1 //===-- lib/MC/XCOFFObjectWriter.cpp - XCOFF file writer ------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements XCOFF object file writer information.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/BinaryFormat/XCOFF.h"
14 #include "llvm/MC/MCAsmLayout.h"
15 #include "llvm/MC/MCAssembler.h"
16 #include "llvm/MC/MCObjectWriter.h"
17 #include "llvm/MC/MCSectionXCOFF.h"
18 #include "llvm/MC/MCSymbolXCOFF.h"
19 #include "llvm/MC/MCValue.h"
20 #include "llvm/MC/MCXCOFFObjectWriter.h"
21 #include "llvm/MC/StringTableBuilder.h"
22 #include "llvm/Support/Error.h"
23 #include "llvm/Support/MathExtras.h"
29 // An XCOFF object file has a limited set of predefined sections. The most
30 // important ones for us (right now) are:
31 // .text --> contains program code and read-only data.
32 // .data --> contains initialized data, function descriptors, and the TOC.
33 // .bss --> contains uninitialized data.
34 // Each of these sections is composed of 'Control Sections'. A Control Section
35 // is more commonly referred to as a csect. A csect is an indivisible unit of
36 // code or data, and acts as a container for symbols. A csect is mapped
37 // into a section based on its storage-mapping class, with the exception of
38 // XMC_RW which gets mapped to either .data or .bss based on whether it's
39 // explicitly initialized or not.
41 // We don't represent the sections in the MC layer as there is nothing
42 // interesting about them at at that level: they carry information that is
43 // only relevant to the ObjectWriter, so we materialize them in this class.
46 constexpr unsigned DefaultSectionAlign
= 4;
48 // Packs the csect's alignment and type into a byte.
49 uint8_t getEncodedType(const MCSectionXCOFF
*);
51 // Wrapper around an MCSymbolXCOFF.
53 const MCSymbolXCOFF
*const MCSym
;
54 uint32_t SymbolTableIndex
;
56 XCOFF::StorageClass
getStorageClass() const {
57 return MCSym
->getStorageClass();
59 StringRef
getName() const { return MCSym
->getName(); }
60 bool nameInStringTable() const {
61 return MCSym
->getName().size() > XCOFF::NameSize
;
64 Symbol(const MCSymbolXCOFF
*MCSym
) : MCSym(MCSym
), SymbolTableIndex(-1) {}
67 // Wrapper for an MCSectionXCOFF.
68 struct ControlSection
{
69 const MCSectionXCOFF
*const MCCsect
;
70 uint32_t SymbolTableIndex
;
74 SmallVector
<Symbol
, 1> Syms
;
76 ControlSection(const MCSectionXCOFF
*MCSec
)
77 : MCCsect(MCSec
), SymbolTableIndex(-1), Address(-1) {}
80 // Represents the data related to a section excluding the csects that make up
81 // the raw data of the section. The csects are stored separately as not all
82 // sections contain csects, and some sections contain csects which are better
83 // stored separately, e.g. the .data section containing read-write, descriptor,
84 // TOCBase and TOC-entry csects.
86 char Name
[XCOFF::NameSize
];
87 // The physical/virtual address of the section. For an object file
88 // these values are equivalent.
91 uint32_t FileOffsetToData
;
92 uint32_t FileOffsetToRelocations
;
93 uint32_t RelocationCount
;
98 // Virtual sections do not need storage allocated in the object file.
104 FileOffsetToData
= 0;
105 FileOffsetToRelocations
= 0;
110 Section(const char *N
, XCOFF::SectionTypeFlags Flags
, bool IsVirtual
)
111 : Address(0), Size(0), FileOffsetToData(0), FileOffsetToRelocations(0),
112 RelocationCount(0), Flags(Flags
), Index(-1), IsVirtual(IsVirtual
) {
113 strncpy(Name
, N
, XCOFF::NameSize
);
117 class XCOFFObjectWriter
: public MCObjectWriter
{
118 // Type to be used for a container representing a set of csects with
119 // (approximately) the same storage mapping class. For example all the csects
120 // with a storage mapping class of `xmc_pr` will get placed into the same
122 using ControlSections
= std::deque
<ControlSection
>;
124 support::endian::Writer W
;
125 std::unique_ptr
<MCXCOFFObjectTargetWriter
> TargetObjectWriter
;
126 StringTableBuilder Strings
;
128 // The non-empty sections, in the order they will appear in the section header
130 std::vector
<Section
*> Sections
;
132 // The Predefined sections.
136 // ControlSections. These store the csects which make up different parts of
137 // the sections. Should have one for each set of csects that get mapped into
138 // the same section and get handled in a 'similar' way.
139 ControlSections ProgramCodeCsects
;
140 ControlSections BSSCsects
;
142 uint32_t SymbolTableEntryCount
= 0;
143 uint32_t SymbolTableOffset
= 0;
145 virtual void reset() override
;
147 void executePostLayoutBinding(MCAssembler
&, const MCAsmLayout
&) override
;
149 void recordRelocation(MCAssembler
&, const MCAsmLayout
&, const MCFragment
*,
150 const MCFixup
&, MCValue
, uint64_t &) override
;
152 uint64_t writeObject(MCAssembler
&, const MCAsmLayout
&) override
;
154 void writeFileHeader();
155 void writeSectionHeaderTable();
156 void writeSymbolTable();
158 // Called after all the csects and symbols have been processed by
159 // `executePostLayoutBinding`, this function handles building up the majority
160 // of the structures in the object file representation. Namely:
161 // *) Calculates physical/virtual addresses, raw-pointer offsets, and section
163 // *) Assigns symbol table indices.
164 // *) Builds up the section header table by adding any non-empty sections to
166 void assignAddressesAndIndices(const llvm::MCAsmLayout
&);
169 needsAuxiliaryHeader() const { /* TODO aux header support not implemented. */
173 // Returns the size of the auxiliary header to be written to the object file.
174 size_t auxiliaryHeaderSize() const {
175 assert(!needsAuxiliaryHeader() &&
176 "Auxiliary header support not implemented.");
181 XCOFFObjectWriter(std::unique_ptr
<MCXCOFFObjectTargetWriter
> MOTW
,
182 raw_pwrite_stream
&OS
);
185 XCOFFObjectWriter::XCOFFObjectWriter(
186 std::unique_ptr
<MCXCOFFObjectTargetWriter
> MOTW
, raw_pwrite_stream
&OS
)
187 : W(OS
, support::big
), TargetObjectWriter(std::move(MOTW
)),
188 Strings(StringTableBuilder::XCOFF
),
189 Text(".text", XCOFF::STYP_TEXT
, /* IsVirtual */ false),
190 BSS(".bss", XCOFF::STYP_BSS
, /* IsVirtual */ true) {}
192 void XCOFFObjectWriter::reset() {
193 // Reset any sections we have written to, and empty the section header table.
194 for (auto *Sec
: Sections
)
198 // Clear any csects we have stored.
199 ProgramCodeCsects
.clear();
202 // Reset the symbol table and string table.
203 SymbolTableEntryCount
= 0;
204 SymbolTableOffset
= 0;
207 MCObjectWriter::reset();
210 void XCOFFObjectWriter::executePostLayoutBinding(
211 llvm::MCAssembler
&Asm
, const llvm::MCAsmLayout
&Layout
) {
212 if (TargetObjectWriter
->is64Bit())
213 report_fatal_error("64-bit XCOFF object files are not supported yet.");
215 // Maps the MC Section representation to its corresponding ControlSection
216 // wrapper. Needed for finding the ControlSection to insert an MCSymbol into
217 // from its containing MCSectionXCOFF.
218 DenseMap
<const MCSectionXCOFF
*, ControlSection
*> WrapperMap
;
220 for (const auto &S
: Asm
) {
221 const MCSectionXCOFF
*MCSec
= dyn_cast
<const MCSectionXCOFF
>(&S
);
222 assert(WrapperMap
.find(MCSec
) == WrapperMap
.end() &&
223 "Cannot add a csect twice.");
225 switch (MCSec
->getMappingClass()) {
227 assert(XCOFF::XTY_SD
== MCSec
->getCSectType() &&
228 "Only an initialized csect can contain program code.");
229 // TODO FIXME Handle .text section csects.
232 if (XCOFF::XTY_CM
== MCSec
->getCSectType()) {
233 BSSCsects
.emplace_back(MCSec
);
234 WrapperMap
[MCSec
] = &BSSCsects
.back();
237 report_fatal_error("Unhandled mapping of read-write csect to section.");
239 assert(XCOFF::XTY_CM
== MCSec
->getCSectType() &&
240 "Mapping invalid csect. CSECT with bss storage class must be "
242 BSSCsects
.emplace_back(MCSec
);
243 WrapperMap
[MCSec
] = &BSSCsects
.back();
246 report_fatal_error("Unhandled mapping of csect to section.");
250 for (const MCSymbol
&S
: Asm
.symbols()) {
251 // Nothing to do for temporary symbols.
254 const MCSymbolXCOFF
*XSym
= cast
<MCSymbolXCOFF
>(&S
);
256 // Map the symbol into its containing csect.
257 const MCSectionXCOFF
*ContainingCsect
= XSym
->getContainingCsect();
258 assert(WrapperMap
.find(ContainingCsect
) != WrapperMap
.end() &&
259 "Expected containing csect to exist in map");
261 // Lookup the containing csect and add the symbol to it.
262 WrapperMap
[ContainingCsect
]->Syms
.emplace_back(XSym
);
264 // If the name does not fit in the storage provided in the symbol table
265 // entry, add it to the string table.
266 const Symbol
&WrapperSym
= WrapperMap
[ContainingCsect
]->Syms
.back();
267 if (WrapperSym
.nameInStringTable()) {
268 Strings
.add(WrapperSym
.getName());
273 assignAddressesAndIndices(Layout
);
276 void XCOFFObjectWriter::recordRelocation(MCAssembler
&, const MCAsmLayout
&,
277 const MCFragment
*, const MCFixup
&,
278 MCValue
, uint64_t &) {
279 report_fatal_error("XCOFF relocations not supported.");
282 uint64_t XCOFFObjectWriter::writeObject(MCAssembler
&Asm
, const MCAsmLayout
&) {
283 // We always emit a timestamp of 0 for reproducibility, so ensure incremental
284 // linking is not enabled, in case, like with Windows COFF, such a timestamp
285 // is incompatible with incremental linking of XCOFF.
286 if (Asm
.isIncrementalLinkerCompatible())
287 report_fatal_error("Incremental linking not supported for XCOFF.");
289 if (TargetObjectWriter
->is64Bit())
290 report_fatal_error("64-bit XCOFF object files are not supported yet.");
292 uint64_t StartOffset
= W
.OS
.tell();
295 writeSectionHeaderTable();
296 // TODO writeSections();
297 // TODO writeRelocations();
299 // TODO FIXME Finalize symbols.
301 // Write the string table.
304 return W
.OS
.tell() - StartOffset
;
307 void XCOFFObjectWriter::writeFileHeader() {
309 W
.write
<uint16_t>(0x01df);
310 // Number of sections.
311 W
.write
<uint16_t>(Sections
.size());
312 // Timestamp field. For reproducible output we write a 0, which represents no
315 // Byte Offset to the start of the symbol table.
316 W
.write
<uint32_t>(SymbolTableOffset
);
317 // Number of entries in the symbol table.
318 W
.write
<int32_t>(SymbolTableEntryCount
);
319 // Size of the optional header.
320 W
.write
<uint16_t>(0);
322 W
.write
<uint16_t>(0);
325 void XCOFFObjectWriter::writeSectionHeaderTable() {
326 for (const auto *Sec
: Sections
) {
328 ArrayRef
<char> NameRef(Sec
->Name
, XCOFF::NameSize
);
331 // Write the Physical Address and Virtual Address. In an object file these
333 W
.write
<uint32_t>(Sec
->Address
);
334 W
.write
<uint32_t>(Sec
->Address
);
336 W
.write
<uint32_t>(Sec
->Size
);
337 W
.write
<uint32_t>(Sec
->FileOffsetToData
);
339 // Relocation pointer and Lineno pointer. Not supported yet.
340 W
.write
<uint32_t>(0);
341 W
.write
<uint32_t>(0);
343 // Relocation and line-number counts. Not supported yet.
344 W
.write
<uint16_t>(0);
345 W
.write
<uint16_t>(0);
347 W
.write
<int32_t>(Sec
->Flags
);
351 void XCOFFObjectWriter::writeSymbolTable() {
352 assert(ProgramCodeCsects
.size() == 0 && ".text csects not handled yet.");
354 // The BSS Section is special in that the csects must contain a single symbol,
355 // and the contained symbol cannot be represented in the symbol table as a
357 for (auto &Sec
: BSSCsects
) {
358 assert(Sec
.Syms
.size() == 1 &&
359 "Uninitialized csect cannot contain more then 1 symbol.");
360 Symbol
&Sym
= Sec
.Syms
.back();
362 // Write the symbol's name.
363 if (Sym
.nameInStringTable()) {
365 W
.write
<uint32_t>(Strings
.getOffset(Sym
.getName()));
367 char Name
[XCOFF::NameSize
];
368 std::strncpy(Name
, Sym
.getName().data(), XCOFF::NameSize
);
369 ArrayRef
<char> NameRef(Name
, XCOFF::NameSize
);
373 W
.write
<uint32_t>(Sec
.Address
);
374 W
.write
<int16_t>(BSS
.Index
);
375 // Basic/Derived type. See the description of the n_type field for symbol
376 // table entries for a detailed description. Since we don't yet support
377 // visibility, and all other bits are either optionally set or reserved,
378 // this is always zero.
379 // TODO FIXME How to assert a symbols visibility is default?
380 W
.write
<uint16_t>(0);
382 W
.write
<uint8_t>(Sym
.getStorageClass());
384 // Always 1 aux entry for now.
387 W
.write
<uint32_t>(Sec
.Size
);
389 // Parameter typecheck hash. Not supported.
390 W
.write
<uint32_t>(0);
391 // Typecheck section number. Not supported.
392 W
.write
<uint16_t>(0);
394 W
.write
<uint8_t>(getEncodedType(Sec
.MCCsect
));
395 // Storage mapping class.
396 W
.write
<uint8_t>(Sec
.MCCsect
->getMappingClass());
397 // Reserved (x_stab).
398 W
.write
<uint32_t>(0);
399 // Reserved (x_snstab).
400 W
.write
<uint16_t>(0);
404 void XCOFFObjectWriter::assignAddressesAndIndices(
405 const llvm::MCAsmLayout
&Layout
) {
406 // The address corrresponds to the address of sections and symbols in the
407 // object file. We place the shared address 0 immediately after the
408 // section header table.
409 uint32_t Address
= 0;
410 // Section indices are 1-based in XCOFF.
411 uint16_t SectionIndex
= 1;
412 // The first symbol table entry is for the file name. We are not emitting it
413 // yet, so start at index 0.
414 uint32_t SymbolTableIndex
= 0;
416 // Text section comes first. TODO
417 // Data section Second. TODO
419 // BSS Section third.
420 if (!BSSCsects
.empty()) {
421 Sections
.push_back(&BSS
);
422 BSS
.Index
= SectionIndex
++;
423 assert(alignTo(Address
, DefaultSectionAlign
) == Address
&&
424 "Improperly aligned address for section.");
425 uint32_t StartAddress
= Address
;
426 for (auto &Csect
: BSSCsects
) {
427 const MCSectionXCOFF
*MCSec
= Csect
.MCCsect
;
428 Address
= alignTo(Address
, MCSec
->getAlignment());
429 Csect
.Address
= Address
;
430 Address
+= Layout
.getSectionAddressSize(MCSec
);
431 Csect
.SymbolTableIndex
= SymbolTableIndex
;
432 // 1 main and 1 auxiliary symbol table entry for the csect.
433 SymbolTableIndex
+= 2;
434 Csect
.Size
= Layout
.getSectionAddressSize(MCSec
);
436 assert(Csect
.Syms
.size() == 1 &&
437 "csect in the BSS can only contain a single symbol.");
438 Csect
.Syms
[0].SymbolTableIndex
= Csect
.SymbolTableIndex
;
440 // Pad out Address to the default alignment. This is to match how the system
441 // assembler handles the .bss section. Its size is always a multiple of 4.
442 Address
= alignTo(Address
, DefaultSectionAlign
);
443 BSS
.Size
= Address
- StartAddress
;
446 SymbolTableEntryCount
= SymbolTableIndex
;
448 // Calculate the RawPointer value for each section.
449 uint64_t RawPointer
= sizeof(XCOFF::FileHeader32
) + auxiliaryHeaderSize() +
450 Sections
.size() * sizeof(XCOFF::SectionHeader32
);
451 for (auto *Sec
: Sections
) {
452 if (!Sec
->IsVirtual
) {
453 Sec
->FileOffsetToData
= RawPointer
;
454 RawPointer
+= Sec
->Size
;
458 // TODO Add in Relocation storage to the RawPointer Calculation.
459 // TODO What to align the SymbolTable to?
460 // TODO Error check that the number of symbol table entries fits in 32-bits
462 if (SymbolTableEntryCount
)
463 SymbolTableOffset
= RawPointer
;
466 // Takes the log base 2 of the alignment and shifts the result into the 5 most
467 // significant bits of a byte, then or's in the csect type into the least
468 // significant 3 bits.
469 uint8_t getEncodedType(const MCSectionXCOFF
*Sec
) {
470 unsigned Align
= Sec
->getAlignment();
471 assert(isPowerOf2_32(Align
) && "Alignment must be a power of 2.");
472 unsigned Log2Align
= Log2_32(Align
);
473 // Result is a number in the range [0, 31] which fits in the 5 least
474 // significant bits. Shift this value into the 5 most significant bits, and
475 // bitwise-or in the csect type.
476 uint8_t EncodedAlign
= Log2Align
<< 3;
477 return EncodedAlign
| Sec
->getCSectType();
480 } // end anonymous namespace
482 std::unique_ptr
<MCObjectWriter
>
483 llvm::createXCOFFObjectWriter(std::unique_ptr
<MCXCOFFObjectTargetWriter
> MOTW
,
484 raw_pwrite_stream
&OS
) {
485 return std::make_unique
<XCOFFObjectWriter
>(std::move(MOTW
), OS
);