPtrInst(GetElementPtrInst &GEP);
460 void visitLoadInst(LoadInst &LI);
461 void visitStoreInst(StoreInst &SI);
462 void verifyDominatesUse(Instruction &I, unsigned i);
463 void visitInstruction(Instruction &I);
464 void visitTerminator(Instruction &I);
465 void visitBranchInst(BranchInst &BI);
466 void visitReturnInst(ReturnInst &RI);
467 void visitSwitchInst(SwitchInst &SI);
468 void visitIndirectBrInst(IndirectBrInst &BI);
469 void visitCallBrInst(CallBrInst &CBI);
470 void visitSelectInst(SelectInst &SI);
471 void visitUserOp1(Instruction &I);
472 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
473 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
474 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
475 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
476 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
477 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
478 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
479 void visitFenceInst(FenceInst &FI);
480 void visitAllocaInst(AllocaInst &AI);
481 void visitExtractValueInst(ExtractValueInst &EVI);
482 void visitInsertValueInst(InsertValueInst &IVI);
483 void visitEHPadPredecessors(Instruction &I);
484 void visitLandingPadInst(LandingPadInst &LPI);
485 void visitResumeInst(ResumeInst &RI);
486 void visitCatchPadInst(CatchPadInst &CPI);
487 void visitCatchReturnInst(CatchReturnInst &CatchReturn);
488 void visitCleanupPadInst(CleanupPadInst &CPI);
489 void visitFuncletPadInst(FuncletPadInst &FPI);
490 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
491 void visitCleanupReturnInst(CleanupReturnInst &CRI);
493 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
494 void verifySwiftErrorValue(const Value *SwiftErrorVal);
495 void verifyMustTailCall(CallInst &CI);
496 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
497 unsigned ArgNo, std::string &Suffix);
498 bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
499 void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
500 const Value *V);
501 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
502 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
503 const Value *V, bool IsIntrinsic);
504 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
506 void visitConstantExprsRecursively(const Constant *EntryC);
507 void visitConstantExpr(const ConstantExpr *CE);
508 void verifyStatepoint(const CallBase &Call);
509 void verifyFrameRecoverIndices();
510 void verifySiblingFuncletUnwinds();
512 void verifyFragmentExpression(const DbgVariableIntrinsic &I);
513 template <typename ValueOrMetadata>
514 void verifyFragmentExpression(const DIVariable &V,
515 DIExpression::FragmentInfo Fragment,
516 ValueOrMetadata *Desc);
517 void verifyFnArgs(const DbgVariableIntrinsic &I);
519 /// Module-level debug info verification...
520 void verifyCompileUnits();
522 /// Module-level verification that all @llvm.experimental.deoptimize
523 /// declarations share the same calling convention.
524 void verifyDeoptimizeCallingConvs();
526 /// Verify all-or-nothing property of DIFile source attribute within a CU.
527 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
530 } // end anonymous namespace
532 /// We know that cond should be true, if not print an error message.
533 #define Assert(C, ...) \
534 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
536 /// We know that a debug info condition should be true, if not print
537 /// an error message.
538 #define AssertDI(C, ...) \
539 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
541 void Verifier::visit(Instruction &I) {
542 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
543 Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
544 InstVisitor<Verifier>::visit(I);
547 // Helper to recursively iterate over indirect users. By
548 // returning false, the callback can ask to stop recursing
549 // further.
550 static void forEachUser(const Value *User,
551 SmallPtrSet<const Value *, 32> &Visited,
552 llvm::function_ref<bool(const Value *)> Callback) {
553 if (!Visited.insert(User).second)
554 return;
555 for (const Value *TheNextUser : User->materialized_users())
556 if (Callback(TheNextUser))
557 forEachUser(TheNextUser, Visited, Callback);
560 void Verifier::visitGlobalValue(const GlobalValue &GV) {
561 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
562 "Global is external, but doesn't have external or weak linkage!", &GV);
564 Assert(GV.getAlignment() <= Value::MaximumAlignment,
565 "huge alignment values are unsupported", &GV);
566 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
567 "Only global variables can have appending linkage!", &GV);
569 if (GV.hasAppendingLinkage()) {
570 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
571 Assert(GVar && GVar->getValueType()->isArrayTy(),
572 "Only global arrays can have appending linkage!", GVar);
575 if (GV.isDeclarationForLinker())
576 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
578 if (GV.hasDLLImportStorageClass()) {
579 Assert(!GV.isDSOLocal(),
580 "GlobalValue with DLLImport Storage is dso_local!", &GV);
582 Assert((GV.isDeclaration() && GV.hasExternalLinkage()) ||
583 GV.hasAvailableExternallyLinkage(),
584 "Global is marked as dllimport, but not external", &GV);
587 if (GV.hasLocalLinkage())
588 Assert(GV.isDSOLocal(),
589 "GlobalValue with private or internal linkage must be dso_local!",
590 &GV);
592 if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage())
593 Assert(GV.isDSOLocal(),
594 "GlobalValue with non default visibility must be dso_local!", &GV);
596 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
597 if (const Instruction *I = dyn_cast<Instruction>(V)) {
598 if (!I->getParent() || !I->getParent()->getParent())
599 CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
601 else if (I->getParent()->getParent()->getParent() != &M)
602 CheckFailed("Global is referenced in a different module!", &GV, &M, I,
603 I->getParent()->getParent(),
604 I->getParent()->getParent()->getParent());
605 return false;
606 } else if (const Function *F = dyn_cast<Function>(V)) {
607 if (F->getParent() != &M)
608 CheckFailed("Global is used by function in a different module", &GV, &M,
609 F, F->getParent());
610 return false;
612 return true;
616 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
617 if (GV.hasInitializer()) {
618 Assert(GV.getInitializer()->getType() == GV.getValueType(),
619 "Global variable initializer type does not match global "
620 "variable type!",
621 &GV);
622 // If the global has common linkage, it must have a zero initializer and
623 // cannot be constant.
624 if (GV.hasCommonLinkage()) {
625 Assert(GV.getInitializer()->isNullValue(),
626 "'common' global must have a zero initializer!", &GV);
627 Assert(!GV.isConstant(), "'common' global may not be marked constant!",
628 &GV);
629 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
633 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
634 GV.getName() == "llvm.global_dtors")) {
635 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
636 "invalid linkage for intrinsic global variable", &GV);
637 // Don't worry about emitting an error for it not being an array,
638 // visitGlobalValue will complain on appending non-array.
639 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
640 StructType *STy = dyn_cast<StructType>(ATy->getElementType());
641 PointerType *FuncPtrTy =
642 FunctionType::get(Type::getVoidTy(Context), false)->
643 getPointerTo(DL.getProgramAddressSpace());
644 // FIXME: Reject the 2-field form in LLVM 4.0.
645 Assert(STy &&
646 (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
647 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
648 STy->getTypeAtIndex(1) == FuncPtrTy,
649 "wrong type for intrinsic global variable", &GV);
650 if (STy->getNumElements() == 3) {
651 Type *ETy = STy->getTypeAtIndex(2);
652 Assert(ETy->isPointerTy() &&
653 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
654 "wrong type for intrinsic global variable", &GV);
659 if (GV.hasName() && (GV.getName() == "llvm.used" ||
660 GV.getName() == "llvm.compiler.used")) {
661 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
662 "invalid linkage for intrinsic global variable", &GV);
663 Type *GVType = GV.getValueType();
664 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
665 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
666 Assert(PTy, "wrong type for intrinsic global variable", &GV);
667 if (GV.hasInitializer()) {
668 const Constant *Init = GV.getInitializer();
669 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
670 Assert(InitArray, "wrong initalizer for intrinsic global variable",
671 Init);
672 for (Value *Op : InitArray->operands()) {
673 Value *V = Op->stripPointerCastsNoFollowAliases();
674 Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
675 isa<GlobalAlias>(V),
676 "invalid llvm.used member", V);
677 Assert(V->hasName(), "members of llvm.used must be named", V);
683 // Visit any debug info attachments.
684 SmallVector<MDNode *, 1> MDs;
685 GV.getMetadata(LLVMContext::MD_dbg, MDs);
686 for (auto *MD : MDs) {
687 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
688 visitDIGlobalVariableExpression(*GVE);
689 else
690 AssertDI(false, "!dbg attachment of global variable must be a "
691 "DIGlobalVariableExpression");
694 if (!GV.hasInitializer()) {
695 visitGlobalValue(GV);
696 return;
699 // Walk any aggregate initializers looking for bitcasts between address spaces
700 visitConstantExprsRecursively(GV.getInitializer());
702 visitGlobalValue(GV);
705 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
706 SmallPtrSet<const GlobalAlias*, 4> Visited;
707 Visited.insert(&GA);
708 visitAliaseeSubExpr(Visited, GA, C);
711 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
712 const GlobalAlias &GA, const Constant &C) {
713 if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
714 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
715 &GA);
717 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
718 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
720 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
721 &GA);
722 } else {
723 // Only continue verifying subexpressions of GlobalAliases.
724 // Do not recurse into global initializers.
725 return;
729 if (const auto *CE = dyn_cast<ConstantExpr>(&C))
730 visitConstantExprsRecursively(CE);
732 for (const Use &U : C.operands()) {
733 Value *V = &*U;
734 if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
735 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
736 else if (const auto *C2 = dyn_cast<Constant>(V))
737 visitAliaseeSubExpr(Visited, GA, *C2);
741 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
742 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
743 "Alias should have private, internal, linkonce, weak, linkonce_odr, "
744 "weak_odr, or external linkage!",
745 &GA);
746 const Constant *Aliasee = GA.getAliasee();
747 Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
748 Assert(GA.getType() == Aliasee->getType(),
749 "Alias and aliasee types should match!", &GA);
751 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
752 "Aliasee should be either GlobalValue or ConstantExpr", &GA);
754 visitAliaseeSubExpr(GA, *Aliasee);
756 visitGlobalValue(GA);
759 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
760 // There used to be various other llvm.dbg.* nodes, but we don't support
761 // upgrading them and we want to reserve the namespace for future uses.
762 if (NMD.getName().startswith("llvm.dbg."))
763 AssertDI(NMD.getName() == "llvm.dbg.cu",
764 "unrecognized named metadata node in the llvm.dbg namespace",
765 &NMD);
766 for (const MDNode *MD : NMD.operands()) {
767 if (NMD.getName() == "llvm.dbg.cu")
768 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
770 if (!MD)
771 continue;
773 visitMDNode(*MD);
777 void Verifier::visitMDNode(const MDNode &MD) {
778 // Only visit each node once. Metadata can be mutually recursive, so this
779 // avoids infinite recursion here, as well as being an optimization.
780 if (!MDNodes.insert(&MD).second)
781 return;
783 switch (MD.getMetadataID()) {
784 default:
785 llvm_unreachable("Invalid MDNode subclass");
786 case Metadata::MDTupleKind:
787 break;
788 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
789 case Metadata::CLASS##Kind: \
790 visit##CLASS(cast<CLASS>(MD)); \
791 break;
792 #include "llvm/IR/Metadata.def"
795 for (const Metadata *Op : MD.operands()) {
796 if (!Op)
797 continue;
798 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
799 &MD, Op);
800 if (auto *N = dyn_cast<MDNode>(Op)) {
801 visitMDNode(*N);
802 continue;
804 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
805 visitValueAsMetadata(*V, nullptr);
806 continue;
810 // Check these last, so we diagnose problems in operands first.
811 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
812 Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
815 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
816 Assert(MD.getValue(), "Expected valid value", &MD);
817 Assert(!MD.getValue()->getType()->isMetadataTy(),
818 "Unexpected metadata round-trip through values", &MD, MD.getValue());
820 auto *L = dyn_cast<LocalAsMetadata>(&MD);
821 if (!L)
822 return;
824 Assert(F, "function-local metadata used outside a function", L);
826 // If this was an instruction, bb, or argument, verify that it is in the
827 // function that we expect.
828 Function *ActualF = nullptr;
829 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
830 Assert(I->getParent(), "function-local metadata not in basic block", L, I);
831 ActualF = I->getParent()->getParent();
832 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
833 ActualF = BB->getParent();
834 else if (Argument *A = dyn_cast<Argument>(L->getValue()))
835 ActualF = A->getParent();
836 assert(ActualF && "Unimplemented function local metadata case!");
838 Assert(ActualF == F, "function-local metadata used in wrong function", L);
841 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
842 Metadata *MD = MDV.getMetadata();
843 if (auto *N = dyn_cast<MDNode>(MD)) {
844 visitMDNode(*N);
845 return;
848 // Only visit each node once. Metadata can be mutually recursive, so this
849 // avoids infinite recursion here, as well as being an optimization.
850 if (!MDNodes.insert(MD).second)
851 return;
853 if (auto *V = dyn_cast<ValueAsMetadata>(MD))
854 visitValueAsMetadata(*V, F);
857 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
858 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
859 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
861 void Verifier::visitDILocation(const DILocation &N) {
862 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
863 "location requires a valid scope", &N, N.getRawScope());
864 if (auto *IA = N.getRawInlinedAt())
865 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
866 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
867 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
870 void Verifier::visitGenericDINode(const GenericDINode &N) {
871 AssertDI(N.getTag(), "invalid tag", &N);
874 void Verifier::visitDIScope(const DIScope &N) {
875 if (auto *F = N.getRawFile())
876 AssertDI(isa<DIFile>(F), "invalid file", &N, F);
879 void Verifier::visitDISubrange(const DISubrange &N) {
880 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
881 auto Count = N.getCount();
882 AssertDI(Count, "Count must either be a signed constant or a DIVariable",
883 &N);
884 AssertDI(!Count.is<ConstantInt*>() ||
885 Count.get<ConstantInt*>()->getSExtValue() >= -1,
886 "invalid subrange count", &N);
889 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
890 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
893 void Verifier::visitDIBasicType(const DIBasicType &N) {
894 AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
895 N.getTag() == dwarf::DW_TAG_unspecified_type,
896 "invalid tag", &N);
897 AssertDI(!(N.isBigEndian() && N.isLittleEndian()) ,
898 "has conflicting flags", &N);
901 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
902 // Common scope checks.
903 visitDIScope(N);
905 AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
906 N.getTag() == dwarf::DW_TAG_pointer_type ||
907 N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
908 N.getTag() == dwarf::DW_TAG_reference_type ||
909 N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
910 N.getTag() == dwarf::DW_TAG_const_type ||
911 N.getTag() == dwarf::DW_TAG_volatile_type ||
912 N.getTag() == dwarf::DW_TAG_restrict_type ||
913 N.getTag() == dwarf::DW_TAG_atomic_type ||
914 N.getTag() == dwarf::DW_TAG_member ||
915 N.getTag() == dwarf::DW_TAG_inheritance ||
916 N.getTag() == dwarf::DW_TAG_friend,
917 "invalid tag", &N);
918 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
919 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
920 N.getRawExtraData());
923 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
924 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
925 N.getRawBaseType());
927 if (N.getDWARFAddressSpace()) {
928 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
929 N.getTag() == dwarf::DW_TAG_reference_type ||
930 N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
931 "DWARF address space only applies to pointer or reference types",
932 &N);
936 /// Detect mutually exclusive flags.
937 static bool hasConflictingReferenceFlags(unsigned Flags) {
938 return ((Flags & DINode::FlagLValueReference) &&
939 (Flags & DINode::FlagRValueReference)) ||
940 ((Flags & DINode::FlagTypePassByValue) &&
941 (Flags & DINode::FlagTypePassByReference));
944 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
945 auto *Params = dyn_cast<MDTuple>(&RawParams);
946 AssertDI(Params, "invalid template params", &N, &RawParams);
947 for (Metadata *Op : Params->operands()) {
948 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
949 &N, Params, Op);
953 void Verifier::visitDICompositeType(const DICompositeType &N) {
954 // Common scope checks.
955 visitDIScope(N);
957 AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
958 N.getTag() == dwarf::DW_TAG_structure_type ||
959 N.getTag() == dwarf::DW_TAG_union_type ||
960 N.getTag() == dwarf::DW_TAG_enumeration_type ||
961 N.getTag() == dwarf::DW_TAG_class_type ||
962 N.getTag() == dwarf::DW_TAG_variant_part,
963 "invalid tag", &N);
965 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
966 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
967 N.getRawBaseType());
969 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
970 "invalid composite elements", &N, N.getRawElements());
971 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
972 N.getRawVTableHolder());
973 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
974 "invalid reference flags", &N);
976 if (N.isVector()) {
977 const DINodeArray Elements = N.getElements();
978 AssertDI(Elements.size() == 1 &&
979 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
980 "invalid vector, expected one element of type subrange", &N);
983 if (auto *Params = N.getRawTemplateParams())
984 visitTemplateParams(N, *Params);
986 if (N.getTag() == dwarf::DW_TAG_class_type ||
987 N.getTag() == dwarf::DW_TAG_union_type) {
988 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),
989 "class/union requires a filename", &N, N.getFile());
992 if (auto *D = N.getRawDiscriminator()) {
993 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
994 "discriminator can only appear on variant part");
998 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
999 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
1000 if (auto *Types = N.getRawTypeArray()) {
1001 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
1002 for (Metadata *Ty : N.getTypeArray()->operands()) {
1003 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
1006 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1007 "invalid reference flags", &N);
1010 void Verifier::visitDIFile(const DIFile &N) {
1011 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1012 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1013 if (Checksum) {
1014 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1015 "invalid checksum kind", &N);
1016 size_t Size;
1017 switch (Checksum->Kind) {
1018 case DIFile::CSK_MD5:
1019 Size = 32;
1020 break;
1021 case DIFile::CSK_SHA1:
1022 Size = 40;
1023 break;
1025 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1026 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1027 "invalid checksum", &N);
1031 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1032 AssertDI(N.isDistinct(), "compile units must be distinct", &N);
1033 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1035 // Don't bother verifying the compilation directory or producer string
1036 // as those could be empty.
1037 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1038 N.getRawFile());
1039 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1040 N.getFile());
1042 verifySourceDebugInfo(N, *N.getFile());
1044 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1045 "invalid emission kind", &N);
1047 if (auto *Array = N.getRawEnumTypes()) {
1048 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1049 for (Metadata *Op : N.getEnumTypes()->operands()) {
1050 auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1051 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1052 "invalid enum type", &N, N.getEnumTypes(), Op);
1055 if (auto *Array = N.getRawRetainedTypes()) {
1056 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1057 for (Metadata *Op : N.getRetainedTypes()->operands()) {
1058 AssertDI(Op && (isa<DIType>(Op) ||
1059 (isa<DISubprogram>(Op) &&
1060 !cast<DISubprogram>(Op)->isDefinition())),
1061 "invalid retained type", &N, Op);
1064 if (auto *Array = N.getRawGlobalVariables()) {
1065 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1066 for (Metadata *Op : N.getGlobalVariables()->operands()) {
1067 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1068 "invalid global variable ref", &N, Op);
1071 if (auto *Array = N.getRawImportedEntities()) {
1072 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1073 for (Metadata *Op : N.getImportedEntities()->operands()) {
1074 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1075 &N, Op);
1078 if (auto *Array = N.getRawMacros()) {
1079 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1080 for (Metadata *Op : N.getMacros()->operands()) {
1081 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1084 CUVisited.insert(&N);
1087 void Verifier::visitDISubprogram(const DISubprogram &N) {
1088 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1089 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1090 if (auto *F = N.getRawFile())
1091 AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1092 else
1093 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1094 if (auto *T = N.getRawType())
1095 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1096 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1097 N.getRawContainingType());
1098 if (auto *Params = N.getRawTemplateParams())
1099 visitTemplateParams(N, *Params);
1100 if (auto *S = N.getRawDeclaration())
1101 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1102 "invalid subprogram declaration", &N, S);
1103 if (auto *RawNode = N.getRawRetainedNodes()) {
1104 auto *Node = dyn_cast<MDTuple>(RawNode);
1105 AssertDI(Node, "invalid retained nodes list", &N, RawNode);
1106 for (Metadata *Op : Node->operands()) {
1107 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),
1108 "invalid retained nodes, expected DILocalVariable or DILabel",
1109 &N, Node, Op);
1112 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1113 "invalid reference flags", &N);
1115 auto *Unit = N.getRawUnit();
1116 if (N.isDefinition()) {
1117 // Subprogram definitions (not part of the type hierarchy).
1118 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1119 AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
1120 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1121 if (N.getFile())
1122 verifySourceDebugInfo(*N.getUnit(), *N.getFile());
1123 } else {
1124 // Subprogram declarations (part of the type hierarchy).
1125 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1128 if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1129 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1130 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1131 for (Metadata *Op : ThrownTypes->operands())
1132 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1133 Op);
1136 if (N.areAllCallsDescribed())
1137 AssertDI(N.isDefinition(),
1138 "DIFlagAllCallsDescribed must be attached to a definition");
1141 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1142 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1143 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1144 "invalid local scope", &N, N.getRawScope());
1145 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1146 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1149 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1150 visitDILexicalBlockBase(N);
1152 AssertDI(N.getLine() || !N.getColumn(),
1153 "cannot have column info without line info", &N);
1156 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1157 visitDILexicalBlockBase(N);
1160 void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1161 AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
1162 if (auto *S = N.getRawScope())
1163 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1164 if (auto *S = N.getRawDecl())
1165 AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
1168 void Verifier::visitDINamespace(const DINamespace &N) {
1169 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1170 if (auto *S = N.getRawScope())
1171 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1174 void Verifier::visitDIMacro(const DIMacro &N) {
1175 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1176 N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1177 "invalid macinfo type", &N);
1178 AssertDI(!N.getName().empty(), "anonymous macro", &N);
1179 if (!N.getValue().empty()) {
1180 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1184 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1185 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1186 "invalid macinfo type", &N);
1187 if (auto *F = N.getRawFile())
1188 AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1190 if (auto *Array = N.getRawElements()) {
1191 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1192 for (Metadata *Op : N.getElements()->operands()) {
1193 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1198 void Verifier::visitDIModule(const DIModule &N) {
1199 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1200 AssertDI(!N.getName().empty(), "anonymous module", &N);
1203 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1204 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1207 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1208 visitDITemplateParameter(N);
1210 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1211 &N);
1214 void Verifier::visitDITemplateValueParameter(
1215 const DITemplateValueParameter &N) {
1216 visitDITemplateParameter(N);
1218 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1219 N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1220 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1221 "invalid tag", &N);
1224 void Verifier::visitDIVariable(const DIVariable &N) {
1225 if (auto *S = N.getRawScope())
1226 AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1227 if (auto *F = N.getRawFile())
1228 AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1231 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1232 // Checks common to all variables.
1233 visitDIVariable(N);
1235 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1236 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1237 AssertDI(N.getType(), "missing global variable type", &N);
1238 if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1239 AssertDI(isa<DIDerivedType>(Member),
1240 "invalid static data member declaration", &N, Member);
1244 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1245 // Checks common to all variables.
1246 visitDIVariable(N);
1248 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1249 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1250 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1251 "local variable requires a valid scope", &N, N.getRawScope());
1252 if (auto Ty = N.getType())
1253 AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
1256 void Verifier::visitDILabel(const DILabel &N) {
1257 if (auto *S = N.getRawScope())
1258 AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1259 if (auto *F = N.getRawFile())
1260 AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1262 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1263 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1264 "label requires a valid scope", &N, N.getRawScope());
1267 void Verifier::visitDIExpression(const DIExpression &N) {
1268 AssertDI(N.isValid(), "invalid expression", &N);
1271 void Verifier::visitDIGlobalVariableExpression(
1272 const DIGlobalVariableExpression &GVE) {
1273 AssertDI(GVE.getVariable(), "missing variable");
1274 if (auto *Var = GVE.getVariable())
1275 visitDIGlobalVariable(*Var);
1276 if (auto *Expr = GVE.getExpression()) {
1277 visitDIExpression(*Expr);
1278 if (auto Fragment = Expr->getFragmentInfo())
1279 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1283 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1284 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1285 if (auto *T = N.getRawType())
1286 AssertDI(isType(T), "invalid type ref", &N, T);
1287 if (auto *F = N.getRawFile())
1288 AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1291 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1292 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1293 N.getTag() == dwarf::DW_TAG_imported_declaration,
1294 "invalid tag", &N);
1295 if (auto *S = N.getRawScope())
1296 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1297 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1298 N.getRawEntity());
1301 void Verifier::visitComdat(const Comdat &C) {
1302 // The Module is invalid if the GlobalValue has private linkage. Entities
1303 // with private linkage don't have entries in the symbol table.
1304 if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1305 Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1306 GV);
1309 void Verifier::visitModuleIdents(const Module &M) {
1310 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1311 if (!Idents)
1312 return;
1314 // llvm.ident takes a list of metadata entry. Each entry has only one string.
1315 // Scan each llvm.ident entry and make sure that this requirement is met.
1316 for (const MDNode *N : Idents->operands()) {
1317 Assert(N->getNumOperands() == 1,
1318 "incorrect number of operands in llvm.ident metadata", N);
1319 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1320 ("invalid value for llvm.ident metadata entry operand"
1321 "(the operand should be a string)"),
1322 N->getOperand(0));
1326 void Verifier::visitModuleCommandLines(const Module &M) {
1327 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1328 if (!CommandLines)
1329 return;
1331 // llvm.commandline takes a list of metadata entry. Each entry has only one
1332 // string. Scan each llvm.commandline entry and make sure that this
1333 // requirement is met.
1334 for (const MDNode *N : CommandLines->operands()) {
1335 Assert(N->getNumOperands() == 1,
1336 "incorrect number of operands in llvm.commandline metadata", N);
1337 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1338 ("invalid value for llvm.commandline metadata entry operand"
1339 "(the operand should be a string)"),
1340 N->getOperand(0));
1344 void Verifier::visitModuleFlags(const Module &M) {
1345 const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1346 if (!Flags) return;
1348 // Scan each flag, and track the flags and requirements.
1349 DenseMap<const MDString*, const MDNode*> SeenIDs;
1350 SmallVector<const MDNode*, 16> Requirements;
1351 for (const MDNode *MDN : Flags->operands())
1352 visitModuleFlag(MDN, SeenIDs, Requirements);
1354 // Validate that the requirements in the module are valid.
1355 for (const MDNode *Requirement : Requirements) {
1356 const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1357 const Metadata *ReqValue = Requirement->getOperand(1);
1359 const MDNode *Op = SeenIDs.lookup(Flag);
1360 if (!Op) {
1361 CheckFailed("invalid requirement on flag, flag is not present in module",
1362 Flag);
1363 continue;
1366 if (Op->getOperand(2) != ReqValue) {
1367 CheckFailed(("invalid requirement on flag, "
1368 "flag does not have the required value"),
1369 Flag);
1370 continue;
1375 void
1376 Verifier::visitModuleFlag(const MDNode *Op,
1377 DenseMap<const MDString *, const MDNode *> &SeenIDs,
1378 SmallVectorImpl<const MDNode *> &Requirements) {
1379 // Each module flag should have three arguments, the merge behavior (a
1380 // constant int), the flag ID (an MDString), and the value.
1381 Assert(Op->getNumOperands() == 3,
1382 "incorrect number of operands in module flag", Op);
1383 Module::ModFlagBehavior MFB;
1384 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1385 Assert(
1386 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1387 "invalid behavior operand in module flag (expected constant integer)",
1388 Op->getOperand(0));
1389 Assert(false,
1390 "invalid behavior operand in module flag (unexpected constant)",
1391 Op->getOperand(0));
1393 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1394 Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1395 Op->getOperand(1));
1397 // Sanity check the values for behaviors with additional requirements.
1398 switch (MFB) {
1399 case Module::Error:
1400 case Module::Warning:
1401 case Module::Override:
1402 // These behavior types accept any value.
1403 break;
1405 case Module::Max: {
1406 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1407 "invalid value for 'max' module flag (expected constant integer)",
1408 Op->getOperand(2));
1409 break;
1412 case Module::Require: {
1413 // The value should itself be an MDNode with two operands, a flag ID (an
1414 // MDString), and a value.
1415 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1416 Assert(Value && Value->getNumOperands() == 2,
1417 "invalid value for 'require' module flag (expected metadata pair)",
1418 Op->getOperand(2));
1419 Assert(isa<MDString>(Value->getOperand(0)),
1420 ("invalid value for 'require' module flag "
1421 "(first value operand should be a string)"),
1422 Value->getOperand(0));
1424 // Append it to the list of requirements, to check once all module flags are
1425 // scanned.
1426 Requirements.push_back(Value);
1427 break;
1430 case Module::Append:
1431 case Module::AppendUnique: {
1432 // These behavior types require the operand be an MDNode.
1433 Assert(isa<MDNode>(Op->getOperand(2)),
1434 "invalid value for 'append'-type module flag "
1435 "(expected a metadata node)",
1436 Op->getOperand(2));
1437 break;
1441 // Unless this is a "requires" flag, check the ID is unique.
1442 if (MFB != Module::Require) {
1443 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1444 Assert(Inserted,
1445 "module flag identifiers must be unique (or of 'require' type)", ID);
1448 if (ID->getString() == "wchar_size") {
1449 ConstantInt *Value
1450 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1451 Assert(Value, "wchar_size metadata requires constant integer argument");
1454 if (ID->getString() == "Linker Options") {
1455 // If the llvm.linker.options named metadata exists, we assume that the
1456 // bitcode reader has upgraded the module flag. Otherwise the flag might
1457 // have been created by a client directly.
1458 Assert(M.getNamedMetadata("llvm.linker.options"),
1459 "'Linker Options' named metadata no longer supported");
1462 if (ID->getString() == "CG Profile") {
1463 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1464 visitModuleFlagCGProfileEntry(MDO);
1468 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1469 auto CheckFunction = [&](const MDOperand &FuncMDO) {
1470 if (!FuncMDO)
1471 return;
1472 auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1473 Assert(F && isa<Function>(F->getValue()), "expected a Function or null",
1474 FuncMDO);
1476 auto Node = dyn_cast_or_null<MDNode>(MDO);
1477 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1478 CheckFunction(Node->getOperand(0));
1479 CheckFunction(Node->getOperand(1));
1480 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1481 Assert(Count && Count->getType()->isIntegerTy(),
1482 "expected an integer constant", Node->getOperand(2));
1485 /// Return true if this attribute kind only applies to functions.
1486 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) {
1487 switch (Kind) {
1488 case Attribute::NoReturn:
1489 case Attribute::NoCfCheck:
1490 case Attribute::NoUnwind:
1491 case Attribute::NoInline:
1492 case Attribute::AlwaysInline:
1493 case Attribute::OptimizeForSize:
1494 case Attribute::StackProtect:
1495 case Attribute::StackProtectReq:
1496 case Attribute::StackProtectStrong:
1497 case Attribute::SafeStack:
1498 case Attribute::ShadowCallStack:
1499 case Attribute::NoRedZone:
1500 case Attribute::NoImplicitFloat:
1501 case Attribute::Naked:
1502 case Attribute::InlineHint:
1503 case Attribute::StackAlignment:
1504 case Attribute::UWTable:
1505 case Attribute::NonLazyBind:
1506 case Attribute::ReturnsTwice:
1507 case Attribute::SanitizeAddress:
1508 case Attribute::SanitizeHWAddress:
1509 case Attribute::SanitizeThread:
1510 case Attribute::SanitizeMemory:
1511 case Attribute::MinSize:
1512 case Attribute::NoDuplicate:
1513 case Attribute::Builtin:
1514 case Attribute::NoBuiltin:
1515 case Attribute::Cold:
1516 case Attribute::OptForFuzzing:
1517 case Attribute::OptimizeNone:
1518 case Attribute::JumpTable:
1519 case Attribute::Convergent:
1520 case Attribute::ArgMemOnly:
1521 case Attribute::NoRecurse:
1522 case Attribute::InaccessibleMemOnly:
1523 case Attribute::InaccessibleMemOrArgMemOnly:
1524 case Attribute::AllocSize:
1525 case Attribute::SpeculativeLoadHardening:
1526 case Attribute::Speculatable:
1527 case Attribute::StrictFP:
1528 return true;
1529 default:
1530 break;
1532 return false;
1535 /// Return true if this is a function attribute that can also appear on
1536 /// arguments.
1537 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) {
1538 return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
1539 Kind == Attribute::ReadNone;
1542 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
1543 const Value *V) {
1544 for (Attribute A : Attrs) {
1545 if (A.isStringAttribute())
1546 continue;
1548 if (isFuncOnlyAttr(A.getKindAsEnum())) {
1549 if (!IsFunction) {
1550 CheckFailed("Attribute '" + A.getAsString() +
1551 "' only applies to functions!",
1553 return;
1555 } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
1556 CheckFailed("Attribute '" + A.getAsString() +
1557 "' does not apply to functions!",
1559 return;
1564 // VerifyParameterAttrs - Check the given attributes for an argument or return
1565 // value of the specified type. The value V is printed in error messages.
1566 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1567 const Value *V) {
1568 if (!Attrs.hasAttributes())
1569 return;
1571 verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
1573 if (Attrs.hasAttribute(Attribute::ImmArg)) {
1574 Assert(Attrs.getNumAttributes() == 1,
1575 "Attribute 'immarg' is incompatible with other attributes", V);
1578 // Check for mutually incompatible attributes. Only inreg is compatible with
1579 // sret.
1580 unsigned AttrCount = 0;
1581 AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1582 AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1583 AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1584 Attrs.hasAttribute(Attribute::InReg);
1585 AttrCount += Attrs.hasAttribute(Attribute::Nest);
1586 Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
1587 "and 'sret' are incompatible!",
1590 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1591 Attrs.hasAttribute(Attribute::ReadOnly)),
1592 "Attributes "
1593 "'inalloca and readonly' are incompatible!",
1596 Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
1597 Attrs.hasAttribute(Attribute::Returned)),
1598 "Attributes "
1599 "'sret and returned' are incompatible!",
1602 Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
1603 Attrs.hasAttribute(Attribute::SExt)),
1604 "Attributes "
1605 "'zeroext and signext' are incompatible!",
1608 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1609 Attrs.hasAttribute(Attribute::ReadOnly)),
1610 "Attributes "
1611 "'readnone and readonly' are incompatible!",
1614 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1615 Attrs.hasAttribute(Attribute::WriteOnly)),
1616 "Attributes "
1617 "'readnone and writeonly' are incompatible!",
1620 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1621 Attrs.hasAttribute(Attribute::WriteOnly)),
1622 "Attributes "
1623 "'readonly and writeonly' are incompatible!",
1626 Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
1627 Attrs.hasAttribute(Attribute::AlwaysInline)),
1628 "Attributes "
1629 "'noinline and alwaysinline' are incompatible!",
1632 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1633 Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),
1634 "Wrong types for attribute: " +
1635 AttributeSet::get(Context, IncompatibleAttrs).getAsString(),
1638 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1639 SmallPtrSet<Type*, 4> Visited;
1640 if (!PTy->getElementType()->isSized(&Visited)) {
1641 Assert(!Attrs.hasAttribute(Attribute::ByVal) &&
1642 !Attrs.hasAttribute(Attribute::InAlloca),
1643 "Attributes 'byval' and 'inalloca' do not support unsized types!",
1646 if (!isa<PointerType>(PTy->getElementType()))
1647 Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1648 "Attribute 'swifterror' only applies to parameters "
1649 "with pointer to pointer type!",
1651 } else {
1652 Assert(!Attrs.hasAttribute(Attribute::ByVal),
1653 "Attribute 'byval' only applies to parameters with pointer type!",
1655 Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1656 "Attribute 'swifterror' only applies to parameters "
1657 "with pointer type!",
1662 // Check parameter attributes against a function type.
1663 // The value V is printed in error messages.
1664 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1665 const Value *V, bool IsIntrinsic) {
1666 if (Attrs.isEmpty())
1667 return;
1669 bool SawNest = false;
1670 bool SawReturned = false;
1671 bool SawSRet = false;
1672 bool SawSwiftSelf = false;
1673 bool SawSwiftError = false;
1675 // Verify return value attributes.
1676 AttributeSet RetAttrs = Attrs.getRetAttributes();
1677 Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&
1678 !RetAttrs.hasAttribute(Attribute::Nest) &&
1679 !RetAttrs.hasAttribute(Attribute::StructRet) &&
1680 !RetAttrs.hasAttribute(Attribute::NoCapture) &&
1681 !RetAttrs.hasAttribute(Attribute::Returned) &&
1682 !RetAttrs.hasAttribute(Attribute::InAlloca) &&
1683 !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
1684 !RetAttrs.hasAttribute(Attribute::SwiftError)),
1685 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
1686 "'returned', 'swiftself', and 'swifterror' do not apply to return "
1687 "values!",
1689 Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
1690 !RetAttrs.hasAttribute(Attribute::WriteOnly) &&
1691 !RetAttrs.hasAttribute(Attribute::ReadNone)),
1692 "Attribute '" + RetAttrs.getAsString() +
1693 "' does not apply to function returns",
1695 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1697 // Verify parameter attributes.
1698 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1699 Type *Ty = FT->getParamType(i);
1700 AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
1702 if (!IsIntrinsic) {
1703 Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg),
1704 "immarg attribute only applies to intrinsics",V);
1707 verifyParameterAttrs(ArgAttrs, Ty, V);
1709 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1710 Assert(!SawNest, "More than one parameter has attribute nest!", V);
1711 SawNest = true;
1714 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1715 Assert(!SawReturned, "More than one parameter has attribute returned!",
1717 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
1718 "Incompatible argument and return types for 'returned' attribute",
1720 SawReturned = true;
1723 if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1724 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1725 Assert(i == 0 || i == 1,
1726 "Attribute 'sret' is not on first or second parameter!", V);
1727 SawSRet = true;
1730 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1731 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1732 SawSwiftSelf = true;
1735 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1736 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
1738 SawSwiftError = true;
1741 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1742 Assert(i == FT->getNumParams() - 1,
1743 "inalloca isn't on the last parameter!", V);
1747 if (!Attrs.hasAttributes(AttributeList::FunctionIndex))
1748 return;
1750 verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
1752 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1753 Attrs.hasFnAttribute(Attribute::ReadOnly)),
1754 "Attributes 'readnone and readonly' are incompatible!", V);
1756 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1757 Attrs.hasFnAttribute(Attribute::WriteOnly)),
1758 "Attributes 'readnone and writeonly' are incompatible!", V);
1760 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
1761 Attrs.hasFnAttribute(Attribute::WriteOnly)),
1762 "Attributes 'readonly and writeonly' are incompatible!", V);
1764 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1765 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),
1766 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
1767 "incompatible!",
1770 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1771 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),
1772 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
1774 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
1775 Attrs.hasFnAttribute(Attribute::AlwaysInline)),
1776 "Attributes 'noinline and alwaysinline' are incompatible!", V);
1778 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
1779 Assert(Attrs.hasFnAttribute(Attribute::NoInline),
1780 "Attribute 'optnone' requires 'noinline'!", V);
1782 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),
1783 "Attributes 'optsize and optnone' are incompatible!", V);
1785 Assert(!Attrs.hasFnAttribute(Attribute::MinSize),
1786 "Attributes 'minsize and optnone' are incompatible!", V);
1789 if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
1790 const GlobalValue *GV = cast<GlobalValue>(V);
1791 Assert(GV->hasGlobalUnnamedAddr(),
1792 "Attribute 'jumptable' requires 'unnamed_addr'", V);
1795 if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
1796 std::pair<unsigned, Optional<unsigned>> Args =
1797 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex);
1799 auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1800 if (ParamNo >= FT->getNumParams()) {
1801 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1802 return false;
1805 if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1806 CheckFailed("'allocsize' " + Name +
1807 " argument must refer to an integer parameter",
1809 return false;
1812 return true;
1815 if (!CheckParam("element size", Args.first))
1816 return;
1818 if (Args.second && !CheckParam("number of elements", *Args.second))
1819 return;
1823 void Verifier::verifyFunctionMetadata(
1824 ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1825 for (const auto &Pair : MDs) {
1826 if (Pair.first == LLVMContext::MD_prof) {
1827 MDNode *MD = Pair.second;
1828 Assert(MD->getNumOperands() >= 2,
1829 "!prof annotations should have no less than 2 operands", MD);
1831 // Check first operand.
1832 Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
1833 MD);
1834 Assert(isa<MDString>(MD->getOperand(0)),
1835 "expected string with name of the !prof annotation", MD);
1836 MDString *MDS = cast<MDString>(MD->getOperand(0));
1837 StringRef ProfName = MDS->getString();
1838 Assert(ProfName.equals("function_entry_count") ||
1839 ProfName.equals("synthetic_function_entry_count"),
1840 "first operand should be 'function_entry_count'"
1841 " or 'synthetic_function_entry_count'",
1842 MD);
1844 // Check second operand.
1845 Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
1846 MD);
1847 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
1848 "expected integer argument to function_entry_count", MD);
1853 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1854 if (!ConstantExprVisited.insert(EntryC).second)
1855 return;
1857 SmallVector<const Constant *, 16> Stack;
1858 Stack.push_back(EntryC);
1860 while (!Stack.empty()) {
1861 const Constant *C = Stack.pop_back_val();
1863 // Check this constant expression.
1864 if (const auto *CE = dyn_cast<ConstantExpr>(C))
1865 visitConstantExpr(CE);
1867 if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1868 // Global Values get visited separately, but we do need to make sure
1869 // that the global value is in the correct module
1870 Assert(GV->getParent() == &M, "Referencing global in another module!",
1871 EntryC, &M, GV, GV->getParent());
1872 continue;
1875 // Visit all sub-expressions.
1876 for (const Use &U : C->operands()) {
1877 const auto *OpC = dyn_cast<Constant>(U);
1878 if (!OpC)
1879 continue;
1880 if (!ConstantExprVisited.insert(OpC).second)
1881 continue;
1882 Stack.push_back(OpC);
1887 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1888 if (CE->getOpcode() == Instruction::BitCast)
1889 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
1890 CE->getType()),
1891 "Invalid bitcast", CE);
1893 if (CE->getOpcode() == Instruction::IntToPtr ||
1894 CE->getOpcode() == Instruction::PtrToInt) {
1895 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
1896 ? CE->getType()
1897 : CE->getOperand(0)->getType();
1898 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
1899 ? "inttoptr not supported for non-integral pointers"
1900 : "ptrtoint not supported for non-integral pointers";
1901 Assert(
1902 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),
1903 Msg);
1907 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
1908 // There shouldn't be more attribute sets than there are parameters plus the
1909 // function and return value.
1910 return Attrs.getNumAttrSets() <= Params + 2;
1913 /// Verify that statepoint intrinsic is well formed.
1914 void Verifier::verifyStatepoint(const CallBase &Call) {
1915 assert(Call.getCalledFunction() &&
1916 Call.getCalledFunction()->getIntrinsicID() ==
1917 Intrinsic::experimental_gc_statepoint);
1919 Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
1920 !Call.onlyAccessesArgMemory(),
1921 "gc.statepoint must read and write all memory to preserve "
1922 "reordering restrictions required by safepoint semantics",
1923 Call);
1925 const int64_t NumPatchBytes =
1926 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
1927 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
1928 Assert(NumPatchBytes >= 0,
1929 "gc.statepoint number of patchable bytes must be "
1930 "positive",
1931 Call);
1933 const Value *Target = Call.getArgOperand(2);
1934 auto *PT = dyn_cast<PointerType>(Target->getType());
1935 Assert(PT && PT->getElementType()->isFunctionTy(),
1936 "gc.statepoint callee must be of function pointer type", Call, Target);
1937 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1939 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
1940 Assert(NumCallArgs >= 0,
1941 "gc.statepoint number of arguments to underlying call "
1942 "must be positive",
1943 Call);
1944 const int NumParams = (int)TargetFuncType->getNumParams();
1945 if (TargetFuncType->isVarArg()) {
1946 Assert(NumCallArgs >= NumParams,
1947 "gc.statepoint mismatch in number of vararg call args", Call);
1949 // TODO: Remove this limitation
1950 Assert(TargetFuncType->getReturnType()->isVoidTy(),
1951 "gc.statepoint doesn't support wrapping non-void "
1952 "vararg functions yet",
1953 Call);
1954 } else
1955 Assert(NumCallArgs == NumParams,
1956 "gc.statepoint mismatch in number of call args", Call);
1958 const uint64_t Flags
1959 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
1960 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
1961 "unknown flag used in gc.statepoint flags argument", Call);
1963 // Verify that the types of the call parameter arguments match
1964 // the type of the wrapped callee.
1965 AttributeList Attrs = Call.getAttributes();
1966 for (int i = 0; i < NumParams; i++) {
1967 Type *ParamType = TargetFuncType->getParamType(i);
1968 Type *ArgType = Call.getArgOperand(5 + i)->getType();
1969 Assert(ArgType == ParamType,
1970 "gc.statepoint call argument does not match wrapped "
1971 "function type",
1972 Call);
1974 if (TargetFuncType->isVarArg()) {
1975 AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i);
1976 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
1977 "Attribute 'sret' cannot be used for vararg call arguments!",
1978 Call);
1982 const int EndCallArgsInx = 4 + NumCallArgs;
1984 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
1985 Assert(isa<ConstantInt>(NumTransitionArgsV),
1986 "gc.statepoint number of transition arguments "
1987 "must be constant integer",
1988 Call);
1989 const int NumTransitionArgs =
1990 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
1991 Assert(NumTransitionArgs >= 0,
1992 "gc.statepoint number of transition arguments must be positive", Call);
1993 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
1995 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
1996 Assert(isa<ConstantInt>(NumDeoptArgsV),
1997 "gc.statepoint number of deoptimization arguments "
1998 "must be constant integer",
1999 Call);
2000 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2001 Assert(NumDeoptArgs >= 0,
2002 "gc.statepoint number of deoptimization arguments "
2003 "must be positive",
2004 Call);
2006 const int ExpectedNumArgs =
2007 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
2008 Assert(ExpectedNumArgs <= (int)Call.arg_size(),
2009 "gc.statepoint too few arguments according to length fields", Call);
2011 // Check that the only uses of this gc.statepoint are gc.result or
2012 // gc.relocate calls which are tied to this statepoint and thus part
2013 // of the same statepoint sequence
2014 for (const User *U : Call.users()) {
2015 const CallInst *UserCall = dyn_cast<const CallInst>(U);
2016 Assert(UserCall, "illegal use of statepoint token", Call, U);
2017 if (!UserCall)
2018 continue;
2019 Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
2020 "gc.result or gc.relocate are the only value uses "
2021 "of a gc.statepoint",
2022 Call, U);
2023 if (isa<GCResultInst>(UserCall)) {
2024 Assert(UserCall->getArgOperand(0) == &Call,
2025 "gc.result connected to wrong gc.statepoint", Call, UserCall);
2026 } else if (isa<GCRelocateInst>(Call)) {
2027 Assert(UserCall->getArgOperand(0) == &Call,
2028 "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
2032 // Note: It is legal for a single derived pointer to be listed multiple
2033 // times. It's non-optimal, but it is legal. It can also happen after
2034 // insertion if we strip a bitcast away.
2035 // Note: It is really tempting to check that each base is relocated and
2036 // that a derived pointer is never reused as a base pointer. This turns
2037 // out to be problematic since optimizations run after safepoint insertion
2038 // can recognize equality properties that the insertion logic doesn't know
2039 // about. See example statepoint.ll in the verifier subdirectory
2042 void Verifier::verifyFrameRecoverIndices() {
2043 for (auto &Counts : FrameEscapeInfo) {
2044 Function *F = Counts.first;
2045 unsigned EscapedObjectCount = Counts.second.first;
2046 unsigned MaxRecoveredIndex = Counts.second.second;
2047 Assert(MaxRecoveredIndex <= EscapedObjectCount,
2048 "all indices passed to llvm.localrecover must be less than the "
2049 "number of arguments passed to llvm.localescape in the parent "
2050 "function",
2055 static Instruction *getSuccPad(Instruction *Terminator) {
2056 BasicBlock *UnwindDest;
2057 if (auto *II = dyn_cast<InvokeInst>(Terminator))
2058 UnwindDest = II->getUnwindDest();
2059 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2060 UnwindDest = CSI->getUnwindDest();
2061 else
2062 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2063 return UnwindDest->getFirstNonPHI();
2066 void Verifier::verifySiblingFuncletUnwinds() {
2067 SmallPtrSet<Instruction *, 8> Visited;
2068 SmallPtrSet<Instruction *, 8> Active;
2069 for (const auto &Pair : SiblingFuncletInfo) {
2070 Instruction *PredPad = Pair.first;
2071 if (Visited.count(PredPad))
2072 continue;
2073 Active.insert(PredPad);
2074 Instruction *Terminator = Pair.second;
2075 do {
2076 Instruction *SuccPad = getSuccPad(Terminator);
2077 if (Active.count(SuccPad)) {
2078 // Found a cycle; report error
2079 Instruction *CyclePad = SuccPad;
2080 SmallVector<Instruction *, 8> CycleNodes;
2081 do {
2082 CycleNodes.push_back(CyclePad);
2083 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2084 if (CycleTerminator != CyclePad)
2085 CycleNodes.push_back(CycleTerminator);
2086 CyclePad = getSuccPad(CycleTerminator);
2087 } while (CyclePad != SuccPad);
2088 Assert(false, "EH pads can't handle each other's exceptions",
2089 ArrayRef<Instruction *>(CycleNodes));
2091 // Don't re-walk a node we've already checked
2092 if (!Visited.insert(SuccPad).second)
2093 break;
2094 // Walk to this successor if it has a map entry.
2095 PredPad = SuccPad;
2096 auto TermI = SiblingFuncletInfo.find(PredPad);
2097 if (TermI == SiblingFuncletInfo.end())
2098 break;
2099 Terminator = TermI->second;
2100 Active.insert(PredPad);
2101 } while (true);
2102 // Each node only has one successor, so we've walked all the active
2103 // nodes' successors.
2104 Active.clear();
2108 // visitFunction - Verify that a function is ok.
2110 void Verifier::visitFunction(const Function &F) {
2111 visitGlobalValue(F);
2113 // Check function arguments.
2114 FunctionType *FT = F.getFunctionType();
2115 unsigned NumArgs = F.arg_size();
2117 Assert(&Context == &F.getContext(),
2118 "Function context does not match Module context!", &F);
2120 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2121 Assert(FT->getNumParams() == NumArgs,
2122 "# formal arguments must match # of arguments for function type!", &F,
2123 FT);
2124 Assert(F.getReturnType()->isFirstClassType() ||
2125 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2126 "Functions cannot return aggregate values!", &F);
2128 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2129 "Invalid struct return type!", &F);
2131 AttributeList Attrs = F.getAttributes();
2133 Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
2134 "Attribute after last parameter!", &F);
2136 bool isLLVMdotName = F.getName().size() >= 5 &&
2137 F.getName().substr(0, 5) == "llvm.";
2139 // Check function attributes.
2140 verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName);
2142 // On function declarations/definitions, we do not support the builtin
2143 // attribute. We do not check this in VerifyFunctionAttrs since that is
2144 // checking for Attributes that can/can not ever be on functions.
2145 Assert(!Attrs.hasFnAttribute(Attribute::Builtin),
2146 "Attribute 'builtin' can only be applied to a callsite.", &F);
2148 // Check that this function meets the restrictions on this calling convention.
2149 // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2150 // restrictions can be lifted.
2151 switch (F.getCallingConv()) {
2152 default:
2153 case CallingConv::C:
2154 break;
2155 case CallingConv::AMDGPU_KERNEL:
2156 case CallingConv::SPIR_KERNEL:
2157 Assert(F.getReturnType()->isVoidTy(),
2158 "Calling convention requires void return type", &F);
2159 LLVM_FALLTHROUGH;
2160 case CallingConv::AMDGPU_VS:
2161 case CallingConv::AMDGPU_HS:
2162 case CallingConv::AMDGPU_GS:
2163 case CallingConv::AMDGPU_PS:
2164 case CallingConv::AMDGPU_CS:
2165 Assert(!F.hasStructRetAttr(),
2166 "Calling convention does not allow sret", &F);
2167 LLVM_FALLTHROUGH;
2168 case CallingConv::Fast:
2169 case CallingConv::Cold:
2170 case CallingConv::Intel_OCL_BI:
2171 case CallingConv::PTX_Kernel:
2172 case CallingConv::PTX_Device:
2173 Assert(!F.isVarArg(), "Calling convention does not support varargs or "
2174 "perfect forwarding!",
2175 &F);
2176 break;
2179 // Check that the argument values match the function type for this function...
2180 unsigned i = 0;
2181 for (const Argument &Arg : F.args()) {
2182 Assert(Arg.getType() == FT->getParamType(i),
2183 "Argument value does not match function argument type!", &Arg,
2184 FT->getParamType(i));
2185 Assert(Arg.getType()->isFirstClassType(),
2186 "Function arguments must have first-class types!", &Arg);
2187 if (!isLLVMdotName) {
2188 Assert(!Arg.getType()->isMetadataTy(),
2189 "Function takes metadata but isn't an intrinsic", &Arg, &F);
2190 Assert(!Arg.getType()->isTokenTy(),
2191 "Function takes token but isn't an intrinsic", &Arg, &F);
2194 // Check that swifterror argument is only used by loads and stores.
2195 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
2196 verifySwiftErrorValue(&Arg);
2198 ++i;
2201 if (!isLLVMdotName)
2202 Assert(!F.getReturnType()->isTokenTy(),
2203 "Functions returns a token but isn't an intrinsic", &F);
2205 // Get the function metadata attachments.
2206 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2207 F.getAllMetadata(MDs);
2208 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2209 verifyFunctionMetadata(MDs);
2211 // Check validity of the personality function
2212 if (F.hasPersonalityFn()) {
2213 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2214 if (Per)
2215 Assert(Per->getParent() == F.getParent(),
2216 "Referencing personality function in another module!",
2217 &F, F.getParent(), Per, Per->getParent());
2220 if (F.isMaterializable()) {
2221 // Function has a body somewhere we can't see.
2222 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2223 MDs.empty() ? nullptr : MDs.front().second);
2224 } else if (F.isDeclaration()) {
2225 for (const auto &I : MDs) {
2226 AssertDI(I.first != LLVMContext::MD_dbg,
2227 "function declaration may not have a !dbg attachment", &F);
2228 Assert(I.first != LLVMContext::MD_prof,
2229 "function declaration may not have a !prof attachment", &F);
2231 // Verify the metadata itself.
2232 visitMDNode(*I.second);
2234 Assert(!F.hasPersonalityFn(),
2235 "Function declaration shouldn't have a personality routine", &F);
2236 } else {
2237 // Verify that this function (which has a body) is not named "llvm.*". It
2238 // is not legal to define intrinsics.
2239 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
2241 // Check the entry node
2242 const BasicBlock *Entry = &F.getEntryBlock();
2243 Assert(pred_empty(Entry),
2244 "Entry block to function must not have predecessors!", Entry);
2246 // The address of the entry block cannot be taken, unless it is dead.
2247 if (Entry->hasAddressTaken()) {
2248 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
2249 "blockaddress may not be used with the entry block!", Entry);
2252 unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2253 // Visit metadata attachments.
2254 for (const auto &I : MDs) {
2255 // Verify that the attachment is legal.
2256 switch (I.first) {
2257 default:
2258 break;
2259 case LLVMContext::MD_dbg: {
2260 ++NumDebugAttachments;
2261 AssertDI(NumDebugAttachments == 1,
2262 "function must have a single !dbg attachment", &F, I.second);
2263 AssertDI(isa<DISubprogram>(I.second),
2264 "function !dbg attachment must be a subprogram", &F, I.second);
2265 auto *SP = cast<DISubprogram>(I.second);
2266 const Function *&AttachedTo = DISubprogramAttachments[SP];
2267 AssertDI(!AttachedTo || AttachedTo == &F,
2268 "DISubprogram attached to more than one function", SP, &F);
2269 AttachedTo = &F;
2270 break;
2272 case LLVMContext::MD_prof:
2273 ++NumProfAttachments;
2274 Assert(NumProfAttachments == 1,
2275 "function must have a single !prof attachment", &F, I.second);
2276 break;
2279 // Verify the metadata itself.
2280 visitMDNode(*I.second);
2284 // If this function is actually an intrinsic, verify that it is only used in
2285 // direct call/invokes, never having its "address taken".
2286 // Only do this if the module is materialized, otherwise we don't have all the
2287 // uses.
2288 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
2289 const User *U;
2290 if (F.hasAddressTaken(&U))
2291 Assert(false, "Invalid user of intrinsic instruction!", U);
2294 auto *N = F.getSubprogram();
2295 HasDebugInfo = (N != nullptr);
2296 if (!HasDebugInfo)
2297 return;
2299 // Check that all !dbg attachments lead to back to N (or, at least, another
2300 // subprogram that describes the same function).
2302 // FIXME: Check this incrementally while visiting !dbg attachments.
2303 // FIXME: Only check when N is the canonical subprogram for F.
2304 SmallPtrSet<const MDNode *, 32> Seen;
2305 for (auto &BB : F)
2306 for (auto &I : BB) {
2307 // Be careful about using DILocation here since we might be dealing with
2308 // broken code (this is the Verifier after all).
2309 DILocation *DL =
2310 dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
2311 if (!DL)
2312 continue;
2313 if (!Seen.insert(DL).second)
2314 continue;
2316 Metadata *Parent = DL->getRawScope();
2317 AssertDI(Parent && isa<DILocalScope>(Parent),
2318 "DILocation's scope must be a DILocalScope", N, &F, &I, DL,
2319 Parent);
2320 DILocalScope *Scope = DL->getInlinedAtScope();
2321 if (Scope && !Seen.insert(Scope).second)
2322 continue;
2324 DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
2326 // Scope and SP could be the same MDNode and we don't want to skip
2327 // validation in that case
2328 if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2329 continue;
2331 // FIXME: Once N is canonical, check "SP == &N".
2332 AssertDI(SP->describes(&F),
2333 "!dbg attachment points at wrong subprogram for function", N, &F,
2334 &I, DL, Scope, SP);
2338 // verifyBasicBlock - Verify that a basic block is well formed...
2340 void Verifier::visitBasicBlock(BasicBlock &BB) {
2341 InstsInThisBlock.clear();
2343 // Ensure that basic blocks have terminators!
2344 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2346 // Check constraints that this basic block imposes on all of the PHI nodes in
2347 // it.
2348 if (isa<PHINode>(BB.front())) {
2349 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
2350 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2351 llvm::sort(Preds);
2352 for (const PHINode &PN : BB.phis()) {
2353 // Ensure that PHI nodes have at least one entry!
2354 Assert(PN.getNumIncomingValues() != 0,
2355 "PHI nodes must have at least one entry. If the block is dead, "
2356 "the PHI should be removed!",
2357 &PN);
2358 Assert(PN.getNumIncomingValues() == Preds.size(),
2359 "PHINode should have one entry for each predecessor of its "
2360 "parent basic block!",
2361 &PN);
2363 // Get and sort all incoming values in the PHI node...
2364 Values.clear();
2365 Values.reserve(PN.getNumIncomingValues());
2366 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2367 Values.push_back(
2368 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2369 llvm::sort(Values);
2371 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2372 // Check to make sure that if there is more than one entry for a
2373 // particular basic block in this PHI node, that the incoming values are
2374 // all identical.
2376 Assert(i == 0 || Values[i].first != Values[i - 1].first ||
2377 Values[i].second == Values[i - 1].second,
2378 "PHI node has multiple entries for the same basic block with "
2379 "different incoming values!",
2380 &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2382 // Check to make sure that the predecessors and PHI node entries are
2383 // matched up.
2384 Assert(Values[i].first == Preds[i],
2385 "PHI node entries do not match predecessors!", &PN,
2386 Values[i].first, Preds[i]);
2391 // Check that all instructions have their parent pointers set up correctly.
2392 for (auto &I : BB)
2394 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2398 void Verifier::visitTerminator(Instruction &I) {
2399 // Ensure that terminators only exist at the end of the basic block.
2400 Assert(&I == I.getParent()->getTerminator(),
2401 "Terminator found in the middle of a basic block!", I.getParent());
2402 visitInstruction(I);
2405 void Verifier::visitBranchInst(BranchInst &BI) {
2406 if (BI.isConditional()) {
2407 Assert(BI.getCondition()->getType()->isIntegerTy(1),
2408 "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2410 visitTerminator(BI);
2413 void Verifier::visitReturnInst(ReturnInst &RI) {
2414 Function *F = RI.getParent()->getParent();
2415 unsigned N = RI.getNumOperands();
2416 if (F->getReturnType()->isVoidTy())
2417 Assert(N == 0,
2418 "Found return instr that returns non-void in Function of void "
2419 "return type!",
2420 &RI, F->getReturnType());
2421 else
2422 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2423 "Function return type does not match operand "
2424 "type of return inst!",
2425 &RI, F->getReturnType());
2427 // Check to make sure that the return value has necessary properties for
2428 // terminators...
2429 visitTerminator(RI);
2432 void Verifier::visitSwitchInst(SwitchInst &SI) {
2433 // Check to make sure that all of the constants in the switch instruction
2434 // have the same type as the switched-on value.
2435 Type *SwitchTy = SI.getCondition()->getType();
2436 SmallPtrSet<ConstantInt*, 32> Constants;
2437 for (auto &Case : SI.cases()) {
2438 Assert(Case.getCaseValue()->getType() == SwitchTy,
2439 "Switch constants must all be same type as switch value!", &SI);
2440 Assert(Constants.insert(Case.getCaseValue()).second,
2441 "Duplicate integer as switch case", &SI, Case.getCaseValue());
2444 visitTerminator(SI);
2447 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2448 Assert(BI.getAddress()->getType()->isPointerTy(),
2449 "Indirectbr operand must have pointer type!", &BI);
2450 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2451 Assert(BI.getDestination(i)->getType()->isLabelTy(),
2452 "Indirectbr destinations must all have pointer type!", &BI);
2454 visitTerminator(BI);
2457 void Verifier::visitCallBrInst(CallBrInst &CBI) {
2458 Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!",
2459 &CBI);
2460 Assert(CBI.getType()->isVoidTy(), "Callbr return value is not supported!",
2461 &CBI);
2462 for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i)
2463 Assert(CBI.getSuccessor(i)->getType()->isLabelTy(),
2464 "Callbr successors must all have pointer type!", &CBI);
2465 for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) {
2466 Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)),
2467 "Using an unescaped label as a callbr argument!", &CBI);
2468 if (isa<BasicBlock>(CBI.getOperand(i)))
2469 for (unsigned j = i + 1; j != e; ++j)
2470 Assert(CBI.getOperand(i) != CBI.getOperand(j),
2471 "Duplicate callbr destination!", &CBI);
2474 visitTerminator(CBI);
2477 void Verifier::visitSelectInst(SelectInst &SI) {
2478 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2479 SI.getOperand(2)),
2480 "Invalid operands for select instruction!", &SI);
2482 Assert(SI.getTrueValue()->getType() == SI.getType(),
2483 "Select values must have same type as select instruction!", &SI);
2484 visitInstruction(SI);
2487 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2488 /// a pass, if any exist, it's an error.
2490 void Verifier::visitUserOp1(Instruction &I) {
2491 Assert(false, "User-defined operators should not live outside of a pass!", &I);
2494 void Verifier::visitTruncInst(TruncInst &I) {
2495 // Get the source and destination types
2496 Type *SrcTy = I.getOperand(0)->getType();
2497 Type *DestTy = I.getType();
2499 // Get the size of the types in bits, we'll need this later
2500 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2501 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2503 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2504 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2505 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2506 "trunc source and destination must both be a vector or neither", &I);
2507 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2509 visitInstruction(I);
2512 void Verifier::visitZExtInst(ZExtInst &I) {
2513 // Get the source and destination types
2514 Type *SrcTy = I.getOperand(0)->getType();
2515 Type *DestTy = I.getType();
2517 // Get the size of the types in bits, we'll need this later
2518 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2519 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2520 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2521 "zext source and destination must both be a vector or neither", &I);
2522 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2523 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2525 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2527 visitInstruction(I);
2530 void Verifier::visitSExtInst(SExtInst &I) {
2531 // Get the source and destination types
2532 Type *SrcTy = I.getOperand(0)->getType();
2533 Type *DestTy = I.getType();
2535 // Get the size of the types in bits, we'll need this later
2536 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2537 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2539 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2540 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2541 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2542 "sext source and destination must both be a vector or neither", &I);
2543 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2545 visitInstruction(I);
2548 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2549 // Get the source and destination types
2550 Type *SrcTy = I.getOperand(0)->getType();
2551 Type *DestTy = I.getType();
2552 // Get the size of the types in bits, we'll need this later
2553 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2554 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2556 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2557 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2558 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2559 "fptrunc source and destination must both be a vector or neither", &I);
2560 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2562 visitInstruction(I);
2565 void Verifier::visitFPExtInst(FPExtInst &I) {
2566 // Get the source and destination types
2567 Type *SrcTy = I.getOperand(0)->getType();
2568 Type *DestTy = I.getType();
2570 // Get the size of the types in bits, we'll need this later
2571 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2572 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2574 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2575 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2576 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2577 "fpext source and destination must both be a vector or neither", &I);
2578 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2580 visitInstruction(I);
2583 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2584 // Get the source and destination types
2585 Type *SrcTy = I.getOperand(0)->getType();
2586 Type *DestTy = I.getType();
2588 bool SrcVec = SrcTy->isVectorTy();
2589 bool DstVec = DestTy->isVectorTy();
2591 Assert(SrcVec == DstVec,
2592 "UIToFP source and dest must both be vector or scalar", &I);
2593 Assert(SrcTy->isIntOrIntVectorTy(),
2594 "UIToFP source must be integer or integer vector", &I);
2595 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2596 &I);
2598 if (SrcVec && DstVec)
2599 Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2600 cast<VectorType>(DestTy)->getNumElements(),
2601 "UIToFP source and dest vector length mismatch", &I);
2603 visitInstruction(I);
2606 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2607 // Get the source and destination types
2608 Type *SrcTy = I.getOperand(0)->getType();
2609 Type *DestTy = I.getType();
2611 bool SrcVec = SrcTy->isVectorTy();
2612 bool DstVec = DestTy->isVectorTy();
2614 Assert(SrcVec == DstVec,
2615 "SIToFP source and dest must both be vector or scalar", &I);
2616 Assert(SrcTy->isIntOrIntVectorTy(),
2617 "SIToFP source must be integer or integer vector", &I);
2618 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2619 &I);
2621 if (SrcVec && DstVec)
2622 Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2623 cast<VectorType>(DestTy)->getNumElements(),
2624 "SIToFP source and dest vector length mismatch", &I);
2626 visitInstruction(I);
2629 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2630 // Get the source and destination types
2631 Type *SrcTy = I.getOperand(0)->getType();
2632 Type *DestTy = I.getType();
2634 bool SrcVec = SrcTy->isVectorTy();
2635 bool DstVec = DestTy->isVectorTy();
2637 Assert(SrcVec == DstVec,
2638 "FPToUI source and dest must both be vector or scalar", &I);
2639 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2640 &I);
2641 Assert(DestTy->isIntOrIntVectorTy(),
2642 "FPToUI result must be integer or integer vector", &I);
2644 if (SrcVec && DstVec)
2645 Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2646 cast<VectorType>(DestTy)->getNumElements(),
2647 "FPToUI source and dest vector length mismatch", &I);
2649 visitInstruction(I);
2652 void Verifier::visitFPToSIInst(FPToSIInst &I) {
2653 // Get the source and destination types
2654 Type *SrcTy = I.getOperand(0)->getType();
2655 Type *DestTy = I.getType();
2657 bool SrcVec = SrcTy->isVectorTy();
2658 bool DstVec = DestTy->isVectorTy();
2660 Assert(SrcVec == DstVec,
2661 "FPToSI source and dest must both be vector or scalar", &I);
2662 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2663 &I);
2664 Assert(DestTy->isIntOrIntVectorTy(),
2665 "FPToSI result must be integer or integer vector", &I);
2667 if (SrcVec && DstVec)
2668 Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2669 cast<VectorType>(DestTy)->getNumElements(),
2670 "FPToSI source and dest vector length mismatch", &I);
2672 visitInstruction(I);
2675 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2676 // Get the source and destination types
2677 Type *SrcTy = I.getOperand(0)->getType();
2678 Type *DestTy = I.getType();
2680 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
2682 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2683 Assert(!DL.isNonIntegralPointerType(PTy),
2684 "ptrtoint not supported for non-integral pointers");
2686 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
2687 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2688 &I);
2690 if (SrcTy->isVectorTy()) {
2691 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2692 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2693 Assert(VSrc->getNumElements() == VDest->getNumElements(),
2694 "PtrToInt Vector width mismatch", &I);
2697 visitInstruction(I);
2700 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2701 // Get the source and destination types
2702 Type *SrcTy = I.getOperand(0)->getType();
2703 Type *DestTy = I.getType();
2705 Assert(SrcTy->isIntOrIntVectorTy(),
2706 "IntToPtr source must be an integral", &I);
2707 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
2709 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2710 Assert(!DL.isNonIntegralPointerType(PTy),
2711 "inttoptr not supported for non-integral pointers");
2713 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2714 &I);
2715 if (SrcTy->isVectorTy()) {
2716 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2717 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2718 Assert(VSrc->getNumElements() == VDest->getNumElements(),
2719 "IntToPtr Vector width mismatch", &I);
2721 visitInstruction(I);
2724 void Verifier::visitBitCastInst(BitCastInst &I) {
2725 Assert(
2726 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2727 "Invalid bitcast", &I);
2728 visitInstruction(I);
2731 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2732 Type *SrcTy = I.getOperand(0)->getType();
2733 Type *DestTy = I.getType();
2735 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2736 &I);
2737 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2738 &I);
2739 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
2740 "AddrSpaceCast must be between different address spaces", &I);
2741 if (SrcTy->isVectorTy())
2742 Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
2743 "AddrSpaceCast vector pointer number of elements mismatch", &I);
2744 visitInstruction(I);
2747 /// visitPHINode - Ensure that a PHI node is well formed.
2749 void Verifier::visitPHINode(PHINode &PN) {
2750 // Ensure that the PHI nodes are all grouped together at the top of the block.
2751 // This can be tested by checking whether the instruction before this is
2752 // either nonexistent (because this is begin()) or is a PHI node. If not,
2753 // then there is some other instruction before a PHI.
2754 Assert(&PN == &PN.getParent()->front() ||
2755 isa<PHINode>(--BasicBlock::iterator(&PN)),
2756 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
2758 // Check that a PHI doesn't yield a Token.
2759 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
2761 // Check that all of the values of the PHI node have the same type as the
2762 // result, and that the incoming blocks are really basic blocks.
2763 for (Value *IncValue : PN.incoming_values()) {
2764 Assert(PN.getType() == IncValue->getType(),
2765 "PHI node operands are not the same type as the result!", &PN);
2768 // All other PHI node constraints are checked in the visitBasicBlock method.
2770 visitInstruction(PN);
2773 void Verifier::visitCallBase(CallBase &Call) {
2774 Assert(Call.getCalledValue()->getType()->isPointerTy(),
2775 "Called function must be a pointer!", Call);
2776 PointerType *FPTy = cast<PointerType>(Call.getCalledValue()->getType());
2778 Assert(FPTy->getElementType()->isFunctionTy(),
2779 "Called function is not pointer to function type!", Call);
2781 Assert(FPTy->getElementType() == Call.getFunctionType(),
2782 "Called function is not the same type as the call!", Call);
2784 FunctionType *FTy = Call.getFunctionType();
2786 // Verify that the correct number of arguments are being passed
2787 if (FTy->isVarArg())
2788 Assert(Call.arg_size() >= FTy->getNumParams(),
2789 "Called function requires more parameters than were provided!",
2790 Call);
2791 else
2792 Assert(Call.arg_size() == FTy->getNumParams(),
2793 "Incorrect number of arguments passed to called function!", Call);
2795 // Verify that all arguments to the call match the function type.
2796 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2797 Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
2798 "Call parameter type does not match function signature!",
2799 Call.getArgOperand(i), FTy->getParamType(i), Call);
2801 AttributeList Attrs = Call.getAttributes();
2803 Assert(verifyAttributeCount(Attrs, Call.arg_size()),
2804 "Attribute after last parameter!", Call);
2806 bool IsIntrinsic = Call.getCalledFunction() &&
2807 Call.getCalledFunction()->getName().startswith("llvm.");
2809 Function *Callee
2810 = dyn_cast<Function>(Call.getCalledValue()->stripPointerCasts());
2812 if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) {
2813 // Don't allow speculatable on call sites, unless the underlying function
2814 // declaration is also speculatable.
2815 Assert(Callee && Callee->isSpeculatable(),
2816 "speculatable attribute may not apply to call sites", Call);
2819 // Verify call attributes.
2820 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic);
2822 // Conservatively check the inalloca argument.
2823 // We have a bug if we can find that there is an underlying alloca without
2824 // inalloca.
2825 if (Call.hasInAllocaArgument()) {
2826 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
2827 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2828 Assert(AI->isUsedWithInAlloca(),
2829 "inalloca argument for call has mismatched alloca", AI, Call);
2832 // For each argument of the callsite, if it has the swifterror argument,
2833 // make sure the underlying alloca/parameter it comes from has a swifterror as
2834 // well.
2835 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2836 if (Call.paramHasAttr(i, Attribute::SwiftError)) {
2837 Value *SwiftErrorArg = Call.getArgOperand(i);
2838 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
2839 Assert(AI->isSwiftError(),
2840 "swifterror argument for call has mismatched alloca", AI, Call);
2841 continue;
2843 auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
2844 Assert(ArgI,
2845 "swifterror argument should come from an alloca or parameter",
2846 SwiftErrorArg, Call);
2847 Assert(ArgI->hasSwiftErrorAttr(),
2848 "swifterror argument for call has mismatched parameter", ArgI,
2849 Call);
2852 if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) {
2853 // Don't allow immarg on call sites, unless the underlying declaration
2854 // also has the matching immarg.
2855 Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
2856 "immarg may not apply only to call sites",
2857 Call.getArgOperand(i), Call);
2860 if (Call.paramHasAttr(i, Attribute::ImmArg)) {
2861 Value *ArgVal = Call.getArgOperand(i);
2862 Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
2863 "immarg operand has non-immediate parameter", ArgVal, Call);
2867 if (FTy->isVarArg()) {
2868 // FIXME? is 'nest' even legal here?
2869 bool SawNest = false;
2870 bool SawReturned = false;
2872 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
2873 if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
2874 SawNest = true;
2875 if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
2876 SawReturned = true;
2879 // Check attributes on the varargs part.
2880 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
2881 Type *Ty = Call.getArgOperand(Idx)->getType();
2882 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
2883 verifyParameterAttrs(ArgAttrs, Ty, &Call);
2885 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2886 Assert(!SawNest, "More than one parameter has attribute nest!", Call);
2887 SawNest = true;
2890 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2891 Assert(!SawReturned, "More than one parameter has attribute returned!",
2892 Call);
2893 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
2894 "Incompatible argument and return types for 'returned' "
2895 "attribute",
2896 Call);
2897 SawReturned = true;
2900 // Statepoint intrinsic is vararg but the wrapped function may be not.
2901 // Allow sret here and check the wrapped function in verifyStatepoint.
2902 if (!Call.getCalledFunction() ||
2903 Call.getCalledFunction()->getIntrinsicID() !=
2904 Intrinsic::experimental_gc_statepoint)
2905 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
2906 "Attribute 'sret' cannot be used for vararg call arguments!",
2907 Call);
2909 if (ArgAttrs.hasAttribute(Attribute::InAlloca))
2910 Assert(Idx == Call.arg_size() - 1,
2911 "inalloca isn't on the last argument!", Call);
2915 // Verify that there's no metadata unless it's a direct call to an intrinsic.
2916 if (!IsIntrinsic) {
2917 for (Type *ParamTy : FTy->params()) {
2918 Assert(!ParamTy->isMetadataTy(),
2919 "Function has metadata parameter but isn't an intrinsic", Call);
2920 Assert(!ParamTy->isTokenTy(),
2921 "Function has token parameter but isn't an intrinsic", Call);
2925 // Verify that indirect calls don't return tokens.
2926 if (!Call.getCalledFunction())
2927 Assert(!FTy->getReturnType()->isTokenTy(),
2928 "Return type cannot be token for indirect call!");
2930 if (Function *F = Call.getCalledFunction())
2931 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2932 visitIntrinsicCall(ID, Call);
2934 // Verify that a callsite has at most one "deopt", at most one "funclet" and
2935 // at most one "gc-transition" operand bundle.
2936 bool FoundDeoptBundle = false, FoundFuncletBundle = false,
2937 FoundGCTransitionBundle = false;
2938 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
2939 OperandBundleUse BU = Call.getOperandBundleAt(i);
2940 uint32_t Tag = BU.getTagID();
2941 if (Tag == LLVMContext::OB_deopt) {
2942 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
2943 FoundDeoptBundle = true;
2944 } else if (Tag == LLVMContext::OB_gc_transition) {
2945 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
2946 Call);
2947 FoundGCTransitionBundle = true;
2948 } else if (Tag == LLVMContext::OB_funclet) {
2949 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
2950 FoundFuncletBundle = true;
2951 Assert(BU.Inputs.size() == 1,
2952 "Expected exactly one funclet bundle operand", Call);
2953 Assert(isa<FuncletPadInst>(BU.Inputs.front()),
2954 "Funclet bundle operands should correspond to a FuncletPadInst",
2955 Call);
2959 // Verify that each inlinable callsite of a debug-info-bearing function in a
2960 // debug-info-bearing function has a debug location attached to it. Failure to
2961 // do so causes assertion failures when the inliner sets up inline scope info.
2962 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
2963 Call.getCalledFunction()->getSubprogram())
2964 AssertDI(Call.getDebugLoc(),
2965 "inlinable function call in a function with "
2966 "debug info must have a !dbg location",
2967 Call);
2969 visitInstruction(Call);
2972 /// Two types are "congruent" if they are identical, or if they are both pointer
2973 /// types with different pointee types and the same address space.
2974 static bool isTypeCongruent(Type *L, Type *R) {
2975 if (L == R)
2976 return true;
2977 PointerType *PL = dyn_cast<PointerType>(L);
2978 PointerType *PR = dyn_cast<PointerType>(R);
2979 if (!PL || !PR)
2980 return false;
2981 return PL->getAddressSpace() == PR->getAddressSpace();
2984 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) {
2985 static const Attribute::AttrKind ABIAttrs[] = {
2986 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
2987 Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
2988 Attribute::SwiftError};
2989 AttrBuilder Copy;
2990 for (auto AK : ABIAttrs) {
2991 if (Attrs.hasParamAttribute(I, AK))
2992 Copy.addAttribute(AK);
2994 if (Attrs.hasParamAttribute(I, Attribute::Alignment))
2995 Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
2996 return Copy;
2999 void Verifier::verifyMustTailCall(CallInst &CI) {
3000 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
3002 // - The caller and callee prototypes must match. Pointer types of
3003 // parameters or return types may differ in pointee type, but not
3004 // address space.
3005 Function *F = CI.getParent()->getParent();
3006 FunctionType *CallerTy = F->getFunctionType();
3007 FunctionType *CalleeTy = CI.getFunctionType();
3008 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3009 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3010 "cannot guarantee tail call due to mismatched parameter counts",
3011 &CI);
3012 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3013 Assert(
3014 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3015 "cannot guarantee tail call due to mismatched parameter types", &CI);
3018 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
3019 "cannot guarantee tail call due to mismatched varargs", &CI);
3020 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
3021 "cannot guarantee tail call due to mismatched return types", &CI);
3023 // - The calling conventions of the caller and callee must match.
3024 Assert(F->getCallingConv() == CI.getCallingConv(),
3025 "cannot guarantee tail call due to mismatched calling conv", &CI);
3027 // - All ABI-impacting function attributes, such as sret, byval, inreg,
3028 // returned, and inalloca, must match.
3029 AttributeList CallerAttrs = F->getAttributes();
3030 AttributeList CalleeAttrs = CI.getAttributes();
3031 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3032 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
3033 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
3034 Assert(CallerABIAttrs == CalleeABIAttrs,
3035 "cannot guarantee tail call due to mismatched ABI impacting "
3036 "function attributes",
3037 &CI, CI.getOperand(I));
3040 // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3041 // or a pointer bitcast followed by a ret instruction.
3042 // - The ret instruction must return the (possibly bitcasted) value
3043 // produced by the call or void.
3044 Value *RetVal = &CI;
3045 Instruction *Next = CI.getNextNode();
3047 // Handle the optional bitcast.
3048 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3049 Assert(BI->getOperand(0) == RetVal,
3050 "bitcast following musttail call must use the call", BI);
3051 RetVal = BI;
3052 Next = BI->getNextNode();
3055 // Check the return.
3056 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3057 Assert(Ret, "musttail call must precede a ret with an optional bitcast",
3058 &CI);
3059 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
3060 "musttail call result must be returned", Ret);
3063 void Verifier::visitCallInst(CallInst &CI) {
3064 visitCallBase(CI);
3066 if (CI.isMustTailCall())
3067 verifyMustTailCall(CI);
3070 void Verifier::visitInvokeInst(InvokeInst &II) {
3071 visitCallBase(II);
3073 // Verify that the first non-PHI instruction of the unwind destination is an
3074 // exception handling instruction.
3075 Assert(
3076 II.getUnwindDest()->isEHPad(),
3077 "The unwind destination does not have an exception handling instruction!",
3078 &II);
3080 visitTerminator(II);
3083 /// visitUnaryOperator - Check the argument to the unary operator.
3085 void Verifier::visitUnaryOperator(UnaryOperator &U) {
3086 Assert(U.getType() == U.getOperand(0)->getType(),
3087 "Unary operators must have same type for"
3088 "operands and result!",
3089 &U);
3091 switch (U.getOpcode()) {
3092 // Check that floating-point arithmetic operators are only used with
3093 // floating-point operands.
3094 case Instruction::FNeg:
3095 Assert(U.getType()->isFPOrFPVectorTy(),
3096 "FNeg operator only works with float types!", &U);
3097 break;
3098 default:
3099 llvm_unreachable("Unknown UnaryOperator opcode!");
3102 visitInstruction(U);
3105 /// visitBinaryOperator - Check that both arguments to the binary operator are
3106 /// of the same type!
3108 void Verifier::visitBinaryOperator(BinaryOperator &B) {
3109 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
3110 "Both operands to a binary operator are not of the same type!", &B);
3112 switch (B.getOpcode()) {
3113 // Check that integer arithmetic operators are only used with
3114 // integral operands.
3115 case Instruction::Add:
3116 case Instruction::Sub:
3117 case Instruction::Mul:
3118 case Instruction::SDiv:
3119 case Instruction::UDiv:
3120 case Instruction::SRem:
3121 case Instruction::URem:
3122 Assert(B.getType()->isIntOrIntVectorTy(),
3123 "Integer arithmetic operators only work with integral types!", &B);
3124 Assert(B.getType() == B.getOperand(0)->getType(),
3125 "Integer arithmetic operators must have same type "
3126 "for operands and result!",
3127 &B);
3128 break;
3129 // Check that floating-point arithmetic operators are only used with
3130 // floating-point operands.
3131 case Instruction::FAdd:
3132 case Instruction::FSub:
3133 case Instruction::FMul:
3134 case Instruction::FDiv:
3135 case Instruction::FRem:
3136 Assert(B.getType()->isFPOrFPVectorTy(),
3137 "Floating-point arithmetic operators only work with "
3138 "floating-point types!",
3139 &B);
3140 Assert(B.getType() == B.getOperand(0)->getType(),
3141 "Floating-point arithmetic operators must have same type "
3142 "for operands and result!",
3143 &B);
3144 break;
3145 // Check that logical operators are only used with integral operands.
3146 case Instruction::And:
3147 case Instruction::Or:
3148 case Instruction::Xor:
3149 Assert(B.getType()->isIntOrIntVectorTy(),
3150 "Logical operators only work with integral types!", &B);
3151 Assert(B.getType() == B.getOperand(0)->getType(),
3152 "Logical operators must have same type for operands and result!",
3153 &B);
3154 break;
3155 case Instruction::Shl:
3156 case Instruction::LShr:
3157 case Instruction::AShr:
3158 Assert(B.getType()->isIntOrIntVectorTy(),
3159 "Shifts only work with integral types!", &B);
3160 Assert(B.getType() == B.getOperand(0)->getType(),
3161 "Shift return type must be same as operands!", &B);
3162 break;
3163 default:
3164 llvm_unreachable("Unknown BinaryOperator opcode!");
3167 visitInstruction(B);
3170 void Verifier::visitICmpInst(ICmpInst &IC) {
3171 // Check that the operands are the same type
3172 Type *Op0Ty = IC.getOperand(0)->getType();
3173 Type *Op1Ty = IC.getOperand(1)->getType();
3174 Assert(Op0Ty == Op1Ty,
3175 "Both operands to ICmp instruction are not of the same type!", &IC);
3176 // Check that the operands are the right type
3177 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3178 "Invalid operand types for ICmp instruction", &IC);
3179 // Check that the predicate is valid.
3180 Assert(IC.isIntPredicate(),
3181 "Invalid predicate in ICmp instruction!", &IC);
3183 visitInstruction(IC);
3186 void Verifier::visitFCmpInst(FCmpInst &FC) {
3187 // Check that the operands are the same type
3188 Type *Op0Ty = FC.getOperand(0)->getType();
3189 Type *Op1Ty = FC.getOperand(1)->getType();
3190 Assert(Op0Ty == Op1Ty,
3191 "Both operands to FCmp instruction are not of the same type!", &FC);
3192 // Check that the operands are the right type
3193 Assert(Op0Ty->isFPOrFPVectorTy(),
3194 "Invalid operand types for FCmp instruction", &FC);
3195 // Check that the predicate is valid.
3196 Assert(FC.isFPPredicate(),
3197 "Invalid predicate in FCmp instruction!", &FC);
3199 visitInstruction(FC);
3202 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3203 Assert(
3204 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
3205 "Invalid extractelement operands!", &EI);
3206 visitInstruction(EI);
3209 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3210 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
3211 IE.getOperand(2)),
3212 "Invalid insertelement operands!", &IE);
3213 visitInstruction(IE);
3216 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3217 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
3218 SV.getOperand(2)),
3219 "Invalid shufflevector operands!", &SV);
3220 visitInstruction(SV);
3223 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3224 Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3226 Assert(isa<PointerType>(TargetTy),
3227 "GEP base pointer is not a vector or a vector of pointers", &GEP);
3228 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3230 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
3231 Assert(all_of(
3232 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),
3233 "GEP indexes must be integers", &GEP);
3234 Type *ElTy =
3235 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3236 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3238 Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
3239 GEP.getResultElementType() == ElTy,
3240 "GEP is not of right type for indices!", &GEP, ElTy);
3242 if (GEP.getType()->isVectorTy()) {
3243 // Additional checks for vector GEPs.
3244 unsigned GEPWidth = GEP.getType()->getVectorNumElements();
3245 if (GEP.getPointerOperandType()->isVectorTy())
3246 Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
3247 "Vector GEP result width doesn't match operand's", &GEP);
3248 for (Value *Idx : Idxs) {
3249 Type *IndexTy = Idx->getType();
3250 if (IndexTy->isVectorTy()) {
3251 unsigned IndexWidth = IndexTy->getVectorNumElements();
3252 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3254 Assert(IndexTy->isIntOrIntVectorTy(),
3255 "All GEP indices should be of integer type");
3259 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
3260 Assert(GEP.getAddressSpace() == PTy->getAddressSpace(),
3261 "GEP address space doesn't match type", &GEP);
3264 visitInstruction(GEP);
3267 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3268 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3271 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3272 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3273 "precondition violation");
3275 unsigned NumOperands = Range->getNumOperands();
3276 Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
3277 unsigned NumRanges = NumOperands / 2;
3278 Assert(NumRanges >= 1, "It should have at least one range!", Range);
3280 ConstantRange LastRange(1, true); // Dummy initial value
3281 for (unsigned i = 0; i < NumRanges; ++i) {
3282 ConstantInt *Low =
3283 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3284 Assert(Low, "The lower limit must be an integer!", Low);
3285 ConstantInt *High =
3286 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3287 Assert(High, "The upper limit must be an integer!", High);
3288 Assert(High->getType() == Low->getType() && High->getType() == Ty,
3289 "Range types must match instruction type!", &I);
3291 APInt HighV = High->getValue();
3292 APInt LowV = Low->getValue();
3293 ConstantRange CurRange(LowV, HighV);
3294 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
3295 "Range must not be empty!", Range);
3296 if (i != 0) {
3297 Assert(CurRange.intersectWith(LastRange).isEmptySet(),
3298 "Intervals are overlapping", Range);
3299 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3300 Range);
3301 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3302 Range);
3304 LastRange = ConstantRange(LowV, HighV);
3306 if (NumRanges > 2) {
3307 APInt FirstLow =
3308 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3309 APInt FirstHigh =
3310 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3311 ConstantRange FirstRange(FirstLow, FirstHigh);
3312 Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
3313 "Intervals are overlapping", Range);
3314 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3315 Range);
3319 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3320 unsigned Size = DL.getTypeSizeInBits(Ty);
3321 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3322 Assert(!(Size & (Size - 1)),
3323 "atomic memory access' operand must have a power-of-two size", Ty, I);
3326 void Verifier::visitLoadInst(LoadInst &LI) {
3327 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3328 Assert(PTy, "Load operand must be a pointer.", &LI);
3329 Type *ElTy = LI.getType();
3330 Assert(LI.getAlignment() <= Value::MaximumAlignment,
3331 "huge alignment values are unsupported", &LI);
3332 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3333 if (LI.isAtomic()) {
3334 Assert(LI.getOrdering() != AtomicOrdering::Release &&
3335 LI.getOrdering() != AtomicOrdering::AcquireRelease,
3336 "Load cannot have Release ordering", &LI);
3337 Assert(LI.getAlignment() != 0,
3338 "Atomic load must specify explicit alignment", &LI);
3339 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3340 "atomic load operand must have integer, pointer, or floating point "
3341 "type!",
3342 ElTy, &LI);
3343 checkAtomicMemAccessSize(ElTy, &LI);
3344 } else {
3345 Assert(LI.getSyncScopeID() == SyncScope::System,
3346 "Non-atomic load cannot have SynchronizationScope specified", &LI);
3349 visitInstruction(LI);
3352 void Verifier::visitStoreInst(StoreInst &SI) {
3353 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3354 Assert(PTy, "Store operand must be a pointer.", &SI);
3355 Type *ElTy = PTy->getElementType();
3356 Assert(ElTy == SI.getOperand(0)->getType(),
3357 "Stored value type does not match pointer operand type!", &SI, ElTy);
3358 Assert(SI.getAlignment() <= Value::MaximumAlignment,
3359 "huge alignment values are unsupported", &SI);
3360 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3361 if (SI.isAtomic()) {
3362 Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
3363 SI.getOrdering() != AtomicOrdering::AcquireRelease,
3364 "Store cannot have Acquire ordering", &SI);
3365 Assert(SI.getAlignment() != 0,
3366 "Atomic store must specify explicit alignment", &SI);
3367 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3368 "atomic store operand must have integer, pointer, or floating point "
3369 "type!",
3370 ElTy, &SI);
3371 checkAtomicMemAccessSize(ElTy, &SI);
3372 } else {
3373 Assert(SI.getSyncScopeID() == SyncScope::System,
3374 "Non-atomic store cannot have SynchronizationScope specified", &SI);
3376 visitInstruction(SI);
3379 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
3380 void Verifier::verifySwiftErrorCall(CallBase &Call,
3381 const Value *SwiftErrorVal) {
3382 unsigned Idx = 0;
3383 for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) {
3384 if (*I == SwiftErrorVal) {
3385 Assert(Call.paramHasAttr(Idx, Attribute::SwiftError),
3386 "swifterror value when used in a callsite should be marked "
3387 "with swifterror attribute",
3388 SwiftErrorVal, Call);
3393 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3394 // Check that swifterror value is only used by loads, stores, or as
3395 // a swifterror argument.
3396 for (const User *U : SwiftErrorVal->users()) {
3397 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3398 isa<InvokeInst>(U),
3399 "swifterror value can only be loaded and stored from, or "
3400 "as a swifterror argument!",
3401 SwiftErrorVal, U);
3402 // If it is used by a store, check it is the second operand.
3403 if (auto StoreI = dyn_cast<StoreInst>(U))
3404 Assert(StoreI->getOperand(1) == SwiftErrorVal,
3405 "swifterror value should be the second operand when used "
3406 "by stores", SwiftErrorVal, U);
3407 if (auto *Call = dyn_cast<CallBase>(U))
3408 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
3412 void Verifier::visitAllocaInst(AllocaInst &AI) {
3413 SmallPtrSet<Type*, 4> Visited;
3414 PointerType *PTy = AI.getType();
3415 // TODO: Relax this restriction?
3416 Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(),
3417 "Allocation instruction pointer not in the stack address space!",
3418 &AI);
3419 Assert(AI.getAllocatedType()->isSized(&Visited),
3420 "Cannot allocate unsized type", &AI);
3421 Assert(AI.getArraySize()->getType()->isIntegerTy(),
3422 "Alloca array size must have integer type", &AI);
3423 Assert(AI.getAlignment() <= Value::MaximumAlignment,
3424 "huge alignment values are unsupported", &AI);
3426 if (AI.isSwiftError()) {
3427 verifySwiftErrorValue(&AI);
3430 visitInstruction(AI);
3433 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3435 // FIXME: more conditions???
3436 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,
3437 "cmpxchg instructions must be atomic.", &CXI);
3438 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,
3439 "cmpxchg instructions must be atomic.", &CXI);
3440 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,
3441 "cmpxchg instructions cannot be unordered.", &CXI);
3442 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,
3443 "cmpxchg instructions cannot be unordered.", &CXI);
3444 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),
3445 "cmpxchg instructions failure argument shall be no stronger than the "
3446 "success argument",
3447 &CXI);
3448 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&
3449 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,
3450 "cmpxchg failure ordering cannot include release semantics", &CXI);
3452 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3453 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
3454 Type *ElTy = PTy->getElementType();
3455 Assert(ElTy->isIntOrPtrTy(),
3456 "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
3457 checkAtomicMemAccessSize(ElTy, &CXI);
3458 Assert(ElTy == CXI.getOperand(1)->getType(),
3459 "Expected value type does not match pointer operand type!", &CXI,
3460 ElTy);
3461 Assert(ElTy == CXI.getOperand(2)->getType(),
3462 "Stored value type does not match pointer operand type!", &CXI, ElTy);
3463 visitInstruction(CXI);
3466 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3467 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,
3468 "atomicrmw instructions must be atomic.", &RMWI);
3469 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,
3470 "atomicrmw instructions cannot be unordered.", &RMWI);
3471 auto Op = RMWI.getOperation();
3472 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3473 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
3474 Type *ElTy = PTy->getElementType();
3475 if (Op == AtomicRMWInst::Xchg) {
3476 Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " +
3477 AtomicRMWInst::getOperationName(Op) +
3478 " operand must have integer or floating point type!",
3479 &RMWI, ElTy);
3480 } else if (AtomicRMWInst::isFPOperation(Op)) {
3481 Assert(ElTy->isFloatingPointTy(), "atomicrmw " +
3482 AtomicRMWInst::getOperationName(Op) +
3483 " operand must have floating point type!",
3484 &RMWI, ElTy);
3485 } else {
3486 Assert(ElTy->isIntegerTy(), "atomicrmw " +
3487 AtomicRMWInst::getOperationName(Op) +
3488 " operand must have integer type!",
3489 &RMWI, ElTy);
3491 checkAtomicMemAccessSize(ElTy, &RMWI);
3492 Assert(ElTy == RMWI.getOperand(1)->getType(),
3493 "Argument value type does not match pointer operand type!", &RMWI,
3494 ElTy);
3495 Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
3496 "Invalid binary operation!", &RMWI);
3497 visitInstruction(RMWI);
3500 void Verifier::visitFenceInst(FenceInst &FI) {
3501 const AtomicOrdering Ordering = FI.getOrdering();
3502 Assert(Ordering == AtomicOrdering::Acquire ||
3503 Ordering == AtomicOrdering::Release ||
3504 Ordering == AtomicOrdering::AcquireRelease ||
3505 Ordering == AtomicOrdering::SequentiallyConsistent,
3506 "fence instructions may only have acquire, release, acq_rel, or "
3507 "seq_cst ordering.",
3508 &FI);
3509 visitInstruction(FI);
3512 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3513 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
3514 EVI.getIndices()) == EVI.getType(),
3515 "Invalid ExtractValueInst operands!", &EVI);
3517 visitInstruction(EVI);
3520 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3521 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
3522 IVI.getIndices()) ==
3523 IVI.getOperand(1)->getType(),
3524 "Invalid InsertValueInst operands!", &IVI);
3526 visitInstruction(IVI);
3529 static Value *getParentPad(Value *EHPad) {
3530 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3531 return FPI->getParentPad();
3533 return cast<CatchSwitchInst>(EHPad)->getParentPad();
3536 void Verifier::visitEHPadPredecessors(Instruction &I) {
3537 assert(I.isEHPad());
3539 BasicBlock *BB = I.getParent();
3540 Function *F = BB->getParent();
3542 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
3544 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3545 // The landingpad instruction defines its parent as a landing pad block. The
3546 // landing pad block may be branched to only by the unwind edge of an
3547 // invoke.
3548 for (BasicBlock *PredBB : predecessors(BB)) {
3549 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3550 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
3551 "Block containing LandingPadInst must be jumped to "
3552 "only by the unwind edge of an invoke.",
3553 LPI);
3555 return;
3557 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3558 if (!pred_empty(BB))
3559 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
3560 "Block containg CatchPadInst must be jumped to "
3561 "only by its catchswitch.",
3562 CPI);
3563 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3564 "Catchswitch cannot unwind to one of its catchpads",
3565 CPI->getCatchSwitch(), CPI);
3566 return;
3569 // Verify that each pred has a legal terminator with a legal to/from EH
3570 // pad relationship.
3571 Instruction *ToPad = &I;
3572 Value *ToPadParent = getParentPad(ToPad);
3573 for (BasicBlock *PredBB : predecessors(BB)) {
3574 Instruction *TI = PredBB->getTerminator();
3575 Value *FromPad;
3576 if (auto *II = dyn_cast<InvokeInst>(TI)) {
3577 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3578 "EH pad must be jumped to via an unwind edge", ToPad, II);
3579 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3580 FromPad = Bundle->Inputs[0];
3581 else
3582 FromPad = ConstantTokenNone::get(II->getContext());
3583 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3584 FromPad = CRI->getOperand(0);
3585 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3586 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3587 FromPad = CSI;
3588 } else {
3589 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3592 // The edge may exit from zero or more nested pads.
3593 SmallSet<Value *, 8> Seen;
3594 for (;; FromPad = getParentPad(FromPad)) {
3595 Assert(FromPad != ToPad,
3596 "EH pad cannot handle exceptions raised within it", FromPad, TI);
3597 if (FromPad == ToPadParent) {
3598 // This is a legal unwind edge.
3599 break;
3601 Assert(!isa<ConstantTokenNone>(FromPad),
3602 "A single unwind edge may only enter one EH pad", TI);
3603 Assert(Seen.insert(FromPad).second,
3604 "EH pad jumps through a cycle of pads", FromPad);
3609 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3610 // The landingpad instruction is ill-formed if it doesn't have any clauses and
3611 // isn't a cleanup.
3612 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
3613 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
3615 visitEHPadPredecessors(LPI);
3617 if (!LandingPadResultTy)
3618 LandingPadResultTy = LPI.getType();
3619 else
3620 Assert(LandingPadResultTy == LPI.getType(),
3621 "The landingpad instruction should have a consistent result type "
3622 "inside a function.",
3623 &LPI);
3625 Function *F = LPI.getParent()->getParent();
3626 Assert(F->hasPersonalityFn(),
3627 "LandingPadInst needs to be in a function with a personality.", &LPI);
3629 // The landingpad instruction must be the first non-PHI instruction in the
3630 // block.
3631 Assert(LPI.getParent()->getLandingPadInst() == &LPI,
3632 "LandingPadInst not the first non-PHI instruction in the block.",
3633 &LPI);
3635 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3636 Constant *Clause = LPI.getClause(i);
3637 if (LPI.isCatch(i)) {
3638 Assert(isa<PointerType>(Clause->getType()),
3639 "Catch operand does not have pointer type!", &LPI);
3640 } else {
3641 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
3642 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
3643 "Filter operand is not an array of constants!", &LPI);
3647 visitInstruction(LPI);
3650 void Verifier::visitResumeInst(ResumeInst &RI) {
3651 Assert(RI.getFunction()->hasPersonalityFn(),
3652 "ResumeInst needs to be in a function with a personality.", &RI);
3654 if (!LandingPadResultTy)
3655 LandingPadResultTy = RI.getValue()->getType();
3656 else
3657 Assert(LandingPadResultTy == RI.getValue()->getType(),
3658 "The resume instruction should have a consistent result type "
3659 "inside a function.",
3660 &RI);
3662 visitTerminator(RI);
3665 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3666 BasicBlock *BB = CPI.getParent();
3668 Function *F = BB->getParent();
3669 Assert(F->hasPersonalityFn(),
3670 "CatchPadInst needs to be in a function with a personality.", &CPI);
3672 Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
3673 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
3674 CPI.getParentPad());
3676 // The catchpad instruction must be the first non-PHI instruction in the
3677 // block.
3678 Assert(BB->getFirstNonPHI() == &CPI,
3679 "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
3681 visitEHPadPredecessors(CPI);
3682 visitFuncletPadInst(CPI);
3685 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3686 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
3687 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
3688 CatchReturn.getOperand(0));
3690 visitTerminator(CatchReturn);
3693 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3694 BasicBlock *BB = CPI.getParent();
3696 Function *F = BB->getParent();
3697 Assert(F->hasPersonalityFn(),
3698 "CleanupPadInst needs to be in a function with a personality.", &CPI);
3700 // The cleanuppad instruction must be the first non-PHI instruction in the
3701 // block.
3702 Assert(BB->getFirstNonPHI() == &CPI,
3703 "CleanupPadInst not the first non-PHI instruction in the block.",
3704 &CPI);
3706 auto *ParentPad = CPI.getParentPad();
3707 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3708 "CleanupPadInst has an invalid parent.", &CPI);
3710 visitEHPadPredecessors(CPI);
3711 visitFuncletPadInst(CPI);
3714 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3715 User *FirstUser = nullptr;
3716 Value *FirstUnwindPad = nullptr;
3717 SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3718 SmallSet<FuncletPadInst *, 8> Seen;
3720 while (!Worklist.empty()) {
3721 FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3722 Assert(Seen.insert(CurrentPad).second,
3723 "FuncletPadInst must not be nested within itself", CurrentPad);
3724 Value *UnresolvedAncestorPad = nullptr;
3725 for (User *U : CurrentPad->users()) {
3726 BasicBlock *UnwindDest;
3727 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3728 UnwindDest = CRI->getUnwindDest();
3729 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3730 // We allow catchswitch unwind to caller to nest
3731 // within an outer pad that unwinds somewhere else,
3732 // because catchswitch doesn't have a nounwind variant.
3733 // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3734 if (CSI->unwindsToCaller())
3735 continue;
3736 UnwindDest = CSI->getUnwindDest();
3737 } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3738 UnwindDest = II->getUnwindDest();
3739 } else if (isa<CallInst>(U)) {
3740 // Calls which don't unwind may be found inside funclet
3741 // pads that unwind somewhere else. We don't *require*
3742 // such calls to be annotated nounwind.
3743 continue;
3744 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3745 // The unwind dest for a cleanup can only be found by
3746 // recursive search. Add it to the worklist, and we'll
3747 // search for its first use that determines where it unwinds.
3748 Worklist.push_back(CPI);
3749 continue;
3750 } else {
3751 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
3752 continue;
3755 Value *UnwindPad;
3756 bool ExitsFPI;
3757 if (UnwindDest) {
3758 UnwindPad = UnwindDest->getFirstNonPHI();
3759 if (!cast<Instruction>(UnwindPad)->isEHPad())
3760 continue;
3761 Value *UnwindParent = getParentPad(UnwindPad);
3762 // Ignore unwind edges that don't exit CurrentPad.
3763 if (UnwindParent == CurrentPad)
3764 continue;
3765 // Determine whether the original funclet pad is exited,
3766 // and if we are scanning nested pads determine how many
3767 // of them are exited so we can stop searching their
3768 // children.
3769 Value *ExitedPad = CurrentPad;
3770 ExitsFPI = false;
3771 do {
3772 if (ExitedPad == &FPI) {
3773 ExitsFPI = true;
3774 // Now we can resolve any ancestors of CurrentPad up to
3775 // FPI, but not including FPI since we need to make sure
3776 // to check all direct users of FPI for consistency.
3777 UnresolvedAncestorPad = &FPI;
3778 break;
3780 Value *ExitedParent = getParentPad(ExitedPad);
3781 if (ExitedParent == UnwindParent) {
3782 // ExitedPad is the ancestor-most pad which this unwind
3783 // edge exits, so we can resolve up to it, meaning that
3784 // ExitedParent is the first ancestor still unresolved.
3785 UnresolvedAncestorPad = ExitedParent;
3786 break;
3788 ExitedPad = ExitedParent;
3789 } while (!isa<ConstantTokenNone>(ExitedPad));
3790 } else {
3791 // Unwinding to caller exits all pads.
3792 UnwindPad = ConstantTokenNone::get(FPI.getContext());
3793 ExitsFPI = true;
3794 UnresolvedAncestorPad = &FPI;
3797 if (ExitsFPI) {
3798 // This unwind edge exits FPI. Make sure it agrees with other
3799 // such edges.
3800 if (FirstUser) {
3801 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
3802 "pad must have the same unwind "
3803 "dest",
3804 &FPI, U, FirstUser);
3805 } else {
3806 FirstUser = U;
3807 FirstUnwindPad = UnwindPad;
3808 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3809 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3810 getParentPad(UnwindPad) == getParentPad(&FPI))
3811 SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
3814 // Make sure we visit all uses of FPI, but for nested pads stop as
3815 // soon as we know where they unwind to.
3816 if (CurrentPad != &FPI)
3817 break;
3819 if (UnresolvedAncestorPad) {
3820 if (CurrentPad == UnresolvedAncestorPad) {
3821 // When CurrentPad is FPI itself, we don't mark it as resolved even if
3822 // we've found an unwind edge that exits it, because we need to verify
3823 // all direct uses of FPI.
3824 assert(CurrentPad == &FPI);
3825 continue;
3827 // Pop off the worklist any nested pads that we've found an unwind
3828 // destination for. The pads on the worklist are the uncles,
3829 // great-uncles, etc. of CurrentPad. We've found an unwind destination
3830 // for all ancestors of CurrentPad up to but not including
3831 // UnresolvedAncestorPad.
3832 Value *ResolvedPad = CurrentPad;
3833 while (!Worklist.empty()) {
3834 Value *UnclePad = Worklist.back();
3835 Value *AncestorPad = getParentPad(UnclePad);
3836 // Walk ResolvedPad up the ancestor list until we either find the
3837 // uncle's parent or the last resolved ancestor.
3838 while (ResolvedPad != AncestorPad) {
3839 Value *ResolvedParent = getParentPad(ResolvedPad);
3840 if (ResolvedParent == UnresolvedAncestorPad) {
3841 break;
3843 ResolvedPad = ResolvedParent;
3845 // If the resolved ancestor search didn't find the uncle's parent,
3846 // then the uncle is not yet resolved.
3847 if (ResolvedPad != AncestorPad)
3848 break;
3849 // This uncle is resolved, so pop it from the worklist.
3850 Worklist.pop_back();
3855 if (FirstUnwindPad) {
3856 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3857 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3858 Value *SwitchUnwindPad;
3859 if (SwitchUnwindDest)
3860 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3861 else
3862 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3863 Assert(SwitchUnwindPad == FirstUnwindPad,
3864 "Unwind edges out of a catch must have the same unwind dest as "
3865 "the parent catchswitch",
3866 &FPI, FirstUser, CatchSwitch);
3870 visitInstruction(FPI);
3873 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3874 BasicBlock *BB = CatchSwitch.getParent();
3876 Function *F = BB->getParent();
3877 Assert(F->hasPersonalityFn(),
3878 "CatchSwitchInst needs to be in a function with a personality.",
3879 &CatchSwitch);
3881 // The catchswitch instruction must be the first non-PHI instruction in the
3882 // block.
3883 Assert(BB->getFirstNonPHI() == &CatchSwitch,
3884 "CatchSwitchInst not the first non-PHI instruction in the block.",
3885 &CatchSwitch);
3887 auto *ParentPad = CatchSwitch.getParentPad();
3888 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3889 "CatchSwitchInst has an invalid parent.", ParentPad);
3891 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3892 Instruction *I = UnwindDest->getFirstNonPHI();
3893 Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3894 "CatchSwitchInst must unwind to an EH block which is not a "
3895 "landingpad.",
3896 &CatchSwitch);
3898 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3899 if (getParentPad(I) == ParentPad)
3900 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3903 Assert(CatchSwitch.getNumHandlers() != 0,
3904 "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
3906 for (BasicBlock *Handler : CatchSwitch.handlers()) {
3907 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
3908 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
3911 visitEHPadPredecessors(CatchSwitch);
3912 visitTerminator(CatchSwitch);
3915 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3916 Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
3917 "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
3918 CRI.getOperand(0));
3920 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3921 Instruction *I = UnwindDest->getFirstNonPHI();
3922 Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3923 "CleanupReturnInst must unwind to an EH block which is not a "
3924 "landingpad.",
3925 &CRI);
3928 visitTerminator(CRI);
3931 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3932 Instruction *Op = cast<Instruction>(I.getOperand(i));
3933 // If the we have an invalid invoke, don't try to compute the dominance.
3934 // We already reject it in the invoke specific checks and the dominance
3935 // computation doesn't handle multiple edges.
3936 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3937 if (II->getNormalDest() == II->getUnwindDest())
3938 return;
3941 // Quick check whether the def has already been encountered in the same block.
3942 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
3943 // uses are defined to happen on the incoming edge, not at the instruction.
3945 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3946 // wrapping an SSA value, assert that we've already encountered it. See
3947 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3948 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
3949 return;
3951 const Use &U = I.getOperandUse(i);
3952 Assert(DT.dominates(Op, U),
3953 "Instruction does not dominate all uses!", Op, &I);
3956 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
3957 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
3958 "apply only to pointer types", &I);
3959 Assert(isa<LoadInst>(I),
3960 "dereferenceable, dereferenceable_or_null apply only to load"
3961 " instructions, use attributes for calls or invokes", &I);
3962 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
3963 "take one operand!", &I);
3964 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
3965 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
3966 "dereferenceable_or_null metadata value must be an i64!", &I);
3969 /// verifyInstruction - Verify that an instruction is well formed.
3971 void Verifier::visitInstruction(Instruction &I) {
3972 BasicBlock *BB = I.getParent();
3973 Assert(BB, "Instruction not embedded in basic block!", &I);
3975 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
3976 for (User *U : I.users()) {
3977 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
3978 "Only PHI nodes may reference their own value!", &I);
3982 // Check that void typed values don't have names
3983 Assert(!I.getType()->isVoidTy() || !I.hasName(),
3984 "Instruction has a name, but provides a void value!", &I);
3986 // Check that the return value of the instruction is either void or a legal
3987 // value type.
3988 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
3989 "Instruction returns a non-scalar type!", &I);
3991 // Check that the instruction doesn't produce metadata. Calls are already
3992 // checked against the callee type.
3993 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
3994 "Invalid use of metadata!", &I);
3996 // Check that all uses of the instruction, if they are instructions
3997 // themselves, actually have parent basic blocks. If the use is not an
3998 // instruction, it is an error!
3999 for (Use &U : I.uses()) {
4000 if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
4001 Assert(Used->getParent() != nullptr,
4002 "Instruction referencing"
4003 " instruction not embedded in a basic block!",
4004 &I, Used);
4005 else {
4006 CheckFailed("Use of instruction is not an instruction!", U);
4007 return;
4011 // Get a pointer to the call base of the instruction if it is some form of
4012 // call.
4013 const CallBase *CBI = dyn_cast<CallBase>(&I);
4015 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
4016 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
4018 // Check to make sure that only first-class-values are operands to
4019 // instructions.
4020 if (!I.getOperand(i)->getType()->isFirstClassType()) {
4021 Assert(false, "Instruction operands must be first-class values!", &I);
4024 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
4025 // Check to make sure that the "address of" an intrinsic function is never
4026 // taken.
4027 Assert(!F->isIntrinsic() ||
4028 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)),
4029 "Cannot take the address of an intrinsic!", &I);
4030 Assert(
4031 !F->isIntrinsic() || isa<CallInst>(I) ||
4032 F->getIntrinsicID() == Intrinsic::donothing ||
4033 F->getIntrinsicID() == Intrinsic::coro_resume ||
4034 F->getIntrinsicID() == Intrinsic::coro_destroy ||
4035 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
4036 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
4037 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
4038 F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch,
4039 "Cannot invoke an intrinsic other than donothing, patchpoint, "
4040 "statepoint, coro_resume or coro_destroy",
4041 &I);
4042 Assert(F->getParent() == &M, "Referencing function in another module!",
4043 &I, &M, F, F->getParent());
4044 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
4045 Assert(OpBB->getParent() == BB->getParent(),
4046 "Referring to a basic block in another function!", &I);
4047 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
4048 Assert(OpArg->getParent() == BB->getParent(),
4049 "Referring to an argument in another function!", &I);
4050 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
4051 Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
4052 &M, GV, GV->getParent());
4053 } else if (isa<Instruction>(I.getOperand(i))) {
4054 verifyDominatesUse(I, i);
4055 } else if (isa<InlineAsm>(I.getOperand(i))) {
4056 Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
4057 "Cannot take the address of an inline asm!", &I);
4058 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
4059 if (CE->getType()->isPtrOrPtrVectorTy() ||
4060 !DL.getNonIntegralAddressSpaces().empty()) {
4061 // If we have a ConstantExpr pointer, we need to see if it came from an
4062 // illegal bitcast. If the datalayout string specifies non-integral
4063 // address spaces then we also need to check for illegal ptrtoint and
4064 // inttoptr expressions.
4065 visitConstantExprsRecursively(CE);
4070 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
4071 Assert(I.getType()->isFPOrFPVectorTy(),
4072 "fpmath requires a floating point result!", &I);
4073 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
4074 if (ConstantFP *CFP0 =
4075 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
4076 const APFloat &Accuracy = CFP0->getValueAPF();
4077 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
4078 "fpmath accuracy must have float type", &I);
4079 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
4080 "fpmath accuracy not a positive number!", &I);
4081 } else {
4082 Assert(false, "invalid fpmath accuracy!", &I);
4086 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
4087 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
4088 "Ranges are only for loads, calls and invokes!", &I);
4089 visitRangeMetadata(I, Range, I.getType());
4092 if (I.getMetadata(LLVMContext::MD_nonnull)) {
4093 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
4094 &I);
4095 Assert(isa<LoadInst>(I),
4096 "nonnull applies only to load instructions, use attributes"
4097 " for calls or invokes",
4098 &I);
4101 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
4102 visitDereferenceableMetadata(I, MD);
4104 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
4105 visitDereferenceableMetadata(I, MD);
4107 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
4108 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
4110 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
4111 Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
4112 &I);
4113 Assert(isa<LoadInst>(I), "align applies only to load instructions, "
4114 "use attributes for calls or invokes", &I);
4115 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
4116 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
4117 Assert(CI && CI->getType()->isIntegerTy(64),
4118 "align metadata value must be an i64!", &I);
4119 uint64_t Align = CI->getZExtValue();
4120 Assert(isPowerOf2_64(Align),
4121 "align metadata value must be a power of 2!", &I);
4122 Assert(Align <= Value::MaximumAlignment,
4123 "alignment is larger that implementation defined limit", &I);
4126 if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
4127 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
4128 visitMDNode(*N);
4131 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I))
4132 verifyFragmentExpression(*DII);
4134 InstsInThisBlock.insert(&I);
4137 /// Allow intrinsics to be verified in different ways.
4138 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
4139 Function *IF = Call.getCalledFunction();
4140 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
4141 IF);
4143 // Verify that the intrinsic prototype lines up with what the .td files
4144 // describe.
4145 FunctionType *IFTy = IF->getFunctionType();
4146 bool IsVarArg = IFTy->isVarArg();
4148 SmallVector<Intrinsic::IITDescriptor, 8> Table;
4149 getIntrinsicInfoTableEntries(ID, Table);
4150 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
4152 SmallVector<Type *, 4> ArgTys;
4153 Assert(!Intrinsic::matchIntrinsicType(IFTy->getReturnType(),
4154 TableRef, ArgTys),
4155 "Intrinsic has incorrect return type!", IF);
4156 for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
4157 Assert(!Intrinsic::matchIntrinsicType(IFTy->getParamType(i),
4158 TableRef, ArgTys),
4159 "Intrinsic has incorrect argument type!", IF);
4161 // Verify if the intrinsic call matches the vararg property.
4162 if (IsVarArg)
4163 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4164 "Intrinsic was not defined with variable arguments!", IF);
4165 else
4166 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4167 "Callsite was not defined with variable arguments!", IF);
4169 // All descriptors should be absorbed by now.
4170 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
4172 // Now that we have the intrinsic ID and the actual argument types (and we
4173 // know they are legal for the intrinsic!) get the intrinsic name through the
4174 // usual means. This allows us to verify the mangling of argument types into
4175 // the name.
4176 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
4177 Assert(ExpectedName == IF->getName(),
4178 "Intrinsic name not mangled correctly for type arguments! "
4179 "Should be: " +
4180 ExpectedName,
4181 IF);
4183 // If the intrinsic takes MDNode arguments, verify that they are either global
4184 // or are local to *this* function.
4185 for (Value *V : Call.args())
4186 if (auto *MD = dyn_cast<MetadataAsValue>(V))
4187 visitMetadataAsValue(*MD, Call.getCaller());
4189 switch (ID) {
4190 default:
4191 break;
4192 case Intrinsic::coro_id: {
4193 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
4194 if (isa<ConstantPointerNull>(InfoArg))
4195 break;
4196 auto *GV = dyn_cast<GlobalVariable>(InfoArg);
4197 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
4198 "info argument of llvm.coro.begin must refer to an initialized "
4199 "constant");
4200 Constant *Init = GV->getInitializer();
4201 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
4202 "info argument of llvm.coro.begin must refer to either a struct or "
4203 "an array");
4204 break;
4206 case Intrinsic::experimental_constrained_fadd:
4207 case Intrinsic::experimental_constrained_fsub:
4208 case Intrinsic::experimental_constrained_fmul:
4209 case Intrinsic::experimental_constrained_fdiv:
4210 case Intrinsic::experimental_constrained_frem:
4211 case Intrinsic::experimental_constrained_fma:
4212 case Intrinsic::experimental_constrained_sqrt:
4213 case Intrinsic::experimental_constrained_pow:
4214 case Intrinsic::experimental_constrained_powi:
4215 case Intrinsic::experimental_constrained_sin:
4216 case Intrinsic::experimental_constrained_cos:
4217 case Intrinsic::experimental_constrained_exp:
4218 case Intrinsic::experimental_constrained_exp2:
4219 case Intrinsic::experimental_constrained_log:
4220 case Intrinsic::experimental_constrained_log10:
4221 case Intrinsic::experimental_constrained_log2:
4222 case Intrinsic::experimental_constrained_rint:
4223 case Intrinsic::experimental_constrained_nearbyint:
4224 case Intrinsic::experimental_constrained_maxnum:
4225 case Intrinsic::experimental_constrained_minnum:
4226 case Intrinsic::experimental_constrained_ceil:
4227 case Intrinsic::experimental_constrained_floor:
4228 case Intrinsic::experimental_constrained_round:
4229 case Intrinsic::experimental_constrained_trunc:
4230 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
4231 break;
4232 case Intrinsic::dbg_declare: // llvm.dbg.declare
4233 Assert(isa<MetadataAsValue>(Call.getArgOperand(0)),
4234 "invalid llvm.dbg.declare intrinsic call 1", Call);
4235 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
4236 break;
4237 case Intrinsic::dbg_addr: // llvm.dbg.addr
4238 visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call));
4239 break;
4240 case Intrinsic::dbg_value: // llvm.dbg.value
4241 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
4242 break;
4243 case Intrinsic::dbg_label: // llvm.dbg.label
4244 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
4245 break;
4246 case Intrinsic::memcpy:
4247 case Intrinsic::memmove:
4248 case Intrinsic::memset: {
4249 const auto *MI = cast<MemIntrinsic>(&Call);
4250 auto IsValidAlignment = [&](unsigned Alignment) -> bool {
4251 return Alignment == 0 || isPowerOf2_32(Alignment);
4253 Assert(IsValidAlignment(MI->getDestAlignment()),
4254 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
4255 Call);
4256 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
4257 Assert(IsValidAlignment(MTI->getSourceAlignment()),
4258 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
4259 Call);
4262 break;
4264 case Intrinsic::memcpy_element_unordered_atomic:
4265 case Intrinsic::memmove_element_unordered_atomic:
4266 case Intrinsic::memset_element_unordered_atomic: {
4267 const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
4269 ConstantInt *ElementSizeCI =
4270 cast<ConstantInt>(AMI->getRawElementSizeInBytes());
4271 const APInt &ElementSizeVal = ElementSizeCI->getValue();
4272 Assert(ElementSizeVal.isPowerOf2(),
4273 "element size of the element-wise atomic memory intrinsic "
4274 "must be a power of 2",
4275 Call);
4277 if (auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength())) {
4278 uint64_t Length = LengthCI->getZExtValue();
4279 uint64_t ElementSize = AMI->getElementSizeInBytes();
4280 Assert((Length % ElementSize) == 0,
4281 "constant length must be a multiple of the element size in the "
4282 "element-wise atomic memory intrinsic",
4283 Call);
4286 auto IsValidAlignment = [&](uint64_t Alignment) {
4287 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4289 uint64_t DstAlignment = AMI->getDestAlignment();
4290 Assert(IsValidAlignment(DstAlignment),
4291 "incorrect alignment of the destination argument", Call);
4292 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
4293 uint64_t SrcAlignment = AMT->getSourceAlignment();
4294 Assert(IsValidAlignment(SrcAlignment),
4295 "incorrect alignment of the source argument", Call);
4297 break;
4299 case Intrinsic::gcroot:
4300 case Intrinsic::gcwrite:
4301 case Intrinsic::gcread:
4302 if (ID == Intrinsic::gcroot) {
4303 AllocaInst *AI =
4304 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
4305 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
4306 Assert(isa<Constant>(Call.getArgOperand(1)),
4307 "llvm.gcroot parameter #2 must be a constant.", Call);
4308 if (!AI->getAllocatedType()->isPointerTy()) {
4309 Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
4310 "llvm.gcroot parameter #1 must either be a pointer alloca, "
4311 "or argument #2 must be a non-null constant.",
4312 Call);
4316 Assert(Call.getParent()->getParent()->hasGC(),
4317 "Enclosing function does not use GC.", Call);
4318 break;
4319 case Intrinsic::init_trampoline:
4320 Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
4321 "llvm.init_trampoline parameter #2 must resolve to a function.",
4322 Call);
4323 break;
4324 case Intrinsic::prefetch:
4325 Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 &&
4326 cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
4327 "invalid arguments to llvm.prefetch", Call);
4328 break;
4329 case Intrinsic::stackprotector:
4330 Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
4331 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
4332 break;
4333 case Intrinsic::localescape: {
4334 BasicBlock *BB = Call.getParent();
4335 Assert(BB == &BB->getParent()->front(),
4336 "llvm.localescape used outside of entry block", Call);
4337 Assert(!SawFrameEscape,
4338 "multiple calls to llvm.localescape in one function", Call);
4339 for (Value *Arg : Call.args()) {
4340 if (isa<ConstantPointerNull>(Arg))
4341 continue; // Null values are allowed as placeholders.
4342 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4343 Assert(AI && AI->isStaticAlloca(),
4344 "llvm.localescape only accepts static allocas", Call);
4346 FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands();
4347 SawFrameEscape = true;
4348 break;
4350 case Intrinsic::localrecover: {
4351 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
4352 Function *Fn = dyn_cast<Function>(FnArg);
4353 Assert(Fn && !Fn->isDeclaration(),
4354 "llvm.localrecover first "
4355 "argument must be function defined in this module",
4356 Call);
4357 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
4358 auto &Entry = FrameEscapeInfo[Fn];
4359 Entry.second = unsigned(
4360 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4361 break;
4364 case Intrinsic::experimental_gc_statepoint:
4365 if (auto *CI = dyn_cast<CallInst>(&Call))
4366 Assert(!CI->isInlineAsm(),
4367 "gc.statepoint support for inline assembly unimplemented", CI);
4368 Assert(Call.getParent()->getParent()->hasGC(),
4369 "Enclosing function does not use GC.", Call);
4371 verifyStatepoint(Call);
4372 break;
4373 case Intrinsic::experimental_gc_result: {
4374 Assert(Call.getParent()->getParent()->hasGC(),
4375 "Enclosing function does not use GC.", Call);
4376 // Are we tied to a statepoint properly?
4377 const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0));
4378 const Function *StatepointFn =
4379 StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
4380 Assert(StatepointFn && StatepointFn->isDeclaration() &&
4381 StatepointFn->getIntrinsicID() ==
4382 Intrinsic::experimental_gc_statepoint,
4383 "gc.result operand #1 must be from a statepoint", Call,
4384 Call.getArgOperand(0));
4386 // Assert that result type matches wrapped callee.
4387 const Value *Target = StatepointCall->getArgOperand(2);
4388 auto *PT = cast<PointerType>(Target->getType());
4389 auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4390 Assert(Call.getType() == TargetFuncType->getReturnType(),
4391 "gc.result result type does not match wrapped callee", Call);
4392 break;
4394 case Intrinsic::experimental_gc_relocate: {
4395 Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call);
4397 Assert(isa<PointerType>(Call.getType()->getScalarType()),
4398 "gc.relocate must return a pointer or a vector of pointers", Call);
4400 // Check that this relocate is correctly tied to the statepoint
4402 // This is case for relocate on the unwinding path of an invoke statepoint
4403 if (LandingPadInst *LandingPad =
4404 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
4406 const BasicBlock *InvokeBB =
4407 LandingPad->getParent()->getUniquePredecessor();
4409 // Landingpad relocates should have only one predecessor with invoke
4410 // statepoint terminator
4411 Assert(InvokeBB, "safepoints should have unique landingpads",
4412 LandingPad->getParent());
4413 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
4414 InvokeBB);
4415 Assert(isStatepoint(InvokeBB->getTerminator()),
4416 "gc relocate should be linked to a statepoint", InvokeBB);
4417 } else {
4418 // In all other cases relocate should be tied to the statepoint directly.
4419 // This covers relocates on a normal return path of invoke statepoint and
4420 // relocates of a call statepoint.
4421 auto Token = Call.getArgOperand(0);
4422 Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
4423 "gc relocate is incorrectly tied to the statepoint", Call, Token);
4426 // Verify rest of the relocate arguments.
4427 const CallBase &StatepointCall =
4428 *cast<CallBase>(cast<GCRelocateInst>(Call).getStatepoint());
4430 // Both the base and derived must be piped through the safepoint.
4431 Value *Base = Call.getArgOperand(1);
4432 Assert(isa<ConstantInt>(Base),
4433 "gc.relocate operand #2 must be integer offset", Call);
4435 Value *Derived = Call.getArgOperand(2);
4436 Assert(isa<ConstantInt>(Derived),
4437 "gc.relocate operand #3 must be integer offset", Call);
4439 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4440 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4441 // Check the bounds
4442 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCall.arg_size(),
4443 "gc.relocate: statepoint base index out of bounds", Call);
4444 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCall.arg_size(),
4445 "gc.relocate: statepoint derived index out of bounds", Call);
4447 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4448 // section of the statepoint's argument.
4449 Assert(StatepointCall.arg_size() > 0,
4450 "gc.statepoint: insufficient arguments");
4451 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(3)),
4452 "gc.statement: number of call arguments must be constant integer");
4453 const unsigned NumCallArgs =
4454 cast<ConstantInt>(StatepointCall.getArgOperand(3))->getZExtValue();
4455 Assert(StatepointCall.arg_size() > NumCallArgs + 5,
4456 "gc.statepoint: mismatch in number of call arguments");
4457 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)),
4458 "gc.statepoint: number of transition arguments must be "
4459 "a constant integer");
4460 const int NumTransitionArgs =
4461 cast<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5))
4462 ->getZExtValue();
4463 const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4464 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)),
4465 "gc.statepoint: number of deoptimization arguments must be "
4466 "a constant integer");
4467 const int NumDeoptArgs =
4468 cast<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart))
4469 ->getZExtValue();
4470 const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4471 const int GCParamArgsEnd = StatepointCall.arg_size();
4472 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
4473 "gc.relocate: statepoint base index doesn't fall within the "
4474 "'gc parameters' section of the statepoint call",
4475 Call);
4476 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
4477 "gc.relocate: statepoint derived index doesn't fall within the "
4478 "'gc parameters' section of the statepoint call",
4479 Call);
4481 // Relocated value must be either a pointer type or vector-of-pointer type,
4482 // but gc_relocate does not need to return the same pointer type as the
4483 // relocated pointer. It can be casted to the correct type later if it's
4484 // desired. However, they must have the same address space and 'vectorness'
4485 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
4486 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),
4487 "gc.relocate: relocated value must be a gc pointer", Call);
4489 auto ResultType = Call.getType();
4490 auto DerivedType = Relocate.getDerivedPtr()->getType();
4491 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
4492 "gc.relocate: vector relocates to vector and pointer to pointer",
4493 Call);
4494 Assert(
4495 ResultType->getPointerAddressSpace() ==
4496 DerivedType->getPointerAddressSpace(),
4497 "gc.relocate: relocating a pointer shouldn't change its address space",
4498 Call);
4499 break;
4501 case Intrinsic::eh_exceptioncode:
4502 case Intrinsic::eh_exceptionpointer: {
4503 Assert(isa<CatchPadInst>(Call.getArgOperand(0)),
4504 "eh.exceptionpointer argument must be a catchpad", Call);
4505 break;
4507 case Intrinsic::masked_load: {
4508 Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector",
4509 Call);
4511 Value *Ptr = Call.getArgOperand(0);
4512 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
4513 Value *Mask = Call.getArgOperand(2);
4514 Value *PassThru = Call.getArgOperand(3);
4515 Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
4516 Call);
4517 Assert(Alignment->getValue().isPowerOf2(),
4518 "masked_load: alignment must be a power of 2", Call);
4520 // DataTy is the overloaded type
4521 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4522 Assert(DataTy == Call.getType(),
4523 "masked_load: return must match pointer type", Call);
4524 Assert(PassThru->getType() == DataTy,
4525 "masked_load: pass through and data type must match", Call);
4526 Assert(Mask->getType()->getVectorNumElements() ==
4527 DataTy->getVectorNumElements(),
4528 "masked_load: vector mask must be same length as data", Call);
4529 break;
4531 case Intrinsic::masked_store: {
4532 Value *Val = Call.getArgOperand(0);
4533 Value *Ptr = Call.getArgOperand(1);
4534 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
4535 Value *Mask = Call.getArgOperand(3);
4536 Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
4537 Call);
4538 Assert(Alignment->getValue().isPowerOf2(),
4539 "masked_store: alignment must be a power of 2", Call);
4541 // DataTy is the overloaded type
4542 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4543 Assert(DataTy == Val->getType(),
4544 "masked_store: storee must match pointer type", Call);
4545 Assert(Mask->getType()->getVectorNumElements() ==
4546 DataTy->getVectorNumElements(),
4547 "masked_store: vector mask must be same length as data", Call);
4548 break;
4551 case Intrinsic::experimental_guard: {
4552 Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
4553 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4554 "experimental_guard must have exactly one "
4555 "\"deopt\" operand bundle");
4556 break;
4559 case Intrinsic::experimental_deoptimize: {
4560 Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
4561 Call);
4562 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4563 "experimental_deoptimize must have exactly one "
4564 "\"deopt\" operand bundle");
4565 Assert(Call.getType() == Call.getFunction()->getReturnType(),
4566 "experimental_deoptimize return type must match caller return type");
4568 if (isa<CallInst>(Call)) {
4569 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
4570 Assert(RI,
4571 "calls to experimental_deoptimize must be followed by a return");
4573 if (!Call.getType()->isVoidTy() && RI)
4574 Assert(RI->getReturnValue() == &Call,
4575 "calls to experimental_deoptimize must be followed by a return "
4576 "of the value computed by experimental_deoptimize");
4579 break;
4581 case Intrinsic::sadd_sat:
4582 case Intrinsic::uadd_sat:
4583 case Intrinsic::ssub_sat:
4584 case Intrinsic::usub_sat: {
4585 Value *Op1 = Call.getArgOperand(0);
4586 Value *Op2 = Call.getArgOperand(1);
4587 Assert(Op1->getType()->isIntOrIntVectorTy(),
4588 "first operand of [us][add|sub]_sat must be an int type or vector "
4589 "of ints");
4590 Assert(Op2->getType()->isIntOrIntVectorTy(),
4591 "second operand of [us][add|sub]_sat must be an int type or vector "
4592 "of ints");
4593 break;
4595 case Intrinsic::smul_fix:
4596 case Intrinsic::umul_fix: {
4597 Value *Op1 = Call.getArgOperand(0);
4598 Value *Op2 = Call.getArgOperand(1);
4599 Assert(Op1->getType()->isIntOrIntVectorTy(),
4600 "first operand of [us]mul_fix must be an int type or vector "
4601 "of ints");
4602 Assert(Op2->getType()->isIntOrIntVectorTy(),
4603 "second operand of [us]mul_fix must be an int type or vector "
4604 "of ints");
4606 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
4607 Assert(Op3->getType()->getBitWidth() <= 32,
4608 "third argument of [us]mul_fix must fit within 32 bits");
4610 if (ID == Intrinsic::smul_fix) {
4611 Assert(
4612 Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
4613 "the scale of smul_fix must be less than the width of the operands");
4614 } else {
4615 Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
4616 "the scale of umul_fix must be less than or equal to the width of "
4617 "the operands");
4619 break;
4624 /// Carefully grab the subprogram from a local scope.
4626 /// This carefully grabs the subprogram from a local scope, avoiding the
4627 /// built-in assertions that would typically fire.
4628 static DISubprogram *getSubprogram(Metadata *LocalScope) {
4629 if (!LocalScope)
4630 return nullptr;
4632 if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4633 return SP;
4635 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4636 return getSubprogram(LB->getRawScope());
4638 // Just return null; broken scope chains are checked elsewhere.
4639 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
4640 return nullptr;
4643 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
4644 unsigned NumOperands = FPI.getNumArgOperands();
4645 bool HasExceptionMD = false;
4646 bool HasRoundingMD = false;
4647 switch (FPI.getIntrinsicID()) {
4648 case Intrinsic::experimental_constrained_sqrt:
4649 case Intrinsic::experimental_constrained_sin:
4650 case Intrinsic::experimental_constrained_cos:
4651 case Intrinsic::experimental_constrained_exp:
4652 case Intrinsic::experimental_constrained_exp2:
4653 case Intrinsic::experimental_constrained_log:
4654 case Intrinsic::experimental_constrained_log10:
4655 case Intrinsic::experimental_constrained_log2:
4656 case Intrinsic::experimental_constrained_rint:
4657 case Intrinsic::experimental_constrained_nearbyint:
4658 case Intrinsic::experimental_constrained_ceil:
4659 case Intrinsic::experimental_constrained_floor:
4660 case Intrinsic::experimental_constrained_round:
4661 case Intrinsic::experimental_constrained_trunc:
4662 Assert((NumOperands == 3), "invalid arguments for constrained FP intrinsic",
4663 &FPI);
4664 HasExceptionMD = true;
4665 HasRoundingMD = true;
4666 break;
4668 case Intrinsic::experimental_constrained_fma:
4669 Assert((NumOperands == 5), "invalid arguments for constrained FP intrinsic",
4670 &FPI);
4671 HasExceptionMD = true;
4672 HasRoundingMD = true;
4673 break;
4675 case Intrinsic::experimental_constrained_fadd:
4676 case Intrinsic::experimental_constrained_fsub:
4677 case Intrinsic::experimental_constrained_fmul:
4678 case Intrinsic::experimental_constrained_fdiv:
4679 case Intrinsic::experimental_constrained_frem:
4680 case Intrinsic::experimental_constrained_pow:
4681 case Intrinsic::experimental_constrained_powi:
4682 case Intrinsic::experimental_constrained_maxnum:
4683 case Intrinsic::experimental_constrained_minnum:
4684 Assert((NumOperands == 4), "invalid arguments for constrained FP intrinsic",
4685 &FPI);
4686 HasExceptionMD = true;
4687 HasRoundingMD = true;
4688 break;
4690 default:
4691 llvm_unreachable("Invalid constrained FP intrinsic!");
4694 // If a non-metadata argument is passed in a metadata slot then the
4695 // error will be caught earlier when the incorrect argument doesn't
4696 // match the specification in the intrinsic call table. Thus, no
4697 // argument type check is needed here.
4699 if (HasExceptionMD) {
4700 Assert(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic::ebInvalid,
4701 "invalid exception behavior argument", &FPI);
4703 if (HasRoundingMD) {
4704 Assert(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid,
4705 "invalid rounding mode argument", &FPI);
4709 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
4710 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4711 AssertDI(isa<ValueAsMetadata>(MD) ||
4712 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
4713 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
4714 AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
4715 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
4716 DII.getRawVariable());
4717 AssertDI(isa<DIExpression>(DII.getRawExpression()),
4718 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
4719 DII.getRawExpression());
4721 // Ignore broken !dbg attachments; they're checked elsewhere.
4722 if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4723 if (!isa<DILocation>(N))
4724 return;
4726 BasicBlock *BB = DII.getParent();
4727 Function *F = BB ? BB->getParent() : nullptr;
4729 // The scopes for variables and !dbg attachments must agree.
4730 DILocalVariable *Var = DII.getVariable();
4731 DILocation *Loc = DII.getDebugLoc();
4732 AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4733 &DII, BB, F);
4735 DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4736 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4737 if (!VarSP || !LocSP)
4738 return; // Broken scope chains are checked elsewhere.
4740 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4741 " variable and !dbg attachment",
4742 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
4743 Loc->getScope()->getSubprogram());
4745 // This check is redundant with one in visitLocalVariable().
4746 AssertDI(isType(Var->getRawType()), "invalid type ref", Var,
4747 Var->getRawType());
4748 if (auto *Type = dyn_cast_or_null<DIType>(Var->getRawType()))
4749 if (Type->isBlockByrefStruct())
4750 AssertDI(DII.getExpression() && DII.getExpression()->getNumElements(),
4751 "BlockByRef variable without complex expression", Var, &DII);
4753 verifyFnArgs(DII);
4756 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
4757 AssertDI(isa<DILabel>(DLI.getRawLabel()),
4758 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
4759 DLI.getRawLabel());
4761 // Ignore broken !dbg attachments; they're checked elsewhere.
4762 if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
4763 if (!isa<DILocation>(N))
4764 return;
4766 BasicBlock *BB = DLI.getParent();
4767 Function *F = BB ? BB->getParent() : nullptr;
4769 // The scopes for variables and !dbg attachments must agree.
4770 DILabel *Label = DLI.getLabel();
4771 DILocation *Loc = DLI.getDebugLoc();
4772 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4773 &DLI, BB, F);
4775 DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
4776 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4777 if (!LabelSP || !LocSP)
4778 return;
4780 AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4781 " label and !dbg attachment",
4782 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
4783 Loc->getScope()->getSubprogram());
4786 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
4787 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
4788 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
4790 // We don't know whether this intrinsic verified correctly.
4791 if (!V || !E || !E->isValid())
4792 return;
4794 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
4795 auto Fragment = E->getFragmentInfo();
4796 if (!Fragment)
4797 return;
4799 // The frontend helps out GDB by emitting the members of local anonymous
4800 // unions as artificial local variables with shared storage. When SROA splits
4801 // the storage for artificial local variables that are smaller than the entire
4802 // union, the overhang piece will be outside of the allotted space for the
4803 // variable and this check fails.
4804 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4805 if (V->isArtificial())
4806 return;
4808 verifyFragmentExpression(*V, *Fragment, &I);
4811 template <typename ValueOrMetadata>
4812 void Verifier::verifyFragmentExpression(const DIVariable &V,
4813 DIExpression::FragmentInfo Fragment,
4814 ValueOrMetadata *Desc) {
4815 // If there's no size, the type is broken, but that should be checked
4816 // elsewhere.
4817 auto VarSize = V.getSizeInBits();
4818 if (!VarSize)
4819 return;
4821 unsigned FragSize = Fragment.SizeInBits;
4822 unsigned FragOffset = Fragment.OffsetInBits;
4823 AssertDI(FragSize + FragOffset <= *VarSize,
4824 "fragment is larger than or outside of variable", Desc, &V);
4825 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
4828 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
4829 // This function does not take the scope of noninlined function arguments into
4830 // account. Don't run it if current function is nodebug, because it may
4831 // contain inlined debug intrinsics.
4832 if (!HasDebugInfo)
4833 return;
4835 // For performance reasons only check non-inlined ones.
4836 if (I.getDebugLoc()->getInlinedAt())
4837 return;
4839 DILocalVariable *Var = I.getVariable();
4840 AssertDI(Var, "dbg intrinsic without variable");
4842 unsigned ArgNo = Var->getArg();
4843 if (!ArgNo)
4844 return;
4846 // Verify there are no duplicate function argument debug info entries.
4847 // These will cause hard-to-debug assertions in the DWARF backend.
4848 if (DebugFnArgs.size() < ArgNo)
4849 DebugFnArgs.resize(ArgNo, nullptr);
4851 auto *Prev = DebugFnArgs[ArgNo - 1];
4852 DebugFnArgs[ArgNo - 1] = Var;
4853 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
4854 Prev, Var);
4857 void Verifier::verifyCompileUnits() {
4858 // When more than one Module is imported into the same context, such as during
4859 // an LTO build before linking the modules, ODR type uniquing may cause types
4860 // to point to a different CU. This check does not make sense in this case.
4861 if (M.getContext().isODRUniquingDebugTypes())
4862 return;
4863 auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
4864 SmallPtrSet<const Metadata *, 2> Listed;
4865 if (CUs)
4866 Listed.insert(CUs->op_begin(), CUs->op_end());
4867 for (auto *CU : CUVisited)
4868 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
4869 CUVisited.clear();
4872 void Verifier::verifyDeoptimizeCallingConvs() {
4873 if (DeoptimizeDeclarations.empty())
4874 return;
4876 const Function *First = DeoptimizeDeclarations[0];
4877 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
4878 Assert(First->getCallingConv() == F->getCallingConv(),
4879 "All llvm.experimental.deoptimize declarations must have the same "
4880 "calling convention",
4881 First, F);
4885 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) {
4886 bool HasSource = F.getSource().hasValue();
4887 if (!HasSourceDebugInfo.count(&U))
4888 HasSourceDebugInfo[&U] = HasSource;
4889 AssertDI(HasSource == HasSourceDebugInfo[&U],
4890 "inconsistent use of embedded source");
4893 //===----------------------------------------------------------------------===//
4894 // Implement the public interfaces to this file...
4895 //===----------------------------------------------------------------------===//
4897 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
4898 Function &F = const_cast<Function &>(f);
4900 // Don't use a raw_null_ostream. Printing IR is expensive.
4901 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
4903 // Note that this function's return value is inverted from what you would
4904 // expect of a function called "verify".
4905 return !V.verify(F);
4908 bool llvm::verifyModule(const Module &M, raw_ostream *OS,
4909 bool *BrokenDebugInfo) {
4910 // Don't use a raw_null_ostream. Printing IR is expensive.
4911 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
4913 bool Broken = false;
4914 for (const Function &F : M)
4915 Broken |= !V.verify(F);
4917 Broken |= !V.verify();
4918 if (BrokenDebugInfo)
4919 *BrokenDebugInfo = V.hasBrokenDebugInfo();
4920 // Note that this function's return value is inverted from what you would
4921 // expect of a function called "verify".
4922 return Broken;
4925 namespace {
4927 struct VerifierLegacyPass : public FunctionPass {
4928 static char ID;
4930 std::unique_ptr<Verifier> V;
4931 bool FatalErrors = true;
4933 VerifierLegacyPass() : FunctionPass(ID) {
4934 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4936 explicit VerifierLegacyPass(bool FatalErrors)
4937 : FunctionPass(ID),
4938 FatalErrors(FatalErrors) {
4939 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4942 bool doInitialization(Module &M) override {
4943 V = llvm::make_unique<Verifier>(
4944 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
4945 return false;
4948 bool runOnFunction(Function &F) override {
4949 if (!V->verify(F) && FatalErrors) {
4950 errs() << "in function " << F.getName() << '\n';
4951 report_fatal_error("Broken function found, compilation aborted!");
4953 return false;
4956 bool doFinalization(Module &M) override {
4957 bool HasErrors = false;
4958 for (Function &F : M)
4959 if (F.isDeclaration())
4960 HasErrors |= !V->verify(F);
4962 HasErrors |= !V->verify();
4963 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
4964 report_fatal_error("Broken module found, compilation aborted!");
4965 return false;
4968 void getAnalysisUsage(AnalysisUsage &AU) const override {
4969 AU.setPreservesAll();
4973 } // end anonymous namespace
4975 /// Helper to issue failure from the TBAA verification
4976 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
4977 if (Diagnostic)
4978 return Diagnostic->CheckFailed(Args...);
4981 #define AssertTBAA(C, ...) \
4982 do { \
4983 if (!(C)) { \
4984 CheckFailed(__VA_ARGS__); \
4985 return false; \
4987 } while (false)
4989 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
4990 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a
4991 /// struct-type node describing an aggregate data structure (like a struct).
4992 TBAAVerifier::TBAABaseNodeSummary
4993 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
4994 bool IsNewFormat) {
4995 if (BaseNode->getNumOperands() < 2) {
4996 CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
4997 return {true, ~0u};
5000 auto Itr = TBAABaseNodes.find(BaseNode);
5001 if (Itr != TBAABaseNodes.end())
5002 return Itr->second;
5004 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
5005 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
5006 (void)InsertResult;
5007 assert(InsertResult.second && "We just checked!");
5008 return Result;
5011 TBAAVerifier::TBAABaseNodeSummary
5012 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
5013 bool IsNewFormat) {
5014 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
5016 if (BaseNode->getNumOperands() == 2) {
5017 // Scalar nodes can only be accessed at offset 0.
5018 return isValidScalarTBAANode(BaseNode)
5019 ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
5020 : InvalidNode;
5023 if (IsNewFormat) {
5024 if (BaseNode->getNumOperands() % 3 != 0) {
5025 CheckFailed("Access tag nodes must have the number of operands that is a "
5026 "multiple of 3!", BaseNode);
5027 return InvalidNode;
5029 } else {
5030 if (BaseNode->getNumOperands() % 2 != 1) {
5031 CheckFailed("Struct tag nodes must have an odd number of operands!",
5032 BaseNode);
5033 return InvalidNode;
5037 // Check the type size field.
5038 if (IsNewFormat) {
5039 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5040 BaseNode->getOperand(1));
5041 if (!TypeSizeNode) {
5042 CheckFailed("Type size nodes must be constants!", &I, BaseNode);
5043 return InvalidNode;
5047 // Check the type name field. In the new format it can be anything.
5048 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
5049 CheckFailed("Struct tag nodes have a string as their first operand",
5050 BaseNode);
5051 return InvalidNode;
5054 bool Failed = false;
5056 Optional<APInt> PrevOffset;
5057 unsigned BitWidth = ~0u;
5059 // We've already checked that BaseNode is not a degenerate root node with one
5060 // operand in \c verifyTBAABaseNode, so this loop should run at least once.
5061 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
5062 unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
5063 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
5064 Idx += NumOpsPerField) {
5065 const MDOperand &FieldTy = BaseNode->getOperand(Idx);
5066 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
5067 if (!isa<MDNode>(FieldTy)) {
5068 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
5069 Failed = true;
5070 continue;
5073 auto *OffsetEntryCI =
5074 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
5075 if (!OffsetEntryCI) {
5076 CheckFailed("Offset entries must be constants!", &I, BaseNode);
5077 Failed = true;
5078 continue;
5081 if (BitWidth == ~0u)
5082 BitWidth = OffsetEntryCI->getBitWidth();
5084 if (OffsetEntryCI->getBitWidth() != BitWidth) {
5085 CheckFailed(
5086 "Bitwidth between the offsets and struct type entries must match", &I,
5087 BaseNode);
5088 Failed = true;
5089 continue;
5092 // NB! As far as I can tell, we generate a non-strictly increasing offset
5093 // sequence only from structs that have zero size bit fields. When
5094 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
5095 // pick the field lexically the latest in struct type metadata node. This
5096 // mirrors the actual behavior of the alias analysis implementation.
5097 bool IsAscending =
5098 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
5100 if (!IsAscending) {
5101 CheckFailed("Offsets must be increasing!", &I, BaseNode);
5102 Failed = true;
5105 PrevOffset = OffsetEntryCI->getValue();
5107 if (IsNewFormat) {
5108 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5109 BaseNode->getOperand(Idx + 2));
5110 if (!MemberSizeNode) {
5111 CheckFailed("Member size entries must be constants!", &I, BaseNode);
5112 Failed = true;
5113 continue;
5118 return Failed ? InvalidNode
5119 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
5122 static bool IsRootTBAANode(const MDNode *MD) {
5123 return MD->getNumOperands() < 2;
5126 static bool IsScalarTBAANodeImpl(const MDNode *MD,
5127 SmallPtrSetImpl<const MDNode *> &Visited) {
5128 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
5129 return false;
5131 if (!isa<MDString>(MD->getOperand(0)))
5132 return false;
5134 if (MD->getNumOperands() == 3) {
5135 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
5136 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
5137 return false;
5140 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5141 return Parent && Visited.insert(Parent).second &&
5142 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
5145 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
5146 auto ResultIt = TBAAScalarNodes.find(MD);
5147 if (ResultIt != TBAAScalarNodes.end())
5148 return ResultIt->second;
5150 SmallPtrSet<const MDNode *, 4> Visited;
5151 bool Result = IsScalarTBAANodeImpl(MD, Visited);
5152 auto InsertResult = TBAAScalarNodes.insert({MD, Result});
5153 (void)InsertResult;
5154 assert(InsertResult.second && "Just checked!");
5156 return Result;
5159 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p
5160 /// Offset in place to be the offset within the field node returned.
5162 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
5163 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
5164 const MDNode *BaseNode,
5165 APInt &Offset,
5166 bool IsNewFormat) {
5167 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
5169 // Scalar nodes have only one possible "field" -- their parent in the access
5170 // hierarchy. Offset must be zero at this point, but our caller is supposed
5171 // to Assert that.
5172 if (BaseNode->getNumOperands() == 2)
5173 return cast<MDNode>(BaseNode->getOperand(1));
5175 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
5176 unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
5177 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
5178 Idx += NumOpsPerField) {
5179 auto *OffsetEntryCI =
5180 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
5181 if (OffsetEntryCI->getValue().ugt(Offset)) {
5182 if (Idx == FirstFieldOpNo) {
5183 CheckFailed("Could not find TBAA parent in struct type node", &I,
5184 BaseNode, &Offset);
5185 return nullptr;
5188 unsigned PrevIdx = Idx - NumOpsPerField;
5189 auto *PrevOffsetEntryCI =
5190 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
5191 Offset -= PrevOffsetEntryCI->getValue();
5192 return cast<MDNode>(BaseNode->getOperand(PrevIdx));
5196 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
5197 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
5198 BaseNode->getOperand(LastIdx + 1));
5199 Offset -= LastOffsetEntryCI->getValue();
5200 return cast<MDNode>(BaseNode->getOperand(LastIdx));
5203 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
5204 if (!Type || Type->getNumOperands() < 3)
5205 return false;
5207 // In the new format type nodes shall have a reference to the parent type as
5208 // its first operand.
5209 MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0));
5210 if (!Parent)
5211 return false;
5213 return true;
5216 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
5217 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
5218 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
5219 isa<AtomicCmpXchgInst>(I),
5220 "This instruction shall not have a TBAA access tag!", &I);
5222 bool IsStructPathTBAA =
5223 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
5225 AssertTBAA(
5226 IsStructPathTBAA,
5227 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);
5229 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
5230 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5232 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
5234 if (IsNewFormat) {
5235 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
5236 "Access tag metadata must have either 4 or 5 operands", &I, MD);
5237 } else {
5238 AssertTBAA(MD->getNumOperands() < 5,
5239 "Struct tag metadata must have either 3 or 4 operands", &I, MD);
5242 // Check the access size field.
5243 if (IsNewFormat) {
5244 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5245 MD->getOperand(3));
5246 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
5249 // Check the immutability flag.
5250 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
5251 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
5252 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
5253 MD->getOperand(ImmutabilityFlagOpNo));
5254 AssertTBAA(IsImmutableCI,
5255 "Immutability tag on struct tag metadata must be a constant",
5256 &I, MD);
5257 AssertTBAA(
5258 IsImmutableCI->isZero() || IsImmutableCI->isOne(),
5259 "Immutability part of the struct tag metadata must be either 0 or 1",
5260 &I, MD);
5263 AssertTBAA(BaseNode && AccessType,
5264 "Malformed struct tag metadata: base and access-type "
5265 "should be non-null and point to Metadata nodes",
5266 &I, MD, BaseNode, AccessType);
5268 if (!IsNewFormat) {
5269 AssertTBAA(isValidScalarTBAANode(AccessType),
5270 "Access type node must be a valid scalar type", &I, MD,
5271 AccessType);
5274 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
5275 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
5277 APInt Offset = OffsetCI->getValue();
5278 bool SeenAccessTypeInPath = false;
5280 SmallPtrSet<MDNode *, 4> StructPath;
5282 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
5283 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
5284 IsNewFormat)) {
5285 if (!StructPath.insert(BaseNode).second) {
5286 CheckFailed("Cycle detected in struct path", &I, MD);
5287 return false;
5290 bool Invalid;
5291 unsigned BaseNodeBitWidth;
5292 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
5293 IsNewFormat);
5295 // If the base node is invalid in itself, then we've already printed all the
5296 // errors we wanted to print.
5297 if (Invalid)
5298 return false;
5300 SeenAccessTypeInPath |= BaseNode == AccessType;
5302 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
5303 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",
5304 &I, MD, &Offset);
5306 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
5307 (BaseNodeBitWidth == 0 && Offset == 0) ||
5308 (IsNewFormat && BaseNodeBitWidth == ~0u),
5309 "Access bit-width not the same as description bit-width", &I, MD,
5310 BaseNodeBitWidth, Offset.getBitWidth());
5312 if (IsNewFormat && SeenAccessTypeInPath)
5313 break;
5316 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",
5317 &I, MD);
5318 return true;
5321 char VerifierLegacyPass::ID = 0;
5322 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
5324 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
5325 return new VerifierLegacyPass(FatalErrors);
5328 AnalysisKey VerifierAnalysis::Key;
5329 VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
5330 ModuleAnalysisManager &) {
5331 Result Res;
5332 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
5333 return Res;
5336 VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
5337 FunctionAnalysisManager &) {
5338 return { llvm::verifyFunction(F, &dbgs()), false };
5341 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
5342 auto Res = AM.getResult<VerifierAnalysis>(M);
5343 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
5344 report_fatal_error("Broken module found, compilation aborted!");
5346 return PreservedAnalyses::all();
5349 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
5350 auto res = AM.getResult<VerifierAnalysis>(F);
5351 if (res.IRBroken && FatalErrors)
5352 report_fatal_error("Broken function found, compilation aborted!");
5354 return PreservedAnalyses::all();