1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the function verifier interface, that can be used for some
10 // sanity checking of input to the system.
12 // Note that this does not provide full `Java style' security and verifications,
13 // instead it just tries to ensure that code is well-formed.
15 // * Both of a binary operator's parameters are of the same type
16 // * Verify that the indices of mem access instructions match other operands
17 // * Verify that arithmetic and other things are only performed on first-class
18 // types. Verify that shifts & logicals only happen on integrals f.e.
19 // * All of the constants in a switch statement are of the correct type
20 // * The code is in valid SSA form
21 // * It should be illegal to put a label into any other type (like a structure)
22 // or to return one. [except constant arrays!]
23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24 // * PHI nodes must have an entry for each predecessor, with no extras.
25 // * PHI nodes must be the first thing in a basic block, all grouped together
26 // * PHI nodes must have at least one entry
27 // * All basic blocks should only end with terminator insts, not contain them
28 // * The entry node to a function must not have predecessors
29 // * All Instructions must be embedded into a basic block
30 // * Functions cannot take a void-typed parameter
31 // * Verify that a function's argument list agrees with it's declared type.
32 // * It is illegal to specify a name for a void value.
33 // * It is illegal to have a internal global value with no initializer
34 // * It is illegal to have a ret instruction that returns a value that does not
35 // agree with the function return value type.
36 // * Function call argument types match the function prototype
37 // * A landing pad is defined by a landingpad instruction, and can be jumped to
38 // only by the unwind edge of an invoke instruction.
39 // * A landingpad instruction must be the first non-PHI instruction in the
41 // * Landingpad instructions must be in a function with a personality function.
42 // * All other things that are tested by asserts spread about the code...
44 //===----------------------------------------------------------------------===//
46 #include "llvm/IR/Verifier.h"
47 #include "llvm/ADT/APFloat.h"
48 #include "llvm/ADT/APInt.h"
49 #include "llvm/ADT/ArrayRef.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/MapVector.h"
52 #include "llvm/ADT/Optional.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/StringExtras.h"
58 #include "llvm/ADT/StringMap.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/Twine.h"
61 #include "llvm/ADT/ilist.h"
62 #include "llvm/BinaryFormat/Dwarf.h"
63 #include "llvm/IR/Argument.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/CallingConv.h"
68 #include "llvm/IR/Comdat.h"
69 #include "llvm/IR/Constant.h"
70 #include "llvm/IR/ConstantRange.h"
71 #include "llvm/IR/Constants.h"
72 #include "llvm/IR/DataLayout.h"
73 #include "llvm/IR/DebugInfo.h"
74 #include "llvm/IR/DebugInfoMetadata.h"
75 #include "llvm/IR/DebugLoc.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/Dominators.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GlobalAlias.h"
80 #include "llvm/IR/GlobalValue.h"
81 #include "llvm/IR/GlobalVariable.h"
82 #include "llvm/IR/InlineAsm.h"
83 #include "llvm/IR/InstVisitor.h"
84 #include "llvm/IR/InstrTypes.h"
85 #include "llvm/IR/Instruction.h"
86 #include "llvm/IR/Instructions.h"
87 #include "llvm/IR/IntrinsicInst.h"
88 #include "llvm/IR/Intrinsics.h"
89 #include "llvm/IR/LLVMContext.h"
90 #include "llvm/IR/Metadata.h"
91 #include "llvm/IR/Module.h"
92 #include "llvm/IR/ModuleSlotTracker.h"
93 #include "llvm/IR/PassManager.h"
94 #include "llvm/IR/Statepoint.h"
95 #include "llvm/IR/Type.h"
96 #include "llvm/IR/Use.h"
97 #include "llvm/IR/User.h"
98 #include "llvm/IR/Value.h"
99 #include "llvm/Pass.h"
100 #include "llvm/Support/AtomicOrdering.h"
101 #include "llvm/Support/Casting.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MathExtras.h"
106 #include "llvm/Support/raw_ostream.h"
114 using namespace llvm
;
118 struct VerifierSupport
{
121 ModuleSlotTracker MST
;
122 const DataLayout
&DL
;
123 LLVMContext
&Context
;
125 /// Track the brokenness of the module while recursively visiting.
127 /// Broken debug info can be "recovered" from by stripping the debug info.
128 bool BrokenDebugInfo
= false;
129 /// Whether to treat broken debug info as an error.
130 bool TreatBrokenDebugInfoAsError
= true;
132 explicit VerifierSupport(raw_ostream
*OS
, const Module
&M
)
133 : OS(OS
), M(M
), MST(&M
), DL(M
.getDataLayout()), Context(M
.getContext()) {}
136 void Write(const Module
*M
) {
137 *OS
<< "; ModuleID = '" << M
->getModuleIdentifier() << "'\n";
140 void Write(const Value
*V
) {
145 void Write(const Value
&V
) {
146 if (isa
<Instruction
>(V
)) {
150 V
.printAsOperand(*OS
, true, MST
);
155 void Write(const Metadata
*MD
) {
158 MD
->print(*OS
, MST
, &M
);
162 template <class T
> void Write(const MDTupleTypedArrayWrapper
<T
> &MD
) {
166 void Write(const NamedMDNode
*NMD
) {
169 NMD
->print(*OS
, MST
);
173 void Write(Type
*T
) {
179 void Write(const Comdat
*C
) {
185 void Write(const APInt
*AI
) {
191 void Write(const unsigned i
) { *OS
<< i
<< '\n'; }
193 template <typename T
> void Write(ArrayRef
<T
> Vs
) {
194 for (const T
&V
: Vs
)
198 template <typename T1
, typename
... Ts
>
199 void WriteTs(const T1
&V1
, const Ts
&... Vs
) {
204 template <typename
... Ts
> void WriteTs() {}
207 /// A check failed, so printout out the condition and the message.
209 /// This provides a nice place to put a breakpoint if you want to see why
210 /// something is not correct.
211 void CheckFailed(const Twine
&Message
) {
213 *OS
<< Message
<< '\n';
217 /// A check failed (with values to print).
219 /// This calls the Message-only version so that the above is easier to set a
221 template <typename T1
, typename
... Ts
>
222 void CheckFailed(const Twine
&Message
, const T1
&V1
, const Ts
&... Vs
) {
223 CheckFailed(Message
);
228 /// A debug info check failed.
229 void DebugInfoCheckFailed(const Twine
&Message
) {
231 *OS
<< Message
<< '\n';
232 Broken
|= TreatBrokenDebugInfoAsError
;
233 BrokenDebugInfo
= true;
236 /// A debug info check failed (with values to print).
237 template <typename T1
, typename
... Ts
>
238 void DebugInfoCheckFailed(const Twine
&Message
, const T1
&V1
,
240 DebugInfoCheckFailed(Message
);
250 class Verifier
: public InstVisitor
<Verifier
>, VerifierSupport
{
251 friend class InstVisitor
<Verifier
>;
255 /// When verifying a basic block, keep track of all of the
256 /// instructions we have seen so far.
258 /// This allows us to do efficient dominance checks for the case when an
259 /// instruction has an operand that is an instruction in the same block.
260 SmallPtrSet
<Instruction
*, 16> InstsInThisBlock
;
262 /// Keep track of the metadata nodes that have been checked already.
263 SmallPtrSet
<const Metadata
*, 32> MDNodes
;
265 /// Keep track which DISubprogram is attached to which function.
266 DenseMap
<const DISubprogram
*, const Function
*> DISubprogramAttachments
;
268 /// Track all DICompileUnits visited.
269 SmallPtrSet
<const Metadata
*, 2> CUVisited
;
271 /// The result type for a landingpad.
272 Type
*LandingPadResultTy
;
274 /// Whether we've seen a call to @llvm.localescape in this function
278 /// Whether the current function has a DISubprogram attached to it.
279 bool HasDebugInfo
= false;
281 /// Whether source was present on the first DIFile encountered in each CU.
282 DenseMap
<const DICompileUnit
*, bool> HasSourceDebugInfo
;
284 /// Stores the count of how many objects were passed to llvm.localescape for a
285 /// given function and the largest index passed to llvm.localrecover.
286 DenseMap
<Function
*, std::pair
<unsigned, unsigned>> FrameEscapeInfo
;
288 // Maps catchswitches and cleanuppads that unwind to siblings to the
289 // terminators that indicate the unwind, used to detect cycles therein.
290 MapVector
<Instruction
*, Instruction
*> SiblingFuncletInfo
;
292 /// Cache of constants visited in search of ConstantExprs.
293 SmallPtrSet
<const Constant
*, 32> ConstantExprVisited
;
295 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
296 SmallVector
<const Function
*, 4> DeoptimizeDeclarations
;
298 // Verify that this GlobalValue is only used in this module.
299 // This map is used to avoid visiting uses twice. We can arrive at a user
300 // twice, if they have multiple operands. In particular for very large
301 // constant expressions, we can arrive at a particular user many times.
302 SmallPtrSet
<const Value
*, 32> GlobalValueVisited
;
304 // Keeps track of duplicate function argument debug info.
305 SmallVector
<const DILocalVariable
*, 16> DebugFnArgs
;
307 TBAAVerifier TBAAVerifyHelper
;
309 void checkAtomicMemAccessSize(Type
*Ty
, const Instruction
*I
);
312 explicit Verifier(raw_ostream
*OS
, bool ShouldTreatBrokenDebugInfoAsError
,
314 : VerifierSupport(OS
, M
), LandingPadResultTy(nullptr),
315 SawFrameEscape(false), TBAAVerifyHelper(this) {
316 TreatBrokenDebugInfoAsError
= ShouldTreatBrokenDebugInfoAsError
;
319 bool hasBrokenDebugInfo() const { return BrokenDebugInfo
; }
321 bool verify(const Function
&F
) {
322 assert(F
.getParent() == &M
&&
323 "An instance of this class only works with a specific module!");
325 // First ensure the function is well-enough formed to compute dominance
326 // information, and directly compute a dominance tree. We don't rely on the
327 // pass manager to provide this as it isolates us from a potentially
328 // out-of-date dominator tree and makes it significantly more complex to run
329 // this code outside of a pass manager.
330 // FIXME: It's really gross that we have to cast away constness here.
332 DT
.recalculate(const_cast<Function
&>(F
));
334 for (const BasicBlock
&BB
: F
) {
335 if (!BB
.empty() && BB
.back().isTerminator())
339 *OS
<< "Basic Block in function '" << F
.getName()
340 << "' does not have terminator!\n";
341 BB
.printAsOperand(*OS
, true, MST
);
348 // FIXME: We strip const here because the inst visitor strips const.
349 visit(const_cast<Function
&>(F
));
350 verifySiblingFuncletUnwinds();
351 InstsInThisBlock
.clear();
353 LandingPadResultTy
= nullptr;
354 SawFrameEscape
= false;
355 SiblingFuncletInfo
.clear();
360 /// Verify the module that this instance of \c Verifier was initialized with.
364 // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
365 for (const Function
&F
: M
)
366 if (F
.getIntrinsicID() == Intrinsic::experimental_deoptimize
)
367 DeoptimizeDeclarations
.push_back(&F
);
369 // Now that we've visited every function, verify that we never asked to
370 // recover a frame index that wasn't escaped.
371 verifyFrameRecoverIndices();
372 for (const GlobalVariable
&GV
: M
.globals())
373 visitGlobalVariable(GV
);
375 for (const GlobalAlias
&GA
: M
.aliases())
376 visitGlobalAlias(GA
);
378 for (const NamedMDNode
&NMD
: M
.named_metadata())
379 visitNamedMDNode(NMD
);
381 for (const StringMapEntry
<Comdat
> &SMEC
: M
.getComdatSymbolTable())
382 visitComdat(SMEC
.getValue());
385 visitModuleIdents(M
);
386 visitModuleCommandLines(M
);
388 verifyCompileUnits();
390 verifyDeoptimizeCallingConvs();
391 DISubprogramAttachments
.clear();
396 // Verification methods...
397 void visitGlobalValue(const GlobalValue
&GV
);
398 void visitGlobalVariable(const GlobalVariable
&GV
);
399 void visitGlobalAlias(const GlobalAlias
&GA
);
400 void visitAliaseeSubExpr(const GlobalAlias
&A
, const Constant
&C
);
401 void visitAliaseeSubExpr(SmallPtrSetImpl
<const GlobalAlias
*> &Visited
,
402 const GlobalAlias
&A
, const Constant
&C
);
403 void visitNamedMDNode(const NamedMDNode
&NMD
);
404 void visitMDNode(const MDNode
&MD
);
405 void visitMetadataAsValue(const MetadataAsValue
&MD
, Function
*F
);
406 void visitValueAsMetadata(const ValueAsMetadata
&MD
, Function
*F
);
407 void visitComdat(const Comdat
&C
);
408 void visitModuleIdents(const Module
&M
);
409 void visitModuleCommandLines(const Module
&M
);
410 void visitModuleFlags(const Module
&M
);
411 void visitModuleFlag(const MDNode
*Op
,
412 DenseMap
<const MDString
*, const MDNode
*> &SeenIDs
,
413 SmallVectorImpl
<const MDNode
*> &Requirements
);
414 void visitModuleFlagCGProfileEntry(const MDOperand
&MDO
);
415 void visitFunction(const Function
&F
);
416 void visitBasicBlock(BasicBlock
&BB
);
417 void visitRangeMetadata(Instruction
&I
, MDNode
*Range
, Type
*Ty
);
418 void visitDereferenceableMetadata(Instruction
&I
, MDNode
*MD
);
420 template <class Ty
> bool isValidMetadataArray(const MDTuple
&N
);
421 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
422 #include "llvm/IR/Metadata.def"
423 void visitDIScope(const DIScope
&N
);
424 void visitDIVariable(const DIVariable
&N
);
425 void visitDILexicalBlockBase(const DILexicalBlockBase
&N
);
426 void visitDITemplateParameter(const DITemplateParameter
&N
);
428 void visitTemplateParams(const MDNode
&N
, const Metadata
&RawParams
);
430 // InstVisitor overrides...
431 using InstVisitor
<Verifier
>::visit
;
432 void visit(Instruction
&I
);
434 void visitTruncInst(TruncInst
&I
);
435 void visitZExtInst(ZExtInst
&I
);
436 void visitSExtInst(SExtInst
&I
);
437 void visitFPTruncInst(FPTruncInst
&I
);
438 void visitFPExtInst(FPExtInst
&I
);
439 void visitFPToUIInst(FPToUIInst
&I
);
440 void visitFPToSIInst(FPToSIInst
&I
);
441 void visitUIToFPInst(UIToFPInst
&I
);
442 void visitSIToFPInst(SIToFPInst
&I
);
443 void visitIntToPtrInst(IntToPtrInst
&I
);
444 void visitPtrToIntInst(PtrToIntInst
&I
);
445 void visitBitCastInst(BitCastInst
&I
);
446 void visitAddrSpaceCastInst(AddrSpaceCastInst
&I
);
447 void visitPHINode(PHINode
&PN
);
448 void visitCallBase(CallBase
&Call
);
449 void visitUnaryOperator(UnaryOperator
&U
);
450 void visitBinaryOperator(BinaryOperator
&B
);
451 void visitICmpInst(ICmpInst
&IC
);
452 void visitFCmpInst(FCmpInst
&FC
);
453 void visitExtractElementInst(ExtractElementInst
&EI
);
454 void visitInsertElementInst(InsertElementInst
&EI
);
455 void visitShuffleVectorInst(ShuffleVectorInst
&EI
);
456 void visitVAArgInst(VAArgInst
&VAA
) { visitInstruction(VAA
); }
457 void visitCallInst(CallInst
&CI
);
458 void visitInvokeInst(InvokeInst
&II
);
459 void visitGetElementPtrInst(GetElementPtrInst
&GEP
);
460 void visitLoadInst(LoadInst
&LI
);
461 void visitStoreInst(StoreInst
&SI
);
462 void verifyDominatesUse(Instruction
&I
, unsigned i
);
463 void visitInstruction(Instruction
&I
);
464 void visitTerminator(Instruction
&I
);
465 void visitBranchInst(BranchInst
&BI
);
466 void visitReturnInst(ReturnInst
&RI
);
467 void visitSwitchInst(SwitchInst
&SI
);
468 void visitIndirectBrInst(IndirectBrInst
&BI
);
469 void visitCallBrInst(CallBrInst
&CBI
);
470 void visitSelectInst(SelectInst
&SI
);
471 void visitUserOp1(Instruction
&I
);
472 void visitUserOp2(Instruction
&I
) { visitUserOp1(I
); }
473 void visitIntrinsicCall(Intrinsic::ID ID
, CallBase
&Call
);
474 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic
&FPI
);
475 void visitDbgIntrinsic(StringRef Kind
, DbgVariableIntrinsic
&DII
);
476 void visitDbgLabelIntrinsic(StringRef Kind
, DbgLabelInst
&DLI
);
477 void visitAtomicCmpXchgInst(AtomicCmpXchgInst
&CXI
);
478 void visitAtomicRMWInst(AtomicRMWInst
&RMWI
);
479 void visitFenceInst(FenceInst
&FI
);
480 void visitAllocaInst(AllocaInst
&AI
);
481 void visitExtractValueInst(ExtractValueInst
&EVI
);
482 void visitInsertValueInst(InsertValueInst
&IVI
);
483 void visitEHPadPredecessors(Instruction
&I
);
484 void visitLandingPadInst(LandingPadInst
&LPI
);
485 void visitResumeInst(ResumeInst
&RI
);
486 void visitCatchPadInst(CatchPadInst
&CPI
);
487 void visitCatchReturnInst(CatchReturnInst
&CatchReturn
);
488 void visitCleanupPadInst(CleanupPadInst
&CPI
);
489 void visitFuncletPadInst(FuncletPadInst
&FPI
);
490 void visitCatchSwitchInst(CatchSwitchInst
&CatchSwitch
);
491 void visitCleanupReturnInst(CleanupReturnInst
&CRI
);
493 void verifySwiftErrorCall(CallBase
&Call
, const Value
*SwiftErrorVal
);
494 void verifySwiftErrorValue(const Value
*SwiftErrorVal
);
495 void verifyMustTailCall(CallInst
&CI
);
496 bool performTypeCheck(Intrinsic::ID ID
, Function
*F
, Type
*Ty
, int VT
,
497 unsigned ArgNo
, std::string
&Suffix
);
498 bool verifyAttributeCount(AttributeList Attrs
, unsigned Params
);
499 void verifyAttributeTypes(AttributeSet Attrs
, bool IsFunction
,
501 void verifyParameterAttrs(AttributeSet Attrs
, Type
*Ty
, const Value
*V
);
502 void verifyFunctionAttrs(FunctionType
*FT
, AttributeList Attrs
,
503 const Value
*V
, bool IsIntrinsic
);
504 void verifyFunctionMetadata(ArrayRef
<std::pair
<unsigned, MDNode
*>> MDs
);
506 void visitConstantExprsRecursively(const Constant
*EntryC
);
507 void visitConstantExpr(const ConstantExpr
*CE
);
508 void verifyStatepoint(const CallBase
&Call
);
509 void verifyFrameRecoverIndices();
510 void verifySiblingFuncletUnwinds();
512 void verifyFragmentExpression(const DbgVariableIntrinsic
&I
);
513 template <typename ValueOrMetadata
>
514 void verifyFragmentExpression(const DIVariable
&V
,
515 DIExpression::FragmentInfo Fragment
,
516 ValueOrMetadata
*Desc
);
517 void verifyFnArgs(const DbgVariableIntrinsic
&I
);
519 /// Module-level debug info verification...
520 void verifyCompileUnits();
522 /// Module-level verification that all @llvm.experimental.deoptimize
523 /// declarations share the same calling convention.
524 void verifyDeoptimizeCallingConvs();
526 /// Verify all-or-nothing property of DIFile source attribute within a CU.
527 void verifySourceDebugInfo(const DICompileUnit
&U
, const DIFile
&F
);
530 } // end anonymous namespace
532 /// We know that cond should be true, if not print an error message.
533 #define Assert(C, ...) \
534 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
536 /// We know that a debug info condition should be true, if not print
537 /// an error message.
538 #define AssertDI(C, ...) \
539 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
541 void Verifier::visit(Instruction
&I
) {
542 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
)
543 Assert(I
.getOperand(i
) != nullptr, "Operand is null", &I
);
544 InstVisitor
<Verifier
>::visit(I
);
547 // Helper to recursively iterate over indirect users. By
548 // returning false, the callback can ask to stop recursing
550 static void forEachUser(const Value
*User
,
551 SmallPtrSet
<const Value
*, 32> &Visited
,
552 llvm::function_ref
<bool(const Value
*)> Callback
) {
553 if (!Visited
.insert(User
).second
)
555 for (const Value
*TheNextUser
: User
->materialized_users())
556 if (Callback(TheNextUser
))
557 forEachUser(TheNextUser
, Visited
, Callback
);
560 void Verifier::visitGlobalValue(const GlobalValue
&GV
) {
561 Assert(!GV
.isDeclaration() || GV
.hasValidDeclarationLinkage(),
562 "Global is external, but doesn't have external or weak linkage!", &GV
);
564 Assert(GV
.getAlignment() <= Value::MaximumAlignment
,
565 "huge alignment values are unsupported", &GV
);
566 Assert(!GV
.hasAppendingLinkage() || isa
<GlobalVariable
>(GV
),
567 "Only global variables can have appending linkage!", &GV
);
569 if (GV
.hasAppendingLinkage()) {
570 const GlobalVariable
*GVar
= dyn_cast
<GlobalVariable
>(&GV
);
571 Assert(GVar
&& GVar
->getValueType()->isArrayTy(),
572 "Only global arrays can have appending linkage!", GVar
);
575 if (GV
.isDeclarationForLinker())
576 Assert(!GV
.hasComdat(), "Declaration may not be in a Comdat!", &GV
);
578 if (GV
.hasDLLImportStorageClass()) {
579 Assert(!GV
.isDSOLocal(),
580 "GlobalValue with DLLImport Storage is dso_local!", &GV
);
582 Assert((GV
.isDeclaration() && GV
.hasExternalLinkage()) ||
583 GV
.hasAvailableExternallyLinkage(),
584 "Global is marked as dllimport, but not external", &GV
);
587 if (GV
.hasLocalLinkage())
588 Assert(GV
.isDSOLocal(),
589 "GlobalValue with private or internal linkage must be dso_local!",
592 if (!GV
.hasDefaultVisibility() && !GV
.hasExternalWeakLinkage())
593 Assert(GV
.isDSOLocal(),
594 "GlobalValue with non default visibility must be dso_local!", &GV
);
596 forEachUser(&GV
, GlobalValueVisited
, [&](const Value
*V
) -> bool {
597 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
598 if (!I
->getParent() || !I
->getParent()->getParent())
599 CheckFailed("Global is referenced by parentless instruction!", &GV
, &M
,
601 else if (I
->getParent()->getParent()->getParent() != &M
)
602 CheckFailed("Global is referenced in a different module!", &GV
, &M
, I
,
603 I
->getParent()->getParent(),
604 I
->getParent()->getParent()->getParent());
606 } else if (const Function
*F
= dyn_cast
<Function
>(V
)) {
607 if (F
->getParent() != &M
)
608 CheckFailed("Global is used by function in a different module", &GV
, &M
,
616 void Verifier::visitGlobalVariable(const GlobalVariable
&GV
) {
617 if (GV
.hasInitializer()) {
618 Assert(GV
.getInitializer()->getType() == GV
.getValueType(),
619 "Global variable initializer type does not match global "
622 // If the global has common linkage, it must have a zero initializer and
623 // cannot be constant.
624 if (GV
.hasCommonLinkage()) {
625 Assert(GV
.getInitializer()->isNullValue(),
626 "'common' global must have a zero initializer!", &GV
);
627 Assert(!GV
.isConstant(), "'common' global may not be marked constant!",
629 Assert(!GV
.hasComdat(), "'common' global may not be in a Comdat!", &GV
);
633 if (GV
.hasName() && (GV
.getName() == "llvm.global_ctors" ||
634 GV
.getName() == "llvm.global_dtors")) {
635 Assert(!GV
.hasInitializer() || GV
.hasAppendingLinkage(),
636 "invalid linkage for intrinsic global variable", &GV
);
637 // Don't worry about emitting an error for it not being an array,
638 // visitGlobalValue will complain on appending non-array.
639 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(GV
.getValueType())) {
640 StructType
*STy
= dyn_cast
<StructType
>(ATy
->getElementType());
641 PointerType
*FuncPtrTy
=
642 FunctionType::get(Type::getVoidTy(Context
), false)->
643 getPointerTo(DL
.getProgramAddressSpace());
644 // FIXME: Reject the 2-field form in LLVM 4.0.
646 (STy
->getNumElements() == 2 || STy
->getNumElements() == 3) &&
647 STy
->getTypeAtIndex(0u)->isIntegerTy(32) &&
648 STy
->getTypeAtIndex(1) == FuncPtrTy
,
649 "wrong type for intrinsic global variable", &GV
);
650 if (STy
->getNumElements() == 3) {
651 Type
*ETy
= STy
->getTypeAtIndex(2);
652 Assert(ETy
->isPointerTy() &&
653 cast
<PointerType
>(ETy
)->getElementType()->isIntegerTy(8),
654 "wrong type for intrinsic global variable", &GV
);
659 if (GV
.hasName() && (GV
.getName() == "llvm.used" ||
660 GV
.getName() == "llvm.compiler.used")) {
661 Assert(!GV
.hasInitializer() || GV
.hasAppendingLinkage(),
662 "invalid linkage for intrinsic global variable", &GV
);
663 Type
*GVType
= GV
.getValueType();
664 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(GVType
)) {
665 PointerType
*PTy
= dyn_cast
<PointerType
>(ATy
->getElementType());
666 Assert(PTy
, "wrong type for intrinsic global variable", &GV
);
667 if (GV
.hasInitializer()) {
668 const Constant
*Init
= GV
.getInitializer();
669 const ConstantArray
*InitArray
= dyn_cast
<ConstantArray
>(Init
);
670 Assert(InitArray
, "wrong initalizer for intrinsic global variable",
672 for (Value
*Op
: InitArray
->operands()) {
673 Value
*V
= Op
->stripPointerCastsNoFollowAliases();
674 Assert(isa
<GlobalVariable
>(V
) || isa
<Function
>(V
) ||
676 "invalid llvm.used member", V
);
677 Assert(V
->hasName(), "members of llvm.used must be named", V
);
683 // Visit any debug info attachments.
684 SmallVector
<MDNode
*, 1> MDs
;
685 GV
.getMetadata(LLVMContext::MD_dbg
, MDs
);
686 for (auto *MD
: MDs
) {
687 if (auto *GVE
= dyn_cast
<DIGlobalVariableExpression
>(MD
))
688 visitDIGlobalVariableExpression(*GVE
);
690 AssertDI(false, "!dbg attachment of global variable must be a "
691 "DIGlobalVariableExpression");
694 if (!GV
.hasInitializer()) {
695 visitGlobalValue(GV
);
699 // Walk any aggregate initializers looking for bitcasts between address spaces
700 visitConstantExprsRecursively(GV
.getInitializer());
702 visitGlobalValue(GV
);
705 void Verifier::visitAliaseeSubExpr(const GlobalAlias
&GA
, const Constant
&C
) {
706 SmallPtrSet
<const GlobalAlias
*, 4> Visited
;
708 visitAliaseeSubExpr(Visited
, GA
, C
);
711 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl
<const GlobalAlias
*> &Visited
,
712 const GlobalAlias
&GA
, const Constant
&C
) {
713 if (const auto *GV
= dyn_cast
<GlobalValue
>(&C
)) {
714 Assert(!GV
->isDeclarationForLinker(), "Alias must point to a definition",
717 if (const auto *GA2
= dyn_cast
<GlobalAlias
>(GV
)) {
718 Assert(Visited
.insert(GA2
).second
, "Aliases cannot form a cycle", &GA
);
720 Assert(!GA2
->isInterposable(), "Alias cannot point to an interposable alias",
723 // Only continue verifying subexpressions of GlobalAliases.
724 // Do not recurse into global initializers.
729 if (const auto *CE
= dyn_cast
<ConstantExpr
>(&C
))
730 visitConstantExprsRecursively(CE
);
732 for (const Use
&U
: C
.operands()) {
734 if (const auto *GA2
= dyn_cast
<GlobalAlias
>(V
))
735 visitAliaseeSubExpr(Visited
, GA
, *GA2
->getAliasee());
736 else if (const auto *C2
= dyn_cast
<Constant
>(V
))
737 visitAliaseeSubExpr(Visited
, GA
, *C2
);
741 void Verifier::visitGlobalAlias(const GlobalAlias
&GA
) {
742 Assert(GlobalAlias::isValidLinkage(GA
.getLinkage()),
743 "Alias should have private, internal, linkonce, weak, linkonce_odr, "
744 "weak_odr, or external linkage!",
746 const Constant
*Aliasee
= GA
.getAliasee();
747 Assert(Aliasee
, "Aliasee cannot be NULL!", &GA
);
748 Assert(GA
.getType() == Aliasee
->getType(),
749 "Alias and aliasee types should match!", &GA
);
751 Assert(isa
<GlobalValue
>(Aliasee
) || isa
<ConstantExpr
>(Aliasee
),
752 "Aliasee should be either GlobalValue or ConstantExpr", &GA
);
754 visitAliaseeSubExpr(GA
, *Aliasee
);
756 visitGlobalValue(GA
);
759 void Verifier::visitNamedMDNode(const NamedMDNode
&NMD
) {
760 // There used to be various other llvm.dbg.* nodes, but we don't support
761 // upgrading them and we want to reserve the namespace for future uses.
762 if (NMD
.getName().startswith("llvm.dbg."))
763 AssertDI(NMD
.getName() == "llvm.dbg.cu",
764 "unrecognized named metadata node in the llvm.dbg namespace",
766 for (const MDNode
*MD
: NMD
.operands()) {
767 if (NMD
.getName() == "llvm.dbg.cu")
768 AssertDI(MD
&& isa
<DICompileUnit
>(MD
), "invalid compile unit", &NMD
, MD
);
777 void Verifier::visitMDNode(const MDNode
&MD
) {
778 // Only visit each node once. Metadata can be mutually recursive, so this
779 // avoids infinite recursion here, as well as being an optimization.
780 if (!MDNodes
.insert(&MD
).second
)
783 switch (MD
.getMetadataID()) {
785 llvm_unreachable("Invalid MDNode subclass");
786 case Metadata::MDTupleKind
:
788 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
789 case Metadata::CLASS##Kind: \
790 visit##CLASS(cast<CLASS>(MD)); \
792 #include "llvm/IR/Metadata.def"
795 for (const Metadata
*Op
: MD
.operands()) {
798 Assert(!isa
<LocalAsMetadata
>(Op
), "Invalid operand for global metadata!",
800 if (auto *N
= dyn_cast
<MDNode
>(Op
)) {
804 if (auto *V
= dyn_cast
<ValueAsMetadata
>(Op
)) {
805 visitValueAsMetadata(*V
, nullptr);
810 // Check these last, so we diagnose problems in operands first.
811 Assert(!MD
.isTemporary(), "Expected no forward declarations!", &MD
);
812 Assert(MD
.isResolved(), "All nodes should be resolved!", &MD
);
815 void Verifier::visitValueAsMetadata(const ValueAsMetadata
&MD
, Function
*F
) {
816 Assert(MD
.getValue(), "Expected valid value", &MD
);
817 Assert(!MD
.getValue()->getType()->isMetadataTy(),
818 "Unexpected metadata round-trip through values", &MD
, MD
.getValue());
820 auto *L
= dyn_cast
<LocalAsMetadata
>(&MD
);
824 Assert(F
, "function-local metadata used outside a function", L
);
826 // If this was an instruction, bb, or argument, verify that it is in the
827 // function that we expect.
828 Function
*ActualF
= nullptr;
829 if (Instruction
*I
= dyn_cast
<Instruction
>(L
->getValue())) {
830 Assert(I
->getParent(), "function-local metadata not in basic block", L
, I
);
831 ActualF
= I
->getParent()->getParent();
832 } else if (BasicBlock
*BB
= dyn_cast
<BasicBlock
>(L
->getValue()))
833 ActualF
= BB
->getParent();
834 else if (Argument
*A
= dyn_cast
<Argument
>(L
->getValue()))
835 ActualF
= A
->getParent();
836 assert(ActualF
&& "Unimplemented function local metadata case!");
838 Assert(ActualF
== F
, "function-local metadata used in wrong function", L
);
841 void Verifier::visitMetadataAsValue(const MetadataAsValue
&MDV
, Function
*F
) {
842 Metadata
*MD
= MDV
.getMetadata();
843 if (auto *N
= dyn_cast
<MDNode
>(MD
)) {
848 // Only visit each node once. Metadata can be mutually recursive, so this
849 // avoids infinite recursion here, as well as being an optimization.
850 if (!MDNodes
.insert(MD
).second
)
853 if (auto *V
= dyn_cast
<ValueAsMetadata
>(MD
))
854 visitValueAsMetadata(*V
, F
);
857 static bool isType(const Metadata
*MD
) { return !MD
|| isa
<DIType
>(MD
); }
858 static bool isScope(const Metadata
*MD
) { return !MD
|| isa
<DIScope
>(MD
); }
859 static bool isDINode(const Metadata
*MD
) { return !MD
|| isa
<DINode
>(MD
); }
861 void Verifier::visitDILocation(const DILocation
&N
) {
862 AssertDI(N
.getRawScope() && isa
<DILocalScope
>(N
.getRawScope()),
863 "location requires a valid scope", &N
, N
.getRawScope());
864 if (auto *IA
= N
.getRawInlinedAt())
865 AssertDI(isa
<DILocation
>(IA
), "inlined-at should be a location", &N
, IA
);
866 if (auto *SP
= dyn_cast
<DISubprogram
>(N
.getRawScope()))
867 AssertDI(SP
->isDefinition(), "scope points into the type hierarchy", &N
);
870 void Verifier::visitGenericDINode(const GenericDINode
&N
) {
871 AssertDI(N
.getTag(), "invalid tag", &N
);
874 void Verifier::visitDIScope(const DIScope
&N
) {
875 if (auto *F
= N
.getRawFile())
876 AssertDI(isa
<DIFile
>(F
), "invalid file", &N
, F
);
879 void Verifier::visitDISubrange(const DISubrange
&N
) {
880 AssertDI(N
.getTag() == dwarf::DW_TAG_subrange_type
, "invalid tag", &N
);
881 auto Count
= N
.getCount();
882 AssertDI(Count
, "Count must either be a signed constant or a DIVariable",
884 AssertDI(!Count
.is
<ConstantInt
*>() ||
885 Count
.get
<ConstantInt
*>()->getSExtValue() >= -1,
886 "invalid subrange count", &N
);
889 void Verifier::visitDIEnumerator(const DIEnumerator
&N
) {
890 AssertDI(N
.getTag() == dwarf::DW_TAG_enumerator
, "invalid tag", &N
);
893 void Verifier::visitDIBasicType(const DIBasicType
&N
) {
894 AssertDI(N
.getTag() == dwarf::DW_TAG_base_type
||
895 N
.getTag() == dwarf::DW_TAG_unspecified_type
,
897 AssertDI(!(N
.isBigEndian() && N
.isLittleEndian()) ,
898 "has conflicting flags", &N
);
901 void Verifier::visitDIDerivedType(const DIDerivedType
&N
) {
902 // Common scope checks.
905 AssertDI(N
.getTag() == dwarf::DW_TAG_typedef
||
906 N
.getTag() == dwarf::DW_TAG_pointer_type
||
907 N
.getTag() == dwarf::DW_TAG_ptr_to_member_type
||
908 N
.getTag() == dwarf::DW_TAG_reference_type
||
909 N
.getTag() == dwarf::DW_TAG_rvalue_reference_type
||
910 N
.getTag() == dwarf::DW_TAG_const_type
||
911 N
.getTag() == dwarf::DW_TAG_volatile_type
||
912 N
.getTag() == dwarf::DW_TAG_restrict_type
||
913 N
.getTag() == dwarf::DW_TAG_atomic_type
||
914 N
.getTag() == dwarf::DW_TAG_member
||
915 N
.getTag() == dwarf::DW_TAG_inheritance
||
916 N
.getTag() == dwarf::DW_TAG_friend
,
918 if (N
.getTag() == dwarf::DW_TAG_ptr_to_member_type
) {
919 AssertDI(isType(N
.getRawExtraData()), "invalid pointer to member type", &N
,
920 N
.getRawExtraData());
923 AssertDI(isScope(N
.getRawScope()), "invalid scope", &N
, N
.getRawScope());
924 AssertDI(isType(N
.getRawBaseType()), "invalid base type", &N
,
927 if (N
.getDWARFAddressSpace()) {
928 AssertDI(N
.getTag() == dwarf::DW_TAG_pointer_type
||
929 N
.getTag() == dwarf::DW_TAG_reference_type
||
930 N
.getTag() == dwarf::DW_TAG_rvalue_reference_type
,
931 "DWARF address space only applies to pointer or reference types",
936 /// Detect mutually exclusive flags.
937 static bool hasConflictingReferenceFlags(unsigned Flags
) {
938 return ((Flags
& DINode::FlagLValueReference
) &&
939 (Flags
& DINode::FlagRValueReference
)) ||
940 ((Flags
& DINode::FlagTypePassByValue
) &&
941 (Flags
& DINode::FlagTypePassByReference
));
944 void Verifier::visitTemplateParams(const MDNode
&N
, const Metadata
&RawParams
) {
945 auto *Params
= dyn_cast
<MDTuple
>(&RawParams
);
946 AssertDI(Params
, "invalid template params", &N
, &RawParams
);
947 for (Metadata
*Op
: Params
->operands()) {
948 AssertDI(Op
&& isa
<DITemplateParameter
>(Op
), "invalid template parameter",
953 void Verifier::visitDICompositeType(const DICompositeType
&N
) {
954 // Common scope checks.
957 AssertDI(N
.getTag() == dwarf::DW_TAG_array_type
||
958 N
.getTag() == dwarf::DW_TAG_structure_type
||
959 N
.getTag() == dwarf::DW_TAG_union_type
||
960 N
.getTag() == dwarf::DW_TAG_enumeration_type
||
961 N
.getTag() == dwarf::DW_TAG_class_type
||
962 N
.getTag() == dwarf::DW_TAG_variant_part
,
965 AssertDI(isScope(N
.getRawScope()), "invalid scope", &N
, N
.getRawScope());
966 AssertDI(isType(N
.getRawBaseType()), "invalid base type", &N
,
969 AssertDI(!N
.getRawElements() || isa
<MDTuple
>(N
.getRawElements()),
970 "invalid composite elements", &N
, N
.getRawElements());
971 AssertDI(isType(N
.getRawVTableHolder()), "invalid vtable holder", &N
,
972 N
.getRawVTableHolder());
973 AssertDI(!hasConflictingReferenceFlags(N
.getFlags()),
974 "invalid reference flags", &N
);
977 const DINodeArray Elements
= N
.getElements();
978 AssertDI(Elements
.size() == 1 &&
979 Elements
[0]->getTag() == dwarf::DW_TAG_subrange_type
,
980 "invalid vector, expected one element of type subrange", &N
);
983 if (auto *Params
= N
.getRawTemplateParams())
984 visitTemplateParams(N
, *Params
);
986 if (N
.getTag() == dwarf::DW_TAG_class_type
||
987 N
.getTag() == dwarf::DW_TAG_union_type
) {
988 AssertDI(N
.getFile() && !N
.getFile()->getFilename().empty(),
989 "class/union requires a filename", &N
, N
.getFile());
992 if (auto *D
= N
.getRawDiscriminator()) {
993 AssertDI(isa
<DIDerivedType
>(D
) && N
.getTag() == dwarf::DW_TAG_variant_part
,
994 "discriminator can only appear on variant part");
998 void Verifier::visitDISubroutineType(const DISubroutineType
&N
) {
999 AssertDI(N
.getTag() == dwarf::DW_TAG_subroutine_type
, "invalid tag", &N
);
1000 if (auto *Types
= N
.getRawTypeArray()) {
1001 AssertDI(isa
<MDTuple
>(Types
), "invalid composite elements", &N
, Types
);
1002 for (Metadata
*Ty
: N
.getTypeArray()->operands()) {
1003 AssertDI(isType(Ty
), "invalid subroutine type ref", &N
, Types
, Ty
);
1006 AssertDI(!hasConflictingReferenceFlags(N
.getFlags()),
1007 "invalid reference flags", &N
);
1010 void Verifier::visitDIFile(const DIFile
&N
) {
1011 AssertDI(N
.getTag() == dwarf::DW_TAG_file_type
, "invalid tag", &N
);
1012 Optional
<DIFile::ChecksumInfo
<StringRef
>> Checksum
= N
.getChecksum();
1014 AssertDI(Checksum
->Kind
<= DIFile::ChecksumKind::CSK_Last
,
1015 "invalid checksum kind", &N
);
1017 switch (Checksum
->Kind
) {
1018 case DIFile::CSK_MD5
:
1021 case DIFile::CSK_SHA1
:
1025 AssertDI(Checksum
->Value
.size() == Size
, "invalid checksum length", &N
);
1026 AssertDI(Checksum
->Value
.find_if_not(llvm::isHexDigit
) == StringRef::npos
,
1027 "invalid checksum", &N
);
1031 void Verifier::visitDICompileUnit(const DICompileUnit
&N
) {
1032 AssertDI(N
.isDistinct(), "compile units must be distinct", &N
);
1033 AssertDI(N
.getTag() == dwarf::DW_TAG_compile_unit
, "invalid tag", &N
);
1035 // Don't bother verifying the compilation directory or producer string
1036 // as those could be empty.
1037 AssertDI(N
.getRawFile() && isa
<DIFile
>(N
.getRawFile()), "invalid file", &N
,
1039 AssertDI(!N
.getFile()->getFilename().empty(), "invalid filename", &N
,
1042 verifySourceDebugInfo(N
, *N
.getFile());
1044 AssertDI((N
.getEmissionKind() <= DICompileUnit::LastEmissionKind
),
1045 "invalid emission kind", &N
);
1047 if (auto *Array
= N
.getRawEnumTypes()) {
1048 AssertDI(isa
<MDTuple
>(Array
), "invalid enum list", &N
, Array
);
1049 for (Metadata
*Op
: N
.getEnumTypes()->operands()) {
1050 auto *Enum
= dyn_cast_or_null
<DICompositeType
>(Op
);
1051 AssertDI(Enum
&& Enum
->getTag() == dwarf::DW_TAG_enumeration_type
,
1052 "invalid enum type", &N
, N
.getEnumTypes(), Op
);
1055 if (auto *Array
= N
.getRawRetainedTypes()) {
1056 AssertDI(isa
<MDTuple
>(Array
), "invalid retained type list", &N
, Array
);
1057 for (Metadata
*Op
: N
.getRetainedTypes()->operands()) {
1058 AssertDI(Op
&& (isa
<DIType
>(Op
) ||
1059 (isa
<DISubprogram
>(Op
) &&
1060 !cast
<DISubprogram
>(Op
)->isDefinition())),
1061 "invalid retained type", &N
, Op
);
1064 if (auto *Array
= N
.getRawGlobalVariables()) {
1065 AssertDI(isa
<MDTuple
>(Array
), "invalid global variable list", &N
, Array
);
1066 for (Metadata
*Op
: N
.getGlobalVariables()->operands()) {
1067 AssertDI(Op
&& (isa
<DIGlobalVariableExpression
>(Op
)),
1068 "invalid global variable ref", &N
, Op
);
1071 if (auto *Array
= N
.getRawImportedEntities()) {
1072 AssertDI(isa
<MDTuple
>(Array
), "invalid imported entity list", &N
, Array
);
1073 for (Metadata
*Op
: N
.getImportedEntities()->operands()) {
1074 AssertDI(Op
&& isa
<DIImportedEntity
>(Op
), "invalid imported entity ref",
1078 if (auto *Array
= N
.getRawMacros()) {
1079 AssertDI(isa
<MDTuple
>(Array
), "invalid macro list", &N
, Array
);
1080 for (Metadata
*Op
: N
.getMacros()->operands()) {
1081 AssertDI(Op
&& isa
<DIMacroNode
>(Op
), "invalid macro ref", &N
, Op
);
1084 CUVisited
.insert(&N
);
1087 void Verifier::visitDISubprogram(const DISubprogram
&N
) {
1088 AssertDI(N
.getTag() == dwarf::DW_TAG_subprogram
, "invalid tag", &N
);
1089 AssertDI(isScope(N
.getRawScope()), "invalid scope", &N
, N
.getRawScope());
1090 if (auto *F
= N
.getRawFile())
1091 AssertDI(isa
<DIFile
>(F
), "invalid file", &N
, F
);
1093 AssertDI(N
.getLine() == 0, "line specified with no file", &N
, N
.getLine());
1094 if (auto *T
= N
.getRawType())
1095 AssertDI(isa
<DISubroutineType
>(T
), "invalid subroutine type", &N
, T
);
1096 AssertDI(isType(N
.getRawContainingType()), "invalid containing type", &N
,
1097 N
.getRawContainingType());
1098 if (auto *Params
= N
.getRawTemplateParams())
1099 visitTemplateParams(N
, *Params
);
1100 if (auto *S
= N
.getRawDeclaration())
1101 AssertDI(isa
<DISubprogram
>(S
) && !cast
<DISubprogram
>(S
)->isDefinition(),
1102 "invalid subprogram declaration", &N
, S
);
1103 if (auto *RawNode
= N
.getRawRetainedNodes()) {
1104 auto *Node
= dyn_cast
<MDTuple
>(RawNode
);
1105 AssertDI(Node
, "invalid retained nodes list", &N
, RawNode
);
1106 for (Metadata
*Op
: Node
->operands()) {
1107 AssertDI(Op
&& (isa
<DILocalVariable
>(Op
) || isa
<DILabel
>(Op
)),
1108 "invalid retained nodes, expected DILocalVariable or DILabel",
1112 AssertDI(!hasConflictingReferenceFlags(N
.getFlags()),
1113 "invalid reference flags", &N
);
1115 auto *Unit
= N
.getRawUnit();
1116 if (N
.isDefinition()) {
1117 // Subprogram definitions (not part of the type hierarchy).
1118 AssertDI(N
.isDistinct(), "subprogram definitions must be distinct", &N
);
1119 AssertDI(Unit
, "subprogram definitions must have a compile unit", &N
);
1120 AssertDI(isa
<DICompileUnit
>(Unit
), "invalid unit type", &N
, Unit
);
1122 verifySourceDebugInfo(*N
.getUnit(), *N
.getFile());
1124 // Subprogram declarations (part of the type hierarchy).
1125 AssertDI(!Unit
, "subprogram declarations must not have a compile unit", &N
);
1128 if (auto *RawThrownTypes
= N
.getRawThrownTypes()) {
1129 auto *ThrownTypes
= dyn_cast
<MDTuple
>(RawThrownTypes
);
1130 AssertDI(ThrownTypes
, "invalid thrown types list", &N
, RawThrownTypes
);
1131 for (Metadata
*Op
: ThrownTypes
->operands())
1132 AssertDI(Op
&& isa
<DIType
>(Op
), "invalid thrown type", &N
, ThrownTypes
,
1136 if (N
.areAllCallsDescribed())
1137 AssertDI(N
.isDefinition(),
1138 "DIFlagAllCallsDescribed must be attached to a definition");
1141 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase
&N
) {
1142 AssertDI(N
.getTag() == dwarf::DW_TAG_lexical_block
, "invalid tag", &N
);
1143 AssertDI(N
.getRawScope() && isa
<DILocalScope
>(N
.getRawScope()),
1144 "invalid local scope", &N
, N
.getRawScope());
1145 if (auto *SP
= dyn_cast
<DISubprogram
>(N
.getRawScope()))
1146 AssertDI(SP
->isDefinition(), "scope points into the type hierarchy", &N
);
1149 void Verifier::visitDILexicalBlock(const DILexicalBlock
&N
) {
1150 visitDILexicalBlockBase(N
);
1152 AssertDI(N
.getLine() || !N
.getColumn(),
1153 "cannot have column info without line info", &N
);
1156 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile
&N
) {
1157 visitDILexicalBlockBase(N
);
1160 void Verifier::visitDICommonBlock(const DICommonBlock
&N
) {
1161 AssertDI(N
.getTag() == dwarf::DW_TAG_common_block
, "invalid tag", &N
);
1162 if (auto *S
= N
.getRawScope())
1163 AssertDI(isa
<DIScope
>(S
), "invalid scope ref", &N
, S
);
1164 if (auto *S
= N
.getRawDecl())
1165 AssertDI(isa
<DIGlobalVariable
>(S
), "invalid declaration", &N
, S
);
1168 void Verifier::visitDINamespace(const DINamespace
&N
) {
1169 AssertDI(N
.getTag() == dwarf::DW_TAG_namespace
, "invalid tag", &N
);
1170 if (auto *S
= N
.getRawScope())
1171 AssertDI(isa
<DIScope
>(S
), "invalid scope ref", &N
, S
);
1174 void Verifier::visitDIMacro(const DIMacro
&N
) {
1175 AssertDI(N
.getMacinfoType() == dwarf::DW_MACINFO_define
||
1176 N
.getMacinfoType() == dwarf::DW_MACINFO_undef
,
1177 "invalid macinfo type", &N
);
1178 AssertDI(!N
.getName().empty(), "anonymous macro", &N
);
1179 if (!N
.getValue().empty()) {
1180 assert(N
.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1184 void Verifier::visitDIMacroFile(const DIMacroFile
&N
) {
1185 AssertDI(N
.getMacinfoType() == dwarf::DW_MACINFO_start_file
,
1186 "invalid macinfo type", &N
);
1187 if (auto *F
= N
.getRawFile())
1188 AssertDI(isa
<DIFile
>(F
), "invalid file", &N
, F
);
1190 if (auto *Array
= N
.getRawElements()) {
1191 AssertDI(isa
<MDTuple
>(Array
), "invalid macro list", &N
, Array
);
1192 for (Metadata
*Op
: N
.getElements()->operands()) {
1193 AssertDI(Op
&& isa
<DIMacroNode
>(Op
), "invalid macro ref", &N
, Op
);
1198 void Verifier::visitDIModule(const DIModule
&N
) {
1199 AssertDI(N
.getTag() == dwarf::DW_TAG_module
, "invalid tag", &N
);
1200 AssertDI(!N
.getName().empty(), "anonymous module", &N
);
1203 void Verifier::visitDITemplateParameter(const DITemplateParameter
&N
) {
1204 AssertDI(isType(N
.getRawType()), "invalid type ref", &N
, N
.getRawType());
1207 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter
&N
) {
1208 visitDITemplateParameter(N
);
1210 AssertDI(N
.getTag() == dwarf::DW_TAG_template_type_parameter
, "invalid tag",
1214 void Verifier::visitDITemplateValueParameter(
1215 const DITemplateValueParameter
&N
) {
1216 visitDITemplateParameter(N
);
1218 AssertDI(N
.getTag() == dwarf::DW_TAG_template_value_parameter
||
1219 N
.getTag() == dwarf::DW_TAG_GNU_template_template_param
||
1220 N
.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack
,
1224 void Verifier::visitDIVariable(const DIVariable
&N
) {
1225 if (auto *S
= N
.getRawScope())
1226 AssertDI(isa
<DIScope
>(S
), "invalid scope", &N
, S
);
1227 if (auto *F
= N
.getRawFile())
1228 AssertDI(isa
<DIFile
>(F
), "invalid file", &N
, F
);
1231 void Verifier::visitDIGlobalVariable(const DIGlobalVariable
&N
) {
1232 // Checks common to all variables.
1235 AssertDI(N
.getTag() == dwarf::DW_TAG_variable
, "invalid tag", &N
);
1236 AssertDI(isType(N
.getRawType()), "invalid type ref", &N
, N
.getRawType());
1237 AssertDI(N
.getType(), "missing global variable type", &N
);
1238 if (auto *Member
= N
.getRawStaticDataMemberDeclaration()) {
1239 AssertDI(isa
<DIDerivedType
>(Member
),
1240 "invalid static data member declaration", &N
, Member
);
1244 void Verifier::visitDILocalVariable(const DILocalVariable
&N
) {
1245 // Checks common to all variables.
1248 AssertDI(isType(N
.getRawType()), "invalid type ref", &N
, N
.getRawType());
1249 AssertDI(N
.getTag() == dwarf::DW_TAG_variable
, "invalid tag", &N
);
1250 AssertDI(N
.getRawScope() && isa
<DILocalScope
>(N
.getRawScope()),
1251 "local variable requires a valid scope", &N
, N
.getRawScope());
1252 if (auto Ty
= N
.getType())
1253 AssertDI(!isa
<DISubroutineType
>(Ty
), "invalid type", &N
, N
.getType());
1256 void Verifier::visitDILabel(const DILabel
&N
) {
1257 if (auto *S
= N
.getRawScope())
1258 AssertDI(isa
<DIScope
>(S
), "invalid scope", &N
, S
);
1259 if (auto *F
= N
.getRawFile())
1260 AssertDI(isa
<DIFile
>(F
), "invalid file", &N
, F
);
1262 AssertDI(N
.getTag() == dwarf::DW_TAG_label
, "invalid tag", &N
);
1263 AssertDI(N
.getRawScope() && isa
<DILocalScope
>(N
.getRawScope()),
1264 "label requires a valid scope", &N
, N
.getRawScope());
1267 void Verifier::visitDIExpression(const DIExpression
&N
) {
1268 AssertDI(N
.isValid(), "invalid expression", &N
);
1271 void Verifier::visitDIGlobalVariableExpression(
1272 const DIGlobalVariableExpression
&GVE
) {
1273 AssertDI(GVE
.getVariable(), "missing variable");
1274 if (auto *Var
= GVE
.getVariable())
1275 visitDIGlobalVariable(*Var
);
1276 if (auto *Expr
= GVE
.getExpression()) {
1277 visitDIExpression(*Expr
);
1278 if (auto Fragment
= Expr
->getFragmentInfo())
1279 verifyFragmentExpression(*GVE
.getVariable(), *Fragment
, &GVE
);
1283 void Verifier::visitDIObjCProperty(const DIObjCProperty
&N
) {
1284 AssertDI(N
.getTag() == dwarf::DW_TAG_APPLE_property
, "invalid tag", &N
);
1285 if (auto *T
= N
.getRawType())
1286 AssertDI(isType(T
), "invalid type ref", &N
, T
);
1287 if (auto *F
= N
.getRawFile())
1288 AssertDI(isa
<DIFile
>(F
), "invalid file", &N
, F
);
1291 void Verifier::visitDIImportedEntity(const DIImportedEntity
&N
) {
1292 AssertDI(N
.getTag() == dwarf::DW_TAG_imported_module
||
1293 N
.getTag() == dwarf::DW_TAG_imported_declaration
,
1295 if (auto *S
= N
.getRawScope())
1296 AssertDI(isa
<DIScope
>(S
), "invalid scope for imported entity", &N
, S
);
1297 AssertDI(isDINode(N
.getRawEntity()), "invalid imported entity", &N
,
1301 void Verifier::visitComdat(const Comdat
&C
) {
1302 // The Module is invalid if the GlobalValue has private linkage. Entities
1303 // with private linkage don't have entries in the symbol table.
1304 if (const GlobalValue
*GV
= M
.getNamedValue(C
.getName()))
1305 Assert(!GV
->hasPrivateLinkage(), "comdat global value has private linkage",
1309 void Verifier::visitModuleIdents(const Module
&M
) {
1310 const NamedMDNode
*Idents
= M
.getNamedMetadata("llvm.ident");
1314 // llvm.ident takes a list of metadata entry. Each entry has only one string.
1315 // Scan each llvm.ident entry and make sure that this requirement is met.
1316 for (const MDNode
*N
: Idents
->operands()) {
1317 Assert(N
->getNumOperands() == 1,
1318 "incorrect number of operands in llvm.ident metadata", N
);
1319 Assert(dyn_cast_or_null
<MDString
>(N
->getOperand(0)),
1320 ("invalid value for llvm.ident metadata entry operand"
1321 "(the operand should be a string)"),
1326 void Verifier::visitModuleCommandLines(const Module
&M
) {
1327 const NamedMDNode
*CommandLines
= M
.getNamedMetadata("llvm.commandline");
1331 // llvm.commandline takes a list of metadata entry. Each entry has only one
1332 // string. Scan each llvm.commandline entry and make sure that this
1333 // requirement is met.
1334 for (const MDNode
*N
: CommandLines
->operands()) {
1335 Assert(N
->getNumOperands() == 1,
1336 "incorrect number of operands in llvm.commandline metadata", N
);
1337 Assert(dyn_cast_or_null
<MDString
>(N
->getOperand(0)),
1338 ("invalid value for llvm.commandline metadata entry operand"
1339 "(the operand should be a string)"),
1344 void Verifier::visitModuleFlags(const Module
&M
) {
1345 const NamedMDNode
*Flags
= M
.getModuleFlagsMetadata();
1348 // Scan each flag, and track the flags and requirements.
1349 DenseMap
<const MDString
*, const MDNode
*> SeenIDs
;
1350 SmallVector
<const MDNode
*, 16> Requirements
;
1351 for (const MDNode
*MDN
: Flags
->operands())
1352 visitModuleFlag(MDN
, SeenIDs
, Requirements
);
1354 // Validate that the requirements in the module are valid.
1355 for (const MDNode
*Requirement
: Requirements
) {
1356 const MDString
*Flag
= cast
<MDString
>(Requirement
->getOperand(0));
1357 const Metadata
*ReqValue
= Requirement
->getOperand(1);
1359 const MDNode
*Op
= SeenIDs
.lookup(Flag
);
1361 CheckFailed("invalid requirement on flag, flag is not present in module",
1366 if (Op
->getOperand(2) != ReqValue
) {
1367 CheckFailed(("invalid requirement on flag, "
1368 "flag does not have the required value"),
1376 Verifier::visitModuleFlag(const MDNode
*Op
,
1377 DenseMap
<const MDString
*, const MDNode
*> &SeenIDs
,
1378 SmallVectorImpl
<const MDNode
*> &Requirements
) {
1379 // Each module flag should have three arguments, the merge behavior (a
1380 // constant int), the flag ID (an MDString), and the value.
1381 Assert(Op
->getNumOperands() == 3,
1382 "incorrect number of operands in module flag", Op
);
1383 Module::ModFlagBehavior MFB
;
1384 if (!Module::isValidModFlagBehavior(Op
->getOperand(0), MFB
)) {
1386 mdconst::dyn_extract_or_null
<ConstantInt
>(Op
->getOperand(0)),
1387 "invalid behavior operand in module flag (expected constant integer)",
1390 "invalid behavior operand in module flag (unexpected constant)",
1393 MDString
*ID
= dyn_cast_or_null
<MDString
>(Op
->getOperand(1));
1394 Assert(ID
, "invalid ID operand in module flag (expected metadata string)",
1397 // Sanity check the values for behaviors with additional requirements.
1400 case Module::Warning
:
1401 case Module::Override
:
1402 // These behavior types accept any value.
1406 Assert(mdconst::dyn_extract_or_null
<ConstantInt
>(Op
->getOperand(2)),
1407 "invalid value for 'max' module flag (expected constant integer)",
1412 case Module::Require
: {
1413 // The value should itself be an MDNode with two operands, a flag ID (an
1414 // MDString), and a value.
1415 MDNode
*Value
= dyn_cast
<MDNode
>(Op
->getOperand(2));
1416 Assert(Value
&& Value
->getNumOperands() == 2,
1417 "invalid value for 'require' module flag (expected metadata pair)",
1419 Assert(isa
<MDString
>(Value
->getOperand(0)),
1420 ("invalid value for 'require' module flag "
1421 "(first value operand should be a string)"),
1422 Value
->getOperand(0));
1424 // Append it to the list of requirements, to check once all module flags are
1426 Requirements
.push_back(Value
);
1430 case Module::Append
:
1431 case Module::AppendUnique
: {
1432 // These behavior types require the operand be an MDNode.
1433 Assert(isa
<MDNode
>(Op
->getOperand(2)),
1434 "invalid value for 'append'-type module flag "
1435 "(expected a metadata node)",
1441 // Unless this is a "requires" flag, check the ID is unique.
1442 if (MFB
!= Module::Require
) {
1443 bool Inserted
= SeenIDs
.insert(std::make_pair(ID
, Op
)).second
;
1445 "module flag identifiers must be unique (or of 'require' type)", ID
);
1448 if (ID
->getString() == "wchar_size") {
1450 = mdconst::dyn_extract_or_null
<ConstantInt
>(Op
->getOperand(2));
1451 Assert(Value
, "wchar_size metadata requires constant integer argument");
1454 if (ID
->getString() == "Linker Options") {
1455 // If the llvm.linker.options named metadata exists, we assume that the
1456 // bitcode reader has upgraded the module flag. Otherwise the flag might
1457 // have been created by a client directly.
1458 Assert(M
.getNamedMetadata("llvm.linker.options"),
1459 "'Linker Options' named metadata no longer supported");
1462 if (ID
->getString() == "CG Profile") {
1463 for (const MDOperand
&MDO
: cast
<MDNode
>(Op
->getOperand(2))->operands())
1464 visitModuleFlagCGProfileEntry(MDO
);
1468 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand
&MDO
) {
1469 auto CheckFunction
= [&](const MDOperand
&FuncMDO
) {
1472 auto F
= dyn_cast
<ValueAsMetadata
>(FuncMDO
);
1473 Assert(F
&& isa
<Function
>(F
->getValue()), "expected a Function or null",
1476 auto Node
= dyn_cast_or_null
<MDNode
>(MDO
);
1477 Assert(Node
&& Node
->getNumOperands() == 3, "expected a MDNode triple", MDO
);
1478 CheckFunction(Node
->getOperand(0));
1479 CheckFunction(Node
->getOperand(1));
1480 auto Count
= dyn_cast_or_null
<ConstantAsMetadata
>(Node
->getOperand(2));
1481 Assert(Count
&& Count
->getType()->isIntegerTy(),
1482 "expected an integer constant", Node
->getOperand(2));
1485 /// Return true if this attribute kind only applies to functions.
1486 static bool isFuncOnlyAttr(Attribute::AttrKind Kind
) {
1488 case Attribute::NoReturn
:
1489 case Attribute::NoCfCheck
:
1490 case Attribute::NoUnwind
:
1491 case Attribute::NoInline
:
1492 case Attribute::AlwaysInline
:
1493 case Attribute::OptimizeForSize
:
1494 case Attribute::StackProtect
:
1495 case Attribute::StackProtectReq
:
1496 case Attribute::StackProtectStrong
:
1497 case Attribute::SafeStack
:
1498 case Attribute::ShadowCallStack
:
1499 case Attribute::NoRedZone
:
1500 case Attribute::NoImplicitFloat
:
1501 case Attribute::Naked
:
1502 case Attribute::InlineHint
:
1503 case Attribute::StackAlignment
:
1504 case Attribute::UWTable
:
1505 case Attribute::NonLazyBind
:
1506 case Attribute::ReturnsTwice
:
1507 case Attribute::SanitizeAddress
:
1508 case Attribute::SanitizeHWAddress
:
1509 case Attribute::SanitizeThread
:
1510 case Attribute::SanitizeMemory
:
1511 case Attribute::MinSize
:
1512 case Attribute::NoDuplicate
:
1513 case Attribute::Builtin
:
1514 case Attribute::NoBuiltin
:
1515 case Attribute::Cold
:
1516 case Attribute::OptForFuzzing
:
1517 case Attribute::OptimizeNone
:
1518 case Attribute::JumpTable
:
1519 case Attribute::Convergent
:
1520 case Attribute::ArgMemOnly
:
1521 case Attribute::NoRecurse
:
1522 case Attribute::InaccessibleMemOnly
:
1523 case Attribute::InaccessibleMemOrArgMemOnly
:
1524 case Attribute::AllocSize
:
1525 case Attribute::SpeculativeLoadHardening
:
1526 case Attribute::Speculatable
:
1527 case Attribute::StrictFP
:
1535 /// Return true if this is a function attribute that can also appear on
1537 static bool isFuncOrArgAttr(Attribute::AttrKind Kind
) {
1538 return Kind
== Attribute::ReadOnly
|| Kind
== Attribute::WriteOnly
||
1539 Kind
== Attribute::ReadNone
;
1542 void Verifier::verifyAttributeTypes(AttributeSet Attrs
, bool IsFunction
,
1544 for (Attribute A
: Attrs
) {
1545 if (A
.isStringAttribute())
1548 if (isFuncOnlyAttr(A
.getKindAsEnum())) {
1550 CheckFailed("Attribute '" + A
.getAsString() +
1551 "' only applies to functions!",
1555 } else if (IsFunction
&& !isFuncOrArgAttr(A
.getKindAsEnum())) {
1556 CheckFailed("Attribute '" + A
.getAsString() +
1557 "' does not apply to functions!",
1564 // VerifyParameterAttrs - Check the given attributes for an argument or return
1565 // value of the specified type. The value V is printed in error messages.
1566 void Verifier::verifyParameterAttrs(AttributeSet Attrs
, Type
*Ty
,
1568 if (!Attrs
.hasAttributes())
1571 verifyAttributeTypes(Attrs
, /*IsFunction=*/false, V
);
1573 if (Attrs
.hasAttribute(Attribute::ImmArg
)) {
1574 Assert(Attrs
.getNumAttributes() == 1,
1575 "Attribute 'immarg' is incompatible with other attributes", V
);
1578 // Check for mutually incompatible attributes. Only inreg is compatible with
1580 unsigned AttrCount
= 0;
1581 AttrCount
+= Attrs
.hasAttribute(Attribute::ByVal
);
1582 AttrCount
+= Attrs
.hasAttribute(Attribute::InAlloca
);
1583 AttrCount
+= Attrs
.hasAttribute(Attribute::StructRet
) ||
1584 Attrs
.hasAttribute(Attribute::InReg
);
1585 AttrCount
+= Attrs
.hasAttribute(Attribute::Nest
);
1586 Assert(AttrCount
<= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
1587 "and 'sret' are incompatible!",
1590 Assert(!(Attrs
.hasAttribute(Attribute::InAlloca
) &&
1591 Attrs
.hasAttribute(Attribute::ReadOnly
)),
1593 "'inalloca and readonly' are incompatible!",
1596 Assert(!(Attrs
.hasAttribute(Attribute::StructRet
) &&
1597 Attrs
.hasAttribute(Attribute::Returned
)),
1599 "'sret and returned' are incompatible!",
1602 Assert(!(Attrs
.hasAttribute(Attribute::ZExt
) &&
1603 Attrs
.hasAttribute(Attribute::SExt
)),
1605 "'zeroext and signext' are incompatible!",
1608 Assert(!(Attrs
.hasAttribute(Attribute::ReadNone
) &&
1609 Attrs
.hasAttribute(Attribute::ReadOnly
)),
1611 "'readnone and readonly' are incompatible!",
1614 Assert(!(Attrs
.hasAttribute(Attribute::ReadNone
) &&
1615 Attrs
.hasAttribute(Attribute::WriteOnly
)),
1617 "'readnone and writeonly' are incompatible!",
1620 Assert(!(Attrs
.hasAttribute(Attribute::ReadOnly
) &&
1621 Attrs
.hasAttribute(Attribute::WriteOnly
)),
1623 "'readonly and writeonly' are incompatible!",
1626 Assert(!(Attrs
.hasAttribute(Attribute::NoInline
) &&
1627 Attrs
.hasAttribute(Attribute::AlwaysInline
)),
1629 "'noinline and alwaysinline' are incompatible!",
1632 AttrBuilder IncompatibleAttrs
= AttributeFuncs::typeIncompatible(Ty
);
1633 Assert(!AttrBuilder(Attrs
).overlaps(IncompatibleAttrs
),
1634 "Wrong types for attribute: " +
1635 AttributeSet::get(Context
, IncompatibleAttrs
).getAsString(),
1638 if (PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
)) {
1639 SmallPtrSet
<Type
*, 4> Visited
;
1640 if (!PTy
->getElementType()->isSized(&Visited
)) {
1641 Assert(!Attrs
.hasAttribute(Attribute::ByVal
) &&
1642 !Attrs
.hasAttribute(Attribute::InAlloca
),
1643 "Attributes 'byval' and 'inalloca' do not support unsized types!",
1646 if (!isa
<PointerType
>(PTy
->getElementType()))
1647 Assert(!Attrs
.hasAttribute(Attribute::SwiftError
),
1648 "Attribute 'swifterror' only applies to parameters "
1649 "with pointer to pointer type!",
1652 Assert(!Attrs
.hasAttribute(Attribute::ByVal
),
1653 "Attribute 'byval' only applies to parameters with pointer type!",
1655 Assert(!Attrs
.hasAttribute(Attribute::SwiftError
),
1656 "Attribute 'swifterror' only applies to parameters "
1657 "with pointer type!",
1662 // Check parameter attributes against a function type.
1663 // The value V is printed in error messages.
1664 void Verifier::verifyFunctionAttrs(FunctionType
*FT
, AttributeList Attrs
,
1665 const Value
*V
, bool IsIntrinsic
) {
1666 if (Attrs
.isEmpty())
1669 bool SawNest
= false;
1670 bool SawReturned
= false;
1671 bool SawSRet
= false;
1672 bool SawSwiftSelf
= false;
1673 bool SawSwiftError
= false;
1675 // Verify return value attributes.
1676 AttributeSet RetAttrs
= Attrs
.getRetAttributes();
1677 Assert((!RetAttrs
.hasAttribute(Attribute::ByVal
) &&
1678 !RetAttrs
.hasAttribute(Attribute::Nest
) &&
1679 !RetAttrs
.hasAttribute(Attribute::StructRet
) &&
1680 !RetAttrs
.hasAttribute(Attribute::NoCapture
) &&
1681 !RetAttrs
.hasAttribute(Attribute::Returned
) &&
1682 !RetAttrs
.hasAttribute(Attribute::InAlloca
) &&
1683 !RetAttrs
.hasAttribute(Attribute::SwiftSelf
) &&
1684 !RetAttrs
.hasAttribute(Attribute::SwiftError
)),
1685 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
1686 "'returned', 'swiftself', and 'swifterror' do not apply to return "
1689 Assert((!RetAttrs
.hasAttribute(Attribute::ReadOnly
) &&
1690 !RetAttrs
.hasAttribute(Attribute::WriteOnly
) &&
1691 !RetAttrs
.hasAttribute(Attribute::ReadNone
)),
1692 "Attribute '" + RetAttrs
.getAsString() +
1693 "' does not apply to function returns",
1695 verifyParameterAttrs(RetAttrs
, FT
->getReturnType(), V
);
1697 // Verify parameter attributes.
1698 for (unsigned i
= 0, e
= FT
->getNumParams(); i
!= e
; ++i
) {
1699 Type
*Ty
= FT
->getParamType(i
);
1700 AttributeSet ArgAttrs
= Attrs
.getParamAttributes(i
);
1703 Assert(!ArgAttrs
.hasAttribute(Attribute::ImmArg
),
1704 "immarg attribute only applies to intrinsics",V
);
1707 verifyParameterAttrs(ArgAttrs
, Ty
, V
);
1709 if (ArgAttrs
.hasAttribute(Attribute::Nest
)) {
1710 Assert(!SawNest
, "More than one parameter has attribute nest!", V
);
1714 if (ArgAttrs
.hasAttribute(Attribute::Returned
)) {
1715 Assert(!SawReturned
, "More than one parameter has attribute returned!",
1717 Assert(Ty
->canLosslesslyBitCastTo(FT
->getReturnType()),
1718 "Incompatible argument and return types for 'returned' attribute",
1723 if (ArgAttrs
.hasAttribute(Attribute::StructRet
)) {
1724 Assert(!SawSRet
, "Cannot have multiple 'sret' parameters!", V
);
1725 Assert(i
== 0 || i
== 1,
1726 "Attribute 'sret' is not on first or second parameter!", V
);
1730 if (ArgAttrs
.hasAttribute(Attribute::SwiftSelf
)) {
1731 Assert(!SawSwiftSelf
, "Cannot have multiple 'swiftself' parameters!", V
);
1732 SawSwiftSelf
= true;
1735 if (ArgAttrs
.hasAttribute(Attribute::SwiftError
)) {
1736 Assert(!SawSwiftError
, "Cannot have multiple 'swifterror' parameters!",
1738 SawSwiftError
= true;
1741 if (ArgAttrs
.hasAttribute(Attribute::InAlloca
)) {
1742 Assert(i
== FT
->getNumParams() - 1,
1743 "inalloca isn't on the last parameter!", V
);
1747 if (!Attrs
.hasAttributes(AttributeList::FunctionIndex
))
1750 verifyAttributeTypes(Attrs
.getFnAttributes(), /*IsFunction=*/true, V
);
1752 Assert(!(Attrs
.hasFnAttribute(Attribute::ReadNone
) &&
1753 Attrs
.hasFnAttribute(Attribute::ReadOnly
)),
1754 "Attributes 'readnone and readonly' are incompatible!", V
);
1756 Assert(!(Attrs
.hasFnAttribute(Attribute::ReadNone
) &&
1757 Attrs
.hasFnAttribute(Attribute::WriteOnly
)),
1758 "Attributes 'readnone and writeonly' are incompatible!", V
);
1760 Assert(!(Attrs
.hasFnAttribute(Attribute::ReadOnly
) &&
1761 Attrs
.hasFnAttribute(Attribute::WriteOnly
)),
1762 "Attributes 'readonly and writeonly' are incompatible!", V
);
1764 Assert(!(Attrs
.hasFnAttribute(Attribute::ReadNone
) &&
1765 Attrs
.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly
)),
1766 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
1770 Assert(!(Attrs
.hasFnAttribute(Attribute::ReadNone
) &&
1771 Attrs
.hasFnAttribute(Attribute::InaccessibleMemOnly
)),
1772 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V
);
1774 Assert(!(Attrs
.hasFnAttribute(Attribute::NoInline
) &&
1775 Attrs
.hasFnAttribute(Attribute::AlwaysInline
)),
1776 "Attributes 'noinline and alwaysinline' are incompatible!", V
);
1778 if (Attrs
.hasFnAttribute(Attribute::OptimizeNone
)) {
1779 Assert(Attrs
.hasFnAttribute(Attribute::NoInline
),
1780 "Attribute 'optnone' requires 'noinline'!", V
);
1782 Assert(!Attrs
.hasFnAttribute(Attribute::OptimizeForSize
),
1783 "Attributes 'optsize and optnone' are incompatible!", V
);
1785 Assert(!Attrs
.hasFnAttribute(Attribute::MinSize
),
1786 "Attributes 'minsize and optnone' are incompatible!", V
);
1789 if (Attrs
.hasFnAttribute(Attribute::JumpTable
)) {
1790 const GlobalValue
*GV
= cast
<GlobalValue
>(V
);
1791 Assert(GV
->hasGlobalUnnamedAddr(),
1792 "Attribute 'jumptable' requires 'unnamed_addr'", V
);
1795 if (Attrs
.hasFnAttribute(Attribute::AllocSize
)) {
1796 std::pair
<unsigned, Optional
<unsigned>> Args
=
1797 Attrs
.getAllocSizeArgs(AttributeList::FunctionIndex
);
1799 auto CheckParam
= [&](StringRef Name
, unsigned ParamNo
) {
1800 if (ParamNo
>= FT
->getNumParams()) {
1801 CheckFailed("'allocsize' " + Name
+ " argument is out of bounds", V
);
1805 if (!FT
->getParamType(ParamNo
)->isIntegerTy()) {
1806 CheckFailed("'allocsize' " + Name
+
1807 " argument must refer to an integer parameter",
1815 if (!CheckParam("element size", Args
.first
))
1818 if (Args
.second
&& !CheckParam("number of elements", *Args
.second
))
1823 void Verifier::verifyFunctionMetadata(
1824 ArrayRef
<std::pair
<unsigned, MDNode
*>> MDs
) {
1825 for (const auto &Pair
: MDs
) {
1826 if (Pair
.first
== LLVMContext::MD_prof
) {
1827 MDNode
*MD
= Pair
.second
;
1828 Assert(MD
->getNumOperands() >= 2,
1829 "!prof annotations should have no less than 2 operands", MD
);
1831 // Check first operand.
1832 Assert(MD
->getOperand(0) != nullptr, "first operand should not be null",
1834 Assert(isa
<MDString
>(MD
->getOperand(0)),
1835 "expected string with name of the !prof annotation", MD
);
1836 MDString
*MDS
= cast
<MDString
>(MD
->getOperand(0));
1837 StringRef ProfName
= MDS
->getString();
1838 Assert(ProfName
.equals("function_entry_count") ||
1839 ProfName
.equals("synthetic_function_entry_count"),
1840 "first operand should be 'function_entry_count'"
1841 " or 'synthetic_function_entry_count'",
1844 // Check second operand.
1845 Assert(MD
->getOperand(1) != nullptr, "second operand should not be null",
1847 Assert(isa
<ConstantAsMetadata
>(MD
->getOperand(1)),
1848 "expected integer argument to function_entry_count", MD
);
1853 void Verifier::visitConstantExprsRecursively(const Constant
*EntryC
) {
1854 if (!ConstantExprVisited
.insert(EntryC
).second
)
1857 SmallVector
<const Constant
*, 16> Stack
;
1858 Stack
.push_back(EntryC
);
1860 while (!Stack
.empty()) {
1861 const Constant
*C
= Stack
.pop_back_val();
1863 // Check this constant expression.
1864 if (const auto *CE
= dyn_cast
<ConstantExpr
>(C
))
1865 visitConstantExpr(CE
);
1867 if (const auto *GV
= dyn_cast
<GlobalValue
>(C
)) {
1868 // Global Values get visited separately, but we do need to make sure
1869 // that the global value is in the correct module
1870 Assert(GV
->getParent() == &M
, "Referencing global in another module!",
1871 EntryC
, &M
, GV
, GV
->getParent());
1875 // Visit all sub-expressions.
1876 for (const Use
&U
: C
->operands()) {
1877 const auto *OpC
= dyn_cast
<Constant
>(U
);
1880 if (!ConstantExprVisited
.insert(OpC
).second
)
1882 Stack
.push_back(OpC
);
1887 void Verifier::visitConstantExpr(const ConstantExpr
*CE
) {
1888 if (CE
->getOpcode() == Instruction::BitCast
)
1889 Assert(CastInst::castIsValid(Instruction::BitCast
, CE
->getOperand(0),
1891 "Invalid bitcast", CE
);
1893 if (CE
->getOpcode() == Instruction::IntToPtr
||
1894 CE
->getOpcode() == Instruction::PtrToInt
) {
1895 auto *PtrTy
= CE
->getOpcode() == Instruction::IntToPtr
1897 : CE
->getOperand(0)->getType();
1898 StringRef Msg
= CE
->getOpcode() == Instruction::IntToPtr
1899 ? "inttoptr not supported for non-integral pointers"
1900 : "ptrtoint not supported for non-integral pointers";
1902 !DL
.isNonIntegralPointerType(cast
<PointerType
>(PtrTy
->getScalarType())),
1907 bool Verifier::verifyAttributeCount(AttributeList Attrs
, unsigned Params
) {
1908 // There shouldn't be more attribute sets than there are parameters plus the
1909 // function and return value.
1910 return Attrs
.getNumAttrSets() <= Params
+ 2;
1913 /// Verify that statepoint intrinsic is well formed.
1914 void Verifier::verifyStatepoint(const CallBase
&Call
) {
1915 assert(Call
.getCalledFunction() &&
1916 Call
.getCalledFunction()->getIntrinsicID() ==
1917 Intrinsic::experimental_gc_statepoint
);
1919 Assert(!Call
.doesNotAccessMemory() && !Call
.onlyReadsMemory() &&
1920 !Call
.onlyAccessesArgMemory(),
1921 "gc.statepoint must read and write all memory to preserve "
1922 "reordering restrictions required by safepoint semantics",
1925 const int64_t NumPatchBytes
=
1926 cast
<ConstantInt
>(Call
.getArgOperand(1))->getSExtValue();
1927 assert(isInt
<32>(NumPatchBytes
) && "NumPatchBytesV is an i32!");
1928 Assert(NumPatchBytes
>= 0,
1929 "gc.statepoint number of patchable bytes must be "
1933 const Value
*Target
= Call
.getArgOperand(2);
1934 auto *PT
= dyn_cast
<PointerType
>(Target
->getType());
1935 Assert(PT
&& PT
->getElementType()->isFunctionTy(),
1936 "gc.statepoint callee must be of function pointer type", Call
, Target
);
1937 FunctionType
*TargetFuncType
= cast
<FunctionType
>(PT
->getElementType());
1939 const int NumCallArgs
= cast
<ConstantInt
>(Call
.getArgOperand(3))->getZExtValue();
1940 Assert(NumCallArgs
>= 0,
1941 "gc.statepoint number of arguments to underlying call "
1944 const int NumParams
= (int)TargetFuncType
->getNumParams();
1945 if (TargetFuncType
->isVarArg()) {
1946 Assert(NumCallArgs
>= NumParams
,
1947 "gc.statepoint mismatch in number of vararg call args", Call
);
1949 // TODO: Remove this limitation
1950 Assert(TargetFuncType
->getReturnType()->isVoidTy(),
1951 "gc.statepoint doesn't support wrapping non-void "
1952 "vararg functions yet",
1955 Assert(NumCallArgs
== NumParams
,
1956 "gc.statepoint mismatch in number of call args", Call
);
1958 const uint64_t Flags
1959 = cast
<ConstantInt
>(Call
.getArgOperand(4))->getZExtValue();
1960 Assert((Flags
& ~(uint64_t)StatepointFlags::MaskAll
) == 0,
1961 "unknown flag used in gc.statepoint flags argument", Call
);
1963 // Verify that the types of the call parameter arguments match
1964 // the type of the wrapped callee.
1965 AttributeList Attrs
= Call
.getAttributes();
1966 for (int i
= 0; i
< NumParams
; i
++) {
1967 Type
*ParamType
= TargetFuncType
->getParamType(i
);
1968 Type
*ArgType
= Call
.getArgOperand(5 + i
)->getType();
1969 Assert(ArgType
== ParamType
,
1970 "gc.statepoint call argument does not match wrapped "
1974 if (TargetFuncType
->isVarArg()) {
1975 AttributeSet ArgAttrs
= Attrs
.getParamAttributes(5 + i
);
1976 Assert(!ArgAttrs
.hasAttribute(Attribute::StructRet
),
1977 "Attribute 'sret' cannot be used for vararg call arguments!",
1982 const int EndCallArgsInx
= 4 + NumCallArgs
;
1984 const Value
*NumTransitionArgsV
= Call
.getArgOperand(EndCallArgsInx
+ 1);
1985 Assert(isa
<ConstantInt
>(NumTransitionArgsV
),
1986 "gc.statepoint number of transition arguments "
1987 "must be constant integer",
1989 const int NumTransitionArgs
=
1990 cast
<ConstantInt
>(NumTransitionArgsV
)->getZExtValue();
1991 Assert(NumTransitionArgs
>= 0,
1992 "gc.statepoint number of transition arguments must be positive", Call
);
1993 const int EndTransitionArgsInx
= EndCallArgsInx
+ 1 + NumTransitionArgs
;
1995 const Value
*NumDeoptArgsV
= Call
.getArgOperand(EndTransitionArgsInx
+ 1);
1996 Assert(isa
<ConstantInt
>(NumDeoptArgsV
),
1997 "gc.statepoint number of deoptimization arguments "
1998 "must be constant integer",
2000 const int NumDeoptArgs
= cast
<ConstantInt
>(NumDeoptArgsV
)->getZExtValue();
2001 Assert(NumDeoptArgs
>= 0,
2002 "gc.statepoint number of deoptimization arguments "
2006 const int ExpectedNumArgs
=
2007 7 + NumCallArgs
+ NumTransitionArgs
+ NumDeoptArgs
;
2008 Assert(ExpectedNumArgs
<= (int)Call
.arg_size(),
2009 "gc.statepoint too few arguments according to length fields", Call
);
2011 // Check that the only uses of this gc.statepoint are gc.result or
2012 // gc.relocate calls which are tied to this statepoint and thus part
2013 // of the same statepoint sequence
2014 for (const User
*U
: Call
.users()) {
2015 const CallInst
*UserCall
= dyn_cast
<const CallInst
>(U
);
2016 Assert(UserCall
, "illegal use of statepoint token", Call
, U
);
2019 Assert(isa
<GCRelocateInst
>(UserCall
) || isa
<GCResultInst
>(UserCall
),
2020 "gc.result or gc.relocate are the only value uses "
2021 "of a gc.statepoint",
2023 if (isa
<GCResultInst
>(UserCall
)) {
2024 Assert(UserCall
->getArgOperand(0) == &Call
,
2025 "gc.result connected to wrong gc.statepoint", Call
, UserCall
);
2026 } else if (isa
<GCRelocateInst
>(Call
)) {
2027 Assert(UserCall
->getArgOperand(0) == &Call
,
2028 "gc.relocate connected to wrong gc.statepoint", Call
, UserCall
);
2032 // Note: It is legal for a single derived pointer to be listed multiple
2033 // times. It's non-optimal, but it is legal. It can also happen after
2034 // insertion if we strip a bitcast away.
2035 // Note: It is really tempting to check that each base is relocated and
2036 // that a derived pointer is never reused as a base pointer. This turns
2037 // out to be problematic since optimizations run after safepoint insertion
2038 // can recognize equality properties that the insertion logic doesn't know
2039 // about. See example statepoint.ll in the verifier subdirectory
2042 void Verifier::verifyFrameRecoverIndices() {
2043 for (auto &Counts
: FrameEscapeInfo
) {
2044 Function
*F
= Counts
.first
;
2045 unsigned EscapedObjectCount
= Counts
.second
.first
;
2046 unsigned MaxRecoveredIndex
= Counts
.second
.second
;
2047 Assert(MaxRecoveredIndex
<= EscapedObjectCount
,
2048 "all indices passed to llvm.localrecover must be less than the "
2049 "number of arguments passed to llvm.localescape in the parent "
2055 static Instruction
*getSuccPad(Instruction
*Terminator
) {
2056 BasicBlock
*UnwindDest
;
2057 if (auto *II
= dyn_cast
<InvokeInst
>(Terminator
))
2058 UnwindDest
= II
->getUnwindDest();
2059 else if (auto *CSI
= dyn_cast
<CatchSwitchInst
>(Terminator
))
2060 UnwindDest
= CSI
->getUnwindDest();
2062 UnwindDest
= cast
<CleanupReturnInst
>(Terminator
)->getUnwindDest();
2063 return UnwindDest
->getFirstNonPHI();
2066 void Verifier::verifySiblingFuncletUnwinds() {
2067 SmallPtrSet
<Instruction
*, 8> Visited
;
2068 SmallPtrSet
<Instruction
*, 8> Active
;
2069 for (const auto &Pair
: SiblingFuncletInfo
) {
2070 Instruction
*PredPad
= Pair
.first
;
2071 if (Visited
.count(PredPad
))
2073 Active
.insert(PredPad
);
2074 Instruction
*Terminator
= Pair
.second
;
2076 Instruction
*SuccPad
= getSuccPad(Terminator
);
2077 if (Active
.count(SuccPad
)) {
2078 // Found a cycle; report error
2079 Instruction
*CyclePad
= SuccPad
;
2080 SmallVector
<Instruction
*, 8> CycleNodes
;
2082 CycleNodes
.push_back(CyclePad
);
2083 Instruction
*CycleTerminator
= SiblingFuncletInfo
[CyclePad
];
2084 if (CycleTerminator
!= CyclePad
)
2085 CycleNodes
.push_back(CycleTerminator
);
2086 CyclePad
= getSuccPad(CycleTerminator
);
2087 } while (CyclePad
!= SuccPad
);
2088 Assert(false, "EH pads can't handle each other's exceptions",
2089 ArrayRef
<Instruction
*>(CycleNodes
));
2091 // Don't re-walk a node we've already checked
2092 if (!Visited
.insert(SuccPad
).second
)
2094 // Walk to this successor if it has a map entry.
2096 auto TermI
= SiblingFuncletInfo
.find(PredPad
);
2097 if (TermI
== SiblingFuncletInfo
.end())
2099 Terminator
= TermI
->second
;
2100 Active
.insert(PredPad
);
2102 // Each node only has one successor, so we've walked all the active
2103 // nodes' successors.
2108 // visitFunction - Verify that a function is ok.
2110 void Verifier::visitFunction(const Function
&F
) {
2111 visitGlobalValue(F
);
2113 // Check function arguments.
2114 FunctionType
*FT
= F
.getFunctionType();
2115 unsigned NumArgs
= F
.arg_size();
2117 Assert(&Context
== &F
.getContext(),
2118 "Function context does not match Module context!", &F
);
2120 Assert(!F
.hasCommonLinkage(), "Functions may not have common linkage", &F
);
2121 Assert(FT
->getNumParams() == NumArgs
,
2122 "# formal arguments must match # of arguments for function type!", &F
,
2124 Assert(F
.getReturnType()->isFirstClassType() ||
2125 F
.getReturnType()->isVoidTy() || F
.getReturnType()->isStructTy(),
2126 "Functions cannot return aggregate values!", &F
);
2128 Assert(!F
.hasStructRetAttr() || F
.getReturnType()->isVoidTy(),
2129 "Invalid struct return type!", &F
);
2131 AttributeList Attrs
= F
.getAttributes();
2133 Assert(verifyAttributeCount(Attrs
, FT
->getNumParams()),
2134 "Attribute after last parameter!", &F
);
2136 bool isLLVMdotName
= F
.getName().size() >= 5 &&
2137 F
.getName().substr(0, 5) == "llvm.";
2139 // Check function attributes.
2140 verifyFunctionAttrs(FT
, Attrs
, &F
, isLLVMdotName
);
2142 // On function declarations/definitions, we do not support the builtin
2143 // attribute. We do not check this in VerifyFunctionAttrs since that is
2144 // checking for Attributes that can/can not ever be on functions.
2145 Assert(!Attrs
.hasFnAttribute(Attribute::Builtin
),
2146 "Attribute 'builtin' can only be applied to a callsite.", &F
);
2148 // Check that this function meets the restrictions on this calling convention.
2149 // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2150 // restrictions can be lifted.
2151 switch (F
.getCallingConv()) {
2153 case CallingConv::C
:
2155 case CallingConv::AMDGPU_KERNEL
:
2156 case CallingConv::SPIR_KERNEL
:
2157 Assert(F
.getReturnType()->isVoidTy(),
2158 "Calling convention requires void return type", &F
);
2160 case CallingConv::AMDGPU_VS
:
2161 case CallingConv::AMDGPU_HS
:
2162 case CallingConv::AMDGPU_GS
:
2163 case CallingConv::AMDGPU_PS
:
2164 case CallingConv::AMDGPU_CS
:
2165 Assert(!F
.hasStructRetAttr(),
2166 "Calling convention does not allow sret", &F
);
2168 case CallingConv::Fast
:
2169 case CallingConv::Cold
:
2170 case CallingConv::Intel_OCL_BI
:
2171 case CallingConv::PTX_Kernel
:
2172 case CallingConv::PTX_Device
:
2173 Assert(!F
.isVarArg(), "Calling convention does not support varargs or "
2174 "perfect forwarding!",
2179 // Check that the argument values match the function type for this function...
2181 for (const Argument
&Arg
: F
.args()) {
2182 Assert(Arg
.getType() == FT
->getParamType(i
),
2183 "Argument value does not match function argument type!", &Arg
,
2184 FT
->getParamType(i
));
2185 Assert(Arg
.getType()->isFirstClassType(),
2186 "Function arguments must have first-class types!", &Arg
);
2187 if (!isLLVMdotName
) {
2188 Assert(!Arg
.getType()->isMetadataTy(),
2189 "Function takes metadata but isn't an intrinsic", &Arg
, &F
);
2190 Assert(!Arg
.getType()->isTokenTy(),
2191 "Function takes token but isn't an intrinsic", &Arg
, &F
);
2194 // Check that swifterror argument is only used by loads and stores.
2195 if (Attrs
.hasParamAttribute(i
, Attribute::SwiftError
)) {
2196 verifySwiftErrorValue(&Arg
);
2202 Assert(!F
.getReturnType()->isTokenTy(),
2203 "Functions returns a token but isn't an intrinsic", &F
);
2205 // Get the function metadata attachments.
2206 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> MDs
;
2207 F
.getAllMetadata(MDs
);
2208 assert(F
.hasMetadata() != MDs
.empty() && "Bit out-of-sync");
2209 verifyFunctionMetadata(MDs
);
2211 // Check validity of the personality function
2212 if (F
.hasPersonalityFn()) {
2213 auto *Per
= dyn_cast
<Function
>(F
.getPersonalityFn()->stripPointerCasts());
2215 Assert(Per
->getParent() == F
.getParent(),
2216 "Referencing personality function in another module!",
2217 &F
, F
.getParent(), Per
, Per
->getParent());
2220 if (F
.isMaterializable()) {
2221 // Function has a body somewhere we can't see.
2222 Assert(MDs
.empty(), "unmaterialized function cannot have metadata", &F
,
2223 MDs
.empty() ? nullptr : MDs
.front().second
);
2224 } else if (F
.isDeclaration()) {
2225 for (const auto &I
: MDs
) {
2226 AssertDI(I
.first
!= LLVMContext::MD_dbg
,
2227 "function declaration may not have a !dbg attachment", &F
);
2228 Assert(I
.first
!= LLVMContext::MD_prof
,
2229 "function declaration may not have a !prof attachment", &F
);
2231 // Verify the metadata itself.
2232 visitMDNode(*I
.second
);
2234 Assert(!F
.hasPersonalityFn(),
2235 "Function declaration shouldn't have a personality routine", &F
);
2237 // Verify that this function (which has a body) is not named "llvm.*". It
2238 // is not legal to define intrinsics.
2239 Assert(!isLLVMdotName
, "llvm intrinsics cannot be defined!", &F
);
2241 // Check the entry node
2242 const BasicBlock
*Entry
= &F
.getEntryBlock();
2243 Assert(pred_empty(Entry
),
2244 "Entry block to function must not have predecessors!", Entry
);
2246 // The address of the entry block cannot be taken, unless it is dead.
2247 if (Entry
->hasAddressTaken()) {
2248 Assert(!BlockAddress::lookup(Entry
)->isConstantUsed(),
2249 "blockaddress may not be used with the entry block!", Entry
);
2252 unsigned NumDebugAttachments
= 0, NumProfAttachments
= 0;
2253 // Visit metadata attachments.
2254 for (const auto &I
: MDs
) {
2255 // Verify that the attachment is legal.
2259 case LLVMContext::MD_dbg
: {
2260 ++NumDebugAttachments
;
2261 AssertDI(NumDebugAttachments
== 1,
2262 "function must have a single !dbg attachment", &F
, I
.second
);
2263 AssertDI(isa
<DISubprogram
>(I
.second
),
2264 "function !dbg attachment must be a subprogram", &F
, I
.second
);
2265 auto *SP
= cast
<DISubprogram
>(I
.second
);
2266 const Function
*&AttachedTo
= DISubprogramAttachments
[SP
];
2267 AssertDI(!AttachedTo
|| AttachedTo
== &F
,
2268 "DISubprogram attached to more than one function", SP
, &F
);
2272 case LLVMContext::MD_prof
:
2273 ++NumProfAttachments
;
2274 Assert(NumProfAttachments
== 1,
2275 "function must have a single !prof attachment", &F
, I
.second
);
2279 // Verify the metadata itself.
2280 visitMDNode(*I
.second
);
2284 // If this function is actually an intrinsic, verify that it is only used in
2285 // direct call/invokes, never having its "address taken".
2286 // Only do this if the module is materialized, otherwise we don't have all the
2288 if (F
.getIntrinsicID() && F
.getParent()->isMaterialized()) {
2290 if (F
.hasAddressTaken(&U
))
2291 Assert(false, "Invalid user of intrinsic instruction!", U
);
2294 auto *N
= F
.getSubprogram();
2295 HasDebugInfo
= (N
!= nullptr);
2299 // Check that all !dbg attachments lead to back to N (or, at least, another
2300 // subprogram that describes the same function).
2302 // FIXME: Check this incrementally while visiting !dbg attachments.
2303 // FIXME: Only check when N is the canonical subprogram for F.
2304 SmallPtrSet
<const MDNode
*, 32> Seen
;
2306 for (auto &I
: BB
) {
2307 // Be careful about using DILocation here since we might be dealing with
2308 // broken code (this is the Verifier after all).
2310 dyn_cast_or_null
<DILocation
>(I
.getDebugLoc().getAsMDNode());
2313 if (!Seen
.insert(DL
).second
)
2316 Metadata
*Parent
= DL
->getRawScope();
2317 AssertDI(Parent
&& isa
<DILocalScope
>(Parent
),
2318 "DILocation's scope must be a DILocalScope", N
, &F
, &I
, DL
,
2320 DILocalScope
*Scope
= DL
->getInlinedAtScope();
2321 if (Scope
&& !Seen
.insert(Scope
).second
)
2324 DISubprogram
*SP
= Scope
? Scope
->getSubprogram() : nullptr;
2326 // Scope and SP could be the same MDNode and we don't want to skip
2327 // validation in that case
2328 if (SP
&& ((Scope
!= SP
) && !Seen
.insert(SP
).second
))
2331 // FIXME: Once N is canonical, check "SP == &N".
2332 AssertDI(SP
->describes(&F
),
2333 "!dbg attachment points at wrong subprogram for function", N
, &F
,
2338 // verifyBasicBlock - Verify that a basic block is well formed...
2340 void Verifier::visitBasicBlock(BasicBlock
&BB
) {
2341 InstsInThisBlock
.clear();
2343 // Ensure that basic blocks have terminators!
2344 Assert(BB
.getTerminator(), "Basic Block does not have terminator!", &BB
);
2346 // Check constraints that this basic block imposes on all of the PHI nodes in
2348 if (isa
<PHINode
>(BB
.front())) {
2349 SmallVector
<BasicBlock
*, 8> Preds(pred_begin(&BB
), pred_end(&BB
));
2350 SmallVector
<std::pair
<BasicBlock
*, Value
*>, 8> Values
;
2352 for (const PHINode
&PN
: BB
.phis()) {
2353 // Ensure that PHI nodes have at least one entry!
2354 Assert(PN
.getNumIncomingValues() != 0,
2355 "PHI nodes must have at least one entry. If the block is dead, "
2356 "the PHI should be removed!",
2358 Assert(PN
.getNumIncomingValues() == Preds
.size(),
2359 "PHINode should have one entry for each predecessor of its "
2360 "parent basic block!",
2363 // Get and sort all incoming values in the PHI node...
2365 Values
.reserve(PN
.getNumIncomingValues());
2366 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
)
2368 std::make_pair(PN
.getIncomingBlock(i
), PN
.getIncomingValue(i
)));
2371 for (unsigned i
= 0, e
= Values
.size(); i
!= e
; ++i
) {
2372 // Check to make sure that if there is more than one entry for a
2373 // particular basic block in this PHI node, that the incoming values are
2376 Assert(i
== 0 || Values
[i
].first
!= Values
[i
- 1].first
||
2377 Values
[i
].second
== Values
[i
- 1].second
,
2378 "PHI node has multiple entries for the same basic block with "
2379 "different incoming values!",
2380 &PN
, Values
[i
].first
, Values
[i
].second
, Values
[i
- 1].second
);
2382 // Check to make sure that the predecessors and PHI node entries are
2384 Assert(Values
[i
].first
== Preds
[i
],
2385 "PHI node entries do not match predecessors!", &PN
,
2386 Values
[i
].first
, Preds
[i
]);
2391 // Check that all instructions have their parent pointers set up correctly.
2394 Assert(I
.getParent() == &BB
, "Instruction has bogus parent pointer!");
2398 void Verifier::visitTerminator(Instruction
&I
) {
2399 // Ensure that terminators only exist at the end of the basic block.
2400 Assert(&I
== I
.getParent()->getTerminator(),
2401 "Terminator found in the middle of a basic block!", I
.getParent());
2402 visitInstruction(I
);
2405 void Verifier::visitBranchInst(BranchInst
&BI
) {
2406 if (BI
.isConditional()) {
2407 Assert(BI
.getCondition()->getType()->isIntegerTy(1),
2408 "Branch condition is not 'i1' type!", &BI
, BI
.getCondition());
2410 visitTerminator(BI
);
2413 void Verifier::visitReturnInst(ReturnInst
&RI
) {
2414 Function
*F
= RI
.getParent()->getParent();
2415 unsigned N
= RI
.getNumOperands();
2416 if (F
->getReturnType()->isVoidTy())
2418 "Found return instr that returns non-void in Function of void "
2420 &RI
, F
->getReturnType());
2422 Assert(N
== 1 && F
->getReturnType() == RI
.getOperand(0)->getType(),
2423 "Function return type does not match operand "
2424 "type of return inst!",
2425 &RI
, F
->getReturnType());
2427 // Check to make sure that the return value has necessary properties for
2429 visitTerminator(RI
);
2432 void Verifier::visitSwitchInst(SwitchInst
&SI
) {
2433 // Check to make sure that all of the constants in the switch instruction
2434 // have the same type as the switched-on value.
2435 Type
*SwitchTy
= SI
.getCondition()->getType();
2436 SmallPtrSet
<ConstantInt
*, 32> Constants
;
2437 for (auto &Case
: SI
.cases()) {
2438 Assert(Case
.getCaseValue()->getType() == SwitchTy
,
2439 "Switch constants must all be same type as switch value!", &SI
);
2440 Assert(Constants
.insert(Case
.getCaseValue()).second
,
2441 "Duplicate integer as switch case", &SI
, Case
.getCaseValue());
2444 visitTerminator(SI
);
2447 void Verifier::visitIndirectBrInst(IndirectBrInst
&BI
) {
2448 Assert(BI
.getAddress()->getType()->isPointerTy(),
2449 "Indirectbr operand must have pointer type!", &BI
);
2450 for (unsigned i
= 0, e
= BI
.getNumDestinations(); i
!= e
; ++i
)
2451 Assert(BI
.getDestination(i
)->getType()->isLabelTy(),
2452 "Indirectbr destinations must all have pointer type!", &BI
);
2454 visitTerminator(BI
);
2457 void Verifier::visitCallBrInst(CallBrInst
&CBI
) {
2458 Assert(CBI
.isInlineAsm(), "Callbr is currently only used for asm-goto!",
2460 Assert(CBI
.getType()->isVoidTy(), "Callbr return value is not supported!",
2462 for (unsigned i
= 0, e
= CBI
.getNumSuccessors(); i
!= e
; ++i
)
2463 Assert(CBI
.getSuccessor(i
)->getType()->isLabelTy(),
2464 "Callbr successors must all have pointer type!", &CBI
);
2465 for (unsigned i
= 0, e
= CBI
.getNumOperands(); i
!= e
; ++i
) {
2466 Assert(i
>= CBI
.getNumArgOperands() || !isa
<BasicBlock
>(CBI
.getOperand(i
)),
2467 "Using an unescaped label as a callbr argument!", &CBI
);
2468 if (isa
<BasicBlock
>(CBI
.getOperand(i
)))
2469 for (unsigned j
= i
+ 1; j
!= e
; ++j
)
2470 Assert(CBI
.getOperand(i
) != CBI
.getOperand(j
),
2471 "Duplicate callbr destination!", &CBI
);
2474 visitTerminator(CBI
);
2477 void Verifier::visitSelectInst(SelectInst
&SI
) {
2478 Assert(!SelectInst::areInvalidOperands(SI
.getOperand(0), SI
.getOperand(1),
2480 "Invalid operands for select instruction!", &SI
);
2482 Assert(SI
.getTrueValue()->getType() == SI
.getType(),
2483 "Select values must have same type as select instruction!", &SI
);
2484 visitInstruction(SI
);
2487 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2488 /// a pass, if any exist, it's an error.
2490 void Verifier::visitUserOp1(Instruction
&I
) {
2491 Assert(false, "User-defined operators should not live outside of a pass!", &I
);
2494 void Verifier::visitTruncInst(TruncInst
&I
) {
2495 // Get the source and destination types
2496 Type
*SrcTy
= I
.getOperand(0)->getType();
2497 Type
*DestTy
= I
.getType();
2499 // Get the size of the types in bits, we'll need this later
2500 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
2501 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
2503 Assert(SrcTy
->isIntOrIntVectorTy(), "Trunc only operates on integer", &I
);
2504 Assert(DestTy
->isIntOrIntVectorTy(), "Trunc only produces integer", &I
);
2505 Assert(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
2506 "trunc source and destination must both be a vector or neither", &I
);
2507 Assert(SrcBitSize
> DestBitSize
, "DestTy too big for Trunc", &I
);
2509 visitInstruction(I
);
2512 void Verifier::visitZExtInst(ZExtInst
&I
) {
2513 // Get the source and destination types
2514 Type
*SrcTy
= I
.getOperand(0)->getType();
2515 Type
*DestTy
= I
.getType();
2517 // Get the size of the types in bits, we'll need this later
2518 Assert(SrcTy
->isIntOrIntVectorTy(), "ZExt only operates on integer", &I
);
2519 Assert(DestTy
->isIntOrIntVectorTy(), "ZExt only produces an integer", &I
);
2520 Assert(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
2521 "zext source and destination must both be a vector or neither", &I
);
2522 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
2523 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
2525 Assert(SrcBitSize
< DestBitSize
, "Type too small for ZExt", &I
);
2527 visitInstruction(I
);
2530 void Verifier::visitSExtInst(SExtInst
&I
) {
2531 // Get the source and destination types
2532 Type
*SrcTy
= I
.getOperand(0)->getType();
2533 Type
*DestTy
= I
.getType();
2535 // Get the size of the types in bits, we'll need this later
2536 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
2537 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
2539 Assert(SrcTy
->isIntOrIntVectorTy(), "SExt only operates on integer", &I
);
2540 Assert(DestTy
->isIntOrIntVectorTy(), "SExt only produces an integer", &I
);
2541 Assert(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
2542 "sext source and destination must both be a vector or neither", &I
);
2543 Assert(SrcBitSize
< DestBitSize
, "Type too small for SExt", &I
);
2545 visitInstruction(I
);
2548 void Verifier::visitFPTruncInst(FPTruncInst
&I
) {
2549 // Get the source and destination types
2550 Type
*SrcTy
= I
.getOperand(0)->getType();
2551 Type
*DestTy
= I
.getType();
2552 // Get the size of the types in bits, we'll need this later
2553 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
2554 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
2556 Assert(SrcTy
->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I
);
2557 Assert(DestTy
->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I
);
2558 Assert(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
2559 "fptrunc source and destination must both be a vector or neither", &I
);
2560 Assert(SrcBitSize
> DestBitSize
, "DestTy too big for FPTrunc", &I
);
2562 visitInstruction(I
);
2565 void Verifier::visitFPExtInst(FPExtInst
&I
) {
2566 // Get the source and destination types
2567 Type
*SrcTy
= I
.getOperand(0)->getType();
2568 Type
*DestTy
= I
.getType();
2570 // Get the size of the types in bits, we'll need this later
2571 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
2572 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
2574 Assert(SrcTy
->isFPOrFPVectorTy(), "FPExt only operates on FP", &I
);
2575 Assert(DestTy
->isFPOrFPVectorTy(), "FPExt only produces an FP", &I
);
2576 Assert(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
2577 "fpext source and destination must both be a vector or neither", &I
);
2578 Assert(SrcBitSize
< DestBitSize
, "DestTy too small for FPExt", &I
);
2580 visitInstruction(I
);
2583 void Verifier::visitUIToFPInst(UIToFPInst
&I
) {
2584 // Get the source and destination types
2585 Type
*SrcTy
= I
.getOperand(0)->getType();
2586 Type
*DestTy
= I
.getType();
2588 bool SrcVec
= SrcTy
->isVectorTy();
2589 bool DstVec
= DestTy
->isVectorTy();
2591 Assert(SrcVec
== DstVec
,
2592 "UIToFP source and dest must both be vector or scalar", &I
);
2593 Assert(SrcTy
->isIntOrIntVectorTy(),
2594 "UIToFP source must be integer or integer vector", &I
);
2595 Assert(DestTy
->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2598 if (SrcVec
&& DstVec
)
2599 Assert(cast
<VectorType
>(SrcTy
)->getNumElements() ==
2600 cast
<VectorType
>(DestTy
)->getNumElements(),
2601 "UIToFP source and dest vector length mismatch", &I
);
2603 visitInstruction(I
);
2606 void Verifier::visitSIToFPInst(SIToFPInst
&I
) {
2607 // Get the source and destination types
2608 Type
*SrcTy
= I
.getOperand(0)->getType();
2609 Type
*DestTy
= I
.getType();
2611 bool SrcVec
= SrcTy
->isVectorTy();
2612 bool DstVec
= DestTy
->isVectorTy();
2614 Assert(SrcVec
== DstVec
,
2615 "SIToFP source and dest must both be vector or scalar", &I
);
2616 Assert(SrcTy
->isIntOrIntVectorTy(),
2617 "SIToFP source must be integer or integer vector", &I
);
2618 Assert(DestTy
->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2621 if (SrcVec
&& DstVec
)
2622 Assert(cast
<VectorType
>(SrcTy
)->getNumElements() ==
2623 cast
<VectorType
>(DestTy
)->getNumElements(),
2624 "SIToFP source and dest vector length mismatch", &I
);
2626 visitInstruction(I
);
2629 void Verifier::visitFPToUIInst(FPToUIInst
&I
) {
2630 // Get the source and destination types
2631 Type
*SrcTy
= I
.getOperand(0)->getType();
2632 Type
*DestTy
= I
.getType();
2634 bool SrcVec
= SrcTy
->isVectorTy();
2635 bool DstVec
= DestTy
->isVectorTy();
2637 Assert(SrcVec
== DstVec
,
2638 "FPToUI source and dest must both be vector or scalar", &I
);
2639 Assert(SrcTy
->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2641 Assert(DestTy
->isIntOrIntVectorTy(),
2642 "FPToUI result must be integer or integer vector", &I
);
2644 if (SrcVec
&& DstVec
)
2645 Assert(cast
<VectorType
>(SrcTy
)->getNumElements() ==
2646 cast
<VectorType
>(DestTy
)->getNumElements(),
2647 "FPToUI source and dest vector length mismatch", &I
);
2649 visitInstruction(I
);
2652 void Verifier::visitFPToSIInst(FPToSIInst
&I
) {
2653 // Get the source and destination types
2654 Type
*SrcTy
= I
.getOperand(0)->getType();
2655 Type
*DestTy
= I
.getType();
2657 bool SrcVec
= SrcTy
->isVectorTy();
2658 bool DstVec
= DestTy
->isVectorTy();
2660 Assert(SrcVec
== DstVec
,
2661 "FPToSI source and dest must both be vector or scalar", &I
);
2662 Assert(SrcTy
->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2664 Assert(DestTy
->isIntOrIntVectorTy(),
2665 "FPToSI result must be integer or integer vector", &I
);
2667 if (SrcVec
&& DstVec
)
2668 Assert(cast
<VectorType
>(SrcTy
)->getNumElements() ==
2669 cast
<VectorType
>(DestTy
)->getNumElements(),
2670 "FPToSI source and dest vector length mismatch", &I
);
2672 visitInstruction(I
);
2675 void Verifier::visitPtrToIntInst(PtrToIntInst
&I
) {
2676 // Get the source and destination types
2677 Type
*SrcTy
= I
.getOperand(0)->getType();
2678 Type
*DestTy
= I
.getType();
2680 Assert(SrcTy
->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I
);
2682 if (auto *PTy
= dyn_cast
<PointerType
>(SrcTy
->getScalarType()))
2683 Assert(!DL
.isNonIntegralPointerType(PTy
),
2684 "ptrtoint not supported for non-integral pointers");
2686 Assert(DestTy
->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I
);
2687 Assert(SrcTy
->isVectorTy() == DestTy
->isVectorTy(), "PtrToInt type mismatch",
2690 if (SrcTy
->isVectorTy()) {
2691 VectorType
*VSrc
= dyn_cast
<VectorType
>(SrcTy
);
2692 VectorType
*VDest
= dyn_cast
<VectorType
>(DestTy
);
2693 Assert(VSrc
->getNumElements() == VDest
->getNumElements(),
2694 "PtrToInt Vector width mismatch", &I
);
2697 visitInstruction(I
);
2700 void Verifier::visitIntToPtrInst(IntToPtrInst
&I
) {
2701 // Get the source and destination types
2702 Type
*SrcTy
= I
.getOperand(0)->getType();
2703 Type
*DestTy
= I
.getType();
2705 Assert(SrcTy
->isIntOrIntVectorTy(),
2706 "IntToPtr source must be an integral", &I
);
2707 Assert(DestTy
->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I
);
2709 if (auto *PTy
= dyn_cast
<PointerType
>(DestTy
->getScalarType()))
2710 Assert(!DL
.isNonIntegralPointerType(PTy
),
2711 "inttoptr not supported for non-integral pointers");
2713 Assert(SrcTy
->isVectorTy() == DestTy
->isVectorTy(), "IntToPtr type mismatch",
2715 if (SrcTy
->isVectorTy()) {
2716 VectorType
*VSrc
= dyn_cast
<VectorType
>(SrcTy
);
2717 VectorType
*VDest
= dyn_cast
<VectorType
>(DestTy
);
2718 Assert(VSrc
->getNumElements() == VDest
->getNumElements(),
2719 "IntToPtr Vector width mismatch", &I
);
2721 visitInstruction(I
);
2724 void Verifier::visitBitCastInst(BitCastInst
&I
) {
2726 CastInst::castIsValid(Instruction::BitCast
, I
.getOperand(0), I
.getType()),
2727 "Invalid bitcast", &I
);
2728 visitInstruction(I
);
2731 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst
&I
) {
2732 Type
*SrcTy
= I
.getOperand(0)->getType();
2733 Type
*DestTy
= I
.getType();
2735 Assert(SrcTy
->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2737 Assert(DestTy
->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2739 Assert(SrcTy
->getPointerAddressSpace() != DestTy
->getPointerAddressSpace(),
2740 "AddrSpaceCast must be between different address spaces", &I
);
2741 if (SrcTy
->isVectorTy())
2742 Assert(SrcTy
->getVectorNumElements() == DestTy
->getVectorNumElements(),
2743 "AddrSpaceCast vector pointer number of elements mismatch", &I
);
2744 visitInstruction(I
);
2747 /// visitPHINode - Ensure that a PHI node is well formed.
2749 void Verifier::visitPHINode(PHINode
&PN
) {
2750 // Ensure that the PHI nodes are all grouped together at the top of the block.
2751 // This can be tested by checking whether the instruction before this is
2752 // either nonexistent (because this is begin()) or is a PHI node. If not,
2753 // then there is some other instruction before a PHI.
2754 Assert(&PN
== &PN
.getParent()->front() ||
2755 isa
<PHINode
>(--BasicBlock::iterator(&PN
)),
2756 "PHI nodes not grouped at top of basic block!", &PN
, PN
.getParent());
2758 // Check that a PHI doesn't yield a Token.
2759 Assert(!PN
.getType()->isTokenTy(), "PHI nodes cannot have token type!");
2761 // Check that all of the values of the PHI node have the same type as the
2762 // result, and that the incoming blocks are really basic blocks.
2763 for (Value
*IncValue
: PN
.incoming_values()) {
2764 Assert(PN
.getType() == IncValue
->getType(),
2765 "PHI node operands are not the same type as the result!", &PN
);
2768 // All other PHI node constraints are checked in the visitBasicBlock method.
2770 visitInstruction(PN
);
2773 void Verifier::visitCallBase(CallBase
&Call
) {
2774 Assert(Call
.getCalledValue()->getType()->isPointerTy(),
2775 "Called function must be a pointer!", Call
);
2776 PointerType
*FPTy
= cast
<PointerType
>(Call
.getCalledValue()->getType());
2778 Assert(FPTy
->getElementType()->isFunctionTy(),
2779 "Called function is not pointer to function type!", Call
);
2781 Assert(FPTy
->getElementType() == Call
.getFunctionType(),
2782 "Called function is not the same type as the call!", Call
);
2784 FunctionType
*FTy
= Call
.getFunctionType();
2786 // Verify that the correct number of arguments are being passed
2787 if (FTy
->isVarArg())
2788 Assert(Call
.arg_size() >= FTy
->getNumParams(),
2789 "Called function requires more parameters than were provided!",
2792 Assert(Call
.arg_size() == FTy
->getNumParams(),
2793 "Incorrect number of arguments passed to called function!", Call
);
2795 // Verify that all arguments to the call match the function type.
2796 for (unsigned i
= 0, e
= FTy
->getNumParams(); i
!= e
; ++i
)
2797 Assert(Call
.getArgOperand(i
)->getType() == FTy
->getParamType(i
),
2798 "Call parameter type does not match function signature!",
2799 Call
.getArgOperand(i
), FTy
->getParamType(i
), Call
);
2801 AttributeList Attrs
= Call
.getAttributes();
2803 Assert(verifyAttributeCount(Attrs
, Call
.arg_size()),
2804 "Attribute after last parameter!", Call
);
2806 bool IsIntrinsic
= Call
.getCalledFunction() &&
2807 Call
.getCalledFunction()->getName().startswith("llvm.");
2810 = dyn_cast
<Function
>(Call
.getCalledValue()->stripPointerCasts());
2812 if (Attrs
.hasAttribute(AttributeList::FunctionIndex
, Attribute::Speculatable
)) {
2813 // Don't allow speculatable on call sites, unless the underlying function
2814 // declaration is also speculatable.
2815 Assert(Callee
&& Callee
->isSpeculatable(),
2816 "speculatable attribute may not apply to call sites", Call
);
2819 // Verify call attributes.
2820 verifyFunctionAttrs(FTy
, Attrs
, &Call
, IsIntrinsic
);
2822 // Conservatively check the inalloca argument.
2823 // We have a bug if we can find that there is an underlying alloca without
2825 if (Call
.hasInAllocaArgument()) {
2826 Value
*InAllocaArg
= Call
.getArgOperand(FTy
->getNumParams() - 1);
2827 if (auto AI
= dyn_cast
<AllocaInst
>(InAllocaArg
->stripInBoundsOffsets()))
2828 Assert(AI
->isUsedWithInAlloca(),
2829 "inalloca argument for call has mismatched alloca", AI
, Call
);
2832 // For each argument of the callsite, if it has the swifterror argument,
2833 // make sure the underlying alloca/parameter it comes from has a swifterror as
2835 for (unsigned i
= 0, e
= FTy
->getNumParams(); i
!= e
; ++i
) {
2836 if (Call
.paramHasAttr(i
, Attribute::SwiftError
)) {
2837 Value
*SwiftErrorArg
= Call
.getArgOperand(i
);
2838 if (auto AI
= dyn_cast
<AllocaInst
>(SwiftErrorArg
->stripInBoundsOffsets())) {
2839 Assert(AI
->isSwiftError(),
2840 "swifterror argument for call has mismatched alloca", AI
, Call
);
2843 auto ArgI
= dyn_cast
<Argument
>(SwiftErrorArg
);
2845 "swifterror argument should come from an alloca or parameter",
2846 SwiftErrorArg
, Call
);
2847 Assert(ArgI
->hasSwiftErrorAttr(),
2848 "swifterror argument for call has mismatched parameter", ArgI
,
2852 if (Attrs
.hasParamAttribute(i
, Attribute::ImmArg
)) {
2853 // Don't allow immarg on call sites, unless the underlying declaration
2854 // also has the matching immarg.
2855 Assert(Callee
&& Callee
->hasParamAttribute(i
, Attribute::ImmArg
),
2856 "immarg may not apply only to call sites",
2857 Call
.getArgOperand(i
), Call
);
2860 if (Call
.paramHasAttr(i
, Attribute::ImmArg
)) {
2861 Value
*ArgVal
= Call
.getArgOperand(i
);
2862 Assert(isa
<ConstantInt
>(ArgVal
) || isa
<ConstantFP
>(ArgVal
),
2863 "immarg operand has non-immediate parameter", ArgVal
, Call
);
2867 if (FTy
->isVarArg()) {
2868 // FIXME? is 'nest' even legal here?
2869 bool SawNest
= false;
2870 bool SawReturned
= false;
2872 for (unsigned Idx
= 0; Idx
< FTy
->getNumParams(); ++Idx
) {
2873 if (Attrs
.hasParamAttribute(Idx
, Attribute::Nest
))
2875 if (Attrs
.hasParamAttribute(Idx
, Attribute::Returned
))
2879 // Check attributes on the varargs part.
2880 for (unsigned Idx
= FTy
->getNumParams(); Idx
< Call
.arg_size(); ++Idx
) {
2881 Type
*Ty
= Call
.getArgOperand(Idx
)->getType();
2882 AttributeSet ArgAttrs
= Attrs
.getParamAttributes(Idx
);
2883 verifyParameterAttrs(ArgAttrs
, Ty
, &Call
);
2885 if (ArgAttrs
.hasAttribute(Attribute::Nest
)) {
2886 Assert(!SawNest
, "More than one parameter has attribute nest!", Call
);
2890 if (ArgAttrs
.hasAttribute(Attribute::Returned
)) {
2891 Assert(!SawReturned
, "More than one parameter has attribute returned!",
2893 Assert(Ty
->canLosslesslyBitCastTo(FTy
->getReturnType()),
2894 "Incompatible argument and return types for 'returned' "
2900 // Statepoint intrinsic is vararg but the wrapped function may be not.
2901 // Allow sret here and check the wrapped function in verifyStatepoint.
2902 if (!Call
.getCalledFunction() ||
2903 Call
.getCalledFunction()->getIntrinsicID() !=
2904 Intrinsic::experimental_gc_statepoint
)
2905 Assert(!ArgAttrs
.hasAttribute(Attribute::StructRet
),
2906 "Attribute 'sret' cannot be used for vararg call arguments!",
2909 if (ArgAttrs
.hasAttribute(Attribute::InAlloca
))
2910 Assert(Idx
== Call
.arg_size() - 1,
2911 "inalloca isn't on the last argument!", Call
);
2915 // Verify that there's no metadata unless it's a direct call to an intrinsic.
2917 for (Type
*ParamTy
: FTy
->params()) {
2918 Assert(!ParamTy
->isMetadataTy(),
2919 "Function has metadata parameter but isn't an intrinsic", Call
);
2920 Assert(!ParamTy
->isTokenTy(),
2921 "Function has token parameter but isn't an intrinsic", Call
);
2925 // Verify that indirect calls don't return tokens.
2926 if (!Call
.getCalledFunction())
2927 Assert(!FTy
->getReturnType()->isTokenTy(),
2928 "Return type cannot be token for indirect call!");
2930 if (Function
*F
= Call
.getCalledFunction())
2931 if (Intrinsic::ID ID
= (Intrinsic::ID
)F
->getIntrinsicID())
2932 visitIntrinsicCall(ID
, Call
);
2934 // Verify that a callsite has at most one "deopt", at most one "funclet" and
2935 // at most one "gc-transition" operand bundle.
2936 bool FoundDeoptBundle
= false, FoundFuncletBundle
= false,
2937 FoundGCTransitionBundle
= false;
2938 for (unsigned i
= 0, e
= Call
.getNumOperandBundles(); i
< e
; ++i
) {
2939 OperandBundleUse BU
= Call
.getOperandBundleAt(i
);
2940 uint32_t Tag
= BU
.getTagID();
2941 if (Tag
== LLVMContext::OB_deopt
) {
2942 Assert(!FoundDeoptBundle
, "Multiple deopt operand bundles", Call
);
2943 FoundDeoptBundle
= true;
2944 } else if (Tag
== LLVMContext::OB_gc_transition
) {
2945 Assert(!FoundGCTransitionBundle
, "Multiple gc-transition operand bundles",
2947 FoundGCTransitionBundle
= true;
2948 } else if (Tag
== LLVMContext::OB_funclet
) {
2949 Assert(!FoundFuncletBundle
, "Multiple funclet operand bundles", Call
);
2950 FoundFuncletBundle
= true;
2951 Assert(BU
.Inputs
.size() == 1,
2952 "Expected exactly one funclet bundle operand", Call
);
2953 Assert(isa
<FuncletPadInst
>(BU
.Inputs
.front()),
2954 "Funclet bundle operands should correspond to a FuncletPadInst",
2959 // Verify that each inlinable callsite of a debug-info-bearing function in a
2960 // debug-info-bearing function has a debug location attached to it. Failure to
2961 // do so causes assertion failures when the inliner sets up inline scope info.
2962 if (Call
.getFunction()->getSubprogram() && Call
.getCalledFunction() &&
2963 Call
.getCalledFunction()->getSubprogram())
2964 AssertDI(Call
.getDebugLoc(),
2965 "inlinable function call in a function with "
2966 "debug info must have a !dbg location",
2969 visitInstruction(Call
);
2972 /// Two types are "congruent" if they are identical, or if they are both pointer
2973 /// types with different pointee types and the same address space.
2974 static bool isTypeCongruent(Type
*L
, Type
*R
) {
2977 PointerType
*PL
= dyn_cast
<PointerType
>(L
);
2978 PointerType
*PR
= dyn_cast
<PointerType
>(R
);
2981 return PL
->getAddressSpace() == PR
->getAddressSpace();
2984 static AttrBuilder
getParameterABIAttributes(int I
, AttributeList Attrs
) {
2985 static const Attribute::AttrKind ABIAttrs
[] = {
2986 Attribute::StructRet
, Attribute::ByVal
, Attribute::InAlloca
,
2987 Attribute::InReg
, Attribute::Returned
, Attribute::SwiftSelf
,
2988 Attribute::SwiftError
};
2990 for (auto AK
: ABIAttrs
) {
2991 if (Attrs
.hasParamAttribute(I
, AK
))
2992 Copy
.addAttribute(AK
);
2994 if (Attrs
.hasParamAttribute(I
, Attribute::Alignment
))
2995 Copy
.addAlignmentAttr(Attrs
.getParamAlignment(I
));
2999 void Verifier::verifyMustTailCall(CallInst
&CI
) {
3000 Assert(!CI
.isInlineAsm(), "cannot use musttail call with inline asm", &CI
);
3002 // - The caller and callee prototypes must match. Pointer types of
3003 // parameters or return types may differ in pointee type, but not
3005 Function
*F
= CI
.getParent()->getParent();
3006 FunctionType
*CallerTy
= F
->getFunctionType();
3007 FunctionType
*CalleeTy
= CI
.getFunctionType();
3008 if (!CI
.getCalledFunction() || !CI
.getCalledFunction()->isIntrinsic()) {
3009 Assert(CallerTy
->getNumParams() == CalleeTy
->getNumParams(),
3010 "cannot guarantee tail call due to mismatched parameter counts",
3012 for (int I
= 0, E
= CallerTy
->getNumParams(); I
!= E
; ++I
) {
3014 isTypeCongruent(CallerTy
->getParamType(I
), CalleeTy
->getParamType(I
)),
3015 "cannot guarantee tail call due to mismatched parameter types", &CI
);
3018 Assert(CallerTy
->isVarArg() == CalleeTy
->isVarArg(),
3019 "cannot guarantee tail call due to mismatched varargs", &CI
);
3020 Assert(isTypeCongruent(CallerTy
->getReturnType(), CalleeTy
->getReturnType()),
3021 "cannot guarantee tail call due to mismatched return types", &CI
);
3023 // - The calling conventions of the caller and callee must match.
3024 Assert(F
->getCallingConv() == CI
.getCallingConv(),
3025 "cannot guarantee tail call due to mismatched calling conv", &CI
);
3027 // - All ABI-impacting function attributes, such as sret, byval, inreg,
3028 // returned, and inalloca, must match.
3029 AttributeList CallerAttrs
= F
->getAttributes();
3030 AttributeList CalleeAttrs
= CI
.getAttributes();
3031 for (int I
= 0, E
= CallerTy
->getNumParams(); I
!= E
; ++I
) {
3032 AttrBuilder CallerABIAttrs
= getParameterABIAttributes(I
, CallerAttrs
);
3033 AttrBuilder CalleeABIAttrs
= getParameterABIAttributes(I
, CalleeAttrs
);
3034 Assert(CallerABIAttrs
== CalleeABIAttrs
,
3035 "cannot guarantee tail call due to mismatched ABI impacting "
3036 "function attributes",
3037 &CI
, CI
.getOperand(I
));
3040 // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3041 // or a pointer bitcast followed by a ret instruction.
3042 // - The ret instruction must return the (possibly bitcasted) value
3043 // produced by the call or void.
3044 Value
*RetVal
= &CI
;
3045 Instruction
*Next
= CI
.getNextNode();
3047 // Handle the optional bitcast.
3048 if (BitCastInst
*BI
= dyn_cast_or_null
<BitCastInst
>(Next
)) {
3049 Assert(BI
->getOperand(0) == RetVal
,
3050 "bitcast following musttail call must use the call", BI
);
3052 Next
= BI
->getNextNode();
3055 // Check the return.
3056 ReturnInst
*Ret
= dyn_cast_or_null
<ReturnInst
>(Next
);
3057 Assert(Ret
, "musttail call must precede a ret with an optional bitcast",
3059 Assert(!Ret
->getReturnValue() || Ret
->getReturnValue() == RetVal
,
3060 "musttail call result must be returned", Ret
);
3063 void Verifier::visitCallInst(CallInst
&CI
) {
3066 if (CI
.isMustTailCall())
3067 verifyMustTailCall(CI
);
3070 void Verifier::visitInvokeInst(InvokeInst
&II
) {
3073 // Verify that the first non-PHI instruction of the unwind destination is an
3074 // exception handling instruction.
3076 II
.getUnwindDest()->isEHPad(),
3077 "The unwind destination does not have an exception handling instruction!",
3080 visitTerminator(II
);
3083 /// visitUnaryOperator - Check the argument to the unary operator.
3085 void Verifier::visitUnaryOperator(UnaryOperator
&U
) {
3086 Assert(U
.getType() == U
.getOperand(0)->getType(),
3087 "Unary operators must have same type for"
3088 "operands and result!",
3091 switch (U
.getOpcode()) {
3092 // Check that floating-point arithmetic operators are only used with
3093 // floating-point operands.
3094 case Instruction::FNeg
:
3095 Assert(U
.getType()->isFPOrFPVectorTy(),
3096 "FNeg operator only works with float types!", &U
);
3099 llvm_unreachable("Unknown UnaryOperator opcode!");
3102 visitInstruction(U
);
3105 /// visitBinaryOperator - Check that both arguments to the binary operator are
3106 /// of the same type!
3108 void Verifier::visitBinaryOperator(BinaryOperator
&B
) {
3109 Assert(B
.getOperand(0)->getType() == B
.getOperand(1)->getType(),
3110 "Both operands to a binary operator are not of the same type!", &B
);
3112 switch (B
.getOpcode()) {
3113 // Check that integer arithmetic operators are only used with
3114 // integral operands.
3115 case Instruction::Add
:
3116 case Instruction::Sub
:
3117 case Instruction::Mul
:
3118 case Instruction::SDiv
:
3119 case Instruction::UDiv
:
3120 case Instruction::SRem
:
3121 case Instruction::URem
:
3122 Assert(B
.getType()->isIntOrIntVectorTy(),
3123 "Integer arithmetic operators only work with integral types!", &B
);
3124 Assert(B
.getType() == B
.getOperand(0)->getType(),
3125 "Integer arithmetic operators must have same type "
3126 "for operands and result!",
3129 // Check that floating-point arithmetic operators are only used with
3130 // floating-point operands.
3131 case Instruction::FAdd
:
3132 case Instruction::FSub
:
3133 case Instruction::FMul
:
3134 case Instruction::FDiv
:
3135 case Instruction::FRem
:
3136 Assert(B
.getType()->isFPOrFPVectorTy(),
3137 "Floating-point arithmetic operators only work with "
3138 "floating-point types!",
3140 Assert(B
.getType() == B
.getOperand(0)->getType(),
3141 "Floating-point arithmetic operators must have same type "
3142 "for operands and result!",
3145 // Check that logical operators are only used with integral operands.
3146 case Instruction::And
:
3147 case Instruction::Or
:
3148 case Instruction::Xor
:
3149 Assert(B
.getType()->isIntOrIntVectorTy(),
3150 "Logical operators only work with integral types!", &B
);
3151 Assert(B
.getType() == B
.getOperand(0)->getType(),
3152 "Logical operators must have same type for operands and result!",
3155 case Instruction::Shl
:
3156 case Instruction::LShr
:
3157 case Instruction::AShr
:
3158 Assert(B
.getType()->isIntOrIntVectorTy(),
3159 "Shifts only work with integral types!", &B
);
3160 Assert(B
.getType() == B
.getOperand(0)->getType(),
3161 "Shift return type must be same as operands!", &B
);
3164 llvm_unreachable("Unknown BinaryOperator opcode!");
3167 visitInstruction(B
);
3170 void Verifier::visitICmpInst(ICmpInst
&IC
) {
3171 // Check that the operands are the same type
3172 Type
*Op0Ty
= IC
.getOperand(0)->getType();
3173 Type
*Op1Ty
= IC
.getOperand(1)->getType();
3174 Assert(Op0Ty
== Op1Ty
,
3175 "Both operands to ICmp instruction are not of the same type!", &IC
);
3176 // Check that the operands are the right type
3177 Assert(Op0Ty
->isIntOrIntVectorTy() || Op0Ty
->isPtrOrPtrVectorTy(),
3178 "Invalid operand types for ICmp instruction", &IC
);
3179 // Check that the predicate is valid.
3180 Assert(IC
.isIntPredicate(),
3181 "Invalid predicate in ICmp instruction!", &IC
);
3183 visitInstruction(IC
);
3186 void Verifier::visitFCmpInst(FCmpInst
&FC
) {
3187 // Check that the operands are the same type
3188 Type
*Op0Ty
= FC
.getOperand(0)->getType();
3189 Type
*Op1Ty
= FC
.getOperand(1)->getType();
3190 Assert(Op0Ty
== Op1Ty
,
3191 "Both operands to FCmp instruction are not of the same type!", &FC
);
3192 // Check that the operands are the right type
3193 Assert(Op0Ty
->isFPOrFPVectorTy(),
3194 "Invalid operand types for FCmp instruction", &FC
);
3195 // Check that the predicate is valid.
3196 Assert(FC
.isFPPredicate(),
3197 "Invalid predicate in FCmp instruction!", &FC
);
3199 visitInstruction(FC
);
3202 void Verifier::visitExtractElementInst(ExtractElementInst
&EI
) {
3204 ExtractElementInst::isValidOperands(EI
.getOperand(0), EI
.getOperand(1)),
3205 "Invalid extractelement operands!", &EI
);
3206 visitInstruction(EI
);
3209 void Verifier::visitInsertElementInst(InsertElementInst
&IE
) {
3210 Assert(InsertElementInst::isValidOperands(IE
.getOperand(0), IE
.getOperand(1),
3212 "Invalid insertelement operands!", &IE
);
3213 visitInstruction(IE
);
3216 void Verifier::visitShuffleVectorInst(ShuffleVectorInst
&SV
) {
3217 Assert(ShuffleVectorInst::isValidOperands(SV
.getOperand(0), SV
.getOperand(1),
3219 "Invalid shufflevector operands!", &SV
);
3220 visitInstruction(SV
);
3223 void Verifier::visitGetElementPtrInst(GetElementPtrInst
&GEP
) {
3224 Type
*TargetTy
= GEP
.getPointerOperandType()->getScalarType();
3226 Assert(isa
<PointerType
>(TargetTy
),
3227 "GEP base pointer is not a vector or a vector of pointers", &GEP
);
3228 Assert(GEP
.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP
);
3230 SmallVector
<Value
*, 16> Idxs(GEP
.idx_begin(), GEP
.idx_end());
3232 Idxs
, [](Value
* V
) { return V
->getType()->isIntOrIntVectorTy(); }),
3233 "GEP indexes must be integers", &GEP
);
3235 GetElementPtrInst::getIndexedType(GEP
.getSourceElementType(), Idxs
);
3236 Assert(ElTy
, "Invalid indices for GEP pointer type!", &GEP
);
3238 Assert(GEP
.getType()->isPtrOrPtrVectorTy() &&
3239 GEP
.getResultElementType() == ElTy
,
3240 "GEP is not of right type for indices!", &GEP
, ElTy
);
3242 if (GEP
.getType()->isVectorTy()) {
3243 // Additional checks for vector GEPs.
3244 unsigned GEPWidth
= GEP
.getType()->getVectorNumElements();
3245 if (GEP
.getPointerOperandType()->isVectorTy())
3246 Assert(GEPWidth
== GEP
.getPointerOperandType()->getVectorNumElements(),
3247 "Vector GEP result width doesn't match operand's", &GEP
);
3248 for (Value
*Idx
: Idxs
) {
3249 Type
*IndexTy
= Idx
->getType();
3250 if (IndexTy
->isVectorTy()) {
3251 unsigned IndexWidth
= IndexTy
->getVectorNumElements();
3252 Assert(IndexWidth
== GEPWidth
, "Invalid GEP index vector width", &GEP
);
3254 Assert(IndexTy
->isIntOrIntVectorTy(),
3255 "All GEP indices should be of integer type");
3259 if (auto *PTy
= dyn_cast
<PointerType
>(GEP
.getType())) {
3260 Assert(GEP
.getAddressSpace() == PTy
->getAddressSpace(),
3261 "GEP address space doesn't match type", &GEP
);
3264 visitInstruction(GEP
);
3267 static bool isContiguous(const ConstantRange
&A
, const ConstantRange
&B
) {
3268 return A
.getUpper() == B
.getLower() || A
.getLower() == B
.getUpper();
3271 void Verifier::visitRangeMetadata(Instruction
&I
, MDNode
*Range
, Type
*Ty
) {
3272 assert(Range
&& Range
== I
.getMetadata(LLVMContext::MD_range
) &&
3273 "precondition violation");
3275 unsigned NumOperands
= Range
->getNumOperands();
3276 Assert(NumOperands
% 2 == 0, "Unfinished range!", Range
);
3277 unsigned NumRanges
= NumOperands
/ 2;
3278 Assert(NumRanges
>= 1, "It should have at least one range!", Range
);
3280 ConstantRange
LastRange(1, true); // Dummy initial value
3281 for (unsigned i
= 0; i
< NumRanges
; ++i
) {
3283 mdconst::dyn_extract
<ConstantInt
>(Range
->getOperand(2 * i
));
3284 Assert(Low
, "The lower limit must be an integer!", Low
);
3286 mdconst::dyn_extract
<ConstantInt
>(Range
->getOperand(2 * i
+ 1));
3287 Assert(High
, "The upper limit must be an integer!", High
);
3288 Assert(High
->getType() == Low
->getType() && High
->getType() == Ty
,
3289 "Range types must match instruction type!", &I
);
3291 APInt HighV
= High
->getValue();
3292 APInt LowV
= Low
->getValue();
3293 ConstantRange
CurRange(LowV
, HighV
);
3294 Assert(!CurRange
.isEmptySet() && !CurRange
.isFullSet(),
3295 "Range must not be empty!", Range
);
3297 Assert(CurRange
.intersectWith(LastRange
).isEmptySet(),
3298 "Intervals are overlapping", Range
);
3299 Assert(LowV
.sgt(LastRange
.getLower()), "Intervals are not in order",
3301 Assert(!isContiguous(CurRange
, LastRange
), "Intervals are contiguous",
3304 LastRange
= ConstantRange(LowV
, HighV
);
3306 if (NumRanges
> 2) {
3308 mdconst::dyn_extract
<ConstantInt
>(Range
->getOperand(0))->getValue();
3310 mdconst::dyn_extract
<ConstantInt
>(Range
->getOperand(1))->getValue();
3311 ConstantRange
FirstRange(FirstLow
, FirstHigh
);
3312 Assert(FirstRange
.intersectWith(LastRange
).isEmptySet(),
3313 "Intervals are overlapping", Range
);
3314 Assert(!isContiguous(FirstRange
, LastRange
), "Intervals are contiguous",
3319 void Verifier::checkAtomicMemAccessSize(Type
*Ty
, const Instruction
*I
) {
3320 unsigned Size
= DL
.getTypeSizeInBits(Ty
);
3321 Assert(Size
>= 8, "atomic memory access' size must be byte-sized", Ty
, I
);
3322 Assert(!(Size
& (Size
- 1)),
3323 "atomic memory access' operand must have a power-of-two size", Ty
, I
);
3326 void Verifier::visitLoadInst(LoadInst
&LI
) {
3327 PointerType
*PTy
= dyn_cast
<PointerType
>(LI
.getOperand(0)->getType());
3328 Assert(PTy
, "Load operand must be a pointer.", &LI
);
3329 Type
*ElTy
= LI
.getType();
3330 Assert(LI
.getAlignment() <= Value::MaximumAlignment
,
3331 "huge alignment values are unsupported", &LI
);
3332 Assert(ElTy
->isSized(), "loading unsized types is not allowed", &LI
);
3333 if (LI
.isAtomic()) {
3334 Assert(LI
.getOrdering() != AtomicOrdering::Release
&&
3335 LI
.getOrdering() != AtomicOrdering::AcquireRelease
,
3336 "Load cannot have Release ordering", &LI
);
3337 Assert(LI
.getAlignment() != 0,
3338 "Atomic load must specify explicit alignment", &LI
);
3339 Assert(ElTy
->isIntOrPtrTy() || ElTy
->isFloatingPointTy(),
3340 "atomic load operand must have integer, pointer, or floating point "
3343 checkAtomicMemAccessSize(ElTy
, &LI
);
3345 Assert(LI
.getSyncScopeID() == SyncScope::System
,
3346 "Non-atomic load cannot have SynchronizationScope specified", &LI
);
3349 visitInstruction(LI
);
3352 void Verifier::visitStoreInst(StoreInst
&SI
) {
3353 PointerType
*PTy
= dyn_cast
<PointerType
>(SI
.getOperand(1)->getType());
3354 Assert(PTy
, "Store operand must be a pointer.", &SI
);
3355 Type
*ElTy
= PTy
->getElementType();
3356 Assert(ElTy
== SI
.getOperand(0)->getType(),
3357 "Stored value type does not match pointer operand type!", &SI
, ElTy
);
3358 Assert(SI
.getAlignment() <= Value::MaximumAlignment
,
3359 "huge alignment values are unsupported", &SI
);
3360 Assert(ElTy
->isSized(), "storing unsized types is not allowed", &SI
);
3361 if (SI
.isAtomic()) {
3362 Assert(SI
.getOrdering() != AtomicOrdering::Acquire
&&
3363 SI
.getOrdering() != AtomicOrdering::AcquireRelease
,
3364 "Store cannot have Acquire ordering", &SI
);
3365 Assert(SI
.getAlignment() != 0,
3366 "Atomic store must specify explicit alignment", &SI
);
3367 Assert(ElTy
->isIntOrPtrTy() || ElTy
->isFloatingPointTy(),
3368 "atomic store operand must have integer, pointer, or floating point "
3371 checkAtomicMemAccessSize(ElTy
, &SI
);
3373 Assert(SI
.getSyncScopeID() == SyncScope::System
,
3374 "Non-atomic store cannot have SynchronizationScope specified", &SI
);
3376 visitInstruction(SI
);
3379 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
3380 void Verifier::verifySwiftErrorCall(CallBase
&Call
,
3381 const Value
*SwiftErrorVal
) {
3383 for (auto I
= Call
.arg_begin(), E
= Call
.arg_end(); I
!= E
; ++I
, ++Idx
) {
3384 if (*I
== SwiftErrorVal
) {
3385 Assert(Call
.paramHasAttr(Idx
, Attribute::SwiftError
),
3386 "swifterror value when used in a callsite should be marked "
3387 "with swifterror attribute",
3388 SwiftErrorVal
, Call
);
3393 void Verifier::verifySwiftErrorValue(const Value
*SwiftErrorVal
) {
3394 // Check that swifterror value is only used by loads, stores, or as
3395 // a swifterror argument.
3396 for (const User
*U
: SwiftErrorVal
->users()) {
3397 Assert(isa
<LoadInst
>(U
) || isa
<StoreInst
>(U
) || isa
<CallInst
>(U
) ||
3399 "swifterror value can only be loaded and stored from, or "
3400 "as a swifterror argument!",
3402 // If it is used by a store, check it is the second operand.
3403 if (auto StoreI
= dyn_cast
<StoreInst
>(U
))
3404 Assert(StoreI
->getOperand(1) == SwiftErrorVal
,
3405 "swifterror value should be the second operand when used "
3406 "by stores", SwiftErrorVal
, U
);
3407 if (auto *Call
= dyn_cast
<CallBase
>(U
))
3408 verifySwiftErrorCall(*const_cast<CallBase
*>(Call
), SwiftErrorVal
);
3412 void Verifier::visitAllocaInst(AllocaInst
&AI
) {
3413 SmallPtrSet
<Type
*, 4> Visited
;
3414 PointerType
*PTy
= AI
.getType();
3415 // TODO: Relax this restriction?
3416 Assert(PTy
->getAddressSpace() == DL
.getAllocaAddrSpace(),
3417 "Allocation instruction pointer not in the stack address space!",
3419 Assert(AI
.getAllocatedType()->isSized(&Visited
),
3420 "Cannot allocate unsized type", &AI
);
3421 Assert(AI
.getArraySize()->getType()->isIntegerTy(),
3422 "Alloca array size must have integer type", &AI
);
3423 Assert(AI
.getAlignment() <= Value::MaximumAlignment
,
3424 "huge alignment values are unsupported", &AI
);
3426 if (AI
.isSwiftError()) {
3427 verifySwiftErrorValue(&AI
);
3430 visitInstruction(AI
);
3433 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst
&CXI
) {
3435 // FIXME: more conditions???
3436 Assert(CXI
.getSuccessOrdering() != AtomicOrdering::NotAtomic
,
3437 "cmpxchg instructions must be atomic.", &CXI
);
3438 Assert(CXI
.getFailureOrdering() != AtomicOrdering::NotAtomic
,
3439 "cmpxchg instructions must be atomic.", &CXI
);
3440 Assert(CXI
.getSuccessOrdering() != AtomicOrdering::Unordered
,
3441 "cmpxchg instructions cannot be unordered.", &CXI
);
3442 Assert(CXI
.getFailureOrdering() != AtomicOrdering::Unordered
,
3443 "cmpxchg instructions cannot be unordered.", &CXI
);
3444 Assert(!isStrongerThan(CXI
.getFailureOrdering(), CXI
.getSuccessOrdering()),
3445 "cmpxchg instructions failure argument shall be no stronger than the "
3448 Assert(CXI
.getFailureOrdering() != AtomicOrdering::Release
&&
3449 CXI
.getFailureOrdering() != AtomicOrdering::AcquireRelease
,
3450 "cmpxchg failure ordering cannot include release semantics", &CXI
);
3452 PointerType
*PTy
= dyn_cast
<PointerType
>(CXI
.getOperand(0)->getType());
3453 Assert(PTy
, "First cmpxchg operand must be a pointer.", &CXI
);
3454 Type
*ElTy
= PTy
->getElementType();
3455 Assert(ElTy
->isIntOrPtrTy(),
3456 "cmpxchg operand must have integer or pointer type", ElTy
, &CXI
);
3457 checkAtomicMemAccessSize(ElTy
, &CXI
);
3458 Assert(ElTy
== CXI
.getOperand(1)->getType(),
3459 "Expected value type does not match pointer operand type!", &CXI
,
3461 Assert(ElTy
== CXI
.getOperand(2)->getType(),
3462 "Stored value type does not match pointer operand type!", &CXI
, ElTy
);
3463 visitInstruction(CXI
);
3466 void Verifier::visitAtomicRMWInst(AtomicRMWInst
&RMWI
) {
3467 Assert(RMWI
.getOrdering() != AtomicOrdering::NotAtomic
,
3468 "atomicrmw instructions must be atomic.", &RMWI
);
3469 Assert(RMWI
.getOrdering() != AtomicOrdering::Unordered
,
3470 "atomicrmw instructions cannot be unordered.", &RMWI
);
3471 auto Op
= RMWI
.getOperation();
3472 PointerType
*PTy
= dyn_cast
<PointerType
>(RMWI
.getOperand(0)->getType());
3473 Assert(PTy
, "First atomicrmw operand must be a pointer.", &RMWI
);
3474 Type
*ElTy
= PTy
->getElementType();
3475 if (Op
== AtomicRMWInst::Xchg
) {
3476 Assert(ElTy
->isIntegerTy() || ElTy
->isFloatingPointTy(), "atomicrmw " +
3477 AtomicRMWInst::getOperationName(Op
) +
3478 " operand must have integer or floating point type!",
3480 } else if (AtomicRMWInst::isFPOperation(Op
)) {
3481 Assert(ElTy
->isFloatingPointTy(), "atomicrmw " +
3482 AtomicRMWInst::getOperationName(Op
) +
3483 " operand must have floating point type!",
3486 Assert(ElTy
->isIntegerTy(), "atomicrmw " +
3487 AtomicRMWInst::getOperationName(Op
) +
3488 " operand must have integer type!",
3491 checkAtomicMemAccessSize(ElTy
, &RMWI
);
3492 Assert(ElTy
== RMWI
.getOperand(1)->getType(),
3493 "Argument value type does not match pointer operand type!", &RMWI
,
3495 Assert(AtomicRMWInst::FIRST_BINOP
<= Op
&& Op
<= AtomicRMWInst::LAST_BINOP
,
3496 "Invalid binary operation!", &RMWI
);
3497 visitInstruction(RMWI
);
3500 void Verifier::visitFenceInst(FenceInst
&FI
) {
3501 const AtomicOrdering Ordering
= FI
.getOrdering();
3502 Assert(Ordering
== AtomicOrdering::Acquire
||
3503 Ordering
== AtomicOrdering::Release
||
3504 Ordering
== AtomicOrdering::AcquireRelease
||
3505 Ordering
== AtomicOrdering::SequentiallyConsistent
,
3506 "fence instructions may only have acquire, release, acq_rel, or "
3507 "seq_cst ordering.",
3509 visitInstruction(FI
);
3512 void Verifier::visitExtractValueInst(ExtractValueInst
&EVI
) {
3513 Assert(ExtractValueInst::getIndexedType(EVI
.getAggregateOperand()->getType(),
3514 EVI
.getIndices()) == EVI
.getType(),
3515 "Invalid ExtractValueInst operands!", &EVI
);
3517 visitInstruction(EVI
);
3520 void Verifier::visitInsertValueInst(InsertValueInst
&IVI
) {
3521 Assert(ExtractValueInst::getIndexedType(IVI
.getAggregateOperand()->getType(),
3522 IVI
.getIndices()) ==
3523 IVI
.getOperand(1)->getType(),
3524 "Invalid InsertValueInst operands!", &IVI
);
3526 visitInstruction(IVI
);
3529 static Value
*getParentPad(Value
*EHPad
) {
3530 if (auto *FPI
= dyn_cast
<FuncletPadInst
>(EHPad
))
3531 return FPI
->getParentPad();
3533 return cast
<CatchSwitchInst
>(EHPad
)->getParentPad();
3536 void Verifier::visitEHPadPredecessors(Instruction
&I
) {
3537 assert(I
.isEHPad());
3539 BasicBlock
*BB
= I
.getParent();
3540 Function
*F
= BB
->getParent();
3542 Assert(BB
!= &F
->getEntryBlock(), "EH pad cannot be in entry block.", &I
);
3544 if (auto *LPI
= dyn_cast
<LandingPadInst
>(&I
)) {
3545 // The landingpad instruction defines its parent as a landing pad block. The
3546 // landing pad block may be branched to only by the unwind edge of an
3548 for (BasicBlock
*PredBB
: predecessors(BB
)) {
3549 const auto *II
= dyn_cast
<InvokeInst
>(PredBB
->getTerminator());
3550 Assert(II
&& II
->getUnwindDest() == BB
&& II
->getNormalDest() != BB
,
3551 "Block containing LandingPadInst must be jumped to "
3552 "only by the unwind edge of an invoke.",
3557 if (auto *CPI
= dyn_cast
<CatchPadInst
>(&I
)) {
3558 if (!pred_empty(BB
))
3559 Assert(BB
->getUniquePredecessor() == CPI
->getCatchSwitch()->getParent(),
3560 "Block containg CatchPadInst must be jumped to "
3561 "only by its catchswitch.",
3563 Assert(BB
!= CPI
->getCatchSwitch()->getUnwindDest(),
3564 "Catchswitch cannot unwind to one of its catchpads",
3565 CPI
->getCatchSwitch(), CPI
);
3569 // Verify that each pred has a legal terminator with a legal to/from EH
3570 // pad relationship.
3571 Instruction
*ToPad
= &I
;
3572 Value
*ToPadParent
= getParentPad(ToPad
);
3573 for (BasicBlock
*PredBB
: predecessors(BB
)) {
3574 Instruction
*TI
= PredBB
->getTerminator();
3576 if (auto *II
= dyn_cast
<InvokeInst
>(TI
)) {
3577 Assert(II
->getUnwindDest() == BB
&& II
->getNormalDest() != BB
,
3578 "EH pad must be jumped to via an unwind edge", ToPad
, II
);
3579 if (auto Bundle
= II
->getOperandBundle(LLVMContext::OB_funclet
))
3580 FromPad
= Bundle
->Inputs
[0];
3582 FromPad
= ConstantTokenNone::get(II
->getContext());
3583 } else if (auto *CRI
= dyn_cast
<CleanupReturnInst
>(TI
)) {
3584 FromPad
= CRI
->getOperand(0);
3585 Assert(FromPad
!= ToPadParent
, "A cleanupret must exit its cleanup", CRI
);
3586 } else if (auto *CSI
= dyn_cast
<CatchSwitchInst
>(TI
)) {
3589 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad
, TI
);
3592 // The edge may exit from zero or more nested pads.
3593 SmallSet
<Value
*, 8> Seen
;
3594 for (;; FromPad
= getParentPad(FromPad
)) {
3595 Assert(FromPad
!= ToPad
,
3596 "EH pad cannot handle exceptions raised within it", FromPad
, TI
);
3597 if (FromPad
== ToPadParent
) {
3598 // This is a legal unwind edge.
3601 Assert(!isa
<ConstantTokenNone
>(FromPad
),
3602 "A single unwind edge may only enter one EH pad", TI
);
3603 Assert(Seen
.insert(FromPad
).second
,
3604 "EH pad jumps through a cycle of pads", FromPad
);
3609 void Verifier::visitLandingPadInst(LandingPadInst
&LPI
) {
3610 // The landingpad instruction is ill-formed if it doesn't have any clauses and
3612 Assert(LPI
.getNumClauses() > 0 || LPI
.isCleanup(),
3613 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI
);
3615 visitEHPadPredecessors(LPI
);
3617 if (!LandingPadResultTy
)
3618 LandingPadResultTy
= LPI
.getType();
3620 Assert(LandingPadResultTy
== LPI
.getType(),
3621 "The landingpad instruction should have a consistent result type "
3622 "inside a function.",
3625 Function
*F
= LPI
.getParent()->getParent();
3626 Assert(F
->hasPersonalityFn(),
3627 "LandingPadInst needs to be in a function with a personality.", &LPI
);
3629 // The landingpad instruction must be the first non-PHI instruction in the
3631 Assert(LPI
.getParent()->getLandingPadInst() == &LPI
,
3632 "LandingPadInst not the first non-PHI instruction in the block.",
3635 for (unsigned i
= 0, e
= LPI
.getNumClauses(); i
< e
; ++i
) {
3636 Constant
*Clause
= LPI
.getClause(i
);
3637 if (LPI
.isCatch(i
)) {
3638 Assert(isa
<PointerType
>(Clause
->getType()),
3639 "Catch operand does not have pointer type!", &LPI
);
3641 Assert(LPI
.isFilter(i
), "Clause is neither catch nor filter!", &LPI
);
3642 Assert(isa
<ConstantArray
>(Clause
) || isa
<ConstantAggregateZero
>(Clause
),
3643 "Filter operand is not an array of constants!", &LPI
);
3647 visitInstruction(LPI
);
3650 void Verifier::visitResumeInst(ResumeInst
&RI
) {
3651 Assert(RI
.getFunction()->hasPersonalityFn(),
3652 "ResumeInst needs to be in a function with a personality.", &RI
);
3654 if (!LandingPadResultTy
)
3655 LandingPadResultTy
= RI
.getValue()->getType();
3657 Assert(LandingPadResultTy
== RI
.getValue()->getType(),
3658 "The resume instruction should have a consistent result type "
3659 "inside a function.",
3662 visitTerminator(RI
);
3665 void Verifier::visitCatchPadInst(CatchPadInst
&CPI
) {
3666 BasicBlock
*BB
= CPI
.getParent();
3668 Function
*F
= BB
->getParent();
3669 Assert(F
->hasPersonalityFn(),
3670 "CatchPadInst needs to be in a function with a personality.", &CPI
);
3672 Assert(isa
<CatchSwitchInst
>(CPI
.getParentPad()),
3673 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
3674 CPI
.getParentPad());
3676 // The catchpad instruction must be the first non-PHI instruction in the
3678 Assert(BB
->getFirstNonPHI() == &CPI
,
3679 "CatchPadInst not the first non-PHI instruction in the block.", &CPI
);
3681 visitEHPadPredecessors(CPI
);
3682 visitFuncletPadInst(CPI
);
3685 void Verifier::visitCatchReturnInst(CatchReturnInst
&CatchReturn
) {
3686 Assert(isa
<CatchPadInst
>(CatchReturn
.getOperand(0)),
3687 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn
,
3688 CatchReturn
.getOperand(0));
3690 visitTerminator(CatchReturn
);
3693 void Verifier::visitCleanupPadInst(CleanupPadInst
&CPI
) {
3694 BasicBlock
*BB
= CPI
.getParent();
3696 Function
*F
= BB
->getParent();
3697 Assert(F
->hasPersonalityFn(),
3698 "CleanupPadInst needs to be in a function with a personality.", &CPI
);
3700 // The cleanuppad instruction must be the first non-PHI instruction in the
3702 Assert(BB
->getFirstNonPHI() == &CPI
,
3703 "CleanupPadInst not the first non-PHI instruction in the block.",
3706 auto *ParentPad
= CPI
.getParentPad();
3707 Assert(isa
<ConstantTokenNone
>(ParentPad
) || isa
<FuncletPadInst
>(ParentPad
),
3708 "CleanupPadInst has an invalid parent.", &CPI
);
3710 visitEHPadPredecessors(CPI
);
3711 visitFuncletPadInst(CPI
);
3714 void Verifier::visitFuncletPadInst(FuncletPadInst
&FPI
) {
3715 User
*FirstUser
= nullptr;
3716 Value
*FirstUnwindPad
= nullptr;
3717 SmallVector
<FuncletPadInst
*, 8> Worklist({&FPI
});
3718 SmallSet
<FuncletPadInst
*, 8> Seen
;
3720 while (!Worklist
.empty()) {
3721 FuncletPadInst
*CurrentPad
= Worklist
.pop_back_val();
3722 Assert(Seen
.insert(CurrentPad
).second
,
3723 "FuncletPadInst must not be nested within itself", CurrentPad
);
3724 Value
*UnresolvedAncestorPad
= nullptr;
3725 for (User
*U
: CurrentPad
->users()) {
3726 BasicBlock
*UnwindDest
;
3727 if (auto *CRI
= dyn_cast
<CleanupReturnInst
>(U
)) {
3728 UnwindDest
= CRI
->getUnwindDest();
3729 } else if (auto *CSI
= dyn_cast
<CatchSwitchInst
>(U
)) {
3730 // We allow catchswitch unwind to caller to nest
3731 // within an outer pad that unwinds somewhere else,
3732 // because catchswitch doesn't have a nounwind variant.
3733 // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3734 if (CSI
->unwindsToCaller())
3736 UnwindDest
= CSI
->getUnwindDest();
3737 } else if (auto *II
= dyn_cast
<InvokeInst
>(U
)) {
3738 UnwindDest
= II
->getUnwindDest();
3739 } else if (isa
<CallInst
>(U
)) {
3740 // Calls which don't unwind may be found inside funclet
3741 // pads that unwind somewhere else. We don't *require*
3742 // such calls to be annotated nounwind.
3744 } else if (auto *CPI
= dyn_cast
<CleanupPadInst
>(U
)) {
3745 // The unwind dest for a cleanup can only be found by
3746 // recursive search. Add it to the worklist, and we'll
3747 // search for its first use that determines where it unwinds.
3748 Worklist
.push_back(CPI
);
3751 Assert(isa
<CatchReturnInst
>(U
), "Bogus funclet pad use", U
);
3758 UnwindPad
= UnwindDest
->getFirstNonPHI();
3759 if (!cast
<Instruction
>(UnwindPad
)->isEHPad())
3761 Value
*UnwindParent
= getParentPad(UnwindPad
);
3762 // Ignore unwind edges that don't exit CurrentPad.
3763 if (UnwindParent
== CurrentPad
)
3765 // Determine whether the original funclet pad is exited,
3766 // and if we are scanning nested pads determine how many
3767 // of them are exited so we can stop searching their
3769 Value
*ExitedPad
= CurrentPad
;
3772 if (ExitedPad
== &FPI
) {
3774 // Now we can resolve any ancestors of CurrentPad up to
3775 // FPI, but not including FPI since we need to make sure
3776 // to check all direct users of FPI for consistency.
3777 UnresolvedAncestorPad
= &FPI
;
3780 Value
*ExitedParent
= getParentPad(ExitedPad
);
3781 if (ExitedParent
== UnwindParent
) {
3782 // ExitedPad is the ancestor-most pad which this unwind
3783 // edge exits, so we can resolve up to it, meaning that
3784 // ExitedParent is the first ancestor still unresolved.
3785 UnresolvedAncestorPad
= ExitedParent
;
3788 ExitedPad
= ExitedParent
;
3789 } while (!isa
<ConstantTokenNone
>(ExitedPad
));
3791 // Unwinding to caller exits all pads.
3792 UnwindPad
= ConstantTokenNone::get(FPI
.getContext());
3794 UnresolvedAncestorPad
= &FPI
;
3798 // This unwind edge exits FPI. Make sure it agrees with other
3801 Assert(UnwindPad
== FirstUnwindPad
, "Unwind edges out of a funclet "
3802 "pad must have the same unwind "
3804 &FPI
, U
, FirstUser
);
3807 FirstUnwindPad
= UnwindPad
;
3808 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3809 if (isa
<CleanupPadInst
>(&FPI
) && !isa
<ConstantTokenNone
>(UnwindPad
) &&
3810 getParentPad(UnwindPad
) == getParentPad(&FPI
))
3811 SiblingFuncletInfo
[&FPI
] = cast
<Instruction
>(U
);
3814 // Make sure we visit all uses of FPI, but for nested pads stop as
3815 // soon as we know where they unwind to.
3816 if (CurrentPad
!= &FPI
)
3819 if (UnresolvedAncestorPad
) {
3820 if (CurrentPad
== UnresolvedAncestorPad
) {
3821 // When CurrentPad is FPI itself, we don't mark it as resolved even if
3822 // we've found an unwind edge that exits it, because we need to verify
3823 // all direct uses of FPI.
3824 assert(CurrentPad
== &FPI
);
3827 // Pop off the worklist any nested pads that we've found an unwind
3828 // destination for. The pads on the worklist are the uncles,
3829 // great-uncles, etc. of CurrentPad. We've found an unwind destination
3830 // for all ancestors of CurrentPad up to but not including
3831 // UnresolvedAncestorPad.
3832 Value
*ResolvedPad
= CurrentPad
;
3833 while (!Worklist
.empty()) {
3834 Value
*UnclePad
= Worklist
.back();
3835 Value
*AncestorPad
= getParentPad(UnclePad
);
3836 // Walk ResolvedPad up the ancestor list until we either find the
3837 // uncle's parent or the last resolved ancestor.
3838 while (ResolvedPad
!= AncestorPad
) {
3839 Value
*ResolvedParent
= getParentPad(ResolvedPad
);
3840 if (ResolvedParent
== UnresolvedAncestorPad
) {
3843 ResolvedPad
= ResolvedParent
;
3845 // If the resolved ancestor search didn't find the uncle's parent,
3846 // then the uncle is not yet resolved.
3847 if (ResolvedPad
!= AncestorPad
)
3849 // This uncle is resolved, so pop it from the worklist.
3850 Worklist
.pop_back();
3855 if (FirstUnwindPad
) {
3856 if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(FPI
.getParentPad())) {
3857 BasicBlock
*SwitchUnwindDest
= CatchSwitch
->getUnwindDest();
3858 Value
*SwitchUnwindPad
;
3859 if (SwitchUnwindDest
)
3860 SwitchUnwindPad
= SwitchUnwindDest
->getFirstNonPHI();
3862 SwitchUnwindPad
= ConstantTokenNone::get(FPI
.getContext());
3863 Assert(SwitchUnwindPad
== FirstUnwindPad
,
3864 "Unwind edges out of a catch must have the same unwind dest as "
3865 "the parent catchswitch",
3866 &FPI
, FirstUser
, CatchSwitch
);
3870 visitInstruction(FPI
);
3873 void Verifier::visitCatchSwitchInst(CatchSwitchInst
&CatchSwitch
) {
3874 BasicBlock
*BB
= CatchSwitch
.getParent();
3876 Function
*F
= BB
->getParent();
3877 Assert(F
->hasPersonalityFn(),
3878 "CatchSwitchInst needs to be in a function with a personality.",
3881 // The catchswitch instruction must be the first non-PHI instruction in the
3883 Assert(BB
->getFirstNonPHI() == &CatchSwitch
,
3884 "CatchSwitchInst not the first non-PHI instruction in the block.",
3887 auto *ParentPad
= CatchSwitch
.getParentPad();
3888 Assert(isa
<ConstantTokenNone
>(ParentPad
) || isa
<FuncletPadInst
>(ParentPad
),
3889 "CatchSwitchInst has an invalid parent.", ParentPad
);
3891 if (BasicBlock
*UnwindDest
= CatchSwitch
.getUnwindDest()) {
3892 Instruction
*I
= UnwindDest
->getFirstNonPHI();
3893 Assert(I
->isEHPad() && !isa
<LandingPadInst
>(I
),
3894 "CatchSwitchInst must unwind to an EH block which is not a "
3898 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3899 if (getParentPad(I
) == ParentPad
)
3900 SiblingFuncletInfo
[&CatchSwitch
] = &CatchSwitch
;
3903 Assert(CatchSwitch
.getNumHandlers() != 0,
3904 "CatchSwitchInst cannot have empty handler list", &CatchSwitch
);
3906 for (BasicBlock
*Handler
: CatchSwitch
.handlers()) {
3907 Assert(isa
<CatchPadInst
>(Handler
->getFirstNonPHI()),
3908 "CatchSwitchInst handlers must be catchpads", &CatchSwitch
, Handler
);
3911 visitEHPadPredecessors(CatchSwitch
);
3912 visitTerminator(CatchSwitch
);
3915 void Verifier::visitCleanupReturnInst(CleanupReturnInst
&CRI
) {
3916 Assert(isa
<CleanupPadInst
>(CRI
.getOperand(0)),
3917 "CleanupReturnInst needs to be provided a CleanupPad", &CRI
,
3920 if (BasicBlock
*UnwindDest
= CRI
.getUnwindDest()) {
3921 Instruction
*I
= UnwindDest
->getFirstNonPHI();
3922 Assert(I
->isEHPad() && !isa
<LandingPadInst
>(I
),
3923 "CleanupReturnInst must unwind to an EH block which is not a "
3928 visitTerminator(CRI
);
3931 void Verifier::verifyDominatesUse(Instruction
&I
, unsigned i
) {
3932 Instruction
*Op
= cast
<Instruction
>(I
.getOperand(i
));
3933 // If the we have an invalid invoke, don't try to compute the dominance.
3934 // We already reject it in the invoke specific checks and the dominance
3935 // computation doesn't handle multiple edges.
3936 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Op
)) {
3937 if (II
->getNormalDest() == II
->getUnwindDest())
3941 // Quick check whether the def has already been encountered in the same block.
3942 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
3943 // uses are defined to happen on the incoming edge, not at the instruction.
3945 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3946 // wrapping an SSA value, assert that we've already encountered it. See
3947 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3948 if (!isa
<PHINode
>(I
) && InstsInThisBlock
.count(Op
))
3951 const Use
&U
= I
.getOperandUse(i
);
3952 Assert(DT
.dominates(Op
, U
),
3953 "Instruction does not dominate all uses!", Op
, &I
);
3956 void Verifier::visitDereferenceableMetadata(Instruction
& I
, MDNode
* MD
) {
3957 Assert(I
.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
3958 "apply only to pointer types", &I
);
3959 Assert(isa
<LoadInst
>(I
),
3960 "dereferenceable, dereferenceable_or_null apply only to load"
3961 " instructions, use attributes for calls or invokes", &I
);
3962 Assert(MD
->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
3963 "take one operand!", &I
);
3964 ConstantInt
*CI
= mdconst::dyn_extract
<ConstantInt
>(MD
->getOperand(0));
3965 Assert(CI
&& CI
->getType()->isIntegerTy(64), "dereferenceable, "
3966 "dereferenceable_or_null metadata value must be an i64!", &I
);
3969 /// verifyInstruction - Verify that an instruction is well formed.
3971 void Verifier::visitInstruction(Instruction
&I
) {
3972 BasicBlock
*BB
= I
.getParent();
3973 Assert(BB
, "Instruction not embedded in basic block!", &I
);
3975 if (!isa
<PHINode
>(I
)) { // Check that non-phi nodes are not self referential
3976 for (User
*U
: I
.users()) {
3977 Assert(U
!= (User
*)&I
|| !DT
.isReachableFromEntry(BB
),
3978 "Only PHI nodes may reference their own value!", &I
);
3982 // Check that void typed values don't have names
3983 Assert(!I
.getType()->isVoidTy() || !I
.hasName(),
3984 "Instruction has a name, but provides a void value!", &I
);
3986 // Check that the return value of the instruction is either void or a legal
3988 Assert(I
.getType()->isVoidTy() || I
.getType()->isFirstClassType(),
3989 "Instruction returns a non-scalar type!", &I
);
3991 // Check that the instruction doesn't produce metadata. Calls are already
3992 // checked against the callee type.
3993 Assert(!I
.getType()->isMetadataTy() || isa
<CallInst
>(I
) || isa
<InvokeInst
>(I
),
3994 "Invalid use of metadata!", &I
);
3996 // Check that all uses of the instruction, if they are instructions
3997 // themselves, actually have parent basic blocks. If the use is not an
3998 // instruction, it is an error!
3999 for (Use
&U
: I
.uses()) {
4000 if (Instruction
*Used
= dyn_cast
<Instruction
>(U
.getUser()))
4001 Assert(Used
->getParent() != nullptr,
4002 "Instruction referencing"
4003 " instruction not embedded in a basic block!",
4006 CheckFailed("Use of instruction is not an instruction!", U
);
4011 // Get a pointer to the call base of the instruction if it is some form of
4013 const CallBase
*CBI
= dyn_cast
<CallBase
>(&I
);
4015 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
) {
4016 Assert(I
.getOperand(i
) != nullptr, "Instruction has null operand!", &I
);
4018 // Check to make sure that only first-class-values are operands to
4020 if (!I
.getOperand(i
)->getType()->isFirstClassType()) {
4021 Assert(false, "Instruction operands must be first-class values!", &I
);
4024 if (Function
*F
= dyn_cast
<Function
>(I
.getOperand(i
))) {
4025 // Check to make sure that the "address of" an intrinsic function is never
4027 Assert(!F
->isIntrinsic() ||
4028 (CBI
&& &CBI
->getCalledOperandUse() == &I
.getOperandUse(i
)),
4029 "Cannot take the address of an intrinsic!", &I
);
4031 !F
->isIntrinsic() || isa
<CallInst
>(I
) ||
4032 F
->getIntrinsicID() == Intrinsic::donothing
||
4033 F
->getIntrinsicID() == Intrinsic::coro_resume
||
4034 F
->getIntrinsicID() == Intrinsic::coro_destroy
||
4035 F
->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
||
4036 F
->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
||
4037 F
->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
||
4038 F
->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch
,
4039 "Cannot invoke an intrinsic other than donothing, patchpoint, "
4040 "statepoint, coro_resume or coro_destroy",
4042 Assert(F
->getParent() == &M
, "Referencing function in another module!",
4043 &I
, &M
, F
, F
->getParent());
4044 } else if (BasicBlock
*OpBB
= dyn_cast
<BasicBlock
>(I
.getOperand(i
))) {
4045 Assert(OpBB
->getParent() == BB
->getParent(),
4046 "Referring to a basic block in another function!", &I
);
4047 } else if (Argument
*OpArg
= dyn_cast
<Argument
>(I
.getOperand(i
))) {
4048 Assert(OpArg
->getParent() == BB
->getParent(),
4049 "Referring to an argument in another function!", &I
);
4050 } else if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(I
.getOperand(i
))) {
4051 Assert(GV
->getParent() == &M
, "Referencing global in another module!", &I
,
4052 &M
, GV
, GV
->getParent());
4053 } else if (isa
<Instruction
>(I
.getOperand(i
))) {
4054 verifyDominatesUse(I
, i
);
4055 } else if (isa
<InlineAsm
>(I
.getOperand(i
))) {
4056 Assert(CBI
&& &CBI
->getCalledOperandUse() == &I
.getOperandUse(i
),
4057 "Cannot take the address of an inline asm!", &I
);
4058 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(I
.getOperand(i
))) {
4059 if (CE
->getType()->isPtrOrPtrVectorTy() ||
4060 !DL
.getNonIntegralAddressSpaces().empty()) {
4061 // If we have a ConstantExpr pointer, we need to see if it came from an
4062 // illegal bitcast. If the datalayout string specifies non-integral
4063 // address spaces then we also need to check for illegal ptrtoint and
4064 // inttoptr expressions.
4065 visitConstantExprsRecursively(CE
);
4070 if (MDNode
*MD
= I
.getMetadata(LLVMContext::MD_fpmath
)) {
4071 Assert(I
.getType()->isFPOrFPVectorTy(),
4072 "fpmath requires a floating point result!", &I
);
4073 Assert(MD
->getNumOperands() == 1, "fpmath takes one operand!", &I
);
4074 if (ConstantFP
*CFP0
=
4075 mdconst::dyn_extract_or_null
<ConstantFP
>(MD
->getOperand(0))) {
4076 const APFloat
&Accuracy
= CFP0
->getValueAPF();
4077 Assert(&Accuracy
.getSemantics() == &APFloat::IEEEsingle(),
4078 "fpmath accuracy must have float type", &I
);
4079 Assert(Accuracy
.isFiniteNonZero() && !Accuracy
.isNegative(),
4080 "fpmath accuracy not a positive number!", &I
);
4082 Assert(false, "invalid fpmath accuracy!", &I
);
4086 if (MDNode
*Range
= I
.getMetadata(LLVMContext::MD_range
)) {
4087 Assert(isa
<LoadInst
>(I
) || isa
<CallInst
>(I
) || isa
<InvokeInst
>(I
),
4088 "Ranges are only for loads, calls and invokes!", &I
);
4089 visitRangeMetadata(I
, Range
, I
.getType());
4092 if (I
.getMetadata(LLVMContext::MD_nonnull
)) {
4093 Assert(I
.getType()->isPointerTy(), "nonnull applies only to pointer types",
4095 Assert(isa
<LoadInst
>(I
),
4096 "nonnull applies only to load instructions, use attributes"
4097 " for calls or invokes",
4101 if (MDNode
*MD
= I
.getMetadata(LLVMContext::MD_dereferenceable
))
4102 visitDereferenceableMetadata(I
, MD
);
4104 if (MDNode
*MD
= I
.getMetadata(LLVMContext::MD_dereferenceable_or_null
))
4105 visitDereferenceableMetadata(I
, MD
);
4107 if (MDNode
*TBAA
= I
.getMetadata(LLVMContext::MD_tbaa
))
4108 TBAAVerifyHelper
.visitTBAAMetadata(I
, TBAA
);
4110 if (MDNode
*AlignMD
= I
.getMetadata(LLVMContext::MD_align
)) {
4111 Assert(I
.getType()->isPointerTy(), "align applies only to pointer types",
4113 Assert(isa
<LoadInst
>(I
), "align applies only to load instructions, "
4114 "use attributes for calls or invokes", &I
);
4115 Assert(AlignMD
->getNumOperands() == 1, "align takes one operand!", &I
);
4116 ConstantInt
*CI
= mdconst::dyn_extract
<ConstantInt
>(AlignMD
->getOperand(0));
4117 Assert(CI
&& CI
->getType()->isIntegerTy(64),
4118 "align metadata value must be an i64!", &I
);
4119 uint64_t Align
= CI
->getZExtValue();
4120 Assert(isPowerOf2_64(Align
),
4121 "align metadata value must be a power of 2!", &I
);
4122 Assert(Align
<= Value::MaximumAlignment
,
4123 "alignment is larger that implementation defined limit", &I
);
4126 if (MDNode
*N
= I
.getDebugLoc().getAsMDNode()) {
4127 AssertDI(isa
<DILocation
>(N
), "invalid !dbg metadata attachment", &I
, N
);
4131 if (auto *DII
= dyn_cast
<DbgVariableIntrinsic
>(&I
))
4132 verifyFragmentExpression(*DII
);
4134 InstsInThisBlock
.insert(&I
);
4137 /// Allow intrinsics to be verified in different ways.
4138 void Verifier::visitIntrinsicCall(Intrinsic::ID ID
, CallBase
&Call
) {
4139 Function
*IF
= Call
.getCalledFunction();
4140 Assert(IF
->isDeclaration(), "Intrinsic functions should never be defined!",
4143 // Verify that the intrinsic prototype lines up with what the .td files
4145 FunctionType
*IFTy
= IF
->getFunctionType();
4146 bool IsVarArg
= IFTy
->isVarArg();
4148 SmallVector
<Intrinsic::IITDescriptor
, 8> Table
;
4149 getIntrinsicInfoTableEntries(ID
, Table
);
4150 ArrayRef
<Intrinsic::IITDescriptor
> TableRef
= Table
;
4152 SmallVector
<Type
*, 4> ArgTys
;
4153 Assert(!Intrinsic::matchIntrinsicType(IFTy
->getReturnType(),
4155 "Intrinsic has incorrect return type!", IF
);
4156 for (unsigned i
= 0, e
= IFTy
->getNumParams(); i
!= e
; ++i
)
4157 Assert(!Intrinsic::matchIntrinsicType(IFTy
->getParamType(i
),
4159 "Intrinsic has incorrect argument type!", IF
);
4161 // Verify if the intrinsic call matches the vararg property.
4163 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg
, TableRef
),
4164 "Intrinsic was not defined with variable arguments!", IF
);
4166 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg
, TableRef
),
4167 "Callsite was not defined with variable arguments!", IF
);
4169 // All descriptors should be absorbed by now.
4170 Assert(TableRef
.empty(), "Intrinsic has too few arguments!", IF
);
4172 // Now that we have the intrinsic ID and the actual argument types (and we
4173 // know they are legal for the intrinsic!) get the intrinsic name through the
4174 // usual means. This allows us to verify the mangling of argument types into
4176 const std::string ExpectedName
= Intrinsic::getName(ID
, ArgTys
);
4177 Assert(ExpectedName
== IF
->getName(),
4178 "Intrinsic name not mangled correctly for type arguments! "
4183 // If the intrinsic takes MDNode arguments, verify that they are either global
4184 // or are local to *this* function.
4185 for (Value
*V
: Call
.args())
4186 if (auto *MD
= dyn_cast
<MetadataAsValue
>(V
))
4187 visitMetadataAsValue(*MD
, Call
.getCaller());
4192 case Intrinsic::coro_id
: {
4193 auto *InfoArg
= Call
.getArgOperand(3)->stripPointerCasts();
4194 if (isa
<ConstantPointerNull
>(InfoArg
))
4196 auto *GV
= dyn_cast
<GlobalVariable
>(InfoArg
);
4197 Assert(GV
&& GV
->isConstant() && GV
->hasDefinitiveInitializer(),
4198 "info argument of llvm.coro.begin must refer to an initialized "
4200 Constant
*Init
= GV
->getInitializer();
4201 Assert(isa
<ConstantStruct
>(Init
) || isa
<ConstantArray
>(Init
),
4202 "info argument of llvm.coro.begin must refer to either a struct or "
4206 case Intrinsic::experimental_constrained_fadd
:
4207 case Intrinsic::experimental_constrained_fsub
:
4208 case Intrinsic::experimental_constrained_fmul
:
4209 case Intrinsic::experimental_constrained_fdiv
:
4210 case Intrinsic::experimental_constrained_frem
:
4211 case Intrinsic::experimental_constrained_fma
:
4212 case Intrinsic::experimental_constrained_sqrt
:
4213 case Intrinsic::experimental_constrained_pow
:
4214 case Intrinsic::experimental_constrained_powi
:
4215 case Intrinsic::experimental_constrained_sin
:
4216 case Intrinsic::experimental_constrained_cos
:
4217 case Intrinsic::experimental_constrained_exp
:
4218 case Intrinsic::experimental_constrained_exp2
:
4219 case Intrinsic::experimental_constrained_log
:
4220 case Intrinsic::experimental_constrained_log10
:
4221 case Intrinsic::experimental_constrained_log2
:
4222 case Intrinsic::experimental_constrained_rint
:
4223 case Intrinsic::experimental_constrained_nearbyint
:
4224 case Intrinsic::experimental_constrained_maxnum
:
4225 case Intrinsic::experimental_constrained_minnum
:
4226 case Intrinsic::experimental_constrained_ceil
:
4227 case Intrinsic::experimental_constrained_floor
:
4228 case Intrinsic::experimental_constrained_round
:
4229 case Intrinsic::experimental_constrained_trunc
:
4230 visitConstrainedFPIntrinsic(cast
<ConstrainedFPIntrinsic
>(Call
));
4232 case Intrinsic::dbg_declare
: // llvm.dbg.declare
4233 Assert(isa
<MetadataAsValue
>(Call
.getArgOperand(0)),
4234 "invalid llvm.dbg.declare intrinsic call 1", Call
);
4235 visitDbgIntrinsic("declare", cast
<DbgVariableIntrinsic
>(Call
));
4237 case Intrinsic::dbg_addr
: // llvm.dbg.addr
4238 visitDbgIntrinsic("addr", cast
<DbgVariableIntrinsic
>(Call
));
4240 case Intrinsic::dbg_value
: // llvm.dbg.value
4241 visitDbgIntrinsic("value", cast
<DbgVariableIntrinsic
>(Call
));
4243 case Intrinsic::dbg_label
: // llvm.dbg.label
4244 visitDbgLabelIntrinsic("label", cast
<DbgLabelInst
>(Call
));
4246 case Intrinsic::memcpy
:
4247 case Intrinsic::memmove
:
4248 case Intrinsic::memset
: {
4249 const auto *MI
= cast
<MemIntrinsic
>(&Call
);
4250 auto IsValidAlignment
= [&](unsigned Alignment
) -> bool {
4251 return Alignment
== 0 || isPowerOf2_32(Alignment
);
4253 Assert(IsValidAlignment(MI
->getDestAlignment()),
4254 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
4256 if (const auto *MTI
= dyn_cast
<MemTransferInst
>(MI
)) {
4257 Assert(IsValidAlignment(MTI
->getSourceAlignment()),
4258 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
4264 case Intrinsic::memcpy_element_unordered_atomic
:
4265 case Intrinsic::memmove_element_unordered_atomic
:
4266 case Intrinsic::memset_element_unordered_atomic
: {
4267 const auto *AMI
= cast
<AtomicMemIntrinsic
>(&Call
);
4269 ConstantInt
*ElementSizeCI
=
4270 cast
<ConstantInt
>(AMI
->getRawElementSizeInBytes());
4271 const APInt
&ElementSizeVal
= ElementSizeCI
->getValue();
4272 Assert(ElementSizeVal
.isPowerOf2(),
4273 "element size of the element-wise atomic memory intrinsic "
4274 "must be a power of 2",
4277 if (auto *LengthCI
= dyn_cast
<ConstantInt
>(AMI
->getLength())) {
4278 uint64_t Length
= LengthCI
->getZExtValue();
4279 uint64_t ElementSize
= AMI
->getElementSizeInBytes();
4280 Assert((Length
% ElementSize
) == 0,
4281 "constant length must be a multiple of the element size in the "
4282 "element-wise atomic memory intrinsic",
4286 auto IsValidAlignment
= [&](uint64_t Alignment
) {
4287 return isPowerOf2_64(Alignment
) && ElementSizeVal
.ule(Alignment
);
4289 uint64_t DstAlignment
= AMI
->getDestAlignment();
4290 Assert(IsValidAlignment(DstAlignment
),
4291 "incorrect alignment of the destination argument", Call
);
4292 if (const auto *AMT
= dyn_cast
<AtomicMemTransferInst
>(AMI
)) {
4293 uint64_t SrcAlignment
= AMT
->getSourceAlignment();
4294 Assert(IsValidAlignment(SrcAlignment
),
4295 "incorrect alignment of the source argument", Call
);
4299 case Intrinsic::gcroot
:
4300 case Intrinsic::gcwrite
:
4301 case Intrinsic::gcread
:
4302 if (ID
== Intrinsic::gcroot
) {
4304 dyn_cast
<AllocaInst
>(Call
.getArgOperand(0)->stripPointerCasts());
4305 Assert(AI
, "llvm.gcroot parameter #1 must be an alloca.", Call
);
4306 Assert(isa
<Constant
>(Call
.getArgOperand(1)),
4307 "llvm.gcroot parameter #2 must be a constant.", Call
);
4308 if (!AI
->getAllocatedType()->isPointerTy()) {
4309 Assert(!isa
<ConstantPointerNull
>(Call
.getArgOperand(1)),
4310 "llvm.gcroot parameter #1 must either be a pointer alloca, "
4311 "or argument #2 must be a non-null constant.",
4316 Assert(Call
.getParent()->getParent()->hasGC(),
4317 "Enclosing function does not use GC.", Call
);
4319 case Intrinsic::init_trampoline
:
4320 Assert(isa
<Function
>(Call
.getArgOperand(1)->stripPointerCasts()),
4321 "llvm.init_trampoline parameter #2 must resolve to a function.",
4324 case Intrinsic::prefetch
:
4325 Assert(cast
<ConstantInt
>(Call
.getArgOperand(1))->getZExtValue() < 2 &&
4326 cast
<ConstantInt
>(Call
.getArgOperand(2))->getZExtValue() < 4,
4327 "invalid arguments to llvm.prefetch", Call
);
4329 case Intrinsic::stackprotector
:
4330 Assert(isa
<AllocaInst
>(Call
.getArgOperand(1)->stripPointerCasts()),
4331 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call
);
4333 case Intrinsic::localescape
: {
4334 BasicBlock
*BB
= Call
.getParent();
4335 Assert(BB
== &BB
->getParent()->front(),
4336 "llvm.localescape used outside of entry block", Call
);
4337 Assert(!SawFrameEscape
,
4338 "multiple calls to llvm.localescape in one function", Call
);
4339 for (Value
*Arg
: Call
.args()) {
4340 if (isa
<ConstantPointerNull
>(Arg
))
4341 continue; // Null values are allowed as placeholders.
4342 auto *AI
= dyn_cast
<AllocaInst
>(Arg
->stripPointerCasts());
4343 Assert(AI
&& AI
->isStaticAlloca(),
4344 "llvm.localescape only accepts static allocas", Call
);
4346 FrameEscapeInfo
[BB
->getParent()].first
= Call
.getNumArgOperands();
4347 SawFrameEscape
= true;
4350 case Intrinsic::localrecover
: {
4351 Value
*FnArg
= Call
.getArgOperand(0)->stripPointerCasts();
4352 Function
*Fn
= dyn_cast
<Function
>(FnArg
);
4353 Assert(Fn
&& !Fn
->isDeclaration(),
4354 "llvm.localrecover first "
4355 "argument must be function defined in this module",
4357 auto *IdxArg
= cast
<ConstantInt
>(Call
.getArgOperand(2));
4358 auto &Entry
= FrameEscapeInfo
[Fn
];
4359 Entry
.second
= unsigned(
4360 std::max(uint64_t(Entry
.second
), IdxArg
->getLimitedValue(~0U) + 1));
4364 case Intrinsic::experimental_gc_statepoint
:
4365 if (auto *CI
= dyn_cast
<CallInst
>(&Call
))
4366 Assert(!CI
->isInlineAsm(),
4367 "gc.statepoint support for inline assembly unimplemented", CI
);
4368 Assert(Call
.getParent()->getParent()->hasGC(),
4369 "Enclosing function does not use GC.", Call
);
4371 verifyStatepoint(Call
);
4373 case Intrinsic::experimental_gc_result
: {
4374 Assert(Call
.getParent()->getParent()->hasGC(),
4375 "Enclosing function does not use GC.", Call
);
4376 // Are we tied to a statepoint properly?
4377 const auto *StatepointCall
= dyn_cast
<CallBase
>(Call
.getArgOperand(0));
4378 const Function
*StatepointFn
=
4379 StatepointCall
? StatepointCall
->getCalledFunction() : nullptr;
4380 Assert(StatepointFn
&& StatepointFn
->isDeclaration() &&
4381 StatepointFn
->getIntrinsicID() ==
4382 Intrinsic::experimental_gc_statepoint
,
4383 "gc.result operand #1 must be from a statepoint", Call
,
4384 Call
.getArgOperand(0));
4386 // Assert that result type matches wrapped callee.
4387 const Value
*Target
= StatepointCall
->getArgOperand(2);
4388 auto *PT
= cast
<PointerType
>(Target
->getType());
4389 auto *TargetFuncType
= cast
<FunctionType
>(PT
->getElementType());
4390 Assert(Call
.getType() == TargetFuncType
->getReturnType(),
4391 "gc.result result type does not match wrapped callee", Call
);
4394 case Intrinsic::experimental_gc_relocate
: {
4395 Assert(Call
.getNumArgOperands() == 3, "wrong number of arguments", Call
);
4397 Assert(isa
<PointerType
>(Call
.getType()->getScalarType()),
4398 "gc.relocate must return a pointer or a vector of pointers", Call
);
4400 // Check that this relocate is correctly tied to the statepoint
4402 // This is case for relocate on the unwinding path of an invoke statepoint
4403 if (LandingPadInst
*LandingPad
=
4404 dyn_cast
<LandingPadInst
>(Call
.getArgOperand(0))) {
4406 const BasicBlock
*InvokeBB
=
4407 LandingPad
->getParent()->getUniquePredecessor();
4409 // Landingpad relocates should have only one predecessor with invoke
4410 // statepoint terminator
4411 Assert(InvokeBB
, "safepoints should have unique landingpads",
4412 LandingPad
->getParent());
4413 Assert(InvokeBB
->getTerminator(), "safepoint block should be well formed",
4415 Assert(isStatepoint(InvokeBB
->getTerminator()),
4416 "gc relocate should be linked to a statepoint", InvokeBB
);
4418 // In all other cases relocate should be tied to the statepoint directly.
4419 // This covers relocates on a normal return path of invoke statepoint and
4420 // relocates of a call statepoint.
4421 auto Token
= Call
.getArgOperand(0);
4422 Assert(isa
<Instruction
>(Token
) && isStatepoint(cast
<Instruction
>(Token
)),
4423 "gc relocate is incorrectly tied to the statepoint", Call
, Token
);
4426 // Verify rest of the relocate arguments.
4427 const CallBase
&StatepointCall
=
4428 *cast
<CallBase
>(cast
<GCRelocateInst
>(Call
).getStatepoint());
4430 // Both the base and derived must be piped through the safepoint.
4431 Value
*Base
= Call
.getArgOperand(1);
4432 Assert(isa
<ConstantInt
>(Base
),
4433 "gc.relocate operand #2 must be integer offset", Call
);
4435 Value
*Derived
= Call
.getArgOperand(2);
4436 Assert(isa
<ConstantInt
>(Derived
),
4437 "gc.relocate operand #3 must be integer offset", Call
);
4439 const int BaseIndex
= cast
<ConstantInt
>(Base
)->getZExtValue();
4440 const int DerivedIndex
= cast
<ConstantInt
>(Derived
)->getZExtValue();
4442 Assert(0 <= BaseIndex
&& BaseIndex
< (int)StatepointCall
.arg_size(),
4443 "gc.relocate: statepoint base index out of bounds", Call
);
4444 Assert(0 <= DerivedIndex
&& DerivedIndex
< (int)StatepointCall
.arg_size(),
4445 "gc.relocate: statepoint derived index out of bounds", Call
);
4447 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4448 // section of the statepoint's argument.
4449 Assert(StatepointCall
.arg_size() > 0,
4450 "gc.statepoint: insufficient arguments");
4451 Assert(isa
<ConstantInt
>(StatepointCall
.getArgOperand(3)),
4452 "gc.statement: number of call arguments must be constant integer");
4453 const unsigned NumCallArgs
=
4454 cast
<ConstantInt
>(StatepointCall
.getArgOperand(3))->getZExtValue();
4455 Assert(StatepointCall
.arg_size() > NumCallArgs
+ 5,
4456 "gc.statepoint: mismatch in number of call arguments");
4457 Assert(isa
<ConstantInt
>(StatepointCall
.getArgOperand(NumCallArgs
+ 5)),
4458 "gc.statepoint: number of transition arguments must be "
4459 "a constant integer");
4460 const int NumTransitionArgs
=
4461 cast
<ConstantInt
>(StatepointCall
.getArgOperand(NumCallArgs
+ 5))
4463 const int DeoptArgsStart
= 4 + NumCallArgs
+ 1 + NumTransitionArgs
+ 1;
4464 Assert(isa
<ConstantInt
>(StatepointCall
.getArgOperand(DeoptArgsStart
)),
4465 "gc.statepoint: number of deoptimization arguments must be "
4466 "a constant integer");
4467 const int NumDeoptArgs
=
4468 cast
<ConstantInt
>(StatepointCall
.getArgOperand(DeoptArgsStart
))
4470 const int GCParamArgsStart
= DeoptArgsStart
+ 1 + NumDeoptArgs
;
4471 const int GCParamArgsEnd
= StatepointCall
.arg_size();
4472 Assert(GCParamArgsStart
<= BaseIndex
&& BaseIndex
< GCParamArgsEnd
,
4473 "gc.relocate: statepoint base index doesn't fall within the "
4474 "'gc parameters' section of the statepoint call",
4476 Assert(GCParamArgsStart
<= DerivedIndex
&& DerivedIndex
< GCParamArgsEnd
,
4477 "gc.relocate: statepoint derived index doesn't fall within the "
4478 "'gc parameters' section of the statepoint call",
4481 // Relocated value must be either a pointer type or vector-of-pointer type,
4482 // but gc_relocate does not need to return the same pointer type as the
4483 // relocated pointer. It can be casted to the correct type later if it's
4484 // desired. However, they must have the same address space and 'vectorness'
4485 GCRelocateInst
&Relocate
= cast
<GCRelocateInst
>(Call
);
4486 Assert(Relocate
.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),
4487 "gc.relocate: relocated value must be a gc pointer", Call
);
4489 auto ResultType
= Call
.getType();
4490 auto DerivedType
= Relocate
.getDerivedPtr()->getType();
4491 Assert(ResultType
->isVectorTy() == DerivedType
->isVectorTy(),
4492 "gc.relocate: vector relocates to vector and pointer to pointer",
4495 ResultType
->getPointerAddressSpace() ==
4496 DerivedType
->getPointerAddressSpace(),
4497 "gc.relocate: relocating a pointer shouldn't change its address space",
4501 case Intrinsic::eh_exceptioncode
:
4502 case Intrinsic::eh_exceptionpointer
: {
4503 Assert(isa
<CatchPadInst
>(Call
.getArgOperand(0)),
4504 "eh.exceptionpointer argument must be a catchpad", Call
);
4507 case Intrinsic::masked_load
: {
4508 Assert(Call
.getType()->isVectorTy(), "masked_load: must return a vector",
4511 Value
*Ptr
= Call
.getArgOperand(0);
4512 ConstantInt
*Alignment
= cast
<ConstantInt
>(Call
.getArgOperand(1));
4513 Value
*Mask
= Call
.getArgOperand(2);
4514 Value
*PassThru
= Call
.getArgOperand(3);
4515 Assert(Mask
->getType()->isVectorTy(), "masked_load: mask must be vector",
4517 Assert(Alignment
->getValue().isPowerOf2(),
4518 "masked_load: alignment must be a power of 2", Call
);
4520 // DataTy is the overloaded type
4521 Type
*DataTy
= cast
<PointerType
>(Ptr
->getType())->getElementType();
4522 Assert(DataTy
== Call
.getType(),
4523 "masked_load: return must match pointer type", Call
);
4524 Assert(PassThru
->getType() == DataTy
,
4525 "masked_load: pass through and data type must match", Call
);
4526 Assert(Mask
->getType()->getVectorNumElements() ==
4527 DataTy
->getVectorNumElements(),
4528 "masked_load: vector mask must be same length as data", Call
);
4531 case Intrinsic::masked_store
: {
4532 Value
*Val
= Call
.getArgOperand(0);
4533 Value
*Ptr
= Call
.getArgOperand(1);
4534 ConstantInt
*Alignment
= cast
<ConstantInt
>(Call
.getArgOperand(2));
4535 Value
*Mask
= Call
.getArgOperand(3);
4536 Assert(Mask
->getType()->isVectorTy(), "masked_store: mask must be vector",
4538 Assert(Alignment
->getValue().isPowerOf2(),
4539 "masked_store: alignment must be a power of 2", Call
);
4541 // DataTy is the overloaded type
4542 Type
*DataTy
= cast
<PointerType
>(Ptr
->getType())->getElementType();
4543 Assert(DataTy
== Val
->getType(),
4544 "masked_store: storee must match pointer type", Call
);
4545 Assert(Mask
->getType()->getVectorNumElements() ==
4546 DataTy
->getVectorNumElements(),
4547 "masked_store: vector mask must be same length as data", Call
);
4551 case Intrinsic::experimental_guard
: {
4552 Assert(isa
<CallInst
>(Call
), "experimental_guard cannot be invoked", Call
);
4553 Assert(Call
.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1,
4554 "experimental_guard must have exactly one "
4555 "\"deopt\" operand bundle");
4559 case Intrinsic::experimental_deoptimize
: {
4560 Assert(isa
<CallInst
>(Call
), "experimental_deoptimize cannot be invoked",
4562 Assert(Call
.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1,
4563 "experimental_deoptimize must have exactly one "
4564 "\"deopt\" operand bundle");
4565 Assert(Call
.getType() == Call
.getFunction()->getReturnType(),
4566 "experimental_deoptimize return type must match caller return type");
4568 if (isa
<CallInst
>(Call
)) {
4569 auto *RI
= dyn_cast
<ReturnInst
>(Call
.getNextNode());
4571 "calls to experimental_deoptimize must be followed by a return");
4573 if (!Call
.getType()->isVoidTy() && RI
)
4574 Assert(RI
->getReturnValue() == &Call
,
4575 "calls to experimental_deoptimize must be followed by a return "
4576 "of the value computed by experimental_deoptimize");
4581 case Intrinsic::sadd_sat
:
4582 case Intrinsic::uadd_sat
:
4583 case Intrinsic::ssub_sat
:
4584 case Intrinsic::usub_sat
: {
4585 Value
*Op1
= Call
.getArgOperand(0);
4586 Value
*Op2
= Call
.getArgOperand(1);
4587 Assert(Op1
->getType()->isIntOrIntVectorTy(),
4588 "first operand of [us][add|sub]_sat must be an int type or vector "
4590 Assert(Op2
->getType()->isIntOrIntVectorTy(),
4591 "second operand of [us][add|sub]_sat must be an int type or vector "
4595 case Intrinsic::smul_fix
:
4596 case Intrinsic::umul_fix
: {
4597 Value
*Op1
= Call
.getArgOperand(0);
4598 Value
*Op2
= Call
.getArgOperand(1);
4599 Assert(Op1
->getType()->isIntOrIntVectorTy(),
4600 "first operand of [us]mul_fix must be an int type or vector "
4602 Assert(Op2
->getType()->isIntOrIntVectorTy(),
4603 "second operand of [us]mul_fix must be an int type or vector "
4606 auto *Op3
= cast
<ConstantInt
>(Call
.getArgOperand(2));
4607 Assert(Op3
->getType()->getBitWidth() <= 32,
4608 "third argument of [us]mul_fix must fit within 32 bits");
4610 if (ID
== Intrinsic::smul_fix
) {
4612 Op3
->getZExtValue() < Op1
->getType()->getScalarSizeInBits(),
4613 "the scale of smul_fix must be less than the width of the operands");
4615 Assert(Op3
->getZExtValue() <= Op1
->getType()->getScalarSizeInBits(),
4616 "the scale of umul_fix must be less than or equal to the width of "
4624 /// Carefully grab the subprogram from a local scope.
4626 /// This carefully grabs the subprogram from a local scope, avoiding the
4627 /// built-in assertions that would typically fire.
4628 static DISubprogram
*getSubprogram(Metadata
*LocalScope
) {
4632 if (auto *SP
= dyn_cast
<DISubprogram
>(LocalScope
))
4635 if (auto *LB
= dyn_cast
<DILexicalBlockBase
>(LocalScope
))
4636 return getSubprogram(LB
->getRawScope());
4638 // Just return null; broken scope chains are checked elsewhere.
4639 assert(!isa
<DILocalScope
>(LocalScope
) && "Unknown type of local scope");
4643 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic
&FPI
) {
4644 unsigned NumOperands
= FPI
.getNumArgOperands();
4645 bool HasExceptionMD
= false;
4646 bool HasRoundingMD
= false;
4647 switch (FPI
.getIntrinsicID()) {
4648 case Intrinsic::experimental_constrained_sqrt
:
4649 case Intrinsic::experimental_constrained_sin
:
4650 case Intrinsic::experimental_constrained_cos
:
4651 case Intrinsic::experimental_constrained_exp
:
4652 case Intrinsic::experimental_constrained_exp2
:
4653 case Intrinsic::experimental_constrained_log
:
4654 case Intrinsic::experimental_constrained_log10
:
4655 case Intrinsic::experimental_constrained_log2
:
4656 case Intrinsic::experimental_constrained_rint
:
4657 case Intrinsic::experimental_constrained_nearbyint
:
4658 case Intrinsic::experimental_constrained_ceil
:
4659 case Intrinsic::experimental_constrained_floor
:
4660 case Intrinsic::experimental_constrained_round
:
4661 case Intrinsic::experimental_constrained_trunc
:
4662 Assert((NumOperands
== 3), "invalid arguments for constrained FP intrinsic",
4664 HasExceptionMD
= true;
4665 HasRoundingMD
= true;
4668 case Intrinsic::experimental_constrained_fma
:
4669 Assert((NumOperands
== 5), "invalid arguments for constrained FP intrinsic",
4671 HasExceptionMD
= true;
4672 HasRoundingMD
= true;
4675 case Intrinsic::experimental_constrained_fadd
:
4676 case Intrinsic::experimental_constrained_fsub
:
4677 case Intrinsic::experimental_constrained_fmul
:
4678 case Intrinsic::experimental_constrained_fdiv
:
4679 case Intrinsic::experimental_constrained_frem
:
4680 case Intrinsic::experimental_constrained_pow
:
4681 case Intrinsic::experimental_constrained_powi
:
4682 case Intrinsic::experimental_constrained_maxnum
:
4683 case Intrinsic::experimental_constrained_minnum
:
4684 Assert((NumOperands
== 4), "invalid arguments for constrained FP intrinsic",
4686 HasExceptionMD
= true;
4687 HasRoundingMD
= true;
4691 llvm_unreachable("Invalid constrained FP intrinsic!");
4694 // If a non-metadata argument is passed in a metadata slot then the
4695 // error will be caught earlier when the incorrect argument doesn't
4696 // match the specification in the intrinsic call table. Thus, no
4697 // argument type check is needed here.
4699 if (HasExceptionMD
) {
4700 Assert(FPI
.getExceptionBehavior() != ConstrainedFPIntrinsic::ebInvalid
,
4701 "invalid exception behavior argument", &FPI
);
4703 if (HasRoundingMD
) {
4704 Assert(FPI
.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid
,
4705 "invalid rounding mode argument", &FPI
);
4709 void Verifier::visitDbgIntrinsic(StringRef Kind
, DbgVariableIntrinsic
&DII
) {
4710 auto *MD
= cast
<MetadataAsValue
>(DII
.getArgOperand(0))->getMetadata();
4711 AssertDI(isa
<ValueAsMetadata
>(MD
) ||
4712 (isa
<MDNode
>(MD
) && !cast
<MDNode
>(MD
)->getNumOperands()),
4713 "invalid llvm.dbg." + Kind
+ " intrinsic address/value", &DII
, MD
);
4714 AssertDI(isa
<DILocalVariable
>(DII
.getRawVariable()),
4715 "invalid llvm.dbg." + Kind
+ " intrinsic variable", &DII
,
4716 DII
.getRawVariable());
4717 AssertDI(isa
<DIExpression
>(DII
.getRawExpression()),
4718 "invalid llvm.dbg." + Kind
+ " intrinsic expression", &DII
,
4719 DII
.getRawExpression());
4721 // Ignore broken !dbg attachments; they're checked elsewhere.
4722 if (MDNode
*N
= DII
.getDebugLoc().getAsMDNode())
4723 if (!isa
<DILocation
>(N
))
4726 BasicBlock
*BB
= DII
.getParent();
4727 Function
*F
= BB
? BB
->getParent() : nullptr;
4729 // The scopes for variables and !dbg attachments must agree.
4730 DILocalVariable
*Var
= DII
.getVariable();
4731 DILocation
*Loc
= DII
.getDebugLoc();
4732 AssertDI(Loc
, "llvm.dbg." + Kind
+ " intrinsic requires a !dbg attachment",
4735 DISubprogram
*VarSP
= getSubprogram(Var
->getRawScope());
4736 DISubprogram
*LocSP
= getSubprogram(Loc
->getRawScope());
4737 if (!VarSP
|| !LocSP
)
4738 return; // Broken scope chains are checked elsewhere.
4740 AssertDI(VarSP
== LocSP
, "mismatched subprogram between llvm.dbg." + Kind
+
4741 " variable and !dbg attachment",
4742 &DII
, BB
, F
, Var
, Var
->getScope()->getSubprogram(), Loc
,
4743 Loc
->getScope()->getSubprogram());
4745 // This check is redundant with one in visitLocalVariable().
4746 AssertDI(isType(Var
->getRawType()), "invalid type ref", Var
,
4748 if (auto *Type
= dyn_cast_or_null
<DIType
>(Var
->getRawType()))
4749 if (Type
->isBlockByrefStruct())
4750 AssertDI(DII
.getExpression() && DII
.getExpression()->getNumElements(),
4751 "BlockByRef variable without complex expression", Var
, &DII
);
4756 void Verifier::visitDbgLabelIntrinsic(StringRef Kind
, DbgLabelInst
&DLI
) {
4757 AssertDI(isa
<DILabel
>(DLI
.getRawLabel()),
4758 "invalid llvm.dbg." + Kind
+ " intrinsic variable", &DLI
,
4761 // Ignore broken !dbg attachments; they're checked elsewhere.
4762 if (MDNode
*N
= DLI
.getDebugLoc().getAsMDNode())
4763 if (!isa
<DILocation
>(N
))
4766 BasicBlock
*BB
= DLI
.getParent();
4767 Function
*F
= BB
? BB
->getParent() : nullptr;
4769 // The scopes for variables and !dbg attachments must agree.
4770 DILabel
*Label
= DLI
.getLabel();
4771 DILocation
*Loc
= DLI
.getDebugLoc();
4772 Assert(Loc
, "llvm.dbg." + Kind
+ " intrinsic requires a !dbg attachment",
4775 DISubprogram
*LabelSP
= getSubprogram(Label
->getRawScope());
4776 DISubprogram
*LocSP
= getSubprogram(Loc
->getRawScope());
4777 if (!LabelSP
|| !LocSP
)
4780 AssertDI(LabelSP
== LocSP
, "mismatched subprogram between llvm.dbg." + Kind
+
4781 " label and !dbg attachment",
4782 &DLI
, BB
, F
, Label
, Label
->getScope()->getSubprogram(), Loc
,
4783 Loc
->getScope()->getSubprogram());
4786 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic
&I
) {
4787 DILocalVariable
*V
= dyn_cast_or_null
<DILocalVariable
>(I
.getRawVariable());
4788 DIExpression
*E
= dyn_cast_or_null
<DIExpression
>(I
.getRawExpression());
4790 // We don't know whether this intrinsic verified correctly.
4791 if (!V
|| !E
|| !E
->isValid())
4794 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
4795 auto Fragment
= E
->getFragmentInfo();
4799 // The frontend helps out GDB by emitting the members of local anonymous
4800 // unions as artificial local variables with shared storage. When SROA splits
4801 // the storage for artificial local variables that are smaller than the entire
4802 // union, the overhang piece will be outside of the allotted space for the
4803 // variable and this check fails.
4804 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4805 if (V
->isArtificial())
4808 verifyFragmentExpression(*V
, *Fragment
, &I
);
4811 template <typename ValueOrMetadata
>
4812 void Verifier::verifyFragmentExpression(const DIVariable
&V
,
4813 DIExpression::FragmentInfo Fragment
,
4814 ValueOrMetadata
*Desc
) {
4815 // If there's no size, the type is broken, but that should be checked
4817 auto VarSize
= V
.getSizeInBits();
4821 unsigned FragSize
= Fragment
.SizeInBits
;
4822 unsigned FragOffset
= Fragment
.OffsetInBits
;
4823 AssertDI(FragSize
+ FragOffset
<= *VarSize
,
4824 "fragment is larger than or outside of variable", Desc
, &V
);
4825 AssertDI(FragSize
!= *VarSize
, "fragment covers entire variable", Desc
, &V
);
4828 void Verifier::verifyFnArgs(const DbgVariableIntrinsic
&I
) {
4829 // This function does not take the scope of noninlined function arguments into
4830 // account. Don't run it if current function is nodebug, because it may
4831 // contain inlined debug intrinsics.
4835 // For performance reasons only check non-inlined ones.
4836 if (I
.getDebugLoc()->getInlinedAt())
4839 DILocalVariable
*Var
= I
.getVariable();
4840 AssertDI(Var
, "dbg intrinsic without variable");
4842 unsigned ArgNo
= Var
->getArg();
4846 // Verify there are no duplicate function argument debug info entries.
4847 // These will cause hard-to-debug assertions in the DWARF backend.
4848 if (DebugFnArgs
.size() < ArgNo
)
4849 DebugFnArgs
.resize(ArgNo
, nullptr);
4851 auto *Prev
= DebugFnArgs
[ArgNo
- 1];
4852 DebugFnArgs
[ArgNo
- 1] = Var
;
4853 AssertDI(!Prev
|| (Prev
== Var
), "conflicting debug info for argument", &I
,
4857 void Verifier::verifyCompileUnits() {
4858 // When more than one Module is imported into the same context, such as during
4859 // an LTO build before linking the modules, ODR type uniquing may cause types
4860 // to point to a different CU. This check does not make sense in this case.
4861 if (M
.getContext().isODRUniquingDebugTypes())
4863 auto *CUs
= M
.getNamedMetadata("llvm.dbg.cu");
4864 SmallPtrSet
<const Metadata
*, 2> Listed
;
4866 Listed
.insert(CUs
->op_begin(), CUs
->op_end());
4867 for (auto *CU
: CUVisited
)
4868 AssertDI(Listed
.count(CU
), "DICompileUnit not listed in llvm.dbg.cu", CU
);
4872 void Verifier::verifyDeoptimizeCallingConvs() {
4873 if (DeoptimizeDeclarations
.empty())
4876 const Function
*First
= DeoptimizeDeclarations
[0];
4877 for (auto *F
: makeArrayRef(DeoptimizeDeclarations
).slice(1)) {
4878 Assert(First
->getCallingConv() == F
->getCallingConv(),
4879 "All llvm.experimental.deoptimize declarations must have the same "
4880 "calling convention",
4885 void Verifier::verifySourceDebugInfo(const DICompileUnit
&U
, const DIFile
&F
) {
4886 bool HasSource
= F
.getSource().hasValue();
4887 if (!HasSourceDebugInfo
.count(&U
))
4888 HasSourceDebugInfo
[&U
] = HasSource
;
4889 AssertDI(HasSource
== HasSourceDebugInfo
[&U
],
4890 "inconsistent use of embedded source");
4893 //===----------------------------------------------------------------------===//
4894 // Implement the public interfaces to this file...
4895 //===----------------------------------------------------------------------===//
4897 bool llvm::verifyFunction(const Function
&f
, raw_ostream
*OS
) {
4898 Function
&F
= const_cast<Function
&>(f
);
4900 // Don't use a raw_null_ostream. Printing IR is expensive.
4901 Verifier
V(OS
, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f
.getParent());
4903 // Note that this function's return value is inverted from what you would
4904 // expect of a function called "verify".
4905 return !V
.verify(F
);
4908 bool llvm::verifyModule(const Module
&M
, raw_ostream
*OS
,
4909 bool *BrokenDebugInfo
) {
4910 // Don't use a raw_null_ostream. Printing IR is expensive.
4911 Verifier
V(OS
, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo
, M
);
4913 bool Broken
= false;
4914 for (const Function
&F
: M
)
4915 Broken
|= !V
.verify(F
);
4917 Broken
|= !V
.verify();
4918 if (BrokenDebugInfo
)
4919 *BrokenDebugInfo
= V
.hasBrokenDebugInfo();
4920 // Note that this function's return value is inverted from what you would
4921 // expect of a function called "verify".
4927 struct VerifierLegacyPass
: public FunctionPass
{
4930 std::unique_ptr
<Verifier
> V
;
4931 bool FatalErrors
= true;
4933 VerifierLegacyPass() : FunctionPass(ID
) {
4934 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4936 explicit VerifierLegacyPass(bool FatalErrors
)
4938 FatalErrors(FatalErrors
) {
4939 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4942 bool doInitialization(Module
&M
) override
{
4943 V
= llvm::make_unique
<Verifier
>(
4944 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M
);
4948 bool runOnFunction(Function
&F
) override
{
4949 if (!V
->verify(F
) && FatalErrors
) {
4950 errs() << "in function " << F
.getName() << '\n';
4951 report_fatal_error("Broken function found, compilation aborted!");
4956 bool doFinalization(Module
&M
) override
{
4957 bool HasErrors
= false;
4958 for (Function
&F
: M
)
4959 if (F
.isDeclaration())
4960 HasErrors
|= !V
->verify(F
);
4962 HasErrors
|= !V
->verify();
4963 if (FatalErrors
&& (HasErrors
|| V
->hasBrokenDebugInfo()))
4964 report_fatal_error("Broken module found, compilation aborted!");
4968 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
4969 AU
.setPreservesAll();
4973 } // end anonymous namespace
4975 /// Helper to issue failure from the TBAA verification
4976 template <typename
... Tys
> void TBAAVerifier::CheckFailed(Tys
&&... Args
) {
4978 return Diagnostic
->CheckFailed(Args
...);
4981 #define AssertTBAA(C, ...) \
4984 CheckFailed(__VA_ARGS__); \
4989 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
4990 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a
4991 /// struct-type node describing an aggregate data structure (like a struct).
4992 TBAAVerifier::TBAABaseNodeSummary
4993 TBAAVerifier::verifyTBAABaseNode(Instruction
&I
, const MDNode
*BaseNode
,
4995 if (BaseNode
->getNumOperands() < 2) {
4996 CheckFailed("Base nodes must have at least two operands", &I
, BaseNode
);
5000 auto Itr
= TBAABaseNodes
.find(BaseNode
);
5001 if (Itr
!= TBAABaseNodes
.end())
5004 auto Result
= verifyTBAABaseNodeImpl(I
, BaseNode
, IsNewFormat
);
5005 auto InsertResult
= TBAABaseNodes
.insert({BaseNode
, Result
});
5007 assert(InsertResult
.second
&& "We just checked!");
5011 TBAAVerifier::TBAABaseNodeSummary
5012 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction
&I
, const MDNode
*BaseNode
,
5014 const TBAAVerifier::TBAABaseNodeSummary InvalidNode
= {true, ~0u};
5016 if (BaseNode
->getNumOperands() == 2) {
5017 // Scalar nodes can only be accessed at offset 0.
5018 return isValidScalarTBAANode(BaseNode
)
5019 ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
5024 if (BaseNode
->getNumOperands() % 3 != 0) {
5025 CheckFailed("Access tag nodes must have the number of operands that is a "
5026 "multiple of 3!", BaseNode
);
5030 if (BaseNode
->getNumOperands() % 2 != 1) {
5031 CheckFailed("Struct tag nodes must have an odd number of operands!",
5037 // Check the type size field.
5039 auto *TypeSizeNode
= mdconst::dyn_extract_or_null
<ConstantInt
>(
5040 BaseNode
->getOperand(1));
5041 if (!TypeSizeNode
) {
5042 CheckFailed("Type size nodes must be constants!", &I
, BaseNode
);
5047 // Check the type name field. In the new format it can be anything.
5048 if (!IsNewFormat
&& !isa
<MDString
>(BaseNode
->getOperand(0))) {
5049 CheckFailed("Struct tag nodes have a string as their first operand",
5054 bool Failed
= false;
5056 Optional
<APInt
> PrevOffset
;
5057 unsigned BitWidth
= ~0u;
5059 // We've already checked that BaseNode is not a degenerate root node with one
5060 // operand in \c verifyTBAABaseNode, so this loop should run at least once.
5061 unsigned FirstFieldOpNo
= IsNewFormat
? 3 : 1;
5062 unsigned NumOpsPerField
= IsNewFormat
? 3 : 2;
5063 for (unsigned Idx
= FirstFieldOpNo
; Idx
< BaseNode
->getNumOperands();
5064 Idx
+= NumOpsPerField
) {
5065 const MDOperand
&FieldTy
= BaseNode
->getOperand(Idx
);
5066 const MDOperand
&FieldOffset
= BaseNode
->getOperand(Idx
+ 1);
5067 if (!isa
<MDNode
>(FieldTy
)) {
5068 CheckFailed("Incorrect field entry in struct type node!", &I
, BaseNode
);
5073 auto *OffsetEntryCI
=
5074 mdconst::dyn_extract_or_null
<ConstantInt
>(FieldOffset
);
5075 if (!OffsetEntryCI
) {
5076 CheckFailed("Offset entries must be constants!", &I
, BaseNode
);
5081 if (BitWidth
== ~0u)
5082 BitWidth
= OffsetEntryCI
->getBitWidth();
5084 if (OffsetEntryCI
->getBitWidth() != BitWidth
) {
5086 "Bitwidth between the offsets and struct type entries must match", &I
,
5092 // NB! As far as I can tell, we generate a non-strictly increasing offset
5093 // sequence only from structs that have zero size bit fields. When
5094 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
5095 // pick the field lexically the latest in struct type metadata node. This
5096 // mirrors the actual behavior of the alias analysis implementation.
5098 !PrevOffset
|| PrevOffset
->ule(OffsetEntryCI
->getValue());
5101 CheckFailed("Offsets must be increasing!", &I
, BaseNode
);
5105 PrevOffset
= OffsetEntryCI
->getValue();
5108 auto *MemberSizeNode
= mdconst::dyn_extract_or_null
<ConstantInt
>(
5109 BaseNode
->getOperand(Idx
+ 2));
5110 if (!MemberSizeNode
) {
5111 CheckFailed("Member size entries must be constants!", &I
, BaseNode
);
5118 return Failed
? InvalidNode
5119 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth
);
5122 static bool IsRootTBAANode(const MDNode
*MD
) {
5123 return MD
->getNumOperands() < 2;
5126 static bool IsScalarTBAANodeImpl(const MDNode
*MD
,
5127 SmallPtrSetImpl
<const MDNode
*> &Visited
) {
5128 if (MD
->getNumOperands() != 2 && MD
->getNumOperands() != 3)
5131 if (!isa
<MDString
>(MD
->getOperand(0)))
5134 if (MD
->getNumOperands() == 3) {
5135 auto *Offset
= mdconst::dyn_extract
<ConstantInt
>(MD
->getOperand(2));
5136 if (!(Offset
&& Offset
->isZero() && isa
<MDString
>(MD
->getOperand(0))))
5140 auto *Parent
= dyn_cast_or_null
<MDNode
>(MD
->getOperand(1));
5141 return Parent
&& Visited
.insert(Parent
).second
&&
5142 (IsRootTBAANode(Parent
) || IsScalarTBAANodeImpl(Parent
, Visited
));
5145 bool TBAAVerifier::isValidScalarTBAANode(const MDNode
*MD
) {
5146 auto ResultIt
= TBAAScalarNodes
.find(MD
);
5147 if (ResultIt
!= TBAAScalarNodes
.end())
5148 return ResultIt
->second
;
5150 SmallPtrSet
<const MDNode
*, 4> Visited
;
5151 bool Result
= IsScalarTBAANodeImpl(MD
, Visited
);
5152 auto InsertResult
= TBAAScalarNodes
.insert({MD
, Result
});
5154 assert(InsertResult
.second
&& "Just checked!");
5159 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p
5160 /// Offset in place to be the offset within the field node returned.
5162 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
5163 MDNode
*TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction
&I
,
5164 const MDNode
*BaseNode
,
5167 assert(BaseNode
->getNumOperands() >= 2 && "Invalid base node!");
5169 // Scalar nodes have only one possible "field" -- their parent in the access
5170 // hierarchy. Offset must be zero at this point, but our caller is supposed
5172 if (BaseNode
->getNumOperands() == 2)
5173 return cast
<MDNode
>(BaseNode
->getOperand(1));
5175 unsigned FirstFieldOpNo
= IsNewFormat
? 3 : 1;
5176 unsigned NumOpsPerField
= IsNewFormat
? 3 : 2;
5177 for (unsigned Idx
= FirstFieldOpNo
; Idx
< BaseNode
->getNumOperands();
5178 Idx
+= NumOpsPerField
) {
5179 auto *OffsetEntryCI
=
5180 mdconst::extract
<ConstantInt
>(BaseNode
->getOperand(Idx
+ 1));
5181 if (OffsetEntryCI
->getValue().ugt(Offset
)) {
5182 if (Idx
== FirstFieldOpNo
) {
5183 CheckFailed("Could not find TBAA parent in struct type node", &I
,
5188 unsigned PrevIdx
= Idx
- NumOpsPerField
;
5189 auto *PrevOffsetEntryCI
=
5190 mdconst::extract
<ConstantInt
>(BaseNode
->getOperand(PrevIdx
+ 1));
5191 Offset
-= PrevOffsetEntryCI
->getValue();
5192 return cast
<MDNode
>(BaseNode
->getOperand(PrevIdx
));
5196 unsigned LastIdx
= BaseNode
->getNumOperands() - NumOpsPerField
;
5197 auto *LastOffsetEntryCI
= mdconst::extract
<ConstantInt
>(
5198 BaseNode
->getOperand(LastIdx
+ 1));
5199 Offset
-= LastOffsetEntryCI
->getValue();
5200 return cast
<MDNode
>(BaseNode
->getOperand(LastIdx
));
5203 static bool isNewFormatTBAATypeNode(llvm::MDNode
*Type
) {
5204 if (!Type
|| Type
->getNumOperands() < 3)
5207 // In the new format type nodes shall have a reference to the parent type as
5208 // its first operand.
5209 MDNode
*Parent
= dyn_cast_or_null
<MDNode
>(Type
->getOperand(0));
5216 bool TBAAVerifier::visitTBAAMetadata(Instruction
&I
, const MDNode
*MD
) {
5217 AssertTBAA(isa
<LoadInst
>(I
) || isa
<StoreInst
>(I
) || isa
<CallInst
>(I
) ||
5218 isa
<VAArgInst
>(I
) || isa
<AtomicRMWInst
>(I
) ||
5219 isa
<AtomicCmpXchgInst
>(I
),
5220 "This instruction shall not have a TBAA access tag!", &I
);
5222 bool IsStructPathTBAA
=
5223 isa
<MDNode
>(MD
->getOperand(0)) && MD
->getNumOperands() >= 3;
5227 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I
);
5229 MDNode
*BaseNode
= dyn_cast_or_null
<MDNode
>(MD
->getOperand(0));
5230 MDNode
*AccessType
= dyn_cast_or_null
<MDNode
>(MD
->getOperand(1));
5232 bool IsNewFormat
= isNewFormatTBAATypeNode(AccessType
);
5235 AssertTBAA(MD
->getNumOperands() == 4 || MD
->getNumOperands() == 5,
5236 "Access tag metadata must have either 4 or 5 operands", &I
, MD
);
5238 AssertTBAA(MD
->getNumOperands() < 5,
5239 "Struct tag metadata must have either 3 or 4 operands", &I
, MD
);
5242 // Check the access size field.
5244 auto *AccessSizeNode
= mdconst::dyn_extract_or_null
<ConstantInt
>(
5246 AssertTBAA(AccessSizeNode
, "Access size field must be a constant", &I
, MD
);
5249 // Check the immutability flag.
5250 unsigned ImmutabilityFlagOpNo
= IsNewFormat
? 4 : 3;
5251 if (MD
->getNumOperands() == ImmutabilityFlagOpNo
+ 1) {
5252 auto *IsImmutableCI
= mdconst::dyn_extract_or_null
<ConstantInt
>(
5253 MD
->getOperand(ImmutabilityFlagOpNo
));
5254 AssertTBAA(IsImmutableCI
,
5255 "Immutability tag on struct tag metadata must be a constant",
5258 IsImmutableCI
->isZero() || IsImmutableCI
->isOne(),
5259 "Immutability part of the struct tag metadata must be either 0 or 1",
5263 AssertTBAA(BaseNode
&& AccessType
,
5264 "Malformed struct tag metadata: base and access-type "
5265 "should be non-null and point to Metadata nodes",
5266 &I
, MD
, BaseNode
, AccessType
);
5269 AssertTBAA(isValidScalarTBAANode(AccessType
),
5270 "Access type node must be a valid scalar type", &I
, MD
,
5274 auto *OffsetCI
= mdconst::dyn_extract_or_null
<ConstantInt
>(MD
->getOperand(2));
5275 AssertTBAA(OffsetCI
, "Offset must be constant integer", &I
, MD
);
5277 APInt Offset
= OffsetCI
->getValue();
5278 bool SeenAccessTypeInPath
= false;
5280 SmallPtrSet
<MDNode
*, 4> StructPath
;
5282 for (/* empty */; BaseNode
&& !IsRootTBAANode(BaseNode
);
5283 BaseNode
= getFieldNodeFromTBAABaseNode(I
, BaseNode
, Offset
,
5285 if (!StructPath
.insert(BaseNode
).second
) {
5286 CheckFailed("Cycle detected in struct path", &I
, MD
);
5291 unsigned BaseNodeBitWidth
;
5292 std::tie(Invalid
, BaseNodeBitWidth
) = verifyTBAABaseNode(I
, BaseNode
,
5295 // If the base node is invalid in itself, then we've already printed all the
5296 // errors we wanted to print.
5300 SeenAccessTypeInPath
|= BaseNode
== AccessType
;
5302 if (isValidScalarTBAANode(BaseNode
) || BaseNode
== AccessType
)
5303 AssertTBAA(Offset
== 0, "Offset not zero at the point of scalar access",
5306 AssertTBAA(BaseNodeBitWidth
== Offset
.getBitWidth() ||
5307 (BaseNodeBitWidth
== 0 && Offset
== 0) ||
5308 (IsNewFormat
&& BaseNodeBitWidth
== ~0u),
5309 "Access bit-width not the same as description bit-width", &I
, MD
,
5310 BaseNodeBitWidth
, Offset
.getBitWidth());
5312 if (IsNewFormat
&& SeenAccessTypeInPath
)
5316 AssertTBAA(SeenAccessTypeInPath
, "Did not see access type in access path!",
5321 char VerifierLegacyPass::ID
= 0;
5322 INITIALIZE_PASS(VerifierLegacyPass
, "verify", "Module Verifier", false, false)
5324 FunctionPass
*llvm::createVerifierPass(bool FatalErrors
) {
5325 return new VerifierLegacyPass(FatalErrors
);
5328 AnalysisKey
VerifierAnalysis::Key
;
5329 VerifierAnalysis::Result
VerifierAnalysis::run(Module
&M
,
5330 ModuleAnalysisManager
&) {
5332 Res
.IRBroken
= llvm::verifyModule(M
, &dbgs(), &Res
.DebugInfoBroken
);
5336 VerifierAnalysis::Result
VerifierAnalysis::run(Function
&F
,
5337 FunctionAnalysisManager
&) {
5338 return { llvm::verifyFunction(F
, &dbgs()), false };
5341 PreservedAnalyses
VerifierPass::run(Module
&M
, ModuleAnalysisManager
&AM
) {
5342 auto Res
= AM
.getResult
<VerifierAnalysis
>(M
);
5343 if (FatalErrors
&& (Res
.IRBroken
|| Res
.DebugInfoBroken
))
5344 report_fatal_error("Broken module found, compilation aborted!");
5346 return PreservedAnalyses::all();
5349 PreservedAnalyses
VerifierPass::run(Function
&F
, FunctionAnalysisManager
&AM
) {
5350 auto res
= AM
.getResult
<VerifierAnalysis
>(F
);
5351 if (res
.IRBroken
&& FatalErrors
)
5352 report_fatal_error("Broken function found, compilation aborted!");
5354 return PreservedAnalyses::all();