1 //===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the interfaces that ARM uses to lower LLVM code into a
12 //===----------------------------------------------------------------------===//
14 #include "ARMISelLowering.h"
15 #include "ARMBaseInstrInfo.h"
16 #include "ARMBaseRegisterInfo.h"
17 #include "ARMCallingConv.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMPerfectShuffle.h"
21 #include "ARMRegisterInfo.h"
22 #include "ARMSelectionDAGInfo.h"
23 #include "ARMSubtarget.h"
24 #include "MCTargetDesc/ARMAddressingModes.h"
25 #include "MCTargetDesc/ARMBaseInfo.h"
26 #include "Utils/ARMBaseInfo.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/BitVector.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringExtras.h"
37 #include "llvm/ADT/StringRef.h"
38 #include "llvm/ADT/StringSwitch.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/VectorUtils.h"
42 #include "llvm/CodeGen/CallingConvLower.h"
43 #include "llvm/CodeGen/ISDOpcodes.h"
44 #include "llvm/CodeGen/IntrinsicLowering.h"
45 #include "llvm/CodeGen/MachineBasicBlock.h"
46 #include "llvm/CodeGen/MachineConstantPool.h"
47 #include "llvm/CodeGen/MachineFrameInfo.h"
48 #include "llvm/CodeGen/MachineFunction.h"
49 #include "llvm/CodeGen/MachineInstr.h"
50 #include "llvm/CodeGen/MachineInstrBuilder.h"
51 #include "llvm/CodeGen/MachineJumpTableInfo.h"
52 #include "llvm/CodeGen/MachineMemOperand.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineRegisterInfo.h"
55 #include "llvm/CodeGen/RuntimeLibcalls.h"
56 #include "llvm/CodeGen/SelectionDAG.h"
57 #include "llvm/CodeGen/SelectionDAGNodes.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/ValueTypes.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DebugLoc.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GlobalAlias.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InlineAsm.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/PatternMatch.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/User.h"
85 #include "llvm/IR/Value.h"
86 #include "llvm/MC/MCInstrDesc.h"
87 #include "llvm/MC/MCInstrItineraries.h"
88 #include "llvm/MC/MCRegisterInfo.h"
89 #include "llvm/MC/MCSchedule.h"
90 #include "llvm/Support/AtomicOrdering.h"
91 #include "llvm/Support/BranchProbability.h"
92 #include "llvm/Support/Casting.h"
93 #include "llvm/Support/CodeGen.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/ErrorHandling.h"
98 #include "llvm/Support/KnownBits.h"
99 #include "llvm/Support/MachineValueType.h"
100 #include "llvm/Support/MathExtras.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include "llvm/Target/TargetMachine.h"
103 #include "llvm/Target/TargetOptions.h"
115 using namespace llvm
;
116 using namespace llvm::PatternMatch
;
118 #define DEBUG_TYPE "arm-isel"
120 STATISTIC(NumTailCalls
, "Number of tail calls");
121 STATISTIC(NumMovwMovt
, "Number of GAs materialized with movw + movt");
122 STATISTIC(NumLoopByVals
, "Number of loops generated for byval arguments");
123 STATISTIC(NumConstpoolPromoted
,
124 "Number of constants with their storage promoted into constant pools");
127 ARMInterworking("arm-interworking", cl::Hidden
,
128 cl::desc("Enable / disable ARM interworking (for debugging only)"),
131 static cl::opt
<bool> EnableConstpoolPromotion(
132 "arm-promote-constant", cl::Hidden
,
133 cl::desc("Enable / disable promotion of unnamed_addr constants into "
135 cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
136 static cl::opt
<unsigned> ConstpoolPromotionMaxSize(
137 "arm-promote-constant-max-size", cl::Hidden
,
138 cl::desc("Maximum size of constant to promote into a constant pool"),
140 static cl::opt
<unsigned> ConstpoolPromotionMaxTotal(
141 "arm-promote-constant-max-total", cl::Hidden
,
142 cl::desc("Maximum size of ALL constants to promote into a constant pool"),
145 // The APCS parameter registers.
146 static const MCPhysReg GPRArgRegs
[] = {
147 ARM::R0
, ARM::R1
, ARM::R2
, ARM::R3
150 void ARMTargetLowering::addTypeForNEON(MVT VT
, MVT PromotedLdStVT
,
151 MVT PromotedBitwiseVT
) {
152 if (VT
!= PromotedLdStVT
) {
153 setOperationAction(ISD::LOAD
, VT
, Promote
);
154 AddPromotedToType (ISD::LOAD
, VT
, PromotedLdStVT
);
156 setOperationAction(ISD::STORE
, VT
, Promote
);
157 AddPromotedToType (ISD::STORE
, VT
, PromotedLdStVT
);
160 MVT ElemTy
= VT
.getVectorElementType();
161 if (ElemTy
!= MVT::f64
)
162 setOperationAction(ISD::SETCC
, VT
, Custom
);
163 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
164 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
165 if (ElemTy
== MVT::i32
) {
166 setOperationAction(ISD::SINT_TO_FP
, VT
, Custom
);
167 setOperationAction(ISD::UINT_TO_FP
, VT
, Custom
);
168 setOperationAction(ISD::FP_TO_SINT
, VT
, Custom
);
169 setOperationAction(ISD::FP_TO_UINT
, VT
, Custom
);
171 setOperationAction(ISD::SINT_TO_FP
, VT
, Expand
);
172 setOperationAction(ISD::UINT_TO_FP
, VT
, Expand
);
173 setOperationAction(ISD::FP_TO_SINT
, VT
, Expand
);
174 setOperationAction(ISD::FP_TO_UINT
, VT
, Expand
);
176 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
177 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
178 setOperationAction(ISD::CONCAT_VECTORS
, VT
, Legal
);
179 setOperationAction(ISD::EXTRACT_SUBVECTOR
, VT
, Legal
);
180 setOperationAction(ISD::SELECT
, VT
, Expand
);
181 setOperationAction(ISD::SELECT_CC
, VT
, Expand
);
182 setOperationAction(ISD::VSELECT
, VT
, Expand
);
183 setOperationAction(ISD::SIGN_EXTEND_INREG
, VT
, Expand
);
184 if (VT
.isInteger()) {
185 setOperationAction(ISD::SHL
, VT
, Custom
);
186 setOperationAction(ISD::SRA
, VT
, Custom
);
187 setOperationAction(ISD::SRL
, VT
, Custom
);
190 // Promote all bit-wise operations.
191 if (VT
.isInteger() && VT
!= PromotedBitwiseVT
) {
192 setOperationAction(ISD::AND
, VT
, Promote
);
193 AddPromotedToType (ISD::AND
, VT
, PromotedBitwiseVT
);
194 setOperationAction(ISD::OR
, VT
, Promote
);
195 AddPromotedToType (ISD::OR
, VT
, PromotedBitwiseVT
);
196 setOperationAction(ISD::XOR
, VT
, Promote
);
197 AddPromotedToType (ISD::XOR
, VT
, PromotedBitwiseVT
);
200 // Neon does not support vector divide/remainder operations.
201 setOperationAction(ISD::SDIV
, VT
, Expand
);
202 setOperationAction(ISD::UDIV
, VT
, Expand
);
203 setOperationAction(ISD::FDIV
, VT
, Expand
);
204 setOperationAction(ISD::SREM
, VT
, Expand
);
205 setOperationAction(ISD::UREM
, VT
, Expand
);
206 setOperationAction(ISD::FREM
, VT
, Expand
);
208 if (!VT
.isFloatingPoint() &&
209 VT
!= MVT::v2i64
&& VT
!= MVT::v1i64
)
210 for (auto Opcode
: {ISD::ABS
, ISD::SMIN
, ISD::SMAX
, ISD::UMIN
, ISD::UMAX
})
211 setOperationAction(Opcode
, VT
, Legal
);
214 void ARMTargetLowering::addDRTypeForNEON(MVT VT
) {
215 addRegisterClass(VT
, &ARM::DPRRegClass
);
216 addTypeForNEON(VT
, MVT::f64
, MVT::v2i32
);
219 void ARMTargetLowering::addQRTypeForNEON(MVT VT
) {
220 addRegisterClass(VT
, &ARM::DPairRegClass
);
221 addTypeForNEON(VT
, MVT::v2f64
, MVT::v4i32
);
224 void ARMTargetLowering::setAllExpand(MVT VT
) {
225 for (unsigned Opc
= 0; Opc
< ISD::BUILTIN_OP_END
; ++Opc
)
226 setOperationAction(Opc
, VT
, Expand
);
228 // We support these really simple operations even on types where all
229 // the actual arithmetic has to be broken down into simpler
230 // operations or turned into library calls.
231 setOperationAction(ISD::BITCAST
, VT
, Legal
);
232 setOperationAction(ISD::LOAD
, VT
, Legal
);
233 setOperationAction(ISD::STORE
, VT
, Legal
);
234 setOperationAction(ISD::UNDEF
, VT
, Legal
);
237 void ARMTargetLowering::addAllExtLoads(const MVT From
, const MVT To
,
238 LegalizeAction Action
) {
239 setLoadExtAction(ISD::EXTLOAD
, From
, To
, Action
);
240 setLoadExtAction(ISD::ZEXTLOAD
, From
, To
, Action
);
241 setLoadExtAction(ISD::SEXTLOAD
, From
, To
, Action
);
244 void ARMTargetLowering::addMVEVectorTypes(bool HasMVEFP
) {
245 const MVT IntTypes
[] = { MVT::v16i8
, MVT::v8i16
, MVT::v4i32
};
247 for (auto VT
: IntTypes
) {
248 addRegisterClass(VT
, &ARM::MQPRRegClass
);
249 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
250 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
251 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
252 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
253 setOperationAction(ISD::SHL
, VT
, Custom
);
254 setOperationAction(ISD::SRA
, VT
, Custom
);
255 setOperationAction(ISD::SRL
, VT
, Custom
);
256 setOperationAction(ISD::SMIN
, VT
, Legal
);
257 setOperationAction(ISD::SMAX
, VT
, Legal
);
258 setOperationAction(ISD::UMIN
, VT
, Legal
);
259 setOperationAction(ISD::UMAX
, VT
, Legal
);
260 setOperationAction(ISD::ABS
, VT
, Legal
);
261 setOperationAction(ISD::SETCC
, VT
, Custom
);
262 setOperationAction(ISD::MLOAD
, VT
, Custom
);
263 setOperationAction(ISD::MSTORE
, VT
, Legal
);
264 setOperationAction(ISD::CTLZ
, VT
, Legal
);
265 setOperationAction(ISD::CTTZ
, VT
, Custom
);
266 setOperationAction(ISD::BITREVERSE
, VT
, Legal
);
267 setOperationAction(ISD::BSWAP
, VT
, Legal
);
269 // No native support for these.
270 setOperationAction(ISD::UDIV
, VT
, Expand
);
271 setOperationAction(ISD::SDIV
, VT
, Expand
);
272 setOperationAction(ISD::UREM
, VT
, Expand
);
273 setOperationAction(ISD::SREM
, VT
, Expand
);
274 setOperationAction(ISD::CTPOP
, VT
, Expand
);
277 setOperationAction(ISD::VECREDUCE_ADD
, VT
, Legal
);
278 setOperationAction(ISD::VECREDUCE_SMAX
, VT
, Legal
);
279 setOperationAction(ISD::VECREDUCE_UMAX
, VT
, Legal
);
280 setOperationAction(ISD::VECREDUCE_SMIN
, VT
, Legal
);
281 setOperationAction(ISD::VECREDUCE_UMIN
, VT
, Legal
);
284 setOperationAction(ISD::SINT_TO_FP
, VT
, Expand
);
285 setOperationAction(ISD::UINT_TO_FP
, VT
, Expand
);
286 setOperationAction(ISD::FP_TO_SINT
, VT
, Expand
);
287 setOperationAction(ISD::FP_TO_UINT
, VT
, Expand
);
290 // Pre and Post inc are supported on loads and stores
291 for (unsigned im
= (unsigned)ISD::PRE_INC
;
292 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
293 setIndexedLoadAction(im
, VT
, Legal
);
294 setIndexedStoreAction(im
, VT
, Legal
);
298 const MVT FloatTypes
[] = { MVT::v8f16
, MVT::v4f32
};
299 for (auto VT
: FloatTypes
) {
300 addRegisterClass(VT
, &ARM::MQPRRegClass
);
304 // These are legal or custom whether we have MVE.fp or not
305 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
306 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
307 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
.getVectorElementType(), Custom
);
308 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
309 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
310 setOperationAction(ISD::BUILD_VECTOR
, VT
.getVectorElementType(), Custom
);
311 setOperationAction(ISD::SCALAR_TO_VECTOR
, VT
, Legal
);
312 setOperationAction(ISD::SETCC
, VT
, Custom
);
313 setOperationAction(ISD::MLOAD
, VT
, Custom
);
314 setOperationAction(ISD::MSTORE
, VT
, Legal
);
316 // Pre and Post inc are supported on loads and stores
317 for (unsigned im
= (unsigned)ISD::PRE_INC
;
318 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
319 setIndexedLoadAction(im
, VT
, Legal
);
320 setIndexedStoreAction(im
, VT
, Legal
);
324 setOperationAction(ISD::FMINNUM
, VT
, Legal
);
325 setOperationAction(ISD::FMAXNUM
, VT
, Legal
);
326 setOperationAction(ISD::FROUND
, VT
, Legal
);
328 // No native support for these.
329 setOperationAction(ISD::FDIV
, VT
, Expand
);
330 setOperationAction(ISD::FREM
, VT
, Expand
);
331 setOperationAction(ISD::FSQRT
, VT
, Expand
);
332 setOperationAction(ISD::FSIN
, VT
, Expand
);
333 setOperationAction(ISD::FCOS
, VT
, Expand
);
334 setOperationAction(ISD::FPOW
, VT
, Expand
);
335 setOperationAction(ISD::FLOG
, VT
, Expand
);
336 setOperationAction(ISD::FLOG2
, VT
, Expand
);
337 setOperationAction(ISD::FLOG10
, VT
, Expand
);
338 setOperationAction(ISD::FEXP
, VT
, Expand
);
339 setOperationAction(ISD::FEXP2
, VT
, Expand
);
340 setOperationAction(ISD::FNEARBYINT
, VT
, Expand
);
344 // We 'support' these types up to bitcast/load/store level, regardless of
345 // MVE integer-only / float support. Only doing FP data processing on the FP
346 // vector types is inhibited at integer-only level.
347 const MVT LongTypes
[] = { MVT::v2i64
, MVT::v2f64
};
348 for (auto VT
: LongTypes
) {
349 addRegisterClass(VT
, &ARM::MQPRRegClass
);
351 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
352 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
353 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
355 // We can do bitwise operations on v2i64 vectors
356 setOperationAction(ISD::AND
, MVT::v2i64
, Legal
);
357 setOperationAction(ISD::OR
, MVT::v2i64
, Legal
);
358 setOperationAction(ISD::XOR
, MVT::v2i64
, Legal
);
360 // It is legal to extload from v4i8 to v4i16 or v4i32.
361 addAllExtLoads(MVT::v8i16
, MVT::v8i8
, Legal
);
362 addAllExtLoads(MVT::v4i32
, MVT::v4i16
, Legal
);
363 addAllExtLoads(MVT::v4i32
, MVT::v4i8
, Legal
);
365 // Some truncating stores are legal too.
366 setTruncStoreAction(MVT::v4i32
, MVT::v4i16
, Legal
);
367 setTruncStoreAction(MVT::v4i32
, MVT::v4i8
, Legal
);
368 setTruncStoreAction(MVT::v8i16
, MVT::v8i8
, Legal
);
370 // Pre and Post inc on these are legal, given the correct extends
371 for (unsigned im
= (unsigned)ISD::PRE_INC
;
372 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
373 setIndexedLoadAction(im
, MVT::v8i8
, Legal
);
374 setIndexedStoreAction(im
, MVT::v8i8
, Legal
);
375 setIndexedLoadAction(im
, MVT::v4i8
, Legal
);
376 setIndexedStoreAction(im
, MVT::v4i8
, Legal
);
377 setIndexedLoadAction(im
, MVT::v4i16
, Legal
);
378 setIndexedStoreAction(im
, MVT::v4i16
, Legal
);
382 const MVT pTypes
[] = {MVT::v16i1
, MVT::v8i1
, MVT::v4i1
};
383 for (auto VT
: pTypes
) {
384 addRegisterClass(VT
, &ARM::VCCRRegClass
);
385 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
386 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
387 setOperationAction(ISD::EXTRACT_SUBVECTOR
, VT
, Custom
);
388 setOperationAction(ISD::CONCAT_VECTORS
, VT
, Custom
);
389 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
390 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
391 setOperationAction(ISD::SETCC
, VT
, Custom
);
392 setOperationAction(ISD::SCALAR_TO_VECTOR
, VT
, Expand
);
393 setOperationAction(ISD::LOAD
, VT
, Custom
);
394 setOperationAction(ISD::STORE
, VT
, Custom
);
398 ARMTargetLowering::ARMTargetLowering(const TargetMachine
&TM
,
399 const ARMSubtarget
&STI
)
400 : TargetLowering(TM
), Subtarget(&STI
) {
401 RegInfo
= Subtarget
->getRegisterInfo();
402 Itins
= Subtarget
->getInstrItineraryData();
404 setBooleanContents(ZeroOrOneBooleanContent
);
405 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent
);
407 if (!Subtarget
->isTargetDarwin() && !Subtarget
->isTargetIOS() &&
408 !Subtarget
->isTargetWatchOS()) {
409 bool IsHFTarget
= TM
.Options
.FloatABIType
== FloatABI::Hard
;
410 for (int LCID
= 0; LCID
< RTLIB::UNKNOWN_LIBCALL
; ++LCID
)
411 setLibcallCallingConv(static_cast<RTLIB::Libcall
>(LCID
),
412 IsHFTarget
? CallingConv::ARM_AAPCS_VFP
413 : CallingConv::ARM_AAPCS
);
416 if (Subtarget
->isTargetMachO()) {
417 // Uses VFP for Thumb libfuncs if available.
418 if (Subtarget
->isThumb() && Subtarget
->hasVFP2Base() &&
419 Subtarget
->hasARMOps() && !Subtarget
->useSoftFloat()) {
420 static const struct {
421 const RTLIB::Libcall Op
;
422 const char * const Name
;
423 const ISD::CondCode Cond
;
425 // Single-precision floating-point arithmetic.
426 { RTLIB::ADD_F32
, "__addsf3vfp", ISD::SETCC_INVALID
},
427 { RTLIB::SUB_F32
, "__subsf3vfp", ISD::SETCC_INVALID
},
428 { RTLIB::MUL_F32
, "__mulsf3vfp", ISD::SETCC_INVALID
},
429 { RTLIB::DIV_F32
, "__divsf3vfp", ISD::SETCC_INVALID
},
431 // Double-precision floating-point arithmetic.
432 { RTLIB::ADD_F64
, "__adddf3vfp", ISD::SETCC_INVALID
},
433 { RTLIB::SUB_F64
, "__subdf3vfp", ISD::SETCC_INVALID
},
434 { RTLIB::MUL_F64
, "__muldf3vfp", ISD::SETCC_INVALID
},
435 { RTLIB::DIV_F64
, "__divdf3vfp", ISD::SETCC_INVALID
},
437 // Single-precision comparisons.
438 { RTLIB::OEQ_F32
, "__eqsf2vfp", ISD::SETNE
},
439 { RTLIB::UNE_F32
, "__nesf2vfp", ISD::SETNE
},
440 { RTLIB::OLT_F32
, "__ltsf2vfp", ISD::SETNE
},
441 { RTLIB::OLE_F32
, "__lesf2vfp", ISD::SETNE
},
442 { RTLIB::OGE_F32
, "__gesf2vfp", ISD::SETNE
},
443 { RTLIB::OGT_F32
, "__gtsf2vfp", ISD::SETNE
},
444 { RTLIB::UO_F32
, "__unordsf2vfp", ISD::SETNE
},
445 { RTLIB::O_F32
, "__unordsf2vfp", ISD::SETEQ
},
447 // Double-precision comparisons.
448 { RTLIB::OEQ_F64
, "__eqdf2vfp", ISD::SETNE
},
449 { RTLIB::UNE_F64
, "__nedf2vfp", ISD::SETNE
},
450 { RTLIB::OLT_F64
, "__ltdf2vfp", ISD::SETNE
},
451 { RTLIB::OLE_F64
, "__ledf2vfp", ISD::SETNE
},
452 { RTLIB::OGE_F64
, "__gedf2vfp", ISD::SETNE
},
453 { RTLIB::OGT_F64
, "__gtdf2vfp", ISD::SETNE
},
454 { RTLIB::UO_F64
, "__unorddf2vfp", ISD::SETNE
},
455 { RTLIB::O_F64
, "__unorddf2vfp", ISD::SETEQ
},
457 // Floating-point to integer conversions.
458 // i64 conversions are done via library routines even when generating VFP
459 // instructions, so use the same ones.
460 { RTLIB::FPTOSINT_F64_I32
, "__fixdfsivfp", ISD::SETCC_INVALID
},
461 { RTLIB::FPTOUINT_F64_I32
, "__fixunsdfsivfp", ISD::SETCC_INVALID
},
462 { RTLIB::FPTOSINT_F32_I32
, "__fixsfsivfp", ISD::SETCC_INVALID
},
463 { RTLIB::FPTOUINT_F32_I32
, "__fixunssfsivfp", ISD::SETCC_INVALID
},
465 // Conversions between floating types.
466 { RTLIB::FPROUND_F64_F32
, "__truncdfsf2vfp", ISD::SETCC_INVALID
},
467 { RTLIB::FPEXT_F32_F64
, "__extendsfdf2vfp", ISD::SETCC_INVALID
},
469 // Integer to floating-point conversions.
470 // i64 conversions are done via library routines even when generating VFP
471 // instructions, so use the same ones.
472 // FIXME: There appears to be some naming inconsistency in ARM libgcc:
473 // e.g., __floatunsidf vs. __floatunssidfvfp.
474 { RTLIB::SINTTOFP_I32_F64
, "__floatsidfvfp", ISD::SETCC_INVALID
},
475 { RTLIB::UINTTOFP_I32_F64
, "__floatunssidfvfp", ISD::SETCC_INVALID
},
476 { RTLIB::SINTTOFP_I32_F32
, "__floatsisfvfp", ISD::SETCC_INVALID
},
477 { RTLIB::UINTTOFP_I32_F32
, "__floatunssisfvfp", ISD::SETCC_INVALID
},
480 for (const auto &LC
: LibraryCalls
) {
481 setLibcallName(LC
.Op
, LC
.Name
);
482 if (LC
.Cond
!= ISD::SETCC_INVALID
)
483 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
488 // These libcalls are not available in 32-bit.
489 setLibcallName(RTLIB::SHL_I128
, nullptr);
490 setLibcallName(RTLIB::SRL_I128
, nullptr);
491 setLibcallName(RTLIB::SRA_I128
, nullptr);
494 if (Subtarget
->isAAPCS_ABI() &&
495 (Subtarget
->isTargetAEABI() || Subtarget
->isTargetGNUAEABI() ||
496 Subtarget
->isTargetMuslAEABI() || Subtarget
->isTargetAndroid())) {
497 static const struct {
498 const RTLIB::Libcall Op
;
499 const char * const Name
;
500 const CallingConv::ID CC
;
501 const ISD::CondCode Cond
;
503 // Double-precision floating-point arithmetic helper functions
504 // RTABI chapter 4.1.2, Table 2
505 { RTLIB::ADD_F64
, "__aeabi_dadd", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
506 { RTLIB::DIV_F64
, "__aeabi_ddiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
507 { RTLIB::MUL_F64
, "__aeabi_dmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
508 { RTLIB::SUB_F64
, "__aeabi_dsub", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
510 // Double-precision floating-point comparison helper functions
511 // RTABI chapter 4.1.2, Table 3
512 { RTLIB::OEQ_F64
, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS
, ISD::SETNE
},
513 { RTLIB::UNE_F64
, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
514 { RTLIB::OLT_F64
, "__aeabi_dcmplt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
515 { RTLIB::OLE_F64
, "__aeabi_dcmple", CallingConv::ARM_AAPCS
, ISD::SETNE
},
516 { RTLIB::OGE_F64
, "__aeabi_dcmpge", CallingConv::ARM_AAPCS
, ISD::SETNE
},
517 { RTLIB::OGT_F64
, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
518 { RTLIB::UO_F64
, "__aeabi_dcmpun", CallingConv::ARM_AAPCS
, ISD::SETNE
},
519 { RTLIB::O_F64
, "__aeabi_dcmpun", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
521 // Single-precision floating-point arithmetic helper functions
522 // RTABI chapter 4.1.2, Table 4
523 { RTLIB::ADD_F32
, "__aeabi_fadd", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
524 { RTLIB::DIV_F32
, "__aeabi_fdiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
525 { RTLIB::MUL_F32
, "__aeabi_fmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
526 { RTLIB::SUB_F32
, "__aeabi_fsub", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
528 // Single-precision floating-point comparison helper functions
529 // RTABI chapter 4.1.2, Table 5
530 { RTLIB::OEQ_F32
, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS
, ISD::SETNE
},
531 { RTLIB::UNE_F32
, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
532 { RTLIB::OLT_F32
, "__aeabi_fcmplt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
533 { RTLIB::OLE_F32
, "__aeabi_fcmple", CallingConv::ARM_AAPCS
, ISD::SETNE
},
534 { RTLIB::OGE_F32
, "__aeabi_fcmpge", CallingConv::ARM_AAPCS
, ISD::SETNE
},
535 { RTLIB::OGT_F32
, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
536 { RTLIB::UO_F32
, "__aeabi_fcmpun", CallingConv::ARM_AAPCS
, ISD::SETNE
},
537 { RTLIB::O_F32
, "__aeabi_fcmpun", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
539 // Floating-point to integer conversions.
540 // RTABI chapter 4.1.2, Table 6
541 { RTLIB::FPTOSINT_F64_I32
, "__aeabi_d2iz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
542 { RTLIB::FPTOUINT_F64_I32
, "__aeabi_d2uiz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
543 { RTLIB::FPTOSINT_F64_I64
, "__aeabi_d2lz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
544 { RTLIB::FPTOUINT_F64_I64
, "__aeabi_d2ulz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
545 { RTLIB::FPTOSINT_F32_I32
, "__aeabi_f2iz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
546 { RTLIB::FPTOUINT_F32_I32
, "__aeabi_f2uiz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
547 { RTLIB::FPTOSINT_F32_I64
, "__aeabi_f2lz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
548 { RTLIB::FPTOUINT_F32_I64
, "__aeabi_f2ulz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
550 // Conversions between floating types.
551 // RTABI chapter 4.1.2, Table 7
552 { RTLIB::FPROUND_F64_F32
, "__aeabi_d2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
553 { RTLIB::FPROUND_F64_F16
, "__aeabi_d2h", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
554 { RTLIB::FPEXT_F32_F64
, "__aeabi_f2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
556 // Integer to floating-point conversions.
557 // RTABI chapter 4.1.2, Table 8
558 { RTLIB::SINTTOFP_I32_F64
, "__aeabi_i2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
559 { RTLIB::UINTTOFP_I32_F64
, "__aeabi_ui2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
560 { RTLIB::SINTTOFP_I64_F64
, "__aeabi_l2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
561 { RTLIB::UINTTOFP_I64_F64
, "__aeabi_ul2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
562 { RTLIB::SINTTOFP_I32_F32
, "__aeabi_i2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
563 { RTLIB::UINTTOFP_I32_F32
, "__aeabi_ui2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
564 { RTLIB::SINTTOFP_I64_F32
, "__aeabi_l2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
565 { RTLIB::UINTTOFP_I64_F32
, "__aeabi_ul2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
567 // Long long helper functions
568 // RTABI chapter 4.2, Table 9
569 { RTLIB::MUL_I64
, "__aeabi_lmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
570 { RTLIB::SHL_I64
, "__aeabi_llsl", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
571 { RTLIB::SRL_I64
, "__aeabi_llsr", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
572 { RTLIB::SRA_I64
, "__aeabi_lasr", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
574 // Integer division functions
575 // RTABI chapter 4.3.1
576 { RTLIB::SDIV_I8
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
577 { RTLIB::SDIV_I16
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
578 { RTLIB::SDIV_I32
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
579 { RTLIB::SDIV_I64
, "__aeabi_ldivmod", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
580 { RTLIB::UDIV_I8
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
581 { RTLIB::UDIV_I16
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
582 { RTLIB::UDIV_I32
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
583 { RTLIB::UDIV_I64
, "__aeabi_uldivmod", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
586 for (const auto &LC
: LibraryCalls
) {
587 setLibcallName(LC
.Op
, LC
.Name
);
588 setLibcallCallingConv(LC
.Op
, LC
.CC
);
589 if (LC
.Cond
!= ISD::SETCC_INVALID
)
590 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
593 // EABI dependent RTLIB
594 if (TM
.Options
.EABIVersion
== EABI::EABI4
||
595 TM
.Options
.EABIVersion
== EABI::EABI5
) {
596 static const struct {
597 const RTLIB::Libcall Op
;
598 const char *const Name
;
599 const CallingConv::ID CC
;
600 const ISD::CondCode Cond
;
601 } MemOpsLibraryCalls
[] = {
603 // RTABI chapter 4.3.4
604 { RTLIB::MEMCPY
, "__aeabi_memcpy", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
605 { RTLIB::MEMMOVE
, "__aeabi_memmove", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
606 { RTLIB::MEMSET
, "__aeabi_memset", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
609 for (const auto &LC
: MemOpsLibraryCalls
) {
610 setLibcallName(LC
.Op
, LC
.Name
);
611 setLibcallCallingConv(LC
.Op
, LC
.CC
);
612 if (LC
.Cond
!= ISD::SETCC_INVALID
)
613 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
618 if (Subtarget
->isTargetWindows()) {
619 static const struct {
620 const RTLIB::Libcall Op
;
621 const char * const Name
;
622 const CallingConv::ID CC
;
624 { RTLIB::FPTOSINT_F32_I64
, "__stoi64", CallingConv::ARM_AAPCS_VFP
},
625 { RTLIB::FPTOSINT_F64_I64
, "__dtoi64", CallingConv::ARM_AAPCS_VFP
},
626 { RTLIB::FPTOUINT_F32_I64
, "__stou64", CallingConv::ARM_AAPCS_VFP
},
627 { RTLIB::FPTOUINT_F64_I64
, "__dtou64", CallingConv::ARM_AAPCS_VFP
},
628 { RTLIB::SINTTOFP_I64_F32
, "__i64tos", CallingConv::ARM_AAPCS_VFP
},
629 { RTLIB::SINTTOFP_I64_F64
, "__i64tod", CallingConv::ARM_AAPCS_VFP
},
630 { RTLIB::UINTTOFP_I64_F32
, "__u64tos", CallingConv::ARM_AAPCS_VFP
},
631 { RTLIB::UINTTOFP_I64_F64
, "__u64tod", CallingConv::ARM_AAPCS_VFP
},
634 for (const auto &LC
: LibraryCalls
) {
635 setLibcallName(LC
.Op
, LC
.Name
);
636 setLibcallCallingConv(LC
.Op
, LC
.CC
);
640 // Use divmod compiler-rt calls for iOS 5.0 and later.
641 if (Subtarget
->isTargetMachO() &&
642 !(Subtarget
->isTargetIOS() &&
643 Subtarget
->getTargetTriple().isOSVersionLT(5, 0))) {
644 setLibcallName(RTLIB::SDIVREM_I32
, "__divmodsi4");
645 setLibcallName(RTLIB::UDIVREM_I32
, "__udivmodsi4");
648 // The half <-> float conversion functions are always soft-float on
649 // non-watchos platforms, but are needed for some targets which use a
650 // hard-float calling convention by default.
651 if (!Subtarget
->isTargetWatchABI()) {
652 if (Subtarget
->isAAPCS_ABI()) {
653 setLibcallCallingConv(RTLIB::FPROUND_F32_F16
, CallingConv::ARM_AAPCS
);
654 setLibcallCallingConv(RTLIB::FPROUND_F64_F16
, CallingConv::ARM_AAPCS
);
655 setLibcallCallingConv(RTLIB::FPEXT_F16_F32
, CallingConv::ARM_AAPCS
);
657 setLibcallCallingConv(RTLIB::FPROUND_F32_F16
, CallingConv::ARM_APCS
);
658 setLibcallCallingConv(RTLIB::FPROUND_F64_F16
, CallingConv::ARM_APCS
);
659 setLibcallCallingConv(RTLIB::FPEXT_F16_F32
, CallingConv::ARM_APCS
);
663 // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
664 // a __gnu_ prefix (which is the default).
665 if (Subtarget
->isTargetAEABI()) {
666 static const struct {
667 const RTLIB::Libcall Op
;
668 const char * const Name
;
669 const CallingConv::ID CC
;
671 { RTLIB::FPROUND_F32_F16
, "__aeabi_f2h", CallingConv::ARM_AAPCS
},
672 { RTLIB::FPROUND_F64_F16
, "__aeabi_d2h", CallingConv::ARM_AAPCS
},
673 { RTLIB::FPEXT_F16_F32
, "__aeabi_h2f", CallingConv::ARM_AAPCS
},
676 for (const auto &LC
: LibraryCalls
) {
677 setLibcallName(LC
.Op
, LC
.Name
);
678 setLibcallCallingConv(LC
.Op
, LC
.CC
);
682 if (Subtarget
->isThumb1Only())
683 addRegisterClass(MVT::i32
, &ARM::tGPRRegClass
);
685 addRegisterClass(MVT::i32
, &ARM::GPRRegClass
);
687 if (!Subtarget
->useSoftFloat() && !Subtarget
->isThumb1Only() &&
688 Subtarget
->hasFPRegs()) {
689 addRegisterClass(MVT::f32
, &ARM::SPRRegClass
);
690 addRegisterClass(MVT::f64
, &ARM::DPRRegClass
);
691 if (!Subtarget
->hasVFP2Base())
692 setAllExpand(MVT::f32
);
693 if (!Subtarget
->hasFP64())
694 setAllExpand(MVT::f64
);
697 if (Subtarget
->hasFullFP16()) {
698 addRegisterClass(MVT::f16
, &ARM::HPRRegClass
);
699 setOperationAction(ISD::BITCAST
, MVT::i16
, Custom
);
700 setOperationAction(ISD::BITCAST
, MVT::i32
, Custom
);
701 setOperationAction(ISD::BITCAST
, MVT::f16
, Custom
);
703 setOperationAction(ISD::FMINNUM
, MVT::f16
, Legal
);
704 setOperationAction(ISD::FMAXNUM
, MVT::f16
, Legal
);
707 for (MVT VT
: MVT::fixedlen_vector_valuetypes()) {
708 for (MVT InnerVT
: MVT::fixedlen_vector_valuetypes()) {
709 setTruncStoreAction(VT
, InnerVT
, Expand
);
710 addAllExtLoads(VT
, InnerVT
, Expand
);
713 setOperationAction(ISD::MULHS
, VT
, Expand
);
714 setOperationAction(ISD::SMUL_LOHI
, VT
, Expand
);
715 setOperationAction(ISD::MULHU
, VT
, Expand
);
716 setOperationAction(ISD::UMUL_LOHI
, VT
, Expand
);
718 setOperationAction(ISD::BSWAP
, VT
, Expand
);
721 setOperationAction(ISD::ConstantFP
, MVT::f32
, Custom
);
722 setOperationAction(ISD::ConstantFP
, MVT::f64
, Custom
);
724 setOperationAction(ISD::READ_REGISTER
, MVT::i64
, Custom
);
725 setOperationAction(ISD::WRITE_REGISTER
, MVT::i64
, Custom
);
727 if (Subtarget
->hasMVEIntegerOps())
728 addMVEVectorTypes(Subtarget
->hasMVEFloatOps());
730 // Combine low-overhead loop intrinsics so that we can lower i1 types.
731 if (Subtarget
->hasLOB()) {
732 setTargetDAGCombine(ISD::BRCOND
);
733 setTargetDAGCombine(ISD::BR_CC
);
736 if (Subtarget
->hasNEON()) {
737 addDRTypeForNEON(MVT::v2f32
);
738 addDRTypeForNEON(MVT::v8i8
);
739 addDRTypeForNEON(MVT::v4i16
);
740 addDRTypeForNEON(MVT::v2i32
);
741 addDRTypeForNEON(MVT::v1i64
);
743 addQRTypeForNEON(MVT::v4f32
);
744 addQRTypeForNEON(MVT::v2f64
);
745 addQRTypeForNEON(MVT::v16i8
);
746 addQRTypeForNEON(MVT::v8i16
);
747 addQRTypeForNEON(MVT::v4i32
);
748 addQRTypeForNEON(MVT::v2i64
);
750 if (Subtarget
->hasFullFP16()) {
751 addQRTypeForNEON(MVT::v8f16
);
752 addDRTypeForNEON(MVT::v4f16
);
756 if (Subtarget
->hasMVEIntegerOps() || Subtarget
->hasNEON()) {
757 // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
758 // none of Neon, MVE or VFP supports any arithmetic operations on it.
759 setOperationAction(ISD::FADD
, MVT::v2f64
, Expand
);
760 setOperationAction(ISD::FSUB
, MVT::v2f64
, Expand
);
761 setOperationAction(ISD::FMUL
, MVT::v2f64
, Expand
);
762 // FIXME: Code duplication: FDIV and FREM are expanded always, see
763 // ARMTargetLowering::addTypeForNEON method for details.
764 setOperationAction(ISD::FDIV
, MVT::v2f64
, Expand
);
765 setOperationAction(ISD::FREM
, MVT::v2f64
, Expand
);
766 // FIXME: Create unittest.
767 // In another words, find a way when "copysign" appears in DAG with vector
769 setOperationAction(ISD::FCOPYSIGN
, MVT::v2f64
, Expand
);
770 // FIXME: Code duplication: SETCC has custom operation action, see
771 // ARMTargetLowering::addTypeForNEON method for details.
772 setOperationAction(ISD::SETCC
, MVT::v2f64
, Expand
);
773 // FIXME: Create unittest for FNEG and for FABS.
774 setOperationAction(ISD::FNEG
, MVT::v2f64
, Expand
);
775 setOperationAction(ISD::FABS
, MVT::v2f64
, Expand
);
776 setOperationAction(ISD::FSQRT
, MVT::v2f64
, Expand
);
777 setOperationAction(ISD::FSIN
, MVT::v2f64
, Expand
);
778 setOperationAction(ISD::FCOS
, MVT::v2f64
, Expand
);
779 setOperationAction(ISD::FPOW
, MVT::v2f64
, Expand
);
780 setOperationAction(ISD::FLOG
, MVT::v2f64
, Expand
);
781 setOperationAction(ISD::FLOG2
, MVT::v2f64
, Expand
);
782 setOperationAction(ISD::FLOG10
, MVT::v2f64
, Expand
);
783 setOperationAction(ISD::FEXP
, MVT::v2f64
, Expand
);
784 setOperationAction(ISD::FEXP2
, MVT::v2f64
, Expand
);
785 // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
786 setOperationAction(ISD::FCEIL
, MVT::v2f64
, Expand
);
787 setOperationAction(ISD::FTRUNC
, MVT::v2f64
, Expand
);
788 setOperationAction(ISD::FRINT
, MVT::v2f64
, Expand
);
789 setOperationAction(ISD::FNEARBYINT
, MVT::v2f64
, Expand
);
790 setOperationAction(ISD::FFLOOR
, MVT::v2f64
, Expand
);
791 setOperationAction(ISD::FMA
, MVT::v2f64
, Expand
);
794 if (Subtarget
->hasNEON()) {
795 // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
796 // supported for v4f32.
797 setOperationAction(ISD::FSQRT
, MVT::v4f32
, Expand
);
798 setOperationAction(ISD::FSIN
, MVT::v4f32
, Expand
);
799 setOperationAction(ISD::FCOS
, MVT::v4f32
, Expand
);
800 setOperationAction(ISD::FPOW
, MVT::v4f32
, Expand
);
801 setOperationAction(ISD::FLOG
, MVT::v4f32
, Expand
);
802 setOperationAction(ISD::FLOG2
, MVT::v4f32
, Expand
);
803 setOperationAction(ISD::FLOG10
, MVT::v4f32
, Expand
);
804 setOperationAction(ISD::FEXP
, MVT::v4f32
, Expand
);
805 setOperationAction(ISD::FEXP2
, MVT::v4f32
, Expand
);
806 setOperationAction(ISD::FCEIL
, MVT::v4f32
, Expand
);
807 setOperationAction(ISD::FTRUNC
, MVT::v4f32
, Expand
);
808 setOperationAction(ISD::FRINT
, MVT::v4f32
, Expand
);
809 setOperationAction(ISD::FNEARBYINT
, MVT::v4f32
, Expand
);
810 setOperationAction(ISD::FFLOOR
, MVT::v4f32
, Expand
);
812 // Mark v2f32 intrinsics.
813 setOperationAction(ISD::FSQRT
, MVT::v2f32
, Expand
);
814 setOperationAction(ISD::FSIN
, MVT::v2f32
, Expand
);
815 setOperationAction(ISD::FCOS
, MVT::v2f32
, Expand
);
816 setOperationAction(ISD::FPOW
, MVT::v2f32
, Expand
);
817 setOperationAction(ISD::FLOG
, MVT::v2f32
, Expand
);
818 setOperationAction(ISD::FLOG2
, MVT::v2f32
, Expand
);
819 setOperationAction(ISD::FLOG10
, MVT::v2f32
, Expand
);
820 setOperationAction(ISD::FEXP
, MVT::v2f32
, Expand
);
821 setOperationAction(ISD::FEXP2
, MVT::v2f32
, Expand
);
822 setOperationAction(ISD::FCEIL
, MVT::v2f32
, Expand
);
823 setOperationAction(ISD::FTRUNC
, MVT::v2f32
, Expand
);
824 setOperationAction(ISD::FRINT
, MVT::v2f32
, Expand
);
825 setOperationAction(ISD::FNEARBYINT
, MVT::v2f32
, Expand
);
826 setOperationAction(ISD::FFLOOR
, MVT::v2f32
, Expand
);
828 // Neon does not support some operations on v1i64 and v2i64 types.
829 setOperationAction(ISD::MUL
, MVT::v1i64
, Expand
);
830 // Custom handling for some quad-vector types to detect VMULL.
831 setOperationAction(ISD::MUL
, MVT::v8i16
, Custom
);
832 setOperationAction(ISD::MUL
, MVT::v4i32
, Custom
);
833 setOperationAction(ISD::MUL
, MVT::v2i64
, Custom
);
834 // Custom handling for some vector types to avoid expensive expansions
835 setOperationAction(ISD::SDIV
, MVT::v4i16
, Custom
);
836 setOperationAction(ISD::SDIV
, MVT::v8i8
, Custom
);
837 setOperationAction(ISD::UDIV
, MVT::v4i16
, Custom
);
838 setOperationAction(ISD::UDIV
, MVT::v8i8
, Custom
);
839 // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
840 // a destination type that is wider than the source, and nor does
841 // it have a FP_TO_[SU]INT instruction with a narrower destination than
843 setOperationAction(ISD::SINT_TO_FP
, MVT::v4i16
, Custom
);
844 setOperationAction(ISD::SINT_TO_FP
, MVT::v8i16
, Custom
);
845 setOperationAction(ISD::UINT_TO_FP
, MVT::v4i16
, Custom
);
846 setOperationAction(ISD::UINT_TO_FP
, MVT::v8i16
, Custom
);
847 setOperationAction(ISD::FP_TO_UINT
, MVT::v4i16
, Custom
);
848 setOperationAction(ISD::FP_TO_UINT
, MVT::v8i16
, Custom
);
849 setOperationAction(ISD::FP_TO_SINT
, MVT::v4i16
, Custom
);
850 setOperationAction(ISD::FP_TO_SINT
, MVT::v8i16
, Custom
);
852 setOperationAction(ISD::FP_ROUND
, MVT::v2f32
, Expand
);
853 setOperationAction(ISD::FP_EXTEND
, MVT::v2f64
, Expand
);
855 // NEON does not have single instruction CTPOP for vectors with element
856 // types wider than 8-bits. However, custom lowering can leverage the
857 // v8i8/v16i8 vcnt instruction.
858 setOperationAction(ISD::CTPOP
, MVT::v2i32
, Custom
);
859 setOperationAction(ISD::CTPOP
, MVT::v4i32
, Custom
);
860 setOperationAction(ISD::CTPOP
, MVT::v4i16
, Custom
);
861 setOperationAction(ISD::CTPOP
, MVT::v8i16
, Custom
);
862 setOperationAction(ISD::CTPOP
, MVT::v1i64
, Custom
);
863 setOperationAction(ISD::CTPOP
, MVT::v2i64
, Custom
);
865 setOperationAction(ISD::CTLZ
, MVT::v1i64
, Expand
);
866 setOperationAction(ISD::CTLZ
, MVT::v2i64
, Expand
);
868 // NEON does not have single instruction CTTZ for vectors.
869 setOperationAction(ISD::CTTZ
, MVT::v8i8
, Custom
);
870 setOperationAction(ISD::CTTZ
, MVT::v4i16
, Custom
);
871 setOperationAction(ISD::CTTZ
, MVT::v2i32
, Custom
);
872 setOperationAction(ISD::CTTZ
, MVT::v1i64
, Custom
);
874 setOperationAction(ISD::CTTZ
, MVT::v16i8
, Custom
);
875 setOperationAction(ISD::CTTZ
, MVT::v8i16
, Custom
);
876 setOperationAction(ISD::CTTZ
, MVT::v4i32
, Custom
);
877 setOperationAction(ISD::CTTZ
, MVT::v2i64
, Custom
);
879 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v8i8
, Custom
);
880 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v4i16
, Custom
);
881 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v2i32
, Custom
);
882 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v1i64
, Custom
);
884 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v16i8
, Custom
);
885 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v8i16
, Custom
);
886 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v4i32
, Custom
);
887 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v2i64
, Custom
);
889 // NEON only has FMA instructions as of VFP4.
890 if (!Subtarget
->hasVFP4Base()) {
891 setOperationAction(ISD::FMA
, MVT::v2f32
, Expand
);
892 setOperationAction(ISD::FMA
, MVT::v4f32
, Expand
);
895 setTargetDAGCombine(ISD::INTRINSIC_VOID
);
896 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN
);
897 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN
);
898 setTargetDAGCombine(ISD::SHL
);
899 setTargetDAGCombine(ISD::SRL
);
900 setTargetDAGCombine(ISD::SRA
);
901 setTargetDAGCombine(ISD::FP_TO_SINT
);
902 setTargetDAGCombine(ISD::FP_TO_UINT
);
903 setTargetDAGCombine(ISD::FDIV
);
904 setTargetDAGCombine(ISD::LOAD
);
906 // It is legal to extload from v4i8 to v4i16 or v4i32.
907 for (MVT Ty
: {MVT::v8i8
, MVT::v4i8
, MVT::v2i8
, MVT::v4i16
, MVT::v2i16
,
909 for (MVT VT
: MVT::integer_fixedlen_vector_valuetypes()) {
910 setLoadExtAction(ISD::EXTLOAD
, VT
, Ty
, Legal
);
911 setLoadExtAction(ISD::ZEXTLOAD
, VT
, Ty
, Legal
);
912 setLoadExtAction(ISD::SEXTLOAD
, VT
, Ty
, Legal
);
917 if (Subtarget
->hasNEON() || Subtarget
->hasMVEIntegerOps()) {
918 setTargetDAGCombine(ISD::BUILD_VECTOR
);
919 setTargetDAGCombine(ISD::VECTOR_SHUFFLE
);
920 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT
);
921 setTargetDAGCombine(ISD::STORE
);
922 setTargetDAGCombine(ISD::SIGN_EXTEND
);
923 setTargetDAGCombine(ISD::ZERO_EXTEND
);
924 setTargetDAGCombine(ISD::ANY_EXTEND
);
927 if (!Subtarget
->hasFP64()) {
928 // When targeting a floating-point unit with only single-precision
929 // operations, f64 is legal for the few double-precision instructions which
930 // are present However, no double-precision operations other than moves,
931 // loads and stores are provided by the hardware.
932 setOperationAction(ISD::FADD
, MVT::f64
, Expand
);
933 setOperationAction(ISD::FSUB
, MVT::f64
, Expand
);
934 setOperationAction(ISD::FMUL
, MVT::f64
, Expand
);
935 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
936 setOperationAction(ISD::FDIV
, MVT::f64
, Expand
);
937 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
938 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Expand
);
939 setOperationAction(ISD::FGETSIGN
, MVT::f64
, Expand
);
940 setOperationAction(ISD::FNEG
, MVT::f64
, Expand
);
941 setOperationAction(ISD::FABS
, MVT::f64
, Expand
);
942 setOperationAction(ISD::FSQRT
, MVT::f64
, Expand
);
943 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
944 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
945 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
946 setOperationAction(ISD::FLOG
, MVT::f64
, Expand
);
947 setOperationAction(ISD::FLOG2
, MVT::f64
, Expand
);
948 setOperationAction(ISD::FLOG10
, MVT::f64
, Expand
);
949 setOperationAction(ISD::FEXP
, MVT::f64
, Expand
);
950 setOperationAction(ISD::FEXP2
, MVT::f64
, Expand
);
951 setOperationAction(ISD::FCEIL
, MVT::f64
, Expand
);
952 setOperationAction(ISD::FTRUNC
, MVT::f64
, Expand
);
953 setOperationAction(ISD::FRINT
, MVT::f64
, Expand
);
954 setOperationAction(ISD::FNEARBYINT
, MVT::f64
, Expand
);
955 setOperationAction(ISD::FFLOOR
, MVT::f64
, Expand
);
956 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Custom
);
957 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Custom
);
958 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
959 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Custom
);
960 setOperationAction(ISD::FP_TO_SINT
, MVT::f64
, Custom
);
961 setOperationAction(ISD::FP_TO_UINT
, MVT::f64
, Custom
);
962 setOperationAction(ISD::FP_ROUND
, MVT::f32
, Custom
);
965 if (!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()) {
966 setOperationAction(ISD::FP_EXTEND
, MVT::f64
, Custom
);
967 if (Subtarget
->hasFullFP16())
968 setOperationAction(ISD::FP_ROUND
, MVT::f16
, Custom
);
971 if (!Subtarget
->hasFP16())
972 setOperationAction(ISD::FP_EXTEND
, MVT::f32
, Custom
);
974 if (!Subtarget
->hasFP64())
975 setOperationAction(ISD::FP_ROUND
, MVT::f32
, Custom
);
977 computeRegisterProperties(Subtarget
->getRegisterInfo());
979 // ARM does not have floating-point extending loads.
980 for (MVT VT
: MVT::fp_valuetypes()) {
981 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f32
, Expand
);
982 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f16
, Expand
);
985 // ... or truncating stores
986 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
987 setTruncStoreAction(MVT::f32
, MVT::f16
, Expand
);
988 setTruncStoreAction(MVT::f64
, MVT::f16
, Expand
);
990 // ARM does not have i1 sign extending load.
991 for (MVT VT
: MVT::integer_valuetypes())
992 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Promote
);
994 // ARM supports all 4 flavors of integer indexed load / store.
995 if (!Subtarget
->isThumb1Only()) {
996 for (unsigned im
= (unsigned)ISD::PRE_INC
;
997 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
998 setIndexedLoadAction(im
, MVT::i1
, Legal
);
999 setIndexedLoadAction(im
, MVT::i8
, Legal
);
1000 setIndexedLoadAction(im
, MVT::i16
, Legal
);
1001 setIndexedLoadAction(im
, MVT::i32
, Legal
);
1002 setIndexedStoreAction(im
, MVT::i1
, Legal
);
1003 setIndexedStoreAction(im
, MVT::i8
, Legal
);
1004 setIndexedStoreAction(im
, MVT::i16
, Legal
);
1005 setIndexedStoreAction(im
, MVT::i32
, Legal
);
1008 // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
1009 setIndexedLoadAction(ISD::POST_INC
, MVT::i32
, Legal
);
1010 setIndexedStoreAction(ISD::POST_INC
, MVT::i32
, Legal
);
1013 setOperationAction(ISD::SADDO
, MVT::i32
, Custom
);
1014 setOperationAction(ISD::UADDO
, MVT::i32
, Custom
);
1015 setOperationAction(ISD::SSUBO
, MVT::i32
, Custom
);
1016 setOperationAction(ISD::USUBO
, MVT::i32
, Custom
);
1018 setOperationAction(ISD::ADDCARRY
, MVT::i32
, Custom
);
1019 setOperationAction(ISD::SUBCARRY
, MVT::i32
, Custom
);
1021 // i64 operation support.
1022 setOperationAction(ISD::MUL
, MVT::i64
, Expand
);
1023 setOperationAction(ISD::MULHU
, MVT::i32
, Expand
);
1024 if (Subtarget
->isThumb1Only()) {
1025 setOperationAction(ISD::UMUL_LOHI
, MVT::i32
, Expand
);
1026 setOperationAction(ISD::SMUL_LOHI
, MVT::i32
, Expand
);
1028 if (Subtarget
->isThumb1Only() || !Subtarget
->hasV6Ops()
1029 || (Subtarget
->isThumb2() && !Subtarget
->hasDSP()))
1030 setOperationAction(ISD::MULHS
, MVT::i32
, Expand
);
1032 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Custom
);
1033 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Custom
);
1034 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Custom
);
1035 setOperationAction(ISD::SRL
, MVT::i64
, Custom
);
1036 setOperationAction(ISD::SRA
, MVT::i64
, Custom
);
1037 setOperationAction(ISD::INTRINSIC_VOID
, MVT::Other
, Custom
);
1038 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::i64
, Custom
);
1040 // MVE lowers 64 bit shifts to lsll and lsrl
1041 // assuming that ISD::SRL and SRA of i64 are already marked custom
1042 if (Subtarget
->hasMVEIntegerOps())
1043 setOperationAction(ISD::SHL
, MVT::i64
, Custom
);
1045 // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
1046 if (Subtarget
->isThumb1Only()) {
1047 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Expand
);
1048 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Expand
);
1049 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Expand
);
1052 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV6T2Ops())
1053 setOperationAction(ISD::BITREVERSE
, MVT::i32
, Legal
);
1055 // ARM does not have ROTL.
1056 setOperationAction(ISD::ROTL
, MVT::i32
, Expand
);
1057 for (MVT VT
: MVT::fixedlen_vector_valuetypes()) {
1058 setOperationAction(ISD::ROTL
, VT
, Expand
);
1059 setOperationAction(ISD::ROTR
, VT
, Expand
);
1061 setOperationAction(ISD::CTTZ
, MVT::i32
, Custom
);
1062 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
1063 if (!Subtarget
->hasV5TOps() || Subtarget
->isThumb1Only()) {
1064 setOperationAction(ISD::CTLZ
, MVT::i32
, Expand
);
1065 setOperationAction(ISD::CTLZ_ZERO_UNDEF
, MVT::i32
, LibCall
);
1068 // @llvm.readcyclecounter requires the Performance Monitors extension.
1069 // Default to the 0 expansion on unsupported platforms.
1070 // FIXME: Technically there are older ARM CPUs that have
1071 // implementation-specific ways of obtaining this information.
1072 if (Subtarget
->hasPerfMon())
1073 setOperationAction(ISD::READCYCLECOUNTER
, MVT::i64
, Custom
);
1075 // Only ARMv6 has BSWAP.
1076 if (!Subtarget
->hasV6Ops())
1077 setOperationAction(ISD::BSWAP
, MVT::i32
, Expand
);
1079 bool hasDivide
= Subtarget
->isThumb() ? Subtarget
->hasDivideInThumbMode()
1080 : Subtarget
->hasDivideInARMMode();
1082 // These are expanded into libcalls if the cpu doesn't have HW divider.
1083 setOperationAction(ISD::SDIV
, MVT::i32
, LibCall
);
1084 setOperationAction(ISD::UDIV
, MVT::i32
, LibCall
);
1087 if (Subtarget
->isTargetWindows() && !Subtarget
->hasDivideInThumbMode()) {
1088 setOperationAction(ISD::SDIV
, MVT::i32
, Custom
);
1089 setOperationAction(ISD::UDIV
, MVT::i32
, Custom
);
1091 setOperationAction(ISD::SDIV
, MVT::i64
, Custom
);
1092 setOperationAction(ISD::UDIV
, MVT::i64
, Custom
);
1095 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
1096 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
1098 // Register based DivRem for AEABI (RTABI 4.2)
1099 if (Subtarget
->isTargetAEABI() || Subtarget
->isTargetAndroid() ||
1100 Subtarget
->isTargetGNUAEABI() || Subtarget
->isTargetMuslAEABI() ||
1101 Subtarget
->isTargetWindows()) {
1102 setOperationAction(ISD::SREM
, MVT::i64
, Custom
);
1103 setOperationAction(ISD::UREM
, MVT::i64
, Custom
);
1104 HasStandaloneRem
= false;
1106 if (Subtarget
->isTargetWindows()) {
1108 const RTLIB::Libcall Op
;
1109 const char * const Name
;
1110 const CallingConv::ID CC
;
1111 } LibraryCalls
[] = {
1112 { RTLIB::SDIVREM_I8
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1113 { RTLIB::SDIVREM_I16
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1114 { RTLIB::SDIVREM_I32
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1115 { RTLIB::SDIVREM_I64
, "__rt_sdiv64", CallingConv::ARM_AAPCS
},
1117 { RTLIB::UDIVREM_I8
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1118 { RTLIB::UDIVREM_I16
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1119 { RTLIB::UDIVREM_I32
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1120 { RTLIB::UDIVREM_I64
, "__rt_udiv64", CallingConv::ARM_AAPCS
},
1123 for (const auto &LC
: LibraryCalls
) {
1124 setLibcallName(LC
.Op
, LC
.Name
);
1125 setLibcallCallingConv(LC
.Op
, LC
.CC
);
1129 const RTLIB::Libcall Op
;
1130 const char * const Name
;
1131 const CallingConv::ID CC
;
1132 } LibraryCalls
[] = {
1133 { RTLIB::SDIVREM_I8
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1134 { RTLIB::SDIVREM_I16
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1135 { RTLIB::SDIVREM_I32
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1136 { RTLIB::SDIVREM_I64
, "__aeabi_ldivmod", CallingConv::ARM_AAPCS
},
1138 { RTLIB::UDIVREM_I8
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1139 { RTLIB::UDIVREM_I16
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1140 { RTLIB::UDIVREM_I32
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1141 { RTLIB::UDIVREM_I64
, "__aeabi_uldivmod", CallingConv::ARM_AAPCS
},
1144 for (const auto &LC
: LibraryCalls
) {
1145 setLibcallName(LC
.Op
, LC
.Name
);
1146 setLibcallCallingConv(LC
.Op
, LC
.CC
);
1150 setOperationAction(ISD::SDIVREM
, MVT::i32
, Custom
);
1151 setOperationAction(ISD::UDIVREM
, MVT::i32
, Custom
);
1152 setOperationAction(ISD::SDIVREM
, MVT::i64
, Custom
);
1153 setOperationAction(ISD::UDIVREM
, MVT::i64
, Custom
);
1155 setOperationAction(ISD::SDIVREM
, MVT::i32
, Expand
);
1156 setOperationAction(ISD::UDIVREM
, MVT::i32
, Expand
);
1159 if (Subtarget
->isTargetWindows() && Subtarget
->getTargetTriple().isOSMSVCRT())
1160 for (auto &VT
: {MVT::f32
, MVT::f64
})
1161 setOperationAction(ISD::FPOWI
, VT
, Custom
);
1163 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
1164 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
1165 setOperationAction(ISD::GlobalTLSAddress
, MVT::i32
, Custom
);
1166 setOperationAction(ISD::BlockAddress
, MVT::i32
, Custom
);
1168 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
1169 setOperationAction(ISD::DEBUGTRAP
, MVT::Other
, Legal
);
1171 // Use the default implementation.
1172 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
1173 setOperationAction(ISD::VAARG
, MVT::Other
, Expand
);
1174 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
1175 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
1176 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
1177 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
1179 if (Subtarget
->isTargetWindows())
1180 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Custom
);
1182 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Expand
);
1184 // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
1185 // the default expansion.
1186 InsertFencesForAtomic
= false;
1187 if (Subtarget
->hasAnyDataBarrier() &&
1188 (!Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps())) {
1189 // ATOMIC_FENCE needs custom lowering; the others should have been expanded
1190 // to ldrex/strex loops already.
1191 setOperationAction(ISD::ATOMIC_FENCE
, MVT::Other
, Custom
);
1192 if (!Subtarget
->isThumb() || !Subtarget
->isMClass())
1193 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i64
, Custom
);
1195 // On v8, we have particularly efficient implementations of atomic fences
1196 // if they can be combined with nearby atomic loads and stores.
1197 if (!Subtarget
->hasAcquireRelease() ||
1198 getTargetMachine().getOptLevel() == 0) {
1199 // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
1200 InsertFencesForAtomic
= true;
1203 // If there's anything we can use as a barrier, go through custom lowering
1204 // for ATOMIC_FENCE.
1205 // If target has DMB in thumb, Fences can be inserted.
1206 if (Subtarget
->hasDataBarrier())
1207 InsertFencesForAtomic
= true;
1209 setOperationAction(ISD::ATOMIC_FENCE
, MVT::Other
,
1210 Subtarget
->hasAnyDataBarrier() ? Custom
: Expand
);
1212 // Set them all for expansion, which will force libcalls.
1213 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i32
, Expand
);
1214 setOperationAction(ISD::ATOMIC_SWAP
, MVT::i32
, Expand
);
1215 setOperationAction(ISD::ATOMIC_LOAD_ADD
, MVT::i32
, Expand
);
1216 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i32
, Expand
);
1217 setOperationAction(ISD::ATOMIC_LOAD_AND
, MVT::i32
, Expand
);
1218 setOperationAction(ISD::ATOMIC_LOAD_OR
, MVT::i32
, Expand
);
1219 setOperationAction(ISD::ATOMIC_LOAD_XOR
, MVT::i32
, Expand
);
1220 setOperationAction(ISD::ATOMIC_LOAD_NAND
, MVT::i32
, Expand
);
1221 setOperationAction(ISD::ATOMIC_LOAD_MIN
, MVT::i32
, Expand
);
1222 setOperationAction(ISD::ATOMIC_LOAD_MAX
, MVT::i32
, Expand
);
1223 setOperationAction(ISD::ATOMIC_LOAD_UMIN
, MVT::i32
, Expand
);
1224 setOperationAction(ISD::ATOMIC_LOAD_UMAX
, MVT::i32
, Expand
);
1225 // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
1226 // Unordered/Monotonic case.
1227 if (!InsertFencesForAtomic
) {
1228 setOperationAction(ISD::ATOMIC_LOAD
, MVT::i32
, Custom
);
1229 setOperationAction(ISD::ATOMIC_STORE
, MVT::i32
, Custom
);
1233 setOperationAction(ISD::PREFETCH
, MVT::Other
, Custom
);
1235 // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
1236 if (!Subtarget
->hasV6Ops()) {
1237 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i16
, Expand
);
1238 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i8
, Expand
);
1240 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
1242 if (!Subtarget
->useSoftFloat() && Subtarget
->hasFPRegs() &&
1243 !Subtarget
->isThumb1Only()) {
1244 // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
1245 // iff target supports vfp2.
1246 setOperationAction(ISD::BITCAST
, MVT::i64
, Custom
);
1247 setOperationAction(ISD::FLT_ROUNDS_
, MVT::i32
, Custom
);
1250 // We want to custom lower some of our intrinsics.
1251 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::Other
, Custom
);
1252 setOperationAction(ISD::EH_SJLJ_SETJMP
, MVT::i32
, Custom
);
1253 setOperationAction(ISD::EH_SJLJ_LONGJMP
, MVT::Other
, Custom
);
1254 setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH
, MVT::Other
, Custom
);
1255 if (Subtarget
->useSjLjEH())
1256 setLibcallName(RTLIB::UNWIND_RESUME
, "_Unwind_SjLj_Resume");
1258 setOperationAction(ISD::SETCC
, MVT::i32
, Expand
);
1259 setOperationAction(ISD::SETCC
, MVT::f32
, Expand
);
1260 setOperationAction(ISD::SETCC
, MVT::f64
, Expand
);
1261 setOperationAction(ISD::SELECT
, MVT::i32
, Custom
);
1262 setOperationAction(ISD::SELECT
, MVT::f32
, Custom
);
1263 setOperationAction(ISD::SELECT
, MVT::f64
, Custom
);
1264 setOperationAction(ISD::SELECT_CC
, MVT::i32
, Custom
);
1265 setOperationAction(ISD::SELECT_CC
, MVT::f32
, Custom
);
1266 setOperationAction(ISD::SELECT_CC
, MVT::f64
, Custom
);
1267 if (Subtarget
->hasFullFP16()) {
1268 setOperationAction(ISD::SETCC
, MVT::f16
, Expand
);
1269 setOperationAction(ISD::SELECT
, MVT::f16
, Custom
);
1270 setOperationAction(ISD::SELECT_CC
, MVT::f16
, Custom
);
1273 setOperationAction(ISD::SETCCCARRY
, MVT::i32
, Custom
);
1275 setOperationAction(ISD::BRCOND
, MVT::Other
, Custom
);
1276 setOperationAction(ISD::BR_CC
, MVT::i32
, Custom
);
1277 if (Subtarget
->hasFullFP16())
1278 setOperationAction(ISD::BR_CC
, MVT::f16
, Custom
);
1279 setOperationAction(ISD::BR_CC
, MVT::f32
, Custom
);
1280 setOperationAction(ISD::BR_CC
, MVT::f64
, Custom
);
1281 setOperationAction(ISD::BR_JT
, MVT::Other
, Custom
);
1283 // We don't support sin/cos/fmod/copysign/pow
1284 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
1285 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
1286 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
1287 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
1288 setOperationAction(ISD::FSINCOS
, MVT::f64
, Expand
);
1289 setOperationAction(ISD::FSINCOS
, MVT::f32
, Expand
);
1290 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
1291 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
1292 if (!Subtarget
->useSoftFloat() && Subtarget
->hasVFP2Base() &&
1293 !Subtarget
->isThumb1Only()) {
1294 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Custom
);
1295 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
1297 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
1298 setOperationAction(ISD::FPOW
, MVT::f32
, Expand
);
1300 if (!Subtarget
->hasVFP4Base()) {
1301 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
1302 setOperationAction(ISD::FMA
, MVT::f32
, Expand
);
1305 // Various VFP goodness
1306 if (!Subtarget
->useSoftFloat() && !Subtarget
->isThumb1Only()) {
1307 // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
1308 if (!Subtarget
->hasFPARMv8Base() || !Subtarget
->hasFP64()) {
1309 setOperationAction(ISD::FP16_TO_FP
, MVT::f64
, Expand
);
1310 setOperationAction(ISD::FP_TO_FP16
, MVT::f64
, Expand
);
1313 // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
1314 if (!Subtarget
->hasFP16()) {
1315 setOperationAction(ISD::FP16_TO_FP
, MVT::f32
, Expand
);
1316 setOperationAction(ISD::FP_TO_FP16
, MVT::f32
, Expand
);
1320 // Use __sincos_stret if available.
1321 if (getLibcallName(RTLIB::SINCOS_STRET_F32
) != nullptr &&
1322 getLibcallName(RTLIB::SINCOS_STRET_F64
) != nullptr) {
1323 setOperationAction(ISD::FSINCOS
, MVT::f64
, Custom
);
1324 setOperationAction(ISD::FSINCOS
, MVT::f32
, Custom
);
1327 // FP-ARMv8 implements a lot of rounding-like FP operations.
1328 if (Subtarget
->hasFPARMv8Base()) {
1329 setOperationAction(ISD::FFLOOR
, MVT::f32
, Legal
);
1330 setOperationAction(ISD::FCEIL
, MVT::f32
, Legal
);
1331 setOperationAction(ISD::FROUND
, MVT::f32
, Legal
);
1332 setOperationAction(ISD::FTRUNC
, MVT::f32
, Legal
);
1333 setOperationAction(ISD::FNEARBYINT
, MVT::f32
, Legal
);
1334 setOperationAction(ISD::FRINT
, MVT::f32
, Legal
);
1335 setOperationAction(ISD::FMINNUM
, MVT::f32
, Legal
);
1336 setOperationAction(ISD::FMAXNUM
, MVT::f32
, Legal
);
1337 if (Subtarget
->hasNEON()) {
1338 setOperationAction(ISD::FMINNUM
, MVT::v2f32
, Legal
);
1339 setOperationAction(ISD::FMAXNUM
, MVT::v2f32
, Legal
);
1340 setOperationAction(ISD::FMINNUM
, MVT::v4f32
, Legal
);
1341 setOperationAction(ISD::FMAXNUM
, MVT::v4f32
, Legal
);
1344 if (Subtarget
->hasFP64()) {
1345 setOperationAction(ISD::FFLOOR
, MVT::f64
, Legal
);
1346 setOperationAction(ISD::FCEIL
, MVT::f64
, Legal
);
1347 setOperationAction(ISD::FROUND
, MVT::f64
, Legal
);
1348 setOperationAction(ISD::FTRUNC
, MVT::f64
, Legal
);
1349 setOperationAction(ISD::FNEARBYINT
, MVT::f64
, Legal
);
1350 setOperationAction(ISD::FRINT
, MVT::f64
, Legal
);
1351 setOperationAction(ISD::FMINNUM
, MVT::f64
, Legal
);
1352 setOperationAction(ISD::FMAXNUM
, MVT::f64
, Legal
);
1356 // FP16 often need to be promoted to call lib functions
1357 if (Subtarget
->hasFullFP16()) {
1358 setOperationAction(ISD::FREM
, MVT::f16
, Promote
);
1359 setOperationAction(ISD::FCOPYSIGN
, MVT::f16
, Expand
);
1360 setOperationAction(ISD::FSIN
, MVT::f16
, Promote
);
1361 setOperationAction(ISD::FCOS
, MVT::f16
, Promote
);
1362 setOperationAction(ISD::FSINCOS
, MVT::f16
, Promote
);
1363 setOperationAction(ISD::FPOWI
, MVT::f16
, Promote
);
1364 setOperationAction(ISD::FPOW
, MVT::f16
, Promote
);
1365 setOperationAction(ISD::FEXP
, MVT::f16
, Promote
);
1366 setOperationAction(ISD::FEXP2
, MVT::f16
, Promote
);
1367 setOperationAction(ISD::FLOG
, MVT::f16
, Promote
);
1368 setOperationAction(ISD::FLOG10
, MVT::f16
, Promote
);
1369 setOperationAction(ISD::FLOG2
, MVT::f16
, Promote
);
1371 setOperationAction(ISD::FROUND
, MVT::f16
, Legal
);
1374 if (Subtarget
->hasNEON()) {
1375 // vmin and vmax aren't available in a scalar form, so we use
1376 // a NEON instruction with an undef lane instead.
1377 setOperationAction(ISD::FMINIMUM
, MVT::f16
, Legal
);
1378 setOperationAction(ISD::FMAXIMUM
, MVT::f16
, Legal
);
1379 setOperationAction(ISD::FMINIMUM
, MVT::f32
, Legal
);
1380 setOperationAction(ISD::FMAXIMUM
, MVT::f32
, Legal
);
1381 setOperationAction(ISD::FMINIMUM
, MVT::v2f32
, Legal
);
1382 setOperationAction(ISD::FMAXIMUM
, MVT::v2f32
, Legal
);
1383 setOperationAction(ISD::FMINIMUM
, MVT::v4f32
, Legal
);
1384 setOperationAction(ISD::FMAXIMUM
, MVT::v4f32
, Legal
);
1386 if (Subtarget
->hasFullFP16()) {
1387 setOperationAction(ISD::FMINNUM
, MVT::v4f16
, Legal
);
1388 setOperationAction(ISD::FMAXNUM
, MVT::v4f16
, Legal
);
1389 setOperationAction(ISD::FMINNUM
, MVT::v8f16
, Legal
);
1390 setOperationAction(ISD::FMAXNUM
, MVT::v8f16
, Legal
);
1392 setOperationAction(ISD::FMINIMUM
, MVT::v4f16
, Legal
);
1393 setOperationAction(ISD::FMAXIMUM
, MVT::v4f16
, Legal
);
1394 setOperationAction(ISD::FMINIMUM
, MVT::v8f16
, Legal
);
1395 setOperationAction(ISD::FMAXIMUM
, MVT::v8f16
, Legal
);
1399 // We have target-specific dag combine patterns for the following nodes:
1400 // ARMISD::VMOVRRD - No need to call setTargetDAGCombine
1401 setTargetDAGCombine(ISD::ADD
);
1402 setTargetDAGCombine(ISD::SUB
);
1403 setTargetDAGCombine(ISD::MUL
);
1404 setTargetDAGCombine(ISD::AND
);
1405 setTargetDAGCombine(ISD::OR
);
1406 setTargetDAGCombine(ISD::XOR
);
1408 if (Subtarget
->hasV6Ops())
1409 setTargetDAGCombine(ISD::SRL
);
1410 if (Subtarget
->isThumb1Only())
1411 setTargetDAGCombine(ISD::SHL
);
1413 setStackPointerRegisterToSaveRestore(ARM::SP
);
1415 if (Subtarget
->useSoftFloat() || Subtarget
->isThumb1Only() ||
1416 !Subtarget
->hasVFP2Base() || Subtarget
->hasMinSize())
1417 setSchedulingPreference(Sched::RegPressure
);
1419 setSchedulingPreference(Sched::Hybrid
);
1421 //// temporary - rewrite interface to use type
1422 MaxStoresPerMemset
= 8;
1423 MaxStoresPerMemsetOptSize
= 4;
1424 MaxStoresPerMemcpy
= 4; // For @llvm.memcpy -> sequence of stores
1425 MaxStoresPerMemcpyOptSize
= 2;
1426 MaxStoresPerMemmove
= 4; // For @llvm.memmove -> sequence of stores
1427 MaxStoresPerMemmoveOptSize
= 2;
1429 // On ARM arguments smaller than 4 bytes are extended, so all arguments
1430 // are at least 4 bytes aligned.
1431 setMinStackArgumentAlignment(Align(4));
1433 // Prefer likely predicted branches to selects on out-of-order cores.
1434 PredictableSelectIsExpensive
= Subtarget
->getSchedModel().isOutOfOrder();
1436 setPrefLoopAlignment(Align(1ULL << Subtarget
->getPrefLoopLogAlignment()));
1438 setMinFunctionAlignment(Subtarget
->isThumb() ? Align(2) : Align(4));
1440 if (Subtarget
->isThumb() || Subtarget
->isThumb2())
1441 setTargetDAGCombine(ISD::ABS
);
1444 bool ARMTargetLowering::useSoftFloat() const {
1445 return Subtarget
->useSoftFloat();
1448 // FIXME: It might make sense to define the representative register class as the
1449 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1450 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1451 // SPR's representative would be DPR_VFP2. This should work well if register
1452 // pressure tracking were modified such that a register use would increment the
1453 // pressure of the register class's representative and all of it's super
1454 // classes' representatives transitively. We have not implemented this because
1455 // of the difficulty prior to coalescing of modeling operand register classes
1456 // due to the common occurrence of cross class copies and subregister insertions
1458 std::pair
<const TargetRegisterClass
*, uint8_t>
1459 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo
*TRI
,
1461 const TargetRegisterClass
*RRC
= nullptr;
1463 switch (VT
.SimpleTy
) {
1465 return TargetLowering::findRepresentativeClass(TRI
, VT
);
1466 // Use DPR as representative register class for all floating point
1467 // and vector types. Since there are 32 SPR registers and 32 DPR registers so
1468 // the cost is 1 for both f32 and f64.
1469 case MVT::f32
: case MVT::f64
: case MVT::v8i8
: case MVT::v4i16
:
1470 case MVT::v2i32
: case MVT::v1i64
: case MVT::v2f32
:
1471 RRC
= &ARM::DPRRegClass
;
1472 // When NEON is used for SP, only half of the register file is available
1473 // because operations that define both SP and DP results will be constrained
1474 // to the VFP2 class (D0-D15). We currently model this constraint prior to
1475 // coalescing by double-counting the SP regs. See the FIXME above.
1476 if (Subtarget
->useNEONForSinglePrecisionFP())
1479 case MVT::v16i8
: case MVT::v8i16
: case MVT::v4i32
: case MVT::v2i64
:
1480 case MVT::v4f32
: case MVT::v2f64
:
1481 RRC
= &ARM::DPRRegClass
;
1485 RRC
= &ARM::DPRRegClass
;
1489 RRC
= &ARM::DPRRegClass
;
1493 return std::make_pair(RRC
, Cost
);
1496 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode
) const {
1497 switch ((ARMISD::NodeType
)Opcode
) {
1498 case ARMISD::FIRST_NUMBER
: break;
1499 case ARMISD::Wrapper
: return "ARMISD::Wrapper";
1500 case ARMISD::WrapperPIC
: return "ARMISD::WrapperPIC";
1501 case ARMISD::WrapperJT
: return "ARMISD::WrapperJT";
1502 case ARMISD::COPY_STRUCT_BYVAL
: return "ARMISD::COPY_STRUCT_BYVAL";
1503 case ARMISD::CALL
: return "ARMISD::CALL";
1504 case ARMISD::CALL_PRED
: return "ARMISD::CALL_PRED";
1505 case ARMISD::CALL_NOLINK
: return "ARMISD::CALL_NOLINK";
1506 case ARMISD::BRCOND
: return "ARMISD::BRCOND";
1507 case ARMISD::BR_JT
: return "ARMISD::BR_JT";
1508 case ARMISD::BR2_JT
: return "ARMISD::BR2_JT";
1509 case ARMISD::RET_FLAG
: return "ARMISD::RET_FLAG";
1510 case ARMISD::INTRET_FLAG
: return "ARMISD::INTRET_FLAG";
1511 case ARMISD::PIC_ADD
: return "ARMISD::PIC_ADD";
1512 case ARMISD::CMP
: return "ARMISD::CMP";
1513 case ARMISD::CMN
: return "ARMISD::CMN";
1514 case ARMISD::CMPZ
: return "ARMISD::CMPZ";
1515 case ARMISD::CMPFP
: return "ARMISD::CMPFP";
1516 case ARMISD::CMPFPw0
: return "ARMISD::CMPFPw0";
1517 case ARMISD::BCC_i64
: return "ARMISD::BCC_i64";
1518 case ARMISD::FMSTAT
: return "ARMISD::FMSTAT";
1520 case ARMISD::CMOV
: return "ARMISD::CMOV";
1521 case ARMISD::SUBS
: return "ARMISD::SUBS";
1523 case ARMISD::SSAT
: return "ARMISD::SSAT";
1524 case ARMISD::USAT
: return "ARMISD::USAT";
1526 case ARMISD::ASRL
: return "ARMISD::ASRL";
1527 case ARMISD::LSRL
: return "ARMISD::LSRL";
1528 case ARMISD::LSLL
: return "ARMISD::LSLL";
1530 case ARMISD::SRL_FLAG
: return "ARMISD::SRL_FLAG";
1531 case ARMISD::SRA_FLAG
: return "ARMISD::SRA_FLAG";
1532 case ARMISD::RRX
: return "ARMISD::RRX";
1534 case ARMISD::ADDC
: return "ARMISD::ADDC";
1535 case ARMISD::ADDE
: return "ARMISD::ADDE";
1536 case ARMISD::SUBC
: return "ARMISD::SUBC";
1537 case ARMISD::SUBE
: return "ARMISD::SUBE";
1538 case ARMISD::LSLS
: return "ARMISD::LSLS";
1540 case ARMISD::VMOVRRD
: return "ARMISD::VMOVRRD";
1541 case ARMISD::VMOVDRR
: return "ARMISD::VMOVDRR";
1542 case ARMISD::VMOVhr
: return "ARMISD::VMOVhr";
1543 case ARMISD::VMOVrh
: return "ARMISD::VMOVrh";
1544 case ARMISD::VMOVSR
: return "ARMISD::VMOVSR";
1546 case ARMISD::EH_SJLJ_SETJMP
: return "ARMISD::EH_SJLJ_SETJMP";
1547 case ARMISD::EH_SJLJ_LONGJMP
: return "ARMISD::EH_SJLJ_LONGJMP";
1548 case ARMISD::EH_SJLJ_SETUP_DISPATCH
: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
1550 case ARMISD::TC_RETURN
: return "ARMISD::TC_RETURN";
1552 case ARMISD::THREAD_POINTER
:return "ARMISD::THREAD_POINTER";
1554 case ARMISD::DYN_ALLOC
: return "ARMISD::DYN_ALLOC";
1556 case ARMISD::MEMBARRIER_MCR
: return "ARMISD::MEMBARRIER_MCR";
1558 case ARMISD::PRELOAD
: return "ARMISD::PRELOAD";
1560 case ARMISD::WIN__CHKSTK
: return "ARMISD::WIN__CHKSTK";
1561 case ARMISD::WIN__DBZCHK
: return "ARMISD::WIN__DBZCHK";
1563 case ARMISD::PREDICATE_CAST
: return "ARMISD::PREDICATE_CAST";
1564 case ARMISD::VCMP
: return "ARMISD::VCMP";
1565 case ARMISD::VCMPZ
: return "ARMISD::VCMPZ";
1566 case ARMISD::VTST
: return "ARMISD::VTST";
1568 case ARMISD::VSHLs
: return "ARMISD::VSHLs";
1569 case ARMISD::VSHLu
: return "ARMISD::VSHLu";
1570 case ARMISD::VSHLIMM
: return "ARMISD::VSHLIMM";
1571 case ARMISD::VSHRsIMM
: return "ARMISD::VSHRsIMM";
1572 case ARMISD::VSHRuIMM
: return "ARMISD::VSHRuIMM";
1573 case ARMISD::VRSHRsIMM
: return "ARMISD::VRSHRsIMM";
1574 case ARMISD::VRSHRuIMM
: return "ARMISD::VRSHRuIMM";
1575 case ARMISD::VRSHRNIMM
: return "ARMISD::VRSHRNIMM";
1576 case ARMISD::VQSHLsIMM
: return "ARMISD::VQSHLsIMM";
1577 case ARMISD::VQSHLuIMM
: return "ARMISD::VQSHLuIMM";
1578 case ARMISD::VQSHLsuIMM
: return "ARMISD::VQSHLsuIMM";
1579 case ARMISD::VQSHRNsIMM
: return "ARMISD::VQSHRNsIMM";
1580 case ARMISD::VQSHRNuIMM
: return "ARMISD::VQSHRNuIMM";
1581 case ARMISD::VQSHRNsuIMM
: return "ARMISD::VQSHRNsuIMM";
1582 case ARMISD::VQRSHRNsIMM
: return "ARMISD::VQRSHRNsIMM";
1583 case ARMISD::VQRSHRNuIMM
: return "ARMISD::VQRSHRNuIMM";
1584 case ARMISD::VQRSHRNsuIMM
: return "ARMISD::VQRSHRNsuIMM";
1585 case ARMISD::VSLIIMM
: return "ARMISD::VSLIIMM";
1586 case ARMISD::VSRIIMM
: return "ARMISD::VSRIIMM";
1587 case ARMISD::VGETLANEu
: return "ARMISD::VGETLANEu";
1588 case ARMISD::VGETLANEs
: return "ARMISD::VGETLANEs";
1589 case ARMISD::VMOVIMM
: return "ARMISD::VMOVIMM";
1590 case ARMISD::VMVNIMM
: return "ARMISD::VMVNIMM";
1591 case ARMISD::VMOVFPIMM
: return "ARMISD::VMOVFPIMM";
1592 case ARMISD::VDUP
: return "ARMISD::VDUP";
1593 case ARMISD::VDUPLANE
: return "ARMISD::VDUPLANE";
1594 case ARMISD::VEXT
: return "ARMISD::VEXT";
1595 case ARMISD::VREV64
: return "ARMISD::VREV64";
1596 case ARMISD::VREV32
: return "ARMISD::VREV32";
1597 case ARMISD::VREV16
: return "ARMISD::VREV16";
1598 case ARMISD::VZIP
: return "ARMISD::VZIP";
1599 case ARMISD::VUZP
: return "ARMISD::VUZP";
1600 case ARMISD::VTRN
: return "ARMISD::VTRN";
1601 case ARMISD::VTBL1
: return "ARMISD::VTBL1";
1602 case ARMISD::VTBL2
: return "ARMISD::VTBL2";
1603 case ARMISD::VMULLs
: return "ARMISD::VMULLs";
1604 case ARMISD::VMULLu
: return "ARMISD::VMULLu";
1605 case ARMISD::UMAAL
: return "ARMISD::UMAAL";
1606 case ARMISD::UMLAL
: return "ARMISD::UMLAL";
1607 case ARMISD::SMLAL
: return "ARMISD::SMLAL";
1608 case ARMISD::SMLALBB
: return "ARMISD::SMLALBB";
1609 case ARMISD::SMLALBT
: return "ARMISD::SMLALBT";
1610 case ARMISD::SMLALTB
: return "ARMISD::SMLALTB";
1611 case ARMISD::SMLALTT
: return "ARMISD::SMLALTT";
1612 case ARMISD::SMULWB
: return "ARMISD::SMULWB";
1613 case ARMISD::SMULWT
: return "ARMISD::SMULWT";
1614 case ARMISD::SMLALD
: return "ARMISD::SMLALD";
1615 case ARMISD::SMLALDX
: return "ARMISD::SMLALDX";
1616 case ARMISD::SMLSLD
: return "ARMISD::SMLSLD";
1617 case ARMISD::SMLSLDX
: return "ARMISD::SMLSLDX";
1618 case ARMISD::SMMLAR
: return "ARMISD::SMMLAR";
1619 case ARMISD::SMMLSR
: return "ARMISD::SMMLSR";
1620 case ARMISD::BUILD_VECTOR
: return "ARMISD::BUILD_VECTOR";
1621 case ARMISD::BFI
: return "ARMISD::BFI";
1622 case ARMISD::VORRIMM
: return "ARMISD::VORRIMM";
1623 case ARMISD::VBICIMM
: return "ARMISD::VBICIMM";
1624 case ARMISD::VBSL
: return "ARMISD::VBSL";
1625 case ARMISD::MEMCPY
: return "ARMISD::MEMCPY";
1626 case ARMISD::VLD1DUP
: return "ARMISD::VLD1DUP";
1627 case ARMISD::VLD2DUP
: return "ARMISD::VLD2DUP";
1628 case ARMISD::VLD3DUP
: return "ARMISD::VLD3DUP";
1629 case ARMISD::VLD4DUP
: return "ARMISD::VLD4DUP";
1630 case ARMISD::VLD1_UPD
: return "ARMISD::VLD1_UPD";
1631 case ARMISD::VLD2_UPD
: return "ARMISD::VLD2_UPD";
1632 case ARMISD::VLD3_UPD
: return "ARMISD::VLD3_UPD";
1633 case ARMISD::VLD4_UPD
: return "ARMISD::VLD4_UPD";
1634 case ARMISD::VLD2LN_UPD
: return "ARMISD::VLD2LN_UPD";
1635 case ARMISD::VLD3LN_UPD
: return "ARMISD::VLD3LN_UPD";
1636 case ARMISD::VLD4LN_UPD
: return "ARMISD::VLD4LN_UPD";
1637 case ARMISD::VLD1DUP_UPD
: return "ARMISD::VLD1DUP_UPD";
1638 case ARMISD::VLD2DUP_UPD
: return "ARMISD::VLD2DUP_UPD";
1639 case ARMISD::VLD3DUP_UPD
: return "ARMISD::VLD3DUP_UPD";
1640 case ARMISD::VLD4DUP_UPD
: return "ARMISD::VLD4DUP_UPD";
1641 case ARMISD::VST1_UPD
: return "ARMISD::VST1_UPD";
1642 case ARMISD::VST2_UPD
: return "ARMISD::VST2_UPD";
1643 case ARMISD::VST3_UPD
: return "ARMISD::VST3_UPD";
1644 case ARMISD::VST4_UPD
: return "ARMISD::VST4_UPD";
1645 case ARMISD::VST2LN_UPD
: return "ARMISD::VST2LN_UPD";
1646 case ARMISD::VST3LN_UPD
: return "ARMISD::VST3LN_UPD";
1647 case ARMISD::VST4LN_UPD
: return "ARMISD::VST4LN_UPD";
1648 case ARMISD::WLS
: return "ARMISD::WLS";
1649 case ARMISD::LE
: return "ARMISD::LE";
1650 case ARMISD::LOOP_DEC
: return "ARMISD::LOOP_DEC";
1651 case ARMISD::CSINV
: return "ARMISD::CSINV";
1652 case ARMISD::CSNEG
: return "ARMISD::CSNEG";
1653 case ARMISD::CSINC
: return "ARMISD::CSINC";
1658 EVT
ARMTargetLowering::getSetCCResultType(const DataLayout
&DL
, LLVMContext
&,
1661 return getPointerTy(DL
);
1663 // MVE has a predicate register.
1664 if (Subtarget
->hasMVEIntegerOps() &&
1665 (VT
== MVT::v4i32
|| VT
== MVT::v8i16
|| VT
== MVT::v16i8
))
1666 return MVT::getVectorVT(MVT::i1
, VT
.getVectorElementCount());
1667 return VT
.changeVectorElementTypeToInteger();
1670 /// getRegClassFor - Return the register class that should be used for the
1671 /// specified value type.
1672 const TargetRegisterClass
*
1673 ARMTargetLowering::getRegClassFor(MVT VT
, bool isDivergent
) const {
1675 // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1676 // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1677 // load / store 4 to 8 consecutive NEON D registers, or 2 to 4 consecutive
1679 if (Subtarget
->hasNEON() || Subtarget
->hasMVEIntegerOps()) {
1680 if (VT
== MVT::v4i64
)
1681 return &ARM::QQPRRegClass
;
1682 if (VT
== MVT::v8i64
)
1683 return &ARM::QQQQPRRegClass
;
1685 return TargetLowering::getRegClassFor(VT
);
1688 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1689 // source/dest is aligned and the copy size is large enough. We therefore want
1690 // to align such objects passed to memory intrinsics.
1691 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst
*CI
, unsigned &MinSize
,
1692 unsigned &PrefAlign
) const {
1693 if (!isa
<MemIntrinsic
>(CI
))
1696 // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1697 // cycle faster than 4-byte aligned LDM.
1698 PrefAlign
= (Subtarget
->hasV6Ops() && !Subtarget
->isMClass() ? 8 : 4);
1702 // Create a fast isel object.
1704 ARMTargetLowering::createFastISel(FunctionLoweringInfo
&funcInfo
,
1705 const TargetLibraryInfo
*libInfo
) const {
1706 return ARM::createFastISel(funcInfo
, libInfo
);
1709 Sched::Preference
ARMTargetLowering::getSchedulingPreference(SDNode
*N
) const {
1710 unsigned NumVals
= N
->getNumValues();
1712 return Sched::RegPressure
;
1714 for (unsigned i
= 0; i
!= NumVals
; ++i
) {
1715 EVT VT
= N
->getValueType(i
);
1716 if (VT
== MVT::Glue
|| VT
== MVT::Other
)
1718 if (VT
.isFloatingPoint() || VT
.isVector())
1722 if (!N
->isMachineOpcode())
1723 return Sched::RegPressure
;
1725 // Load are scheduled for latency even if there instruction itinerary
1726 // is not available.
1727 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
1728 const MCInstrDesc
&MCID
= TII
->get(N
->getMachineOpcode());
1730 if (MCID
.getNumDefs() == 0)
1731 return Sched::RegPressure
;
1732 if (!Itins
->isEmpty() &&
1733 Itins
->getOperandCycle(MCID
.getSchedClass(), 0) > 2)
1736 return Sched::RegPressure
;
1739 //===----------------------------------------------------------------------===//
1741 //===----------------------------------------------------------------------===//
1743 static bool isSRL16(const SDValue
&Op
) {
1744 if (Op
.getOpcode() != ISD::SRL
)
1746 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1747 return Const
->getZExtValue() == 16;
1751 static bool isSRA16(const SDValue
&Op
) {
1752 if (Op
.getOpcode() != ISD::SRA
)
1754 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1755 return Const
->getZExtValue() == 16;
1759 static bool isSHL16(const SDValue
&Op
) {
1760 if (Op
.getOpcode() != ISD::SHL
)
1762 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1763 return Const
->getZExtValue() == 16;
1767 // Check for a signed 16-bit value. We special case SRA because it makes it
1768 // more simple when also looking for SRAs that aren't sign extending a
1769 // smaller value. Without the check, we'd need to take extra care with
1770 // checking order for some operations.
1771 static bool isS16(const SDValue
&Op
, SelectionDAG
&DAG
) {
1773 return isSHL16(Op
.getOperand(0));
1774 return DAG
.ComputeNumSignBits(Op
) == 17;
1777 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1778 static ARMCC::CondCodes
IntCCToARMCC(ISD::CondCode CC
) {
1780 default: llvm_unreachable("Unknown condition code!");
1781 case ISD::SETNE
: return ARMCC::NE
;
1782 case ISD::SETEQ
: return ARMCC::EQ
;
1783 case ISD::SETGT
: return ARMCC::GT
;
1784 case ISD::SETGE
: return ARMCC::GE
;
1785 case ISD::SETLT
: return ARMCC::LT
;
1786 case ISD::SETLE
: return ARMCC::LE
;
1787 case ISD::SETUGT
: return ARMCC::HI
;
1788 case ISD::SETUGE
: return ARMCC::HS
;
1789 case ISD::SETULT
: return ARMCC::LO
;
1790 case ISD::SETULE
: return ARMCC::LS
;
1794 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1795 static void FPCCToARMCC(ISD::CondCode CC
, ARMCC::CondCodes
&CondCode
,
1796 ARMCC::CondCodes
&CondCode2
, bool &InvalidOnQNaN
) {
1797 CondCode2
= ARMCC::AL
;
1798 InvalidOnQNaN
= true;
1800 default: llvm_unreachable("Unknown FP condition!");
1803 CondCode
= ARMCC::EQ
;
1804 InvalidOnQNaN
= false;
1807 case ISD::SETOGT
: CondCode
= ARMCC::GT
; break;
1809 case ISD::SETOGE
: CondCode
= ARMCC::GE
; break;
1810 case ISD::SETOLT
: CondCode
= ARMCC::MI
; break;
1811 case ISD::SETOLE
: CondCode
= ARMCC::LS
; break;
1813 CondCode
= ARMCC::MI
;
1814 CondCode2
= ARMCC::GT
;
1815 InvalidOnQNaN
= false;
1817 case ISD::SETO
: CondCode
= ARMCC::VC
; break;
1818 case ISD::SETUO
: CondCode
= ARMCC::VS
; break;
1820 CondCode
= ARMCC::EQ
;
1821 CondCode2
= ARMCC::VS
;
1822 InvalidOnQNaN
= false;
1824 case ISD::SETUGT
: CondCode
= ARMCC::HI
; break;
1825 case ISD::SETUGE
: CondCode
= ARMCC::PL
; break;
1827 case ISD::SETULT
: CondCode
= ARMCC::LT
; break;
1829 case ISD::SETULE
: CondCode
= ARMCC::LE
; break;
1832 CondCode
= ARMCC::NE
;
1833 InvalidOnQNaN
= false;
1838 //===----------------------------------------------------------------------===//
1839 // Calling Convention Implementation
1840 //===----------------------------------------------------------------------===//
1842 /// getEffectiveCallingConv - Get the effective calling convention, taking into
1843 /// account presence of floating point hardware and calling convention
1844 /// limitations, such as support for variadic functions.
1846 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC
,
1847 bool isVarArg
) const {
1850 report_fatal_error("Unsupported calling convention");
1851 case CallingConv::ARM_AAPCS
:
1852 case CallingConv::ARM_APCS
:
1853 case CallingConv::GHC
:
1855 case CallingConv::PreserveMost
:
1856 return CallingConv::PreserveMost
;
1857 case CallingConv::ARM_AAPCS_VFP
:
1858 case CallingConv::Swift
:
1859 return isVarArg
? CallingConv::ARM_AAPCS
: CallingConv::ARM_AAPCS_VFP
;
1860 case CallingConv::C
:
1861 if (!Subtarget
->isAAPCS_ABI())
1862 return CallingConv::ARM_APCS
;
1863 else if (Subtarget
->hasVFP2Base() && !Subtarget
->isThumb1Only() &&
1864 getTargetMachine().Options
.FloatABIType
== FloatABI::Hard
&&
1866 return CallingConv::ARM_AAPCS_VFP
;
1868 return CallingConv::ARM_AAPCS
;
1869 case CallingConv::Fast
:
1870 case CallingConv::CXX_FAST_TLS
:
1871 if (!Subtarget
->isAAPCS_ABI()) {
1872 if (Subtarget
->hasVFP2Base() && !Subtarget
->isThumb1Only() && !isVarArg
)
1873 return CallingConv::Fast
;
1874 return CallingConv::ARM_APCS
;
1875 } else if (Subtarget
->hasVFP2Base() &&
1876 !Subtarget
->isThumb1Only() && !isVarArg
)
1877 return CallingConv::ARM_AAPCS_VFP
;
1879 return CallingConv::ARM_AAPCS
;
1883 CCAssignFn
*ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC
,
1884 bool isVarArg
) const {
1885 return CCAssignFnForNode(CC
, false, isVarArg
);
1888 CCAssignFn
*ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC
,
1889 bool isVarArg
) const {
1890 return CCAssignFnForNode(CC
, true, isVarArg
);
1893 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
1894 /// CallingConvention.
1895 CCAssignFn
*ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC
,
1897 bool isVarArg
) const {
1898 switch (getEffectiveCallingConv(CC
, isVarArg
)) {
1900 report_fatal_error("Unsupported calling convention");
1901 case CallingConv::ARM_APCS
:
1902 return (Return
? RetCC_ARM_APCS
: CC_ARM_APCS
);
1903 case CallingConv::ARM_AAPCS
:
1904 return (Return
? RetCC_ARM_AAPCS
: CC_ARM_AAPCS
);
1905 case CallingConv::ARM_AAPCS_VFP
:
1906 return (Return
? RetCC_ARM_AAPCS_VFP
: CC_ARM_AAPCS_VFP
);
1907 case CallingConv::Fast
:
1908 return (Return
? RetFastCC_ARM_APCS
: FastCC_ARM_APCS
);
1909 case CallingConv::GHC
:
1910 return (Return
? RetCC_ARM_APCS
: CC_ARM_APCS_GHC
);
1911 case CallingConv::PreserveMost
:
1912 return (Return
? RetCC_ARM_AAPCS
: CC_ARM_AAPCS
);
1916 /// LowerCallResult - Lower the result values of a call into the
1917 /// appropriate copies out of appropriate physical registers.
1918 SDValue
ARMTargetLowering::LowerCallResult(
1919 SDValue Chain
, SDValue InFlag
, CallingConv::ID CallConv
, bool isVarArg
,
1920 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
1921 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
, bool isThisReturn
,
1922 SDValue ThisVal
) const {
1923 // Assign locations to each value returned by this call.
1924 SmallVector
<CCValAssign
, 16> RVLocs
;
1925 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
1927 CCInfo
.AnalyzeCallResult(Ins
, CCAssignFnForReturn(CallConv
, isVarArg
));
1929 // Copy all of the result registers out of their specified physreg.
1930 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
1931 CCValAssign VA
= RVLocs
[i
];
1933 // Pass 'this' value directly from the argument to return value, to avoid
1934 // reg unit interference
1935 if (i
== 0 && isThisReturn
) {
1936 assert(!VA
.needsCustom() && VA
.getLocVT() == MVT::i32
&&
1937 "unexpected return calling convention register assignment");
1938 InVals
.push_back(ThisVal
);
1943 if (VA
.needsCustom()) {
1944 // Handle f64 or half of a v2f64.
1945 SDValue Lo
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
,
1947 Chain
= Lo
.getValue(1);
1948 InFlag
= Lo
.getValue(2);
1949 VA
= RVLocs
[++i
]; // skip ahead to next loc
1950 SDValue Hi
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
,
1952 Chain
= Hi
.getValue(1);
1953 InFlag
= Hi
.getValue(2);
1954 if (!Subtarget
->isLittle())
1956 Val
= DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
1958 if (VA
.getLocVT() == MVT::v2f64
) {
1959 SDValue Vec
= DAG
.getNode(ISD::UNDEF
, dl
, MVT::v2f64
);
1960 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Vec
, Val
,
1961 DAG
.getConstant(0, dl
, MVT::i32
));
1963 VA
= RVLocs
[++i
]; // skip ahead to next loc
1964 Lo
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
, InFlag
);
1965 Chain
= Lo
.getValue(1);
1966 InFlag
= Lo
.getValue(2);
1967 VA
= RVLocs
[++i
]; // skip ahead to next loc
1968 Hi
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
, InFlag
);
1969 Chain
= Hi
.getValue(1);
1970 InFlag
= Hi
.getValue(2);
1971 if (!Subtarget
->isLittle())
1973 Val
= DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
1974 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Vec
, Val
,
1975 DAG
.getConstant(1, dl
, MVT::i32
));
1978 Val
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), VA
.getLocVT(),
1980 Chain
= Val
.getValue(1);
1981 InFlag
= Val
.getValue(2);
1984 switch (VA
.getLocInfo()) {
1985 default: llvm_unreachable("Unknown loc info!");
1986 case CCValAssign::Full
: break;
1987 case CCValAssign::BCvt
:
1988 Val
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getValVT(), Val
);
1992 InVals
.push_back(Val
);
1998 /// LowerMemOpCallTo - Store the argument to the stack.
1999 SDValue
ARMTargetLowering::LowerMemOpCallTo(SDValue Chain
, SDValue StackPtr
,
2000 SDValue Arg
, const SDLoc
&dl
,
2002 const CCValAssign
&VA
,
2003 ISD::ArgFlagsTy Flags
) const {
2004 unsigned LocMemOffset
= VA
.getLocMemOffset();
2005 SDValue PtrOff
= DAG
.getIntPtrConstant(LocMemOffset
, dl
);
2006 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(DAG
.getDataLayout()),
2008 return DAG
.getStore(
2009 Chain
, dl
, Arg
, PtrOff
,
2010 MachinePointerInfo::getStack(DAG
.getMachineFunction(), LocMemOffset
));
2013 void ARMTargetLowering::PassF64ArgInRegs(const SDLoc
&dl
, SelectionDAG
&DAG
,
2014 SDValue Chain
, SDValue
&Arg
,
2015 RegsToPassVector
&RegsToPass
,
2016 CCValAssign
&VA
, CCValAssign
&NextVA
,
2018 SmallVectorImpl
<SDValue
> &MemOpChains
,
2019 ISD::ArgFlagsTy Flags
) const {
2020 SDValue fmrrd
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
2021 DAG
.getVTList(MVT::i32
, MVT::i32
), Arg
);
2022 unsigned id
= Subtarget
->isLittle() ? 0 : 1;
2023 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), fmrrd
.getValue(id
)));
2025 if (NextVA
.isRegLoc())
2026 RegsToPass
.push_back(std::make_pair(NextVA
.getLocReg(), fmrrd
.getValue(1-id
)));
2028 assert(NextVA
.isMemLoc());
2029 if (!StackPtr
.getNode())
2030 StackPtr
= DAG
.getCopyFromReg(Chain
, dl
, ARM::SP
,
2031 getPointerTy(DAG
.getDataLayout()));
2033 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, fmrrd
.getValue(1-id
),
2039 /// LowerCall - Lowering a call into a callseq_start <-
2040 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
2043 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo
&CLI
,
2044 SmallVectorImpl
<SDValue
> &InVals
) const {
2045 SelectionDAG
&DAG
= CLI
.DAG
;
2047 SmallVectorImpl
<ISD::OutputArg
> &Outs
= CLI
.Outs
;
2048 SmallVectorImpl
<SDValue
> &OutVals
= CLI
.OutVals
;
2049 SmallVectorImpl
<ISD::InputArg
> &Ins
= CLI
.Ins
;
2050 SDValue Chain
= CLI
.Chain
;
2051 SDValue Callee
= CLI
.Callee
;
2052 bool &isTailCall
= CLI
.IsTailCall
;
2053 CallingConv::ID CallConv
= CLI
.CallConv
;
2054 bool doesNotRet
= CLI
.DoesNotReturn
;
2055 bool isVarArg
= CLI
.IsVarArg
;
2057 MachineFunction
&MF
= DAG
.getMachineFunction();
2058 bool isStructRet
= (Outs
.empty()) ? false : Outs
[0].Flags
.isSRet();
2059 bool isThisReturn
= false;
2060 auto Attr
= MF
.getFunction().getFnAttribute("disable-tail-calls");
2061 bool PreferIndirect
= false;
2063 // Disable tail calls if they're not supported.
2064 if (!Subtarget
->supportsTailCall() || Attr
.getValueAsString() == "true")
2067 if (isa
<GlobalAddressSDNode
>(Callee
)) {
2068 // If we're optimizing for minimum size and the function is called three or
2069 // more times in this block, we can improve codesize by calling indirectly
2070 // as BLXr has a 16-bit encoding.
2071 auto *GV
= cast
<GlobalAddressSDNode
>(Callee
)->getGlobal();
2073 auto *BB
= CLI
.CS
.getParent();
2074 PreferIndirect
= Subtarget
->isThumb() && Subtarget
->hasMinSize() &&
2075 count_if(GV
->users(), [&BB
](const User
*U
) {
2076 return isa
<Instruction
>(U
) &&
2077 cast
<Instruction
>(U
)->getParent() == BB
;
2082 // Check if it's really possible to do a tail call.
2083 isTailCall
= IsEligibleForTailCallOptimization(
2084 Callee
, CallConv
, isVarArg
, isStructRet
,
2085 MF
.getFunction().hasStructRetAttr(), Outs
, OutVals
, Ins
, DAG
,
2087 if (!isTailCall
&& CLI
.CS
&& CLI
.CS
.isMustTailCall())
2088 report_fatal_error("failed to perform tail call elimination on a call "
2089 "site marked musttail");
2090 // We don't support GuaranteedTailCallOpt for ARM, only automatically
2091 // detected sibcalls.
2096 // Analyze operands of the call, assigning locations to each operand.
2097 SmallVector
<CCValAssign
, 16> ArgLocs
;
2098 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
2100 CCInfo
.AnalyzeCallOperands(Outs
, CCAssignFnForCall(CallConv
, isVarArg
));
2102 // Get a count of how many bytes are to be pushed on the stack.
2103 unsigned NumBytes
= CCInfo
.getNextStackOffset();
2106 // For tail calls, memory operands are available in our caller's stack.
2109 // Adjust the stack pointer for the new arguments...
2110 // These operations are automatically eliminated by the prolog/epilog pass
2111 Chain
= DAG
.getCALLSEQ_START(Chain
, NumBytes
, 0, dl
);
2115 DAG
.getCopyFromReg(Chain
, dl
, ARM::SP
, getPointerTy(DAG
.getDataLayout()));
2117 RegsToPassVector RegsToPass
;
2118 SmallVector
<SDValue
, 8> MemOpChains
;
2120 // Walk the register/memloc assignments, inserting copies/loads. In the case
2121 // of tail call optimization, arguments are handled later.
2122 for (unsigned i
= 0, realArgIdx
= 0, e
= ArgLocs
.size();
2124 ++i
, ++realArgIdx
) {
2125 CCValAssign
&VA
= ArgLocs
[i
];
2126 SDValue Arg
= OutVals
[realArgIdx
];
2127 ISD::ArgFlagsTy Flags
= Outs
[realArgIdx
].Flags
;
2128 bool isByVal
= Flags
.isByVal();
2130 // Promote the value if needed.
2131 switch (VA
.getLocInfo()) {
2132 default: llvm_unreachable("Unknown loc info!");
2133 case CCValAssign::Full
: break;
2134 case CCValAssign::SExt
:
2135 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2137 case CCValAssign::ZExt
:
2138 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2140 case CCValAssign::AExt
:
2141 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2143 case CCValAssign::BCvt
:
2144 Arg
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getLocVT(), Arg
);
2148 // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
2149 if (VA
.needsCustom()) {
2150 if (VA
.getLocVT() == MVT::v2f64
) {
2151 SDValue Op0
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2152 DAG
.getConstant(0, dl
, MVT::i32
));
2153 SDValue Op1
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2154 DAG
.getConstant(1, dl
, MVT::i32
));
2156 PassF64ArgInRegs(dl
, DAG
, Chain
, Op0
, RegsToPass
,
2157 VA
, ArgLocs
[++i
], StackPtr
, MemOpChains
, Flags
);
2159 VA
= ArgLocs
[++i
]; // skip ahead to next loc
2160 if (VA
.isRegLoc()) {
2161 PassF64ArgInRegs(dl
, DAG
, Chain
, Op1
, RegsToPass
,
2162 VA
, ArgLocs
[++i
], StackPtr
, MemOpChains
, Flags
);
2164 assert(VA
.isMemLoc());
2166 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, Op1
,
2167 dl
, DAG
, VA
, Flags
));
2170 PassF64ArgInRegs(dl
, DAG
, Chain
, Arg
, RegsToPass
, VA
, ArgLocs
[++i
],
2171 StackPtr
, MemOpChains
, Flags
);
2173 } else if (VA
.isRegLoc()) {
2174 if (realArgIdx
== 0 && Flags
.isReturned() && !Flags
.isSwiftSelf() &&
2175 Outs
[0].VT
== MVT::i32
) {
2176 assert(VA
.getLocVT() == MVT::i32
&&
2177 "unexpected calling convention register assignment");
2178 assert(!Ins
.empty() && Ins
[0].VT
== MVT::i32
&&
2179 "unexpected use of 'returned'");
2180 isThisReturn
= true;
2182 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
2183 } else if (isByVal
) {
2184 assert(VA
.isMemLoc());
2185 unsigned offset
= 0;
2187 // True if this byval aggregate will be split between registers
2189 unsigned ByValArgsCount
= CCInfo
.getInRegsParamsCount();
2190 unsigned CurByValIdx
= CCInfo
.getInRegsParamsProcessed();
2192 if (CurByValIdx
< ByValArgsCount
) {
2194 unsigned RegBegin
, RegEnd
;
2195 CCInfo
.getInRegsParamInfo(CurByValIdx
, RegBegin
, RegEnd
);
2198 DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout());
2200 for (i
= 0, j
= RegBegin
; j
< RegEnd
; i
++, j
++) {
2201 SDValue Const
= DAG
.getConstant(4*i
, dl
, MVT::i32
);
2202 SDValue AddArg
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Arg
, Const
);
2203 SDValue Load
= DAG
.getLoad(PtrVT
, dl
, Chain
, AddArg
,
2204 MachinePointerInfo(),
2205 DAG
.InferPtrAlignment(AddArg
));
2206 MemOpChains
.push_back(Load
.getValue(1));
2207 RegsToPass
.push_back(std::make_pair(j
, Load
));
2210 // If parameter size outsides register area, "offset" value
2211 // helps us to calculate stack slot for remained part properly.
2212 offset
= RegEnd
- RegBegin
;
2214 CCInfo
.nextInRegsParam();
2217 if (Flags
.getByValSize() > 4*offset
) {
2218 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
2219 unsigned LocMemOffset
= VA
.getLocMemOffset();
2220 SDValue StkPtrOff
= DAG
.getIntPtrConstant(LocMemOffset
, dl
);
2221 SDValue Dst
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackPtr
, StkPtrOff
);
2222 SDValue SrcOffset
= DAG
.getIntPtrConstant(4*offset
, dl
);
2223 SDValue Src
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Arg
, SrcOffset
);
2224 SDValue SizeNode
= DAG
.getConstant(Flags
.getByValSize() - 4*offset
, dl
,
2226 SDValue AlignNode
= DAG
.getConstant(Flags
.getByValAlign(), dl
,
2229 SDVTList VTs
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
2230 SDValue Ops
[] = { Chain
, Dst
, Src
, SizeNode
, AlignNode
};
2231 MemOpChains
.push_back(DAG
.getNode(ARMISD::COPY_STRUCT_BYVAL
, dl
, VTs
,
2234 } else if (!isTailCall
) {
2235 assert(VA
.isMemLoc());
2237 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, Arg
,
2238 dl
, DAG
, VA
, Flags
));
2242 if (!MemOpChains
.empty())
2243 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOpChains
);
2245 // Build a sequence of copy-to-reg nodes chained together with token chain
2246 // and flag operands which copy the outgoing args into the appropriate regs.
2248 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
2249 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
2250 RegsToPass
[i
].second
, InFlag
);
2251 InFlag
= Chain
.getValue(1);
2254 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2255 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2256 // node so that legalize doesn't hack it.
2257 bool isDirect
= false;
2259 const TargetMachine
&TM
= getTargetMachine();
2260 const Module
*Mod
= MF
.getFunction().getParent();
2261 const GlobalValue
*GV
= nullptr;
2262 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
2263 GV
= G
->getGlobal();
2265 !TM
.shouldAssumeDSOLocal(*Mod
, GV
) && Subtarget
->isTargetMachO();
2267 bool isARMFunc
= !Subtarget
->isThumb() || (isStub
&& !Subtarget
->isMClass());
2268 bool isLocalARMFunc
= false;
2269 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
2270 auto PtrVt
= getPointerTy(DAG
.getDataLayout());
2272 if (Subtarget
->genLongCalls()) {
2273 assert((!isPositionIndependent() || Subtarget
->isTargetWindows()) &&
2274 "long-calls codegen is not position independent!");
2275 // Handle a global address or an external symbol. If it's not one of
2276 // those, the target's already in a register, so we don't need to do
2278 if (isa
<GlobalAddressSDNode
>(Callee
)) {
2279 // Create a constant pool entry for the callee address
2280 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2281 ARMConstantPoolValue
*CPV
=
2282 ARMConstantPoolConstant::Create(GV
, ARMPCLabelIndex
, ARMCP::CPValue
, 0);
2284 // Get the address of the callee into a register
2285 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2286 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2287 Callee
= DAG
.getLoad(
2288 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2289 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2290 } else if (ExternalSymbolSDNode
*S
=dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
2291 const char *Sym
= S
->getSymbol();
2293 // Create a constant pool entry for the callee address
2294 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2295 ARMConstantPoolValue
*CPV
=
2296 ARMConstantPoolSymbol::Create(*DAG
.getContext(), Sym
,
2297 ARMPCLabelIndex
, 0);
2298 // Get the address of the callee into a register
2299 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2300 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2301 Callee
= DAG
.getLoad(
2302 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2303 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2305 } else if (isa
<GlobalAddressSDNode
>(Callee
)) {
2306 if (!PreferIndirect
) {
2308 bool isDef
= GV
->isStrongDefinitionForLinker();
2310 // ARM call to a local ARM function is predicable.
2311 isLocalARMFunc
= !Subtarget
->isThumb() && (isDef
|| !ARMInterworking
);
2312 // tBX takes a register source operand.
2313 if (isStub
&& Subtarget
->isThumb1Only() && !Subtarget
->hasV5TOps()) {
2314 assert(Subtarget
->isTargetMachO() && "WrapperPIC use on non-MachO?");
2315 Callee
= DAG
.getNode(
2316 ARMISD::WrapperPIC
, dl
, PtrVt
,
2317 DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, 0, ARMII::MO_NONLAZY
));
2318 Callee
= DAG
.getLoad(
2319 PtrVt
, dl
, DAG
.getEntryNode(), Callee
,
2320 MachinePointerInfo::getGOT(DAG
.getMachineFunction()),
2321 /* Alignment = */ 0, MachineMemOperand::MODereferenceable
|
2322 MachineMemOperand::MOInvariant
);
2323 } else if (Subtarget
->isTargetCOFF()) {
2324 assert(Subtarget
->isTargetWindows() &&
2325 "Windows is the only supported COFF target");
2326 unsigned TargetFlags
= GV
->hasDLLImportStorageClass()
2327 ? ARMII::MO_DLLIMPORT
2328 : ARMII::MO_NO_FLAG
;
2329 Callee
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, /*offset=*/0,
2331 if (GV
->hasDLLImportStorageClass())
2333 DAG
.getLoad(PtrVt
, dl
, DAG
.getEntryNode(),
2334 DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVt
, Callee
),
2335 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
2337 Callee
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, 0, 0);
2340 } else if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
2342 // tBX takes a register source operand.
2343 const char *Sym
= S
->getSymbol();
2344 if (isARMFunc
&& Subtarget
->isThumb1Only() && !Subtarget
->hasV5TOps()) {
2345 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2346 ARMConstantPoolValue
*CPV
=
2347 ARMConstantPoolSymbol::Create(*DAG
.getContext(), Sym
,
2348 ARMPCLabelIndex
, 4);
2349 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2350 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2351 Callee
= DAG
.getLoad(
2352 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2353 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2354 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
2355 Callee
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVt
, Callee
, PICLabel
);
2357 Callee
= DAG
.getTargetExternalSymbol(Sym
, PtrVt
, 0);
2361 // FIXME: handle tail calls differently.
2363 if (Subtarget
->isThumb()) {
2364 if ((!isDirect
|| isARMFunc
) && !Subtarget
->hasV5TOps())
2365 CallOpc
= ARMISD::CALL_NOLINK
;
2367 CallOpc
= ARMISD::CALL
;
2369 if (!isDirect
&& !Subtarget
->hasV5TOps())
2370 CallOpc
= ARMISD::CALL_NOLINK
;
2371 else if (doesNotRet
&& isDirect
&& Subtarget
->hasRetAddrStack() &&
2372 // Emit regular call when code size is the priority
2373 !Subtarget
->hasMinSize())
2374 // "mov lr, pc; b _foo" to avoid confusing the RSP
2375 CallOpc
= ARMISD::CALL_NOLINK
;
2377 CallOpc
= isLocalARMFunc
? ARMISD::CALL_PRED
: ARMISD::CALL
;
2380 std::vector
<SDValue
> Ops
;
2381 Ops
.push_back(Chain
);
2382 Ops
.push_back(Callee
);
2384 // Add argument registers to the end of the list so that they are known live
2386 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
2387 Ops
.push_back(DAG
.getRegister(RegsToPass
[i
].first
,
2388 RegsToPass
[i
].second
.getValueType()));
2390 // Add a register mask operand representing the call-preserved registers.
2392 const uint32_t *Mask
;
2393 const ARMBaseRegisterInfo
*ARI
= Subtarget
->getRegisterInfo();
2395 // For 'this' returns, use the R0-preserving mask if applicable
2396 Mask
= ARI
->getThisReturnPreservedMask(MF
, CallConv
);
2398 // Set isThisReturn to false if the calling convention is not one that
2399 // allows 'returned' to be modeled in this way, so LowerCallResult does
2400 // not try to pass 'this' straight through
2401 isThisReturn
= false;
2402 Mask
= ARI
->getCallPreservedMask(MF
, CallConv
);
2405 Mask
= ARI
->getCallPreservedMask(MF
, CallConv
);
2407 assert(Mask
&& "Missing call preserved mask for calling convention");
2408 Ops
.push_back(DAG
.getRegisterMask(Mask
));
2411 if (InFlag
.getNode())
2412 Ops
.push_back(InFlag
);
2414 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
2416 MF
.getFrameInfo().setHasTailCall();
2417 return DAG
.getNode(ARMISD::TC_RETURN
, dl
, NodeTys
, Ops
);
2420 // Returns a chain and a flag for retval copy to use.
2421 Chain
= DAG
.getNode(CallOpc
, dl
, NodeTys
, Ops
);
2422 InFlag
= Chain
.getValue(1);
2424 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(NumBytes
, dl
, true),
2425 DAG
.getIntPtrConstant(0, dl
, true), InFlag
, dl
);
2427 InFlag
= Chain
.getValue(1);
2429 // Handle result values, copying them out of physregs into vregs that we
2431 return LowerCallResult(Chain
, InFlag
, CallConv
, isVarArg
, Ins
, dl
, DAG
,
2432 InVals
, isThisReturn
,
2433 isThisReturn
? OutVals
[0] : SDValue());
2436 /// HandleByVal - Every parameter *after* a byval parameter is passed
2437 /// on the stack. Remember the next parameter register to allocate,
2438 /// and then confiscate the rest of the parameter registers to insure
2440 void ARMTargetLowering::HandleByVal(CCState
*State
, unsigned &Size
,
2441 unsigned Align
) const {
2442 // Byval (as with any stack) slots are always at least 4 byte aligned.
2443 Align
= std::max(Align
, 4U);
2445 unsigned Reg
= State
->AllocateReg(GPRArgRegs
);
2449 unsigned AlignInRegs
= Align
/ 4;
2450 unsigned Waste
= (ARM::R4
- Reg
) % AlignInRegs
;
2451 for (unsigned i
= 0; i
< Waste
; ++i
)
2452 Reg
= State
->AllocateReg(GPRArgRegs
);
2457 unsigned Excess
= 4 * (ARM::R4
- Reg
);
2459 // Special case when NSAA != SP and parameter size greater than size of
2460 // all remained GPR regs. In that case we can't split parameter, we must
2461 // send it to stack. We also must set NCRN to R4, so waste all
2462 // remained registers.
2463 const unsigned NSAAOffset
= State
->getNextStackOffset();
2464 if (NSAAOffset
!= 0 && Size
> Excess
) {
2465 while (State
->AllocateReg(GPRArgRegs
))
2470 // First register for byval parameter is the first register that wasn't
2471 // allocated before this method call, so it would be "reg".
2472 // If parameter is small enough to be saved in range [reg, r4), then
2473 // the end (first after last) register would be reg + param-size-in-regs,
2474 // else parameter would be splitted between registers and stack,
2475 // end register would be r4 in this case.
2476 unsigned ByValRegBegin
= Reg
;
2477 unsigned ByValRegEnd
= std::min
<unsigned>(Reg
+ Size
/ 4, ARM::R4
);
2478 State
->addInRegsParamInfo(ByValRegBegin
, ByValRegEnd
);
2479 // Note, first register is allocated in the beginning of function already,
2480 // allocate remained amount of registers we need.
2481 for (unsigned i
= Reg
+ 1; i
!= ByValRegEnd
; ++i
)
2482 State
->AllocateReg(GPRArgRegs
);
2483 // A byval parameter that is split between registers and memory needs its
2484 // size truncated here.
2485 // In the case where the entire structure fits in registers, we set the
2486 // size in memory to zero.
2487 Size
= std::max
<int>(Size
- Excess
, 0);
2490 /// MatchingStackOffset - Return true if the given stack call argument is
2491 /// already available in the same position (relatively) of the caller's
2492 /// incoming argument stack.
2494 bool MatchingStackOffset(SDValue Arg
, unsigned Offset
, ISD::ArgFlagsTy Flags
,
2495 MachineFrameInfo
&MFI
, const MachineRegisterInfo
*MRI
,
2496 const TargetInstrInfo
*TII
) {
2497 unsigned Bytes
= Arg
.getValueSizeInBits() / 8;
2498 int FI
= std::numeric_limits
<int>::max();
2499 if (Arg
.getOpcode() == ISD::CopyFromReg
) {
2500 unsigned VR
= cast
<RegisterSDNode
>(Arg
.getOperand(1))->getReg();
2501 if (!Register::isVirtualRegister(VR
))
2503 MachineInstr
*Def
= MRI
->getVRegDef(VR
);
2506 if (!Flags
.isByVal()) {
2507 if (!TII
->isLoadFromStackSlot(*Def
, FI
))
2512 } else if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Arg
)) {
2513 if (Flags
.isByVal())
2514 // ByVal argument is passed in as a pointer but it's now being
2515 // dereferenced. e.g.
2516 // define @foo(%struct.X* %A) {
2517 // tail call @bar(%struct.X* byval %A)
2520 SDValue Ptr
= Ld
->getBasePtr();
2521 FrameIndexSDNode
*FINode
= dyn_cast
<FrameIndexSDNode
>(Ptr
);
2524 FI
= FINode
->getIndex();
2528 assert(FI
!= std::numeric_limits
<int>::max());
2529 if (!MFI
.isFixedObjectIndex(FI
))
2531 return Offset
== MFI
.getObjectOffset(FI
) && Bytes
== MFI
.getObjectSize(FI
);
2534 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2535 /// for tail call optimization. Targets which want to do tail call
2536 /// optimization should implement this function.
2537 bool ARMTargetLowering::IsEligibleForTailCallOptimization(
2538 SDValue Callee
, CallingConv::ID CalleeCC
, bool isVarArg
,
2539 bool isCalleeStructRet
, bool isCallerStructRet
,
2540 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2541 const SmallVectorImpl
<SDValue
> &OutVals
,
2542 const SmallVectorImpl
<ISD::InputArg
> &Ins
, SelectionDAG
&DAG
,
2543 const bool isIndirect
) const {
2544 MachineFunction
&MF
= DAG
.getMachineFunction();
2545 const Function
&CallerF
= MF
.getFunction();
2546 CallingConv::ID CallerCC
= CallerF
.getCallingConv();
2548 assert(Subtarget
->supportsTailCall());
2550 // Indirect tail calls cannot be optimized for Thumb1 if the args
2551 // to the call take up r0-r3. The reason is that there are no legal registers
2552 // left to hold the pointer to the function to be called.
2553 if (Subtarget
->isThumb1Only() && Outs
.size() >= 4 &&
2554 (!isa
<GlobalAddressSDNode
>(Callee
.getNode()) || isIndirect
))
2557 // Look for obvious safe cases to perform tail call optimization that do not
2558 // require ABI changes. This is what gcc calls sibcall.
2560 // Exception-handling functions need a special set of instructions to indicate
2561 // a return to the hardware. Tail-calling another function would probably
2563 if (CallerF
.hasFnAttribute("interrupt"))
2566 // Also avoid sibcall optimization if either caller or callee uses struct
2567 // return semantics.
2568 if (isCalleeStructRet
|| isCallerStructRet
)
2571 // Externally-defined functions with weak linkage should not be
2572 // tail-called on ARM when the OS does not support dynamic
2573 // pre-emption of symbols, as the AAELF spec requires normal calls
2574 // to undefined weak functions to be replaced with a NOP or jump to the
2575 // next instruction. The behaviour of branch instructions in this
2576 // situation (as used for tail calls) is implementation-defined, so we
2577 // cannot rely on the linker replacing the tail call with a return.
2578 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
2579 const GlobalValue
*GV
= G
->getGlobal();
2580 const Triple
&TT
= getTargetMachine().getTargetTriple();
2581 if (GV
->hasExternalWeakLinkage() &&
2582 (!TT
.isOSWindows() || TT
.isOSBinFormatELF() || TT
.isOSBinFormatMachO()))
2586 // Check that the call results are passed in the same way.
2587 LLVMContext
&C
= *DAG
.getContext();
2588 if (!CCState::resultsCompatible(CalleeCC
, CallerCC
, MF
, C
, Ins
,
2589 CCAssignFnForReturn(CalleeCC
, isVarArg
),
2590 CCAssignFnForReturn(CallerCC
, isVarArg
)))
2592 // The callee has to preserve all registers the caller needs to preserve.
2593 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
2594 const uint32_t *CallerPreserved
= TRI
->getCallPreservedMask(MF
, CallerCC
);
2595 if (CalleeCC
!= CallerCC
) {
2596 const uint32_t *CalleePreserved
= TRI
->getCallPreservedMask(MF
, CalleeCC
);
2597 if (!TRI
->regmaskSubsetEqual(CallerPreserved
, CalleePreserved
))
2601 // If Caller's vararg or byval argument has been split between registers and
2602 // stack, do not perform tail call, since part of the argument is in caller's
2604 const ARMFunctionInfo
*AFI_Caller
= MF
.getInfo
<ARMFunctionInfo
>();
2605 if (AFI_Caller
->getArgRegsSaveSize())
2608 // If the callee takes no arguments then go on to check the results of the
2610 if (!Outs
.empty()) {
2611 // Check if stack adjustment is needed. For now, do not do this if any
2612 // argument is passed on the stack.
2613 SmallVector
<CCValAssign
, 16> ArgLocs
;
2614 CCState
CCInfo(CalleeCC
, isVarArg
, MF
, ArgLocs
, C
);
2615 CCInfo
.AnalyzeCallOperands(Outs
, CCAssignFnForCall(CalleeCC
, isVarArg
));
2616 if (CCInfo
.getNextStackOffset()) {
2617 // Check if the arguments are already laid out in the right way as
2618 // the caller's fixed stack objects.
2619 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2620 const MachineRegisterInfo
*MRI
= &MF
.getRegInfo();
2621 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
2622 for (unsigned i
= 0, realArgIdx
= 0, e
= ArgLocs
.size();
2624 ++i
, ++realArgIdx
) {
2625 CCValAssign
&VA
= ArgLocs
[i
];
2626 EVT RegVT
= VA
.getLocVT();
2627 SDValue Arg
= OutVals
[realArgIdx
];
2628 ISD::ArgFlagsTy Flags
= Outs
[realArgIdx
].Flags
;
2629 if (VA
.getLocInfo() == CCValAssign::Indirect
)
2631 if (VA
.needsCustom()) {
2632 // f64 and vector types are split into multiple registers or
2633 // register/stack-slot combinations. The types will not match
2634 // the registers; give up on memory f64 refs until we figure
2635 // out what to do about this.
2638 if (!ArgLocs
[++i
].isRegLoc())
2640 if (RegVT
== MVT::v2f64
) {
2641 if (!ArgLocs
[++i
].isRegLoc())
2643 if (!ArgLocs
[++i
].isRegLoc())
2646 } else if (!VA
.isRegLoc()) {
2647 if (!MatchingStackOffset(Arg
, VA
.getLocMemOffset(), Flags
,
2654 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
2655 if (!parametersInCSRMatch(MRI
, CallerPreserved
, ArgLocs
, OutVals
))
2663 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv
,
2664 MachineFunction
&MF
, bool isVarArg
,
2665 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2666 LLVMContext
&Context
) const {
2667 SmallVector
<CCValAssign
, 16> RVLocs
;
2668 CCState
CCInfo(CallConv
, isVarArg
, MF
, RVLocs
, Context
);
2669 return CCInfo
.CheckReturn(Outs
, CCAssignFnForReturn(CallConv
, isVarArg
));
2672 static SDValue
LowerInterruptReturn(SmallVectorImpl
<SDValue
> &RetOps
,
2673 const SDLoc
&DL
, SelectionDAG
&DAG
) {
2674 const MachineFunction
&MF
= DAG
.getMachineFunction();
2675 const Function
&F
= MF
.getFunction();
2677 StringRef IntKind
= F
.getFnAttribute("interrupt").getValueAsString();
2679 // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
2680 // version of the "preferred return address". These offsets affect the return
2681 // instruction if this is a return from PL1 without hypervisor extensions.
2682 // IRQ/FIQ: +4 "subs pc, lr, #4"
2683 // SWI: 0 "subs pc, lr, #0"
2684 // ABORT: +4 "subs pc, lr, #4"
2685 // UNDEF: +4/+2 "subs pc, lr, #0"
2686 // UNDEF varies depending on where the exception came from ARM or Thumb
2687 // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
2690 if (IntKind
== "" || IntKind
== "IRQ" || IntKind
== "FIQ" ||
2693 else if (IntKind
== "SWI" || IntKind
== "UNDEF")
2696 report_fatal_error("Unsupported interrupt attribute. If present, value "
2697 "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
2699 RetOps
.insert(RetOps
.begin() + 1,
2700 DAG
.getConstant(LROffset
, DL
, MVT::i32
, false));
2702 return DAG
.getNode(ARMISD::INTRET_FLAG
, DL
, MVT::Other
, RetOps
);
2706 ARMTargetLowering::LowerReturn(SDValue Chain
, CallingConv::ID CallConv
,
2708 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2709 const SmallVectorImpl
<SDValue
> &OutVals
,
2710 const SDLoc
&dl
, SelectionDAG
&DAG
) const {
2711 // CCValAssign - represent the assignment of the return value to a location.
2712 SmallVector
<CCValAssign
, 16> RVLocs
;
2714 // CCState - Info about the registers and stack slots.
2715 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
2718 // Analyze outgoing return values.
2719 CCInfo
.AnalyzeReturn(Outs
, CCAssignFnForReturn(CallConv
, isVarArg
));
2722 SmallVector
<SDValue
, 4> RetOps
;
2723 RetOps
.push_back(Chain
); // Operand #0 = Chain (updated below)
2724 bool isLittleEndian
= Subtarget
->isLittle();
2726 MachineFunction
&MF
= DAG
.getMachineFunction();
2727 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
2728 AFI
->setReturnRegsCount(RVLocs
.size());
2730 // Copy the result values into the output registers.
2731 for (unsigned i
= 0, realRVLocIdx
= 0;
2733 ++i
, ++realRVLocIdx
) {
2734 CCValAssign
&VA
= RVLocs
[i
];
2735 assert(VA
.isRegLoc() && "Can only return in registers!");
2737 SDValue Arg
= OutVals
[realRVLocIdx
];
2738 bool ReturnF16
= false;
2740 if (Subtarget
->hasFullFP16() && Subtarget
->isTargetHardFloat()) {
2741 // Half-precision return values can be returned like this:
2743 // t11 f16 = fadd ...
2744 // t12: i16 = bitcast t11
2745 // t13: i32 = zero_extend t12
2746 // t14: f32 = bitcast t13 <~~~~~~~ Arg
2748 // to avoid code generation for bitcasts, we simply set Arg to the node
2749 // that produces the f16 value, t11 in this case.
2751 if (Arg
.getValueType() == MVT::f32
&& Arg
.getOpcode() == ISD::BITCAST
) {
2752 SDValue ZE
= Arg
.getOperand(0);
2753 if (ZE
.getOpcode() == ISD::ZERO_EXTEND
&& ZE
.getValueType() == MVT::i32
) {
2754 SDValue BC
= ZE
.getOperand(0);
2755 if (BC
.getOpcode() == ISD::BITCAST
&& BC
.getValueType() == MVT::i16
) {
2756 Arg
= BC
.getOperand(0);
2763 switch (VA
.getLocInfo()) {
2764 default: llvm_unreachable("Unknown loc info!");
2765 case CCValAssign::Full
: break;
2766 case CCValAssign::BCvt
:
2768 Arg
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getLocVT(), Arg
);
2772 if (VA
.needsCustom()) {
2773 if (VA
.getLocVT() == MVT::v2f64
) {
2774 // Extract the first half and return it in two registers.
2775 SDValue Half
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2776 DAG
.getConstant(0, dl
, MVT::i32
));
2777 SDValue HalfGPRs
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
2778 DAG
.getVTList(MVT::i32
, MVT::i32
), Half
);
2780 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2781 HalfGPRs
.getValue(isLittleEndian
? 0 : 1),
2783 Flag
= Chain
.getValue(1);
2784 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2785 VA
= RVLocs
[++i
]; // skip ahead to next loc
2786 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2787 HalfGPRs
.getValue(isLittleEndian
? 1 : 0),
2789 Flag
= Chain
.getValue(1);
2790 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2791 VA
= RVLocs
[++i
]; // skip ahead to next loc
2793 // Extract the 2nd half and fall through to handle it as an f64 value.
2794 Arg
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2795 DAG
.getConstant(1, dl
, MVT::i32
));
2797 // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
2799 SDValue fmrrd
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
2800 DAG
.getVTList(MVT::i32
, MVT::i32
), Arg
);
2801 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2802 fmrrd
.getValue(isLittleEndian
? 0 : 1),
2804 Flag
= Chain
.getValue(1);
2805 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2806 VA
= RVLocs
[++i
]; // skip ahead to next loc
2807 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2808 fmrrd
.getValue(isLittleEndian
? 1 : 0),
2811 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(), Arg
, Flag
);
2813 // Guarantee that all emitted copies are
2814 // stuck together, avoiding something bad.
2815 Flag
= Chain
.getValue(1);
2816 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(),
2817 ReturnF16
? MVT::f16
: VA
.getLocVT()));
2819 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
2820 const MCPhysReg
*I
=
2821 TRI
->getCalleeSavedRegsViaCopy(&DAG
.getMachineFunction());
2824 if (ARM::GPRRegClass
.contains(*I
))
2825 RetOps
.push_back(DAG
.getRegister(*I
, MVT::i32
));
2826 else if (ARM::DPRRegClass
.contains(*I
))
2827 RetOps
.push_back(DAG
.getRegister(*I
, MVT::getFloatingPointVT(64)));
2829 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2833 // Update chain and glue.
2836 RetOps
.push_back(Flag
);
2838 // CPUs which aren't M-class use a special sequence to return from
2839 // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
2840 // though we use "subs pc, lr, #N").
2842 // M-class CPUs actually use a normal return sequence with a special
2843 // (hardware-provided) value in LR, so the normal code path works.
2844 if (DAG
.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
2845 !Subtarget
->isMClass()) {
2846 if (Subtarget
->isThumb1Only())
2847 report_fatal_error("interrupt attribute is not supported in Thumb1");
2848 return LowerInterruptReturn(RetOps
, dl
, DAG
);
2851 return DAG
.getNode(ARMISD::RET_FLAG
, dl
, MVT::Other
, RetOps
);
2854 bool ARMTargetLowering::isUsedByReturnOnly(SDNode
*N
, SDValue
&Chain
) const {
2855 if (N
->getNumValues() != 1)
2857 if (!N
->hasNUsesOfValue(1, 0))
2860 SDValue TCChain
= Chain
;
2861 SDNode
*Copy
= *N
->use_begin();
2862 if (Copy
->getOpcode() == ISD::CopyToReg
) {
2863 // If the copy has a glue operand, we conservatively assume it isn't safe to
2864 // perform a tail call.
2865 if (Copy
->getOperand(Copy
->getNumOperands()-1).getValueType() == MVT::Glue
)
2867 TCChain
= Copy
->getOperand(0);
2868 } else if (Copy
->getOpcode() == ARMISD::VMOVRRD
) {
2869 SDNode
*VMov
= Copy
;
2870 // f64 returned in a pair of GPRs.
2871 SmallPtrSet
<SDNode
*, 2> Copies
;
2872 for (SDNode::use_iterator UI
= VMov
->use_begin(), UE
= VMov
->use_end();
2874 if (UI
->getOpcode() != ISD::CopyToReg
)
2878 if (Copies
.size() > 2)
2881 for (SDNode::use_iterator UI
= VMov
->use_begin(), UE
= VMov
->use_end();
2883 SDValue UseChain
= UI
->getOperand(0);
2884 if (Copies
.count(UseChain
.getNode()))
2888 // We are at the top of this chain.
2889 // If the copy has a glue operand, we conservatively assume it
2890 // isn't safe to perform a tail call.
2891 if (UI
->getOperand(UI
->getNumOperands()-1).getValueType() == MVT::Glue
)
2897 } else if (Copy
->getOpcode() == ISD::BITCAST
) {
2898 // f32 returned in a single GPR.
2899 if (!Copy
->hasOneUse())
2901 Copy
= *Copy
->use_begin();
2902 if (Copy
->getOpcode() != ISD::CopyToReg
|| !Copy
->hasNUsesOfValue(1, 0))
2904 // If the copy has a glue operand, we conservatively assume it isn't safe to
2905 // perform a tail call.
2906 if (Copy
->getOperand(Copy
->getNumOperands()-1).getValueType() == MVT::Glue
)
2908 TCChain
= Copy
->getOperand(0);
2913 bool HasRet
= false;
2914 for (SDNode::use_iterator UI
= Copy
->use_begin(), UE
= Copy
->use_end();
2916 if (UI
->getOpcode() != ARMISD::RET_FLAG
&&
2917 UI
->getOpcode() != ARMISD::INTRET_FLAG
)
2929 bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst
*CI
) const {
2930 if (!Subtarget
->supportsTailCall())
2934 CI
->getParent()->getParent()->getFnAttribute("disable-tail-calls");
2935 if (!CI
->isTailCall() || Attr
.getValueAsString() == "true")
2941 // Trying to write a 64 bit value so need to split into two 32 bit values first,
2942 // and pass the lower and high parts through.
2943 static SDValue
LowerWRITE_REGISTER(SDValue Op
, SelectionDAG
&DAG
) {
2945 SDValue WriteValue
= Op
->getOperand(2);
2947 // This function is only supposed to be called for i64 type argument.
2948 assert(WriteValue
.getValueType() == MVT::i64
2949 && "LowerWRITE_REGISTER called for non-i64 type argument.");
2951 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, WriteValue
,
2952 DAG
.getConstant(0, DL
, MVT::i32
));
2953 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, WriteValue
,
2954 DAG
.getConstant(1, DL
, MVT::i32
));
2955 SDValue Ops
[] = { Op
->getOperand(0), Op
->getOperand(1), Lo
, Hi
};
2956 return DAG
.getNode(ISD::WRITE_REGISTER
, DL
, MVT::Other
, Ops
);
2959 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2960 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2961 // one of the above mentioned nodes. It has to be wrapped because otherwise
2962 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2963 // be used to form addressing mode. These wrapped nodes will be selected
2965 SDValue
ARMTargetLowering::LowerConstantPool(SDValue Op
,
2966 SelectionDAG
&DAG
) const {
2967 EVT PtrVT
= Op
.getValueType();
2968 // FIXME there is no actual debug info here
2970 ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(Op
);
2973 // When generating execute-only code Constant Pools must be promoted to the
2974 // global data section. It's a bit ugly that we can't share them across basic
2975 // blocks, but this way we guarantee that execute-only behaves correct with
2976 // position-independent addressing modes.
2977 if (Subtarget
->genExecuteOnly()) {
2978 auto AFI
= DAG
.getMachineFunction().getInfo
<ARMFunctionInfo
>();
2979 auto T
= const_cast<Type
*>(CP
->getType());
2980 auto C
= const_cast<Constant
*>(CP
->getConstVal());
2981 auto M
= const_cast<Module
*>(DAG
.getMachineFunction().
2982 getFunction().getParent());
2983 auto GV
= new GlobalVariable(
2984 *M
, T
, /*isConstant=*/true, GlobalVariable::InternalLinkage
, C
,
2985 Twine(DAG
.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
2986 Twine(DAG
.getMachineFunction().getFunctionNumber()) + "_" +
2987 Twine(AFI
->createPICLabelUId())
2989 SDValue GA
= DAG
.getTargetGlobalAddress(dyn_cast
<GlobalValue
>(GV
),
2991 return LowerGlobalAddress(GA
, DAG
);
2994 if (CP
->isMachineConstantPoolEntry())
2995 Res
= DAG
.getTargetConstantPool(CP
->getMachineCPVal(), PtrVT
,
2996 CP
->getAlignment());
2998 Res
= DAG
.getTargetConstantPool(CP
->getConstVal(), PtrVT
,
2999 CP
->getAlignment());
3000 return DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Res
);
3003 unsigned ARMTargetLowering::getJumpTableEncoding() const {
3004 return MachineJumpTableInfo::EK_Inline
;
3007 SDValue
ARMTargetLowering::LowerBlockAddress(SDValue Op
,
3008 SelectionDAG
&DAG
) const {
3009 MachineFunction
&MF
= DAG
.getMachineFunction();
3010 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3011 unsigned ARMPCLabelIndex
= 0;
3013 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3014 const BlockAddress
*BA
= cast
<BlockAddressSDNode
>(Op
)->getBlockAddress();
3016 bool IsPositionIndependent
= isPositionIndependent() || Subtarget
->isROPI();
3017 if (!IsPositionIndependent
) {
3018 CPAddr
= DAG
.getTargetConstantPool(BA
, PtrVT
, 4);
3020 unsigned PCAdj
= Subtarget
->isThumb() ? 4 : 8;
3021 ARMPCLabelIndex
= AFI
->createPICLabelUId();
3022 ARMConstantPoolValue
*CPV
=
3023 ARMConstantPoolConstant::Create(BA
, ARMPCLabelIndex
,
3024 ARMCP::CPBlockAddress
, PCAdj
);
3025 CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3027 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
, CPAddr
);
3028 SDValue Result
= DAG
.getLoad(
3029 PtrVT
, DL
, DAG
.getEntryNode(), CPAddr
,
3030 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3031 if (!IsPositionIndependent
)
3033 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, DL
, MVT::i32
);
3034 return DAG
.getNode(ARMISD::PIC_ADD
, DL
, PtrVT
, Result
, PICLabel
);
3037 /// Convert a TLS address reference into the correct sequence of loads
3038 /// and calls to compute the variable's address for Darwin, and return an
3039 /// SDValue containing the final node.
3041 /// Darwin only has one TLS scheme which must be capable of dealing with the
3042 /// fully general situation, in the worst case. This means:
3043 /// + "extern __thread" declaration.
3044 /// + Defined in a possibly unknown dynamic library.
3046 /// The general system is that each __thread variable has a [3 x i32] descriptor
3047 /// which contains information used by the runtime to calculate the address. The
3048 /// only part of this the compiler needs to know about is the first word, which
3049 /// contains a function pointer that must be called with the address of the
3050 /// entire descriptor in "r0".
3052 /// Since this descriptor may be in a different unit, in general access must
3053 /// proceed along the usual ARM rules. A common sequence to produce is:
3055 /// movw rT1, :lower16:_var$non_lazy_ptr
3056 /// movt rT1, :upper16:_var$non_lazy_ptr
3060 /// [...address now in r0...]
3062 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op
,
3063 SelectionDAG
&DAG
) const {
3064 assert(Subtarget
->isTargetDarwin() &&
3065 "This function expects a Darwin target");
3068 // First step is to get the address of the actua global symbol. This is where
3069 // the TLS descriptor lives.
3070 SDValue DescAddr
= LowerGlobalAddressDarwin(Op
, DAG
);
3072 // The first entry in the descriptor is a function pointer that we must call
3073 // to obtain the address of the variable.
3074 SDValue Chain
= DAG
.getEntryNode();
3075 SDValue FuncTLVGet
= DAG
.getLoad(
3076 MVT::i32
, DL
, Chain
, DescAddr
,
3077 MachinePointerInfo::getGOT(DAG
.getMachineFunction()),
3078 /* Alignment = */ 4,
3079 MachineMemOperand::MONonTemporal
| MachineMemOperand::MODereferenceable
|
3080 MachineMemOperand::MOInvariant
);
3081 Chain
= FuncTLVGet
.getValue(1);
3083 MachineFunction
&F
= DAG
.getMachineFunction();
3084 MachineFrameInfo
&MFI
= F
.getFrameInfo();
3085 MFI
.setAdjustsStack(true);
3087 // TLS calls preserve all registers except those that absolutely must be
3088 // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
3091 getTargetMachine().getSubtargetImpl(F
.getFunction())->getRegisterInfo();
3092 auto ARI
= static_cast<const ARMRegisterInfo
*>(TRI
);
3093 const uint32_t *Mask
= ARI
->getTLSCallPreservedMask(DAG
.getMachineFunction());
3095 // Finally, we can make the call. This is just a degenerate version of a
3096 // normal AArch64 call node: r0 takes the address of the descriptor, and
3097 // returns the address of the variable in this thread.
3098 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::R0
, DescAddr
, SDValue());
3100 DAG
.getNode(ARMISD::CALL
, DL
, DAG
.getVTList(MVT::Other
, MVT::Glue
),
3101 Chain
, FuncTLVGet
, DAG
.getRegister(ARM::R0
, MVT::i32
),
3102 DAG
.getRegisterMask(Mask
), Chain
.getValue(1));
3103 return DAG
.getCopyFromReg(Chain
, DL
, ARM::R0
, MVT::i32
, Chain
.getValue(1));
3107 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op
,
3108 SelectionDAG
&DAG
) const {
3109 assert(Subtarget
->isTargetWindows() && "Windows specific TLS lowering");
3111 SDValue Chain
= DAG
.getEntryNode();
3112 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3115 // Load the current TEB (thread environment block)
3116 SDValue Ops
[] = {Chain
,
3117 DAG
.getTargetConstant(Intrinsic::arm_mrc
, DL
, MVT::i32
),
3118 DAG
.getTargetConstant(15, DL
, MVT::i32
),
3119 DAG
.getTargetConstant(0, DL
, MVT::i32
),
3120 DAG
.getTargetConstant(13, DL
, MVT::i32
),
3121 DAG
.getTargetConstant(0, DL
, MVT::i32
),
3122 DAG
.getTargetConstant(2, DL
, MVT::i32
)};
3123 SDValue CurrentTEB
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, DL
,
3124 DAG
.getVTList(MVT::i32
, MVT::Other
), Ops
);
3126 SDValue TEB
= CurrentTEB
.getValue(0);
3127 Chain
= CurrentTEB
.getValue(1);
3129 // Load the ThreadLocalStoragePointer from the TEB
3130 // A pointer to the TLS array is located at offset 0x2c from the TEB.
3132 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TEB
, DAG
.getIntPtrConstant(0x2c, DL
));
3133 TLSArray
= DAG
.getLoad(PtrVT
, DL
, Chain
, TLSArray
, MachinePointerInfo());
3135 // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
3136 // offset into the TLSArray.
3138 // Load the TLS index from the C runtime
3140 DAG
.getTargetExternalSymbol("_tls_index", PtrVT
, ARMII::MO_NO_FLAG
);
3141 TLSIndex
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
, TLSIndex
);
3142 TLSIndex
= DAG
.getLoad(PtrVT
, DL
, Chain
, TLSIndex
, MachinePointerInfo());
3144 SDValue Slot
= DAG
.getNode(ISD::SHL
, DL
, PtrVT
, TLSIndex
,
3145 DAG
.getConstant(2, DL
, MVT::i32
));
3146 SDValue TLS
= DAG
.getLoad(PtrVT
, DL
, Chain
,
3147 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TLSArray
, Slot
),
3148 MachinePointerInfo());
3150 // Get the offset of the start of the .tls section (section base)
3151 const auto *GA
= cast
<GlobalAddressSDNode
>(Op
);
3152 auto *CPV
= ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMCP::SECREL
);
3153 SDValue Offset
= DAG
.getLoad(
3154 PtrVT
, DL
, Chain
, DAG
.getNode(ARMISD::Wrapper
, DL
, MVT::i32
,
3155 DAG
.getTargetConstantPool(CPV
, PtrVT
, 4)),
3156 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3158 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TLS
, Offset
);
3161 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
3163 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode
*GA
,
3164 SelectionDAG
&DAG
) const {
3166 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3167 unsigned char PCAdj
= Subtarget
->isThumb() ? 4 : 8;
3168 MachineFunction
&MF
= DAG
.getMachineFunction();
3169 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3170 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3171 ARMConstantPoolValue
*CPV
=
3172 ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMPCLabelIndex
,
3173 ARMCP::CPValue
, PCAdj
, ARMCP::TLSGD
, true);
3174 SDValue Argument
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3175 Argument
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Argument
);
3176 Argument
= DAG
.getLoad(
3177 PtrVT
, dl
, DAG
.getEntryNode(), Argument
,
3178 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3179 SDValue Chain
= Argument
.getValue(1);
3181 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3182 Argument
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Argument
, PICLabel
);
3184 // call __tls_get_addr.
3187 Entry
.Node
= Argument
;
3188 Entry
.Ty
= (Type
*) Type::getInt32Ty(*DAG
.getContext());
3189 Args
.push_back(Entry
);
3191 // FIXME: is there useful debug info available here?
3192 TargetLowering::CallLoweringInfo
CLI(DAG
);
3193 CLI
.setDebugLoc(dl
).setChain(Chain
).setLibCallee(
3194 CallingConv::C
, Type::getInt32Ty(*DAG
.getContext()),
3195 DAG
.getExternalSymbol("__tls_get_addr", PtrVT
), std::move(Args
));
3197 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
3198 return CallResult
.first
;
3201 // Lower ISD::GlobalTLSAddress using the "initial exec" or
3202 // "local exec" model.
3204 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode
*GA
,
3206 TLSModel::Model model
) const {
3207 const GlobalValue
*GV
= GA
->getGlobal();
3210 SDValue Chain
= DAG
.getEntryNode();
3211 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3212 // Get the Thread Pointer
3213 SDValue ThreadPointer
= DAG
.getNode(ARMISD::THREAD_POINTER
, dl
, PtrVT
);
3215 if (model
== TLSModel::InitialExec
) {
3216 MachineFunction
&MF
= DAG
.getMachineFunction();
3217 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3218 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3219 // Initial exec model.
3220 unsigned char PCAdj
= Subtarget
->isThumb() ? 4 : 8;
3221 ARMConstantPoolValue
*CPV
=
3222 ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMPCLabelIndex
,
3223 ARMCP::CPValue
, PCAdj
, ARMCP::GOTTPOFF
,
3225 Offset
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3226 Offset
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Offset
);
3227 Offset
= DAG
.getLoad(
3228 PtrVT
, dl
, Chain
, Offset
,
3229 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3230 Chain
= Offset
.getValue(1);
3232 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3233 Offset
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Offset
, PICLabel
);
3235 Offset
= DAG
.getLoad(
3236 PtrVT
, dl
, Chain
, Offset
,
3237 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3240 assert(model
== TLSModel::LocalExec
);
3241 ARMConstantPoolValue
*CPV
=
3242 ARMConstantPoolConstant::Create(GV
, ARMCP::TPOFF
);
3243 Offset
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3244 Offset
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Offset
);
3245 Offset
= DAG
.getLoad(
3246 PtrVT
, dl
, Chain
, Offset
,
3247 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3250 // The address of the thread local variable is the add of the thread
3251 // pointer with the offset of the variable.
3252 return DAG
.getNode(ISD::ADD
, dl
, PtrVT
, ThreadPointer
, Offset
);
3256 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) const {
3257 GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
3258 if (DAG
.getTarget().useEmulatedTLS())
3259 return LowerToTLSEmulatedModel(GA
, DAG
);
3261 if (Subtarget
->isTargetDarwin())
3262 return LowerGlobalTLSAddressDarwin(Op
, DAG
);
3264 if (Subtarget
->isTargetWindows())
3265 return LowerGlobalTLSAddressWindows(Op
, DAG
);
3267 // TODO: implement the "local dynamic" model
3268 assert(Subtarget
->isTargetELF() && "Only ELF implemented here");
3269 TLSModel::Model model
= getTargetMachine().getTLSModel(GA
->getGlobal());
3272 case TLSModel::GeneralDynamic
:
3273 case TLSModel::LocalDynamic
:
3274 return LowerToTLSGeneralDynamicModel(GA
, DAG
);
3275 case TLSModel::InitialExec
:
3276 case TLSModel::LocalExec
:
3277 return LowerToTLSExecModels(GA
, DAG
, model
);
3279 llvm_unreachable("bogus TLS model");
3282 /// Return true if all users of V are within function F, looking through
3284 static bool allUsersAreInFunction(const Value
*V
, const Function
*F
) {
3285 SmallVector
<const User
*,4> Worklist
;
3286 for (auto *U
: V
->users())
3287 Worklist
.push_back(U
);
3288 while (!Worklist
.empty()) {
3289 auto *U
= Worklist
.pop_back_val();
3290 if (isa
<ConstantExpr
>(U
)) {
3291 for (auto *UU
: U
->users())
3292 Worklist
.push_back(UU
);
3296 auto *I
= dyn_cast
<Instruction
>(U
);
3297 if (!I
|| I
->getParent()->getParent() != F
)
3303 static SDValue
promoteToConstantPool(const ARMTargetLowering
*TLI
,
3304 const GlobalValue
*GV
, SelectionDAG
&DAG
,
3305 EVT PtrVT
, const SDLoc
&dl
) {
3306 // If we're creating a pool entry for a constant global with unnamed address,
3307 // and the global is small enough, we can emit it inline into the constant pool
3308 // to save ourselves an indirection.
3310 // This is a win if the constant is only used in one function (so it doesn't
3311 // need to be duplicated) or duplicating the constant wouldn't increase code
3312 // size (implying the constant is no larger than 4 bytes).
3313 const Function
&F
= DAG
.getMachineFunction().getFunction();
3315 // We rely on this decision to inline being idemopotent and unrelated to the
3316 // use-site. We know that if we inline a variable at one use site, we'll
3317 // inline it elsewhere too (and reuse the constant pool entry). Fast-isel
3318 // doesn't know about this optimization, so bail out if it's enabled else
3319 // we could decide to inline here (and thus never emit the GV) but require
3320 // the GV from fast-isel generated code.
3321 if (!EnableConstpoolPromotion
||
3322 DAG
.getMachineFunction().getTarget().Options
.EnableFastISel
)
3325 auto *GVar
= dyn_cast
<GlobalVariable
>(GV
);
3326 if (!GVar
|| !GVar
->hasInitializer() ||
3327 !GVar
->isConstant() || !GVar
->hasGlobalUnnamedAddr() ||
3328 !GVar
->hasLocalLinkage())
3331 // If we inline a value that contains relocations, we move the relocations
3332 // from .data to .text. This is not allowed in position-independent code.
3333 auto *Init
= GVar
->getInitializer();
3334 if ((TLI
->isPositionIndependent() || TLI
->getSubtarget()->isROPI()) &&
3335 Init
->needsRelocation())
3338 // The constant islands pass can only really deal with alignment requests
3339 // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
3340 // any type wanting greater alignment requirements than 4 bytes. We also
3341 // can only promote constants that are multiples of 4 bytes in size or
3342 // are paddable to a multiple of 4. Currently we only try and pad constants
3343 // that are strings for simplicity.
3344 auto *CDAInit
= dyn_cast
<ConstantDataArray
>(Init
);
3345 unsigned Size
= DAG
.getDataLayout().getTypeAllocSize(Init
->getType());
3346 unsigned Align
= DAG
.getDataLayout().getPreferredAlignment(GVar
);
3347 unsigned RequiredPadding
= 4 - (Size
% 4);
3348 bool PaddingPossible
=
3349 RequiredPadding
== 4 || (CDAInit
&& CDAInit
->isString());
3350 if (!PaddingPossible
|| Align
> 4 || Size
> ConstpoolPromotionMaxSize
||
3354 unsigned PaddedSize
= Size
+ ((RequiredPadding
== 4) ? 0 : RequiredPadding
);
3355 MachineFunction
&MF
= DAG
.getMachineFunction();
3356 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3358 // We can't bloat the constant pool too much, else the ConstantIslands pass
3359 // may fail to converge. If we haven't promoted this global yet (it may have
3360 // multiple uses), and promoting it would increase the constant pool size (Sz
3361 // > 4), ensure we have space to do so up to MaxTotal.
3362 if (!AFI
->getGlobalsPromotedToConstantPool().count(GVar
) && Size
> 4)
3363 if (AFI
->getPromotedConstpoolIncrease() + PaddedSize
- 4 >=
3364 ConstpoolPromotionMaxTotal
)
3367 // This is only valid if all users are in a single function; we can't clone
3368 // the constant in general. The LLVM IR unnamed_addr allows merging
3369 // constants, but not cloning them.
3371 // We could potentially allow cloning if we could prove all uses of the
3372 // constant in the current function don't care about the address, like
3373 // printf format strings. But that isn't implemented for now.
3374 if (!allUsersAreInFunction(GVar
, &F
))
3377 // We're going to inline this global. Pad it out if needed.
3378 if (RequiredPadding
!= 4) {
3379 StringRef S
= CDAInit
->getAsString();
3381 SmallVector
<uint8_t,16> V(S
.size());
3382 std::copy(S
.bytes_begin(), S
.bytes_end(), V
.begin());
3383 while (RequiredPadding
--)
3385 Init
= ConstantDataArray::get(*DAG
.getContext(), V
);
3388 auto CPVal
= ARMConstantPoolConstant::Create(GVar
, Init
);
3390 DAG
.getTargetConstantPool(CPVal
, PtrVT
, /*Align=*/4);
3391 if (!AFI
->getGlobalsPromotedToConstantPool().count(GVar
)) {
3392 AFI
->markGlobalAsPromotedToConstantPool(GVar
);
3393 AFI
->setPromotedConstpoolIncrease(AFI
->getPromotedConstpoolIncrease() +
3396 ++NumConstpoolPromoted
;
3397 return DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3400 bool ARMTargetLowering::isReadOnly(const GlobalValue
*GV
) const {
3401 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(GV
))
3402 if (!(GV
= GA
->getBaseObject()))
3404 if (const auto *V
= dyn_cast
<GlobalVariable
>(GV
))
3405 return V
->isConstant();
3406 return isa
<Function
>(GV
);
3409 SDValue
ARMTargetLowering::LowerGlobalAddress(SDValue Op
,
3410 SelectionDAG
&DAG
) const {
3411 switch (Subtarget
->getTargetTriple().getObjectFormat()) {
3412 default: llvm_unreachable("unknown object format");
3414 return LowerGlobalAddressWindows(Op
, DAG
);
3416 return LowerGlobalAddressELF(Op
, DAG
);
3418 return LowerGlobalAddressDarwin(Op
, DAG
);
3422 SDValue
ARMTargetLowering::LowerGlobalAddressELF(SDValue Op
,
3423 SelectionDAG
&DAG
) const {
3424 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3426 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3427 const TargetMachine
&TM
= getTargetMachine();
3428 bool IsRO
= isReadOnly(GV
);
3430 // promoteToConstantPool only if not generating XO text section
3431 if (TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
) && !Subtarget
->genExecuteOnly())
3432 if (SDValue V
= promoteToConstantPool(this, GV
, DAG
, PtrVT
, dl
))
3435 if (isPositionIndependent()) {
3436 bool UseGOT_PREL
= !TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
);
3437 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0,
3438 UseGOT_PREL
? ARMII::MO_GOT
: 0);
3439 SDValue Result
= DAG
.getNode(ARMISD::WrapperPIC
, dl
, PtrVT
, G
);
3442 DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Result
,
3443 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3445 } else if (Subtarget
->isROPI() && IsRO
) {
3447 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
);
3448 SDValue Result
= DAG
.getNode(ARMISD::WrapperPIC
, dl
, PtrVT
, G
);
3450 } else if (Subtarget
->isRWPI() && !IsRO
) {
3453 if (Subtarget
->useMovt()) {
3455 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0, ARMII::MO_SBREL
);
3456 RelAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVT
, G
);
3457 } else { // use literal pool for address constant
3458 ARMConstantPoolValue
*CPV
=
3459 ARMConstantPoolConstant::Create(GV
, ARMCP::SBREL
);
3460 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3461 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3462 RelAddr
= DAG
.getLoad(
3463 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3464 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3466 SDValue SB
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, ARM::R9
, PtrVT
);
3467 SDValue Result
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, SB
, RelAddr
);
3471 // If we have T2 ops, we can materialize the address directly via movt/movw
3472 // pair. This is always cheaper.
3473 if (Subtarget
->useMovt()) {
3475 // FIXME: Once remat is capable of dealing with instructions with register
3476 // operands, expand this into two nodes.
3477 return DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVT
,
3478 DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
));
3480 SDValue CPAddr
= DAG
.getTargetConstantPool(GV
, PtrVT
, 4);
3481 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3483 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3484 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3488 SDValue
ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op
,
3489 SelectionDAG
&DAG
) const {
3490 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
3491 "ROPI/RWPI not currently supported for Darwin");
3492 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3494 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3496 if (Subtarget
->useMovt())
3499 // FIXME: Once remat is capable of dealing with instructions with register
3500 // operands, expand this into multiple nodes
3502 isPositionIndependent() ? ARMISD::WrapperPIC
: ARMISD::Wrapper
;
3504 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0, ARMII::MO_NONLAZY
);
3505 SDValue Result
= DAG
.getNode(Wrapper
, dl
, PtrVT
, G
);
3507 if (Subtarget
->isGVIndirectSymbol(GV
))
3508 Result
= DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Result
,
3509 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3513 SDValue
ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op
,
3514 SelectionDAG
&DAG
) const {
3515 assert(Subtarget
->isTargetWindows() && "non-Windows COFF is not supported");
3516 assert(Subtarget
->useMovt() &&
3517 "Windows on ARM expects to use movw/movt");
3518 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
3519 "ROPI/RWPI not currently supported for Windows");
3521 const TargetMachine
&TM
= getTargetMachine();
3522 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3523 ARMII::TOF TargetFlags
= ARMII::MO_NO_FLAG
;
3524 if (GV
->hasDLLImportStorageClass())
3525 TargetFlags
= ARMII::MO_DLLIMPORT
;
3526 else if (!TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
))
3527 TargetFlags
= ARMII::MO_COFFSTUB
;
3528 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3534 // FIXME: Once remat is capable of dealing with instructions with register
3535 // operands, expand this into two nodes.
3536 Result
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
,
3537 DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, /*offset=*/0,
3539 if (TargetFlags
& (ARMII::MO_DLLIMPORT
| ARMII::MO_COFFSTUB
))
3540 Result
= DAG
.getLoad(PtrVT
, DL
, DAG
.getEntryNode(), Result
,
3541 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3546 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op
, SelectionDAG
&DAG
) const {
3548 SDValue Val
= DAG
.getConstant(0, dl
, MVT::i32
);
3549 return DAG
.getNode(ARMISD::EH_SJLJ_SETJMP
, dl
,
3550 DAG
.getVTList(MVT::i32
, MVT::Other
), Op
.getOperand(0),
3551 Op
.getOperand(1), Val
);
3555 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op
, SelectionDAG
&DAG
) const {
3557 return DAG
.getNode(ARMISD::EH_SJLJ_LONGJMP
, dl
, MVT::Other
, Op
.getOperand(0),
3558 Op
.getOperand(1), DAG
.getConstant(0, dl
, MVT::i32
));
3561 SDValue
ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op
,
3562 SelectionDAG
&DAG
) const {
3564 return DAG
.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH
, dl
, MVT::Other
,
3568 SDValue
ARMTargetLowering::LowerINTRINSIC_VOID(
3569 SDValue Op
, SelectionDAG
&DAG
, const ARMSubtarget
*Subtarget
) const {
3571 cast
<ConstantSDNode
>(
3572 Op
.getOperand(Op
.getOperand(0).getValueType() == MVT::Other
))
3576 return SDValue(); // Don't custom lower most intrinsics.
3577 case Intrinsic::arm_gnu_eabi_mcount
: {
3578 MachineFunction
&MF
= DAG
.getMachineFunction();
3579 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3581 SDValue Chain
= Op
.getOperand(0);
3582 // call "\01__gnu_mcount_nc"
3583 const ARMBaseRegisterInfo
*ARI
= Subtarget
->getRegisterInfo();
3584 const uint32_t *Mask
=
3585 ARI
->getCallPreservedMask(DAG
.getMachineFunction(), CallingConv::C
);
3586 assert(Mask
&& "Missing call preserved mask for calling convention");
3587 // Mark LR an implicit live-in.
3588 unsigned Reg
= MF
.addLiveIn(ARM::LR
, getRegClassFor(MVT::i32
));
3589 SDValue ReturnAddress
=
3590 DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, Reg
, PtrVT
);
3591 std::vector
<EVT
> ResultTys
= {MVT::Other
, MVT::Glue
};
3593 DAG
.getTargetExternalSymbol("\01__gnu_mcount_nc", PtrVT
, 0);
3594 SDValue RegisterMask
= DAG
.getRegisterMask(Mask
);
3595 if (Subtarget
->isThumb())
3598 ARM::tBL_PUSHLR
, dl
, ResultTys
,
3599 {ReturnAddress
, DAG
.getTargetConstant(ARMCC::AL
, dl
, PtrVT
),
3600 DAG
.getRegister(0, PtrVT
), Callee
, RegisterMask
, Chain
}),
3603 DAG
.getMachineNode(ARM::BL_PUSHLR
, dl
, ResultTys
,
3604 {ReturnAddress
, Callee
, RegisterMask
, Chain
}),
3611 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
,
3612 const ARMSubtarget
*Subtarget
) const {
3613 unsigned IntNo
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
3616 default: return SDValue(); // Don't custom lower most intrinsics.
3617 case Intrinsic::thread_pointer
: {
3618 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3619 return DAG
.getNode(ARMISD::THREAD_POINTER
, dl
, PtrVT
);
3621 case Intrinsic::eh_sjlj_lsda
: {
3622 MachineFunction
&MF
= DAG
.getMachineFunction();
3623 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3624 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3625 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3627 bool IsPositionIndependent
= isPositionIndependent();
3628 unsigned PCAdj
= IsPositionIndependent
? (Subtarget
->isThumb() ? 4 : 8) : 0;
3629 ARMConstantPoolValue
*CPV
=
3630 ARMConstantPoolConstant::Create(&MF
.getFunction(), ARMPCLabelIndex
,
3631 ARMCP::CPLSDA
, PCAdj
);
3632 CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3633 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3634 SDValue Result
= DAG
.getLoad(
3635 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3636 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3638 if (IsPositionIndependent
) {
3639 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3640 Result
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Result
, PICLabel
);
3644 case Intrinsic::arm_neon_vabs
:
3645 return DAG
.getNode(ISD::ABS
, SDLoc(Op
), Op
.getValueType(),
3647 case Intrinsic::arm_neon_vmulls
:
3648 case Intrinsic::arm_neon_vmullu
: {
3649 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmulls
)
3650 ? ARMISD::VMULLs
: ARMISD::VMULLu
;
3651 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3652 Op
.getOperand(1), Op
.getOperand(2));
3654 case Intrinsic::arm_neon_vminnm
:
3655 case Intrinsic::arm_neon_vmaxnm
: {
3656 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vminnm
)
3657 ? ISD::FMINNUM
: ISD::FMAXNUM
;
3658 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3659 Op
.getOperand(1), Op
.getOperand(2));
3661 case Intrinsic::arm_neon_vminu
:
3662 case Intrinsic::arm_neon_vmaxu
: {
3663 if (Op
.getValueType().isFloatingPoint())
3665 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vminu
)
3666 ? ISD::UMIN
: ISD::UMAX
;
3667 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3668 Op
.getOperand(1), Op
.getOperand(2));
3670 case Intrinsic::arm_neon_vmins
:
3671 case Intrinsic::arm_neon_vmaxs
: {
3672 // v{min,max}s is overloaded between signed integers and floats.
3673 if (!Op
.getValueType().isFloatingPoint()) {
3674 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmins
)
3675 ? ISD::SMIN
: ISD::SMAX
;
3676 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3677 Op
.getOperand(1), Op
.getOperand(2));
3679 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmins
)
3680 ? ISD::FMINIMUM
: ISD::FMAXIMUM
;
3681 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3682 Op
.getOperand(1), Op
.getOperand(2));
3684 case Intrinsic::arm_neon_vtbl1
:
3685 return DAG
.getNode(ARMISD::VTBL1
, SDLoc(Op
), Op
.getValueType(),
3686 Op
.getOperand(1), Op
.getOperand(2));
3687 case Intrinsic::arm_neon_vtbl2
:
3688 return DAG
.getNode(ARMISD::VTBL2
, SDLoc(Op
), Op
.getValueType(),
3689 Op
.getOperand(1), Op
.getOperand(2), Op
.getOperand(3));
3693 static SDValue
LowerATOMIC_FENCE(SDValue Op
, SelectionDAG
&DAG
,
3694 const ARMSubtarget
*Subtarget
) {
3696 ConstantSDNode
*SSIDNode
= cast
<ConstantSDNode
>(Op
.getOperand(2));
3697 auto SSID
= static_cast<SyncScope::ID
>(SSIDNode
->getZExtValue());
3698 if (SSID
== SyncScope::SingleThread
)
3701 if (!Subtarget
->hasDataBarrier()) {
3702 // Some ARMv6 cpus can support data barriers with an mcr instruction.
3703 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
3705 assert(Subtarget
->hasV6Ops() && !Subtarget
->isThumb() &&
3706 "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
3707 return DAG
.getNode(ARMISD::MEMBARRIER_MCR
, dl
, MVT::Other
, Op
.getOperand(0),
3708 DAG
.getConstant(0, dl
, MVT::i32
));
3711 ConstantSDNode
*OrdN
= cast
<ConstantSDNode
>(Op
.getOperand(1));
3712 AtomicOrdering Ord
= static_cast<AtomicOrdering
>(OrdN
->getZExtValue());
3713 ARM_MB::MemBOpt Domain
= ARM_MB::ISH
;
3714 if (Subtarget
->isMClass()) {
3715 // Only a full system barrier exists in the M-class architectures.
3716 Domain
= ARM_MB::SY
;
3717 } else if (Subtarget
->preferISHSTBarriers() &&
3718 Ord
== AtomicOrdering::Release
) {
3719 // Swift happens to implement ISHST barriers in a way that's compatible with
3720 // Release semantics but weaker than ISH so we'd be fools not to use
3721 // it. Beware: other processors probably don't!
3722 Domain
= ARM_MB::ISHST
;
3725 return DAG
.getNode(ISD::INTRINSIC_VOID
, dl
, MVT::Other
, Op
.getOperand(0),
3726 DAG
.getConstant(Intrinsic::arm_dmb
, dl
, MVT::i32
),
3727 DAG
.getConstant(Domain
, dl
, MVT::i32
));
3730 static SDValue
LowerPREFETCH(SDValue Op
, SelectionDAG
&DAG
,
3731 const ARMSubtarget
*Subtarget
) {
3732 // ARM pre v5TE and Thumb1 does not have preload instructions.
3733 if (!(Subtarget
->isThumb2() ||
3734 (!Subtarget
->isThumb1Only() && Subtarget
->hasV5TEOps())))
3735 // Just preserve the chain.
3736 return Op
.getOperand(0);
3739 unsigned isRead
= ~cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue() & 1;
3741 (!Subtarget
->hasV7Ops() || !Subtarget
->hasMPExtension()))
3742 // ARMv7 with MP extension has PLDW.
3743 return Op
.getOperand(0);
3745 unsigned isData
= cast
<ConstantSDNode
>(Op
.getOperand(4))->getZExtValue();
3746 if (Subtarget
->isThumb()) {
3748 isRead
= ~isRead
& 1;
3749 isData
= ~isData
& 1;
3752 return DAG
.getNode(ARMISD::PRELOAD
, dl
, MVT::Other
, Op
.getOperand(0),
3753 Op
.getOperand(1), DAG
.getConstant(isRead
, dl
, MVT::i32
),
3754 DAG
.getConstant(isData
, dl
, MVT::i32
));
3757 static SDValue
LowerVASTART(SDValue Op
, SelectionDAG
&DAG
) {
3758 MachineFunction
&MF
= DAG
.getMachineFunction();
3759 ARMFunctionInfo
*FuncInfo
= MF
.getInfo
<ARMFunctionInfo
>();
3761 // vastart just stores the address of the VarArgsFrameIndex slot into the
3762 // memory location argument.
3764 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout());
3765 SDValue FR
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(), PtrVT
);
3766 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
3767 return DAG
.getStore(Op
.getOperand(0), dl
, FR
, Op
.getOperand(1),
3768 MachinePointerInfo(SV
));
3771 SDValue
ARMTargetLowering::GetF64FormalArgument(CCValAssign
&VA
,
3772 CCValAssign
&NextVA
,
3775 const SDLoc
&dl
) const {
3776 MachineFunction
&MF
= DAG
.getMachineFunction();
3777 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3779 const TargetRegisterClass
*RC
;
3780 if (AFI
->isThumb1OnlyFunction())
3781 RC
= &ARM::tGPRRegClass
;
3783 RC
= &ARM::GPRRegClass
;
3785 // Transform the arguments stored in physical registers into virtual ones.
3786 unsigned Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
3787 SDValue ArgValue
= DAG
.getCopyFromReg(Root
, dl
, Reg
, MVT::i32
);
3790 if (NextVA
.isMemLoc()) {
3791 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3792 int FI
= MFI
.CreateFixedObject(4, NextVA
.getLocMemOffset(), true);
3794 // Create load node to retrieve arguments from the stack.
3795 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
3796 ArgValue2
= DAG
.getLoad(
3797 MVT::i32
, dl
, Root
, FIN
,
3798 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
));
3800 Reg
= MF
.addLiveIn(NextVA
.getLocReg(), RC
);
3801 ArgValue2
= DAG
.getCopyFromReg(Root
, dl
, Reg
, MVT::i32
);
3803 if (!Subtarget
->isLittle())
3804 std::swap (ArgValue
, ArgValue2
);
3805 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, ArgValue
, ArgValue2
);
3808 // The remaining GPRs hold either the beginning of variable-argument
3809 // data, or the beginning of an aggregate passed by value (usually
3810 // byval). Either way, we allocate stack slots adjacent to the data
3811 // provided by our caller, and store the unallocated registers there.
3812 // If this is a variadic function, the va_list pointer will begin with
3813 // these values; otherwise, this reassembles a (byval) structure that
3814 // was split between registers and memory.
3815 // Return: The frame index registers were stored into.
3816 int ARMTargetLowering::StoreByValRegs(CCState
&CCInfo
, SelectionDAG
&DAG
,
3817 const SDLoc
&dl
, SDValue
&Chain
,
3818 const Value
*OrigArg
,
3819 unsigned InRegsParamRecordIdx
,
3820 int ArgOffset
, unsigned ArgSize
) const {
3821 // Currently, two use-cases possible:
3822 // Case #1. Non-var-args function, and we meet first byval parameter.
3823 // Setup first unallocated register as first byval register;
3824 // eat all remained registers
3825 // (these two actions are performed by HandleByVal method).
3826 // Then, here, we initialize stack frame with
3827 // "store-reg" instructions.
3828 // Case #2. Var-args function, that doesn't contain byval parameters.
3829 // The same: eat all remained unallocated registers,
3830 // initialize stack frame.
3832 MachineFunction
&MF
= DAG
.getMachineFunction();
3833 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3834 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3835 unsigned RBegin
, REnd
;
3836 if (InRegsParamRecordIdx
< CCInfo
.getInRegsParamsCount()) {
3837 CCInfo
.getInRegsParamInfo(InRegsParamRecordIdx
, RBegin
, REnd
);
3839 unsigned RBeginIdx
= CCInfo
.getFirstUnallocated(GPRArgRegs
);
3840 RBegin
= RBeginIdx
== 4 ? (unsigned)ARM::R4
: GPRArgRegs
[RBeginIdx
];
3845 ArgOffset
= -4 * (ARM::R4
- RBegin
);
3847 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
3848 int FrameIndex
= MFI
.CreateFixedObject(ArgSize
, ArgOffset
, false);
3849 SDValue FIN
= DAG
.getFrameIndex(FrameIndex
, PtrVT
);
3851 SmallVector
<SDValue
, 4> MemOps
;
3852 const TargetRegisterClass
*RC
=
3853 AFI
->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
: &ARM::GPRRegClass
;
3855 for (unsigned Reg
= RBegin
, i
= 0; Reg
< REnd
; ++Reg
, ++i
) {
3856 unsigned VReg
= MF
.addLiveIn(Reg
, RC
);
3857 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::i32
);
3858 SDValue Store
= DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
,
3859 MachinePointerInfo(OrigArg
, 4 * i
));
3860 MemOps
.push_back(Store
);
3861 FIN
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, FIN
, DAG
.getConstant(4, dl
, PtrVT
));
3864 if (!MemOps
.empty())
3865 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOps
);
3869 // Setup stack frame, the va_list pointer will start from.
3870 void ARMTargetLowering::VarArgStyleRegisters(CCState
&CCInfo
, SelectionDAG
&DAG
,
3871 const SDLoc
&dl
, SDValue
&Chain
,
3873 unsigned TotalArgRegsSaveSize
,
3874 bool ForceMutable
) const {
3875 MachineFunction
&MF
= DAG
.getMachineFunction();
3876 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3878 // Try to store any remaining integer argument regs
3879 // to their spots on the stack so that they may be loaded by dereferencing
3880 // the result of va_next.
3881 // If there is no regs to be stored, just point address after last
3882 // argument passed via stack.
3883 int FrameIndex
= StoreByValRegs(CCInfo
, DAG
, dl
, Chain
, nullptr,
3884 CCInfo
.getInRegsParamsCount(),
3885 CCInfo
.getNextStackOffset(),
3886 std::max(4U, TotalArgRegsSaveSize
));
3887 AFI
->setVarArgsFrameIndex(FrameIndex
);
3890 SDValue
ARMTargetLowering::LowerFormalArguments(
3891 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
3892 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
3893 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
3894 MachineFunction
&MF
= DAG
.getMachineFunction();
3895 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3897 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3899 // Assign locations to all of the incoming arguments.
3900 SmallVector
<CCValAssign
, 16> ArgLocs
;
3901 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
3903 CCInfo
.AnalyzeFormalArguments(Ins
, CCAssignFnForCall(CallConv
, isVarArg
));
3905 SmallVector
<SDValue
, 16> ArgValues
;
3907 Function::const_arg_iterator CurOrigArg
= MF
.getFunction().arg_begin();
3908 unsigned CurArgIdx
= 0;
3910 // Initially ArgRegsSaveSize is zero.
3911 // Then we increase this value each time we meet byval parameter.
3912 // We also increase this value in case of varargs function.
3913 AFI
->setArgRegsSaveSize(0);
3915 // Calculate the amount of stack space that we need to allocate to store
3916 // byval and variadic arguments that are passed in registers.
3917 // We need to know this before we allocate the first byval or variadic
3918 // argument, as they will be allocated a stack slot below the CFA (Canonical
3919 // Frame Address, the stack pointer at entry to the function).
3920 unsigned ArgRegBegin
= ARM::R4
;
3921 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3922 if (CCInfo
.getInRegsParamsProcessed() >= CCInfo
.getInRegsParamsCount())
3925 CCValAssign
&VA
= ArgLocs
[i
];
3926 unsigned Index
= VA
.getValNo();
3927 ISD::ArgFlagsTy Flags
= Ins
[Index
].Flags
;
3928 if (!Flags
.isByVal())
3931 assert(VA
.isMemLoc() && "unexpected byval pointer in reg");
3932 unsigned RBegin
, REnd
;
3933 CCInfo
.getInRegsParamInfo(CCInfo
.getInRegsParamsProcessed(), RBegin
, REnd
);
3934 ArgRegBegin
= std::min(ArgRegBegin
, RBegin
);
3936 CCInfo
.nextInRegsParam();
3938 CCInfo
.rewindByValRegsInfo();
3940 int lastInsIndex
= -1;
3941 if (isVarArg
&& MFI
.hasVAStart()) {
3942 unsigned RegIdx
= CCInfo
.getFirstUnallocated(GPRArgRegs
);
3943 if (RegIdx
!= array_lengthof(GPRArgRegs
))
3944 ArgRegBegin
= std::min(ArgRegBegin
, (unsigned)GPRArgRegs
[RegIdx
]);
3947 unsigned TotalArgRegsSaveSize
= 4 * (ARM::R4
- ArgRegBegin
);
3948 AFI
->setArgRegsSaveSize(TotalArgRegsSaveSize
);
3949 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
3951 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3952 CCValAssign
&VA
= ArgLocs
[i
];
3953 if (Ins
[VA
.getValNo()].isOrigArg()) {
3954 std::advance(CurOrigArg
,
3955 Ins
[VA
.getValNo()].getOrigArgIndex() - CurArgIdx
);
3956 CurArgIdx
= Ins
[VA
.getValNo()].getOrigArgIndex();
3958 // Arguments stored in registers.
3959 if (VA
.isRegLoc()) {
3960 EVT RegVT
= VA
.getLocVT();
3962 if (VA
.needsCustom()) {
3963 // f64 and vector types are split up into multiple registers or
3964 // combinations of registers and stack slots.
3965 if (VA
.getLocVT() == MVT::v2f64
) {
3966 SDValue ArgValue1
= GetF64FormalArgument(VA
, ArgLocs
[++i
],
3968 VA
= ArgLocs
[++i
]; // skip ahead to next loc
3970 if (VA
.isMemLoc()) {
3971 int FI
= MFI
.CreateFixedObject(8, VA
.getLocMemOffset(), true);
3972 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
3973 ArgValue2
= DAG
.getLoad(MVT::f64
, dl
, Chain
, FIN
,
3974 MachinePointerInfo::getFixedStack(
3975 DAG
.getMachineFunction(), FI
));
3977 ArgValue2
= GetF64FormalArgument(VA
, ArgLocs
[++i
],
3980 ArgValue
= DAG
.getNode(ISD::UNDEF
, dl
, MVT::v2f64
);
3981 ArgValue
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
,
3982 ArgValue
, ArgValue1
,
3983 DAG
.getIntPtrConstant(0, dl
));
3984 ArgValue
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
,
3985 ArgValue
, ArgValue2
,
3986 DAG
.getIntPtrConstant(1, dl
));
3988 ArgValue
= GetF64FormalArgument(VA
, ArgLocs
[++i
], Chain
, DAG
, dl
);
3990 const TargetRegisterClass
*RC
;
3993 if (RegVT
== MVT::f16
)
3994 RC
= &ARM::HPRRegClass
;
3995 else if (RegVT
== MVT::f32
)
3996 RC
= &ARM::SPRRegClass
;
3997 else if (RegVT
== MVT::f64
|| RegVT
== MVT::v4f16
)
3998 RC
= &ARM::DPRRegClass
;
3999 else if (RegVT
== MVT::v2f64
|| RegVT
== MVT::v8f16
)
4000 RC
= &ARM::QPRRegClass
;
4001 else if (RegVT
== MVT::i32
)
4002 RC
= AFI
->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
4003 : &ARM::GPRRegClass
;
4005 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
4007 // Transform the arguments in physical registers into virtual ones.
4008 unsigned Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
4009 ArgValue
= DAG
.getCopyFromReg(Chain
, dl
, Reg
, RegVT
);
4011 // If this value is passed in r0 and has the returned attribute (e.g.
4012 // C++ 'structors), record this fact for later use.
4013 if (VA
.getLocReg() == ARM::R0
&& Ins
[VA
.getValNo()].Flags
.isReturned()) {
4014 AFI
->setPreservesR0();
4018 // If this is an 8 or 16-bit value, it is really passed promoted
4019 // to 32 bits. Insert an assert[sz]ext to capture this, then
4020 // truncate to the right size.
4021 switch (VA
.getLocInfo()) {
4022 default: llvm_unreachable("Unknown loc info!");
4023 case CCValAssign::Full
: break;
4024 case CCValAssign::BCvt
:
4025 ArgValue
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getValVT(), ArgValue
);
4027 case CCValAssign::SExt
:
4028 ArgValue
= DAG
.getNode(ISD::AssertSext
, dl
, RegVT
, ArgValue
,
4029 DAG
.getValueType(VA
.getValVT()));
4030 ArgValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), ArgValue
);
4032 case CCValAssign::ZExt
:
4033 ArgValue
= DAG
.getNode(ISD::AssertZext
, dl
, RegVT
, ArgValue
,
4034 DAG
.getValueType(VA
.getValVT()));
4035 ArgValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), ArgValue
);
4039 InVals
.push_back(ArgValue
);
4040 } else { // VA.isRegLoc()
4042 assert(VA
.isMemLoc());
4043 assert(VA
.getValVT() != MVT::i64
&& "i64 should already be lowered");
4045 int index
= VA
.getValNo();
4047 // Some Ins[] entries become multiple ArgLoc[] entries.
4048 // Process them only once.
4049 if (index
!= lastInsIndex
)
4051 ISD::ArgFlagsTy Flags
= Ins
[index
].Flags
;
4052 // FIXME: For now, all byval parameter objects are marked mutable.
4053 // This can be changed with more analysis.
4054 // In case of tail call optimization mark all arguments mutable.
4055 // Since they could be overwritten by lowering of arguments in case of
4057 if (Flags
.isByVal()) {
4058 assert(Ins
[index
].isOrigArg() &&
4059 "Byval arguments cannot be implicit");
4060 unsigned CurByValIndex
= CCInfo
.getInRegsParamsProcessed();
4062 int FrameIndex
= StoreByValRegs(
4063 CCInfo
, DAG
, dl
, Chain
, &*CurOrigArg
, CurByValIndex
,
4064 VA
.getLocMemOffset(), Flags
.getByValSize());
4065 InVals
.push_back(DAG
.getFrameIndex(FrameIndex
, PtrVT
));
4066 CCInfo
.nextInRegsParam();
4068 unsigned FIOffset
= VA
.getLocMemOffset();
4069 int FI
= MFI
.CreateFixedObject(VA
.getLocVT().getSizeInBits()/8,
4072 // Create load nodes to retrieve arguments from the stack.
4073 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
4074 InVals
.push_back(DAG
.getLoad(VA
.getValVT(), dl
, Chain
, FIN
,
4075 MachinePointerInfo::getFixedStack(
4076 DAG
.getMachineFunction(), FI
)));
4078 lastInsIndex
= index
;
4084 if (isVarArg
&& MFI
.hasVAStart())
4085 VarArgStyleRegisters(CCInfo
, DAG
, dl
, Chain
,
4086 CCInfo
.getNextStackOffset(),
4087 TotalArgRegsSaveSize
);
4089 AFI
->setArgumentStackSize(CCInfo
.getNextStackOffset());
4094 /// isFloatingPointZero - Return true if this is +0.0.
4095 static bool isFloatingPointZero(SDValue Op
) {
4096 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(Op
))
4097 return CFP
->getValueAPF().isPosZero();
4098 else if (ISD::isEXTLoad(Op
.getNode()) || ISD::isNON_EXTLoad(Op
.getNode())) {
4099 // Maybe this has already been legalized into the constant pool?
4100 if (Op
.getOperand(1).getOpcode() == ARMISD::Wrapper
) {
4101 SDValue WrapperOp
= Op
.getOperand(1).getOperand(0);
4102 if (ConstantPoolSDNode
*CP
= dyn_cast
<ConstantPoolSDNode
>(WrapperOp
))
4103 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CP
->getConstVal()))
4104 return CFP
->getValueAPF().isPosZero();
4106 } else if (Op
->getOpcode() == ISD::BITCAST
&&
4107 Op
->getValueType(0) == MVT::f64
) {
4108 // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
4109 // created by LowerConstantFP().
4110 SDValue BitcastOp
= Op
->getOperand(0);
4111 if (BitcastOp
->getOpcode() == ARMISD::VMOVIMM
&&
4112 isNullConstant(BitcastOp
->getOperand(0)))
4118 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
4119 /// the given operands.
4120 SDValue
ARMTargetLowering::getARMCmp(SDValue LHS
, SDValue RHS
, ISD::CondCode CC
,
4121 SDValue
&ARMcc
, SelectionDAG
&DAG
,
4122 const SDLoc
&dl
) const {
4123 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(RHS
.getNode())) {
4124 unsigned C
= RHSC
->getZExtValue();
4125 if (!isLegalICmpImmediate((int32_t)C
)) {
4126 // Constant does not fit, try adjusting it by one.
4131 if (C
!= 0x80000000 && isLegalICmpImmediate(C
-1)) {
4132 CC
= (CC
== ISD::SETLT
) ? ISD::SETLE
: ISD::SETGT
;
4133 RHS
= DAG
.getConstant(C
- 1, dl
, MVT::i32
);
4138 if (C
!= 0 && isLegalICmpImmediate(C
-1)) {
4139 CC
= (CC
== ISD::SETULT
) ? ISD::SETULE
: ISD::SETUGT
;
4140 RHS
= DAG
.getConstant(C
- 1, dl
, MVT::i32
);
4145 if (C
!= 0x7fffffff && isLegalICmpImmediate(C
+1)) {
4146 CC
= (CC
== ISD::SETLE
) ? ISD::SETLT
: ISD::SETGE
;
4147 RHS
= DAG
.getConstant(C
+ 1, dl
, MVT::i32
);
4152 if (C
!= 0xffffffff && isLegalICmpImmediate(C
+1)) {
4153 CC
= (CC
== ISD::SETULE
) ? ISD::SETULT
: ISD::SETUGE
;
4154 RHS
= DAG
.getConstant(C
+ 1, dl
, MVT::i32
);
4159 } else if ((ARM_AM::getShiftOpcForNode(LHS
.getOpcode()) != ARM_AM::no_shift
) &&
4160 (ARM_AM::getShiftOpcForNode(RHS
.getOpcode()) == ARM_AM::no_shift
)) {
4161 // In ARM and Thumb-2, the compare instructions can shift their second
4163 CC
= ISD::getSetCCSwappedOperands(CC
);
4164 std::swap(LHS
, RHS
);
4167 // Thumb1 has very limited immediate modes, so turning an "and" into a
4168 // shift can save multiple instructions.
4170 // If we have (x & C1), and C1 is an appropriate mask, we can transform it
4171 // into "((x << n) >> n)". But that isn't necessarily profitable on its
4172 // own. If it's the operand to an unsigned comparison with an immediate,
4173 // we can eliminate one of the shifts: we transform
4174 // "((x << n) >> n) == C2" to "(x << n) == (C2 << n)".
4176 // We avoid transforming cases which aren't profitable due to encoding
4179 // 1. C2 fits into the immediate field of a cmp, and the transformed version
4180 // would not; in that case, we're essentially trading one immediate load for
4182 // 2. C1 is 255 or 65535, so we can use uxtb or uxth.
4183 // 3. C2 is zero; we have other code for this special case.
4185 // FIXME: Figure out profitability for Thumb2; we usually can't save an
4186 // instruction, since the AND is always one instruction anyway, but we could
4187 // use narrow instructions in some cases.
4188 if (Subtarget
->isThumb1Only() && LHS
->getOpcode() == ISD::AND
&&
4189 LHS
->hasOneUse() && isa
<ConstantSDNode
>(LHS
.getOperand(1)) &&
4190 LHS
.getValueType() == MVT::i32
&& isa
<ConstantSDNode
>(RHS
) &&
4191 !isSignedIntSetCC(CC
)) {
4192 unsigned Mask
= cast
<ConstantSDNode
>(LHS
.getOperand(1))->getZExtValue();
4193 auto *RHSC
= cast
<ConstantSDNode
>(RHS
.getNode());
4194 uint64_t RHSV
= RHSC
->getZExtValue();
4195 if (isMask_32(Mask
) && (RHSV
& ~Mask
) == 0 && Mask
!= 255 && Mask
!= 65535) {
4196 unsigned ShiftBits
= countLeadingZeros(Mask
);
4197 if (RHSV
&& (RHSV
> 255 || (RHSV
<< ShiftBits
) <= 255)) {
4198 SDValue ShiftAmt
= DAG
.getConstant(ShiftBits
, dl
, MVT::i32
);
4199 LHS
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, LHS
.getOperand(0), ShiftAmt
);
4200 RHS
= DAG
.getConstant(RHSV
<< ShiftBits
, dl
, MVT::i32
);
4205 // The specific comparison "(x<<c) > 0x80000000U" can be optimized to a
4206 // single "lsls x, c+1". The shift sets the "C" and "Z" flags the same
4208 // FIXME: Add support for ARM/Thumb2; this would need isel patterns, and
4209 // some tweaks to the heuristics for the previous and->shift transform.
4210 // FIXME: Optimize cases where the LHS isn't a shift.
4211 if (Subtarget
->isThumb1Only() && LHS
->getOpcode() == ISD::SHL
&&
4212 isa
<ConstantSDNode
>(RHS
) &&
4213 cast
<ConstantSDNode
>(RHS
)->getZExtValue() == 0x80000000U
&&
4214 CC
== ISD::SETUGT
&& isa
<ConstantSDNode
>(LHS
.getOperand(1)) &&
4215 cast
<ConstantSDNode
>(LHS
.getOperand(1))->getZExtValue() < 31) {
4217 cast
<ConstantSDNode
>(LHS
.getOperand(1))->getZExtValue() + 1;
4218 SDValue Shift
= DAG
.getNode(ARMISD::LSLS
, dl
,
4219 DAG
.getVTList(MVT::i32
, MVT::i32
),
4221 DAG
.getConstant(ShiftAmt
, dl
, MVT::i32
));
4222 SDValue Chain
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, ARM::CPSR
,
4223 Shift
.getValue(1), SDValue());
4224 ARMcc
= DAG
.getConstant(ARMCC::HI
, dl
, MVT::i32
);
4225 return Chain
.getValue(1);
4228 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
4230 // If the RHS is a constant zero then the V (overflow) flag will never be
4231 // set. This can allow us to simplify GE to PL or LT to MI, which can be
4232 // simpler for other passes (like the peephole optimiser) to deal with.
4233 if (isNullConstant(RHS
)) {
4237 CondCode
= ARMCC::PL
;
4240 CondCode
= ARMCC::MI
;
4245 ARMISD::NodeType CompareType
;
4248 CompareType
= ARMISD::CMP
;
4253 CompareType
= ARMISD::CMPZ
;
4256 ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
4257 return DAG
.getNode(CompareType
, dl
, MVT::Glue
, LHS
, RHS
);
4260 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
4261 SDValue
ARMTargetLowering::getVFPCmp(SDValue LHS
, SDValue RHS
,
4262 SelectionDAG
&DAG
, const SDLoc
&dl
,
4263 bool InvalidOnQNaN
) const {
4264 assert(Subtarget
->hasFP64() || RHS
.getValueType() != MVT::f64
);
4266 SDValue C
= DAG
.getConstant(InvalidOnQNaN
, dl
, MVT::i32
);
4267 if (!isFloatingPointZero(RHS
))
4268 Cmp
= DAG
.getNode(ARMISD::CMPFP
, dl
, MVT::Glue
, LHS
, RHS
, C
);
4270 Cmp
= DAG
.getNode(ARMISD::CMPFPw0
, dl
, MVT::Glue
, LHS
, C
);
4271 return DAG
.getNode(ARMISD::FMSTAT
, dl
, MVT::Glue
, Cmp
);
4274 /// duplicateCmp - Glue values can have only one use, so this function
4275 /// duplicates a comparison node.
4277 ARMTargetLowering::duplicateCmp(SDValue Cmp
, SelectionDAG
&DAG
) const {
4278 unsigned Opc
= Cmp
.getOpcode();
4280 if (Opc
== ARMISD::CMP
|| Opc
== ARMISD::CMPZ
)
4281 return DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0),Cmp
.getOperand(1));
4283 assert(Opc
== ARMISD::FMSTAT
&& "unexpected comparison operation");
4284 Cmp
= Cmp
.getOperand(0);
4285 Opc
= Cmp
.getOpcode();
4286 if (Opc
== ARMISD::CMPFP
)
4287 Cmp
= DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0),
4288 Cmp
.getOperand(1), Cmp
.getOperand(2));
4290 assert(Opc
== ARMISD::CMPFPw0
&& "unexpected operand of FMSTAT");
4291 Cmp
= DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0),
4294 return DAG
.getNode(ARMISD::FMSTAT
, DL
, MVT::Glue
, Cmp
);
4297 // This function returns three things: the arithmetic computation itself
4298 // (Value), a comparison (OverflowCmp), and a condition code (ARMcc). The
4299 // comparison and the condition code define the case in which the arithmetic
4300 // computation *does not* overflow.
4301 std::pair
<SDValue
, SDValue
>
4302 ARMTargetLowering::getARMXALUOOp(SDValue Op
, SelectionDAG
&DAG
,
4303 SDValue
&ARMcc
) const {
4304 assert(Op
.getValueType() == MVT::i32
&& "Unsupported value type");
4306 SDValue Value
, OverflowCmp
;
4307 SDValue LHS
= Op
.getOperand(0);
4308 SDValue RHS
= Op
.getOperand(1);
4311 // FIXME: We are currently always generating CMPs because we don't support
4312 // generating CMN through the backend. This is not as good as the natural
4313 // CMP case because it causes a register dependency and cannot be folded
4316 switch (Op
.getOpcode()) {
4318 llvm_unreachable("Unknown overflow instruction!");
4320 ARMcc
= DAG
.getConstant(ARMCC::VC
, dl
, MVT::i32
);
4321 Value
= DAG
.getNode(ISD::ADD
, dl
, Op
.getValueType(), LHS
, RHS
);
4322 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
, LHS
);
4325 ARMcc
= DAG
.getConstant(ARMCC::HS
, dl
, MVT::i32
);
4326 // We use ADDC here to correspond to its use in LowerUnsignedALUO.
4327 // We do not use it in the USUBO case as Value may not be used.
4328 Value
= DAG
.getNode(ARMISD::ADDC
, dl
,
4329 DAG
.getVTList(Op
.getValueType(), MVT::i32
), LHS
, RHS
)
4331 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
, LHS
);
4334 ARMcc
= DAG
.getConstant(ARMCC::VC
, dl
, MVT::i32
);
4335 Value
= DAG
.getNode(ISD::SUB
, dl
, Op
.getValueType(), LHS
, RHS
);
4336 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, LHS
, RHS
);
4339 ARMcc
= DAG
.getConstant(ARMCC::HS
, dl
, MVT::i32
);
4340 Value
= DAG
.getNode(ISD::SUB
, dl
, Op
.getValueType(), LHS
, RHS
);
4341 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, LHS
, RHS
);
4344 // We generate a UMUL_LOHI and then check if the high word is 0.
4345 ARMcc
= DAG
.getConstant(ARMCC::EQ
, dl
, MVT::i32
);
4346 Value
= DAG
.getNode(ISD::UMUL_LOHI
, dl
,
4347 DAG
.getVTList(Op
.getValueType(), Op
.getValueType()),
4349 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
.getValue(1),
4350 DAG
.getConstant(0, dl
, MVT::i32
));
4351 Value
= Value
.getValue(0); // We only want the low 32 bits for the result.
4354 // We generate a SMUL_LOHI and then check if all the bits of the high word
4355 // are the same as the sign bit of the low word.
4356 ARMcc
= DAG
.getConstant(ARMCC::EQ
, dl
, MVT::i32
);
4357 Value
= DAG
.getNode(ISD::SMUL_LOHI
, dl
,
4358 DAG
.getVTList(Op
.getValueType(), Op
.getValueType()),
4360 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
.getValue(1),
4361 DAG
.getNode(ISD::SRA
, dl
, Op
.getValueType(),
4363 DAG
.getConstant(31, dl
, MVT::i32
)));
4364 Value
= Value
.getValue(0); // We only want the low 32 bits for the result.
4368 return std::make_pair(Value
, OverflowCmp
);
4372 ARMTargetLowering::LowerSignedALUO(SDValue Op
, SelectionDAG
&DAG
) const {
4373 // Let legalize expand this if it isn't a legal type yet.
4374 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Op
.getValueType()))
4377 SDValue Value
, OverflowCmp
;
4379 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Op
, DAG
, ARMcc
);
4380 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4382 // We use 0 and 1 as false and true values.
4383 SDValue TVal
= DAG
.getConstant(1, dl
, MVT::i32
);
4384 SDValue FVal
= DAG
.getConstant(0, dl
, MVT::i32
);
4385 EVT VT
= Op
.getValueType();
4387 SDValue Overflow
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, TVal
, FVal
,
4388 ARMcc
, CCR
, OverflowCmp
);
4390 SDVTList VTs
= DAG
.getVTList(Op
.getValueType(), MVT::i32
);
4391 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, VTs
, Value
, Overflow
);
4394 static SDValue
ConvertBooleanCarryToCarryFlag(SDValue BoolCarry
,
4395 SelectionDAG
&DAG
) {
4396 SDLoc
DL(BoolCarry
);
4397 EVT CarryVT
= BoolCarry
.getValueType();
4399 // This converts the boolean value carry into the carry flag by doing
4400 // ARMISD::SUBC Carry, 1
4401 SDValue Carry
= DAG
.getNode(ARMISD::SUBC
, DL
,
4402 DAG
.getVTList(CarryVT
, MVT::i32
),
4403 BoolCarry
, DAG
.getConstant(1, DL
, CarryVT
));
4404 return Carry
.getValue(1);
4407 static SDValue
ConvertCarryFlagToBooleanCarry(SDValue Flags
, EVT VT
,
4408 SelectionDAG
&DAG
) {
4411 // Now convert the carry flag into a boolean carry. We do this
4412 // using ARMISD:ADDE 0, 0, Carry
4413 return DAG
.getNode(ARMISD::ADDE
, DL
, DAG
.getVTList(VT
, MVT::i32
),
4414 DAG
.getConstant(0, DL
, MVT::i32
),
4415 DAG
.getConstant(0, DL
, MVT::i32
), Flags
);
4418 SDValue
ARMTargetLowering::LowerUnsignedALUO(SDValue Op
,
4419 SelectionDAG
&DAG
) const {
4420 // Let legalize expand this if it isn't a legal type yet.
4421 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Op
.getValueType()))
4424 SDValue LHS
= Op
.getOperand(0);
4425 SDValue RHS
= Op
.getOperand(1);
4428 EVT VT
= Op
.getValueType();
4429 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
4432 switch (Op
.getOpcode()) {
4434 llvm_unreachable("Unknown overflow instruction!");
4436 Value
= DAG
.getNode(ARMISD::ADDC
, dl
, VTs
, LHS
, RHS
);
4437 // Convert the carry flag into a boolean value.
4438 Overflow
= ConvertCarryFlagToBooleanCarry(Value
.getValue(1), VT
, DAG
);
4441 Value
= DAG
.getNode(ARMISD::SUBC
, dl
, VTs
, LHS
, RHS
);
4442 // Convert the carry flag into a boolean value.
4443 Overflow
= ConvertCarryFlagToBooleanCarry(Value
.getValue(1), VT
, DAG
);
4444 // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
4445 // value. So compute 1 - C.
4446 Overflow
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
4447 DAG
.getConstant(1, dl
, MVT::i32
), Overflow
);
4452 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, VTs
, Value
, Overflow
);
4455 SDValue
ARMTargetLowering::LowerSELECT(SDValue Op
, SelectionDAG
&DAG
) const {
4456 SDValue Cond
= Op
.getOperand(0);
4457 SDValue SelectTrue
= Op
.getOperand(1);
4458 SDValue SelectFalse
= Op
.getOperand(2);
4460 unsigned Opc
= Cond
.getOpcode();
4462 if (Cond
.getResNo() == 1 &&
4463 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
4464 Opc
== ISD::USUBO
)) {
4465 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Cond
->getValueType(0)))
4468 SDValue Value
, OverflowCmp
;
4470 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Cond
, DAG
, ARMcc
);
4471 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4472 EVT VT
= Op
.getValueType();
4474 return getCMOV(dl
, VT
, SelectTrue
, SelectFalse
, ARMcc
, CCR
,
4480 // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
4481 // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
4483 if (Cond
.getOpcode() == ARMISD::CMOV
&& Cond
.hasOneUse()) {
4484 const ConstantSDNode
*CMOVTrue
=
4485 dyn_cast
<ConstantSDNode
>(Cond
.getOperand(0));
4486 const ConstantSDNode
*CMOVFalse
=
4487 dyn_cast
<ConstantSDNode
>(Cond
.getOperand(1));
4489 if (CMOVTrue
&& CMOVFalse
) {
4490 unsigned CMOVTrueVal
= CMOVTrue
->getZExtValue();
4491 unsigned CMOVFalseVal
= CMOVFalse
->getZExtValue();
4495 if (CMOVTrueVal
== 1 && CMOVFalseVal
== 0) {
4497 False
= SelectFalse
;
4498 } else if (CMOVTrueVal
== 0 && CMOVFalseVal
== 1) {
4503 if (True
.getNode() && False
.getNode()) {
4504 EVT VT
= Op
.getValueType();
4505 SDValue ARMcc
= Cond
.getOperand(2);
4506 SDValue CCR
= Cond
.getOperand(3);
4507 SDValue Cmp
= duplicateCmp(Cond
.getOperand(4), DAG
);
4508 assert(True
.getValueType() == VT
);
4509 return getCMOV(dl
, VT
, True
, False
, ARMcc
, CCR
, Cmp
, DAG
);
4514 // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
4515 // undefined bits before doing a full-word comparison with zero.
4516 Cond
= DAG
.getNode(ISD::AND
, dl
, Cond
.getValueType(), Cond
,
4517 DAG
.getConstant(1, dl
, Cond
.getValueType()));
4519 return DAG
.getSelectCC(dl
, Cond
,
4520 DAG
.getConstant(0, dl
, Cond
.getValueType()),
4521 SelectTrue
, SelectFalse
, ISD::SETNE
);
4524 static void checkVSELConstraints(ISD::CondCode CC
, ARMCC::CondCodes
&CondCode
,
4525 bool &swpCmpOps
, bool &swpVselOps
) {
4526 // Start by selecting the GE condition code for opcodes that return true for
4528 if (CC
== ISD::SETUGE
|| CC
== ISD::SETOGE
|| CC
== ISD::SETOLE
||
4529 CC
== ISD::SETULE
|| CC
== ISD::SETGE
|| CC
== ISD::SETLE
)
4530 CondCode
= ARMCC::GE
;
4532 // and GT for opcodes that return false for 'equality'.
4533 else if (CC
== ISD::SETUGT
|| CC
== ISD::SETOGT
|| CC
== ISD::SETOLT
||
4534 CC
== ISD::SETULT
|| CC
== ISD::SETGT
|| CC
== ISD::SETLT
)
4535 CondCode
= ARMCC::GT
;
4537 // Since we are constrained to GE/GT, if the opcode contains 'less', we need
4538 // to swap the compare operands.
4539 if (CC
== ISD::SETOLE
|| CC
== ISD::SETULE
|| CC
== ISD::SETOLT
||
4540 CC
== ISD::SETULT
|| CC
== ISD::SETLE
|| CC
== ISD::SETLT
)
4543 // Both GT and GE are ordered comparisons, and return false for 'unordered'.
4544 // If we have an unordered opcode, we need to swap the operands to the VSEL
4545 // instruction (effectively negating the condition).
4547 // This also has the effect of swapping which one of 'less' or 'greater'
4548 // returns true, so we also swap the compare operands. It also switches
4549 // whether we return true for 'equality', so we compensate by picking the
4550 // opposite condition code to our original choice.
4551 if (CC
== ISD::SETULE
|| CC
== ISD::SETULT
|| CC
== ISD::SETUGE
||
4552 CC
== ISD::SETUGT
) {
4553 swpCmpOps
= !swpCmpOps
;
4554 swpVselOps
= !swpVselOps
;
4555 CondCode
= CondCode
== ARMCC::GT
? ARMCC::GE
: ARMCC::GT
;
4558 // 'ordered' is 'anything but unordered', so use the VS condition code and
4559 // swap the VSEL operands.
4560 if (CC
== ISD::SETO
) {
4561 CondCode
= ARMCC::VS
;
4565 // 'unordered or not equal' is 'anything but equal', so use the EQ condition
4566 // code and swap the VSEL operands. Also do this if we don't care about the
4568 if (CC
== ISD::SETUNE
|| CC
== ISD::SETNE
) {
4569 CondCode
= ARMCC::EQ
;
4574 SDValue
ARMTargetLowering::getCMOV(const SDLoc
&dl
, EVT VT
, SDValue FalseVal
,
4575 SDValue TrueVal
, SDValue ARMcc
, SDValue CCR
,
4576 SDValue Cmp
, SelectionDAG
&DAG
) const {
4577 if (!Subtarget
->hasFP64() && VT
== MVT::f64
) {
4578 FalseVal
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
4579 DAG
.getVTList(MVT::i32
, MVT::i32
), FalseVal
);
4580 TrueVal
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
4581 DAG
.getVTList(MVT::i32
, MVT::i32
), TrueVal
);
4583 SDValue TrueLow
= TrueVal
.getValue(0);
4584 SDValue TrueHigh
= TrueVal
.getValue(1);
4585 SDValue FalseLow
= FalseVal
.getValue(0);
4586 SDValue FalseHigh
= FalseVal
.getValue(1);
4588 SDValue Low
= DAG
.getNode(ARMISD::CMOV
, dl
, MVT::i32
, FalseLow
, TrueLow
,
4590 SDValue High
= DAG
.getNode(ARMISD::CMOV
, dl
, MVT::i32
, FalseHigh
, TrueHigh
,
4591 ARMcc
, CCR
, duplicateCmp(Cmp
, DAG
));
4593 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Low
, High
);
4595 return DAG
.getNode(ARMISD::CMOV
, dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
,
4600 static bool isGTorGE(ISD::CondCode CC
) {
4601 return CC
== ISD::SETGT
|| CC
== ISD::SETGE
;
4604 static bool isLTorLE(ISD::CondCode CC
) {
4605 return CC
== ISD::SETLT
|| CC
== ISD::SETLE
;
4608 // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
4609 // All of these conditions (and their <= and >= counterparts) will do:
4614 static bool isLowerSaturate(const SDValue LHS
, const SDValue RHS
,
4615 const SDValue TrueVal
, const SDValue FalseVal
,
4616 const ISD::CondCode CC
, const SDValue K
) {
4617 return (isGTorGE(CC
) &&
4618 ((K
== LHS
&& K
== TrueVal
) || (K
== RHS
&& K
== FalseVal
))) ||
4620 ((K
== RHS
&& K
== TrueVal
) || (K
== LHS
&& K
== FalseVal
)));
4623 // Similar to isLowerSaturate(), but checks for upper-saturating conditions.
4624 static bool isUpperSaturate(const SDValue LHS
, const SDValue RHS
,
4625 const SDValue TrueVal
, const SDValue FalseVal
,
4626 const ISD::CondCode CC
, const SDValue K
) {
4627 return (isGTorGE(CC
) &&
4628 ((K
== RHS
&& K
== TrueVal
) || (K
== LHS
&& K
== FalseVal
))) ||
4630 ((K
== LHS
&& K
== TrueVal
) || (K
== RHS
&& K
== FalseVal
)));
4633 // Check if two chained conditionals could be converted into SSAT or USAT.
4635 // SSAT can replace a set of two conditional selectors that bound a number to an
4636 // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
4638 // x < -k ? -k : (x > k ? k : x)
4639 // x < -k ? -k : (x < k ? x : k)
4640 // x > -k ? (x > k ? k : x) : -k
4641 // x < k ? (x < -k ? -k : x) : k
4644 // USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1 is
4647 // It returns true if the conversion can be done, false otherwise.
4648 // Additionally, the variable is returned in parameter V, the constant in K and
4649 // usat is set to true if the conditional represents an unsigned saturation
4650 static bool isSaturatingConditional(const SDValue
&Op
, SDValue
&V
,
4651 uint64_t &K
, bool &usat
) {
4652 SDValue LHS1
= Op
.getOperand(0);
4653 SDValue RHS1
= Op
.getOperand(1);
4654 SDValue TrueVal1
= Op
.getOperand(2);
4655 SDValue FalseVal1
= Op
.getOperand(3);
4656 ISD::CondCode CC1
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4658 const SDValue Op2
= isa
<ConstantSDNode
>(TrueVal1
) ? FalseVal1
: TrueVal1
;
4659 if (Op2
.getOpcode() != ISD::SELECT_CC
)
4662 SDValue LHS2
= Op2
.getOperand(0);
4663 SDValue RHS2
= Op2
.getOperand(1);
4664 SDValue TrueVal2
= Op2
.getOperand(2);
4665 SDValue FalseVal2
= Op2
.getOperand(3);
4666 ISD::CondCode CC2
= cast
<CondCodeSDNode
>(Op2
.getOperand(4))->get();
4668 // Find out which are the constants and which are the variables
4669 // in each conditional
4670 SDValue
*K1
= isa
<ConstantSDNode
>(LHS1
) ? &LHS1
: isa
<ConstantSDNode
>(RHS1
)
4673 SDValue
*K2
= isa
<ConstantSDNode
>(LHS2
) ? &LHS2
: isa
<ConstantSDNode
>(RHS2
)
4676 SDValue K2Tmp
= isa
<ConstantSDNode
>(TrueVal2
) ? TrueVal2
: FalseVal2
;
4677 SDValue V1Tmp
= (K1
&& *K1
== LHS1
) ? RHS1
: LHS1
;
4678 SDValue V2Tmp
= (K2
&& *K2
== LHS2
) ? RHS2
: LHS2
;
4679 SDValue V2
= (K2Tmp
== TrueVal2
) ? FalseVal2
: TrueVal2
;
4681 // We must detect cases where the original operations worked with 16- or
4682 // 8-bit values. In such case, V2Tmp != V2 because the comparison operations
4683 // must work with sign-extended values but the select operations return
4684 // the original non-extended value.
4685 SDValue V2TmpReg
= V2Tmp
;
4686 if (V2Tmp
->getOpcode() == ISD::SIGN_EXTEND_INREG
)
4687 V2TmpReg
= V2Tmp
->getOperand(0);
4689 // Check that the registers and the constants have the correct values
4690 // in both conditionals
4691 if (!K1
|| !K2
|| *K1
== Op2
|| *K2
!= K2Tmp
|| V1Tmp
!= V2Tmp
||
4695 // Figure out which conditional is saturating the lower/upper bound.
4696 const SDValue
*LowerCheckOp
=
4697 isLowerSaturate(LHS1
, RHS1
, TrueVal1
, FalseVal1
, CC1
, *K1
)
4699 : isLowerSaturate(LHS2
, RHS2
, TrueVal2
, FalseVal2
, CC2
, *K2
)
4702 const SDValue
*UpperCheckOp
=
4703 isUpperSaturate(LHS1
, RHS1
, TrueVal1
, FalseVal1
, CC1
, *K1
)
4705 : isUpperSaturate(LHS2
, RHS2
, TrueVal2
, FalseVal2
, CC2
, *K2
)
4709 if (!UpperCheckOp
|| !LowerCheckOp
|| LowerCheckOp
== UpperCheckOp
)
4712 // Check that the constant in the lower-bound check is
4713 // the opposite of the constant in the upper-bound check
4714 // in 1's complement.
4715 int64_t Val1
= cast
<ConstantSDNode
>(*K1
)->getSExtValue();
4716 int64_t Val2
= cast
<ConstantSDNode
>(*K2
)->getSExtValue();
4717 int64_t PosVal
= std::max(Val1
, Val2
);
4718 int64_t NegVal
= std::min(Val1
, Val2
);
4720 if (((Val1
> Val2
&& UpperCheckOp
== &Op
) ||
4721 (Val1
< Val2
&& UpperCheckOp
== &Op2
)) &&
4722 isPowerOf2_64(PosVal
+ 1)) {
4724 // Handle the difference between USAT (unsigned) and SSAT (signed) saturation
4727 else if (NegVal
== 0)
4733 K
= (uint64_t)PosVal
; // At this point, PosVal is guaranteed to be positive
4741 // Check if a condition of the type x < k ? k : x can be converted into a
4742 // bit operation instead of conditional moves.
4743 // Currently this is allowed given:
4744 // - The conditions and values match up
4745 // - k is 0 or -1 (all ones)
4746 // This function will not check the last condition, thats up to the caller
4747 // It returns true if the transformation can be made, and in such case
4748 // returns x in V, and k in SatK.
4749 static bool isLowerSaturatingConditional(const SDValue
&Op
, SDValue
&V
,
4752 SDValue LHS
= Op
.getOperand(0);
4753 SDValue RHS
= Op
.getOperand(1);
4754 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4755 SDValue TrueVal
= Op
.getOperand(2);
4756 SDValue FalseVal
= Op
.getOperand(3);
4758 SDValue
*K
= isa
<ConstantSDNode
>(LHS
) ? &LHS
: isa
<ConstantSDNode
>(RHS
)
4762 // No constant operation in comparison, early out
4766 SDValue KTmp
= isa
<ConstantSDNode
>(TrueVal
) ? TrueVal
: FalseVal
;
4767 V
= (KTmp
== TrueVal
) ? FalseVal
: TrueVal
;
4768 SDValue VTmp
= (K
&& *K
== LHS
) ? RHS
: LHS
;
4770 // If the constant on left and right side, or variable on left and right,
4771 // does not match, early out
4772 if (*K
!= KTmp
|| V
!= VTmp
)
4775 if (isLowerSaturate(LHS
, RHS
, TrueVal
, FalseVal
, CC
, *K
)) {
4783 bool ARMTargetLowering::isUnsupportedFloatingType(EVT VT
) const {
4785 return !Subtarget
->hasVFP2Base();
4787 return !Subtarget
->hasFP64();
4789 return !Subtarget
->hasFullFP16();
4793 SDValue
ARMTargetLowering::LowerSELECT_CC(SDValue Op
, SelectionDAG
&DAG
) const {
4794 EVT VT
= Op
.getValueType();
4797 // Try to convert two saturating conditional selects into a single SSAT
4799 uint64_t SatConstant
;
4801 if (((!Subtarget
->isThumb() && Subtarget
->hasV6Ops()) || Subtarget
->isThumb2()) &&
4802 isSaturatingConditional(Op
, SatValue
, SatConstant
, SatUSat
)) {
4804 return DAG
.getNode(ARMISD::USAT
, dl
, VT
, SatValue
,
4805 DAG
.getConstant(countTrailingOnes(SatConstant
), dl
, VT
));
4807 return DAG
.getNode(ARMISD::SSAT
, dl
, VT
, SatValue
,
4808 DAG
.getConstant(countTrailingOnes(SatConstant
), dl
, VT
));
4811 // Try to convert expressions of the form x < k ? k : x (and similar forms)
4812 // into more efficient bit operations, which is possible when k is 0 or -1
4813 // On ARM and Thumb-2 which have flexible operand 2 this will result in
4814 // single instructions. On Thumb the shift and the bit operation will be two
4816 // Only allow this transformation on full-width (32-bit) operations
4817 SDValue LowerSatConstant
;
4818 if (VT
== MVT::i32
&&
4819 isLowerSaturatingConditional(Op
, SatValue
, LowerSatConstant
)) {
4820 SDValue ShiftV
= DAG
.getNode(ISD::SRA
, dl
, VT
, SatValue
,
4821 DAG
.getConstant(31, dl
, VT
));
4822 if (isNullConstant(LowerSatConstant
)) {
4823 SDValue NotShiftV
= DAG
.getNode(ISD::XOR
, dl
, VT
, ShiftV
,
4824 DAG
.getAllOnesConstant(dl
, VT
));
4825 return DAG
.getNode(ISD::AND
, dl
, VT
, SatValue
, NotShiftV
);
4826 } else if (isAllOnesConstant(LowerSatConstant
))
4827 return DAG
.getNode(ISD::OR
, dl
, VT
, SatValue
, ShiftV
);
4830 SDValue LHS
= Op
.getOperand(0);
4831 SDValue RHS
= Op
.getOperand(1);
4832 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4833 SDValue TrueVal
= Op
.getOperand(2);
4834 SDValue FalseVal
= Op
.getOperand(3);
4835 ConstantSDNode
*CFVal
= dyn_cast
<ConstantSDNode
>(FalseVal
);
4836 ConstantSDNode
*CTVal
= dyn_cast
<ConstantSDNode
>(TrueVal
);
4838 if (Subtarget
->hasV8_1MMainlineOps() && CFVal
&& CTVal
&&
4839 LHS
.getValueType() == MVT::i32
&& RHS
.getValueType() == MVT::i32
) {
4840 unsigned TVal
= CTVal
->getZExtValue();
4841 unsigned FVal
= CFVal
->getZExtValue();
4842 unsigned Opcode
= 0;
4844 if (TVal
== ~FVal
) {
4845 Opcode
= ARMISD::CSINV
;
4846 } else if (TVal
== ~FVal
+ 1) {
4847 Opcode
= ARMISD::CSNEG
;
4848 } else if (TVal
+ 1 == FVal
) {
4849 Opcode
= ARMISD::CSINC
;
4850 } else if (TVal
== FVal
+ 1) {
4851 Opcode
= ARMISD::CSINC
;
4852 std::swap(TrueVal
, FalseVal
);
4853 std::swap(TVal
, FVal
);
4854 CC
= ISD::getSetCCInverse(CC
, true);
4858 // If one of the constants is cheaper than another, materialise the
4859 // cheaper one and let the csel generate the other.
4860 if (Opcode
!= ARMISD::CSINC
&&
4861 HasLowerConstantMaterializationCost(FVal
, TVal
, Subtarget
)) {
4862 std::swap(TrueVal
, FalseVal
);
4863 std::swap(TVal
, FVal
);
4864 CC
= ISD::getSetCCInverse(CC
, true);
4867 // Attempt to use ZR checking TVal is 0, possibly inverting the condition
4868 // to get there. CSINC not is invertable like the other two (~(~a) == a,
4869 // -(-a) == a, but (a+1)+1 != a).
4870 if (FVal
== 0 && Opcode
!= ARMISD::CSINC
) {
4871 std::swap(TrueVal
, FalseVal
);
4872 std::swap(TVal
, FVal
);
4873 CC
= ISD::getSetCCInverse(CC
, true);
4876 TrueVal
= DAG
.getRegister(ARM::ZR
, MVT::i32
);
4878 // Drops F's value because we can get it by inverting/negating TVal.
4882 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
4883 EVT VT
= TrueVal
.getValueType();
4884 return DAG
.getNode(Opcode
, dl
, VT
, TrueVal
, FalseVal
, ARMcc
, Cmp
);
4888 if (isUnsupportedFloatingType(LHS
.getValueType())) {
4889 DAG
.getTargetLoweringInfo().softenSetCCOperands(
4890 DAG
, LHS
.getValueType(), LHS
, RHS
, CC
, dl
, LHS
, RHS
);
4892 // If softenSetCCOperands only returned one value, we should compare it to
4894 if (!RHS
.getNode()) {
4895 RHS
= DAG
.getConstant(0, dl
, LHS
.getValueType());
4900 if (LHS
.getValueType() == MVT::i32
) {
4901 // Try to generate VSEL on ARMv8.
4902 // The VSEL instruction can't use all the usual ARM condition
4903 // codes: it only has two bits to select the condition code, so it's
4904 // constrained to use only GE, GT, VS and EQ.
4906 // To implement all the various ISD::SETXXX opcodes, we sometimes need to
4907 // swap the operands of the previous compare instruction (effectively
4908 // inverting the compare condition, swapping 'less' and 'greater') and
4909 // sometimes need to swap the operands to the VSEL (which inverts the
4910 // condition in the sense of firing whenever the previous condition didn't)
4911 if (Subtarget
->hasFPARMv8Base() && (TrueVal
.getValueType() == MVT::f16
||
4912 TrueVal
.getValueType() == MVT::f32
||
4913 TrueVal
.getValueType() == MVT::f64
)) {
4914 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
4915 if (CondCode
== ARMCC::LT
|| CondCode
== ARMCC::LE
||
4916 CondCode
== ARMCC::VC
|| CondCode
== ARMCC::NE
) {
4917 CC
= ISD::getSetCCInverse(CC
, true);
4918 std::swap(TrueVal
, FalseVal
);
4923 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4924 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
4925 // Choose GE over PL, which vsel does now support
4926 if (cast
<ConstantSDNode
>(ARMcc
)->getZExtValue() == ARMCC::PL
)
4927 ARMcc
= DAG
.getConstant(ARMCC::GE
, dl
, MVT::i32
);
4928 return getCMOV(dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
, Cmp
, DAG
);
4931 ARMCC::CondCodes CondCode
, CondCode2
;
4933 FPCCToARMCC(CC
, CondCode
, CondCode2
, InvalidOnQNaN
);
4935 // Normalize the fp compare. If RHS is zero we prefer to keep it there so we
4936 // match CMPFPw0 instead of CMPFP, though we don't do this for f16 because we
4937 // must use VSEL (limited condition codes), due to not having conditional f16
4939 if (Subtarget
->hasFPARMv8Base() &&
4940 !(isFloatingPointZero(RHS
) && TrueVal
.getValueType() != MVT::f16
) &&
4941 (TrueVal
.getValueType() == MVT::f16
||
4942 TrueVal
.getValueType() == MVT::f32
||
4943 TrueVal
.getValueType() == MVT::f64
)) {
4944 bool swpCmpOps
= false;
4945 bool swpVselOps
= false;
4946 checkVSELConstraints(CC
, CondCode
, swpCmpOps
, swpVselOps
);
4948 if (CondCode
== ARMCC::GT
|| CondCode
== ARMCC::GE
||
4949 CondCode
== ARMCC::VS
|| CondCode
== ARMCC::EQ
) {
4951 std::swap(LHS
, RHS
);
4953 std::swap(TrueVal
, FalseVal
);
4957 SDValue ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
4958 SDValue Cmp
= getVFPCmp(LHS
, RHS
, DAG
, dl
, InvalidOnQNaN
);
4959 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4960 SDValue Result
= getCMOV(dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
, Cmp
, DAG
);
4961 if (CondCode2
!= ARMCC::AL
) {
4962 SDValue ARMcc2
= DAG
.getConstant(CondCode2
, dl
, MVT::i32
);
4963 // FIXME: Needs another CMP because flag can have but one use.
4964 SDValue Cmp2
= getVFPCmp(LHS
, RHS
, DAG
, dl
, InvalidOnQNaN
);
4965 Result
= getCMOV(dl
, VT
, Result
, TrueVal
, ARMcc2
, CCR
, Cmp2
, DAG
);
4970 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
4971 /// to morph to an integer compare sequence.
4972 static bool canChangeToInt(SDValue Op
, bool &SeenZero
,
4973 const ARMSubtarget
*Subtarget
) {
4974 SDNode
*N
= Op
.getNode();
4975 if (!N
->hasOneUse())
4976 // Otherwise it requires moving the value from fp to integer registers.
4978 if (!N
->getNumValues())
4980 EVT VT
= Op
.getValueType();
4981 if (VT
!= MVT::f32
&& !Subtarget
->isFPBrccSlow())
4982 // f32 case is generally profitable. f64 case only makes sense when vcmpe +
4983 // vmrs are very slow, e.g. cortex-a8.
4986 if (isFloatingPointZero(Op
)) {
4990 return ISD::isNormalLoad(N
);
4993 static SDValue
bitcastf32Toi32(SDValue Op
, SelectionDAG
&DAG
) {
4994 if (isFloatingPointZero(Op
))
4995 return DAG
.getConstant(0, SDLoc(Op
), MVT::i32
);
4997 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Op
))
4998 return DAG
.getLoad(MVT::i32
, SDLoc(Op
), Ld
->getChain(), Ld
->getBasePtr(),
4999 Ld
->getPointerInfo(), Ld
->getAlignment(),
5000 Ld
->getMemOperand()->getFlags());
5002 llvm_unreachable("Unknown VFP cmp argument!");
5005 static void expandf64Toi32(SDValue Op
, SelectionDAG
&DAG
,
5006 SDValue
&RetVal1
, SDValue
&RetVal2
) {
5009 if (isFloatingPointZero(Op
)) {
5010 RetVal1
= DAG
.getConstant(0, dl
, MVT::i32
);
5011 RetVal2
= DAG
.getConstant(0, dl
, MVT::i32
);
5015 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Op
)) {
5016 SDValue Ptr
= Ld
->getBasePtr();
5018 DAG
.getLoad(MVT::i32
, dl
, Ld
->getChain(), Ptr
, Ld
->getPointerInfo(),
5019 Ld
->getAlignment(), Ld
->getMemOperand()->getFlags());
5021 EVT PtrType
= Ptr
.getValueType();
5022 unsigned NewAlign
= MinAlign(Ld
->getAlignment(), 4);
5023 SDValue NewPtr
= DAG
.getNode(ISD::ADD
, dl
,
5024 PtrType
, Ptr
, DAG
.getConstant(4, dl
, PtrType
));
5025 RetVal2
= DAG
.getLoad(MVT::i32
, dl
, Ld
->getChain(), NewPtr
,
5026 Ld
->getPointerInfo().getWithOffset(4), NewAlign
,
5027 Ld
->getMemOperand()->getFlags());
5031 llvm_unreachable("Unknown VFP cmp argument!");
5034 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
5035 /// f32 and even f64 comparisons to integer ones.
5037 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op
, SelectionDAG
&DAG
) const {
5038 SDValue Chain
= Op
.getOperand(0);
5039 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(1))->get();
5040 SDValue LHS
= Op
.getOperand(2);
5041 SDValue RHS
= Op
.getOperand(3);
5042 SDValue Dest
= Op
.getOperand(4);
5045 bool LHSSeenZero
= false;
5046 bool LHSOk
= canChangeToInt(LHS
, LHSSeenZero
, Subtarget
);
5047 bool RHSSeenZero
= false;
5048 bool RHSOk
= canChangeToInt(RHS
, RHSSeenZero
, Subtarget
);
5049 if (LHSOk
&& RHSOk
&& (LHSSeenZero
|| RHSSeenZero
)) {
5050 // If unsafe fp math optimization is enabled and there are no other uses of
5051 // the CMP operands, and the condition code is EQ or NE, we can optimize it
5052 // to an integer comparison.
5053 if (CC
== ISD::SETOEQ
)
5055 else if (CC
== ISD::SETUNE
)
5058 SDValue Mask
= DAG
.getConstant(0x7fffffff, dl
, MVT::i32
);
5060 if (LHS
.getValueType() == MVT::f32
) {
5061 LHS
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
5062 bitcastf32Toi32(LHS
, DAG
), Mask
);
5063 RHS
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
5064 bitcastf32Toi32(RHS
, DAG
), Mask
);
5065 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
5066 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5067 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
,
5068 Chain
, Dest
, ARMcc
, CCR
, Cmp
);
5073 expandf64Toi32(LHS
, DAG
, LHS1
, LHS2
);
5074 expandf64Toi32(RHS
, DAG
, RHS1
, RHS2
);
5075 LHS2
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, LHS2
, Mask
);
5076 RHS2
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, RHS2
, Mask
);
5077 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
5078 ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
5079 SDVTList VTList
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
5080 SDValue Ops
[] = { Chain
, ARMcc
, LHS1
, LHS2
, RHS1
, RHS2
, Dest
};
5081 return DAG
.getNode(ARMISD::BCC_i64
, dl
, VTList
, Ops
);
5087 SDValue
ARMTargetLowering::LowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) const {
5088 SDValue Chain
= Op
.getOperand(0);
5089 SDValue Cond
= Op
.getOperand(1);
5090 SDValue Dest
= Op
.getOperand(2);
5093 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5095 unsigned Opc
= Cond
.getOpcode();
5096 bool OptimizeMul
= (Opc
== ISD::SMULO
|| Opc
== ISD::UMULO
) &&
5097 !Subtarget
->isThumb1Only();
5098 if (Cond
.getResNo() == 1 &&
5099 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
5100 Opc
== ISD::USUBO
|| OptimizeMul
)) {
5101 // Only lower legal XALUO ops.
5102 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Cond
->getValueType(0)))
5105 // The actual operation with overflow check.
5106 SDValue Value
, OverflowCmp
;
5108 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Cond
, DAG
, ARMcc
);
5110 // Reverse the condition code.
5111 ARMCC::CondCodes CondCode
=
5112 (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(ARMcc
)->getZExtValue();
5113 CondCode
= ARMCC::getOppositeCondition(CondCode
);
5114 ARMcc
= DAG
.getConstant(CondCode
, SDLoc(ARMcc
), MVT::i32
);
5115 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5117 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, ARMcc
, CCR
,
5124 SDValue
ARMTargetLowering::LowerBR_CC(SDValue Op
, SelectionDAG
&DAG
) const {
5125 SDValue Chain
= Op
.getOperand(0);
5126 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(1))->get();
5127 SDValue LHS
= Op
.getOperand(2);
5128 SDValue RHS
= Op
.getOperand(3);
5129 SDValue Dest
= Op
.getOperand(4);
5132 if (isUnsupportedFloatingType(LHS
.getValueType())) {
5133 DAG
.getTargetLoweringInfo().softenSetCCOperands(
5134 DAG
, LHS
.getValueType(), LHS
, RHS
, CC
, dl
, LHS
, RHS
);
5136 // If softenSetCCOperands only returned one value, we should compare it to
5138 if (!RHS
.getNode()) {
5139 RHS
= DAG
.getConstant(0, dl
, LHS
.getValueType());
5144 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5146 unsigned Opc
= LHS
.getOpcode();
5147 bool OptimizeMul
= (Opc
== ISD::SMULO
|| Opc
== ISD::UMULO
) &&
5148 !Subtarget
->isThumb1Only();
5149 if (LHS
.getResNo() == 1 && (isOneConstant(RHS
) || isNullConstant(RHS
)) &&
5150 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
5151 Opc
== ISD::USUBO
|| OptimizeMul
) &&
5152 (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
5153 // Only lower legal XALUO ops.
5154 if (!DAG
.getTargetLoweringInfo().isTypeLegal(LHS
->getValueType(0)))
5157 // The actual operation with overflow check.
5158 SDValue Value
, OverflowCmp
;
5160 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(LHS
.getValue(0), DAG
, ARMcc
);
5162 if ((CC
== ISD::SETNE
) != isOneConstant(RHS
)) {
5163 // Reverse the condition code.
5164 ARMCC::CondCodes CondCode
=
5165 (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(ARMcc
)->getZExtValue();
5166 CondCode
= ARMCC::getOppositeCondition(CondCode
);
5167 ARMcc
= DAG
.getConstant(CondCode
, SDLoc(ARMcc
), MVT::i32
);
5169 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5171 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, ARMcc
, CCR
,
5175 if (LHS
.getValueType() == MVT::i32
) {
5177 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
5178 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5179 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
,
5180 Chain
, Dest
, ARMcc
, CCR
, Cmp
);
5183 if (getTargetMachine().Options
.UnsafeFPMath
&&
5184 (CC
== ISD::SETEQ
|| CC
== ISD::SETOEQ
||
5185 CC
== ISD::SETNE
|| CC
== ISD::SETUNE
)) {
5186 if (SDValue Result
= OptimizeVFPBrcond(Op
, DAG
))
5190 ARMCC::CondCodes CondCode
, CondCode2
;
5192 FPCCToARMCC(CC
, CondCode
, CondCode2
, InvalidOnQNaN
);
5194 SDValue ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
5195 SDValue Cmp
= getVFPCmp(LHS
, RHS
, DAG
, dl
, InvalidOnQNaN
);
5196 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5197 SDVTList VTList
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
5198 SDValue Ops
[] = { Chain
, Dest
, ARMcc
, CCR
, Cmp
};
5199 SDValue Res
= DAG
.getNode(ARMISD::BRCOND
, dl
, VTList
, Ops
);
5200 if (CondCode2
!= ARMCC::AL
) {
5201 ARMcc
= DAG
.getConstant(CondCode2
, dl
, MVT::i32
);
5202 SDValue Ops
[] = { Res
, Dest
, ARMcc
, CCR
, Res
.getValue(1) };
5203 Res
= DAG
.getNode(ARMISD::BRCOND
, dl
, VTList
, Ops
);
5208 SDValue
ARMTargetLowering::LowerBR_JT(SDValue Op
, SelectionDAG
&DAG
) const {
5209 SDValue Chain
= Op
.getOperand(0);
5210 SDValue Table
= Op
.getOperand(1);
5211 SDValue Index
= Op
.getOperand(2);
5214 EVT PTy
= getPointerTy(DAG
.getDataLayout());
5215 JumpTableSDNode
*JT
= cast
<JumpTableSDNode
>(Table
);
5216 SDValue JTI
= DAG
.getTargetJumpTable(JT
->getIndex(), PTy
);
5217 Table
= DAG
.getNode(ARMISD::WrapperJT
, dl
, MVT::i32
, JTI
);
5218 Index
= DAG
.getNode(ISD::MUL
, dl
, PTy
, Index
, DAG
.getConstant(4, dl
, PTy
));
5219 SDValue Addr
= DAG
.getNode(ISD::ADD
, dl
, PTy
, Table
, Index
);
5220 if (Subtarget
->isThumb2() || (Subtarget
->hasV8MBaselineOps() && Subtarget
->isThumb())) {
5221 // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
5222 // which does another jump to the destination. This also makes it easier
5223 // to translate it to TBB / TBH later (Thumb2 only).
5224 // FIXME: This might not work if the function is extremely large.
5225 return DAG
.getNode(ARMISD::BR2_JT
, dl
, MVT::Other
, Chain
,
5226 Addr
, Op
.getOperand(2), JTI
);
5228 if (isPositionIndependent() || Subtarget
->isROPI()) {
5230 DAG
.getLoad((EVT
)MVT::i32
, dl
, Chain
, Addr
,
5231 MachinePointerInfo::getJumpTable(DAG
.getMachineFunction()));
5232 Chain
= Addr
.getValue(1);
5233 Addr
= DAG
.getNode(ISD::ADD
, dl
, PTy
, Table
, Addr
);
5234 return DAG
.getNode(ARMISD::BR_JT
, dl
, MVT::Other
, Chain
, Addr
, JTI
);
5237 DAG
.getLoad(PTy
, dl
, Chain
, Addr
,
5238 MachinePointerInfo::getJumpTable(DAG
.getMachineFunction()));
5239 Chain
= Addr
.getValue(1);
5240 return DAG
.getNode(ARMISD::BR_JT
, dl
, MVT::Other
, Chain
, Addr
, JTI
);
5244 static SDValue
LowerVectorFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
) {
5245 EVT VT
= Op
.getValueType();
5248 if (Op
.getValueType().getVectorElementType() == MVT::i32
) {
5249 if (Op
.getOperand(0).getValueType().getVectorElementType() == MVT::f32
)
5251 return DAG
.UnrollVectorOp(Op
.getNode());
5254 const bool HasFullFP16
=
5255 static_cast<const ARMSubtarget
&>(DAG
.getSubtarget()).hasFullFP16();
5258 const EVT OpTy
= Op
.getOperand(0).getValueType();
5259 if (OpTy
== MVT::v4f32
)
5261 else if (OpTy
== MVT::v4f16
&& HasFullFP16
)
5263 else if (OpTy
== MVT::v8f16
&& HasFullFP16
)
5266 llvm_unreachable("Invalid type for custom lowering!");
5268 if (VT
!= MVT::v4i16
&& VT
!= MVT::v8i16
)
5269 return DAG
.UnrollVectorOp(Op
.getNode());
5271 Op
= DAG
.getNode(Op
.getOpcode(), dl
, NewTy
, Op
.getOperand(0));
5272 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Op
);
5275 SDValue
ARMTargetLowering::LowerFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
) const {
5276 EVT VT
= Op
.getValueType();
5278 return LowerVectorFP_TO_INT(Op
, DAG
);
5279 if (isUnsupportedFloatingType(Op
.getOperand(0).getValueType())) {
5281 if (Op
.getOpcode() == ISD::FP_TO_SINT
)
5282 LC
= RTLIB::getFPTOSINT(Op
.getOperand(0).getValueType(),
5285 LC
= RTLIB::getFPTOUINT(Op
.getOperand(0).getValueType(),
5287 MakeLibCallOptions CallOptions
;
5288 return makeLibCall(DAG
, LC
, Op
.getValueType(), Op
.getOperand(0),
5289 CallOptions
, SDLoc(Op
)).first
;
5295 static SDValue
LowerVectorINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) {
5296 EVT VT
= Op
.getValueType();
5299 if (Op
.getOperand(0).getValueType().getVectorElementType() == MVT::i32
) {
5300 if (VT
.getVectorElementType() == MVT::f32
)
5302 return DAG
.UnrollVectorOp(Op
.getNode());
5305 assert((Op
.getOperand(0).getValueType() == MVT::v4i16
||
5306 Op
.getOperand(0).getValueType() == MVT::v8i16
) &&
5307 "Invalid type for custom lowering!");
5309 const bool HasFullFP16
=
5310 static_cast<const ARMSubtarget
&>(DAG
.getSubtarget()).hasFullFP16();
5313 if (VT
== MVT::v4f32
)
5314 DestVecType
= MVT::v4i32
;
5315 else if (VT
== MVT::v4f16
&& HasFullFP16
)
5316 DestVecType
= MVT::v4i16
;
5317 else if (VT
== MVT::v8f16
&& HasFullFP16
)
5318 DestVecType
= MVT::v8i16
;
5320 return DAG
.UnrollVectorOp(Op
.getNode());
5324 switch (Op
.getOpcode()) {
5325 default: llvm_unreachable("Invalid opcode!");
5326 case ISD::SINT_TO_FP
:
5327 CastOpc
= ISD::SIGN_EXTEND
;
5328 Opc
= ISD::SINT_TO_FP
;
5330 case ISD::UINT_TO_FP
:
5331 CastOpc
= ISD::ZERO_EXTEND
;
5332 Opc
= ISD::UINT_TO_FP
;
5336 Op
= DAG
.getNode(CastOpc
, dl
, DestVecType
, Op
.getOperand(0));
5337 return DAG
.getNode(Opc
, dl
, VT
, Op
);
5340 SDValue
ARMTargetLowering::LowerINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) const {
5341 EVT VT
= Op
.getValueType();
5343 return LowerVectorINT_TO_FP(Op
, DAG
);
5344 if (isUnsupportedFloatingType(VT
)) {
5346 if (Op
.getOpcode() == ISD::SINT_TO_FP
)
5347 LC
= RTLIB::getSINTTOFP(Op
.getOperand(0).getValueType(),
5350 LC
= RTLIB::getUINTTOFP(Op
.getOperand(0).getValueType(),
5352 MakeLibCallOptions CallOptions
;
5353 return makeLibCall(DAG
, LC
, Op
.getValueType(), Op
.getOperand(0),
5354 CallOptions
, SDLoc(Op
)).first
;
5360 SDValue
ARMTargetLowering::LowerFCOPYSIGN(SDValue Op
, SelectionDAG
&DAG
) const {
5361 // Implement fcopysign with a fabs and a conditional fneg.
5362 SDValue Tmp0
= Op
.getOperand(0);
5363 SDValue Tmp1
= Op
.getOperand(1);
5365 EVT VT
= Op
.getValueType();
5366 EVT SrcVT
= Tmp1
.getValueType();
5367 bool InGPR
= Tmp0
.getOpcode() == ISD::BITCAST
||
5368 Tmp0
.getOpcode() == ARMISD::VMOVDRR
;
5369 bool UseNEON
= !InGPR
&& Subtarget
->hasNEON();
5372 // Use VBSL to copy the sign bit.
5373 unsigned EncodedVal
= ARM_AM::createVMOVModImm(0x6, 0x80);
5374 SDValue Mask
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v2i32
,
5375 DAG
.getTargetConstant(EncodedVal
, dl
, MVT::i32
));
5376 EVT OpVT
= (VT
== MVT::f32
) ? MVT::v2i32
: MVT::v1i64
;
5378 Mask
= DAG
.getNode(ARMISD::VSHLIMM
, dl
, OpVT
,
5379 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Mask
),
5380 DAG
.getConstant(32, dl
, MVT::i32
));
5381 else /*if (VT == MVT::f32)*/
5382 Tmp0
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2f32
, Tmp0
);
5383 if (SrcVT
== MVT::f32
) {
5384 Tmp1
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2f32
, Tmp1
);
5386 Tmp1
= DAG
.getNode(ARMISD::VSHLIMM
, dl
, OpVT
,
5387 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp1
),
5388 DAG
.getConstant(32, dl
, MVT::i32
));
5389 } else if (VT
== MVT::f32
)
5390 Tmp1
= DAG
.getNode(ARMISD::VSHRuIMM
, dl
, MVT::v1i64
,
5391 DAG
.getNode(ISD::BITCAST
, dl
, MVT::v1i64
, Tmp1
),
5392 DAG
.getConstant(32, dl
, MVT::i32
));
5393 Tmp0
= DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp0
);
5394 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp1
);
5396 SDValue AllOnes
= DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff),
5398 AllOnes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v8i8
, AllOnes
);
5399 SDValue MaskNot
= DAG
.getNode(ISD::XOR
, dl
, OpVT
, Mask
,
5400 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, AllOnes
));
5402 SDValue Res
= DAG
.getNode(ISD::OR
, dl
, OpVT
,
5403 DAG
.getNode(ISD::AND
, dl
, OpVT
, Tmp1
, Mask
),
5404 DAG
.getNode(ISD::AND
, dl
, OpVT
, Tmp0
, MaskNot
));
5405 if (VT
== MVT::f32
) {
5406 Res
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v2f32
, Res
);
5407 Res
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f32
, Res
,
5408 DAG
.getConstant(0, dl
, MVT::i32
));
5410 Res
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Res
);
5416 // Bitcast operand 1 to i32.
5417 if (SrcVT
== MVT::f64
)
5418 Tmp1
= DAG
.getNode(ARMISD::VMOVRRD
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
5420 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Tmp1
);
5422 // Or in the signbit with integer operations.
5423 SDValue Mask1
= DAG
.getConstant(0x80000000, dl
, MVT::i32
);
5424 SDValue Mask2
= DAG
.getConstant(0x7fffffff, dl
, MVT::i32
);
5425 Tmp1
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Tmp1
, Mask1
);
5426 if (VT
== MVT::f32
) {
5427 Tmp0
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
5428 DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Tmp0
), Mask2
);
5429 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::f32
,
5430 DAG
.getNode(ISD::OR
, dl
, MVT::i32
, Tmp0
, Tmp1
));
5433 // f64: Or the high part with signbit and then combine two parts.
5434 Tmp0
= DAG
.getNode(ARMISD::VMOVRRD
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
5436 SDValue Lo
= Tmp0
.getValue(0);
5437 SDValue Hi
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Tmp0
.getValue(1), Mask2
);
5438 Hi
= DAG
.getNode(ISD::OR
, dl
, MVT::i32
, Hi
, Tmp1
);
5439 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
5442 SDValue
ARMTargetLowering::LowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) const{
5443 MachineFunction
&MF
= DAG
.getMachineFunction();
5444 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
5445 MFI
.setReturnAddressIsTaken(true);
5447 if (verifyReturnAddressArgumentIsConstant(Op
, DAG
))
5450 EVT VT
= Op
.getValueType();
5452 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5454 SDValue FrameAddr
= LowerFRAMEADDR(Op
, DAG
);
5455 SDValue Offset
= DAG
.getConstant(4, dl
, MVT::i32
);
5456 return DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(),
5457 DAG
.getNode(ISD::ADD
, dl
, VT
, FrameAddr
, Offset
),
5458 MachinePointerInfo());
5461 // Return LR, which contains the return address. Mark it an implicit live-in.
5462 unsigned Reg
= MF
.addLiveIn(ARM::LR
, getRegClassFor(MVT::i32
));
5463 return DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, Reg
, VT
);
5466 SDValue
ARMTargetLowering::LowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) const {
5467 const ARMBaseRegisterInfo
&ARI
=
5468 *static_cast<const ARMBaseRegisterInfo
*>(RegInfo
);
5469 MachineFunction
&MF
= DAG
.getMachineFunction();
5470 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
5471 MFI
.setFrameAddressIsTaken(true);
5473 EVT VT
= Op
.getValueType();
5474 SDLoc
dl(Op
); // FIXME probably not meaningful
5475 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5476 Register FrameReg
= ARI
.getFrameRegister(MF
);
5477 SDValue FrameAddr
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, FrameReg
, VT
);
5479 FrameAddr
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), FrameAddr
,
5480 MachinePointerInfo());
5484 // FIXME? Maybe this could be a TableGen attribute on some registers and
5485 // this table could be generated automatically from RegInfo.
5486 unsigned ARMTargetLowering::getRegisterByName(const char* RegName
, EVT VT
,
5487 SelectionDAG
&DAG
) const {
5488 unsigned Reg
= StringSwitch
<unsigned>(RegName
)
5489 .Case("sp", ARM::SP
)
5493 report_fatal_error(Twine("Invalid register name \""
5494 + StringRef(RegName
) + "\"."));
5497 // Result is 64 bit value so split into two 32 bit values and return as a
5499 static void ExpandREAD_REGISTER(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
5500 SelectionDAG
&DAG
) {
5503 // This function is only supposed to be called for i64 type destination.
5504 assert(N
->getValueType(0) == MVT::i64
5505 && "ExpandREAD_REGISTER called for non-i64 type result.");
5507 SDValue Read
= DAG
.getNode(ISD::READ_REGISTER
, DL
,
5508 DAG
.getVTList(MVT::i32
, MVT::i32
, MVT::Other
),
5512 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, Read
.getValue(0),
5514 Results
.push_back(Read
.getOperand(0));
5517 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
5518 /// When \p DstVT, the destination type of \p BC, is on the vector
5519 /// register bank and the source of bitcast, \p Op, operates on the same bank,
5520 /// it might be possible to combine them, such that everything stays on the
5521 /// vector register bank.
5522 /// \p return The node that would replace \p BT, if the combine
5524 static SDValue
CombineVMOVDRRCandidateWithVecOp(const SDNode
*BC
,
5525 SelectionDAG
&DAG
) {
5526 SDValue Op
= BC
->getOperand(0);
5527 EVT DstVT
= BC
->getValueType(0);
5529 // The only vector instruction that can produce a scalar (remember,
5530 // since the bitcast was about to be turned into VMOVDRR, the source
5531 // type is i64) from a vector is EXTRACT_VECTOR_ELT.
5532 // Moreover, we can do this combine only if there is one use.
5533 // Finally, if the destination type is not a vector, there is not
5534 // much point on forcing everything on the vector bank.
5535 if (!DstVT
.isVector() || Op
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
5539 // If the index is not constant, we will introduce an additional
5540 // multiply that will stick.
5541 // Give up in that case.
5542 ConstantSDNode
*Index
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
5545 unsigned DstNumElt
= DstVT
.getVectorNumElements();
5547 // Compute the new index.
5548 const APInt
&APIntIndex
= Index
->getAPIntValue();
5549 APInt
NewIndex(APIntIndex
.getBitWidth(), DstNumElt
);
5550 NewIndex
*= APIntIndex
;
5551 // Check if the new constant index fits into i32.
5552 if (NewIndex
.getBitWidth() > 32)
5555 // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
5556 // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
5558 SDValue ExtractSrc
= Op
.getOperand(0);
5559 EVT VecVT
= EVT::getVectorVT(
5560 *DAG
.getContext(), DstVT
.getScalarType(),
5561 ExtractSrc
.getValueType().getVectorNumElements() * DstNumElt
);
5562 SDValue BitCast
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, ExtractSrc
);
5563 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DstVT
, BitCast
,
5564 DAG
.getConstant(NewIndex
.getZExtValue(), dl
, MVT::i32
));
5567 /// ExpandBITCAST - If the target supports VFP, this function is called to
5568 /// expand a bit convert where either the source or destination type is i64 to
5569 /// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
5570 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
5571 /// vectors), since the legalizer won't know what to do with that.
5572 static SDValue
ExpandBITCAST(SDNode
*N
, SelectionDAG
&DAG
,
5573 const ARMSubtarget
*Subtarget
) {
5574 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5576 SDValue Op
= N
->getOperand(0);
5578 // This function is only supposed to be called for i64 types, either as the
5579 // source or destination of the bit convert.
5580 EVT SrcVT
= Op
.getValueType();
5581 EVT DstVT
= N
->getValueType(0);
5582 const bool HasFullFP16
= Subtarget
->hasFullFP16();
5584 if (SrcVT
== MVT::f32
&& DstVT
== MVT::i32
) {
5585 // FullFP16: half values are passed in S-registers, and we don't
5586 // need any of the bitcast and moves:
5588 // t2: f32,ch = CopyFromReg t0, Register:f32 %0
5589 // t5: i32 = bitcast t2
5590 // t18: f16 = ARMISD::VMOVhr t5
5591 if (Op
.getOpcode() != ISD::CopyFromReg
||
5592 Op
.getValueType() != MVT::f32
)
5595 auto Move
= N
->use_begin();
5596 if (Move
->getOpcode() != ARMISD::VMOVhr
)
5599 SDValue Ops
[] = { Op
.getOperand(0), Op
.getOperand(1) };
5600 SDValue Copy
= DAG
.getNode(ISD::CopyFromReg
, SDLoc(Op
), MVT::f16
, Ops
);
5601 DAG
.ReplaceAllUsesWith(*Move
, &Copy
);
5605 if (SrcVT
== MVT::i16
&& DstVT
== MVT::f16
) {
5608 // SoftFP: read half-precision arguments:
5611 // t7: i16 = truncate t2 <~~~~ Op
5612 // t8: f16 = bitcast t7 <~~~~ N
5614 if (Op
.getOperand(0).getValueType() == MVT::i32
)
5615 return DAG
.getNode(ARMISD::VMOVhr
, SDLoc(Op
),
5616 MVT::f16
, Op
.getOperand(0));
5621 // Half-precision return values
5622 if (SrcVT
== MVT::f16
&& DstVT
== MVT::i16
) {
5626 // t11: f16 = fadd t8, t10
5627 // t12: i16 = bitcast t11 <~~~ SDNode N
5628 // t13: i32 = zero_extend t12
5629 // t16: ch,glue = CopyToReg t0, Register:i32 %r0, t13
5630 // t17: ch = ARMISD::RET_FLAG t16, Register:i32 %r0, t16:1
5632 // transform this into:
5634 // t20: i32 = ARMISD::VMOVrh t11
5635 // t16: ch,glue = CopyToReg t0, Register:i32 %r0, t20
5637 auto ZeroExtend
= N
->use_begin();
5638 if (N
->use_size() != 1 || ZeroExtend
->getOpcode() != ISD::ZERO_EXTEND
||
5639 ZeroExtend
->getValueType(0) != MVT::i32
)
5642 auto Copy
= ZeroExtend
->use_begin();
5643 if (Copy
->getOpcode() == ISD::CopyToReg
&&
5644 Copy
->use_begin()->getOpcode() == ARMISD::RET_FLAG
) {
5645 SDValue Cvt
= DAG
.getNode(ARMISD::VMOVrh
, SDLoc(Op
), MVT::i32
, Op
);
5646 DAG
.ReplaceAllUsesWith(*ZeroExtend
, &Cvt
);
5652 if (!(SrcVT
== MVT::i64
|| DstVT
== MVT::i64
))
5655 // Turn i64->f64 into VMOVDRR.
5656 if (SrcVT
== MVT::i64
&& TLI
.isTypeLegal(DstVT
)) {
5657 // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
5658 // if we can combine the bitcast with its source.
5659 if (SDValue Val
= CombineVMOVDRRCandidateWithVecOp(N
, DAG
))
5662 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, Op
,
5663 DAG
.getConstant(0, dl
, MVT::i32
));
5664 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, Op
,
5665 DAG
.getConstant(1, dl
, MVT::i32
));
5666 return DAG
.getNode(ISD::BITCAST
, dl
, DstVT
,
5667 DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
));
5670 // Turn f64->i64 into VMOVRRD.
5671 if (DstVT
== MVT::i64
&& TLI
.isTypeLegal(SrcVT
)) {
5673 if (DAG
.getDataLayout().isBigEndian() && SrcVT
.isVector() &&
5674 SrcVT
.getVectorNumElements() > 1)
5675 Cvt
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
5676 DAG
.getVTList(MVT::i32
, MVT::i32
),
5677 DAG
.getNode(ARMISD::VREV64
, dl
, SrcVT
, Op
));
5679 Cvt
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
5680 DAG
.getVTList(MVT::i32
, MVT::i32
), Op
);
5681 // Merge the pieces into a single i64 value.
5682 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Cvt
, Cvt
.getValue(1));
5688 /// getZeroVector - Returns a vector of specified type with all zero elements.
5689 /// Zero vectors are used to represent vector negation and in those cases
5690 /// will be implemented with the NEON VNEG instruction. However, VNEG does
5691 /// not support i64 elements, so sometimes the zero vectors will need to be
5692 /// explicitly constructed. Regardless, use a canonical VMOV to create the
5694 static SDValue
getZeroVector(EVT VT
, SelectionDAG
&DAG
, const SDLoc
&dl
) {
5695 assert(VT
.isVector() && "Expected a vector type");
5696 // The canonical modified immediate encoding of a zero vector is....0!
5697 SDValue EncodedVal
= DAG
.getTargetConstant(0, dl
, MVT::i32
);
5698 EVT VmovVT
= VT
.is128BitVector() ? MVT::v4i32
: MVT::v2i32
;
5699 SDValue Vmov
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VmovVT
, EncodedVal
);
5700 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
5703 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
5704 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5705 SDValue
ARMTargetLowering::LowerShiftRightParts(SDValue Op
,
5706 SelectionDAG
&DAG
) const {
5707 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
5708 EVT VT
= Op
.getValueType();
5709 unsigned VTBits
= VT
.getSizeInBits();
5711 SDValue ShOpLo
= Op
.getOperand(0);
5712 SDValue ShOpHi
= Op
.getOperand(1);
5713 SDValue ShAmt
= Op
.getOperand(2);
5715 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5716 unsigned Opc
= (Op
.getOpcode() == ISD::SRA_PARTS
) ? ISD::SRA
: ISD::SRL
;
5718 assert(Op
.getOpcode() == ISD::SRA_PARTS
|| Op
.getOpcode() == ISD::SRL_PARTS
);
5720 SDValue RevShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
5721 DAG
.getConstant(VTBits
, dl
, MVT::i32
), ShAmt
);
5722 SDValue Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, ShOpLo
, ShAmt
);
5723 SDValue ExtraShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, ShAmt
,
5724 DAG
.getConstant(VTBits
, dl
, MVT::i32
));
5725 SDValue Tmp2
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpHi
, RevShAmt
);
5726 SDValue LoSmallShift
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp1
, Tmp2
);
5727 SDValue LoBigShift
= DAG
.getNode(Opc
, dl
, VT
, ShOpHi
, ExtraShAmt
);
5728 SDValue CmpLo
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5729 ISD::SETGE
, ARMcc
, DAG
, dl
);
5730 SDValue Lo
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LoSmallShift
, LoBigShift
,
5733 SDValue HiSmallShift
= DAG
.getNode(Opc
, dl
, VT
, ShOpHi
, ShAmt
);
5734 SDValue HiBigShift
= Opc
== ISD::SRA
5735 ? DAG
.getNode(Opc
, dl
, VT
, ShOpHi
,
5736 DAG
.getConstant(VTBits
- 1, dl
, VT
))
5737 : DAG
.getConstant(0, dl
, VT
);
5738 SDValue CmpHi
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5739 ISD::SETGE
, ARMcc
, DAG
, dl
);
5740 SDValue Hi
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, HiSmallShift
, HiBigShift
,
5743 SDValue Ops
[2] = { Lo
, Hi
};
5744 return DAG
.getMergeValues(Ops
, dl
);
5747 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
5748 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5749 SDValue
ARMTargetLowering::LowerShiftLeftParts(SDValue Op
,
5750 SelectionDAG
&DAG
) const {
5751 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
5752 EVT VT
= Op
.getValueType();
5753 unsigned VTBits
= VT
.getSizeInBits();
5755 SDValue ShOpLo
= Op
.getOperand(0);
5756 SDValue ShOpHi
= Op
.getOperand(1);
5757 SDValue ShAmt
= Op
.getOperand(2);
5759 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5761 assert(Op
.getOpcode() == ISD::SHL_PARTS
);
5762 SDValue RevShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
5763 DAG
.getConstant(VTBits
, dl
, MVT::i32
), ShAmt
);
5764 SDValue Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, ShOpLo
, RevShAmt
);
5765 SDValue Tmp2
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpHi
, ShAmt
);
5766 SDValue HiSmallShift
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp1
, Tmp2
);
5768 SDValue ExtraShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, ShAmt
,
5769 DAG
.getConstant(VTBits
, dl
, MVT::i32
));
5770 SDValue HiBigShift
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ExtraShAmt
);
5771 SDValue CmpHi
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5772 ISD::SETGE
, ARMcc
, DAG
, dl
);
5773 SDValue Hi
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, HiSmallShift
, HiBigShift
,
5776 SDValue CmpLo
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5777 ISD::SETGE
, ARMcc
, DAG
, dl
);
5778 SDValue LoSmallShift
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ShAmt
);
5779 SDValue Lo
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LoSmallShift
,
5780 DAG
.getConstant(0, dl
, VT
), ARMcc
, CCR
, CmpLo
);
5782 SDValue Ops
[2] = { Lo
, Hi
};
5783 return DAG
.getMergeValues(Ops
, dl
);
5786 SDValue
ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op
,
5787 SelectionDAG
&DAG
) const {
5788 // The rounding mode is in bits 23:22 of the FPSCR.
5789 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
5790 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
5791 // so that the shift + and get folded into a bitfield extract.
5793 SDValue Ops
[] = { DAG
.getEntryNode(),
5794 DAG
.getConstant(Intrinsic::arm_get_fpscr
, dl
, MVT::i32
) };
5796 SDValue FPSCR
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, dl
, MVT::i32
, Ops
);
5797 SDValue FltRounds
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, FPSCR
,
5798 DAG
.getConstant(1U << 22, dl
, MVT::i32
));
5799 SDValue RMODE
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, FltRounds
,
5800 DAG
.getConstant(22, dl
, MVT::i32
));
5801 return DAG
.getNode(ISD::AND
, dl
, MVT::i32
, RMODE
,
5802 DAG
.getConstant(3, dl
, MVT::i32
));
5805 static SDValue
LowerCTTZ(SDNode
*N
, SelectionDAG
&DAG
,
5806 const ARMSubtarget
*ST
) {
5808 EVT VT
= N
->getValueType(0);
5809 if (VT
.isVector() && ST
->hasNEON()) {
5811 // Compute the least significant set bit: LSB = X & -X
5812 SDValue X
= N
->getOperand(0);
5813 SDValue NX
= DAG
.getNode(ISD::SUB
, dl
, VT
, getZeroVector(VT
, DAG
, dl
), X
);
5814 SDValue LSB
= DAG
.getNode(ISD::AND
, dl
, VT
, X
, NX
);
5816 EVT ElemTy
= VT
.getVectorElementType();
5818 if (ElemTy
== MVT::i8
) {
5819 // Compute with: cttz(x) = ctpop(lsb - 1)
5820 SDValue One
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5821 DAG
.getTargetConstant(1, dl
, ElemTy
));
5822 SDValue Bits
= DAG
.getNode(ISD::SUB
, dl
, VT
, LSB
, One
);
5823 return DAG
.getNode(ISD::CTPOP
, dl
, VT
, Bits
);
5826 if ((ElemTy
== MVT::i16
|| ElemTy
== MVT::i32
) &&
5827 (N
->getOpcode() == ISD::CTTZ_ZERO_UNDEF
)) {
5828 // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
5829 unsigned NumBits
= ElemTy
.getSizeInBits();
5830 SDValue WidthMinus1
=
5831 DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5832 DAG
.getTargetConstant(NumBits
- 1, dl
, ElemTy
));
5833 SDValue CTLZ
= DAG
.getNode(ISD::CTLZ
, dl
, VT
, LSB
);
5834 return DAG
.getNode(ISD::SUB
, dl
, VT
, WidthMinus1
, CTLZ
);
5837 // Compute with: cttz(x) = ctpop(lsb - 1)
5841 if (ElemTy
== MVT::i64
) {
5842 // Load constant 0xffff'ffff'ffff'ffff to register.
5843 SDValue FF
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5844 DAG
.getTargetConstant(0x1eff, dl
, MVT::i32
));
5845 Bits
= DAG
.getNode(ISD::ADD
, dl
, VT
, LSB
, FF
);
5847 SDValue One
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5848 DAG
.getTargetConstant(1, dl
, ElemTy
));
5849 Bits
= DAG
.getNode(ISD::SUB
, dl
, VT
, LSB
, One
);
5851 return DAG
.getNode(ISD::CTPOP
, dl
, VT
, Bits
);
5854 if (!ST
->hasV6T2Ops())
5857 SDValue rbit
= DAG
.getNode(ISD::BITREVERSE
, dl
, VT
, N
->getOperand(0));
5858 return DAG
.getNode(ISD::CTLZ
, dl
, VT
, rbit
);
5861 static SDValue
LowerCTPOP(SDNode
*N
, SelectionDAG
&DAG
,
5862 const ARMSubtarget
*ST
) {
5863 EVT VT
= N
->getValueType(0);
5866 assert(ST
->hasNEON() && "Custom ctpop lowering requires NEON.");
5867 assert((VT
== MVT::v1i64
|| VT
== MVT::v2i64
|| VT
== MVT::v2i32
||
5868 VT
== MVT::v4i32
|| VT
== MVT::v4i16
|| VT
== MVT::v8i16
) &&
5869 "Unexpected type for custom ctpop lowering");
5871 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5872 EVT VT8Bit
= VT
.is64BitVector() ? MVT::v8i8
: MVT::v16i8
;
5873 SDValue Res
= DAG
.getBitcast(VT8Bit
, N
->getOperand(0));
5874 Res
= DAG
.getNode(ISD::CTPOP
, DL
, VT8Bit
, Res
);
5876 // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
5877 unsigned EltSize
= 8;
5878 unsigned NumElts
= VT
.is64BitVector() ? 8 : 16;
5879 while (EltSize
!= VT
.getScalarSizeInBits()) {
5880 SmallVector
<SDValue
, 8> Ops
;
5881 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpaddlu
, DL
,
5882 TLI
.getPointerTy(DAG
.getDataLayout())));
5887 MVT WidenVT
= MVT::getVectorVT(MVT::getIntegerVT(EltSize
), NumElts
);
5888 Res
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, WidenVT
, Ops
);
5894 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
5895 /// operand of a vector shift operation, where all the elements of the
5896 /// build_vector must have the same constant integer value.
5897 static bool getVShiftImm(SDValue Op
, unsigned ElementBits
, int64_t &Cnt
) {
5898 // Ignore bit_converts.
5899 while (Op
.getOpcode() == ISD::BITCAST
)
5900 Op
= Op
.getOperand(0);
5901 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(Op
.getNode());
5902 APInt SplatBits
, SplatUndef
;
5903 unsigned SplatBitSize
;
5906 !BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
,
5908 SplatBitSize
> ElementBits
)
5910 Cnt
= SplatBits
.getSExtValue();
5914 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
5915 /// operand of a vector shift left operation. That value must be in the range:
5916 /// 0 <= Value < ElementBits for a left shift; or
5917 /// 0 <= Value <= ElementBits for a long left shift.
5918 static bool isVShiftLImm(SDValue Op
, EVT VT
, bool isLong
, int64_t &Cnt
) {
5919 assert(VT
.isVector() && "vector shift count is not a vector type");
5920 int64_t ElementBits
= VT
.getScalarSizeInBits();
5921 if (!getVShiftImm(Op
, ElementBits
, Cnt
))
5923 return (Cnt
>= 0 && (isLong
? Cnt
- 1 : Cnt
) < ElementBits
);
5926 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
5927 /// operand of a vector shift right operation. For a shift opcode, the value
5928 /// is positive, but for an intrinsic the value count must be negative. The
5929 /// absolute value must be in the range:
5930 /// 1 <= |Value| <= ElementBits for a right shift; or
5931 /// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
5932 static bool isVShiftRImm(SDValue Op
, EVT VT
, bool isNarrow
, bool isIntrinsic
,
5934 assert(VT
.isVector() && "vector shift count is not a vector type");
5935 int64_t ElementBits
= VT
.getScalarSizeInBits();
5936 if (!getVShiftImm(Op
, ElementBits
, Cnt
))
5939 return (Cnt
>= 1 && Cnt
<= (isNarrow
? ElementBits
/ 2 : ElementBits
));
5940 if (Cnt
>= -(isNarrow
? ElementBits
/ 2 : ElementBits
) && Cnt
<= -1) {
5947 static SDValue
LowerShift(SDNode
*N
, SelectionDAG
&DAG
,
5948 const ARMSubtarget
*ST
) {
5949 EVT VT
= N
->getValueType(0);
5956 // We essentially have two forms here. Shift by an immediate and shift by a
5957 // vector register (there are also shift by a gpr, but that is just handled
5958 // with a tablegen pattern). We cannot easily match shift by an immediate in
5959 // tablegen so we do that here and generate a VSHLIMM/VSHRsIMM/VSHRuIMM.
5960 // For shifting by a vector, we don't have VSHR, only VSHL (which can be
5961 // signed or unsigned, and a negative shift indicates a shift right).
5962 if (N
->getOpcode() == ISD::SHL
) {
5963 if (isVShiftLImm(N
->getOperand(1), VT
, false, Cnt
))
5964 return DAG
.getNode(ARMISD::VSHLIMM
, dl
, VT
, N
->getOperand(0),
5965 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
5966 return DAG
.getNode(ARMISD::VSHLu
, dl
, VT
, N
->getOperand(0),
5970 assert((N
->getOpcode() == ISD::SRA
|| N
->getOpcode() == ISD::SRL
) &&
5971 "unexpected vector shift opcode");
5973 if (isVShiftRImm(N
->getOperand(1), VT
, false, false, Cnt
)) {
5974 unsigned VShiftOpc
=
5975 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHRsIMM
: ARMISD::VSHRuIMM
);
5976 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0),
5977 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
5980 // Other right shifts we don't have operations for (we use a shift left by a
5981 // negative number).
5982 EVT ShiftVT
= N
->getOperand(1).getValueType();
5983 SDValue NegatedCount
= DAG
.getNode(
5984 ISD::SUB
, dl
, ShiftVT
, getZeroVector(ShiftVT
, DAG
, dl
), N
->getOperand(1));
5985 unsigned VShiftOpc
=
5986 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHLs
: ARMISD::VSHLu
);
5987 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0), NegatedCount
);
5990 static SDValue
Expand64BitShift(SDNode
*N
, SelectionDAG
&DAG
,
5991 const ARMSubtarget
*ST
) {
5992 EVT VT
= N
->getValueType(0);
5995 // We can get here for a node like i32 = ISD::SHL i32, i64
5999 assert((N
->getOpcode() == ISD::SRL
|| N
->getOpcode() == ISD::SRA
||
6000 N
->getOpcode() == ISD::SHL
) &&
6001 "Unknown shift to lower!");
6003 unsigned ShOpc
= N
->getOpcode();
6004 if (ST
->hasMVEIntegerOps()) {
6005 SDValue ShAmt
= N
->getOperand(1);
6006 unsigned ShPartsOpc
= ARMISD::LSLL
;
6007 ConstantSDNode
*Con
= dyn_cast
<ConstantSDNode
>(ShAmt
);
6009 // If the shift amount is greater than 32 or has a greater bitwidth than 64
6010 // then do the default optimisation
6011 if (ShAmt
->getValueType(0).getSizeInBits() > 64 ||
6012 (Con
&& (Con
->getZExtValue() == 0 || Con
->getZExtValue() >= 32)))
6015 // Extract the lower 32 bits of the shift amount if it's not an i32
6016 if (ShAmt
->getValueType(0) != MVT::i32
)
6017 ShAmt
= DAG
.getZExtOrTrunc(ShAmt
, dl
, MVT::i32
);
6019 if (ShOpc
== ISD::SRL
) {
6021 // There is no t2LSRLr instruction so negate and perform an lsll if the
6022 // shift amount is in a register, emulating a right shift.
6023 ShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
6024 DAG
.getConstant(0, dl
, MVT::i32
), ShAmt
);
6026 // Else generate an lsrl on the immediate shift amount
6027 ShPartsOpc
= ARMISD::LSRL
;
6028 } else if (ShOpc
== ISD::SRA
)
6029 ShPartsOpc
= ARMISD::ASRL
;
6031 // Lower 32 bits of the destination/source
6032 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
6033 DAG
.getConstant(0, dl
, MVT::i32
));
6034 // Upper 32 bits of the destination/source
6035 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
6036 DAG
.getConstant(1, dl
, MVT::i32
));
6038 // Generate the shift operation as computed above
6039 Lo
= DAG
.getNode(ShPartsOpc
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
), Lo
, Hi
,
6041 // The upper 32 bits come from the second return value of lsll
6042 Hi
= SDValue(Lo
.getNode(), 1);
6043 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
6046 // We only lower SRA, SRL of 1 here, all others use generic lowering.
6047 if (!isOneConstant(N
->getOperand(1)) || N
->getOpcode() == ISD::SHL
)
6050 // If we are in thumb mode, we don't have RRX.
6051 if (ST
->isThumb1Only())
6054 // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
6055 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
6056 DAG
.getConstant(0, dl
, MVT::i32
));
6057 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
6058 DAG
.getConstant(1, dl
, MVT::i32
));
6060 // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
6061 // captures the result into a carry flag.
6062 unsigned Opc
= N
->getOpcode() == ISD::SRL
? ARMISD::SRL_FLAG
:ARMISD::SRA_FLAG
;
6063 Hi
= DAG
.getNode(Opc
, dl
, DAG
.getVTList(MVT::i32
, MVT::Glue
), Hi
);
6065 // The low part is an ARMISD::RRX operand, which shifts the carry in.
6066 Lo
= DAG
.getNode(ARMISD::RRX
, dl
, MVT::i32
, Lo
, Hi
.getValue(1));
6068 // Merge the pieces into a single i64 value.
6069 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
6072 static SDValue
LowerVSETCC(SDValue Op
, SelectionDAG
&DAG
,
6073 const ARMSubtarget
*ST
) {
6074 bool Invert
= false;
6076 unsigned Opc
= ARMCC::AL
;
6078 SDValue Op0
= Op
.getOperand(0);
6079 SDValue Op1
= Op
.getOperand(1);
6080 SDValue CC
= Op
.getOperand(2);
6081 EVT VT
= Op
.getValueType();
6082 ISD::CondCode SetCCOpcode
= cast
<CondCodeSDNode
>(CC
)->get();
6087 CmpVT
= Op0
.getValueType().changeVectorElementTypeToInteger();
6089 assert(ST
->hasMVEIntegerOps() &&
6090 "No hardware support for integer vector comparison!");
6092 if (Op
.getValueType().getVectorElementType() != MVT::i1
)
6095 // Make sure we expand floating point setcc to scalar if we do not have
6096 // mve.fp, so that we can handle them from there.
6097 if (Op0
.getValueType().isFloatingPoint() && !ST
->hasMVEFloatOps())
6103 if (Op0
.getValueType().getVectorElementType() == MVT::i64
&&
6104 (SetCCOpcode
== ISD::SETEQ
|| SetCCOpcode
== ISD::SETNE
)) {
6105 // Special-case integer 64-bit equality comparisons. They aren't legal,
6106 // but they can be lowered with a few vector instructions.
6107 unsigned CmpElements
= CmpVT
.getVectorNumElements() * 2;
6108 EVT SplitVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::i32
, CmpElements
);
6109 SDValue CastOp0
= DAG
.getNode(ISD::BITCAST
, dl
, SplitVT
, Op0
);
6110 SDValue CastOp1
= DAG
.getNode(ISD::BITCAST
, dl
, SplitVT
, Op1
);
6111 SDValue Cmp
= DAG
.getNode(ISD::SETCC
, dl
, SplitVT
, CastOp0
, CastOp1
,
6112 DAG
.getCondCode(ISD::SETEQ
));
6113 SDValue Reversed
= DAG
.getNode(ARMISD::VREV64
, dl
, SplitVT
, Cmp
);
6114 SDValue Merged
= DAG
.getNode(ISD::AND
, dl
, SplitVT
, Cmp
, Reversed
);
6115 Merged
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, Merged
);
6116 if (SetCCOpcode
== ISD::SETNE
)
6117 Merged
= DAG
.getNOT(dl
, Merged
, CmpVT
);
6118 Merged
= DAG
.getSExtOrTrunc(Merged
, dl
, VT
);
6122 if (CmpVT
.getVectorElementType() == MVT::i64
)
6123 // 64-bit comparisons are not legal in general.
6126 if (Op1
.getValueType().isFloatingPoint()) {
6127 switch (SetCCOpcode
) {
6128 default: llvm_unreachable("Illegal FP comparison");
6131 if (ST
->hasMVEFloatOps()) {
6132 Opc
= ARMCC::NE
; break;
6134 Invert
= true; LLVM_FALLTHROUGH
;
6137 case ISD::SETEQ
: Opc
= ARMCC::EQ
; break;
6139 case ISD::SETLT
: Swap
= true; LLVM_FALLTHROUGH
;
6141 case ISD::SETGT
: Opc
= ARMCC::GT
; break;
6143 case ISD::SETLE
: Swap
= true; LLVM_FALLTHROUGH
;
6145 case ISD::SETGE
: Opc
= ARMCC::GE
; break;
6146 case ISD::SETUGE
: Swap
= true; LLVM_FALLTHROUGH
;
6147 case ISD::SETULE
: Invert
= true; Opc
= ARMCC::GT
; break;
6148 case ISD::SETUGT
: Swap
= true; LLVM_FALLTHROUGH
;
6149 case ISD::SETULT
: Invert
= true; Opc
= ARMCC::GE
; break;
6150 case ISD::SETUEQ
: Invert
= true; LLVM_FALLTHROUGH
;
6152 // Expand this to (OLT | OGT).
6153 SDValue TmpOp0
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op1
, Op0
,
6154 DAG
.getConstant(ARMCC::GT
, dl
, MVT::i32
));
6155 SDValue TmpOp1
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op0
, Op1
,
6156 DAG
.getConstant(ARMCC::GT
, dl
, MVT::i32
));
6157 SDValue Result
= DAG
.getNode(ISD::OR
, dl
, CmpVT
, TmpOp0
, TmpOp1
);
6159 Result
= DAG
.getNOT(dl
, Result
, VT
);
6162 case ISD::SETUO
: Invert
= true; LLVM_FALLTHROUGH
;
6164 // Expand this to (OLT | OGE).
6165 SDValue TmpOp0
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op1
, Op0
,
6166 DAG
.getConstant(ARMCC::GT
, dl
, MVT::i32
));
6167 SDValue TmpOp1
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op0
, Op1
,
6168 DAG
.getConstant(ARMCC::GE
, dl
, MVT::i32
));
6169 SDValue Result
= DAG
.getNode(ISD::OR
, dl
, CmpVT
, TmpOp0
, TmpOp1
);
6171 Result
= DAG
.getNOT(dl
, Result
, VT
);
6176 // Integer comparisons.
6177 switch (SetCCOpcode
) {
6178 default: llvm_unreachable("Illegal integer comparison");
6180 if (ST
->hasMVEIntegerOps()) {
6181 Opc
= ARMCC::NE
; break;
6183 Invert
= true; LLVM_FALLTHROUGH
;
6185 case ISD::SETEQ
: Opc
= ARMCC::EQ
; break;
6186 case ISD::SETLT
: Swap
= true; LLVM_FALLTHROUGH
;
6187 case ISD::SETGT
: Opc
= ARMCC::GT
; break;
6188 case ISD::SETLE
: Swap
= true; LLVM_FALLTHROUGH
;
6189 case ISD::SETGE
: Opc
= ARMCC::GE
; break;
6190 case ISD::SETULT
: Swap
= true; LLVM_FALLTHROUGH
;
6191 case ISD::SETUGT
: Opc
= ARMCC::HI
; break;
6192 case ISD::SETULE
: Swap
= true; LLVM_FALLTHROUGH
;
6193 case ISD::SETUGE
: Opc
= ARMCC::HS
; break;
6196 // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
6197 if (ST
->hasNEON() && Opc
== ARMCC::EQ
) {
6199 if (ISD::isBuildVectorAllZeros(Op1
.getNode()))
6201 else if (ISD::isBuildVectorAllZeros(Op0
.getNode()))
6204 // Ignore bitconvert.
6205 if (AndOp
.getNode() && AndOp
.getOpcode() == ISD::BITCAST
)
6206 AndOp
= AndOp
.getOperand(0);
6208 if (AndOp
.getNode() && AndOp
.getOpcode() == ISD::AND
) {
6209 Op0
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, AndOp
.getOperand(0));
6210 Op1
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, AndOp
.getOperand(1));
6211 SDValue Result
= DAG
.getNode(ARMISD::VTST
, dl
, CmpVT
, Op0
, Op1
);
6213 Result
= DAG
.getNOT(dl
, Result
, VT
);
6220 std::swap(Op0
, Op1
);
6222 // If one of the operands is a constant vector zero, attempt to fold the
6223 // comparison to a specialized compare-against-zero form.
6225 if (ISD::isBuildVectorAllZeros(Op1
.getNode()))
6227 else if (ISD::isBuildVectorAllZeros(Op0
.getNode())) {
6228 if (Opc
== ARMCC::GE
)
6230 else if (Opc
== ARMCC::GT
)
6236 if (SingleOp
.getNode()) {
6237 Result
= DAG
.getNode(ARMISD::VCMPZ
, dl
, CmpVT
, SingleOp
,
6238 DAG
.getConstant(Opc
, dl
, MVT::i32
));
6240 Result
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op0
, Op1
,
6241 DAG
.getConstant(Opc
, dl
, MVT::i32
));
6244 Result
= DAG
.getSExtOrTrunc(Result
, dl
, VT
);
6247 Result
= DAG
.getNOT(dl
, Result
, VT
);
6252 static SDValue
LowerSETCCCARRY(SDValue Op
, SelectionDAG
&DAG
) {
6253 SDValue LHS
= Op
.getOperand(0);
6254 SDValue RHS
= Op
.getOperand(1);
6255 SDValue Carry
= Op
.getOperand(2);
6256 SDValue Cond
= Op
.getOperand(3);
6259 assert(LHS
.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
6261 // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
6262 // have to invert the carry first.
6263 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
6264 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
6265 // This converts the boolean value carry into the carry flag.
6266 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
6268 SDVTList VTs
= DAG
.getVTList(LHS
.getValueType(), MVT::i32
);
6269 SDValue Cmp
= DAG
.getNode(ARMISD::SUBE
, DL
, VTs
, LHS
, RHS
, Carry
);
6271 SDValue FVal
= DAG
.getConstant(0, DL
, MVT::i32
);
6272 SDValue TVal
= DAG
.getConstant(1, DL
, MVT::i32
);
6273 SDValue ARMcc
= DAG
.getConstant(
6274 IntCCToARMCC(cast
<CondCodeSDNode
>(Cond
)->get()), DL
, MVT::i32
);
6275 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
6276 SDValue Chain
= DAG
.getCopyToReg(DAG
.getEntryNode(), DL
, ARM::CPSR
,
6277 Cmp
.getValue(1), SDValue());
6278 return DAG
.getNode(ARMISD::CMOV
, DL
, Op
.getValueType(), FVal
, TVal
, ARMcc
,
6279 CCR
, Chain
.getValue(1));
6282 /// isVMOVModifiedImm - Check if the specified splat value corresponds to a
6283 /// valid vector constant for a NEON or MVE instruction with a "modified
6284 /// immediate" operand (e.g., VMOV). If so, return the encoded value.
6285 static SDValue
isVMOVModifiedImm(uint64_t SplatBits
, uint64_t SplatUndef
,
6286 unsigned SplatBitSize
, SelectionDAG
&DAG
,
6287 const SDLoc
&dl
, EVT
&VT
, bool is128Bits
,
6288 VMOVModImmType type
) {
6289 unsigned OpCmode
, Imm
;
6291 // SplatBitSize is set to the smallest size that splats the vector, so a
6292 // zero vector will always have SplatBitSize == 8. However, NEON modified
6293 // immediate instructions others than VMOV do not support the 8-bit encoding
6294 // of a zero vector, and the default encoding of zero is supposed to be the
6299 switch (SplatBitSize
) {
6301 if (type
!= VMOVModImm
)
6303 // Any 1-byte value is OK. Op=0, Cmode=1110.
6304 assert((SplatBits
& ~0xff) == 0 && "one byte splat value is too big");
6307 VT
= is128Bits
? MVT::v16i8
: MVT::v8i8
;
6311 // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
6312 VT
= is128Bits
? MVT::v8i16
: MVT::v4i16
;
6313 if ((SplatBits
& ~0xff) == 0) {
6314 // Value = 0x00nn: Op=x, Cmode=100x.
6319 if ((SplatBits
& ~0xff00) == 0) {
6320 // Value = 0xnn00: Op=x, Cmode=101x.
6322 Imm
= SplatBits
>> 8;
6328 // NEON's 32-bit VMOV supports splat values where:
6329 // * only one byte is nonzero, or
6330 // * the least significant byte is 0xff and the second byte is nonzero, or
6331 // * the least significant 2 bytes are 0xff and the third is nonzero.
6332 VT
= is128Bits
? MVT::v4i32
: MVT::v2i32
;
6333 if ((SplatBits
& ~0xff) == 0) {
6334 // Value = 0x000000nn: Op=x, Cmode=000x.
6339 if ((SplatBits
& ~0xff00) == 0) {
6340 // Value = 0x0000nn00: Op=x, Cmode=001x.
6342 Imm
= SplatBits
>> 8;
6345 if ((SplatBits
& ~0xff0000) == 0) {
6346 // Value = 0x00nn0000: Op=x, Cmode=010x.
6348 Imm
= SplatBits
>> 16;
6351 if ((SplatBits
& ~0xff000000) == 0) {
6352 // Value = 0xnn000000: Op=x, Cmode=011x.
6354 Imm
= SplatBits
>> 24;
6358 // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
6359 if (type
== OtherModImm
) return SDValue();
6361 if ((SplatBits
& ~0xffff) == 0 &&
6362 ((SplatBits
| SplatUndef
) & 0xff) == 0xff) {
6363 // Value = 0x0000nnff: Op=x, Cmode=1100.
6365 Imm
= SplatBits
>> 8;
6369 // cmode == 0b1101 is not supported for MVE VMVN
6370 if (type
== MVEVMVNModImm
)
6373 if ((SplatBits
& ~0xffffff) == 0 &&
6374 ((SplatBits
| SplatUndef
) & 0xffff) == 0xffff) {
6375 // Value = 0x00nnffff: Op=x, Cmode=1101.
6377 Imm
= SplatBits
>> 16;
6381 // Note: there are a few 32-bit splat values (specifically: 00ffff00,
6382 // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
6383 // VMOV.I32. A (very) minor optimization would be to replicate the value
6384 // and fall through here to test for a valid 64-bit splat. But, then the
6385 // caller would also need to check and handle the change in size.
6389 if (type
!= VMOVModImm
)
6391 // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
6392 uint64_t BitMask
= 0xff;
6394 unsigned ImmMask
= 1;
6396 for (int ByteNum
= 0; ByteNum
< 8; ++ByteNum
) {
6397 if (((SplatBits
| SplatUndef
) & BitMask
) == BitMask
) {
6400 } else if ((SplatBits
& BitMask
) != 0) {
6407 if (DAG
.getDataLayout().isBigEndian())
6408 // swap higher and lower 32 bit word
6409 Imm
= ((Imm
& 0xf) << 4) | ((Imm
& 0xf0) >> 4);
6411 // Op=1, Cmode=1110.
6413 VT
= is128Bits
? MVT::v2i64
: MVT::v1i64
;
6418 llvm_unreachable("unexpected size for isVMOVModifiedImm");
6421 unsigned EncodedVal
= ARM_AM::createVMOVModImm(OpCmode
, Imm
);
6422 return DAG
.getTargetConstant(EncodedVal
, dl
, MVT::i32
);
6425 SDValue
ARMTargetLowering::LowerConstantFP(SDValue Op
, SelectionDAG
&DAG
,
6426 const ARMSubtarget
*ST
) const {
6427 EVT VT
= Op
.getValueType();
6428 bool IsDouble
= (VT
== MVT::f64
);
6429 ConstantFPSDNode
*CFP
= cast
<ConstantFPSDNode
>(Op
);
6430 const APFloat
&FPVal
= CFP
->getValueAPF();
6432 // Prevent floating-point constants from using literal loads
6433 // when execute-only is enabled.
6434 if (ST
->genExecuteOnly()) {
6435 // If we can represent the constant as an immediate, don't lower it
6436 if (isFPImmLegal(FPVal
, VT
))
6438 // Otherwise, construct as integer, and move to float register
6439 APInt INTVal
= FPVal
.bitcastToAPInt();
6441 switch (VT
.getSimpleVT().SimpleTy
) {
6443 llvm_unreachable("Unknown floating point type!");
6446 SDValue Lo
= DAG
.getConstant(INTVal
.trunc(32), DL
, MVT::i32
);
6447 SDValue Hi
= DAG
.getConstant(INTVal
.lshr(32).trunc(32), DL
, MVT::i32
);
6448 if (!ST
->isLittle())
6450 return DAG
.getNode(ARMISD::VMOVDRR
, DL
, MVT::f64
, Lo
, Hi
);
6453 return DAG
.getNode(ARMISD::VMOVSR
, DL
, VT
,
6454 DAG
.getConstant(INTVal
, DL
, MVT::i32
));
6458 if (!ST
->hasVFP3Base())
6461 // Use the default (constant pool) lowering for double constants when we have
6463 if (IsDouble
&& !Subtarget
->hasFP64())
6466 // Try splatting with a VMOV.f32...
6467 int ImmVal
= IsDouble
? ARM_AM::getFP64Imm(FPVal
) : ARM_AM::getFP32Imm(FPVal
);
6470 if (IsDouble
|| !ST
->useNEONForSinglePrecisionFP()) {
6471 // We have code in place to select a valid ConstantFP already, no need to
6476 // It's a float and we are trying to use NEON operations where
6477 // possible. Lower it to a splat followed by an extract.
6479 SDValue NewVal
= DAG
.getTargetConstant(ImmVal
, DL
, MVT::i32
);
6480 SDValue VecConstant
= DAG
.getNode(ARMISD::VMOVFPIMM
, DL
, MVT::v2f32
,
6482 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecConstant
,
6483 DAG
.getConstant(0, DL
, MVT::i32
));
6486 // The rest of our options are NEON only, make sure that's allowed before
6488 if (!ST
->hasNEON() || (!IsDouble
&& !ST
->useNEONForSinglePrecisionFP()))
6492 uint64_t iVal
= FPVal
.bitcastToAPInt().getZExtValue();
6494 // It wouldn't really be worth bothering for doubles except for one very
6495 // important value, which does happen to match: 0.0. So make sure we don't do
6497 if (IsDouble
&& (iVal
& 0xffffffff) != (iVal
>> 32))
6500 // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
6501 SDValue NewVal
= isVMOVModifiedImm(iVal
& 0xffffffffU
, 0, 32, DAG
, SDLoc(Op
),
6502 VMovVT
, false, VMOVModImm
);
6503 if (NewVal
!= SDValue()) {
6505 SDValue VecConstant
= DAG
.getNode(ARMISD::VMOVIMM
, DL
, VMovVT
,
6508 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f64
, VecConstant
);
6510 // It's a float: cast and extract a vector element.
6511 SDValue VecFConstant
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v2f32
,
6513 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecFConstant
,
6514 DAG
.getConstant(0, DL
, MVT::i32
));
6517 // Finally, try a VMVN.i32
6518 NewVal
= isVMOVModifiedImm(~iVal
& 0xffffffffU
, 0, 32, DAG
, SDLoc(Op
), VMovVT
,
6520 if (NewVal
!= SDValue()) {
6522 SDValue VecConstant
= DAG
.getNode(ARMISD::VMVNIMM
, DL
, VMovVT
, NewVal
);
6525 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f64
, VecConstant
);
6527 // It's a float: cast and extract a vector element.
6528 SDValue VecFConstant
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v2f32
,
6530 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecFConstant
,
6531 DAG
.getConstant(0, DL
, MVT::i32
));
6537 // check if an VEXT instruction can handle the shuffle mask when the
6538 // vector sources of the shuffle are the same.
6539 static bool isSingletonVEXTMask(ArrayRef
<int> M
, EVT VT
, unsigned &Imm
) {
6540 unsigned NumElts
= VT
.getVectorNumElements();
6542 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6548 // If this is a VEXT shuffle, the immediate value is the index of the first
6549 // element. The other shuffle indices must be the successive elements after
6551 unsigned ExpectedElt
= Imm
;
6552 for (unsigned i
= 1; i
< NumElts
; ++i
) {
6553 // Increment the expected index. If it wraps around, just follow it
6554 // back to index zero and keep going.
6556 if (ExpectedElt
== NumElts
)
6559 if (M
[i
] < 0) continue; // ignore UNDEF indices
6560 if (ExpectedElt
!= static_cast<unsigned>(M
[i
]))
6567 static bool isVEXTMask(ArrayRef
<int> M
, EVT VT
,
6568 bool &ReverseVEXT
, unsigned &Imm
) {
6569 unsigned NumElts
= VT
.getVectorNumElements();
6570 ReverseVEXT
= false;
6572 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6578 // If this is a VEXT shuffle, the immediate value is the index of the first
6579 // element. The other shuffle indices must be the successive elements after
6581 unsigned ExpectedElt
= Imm
;
6582 for (unsigned i
= 1; i
< NumElts
; ++i
) {
6583 // Increment the expected index. If it wraps around, it may still be
6584 // a VEXT but the source vectors must be swapped.
6586 if (ExpectedElt
== NumElts
* 2) {
6591 if (M
[i
] < 0) continue; // ignore UNDEF indices
6592 if (ExpectedElt
!= static_cast<unsigned>(M
[i
]))
6596 // Adjust the index value if the source operands will be swapped.
6603 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
6604 /// instruction with the specified blocksize. (The order of the elements
6605 /// within each block of the vector is reversed.)
6606 static bool isVREVMask(ArrayRef
<int> M
, EVT VT
, unsigned BlockSize
) {
6607 assert((BlockSize
==16 || BlockSize
==32 || BlockSize
==64) &&
6608 "Only possible block sizes for VREV are: 16, 32, 64");
6610 unsigned EltSz
= VT
.getScalarSizeInBits();
6614 unsigned NumElts
= VT
.getVectorNumElements();
6615 unsigned BlockElts
= M
[0] + 1;
6616 // If the first shuffle index is UNDEF, be optimistic.
6618 BlockElts
= BlockSize
/ EltSz
;
6620 if (BlockSize
<= EltSz
|| BlockSize
!= BlockElts
* EltSz
)
6623 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6624 if (M
[i
] < 0) continue; // ignore UNDEF indices
6625 if ((unsigned) M
[i
] != (i
- i
%BlockElts
) + (BlockElts
- 1 - i
%BlockElts
))
6632 static bool isVTBLMask(ArrayRef
<int> M
, EVT VT
) {
6633 // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
6634 // range, then 0 is placed into the resulting vector. So pretty much any mask
6635 // of 8 elements can work here.
6636 return VT
== MVT::v8i8
&& M
.size() == 8;
6639 static unsigned SelectPairHalf(unsigned Elements
, ArrayRef
<int> Mask
,
6641 if (Mask
.size() == Elements
* 2)
6642 return Index
/ Elements
;
6643 return Mask
[Index
] == 0 ? 0 : 1;
6646 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
6647 // checking that pairs of elements in the shuffle mask represent the same index
6648 // in each vector, incrementing the expected index by 2 at each step.
6649 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
6650 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
6652 // WhichResult gives the offset for each element in the mask based on which
6653 // of the two results it belongs to.
6655 // The transpose can be represented either as:
6656 // result1 = shufflevector v1, v2, result1_shuffle_mask
6657 // result2 = shufflevector v1, v2, result2_shuffle_mask
6658 // where v1/v2 and the shuffle masks have the same number of elements
6659 // (here WhichResult (see below) indicates which result is being checked)
6662 // results = shufflevector v1, v2, shuffle_mask
6663 // where both results are returned in one vector and the shuffle mask has twice
6664 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
6665 // want to check the low half and high half of the shuffle mask as if it were
6667 static bool isVTRNMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6668 unsigned EltSz
= VT
.getScalarSizeInBits();
6672 unsigned NumElts
= VT
.getVectorNumElements();
6673 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6676 // If the mask is twice as long as the input vector then we need to check the
6677 // upper and lower parts of the mask with a matching value for WhichResult
6678 // FIXME: A mask with only even values will be rejected in case the first
6679 // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
6680 // M[0] is used to determine WhichResult
6681 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6682 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6683 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6684 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != j
+ WhichResult
) ||
6685 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != j
+ NumElts
+ WhichResult
))
6690 if (M
.size() == NumElts
*2)
6696 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
6697 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6698 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
6699 static bool isVTRN_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6700 unsigned EltSz
= VT
.getScalarSizeInBits();
6704 unsigned NumElts
= VT
.getVectorNumElements();
6705 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6708 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6709 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6710 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6711 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != j
+ WhichResult
) ||
6712 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != j
+ WhichResult
))
6717 if (M
.size() == NumElts
*2)
6723 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
6724 // that the mask elements are either all even and in steps of size 2 or all odd
6725 // and in steps of size 2.
6726 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
6727 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
6729 // Requires similar checks to that of isVTRNMask with
6730 // respect the how results are returned.
6731 static bool isVUZPMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6732 unsigned EltSz
= VT
.getScalarSizeInBits();
6736 unsigned NumElts
= VT
.getVectorNumElements();
6737 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6740 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6741 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6742 for (unsigned j
= 0; j
< NumElts
; ++j
) {
6743 if (M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != 2 * j
+ WhichResult
)
6748 if (M
.size() == NumElts
*2)
6751 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6752 if (VT
.is64BitVector() && EltSz
== 32)
6758 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
6759 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6760 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
6761 static bool isVUZP_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6762 unsigned EltSz
= VT
.getScalarSizeInBits();
6766 unsigned NumElts
= VT
.getVectorNumElements();
6767 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6770 unsigned Half
= NumElts
/ 2;
6771 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6772 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6773 for (unsigned j
= 0; j
< NumElts
; j
+= Half
) {
6774 unsigned Idx
= WhichResult
;
6775 for (unsigned k
= 0; k
< Half
; ++k
) {
6776 int MIdx
= M
[i
+ j
+ k
];
6777 if (MIdx
>= 0 && (unsigned) MIdx
!= Idx
)
6784 if (M
.size() == NumElts
*2)
6787 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6788 if (VT
.is64BitVector() && EltSz
== 32)
6794 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
6795 // that pairs of elements of the shufflemask represent the same index in each
6796 // vector incrementing sequentially through the vectors.
6797 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
6798 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
6800 // Requires similar checks to that of isVTRNMask with respect the how results
6802 static bool isVZIPMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6803 unsigned EltSz
= VT
.getScalarSizeInBits();
6807 unsigned NumElts
= VT
.getVectorNumElements();
6808 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6811 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6812 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6813 unsigned Idx
= WhichResult
* NumElts
/ 2;
6814 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6815 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != Idx
) ||
6816 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != Idx
+ NumElts
))
6822 if (M
.size() == NumElts
*2)
6825 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6826 if (VT
.is64BitVector() && EltSz
== 32)
6832 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
6833 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6834 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
6835 static bool isVZIP_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6836 unsigned EltSz
= VT
.getScalarSizeInBits();
6840 unsigned NumElts
= VT
.getVectorNumElements();
6841 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6844 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6845 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6846 unsigned Idx
= WhichResult
* NumElts
/ 2;
6847 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6848 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != Idx
) ||
6849 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != Idx
))
6855 if (M
.size() == NumElts
*2)
6858 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6859 if (VT
.is64BitVector() && EltSz
== 32)
6865 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
6866 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
6867 static unsigned isNEONTwoResultShuffleMask(ArrayRef
<int> ShuffleMask
, EVT VT
,
6868 unsigned &WhichResult
,
6871 if (isVTRNMask(ShuffleMask
, VT
, WhichResult
))
6872 return ARMISD::VTRN
;
6873 if (isVUZPMask(ShuffleMask
, VT
, WhichResult
))
6874 return ARMISD::VUZP
;
6875 if (isVZIPMask(ShuffleMask
, VT
, WhichResult
))
6876 return ARMISD::VZIP
;
6879 if (isVTRN_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6880 return ARMISD::VTRN
;
6881 if (isVUZP_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6882 return ARMISD::VUZP
;
6883 if (isVZIP_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6884 return ARMISD::VZIP
;
6889 /// \return true if this is a reverse operation on an vector.
6890 static bool isReverseMask(ArrayRef
<int> M
, EVT VT
) {
6891 unsigned NumElts
= VT
.getVectorNumElements();
6892 // Make sure the mask has the right size.
6893 if (NumElts
!= M
.size())
6896 // Look for <15, ..., 3, -1, 1, 0>.
6897 for (unsigned i
= 0; i
!= NumElts
; ++i
)
6898 if (M
[i
] >= 0 && M
[i
] != (int) (NumElts
- 1 - i
))
6904 // If N is an integer constant that can be moved into a register in one
6905 // instruction, return an SDValue of such a constant (will become a MOV
6906 // instruction). Otherwise return null.
6907 static SDValue
IsSingleInstrConstant(SDValue N
, SelectionDAG
&DAG
,
6908 const ARMSubtarget
*ST
, const SDLoc
&dl
) {
6910 if (!isa
<ConstantSDNode
>(N
))
6912 Val
= cast
<ConstantSDNode
>(N
)->getZExtValue();
6914 if (ST
->isThumb1Only()) {
6915 if (Val
<= 255 || ~Val
<= 255)
6916 return DAG
.getConstant(Val
, dl
, MVT::i32
);
6918 if (ARM_AM::getSOImmVal(Val
) != -1 || ARM_AM::getSOImmVal(~Val
) != -1)
6919 return DAG
.getConstant(Val
, dl
, MVT::i32
);
6924 static SDValue
LowerBUILD_VECTOR_i1(SDValue Op
, SelectionDAG
&DAG
,
6925 const ARMSubtarget
*ST
) {
6927 EVT VT
= Op
.getValueType();
6929 assert(ST
->hasMVEIntegerOps() && "LowerBUILD_VECTOR_i1 called without MVE!");
6931 unsigned NumElts
= VT
.getVectorNumElements();
6933 unsigned BitsPerBool
;
6937 } else if (NumElts
== 8) {
6940 } else if (NumElts
== 16) {
6946 // If this is a single value copied into all lanes (a splat), we can just sign
6947 // extend that single value
6948 SDValue FirstOp
= Op
.getOperand(0);
6949 if (!isa
<ConstantSDNode
>(FirstOp
) &&
6950 std::all_of(std::next(Op
->op_begin()), Op
->op_end(),
6951 [&FirstOp
](SDUse
&U
) {
6952 return U
.get().isUndef() || U
.get() == FirstOp
;
6954 SDValue Ext
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, MVT::i32
, FirstOp
,
6955 DAG
.getValueType(MVT::i1
));
6956 return DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, Op
.getValueType(), Ext
);
6959 // First create base with bits set where known
6960 unsigned Bits32
= 0;
6961 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6962 SDValue V
= Op
.getOperand(i
);
6963 if (!isa
<ConstantSDNode
>(V
) && !V
.isUndef())
6965 bool BitSet
= V
.isUndef() ? false : cast
<ConstantSDNode
>(V
)->getZExtValue();
6967 Bits32
|= BoolMask
<< (i
* BitsPerBool
);
6970 // Add in unknown nodes
6971 SDValue Base
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, VT
,
6972 DAG
.getConstant(Bits32
, dl
, MVT::i32
));
6973 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6974 SDValue V
= Op
.getOperand(i
);
6975 if (isa
<ConstantSDNode
>(V
) || V
.isUndef())
6977 Base
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Base
, V
,
6978 DAG
.getConstant(i
, dl
, MVT::i32
));
6984 // If this is a case we can't handle, return null and let the default
6985 // expansion code take care of it.
6986 SDValue
ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
,
6987 const ARMSubtarget
*ST
) const {
6988 BuildVectorSDNode
*BVN
= cast
<BuildVectorSDNode
>(Op
.getNode());
6990 EVT VT
= Op
.getValueType();
6992 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
6993 return LowerBUILD_VECTOR_i1(Op
, DAG
, ST
);
6995 APInt SplatBits
, SplatUndef
;
6996 unsigned SplatBitSize
;
6998 if (BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
6999 if (SplatUndef
.isAllOnesValue())
7000 return DAG
.getUNDEF(VT
);
7002 if ((ST
->hasNEON() && SplatBitSize
<= 64) ||
7003 (ST
->hasMVEIntegerOps() && SplatBitSize
<= 32)) {
7004 // Check if an immediate VMOV works.
7006 SDValue Val
= isVMOVModifiedImm(SplatBits
.getZExtValue(),
7007 SplatUndef
.getZExtValue(), SplatBitSize
,
7008 DAG
, dl
, VmovVT
, VT
.is128BitVector(),
7011 if (Val
.getNode()) {
7012 SDValue Vmov
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VmovVT
, Val
);
7013 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
7016 // Try an immediate VMVN.
7017 uint64_t NegatedImm
= (~SplatBits
).getZExtValue();
7018 Val
= isVMOVModifiedImm(
7019 NegatedImm
, SplatUndef
.getZExtValue(), SplatBitSize
,
7020 DAG
, dl
, VmovVT
, VT
.is128BitVector(),
7021 ST
->hasMVEIntegerOps() ? MVEVMVNModImm
: VMVNModImm
);
7022 if (Val
.getNode()) {
7023 SDValue Vmov
= DAG
.getNode(ARMISD::VMVNIMM
, dl
, VmovVT
, Val
);
7024 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
7027 // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
7028 if ((VT
== MVT::v2f32
|| VT
== MVT::v4f32
) && SplatBitSize
== 32) {
7029 int ImmVal
= ARM_AM::getFP32Imm(SplatBits
);
7031 SDValue Val
= DAG
.getTargetConstant(ImmVal
, dl
, MVT::i32
);
7032 return DAG
.getNode(ARMISD::VMOVFPIMM
, dl
, VT
, Val
);
7038 // Scan through the operands to see if only one value is used.
7040 // As an optimisation, even if more than one value is used it may be more
7041 // profitable to splat with one value then change some lanes.
7043 // Heuristically we decide to do this if the vector has a "dominant" value,
7044 // defined as splatted to more than half of the lanes.
7045 unsigned NumElts
= VT
.getVectorNumElements();
7046 bool isOnlyLowElement
= true;
7047 bool usesOnlyOneValue
= true;
7048 bool hasDominantValue
= false;
7049 bool isConstant
= true;
7051 // Map of the number of times a particular SDValue appears in the
7053 DenseMap
<SDValue
, unsigned> ValueCounts
;
7055 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7056 SDValue V
= Op
.getOperand(i
);
7060 isOnlyLowElement
= false;
7061 if (!isa
<ConstantFPSDNode
>(V
) && !isa
<ConstantSDNode
>(V
))
7064 ValueCounts
.insert(std::make_pair(V
, 0));
7065 unsigned &Count
= ValueCounts
[V
];
7067 // Is this value dominant? (takes up more than half of the lanes)
7068 if (++Count
> (NumElts
/ 2)) {
7069 hasDominantValue
= true;
7073 if (ValueCounts
.size() != 1)
7074 usesOnlyOneValue
= false;
7075 if (!Value
.getNode() && !ValueCounts
.empty())
7076 Value
= ValueCounts
.begin()->first
;
7078 if (ValueCounts
.empty())
7079 return DAG
.getUNDEF(VT
);
7081 // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
7082 // Keep going if we are hitting this case.
7083 if (isOnlyLowElement
&& !ISD::isNormalLoad(Value
.getNode()))
7084 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Value
);
7086 unsigned EltSize
= VT
.getScalarSizeInBits();
7088 // Use VDUP for non-constant splats. For f32 constant splats, reduce to
7089 // i32 and try again.
7090 if (hasDominantValue
&& EltSize
<= 32) {
7094 // If we are VDUPing a value that comes directly from a vector, that will
7095 // cause an unnecessary move to and from a GPR, where instead we could
7096 // just use VDUPLANE. We can only do this if the lane being extracted
7097 // is at a constant index, as the VDUP from lane instructions only have
7098 // constant-index forms.
7099 ConstantSDNode
*constIndex
;
7100 if (Value
->getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
7101 (constIndex
= dyn_cast
<ConstantSDNode
>(Value
->getOperand(1)))) {
7102 // We need to create a new undef vector to use for the VDUPLANE if the
7103 // size of the vector from which we get the value is different than the
7104 // size of the vector that we need to create. We will insert the element
7105 // such that the register coalescer will remove unnecessary copies.
7106 if (VT
!= Value
->getOperand(0).getValueType()) {
7107 unsigned index
= constIndex
->getAPIntValue().getLimitedValue() %
7108 VT
.getVectorNumElements();
7109 N
= DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
7110 DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, DAG
.getUNDEF(VT
),
7111 Value
, DAG
.getConstant(index
, dl
, MVT::i32
)),
7112 DAG
.getConstant(index
, dl
, MVT::i32
));
7114 N
= DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
7115 Value
->getOperand(0), Value
->getOperand(1));
7117 N
= DAG
.getNode(ARMISD::VDUP
, dl
, VT
, Value
);
7119 if (!usesOnlyOneValue
) {
7120 // The dominant value was splatted as 'N', but we now have to insert
7121 // all differing elements.
7122 for (unsigned I
= 0; I
< NumElts
; ++I
) {
7123 if (Op
.getOperand(I
) == Value
)
7125 SmallVector
<SDValue
, 3> Ops
;
7127 Ops
.push_back(Op
.getOperand(I
));
7128 Ops
.push_back(DAG
.getConstant(I
, dl
, MVT::i32
));
7129 N
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Ops
);
7134 if (VT
.getVectorElementType().isFloatingPoint()) {
7135 SmallVector
<SDValue
, 8> Ops
;
7136 MVT FVT
= VT
.getVectorElementType().getSimpleVT();
7137 assert(FVT
== MVT::f32
|| FVT
== MVT::f16
);
7138 MVT IVT
= (FVT
== MVT::f32
) ? MVT::i32
: MVT::i16
;
7139 for (unsigned i
= 0; i
< NumElts
; ++i
)
7140 Ops
.push_back(DAG
.getNode(ISD::BITCAST
, dl
, IVT
,
7142 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), IVT
, NumElts
);
7143 SDValue Val
= DAG
.getBuildVector(VecVT
, dl
, Ops
);
7144 Val
= LowerBUILD_VECTOR(Val
, DAG
, ST
);
7146 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
7148 if (usesOnlyOneValue
) {
7149 SDValue Val
= IsSingleInstrConstant(Value
, DAG
, ST
, dl
);
7150 if (isConstant
&& Val
.getNode())
7151 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, Val
);
7155 // If all elements are constants and the case above didn't get hit, fall back
7156 // to the default expansion, which will generate a load from the constant
7161 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
7163 SDValue shuffle
= ReconstructShuffle(Op
, DAG
);
7164 if (shuffle
!= SDValue())
7168 if (ST
->hasNEON() && VT
.is128BitVector() && VT
!= MVT::v2f64
&& VT
!= MVT::v4f32
) {
7169 // If we haven't found an efficient lowering, try splitting a 128-bit vector
7170 // into two 64-bit vectors; we might discover a better way to lower it.
7171 SmallVector
<SDValue
, 64> Ops(Op
->op_begin(), Op
->op_begin() + NumElts
);
7172 EVT ExtVT
= VT
.getVectorElementType();
7173 EVT HVT
= EVT::getVectorVT(*DAG
.getContext(), ExtVT
, NumElts
/ 2);
7175 DAG
.getBuildVector(HVT
, dl
, makeArrayRef(&Ops
[0], NumElts
/ 2));
7176 if (Lower
.getOpcode() == ISD::BUILD_VECTOR
)
7177 Lower
= LowerBUILD_VECTOR(Lower
, DAG
, ST
);
7178 SDValue Upper
= DAG
.getBuildVector(
7179 HVT
, dl
, makeArrayRef(&Ops
[NumElts
/ 2], NumElts
/ 2));
7180 if (Upper
.getOpcode() == ISD::BUILD_VECTOR
)
7181 Upper
= LowerBUILD_VECTOR(Upper
, DAG
, ST
);
7183 return DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, VT
, Lower
, Upper
);
7186 // Vectors with 32- or 64-bit elements can be built by directly assigning
7187 // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands
7188 // will be legalized.
7189 if (EltSize
>= 32) {
7190 // Do the expansion with floating-point types, since that is what the VFP
7191 // registers are defined to use, and since i64 is not legal.
7192 EVT EltVT
= EVT::getFloatingPointVT(EltSize
);
7193 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElts
);
7194 SmallVector
<SDValue
, 8> Ops
;
7195 for (unsigned i
= 0; i
< NumElts
; ++i
)
7196 Ops
.push_back(DAG
.getNode(ISD::BITCAST
, dl
, EltVT
, Op
.getOperand(i
)));
7197 SDValue Val
= DAG
.getNode(ARMISD::BUILD_VECTOR
, dl
, VecVT
, Ops
);
7198 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
7201 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
7202 // know the default expansion would otherwise fall back on something even
7203 // worse. For a vector with one or two non-undef values, that's
7204 // scalar_to_vector for the elements followed by a shuffle (provided the
7205 // shuffle is valid for the target) and materialization element by element
7206 // on the stack followed by a load for everything else.
7207 if (!isConstant
&& !usesOnlyOneValue
) {
7208 SDValue Vec
= DAG
.getUNDEF(VT
);
7209 for (unsigned i
= 0 ; i
< NumElts
; ++i
) {
7210 SDValue V
= Op
.getOperand(i
);
7213 SDValue LaneIdx
= DAG
.getConstant(i
, dl
, MVT::i32
);
7214 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Vec
, V
, LaneIdx
);
7222 // Gather data to see if the operation can be modelled as a
7223 // shuffle in combination with VEXTs.
7224 SDValue
ARMTargetLowering::ReconstructShuffle(SDValue Op
,
7225 SelectionDAG
&DAG
) const {
7226 assert(Op
.getOpcode() == ISD::BUILD_VECTOR
&& "Unknown opcode!");
7228 EVT VT
= Op
.getValueType();
7229 unsigned NumElts
= VT
.getVectorNumElements();
7231 struct ShuffleSourceInfo
{
7233 unsigned MinElt
= std::numeric_limits
<unsigned>::max();
7234 unsigned MaxElt
= 0;
7236 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
7237 // be compatible with the shuffle we intend to construct. As a result
7238 // ShuffleVec will be some sliding window into the original Vec.
7241 // Code should guarantee that element i in Vec starts at element "WindowBase
7242 // + i * WindowScale in ShuffleVec".
7244 int WindowScale
= 1;
7246 ShuffleSourceInfo(SDValue Vec
) : Vec(Vec
), ShuffleVec(Vec
) {}
7248 bool operator ==(SDValue OtherVec
) { return Vec
== OtherVec
; }
7251 // First gather all vectors used as an immediate source for this BUILD_VECTOR
7253 SmallVector
<ShuffleSourceInfo
, 2> Sources
;
7254 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7255 SDValue V
= Op
.getOperand(i
);
7258 else if (V
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
) {
7259 // A shuffle can only come from building a vector from various
7260 // elements of other vectors.
7262 } else if (!isa
<ConstantSDNode
>(V
.getOperand(1))) {
7263 // Furthermore, shuffles require a constant mask, whereas extractelts
7264 // accept variable indices.
7268 // Add this element source to the list if it's not already there.
7269 SDValue SourceVec
= V
.getOperand(0);
7270 auto Source
= llvm::find(Sources
, SourceVec
);
7271 if (Source
== Sources
.end())
7272 Source
= Sources
.insert(Sources
.end(), ShuffleSourceInfo(SourceVec
));
7274 // Update the minimum and maximum lane number seen.
7275 unsigned EltNo
= cast
<ConstantSDNode
>(V
.getOperand(1))->getZExtValue();
7276 Source
->MinElt
= std::min(Source
->MinElt
, EltNo
);
7277 Source
->MaxElt
= std::max(Source
->MaxElt
, EltNo
);
7280 // Currently only do something sane when at most two source vectors
7282 if (Sources
.size() > 2)
7285 // Find out the smallest element size among result and two sources, and use
7286 // it as element size to build the shuffle_vector.
7287 EVT SmallestEltTy
= VT
.getVectorElementType();
7288 for (auto &Source
: Sources
) {
7289 EVT SrcEltTy
= Source
.Vec
.getValueType().getVectorElementType();
7290 if (SrcEltTy
.bitsLT(SmallestEltTy
))
7291 SmallestEltTy
= SrcEltTy
;
7293 unsigned ResMultiplier
=
7294 VT
.getScalarSizeInBits() / SmallestEltTy
.getSizeInBits();
7295 NumElts
= VT
.getSizeInBits() / SmallestEltTy
.getSizeInBits();
7296 EVT ShuffleVT
= EVT::getVectorVT(*DAG
.getContext(), SmallestEltTy
, NumElts
);
7298 // If the source vector is too wide or too narrow, we may nevertheless be able
7299 // to construct a compatible shuffle either by concatenating it with UNDEF or
7300 // extracting a suitable range of elements.
7301 for (auto &Src
: Sources
) {
7302 EVT SrcVT
= Src
.ShuffleVec
.getValueType();
7304 if (SrcVT
.getSizeInBits() == VT
.getSizeInBits())
7307 // This stage of the search produces a source with the same element type as
7308 // the original, but with a total width matching the BUILD_VECTOR output.
7309 EVT EltVT
= SrcVT
.getVectorElementType();
7310 unsigned NumSrcElts
= VT
.getSizeInBits() / EltVT
.getSizeInBits();
7311 EVT DestVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumSrcElts
);
7313 if (SrcVT
.getSizeInBits() < VT
.getSizeInBits()) {
7314 if (2 * SrcVT
.getSizeInBits() != VT
.getSizeInBits())
7316 // We can pad out the smaller vector for free, so if it's part of a
7319 DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, DestVT
, Src
.ShuffleVec
,
7320 DAG
.getUNDEF(Src
.ShuffleVec
.getValueType()));
7324 if (SrcVT
.getSizeInBits() != 2 * VT
.getSizeInBits())
7327 if (Src
.MaxElt
- Src
.MinElt
>= NumSrcElts
) {
7328 // Span too large for a VEXT to cope
7332 if (Src
.MinElt
>= NumSrcElts
) {
7333 // The extraction can just take the second half
7335 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7336 DAG
.getConstant(NumSrcElts
, dl
, MVT::i32
));
7337 Src
.WindowBase
= -NumSrcElts
;
7338 } else if (Src
.MaxElt
< NumSrcElts
) {
7339 // The extraction can just take the first half
7341 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7342 DAG
.getConstant(0, dl
, MVT::i32
));
7344 // An actual VEXT is needed
7346 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7347 DAG
.getConstant(0, dl
, MVT::i32
));
7349 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7350 DAG
.getConstant(NumSrcElts
, dl
, MVT::i32
));
7352 Src
.ShuffleVec
= DAG
.getNode(ARMISD::VEXT
, dl
, DestVT
, VEXTSrc1
,
7354 DAG
.getConstant(Src
.MinElt
, dl
, MVT::i32
));
7355 Src
.WindowBase
= -Src
.MinElt
;
7359 // Another possible incompatibility occurs from the vector element types. We
7360 // can fix this by bitcasting the source vectors to the same type we intend
7362 for (auto &Src
: Sources
) {
7363 EVT SrcEltTy
= Src
.ShuffleVec
.getValueType().getVectorElementType();
7364 if (SrcEltTy
== SmallestEltTy
)
7366 assert(ShuffleVT
.getVectorElementType() == SmallestEltTy
);
7367 Src
.ShuffleVec
= DAG
.getNode(ISD::BITCAST
, dl
, ShuffleVT
, Src
.ShuffleVec
);
7368 Src
.WindowScale
= SrcEltTy
.getSizeInBits() / SmallestEltTy
.getSizeInBits();
7369 Src
.WindowBase
*= Src
.WindowScale
;
7372 // Final sanity check before we try to actually produce a shuffle.
7373 LLVM_DEBUG(for (auto Src
7375 assert(Src
.ShuffleVec
.getValueType() == ShuffleVT
););
7377 // The stars all align, our next step is to produce the mask for the shuffle.
7378 SmallVector
<int, 8> Mask(ShuffleVT
.getVectorNumElements(), -1);
7379 int BitsPerShuffleLane
= ShuffleVT
.getScalarSizeInBits();
7380 for (unsigned i
= 0; i
< VT
.getVectorNumElements(); ++i
) {
7381 SDValue Entry
= Op
.getOperand(i
);
7382 if (Entry
.isUndef())
7385 auto Src
= llvm::find(Sources
, Entry
.getOperand(0));
7386 int EltNo
= cast
<ConstantSDNode
>(Entry
.getOperand(1))->getSExtValue();
7388 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
7389 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
7391 EVT OrigEltTy
= Entry
.getOperand(0).getValueType().getVectorElementType();
7392 int BitsDefined
= std::min(OrigEltTy
.getSizeInBits(),
7393 VT
.getScalarSizeInBits());
7394 int LanesDefined
= BitsDefined
/ BitsPerShuffleLane
;
7396 // This source is expected to fill ResMultiplier lanes of the final shuffle,
7397 // starting at the appropriate offset.
7398 int *LaneMask
= &Mask
[i
* ResMultiplier
];
7400 int ExtractBase
= EltNo
* Src
->WindowScale
+ Src
->WindowBase
;
7401 ExtractBase
+= NumElts
* (Src
- Sources
.begin());
7402 for (int j
= 0; j
< LanesDefined
; ++j
)
7403 LaneMask
[j
] = ExtractBase
+ j
;
7407 // We can't handle more than two sources. This should have already
7408 // been checked before this point.
7409 assert(Sources
.size() <= 2 && "Too many sources!");
7411 SDValue ShuffleOps
[] = { DAG
.getUNDEF(ShuffleVT
), DAG
.getUNDEF(ShuffleVT
) };
7412 for (unsigned i
= 0; i
< Sources
.size(); ++i
)
7413 ShuffleOps
[i
] = Sources
[i
].ShuffleVec
;
7415 SDValue Shuffle
= buildLegalVectorShuffle(ShuffleVT
, dl
, ShuffleOps
[0],
7416 ShuffleOps
[1], Mask
, DAG
);
7419 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Shuffle
);
7422 enum ShuffleOpCodes
{
7423 OP_COPY
= 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
7432 OP_VUZPL
, // VUZP, left result
7433 OP_VUZPR
, // VUZP, right result
7434 OP_VZIPL
, // VZIP, left result
7435 OP_VZIPR
, // VZIP, right result
7436 OP_VTRNL
, // VTRN, left result
7437 OP_VTRNR
// VTRN, right result
7440 static bool isLegalMVEShuffleOp(unsigned PFEntry
) {
7441 unsigned OpNum
= (PFEntry
>> 26) & 0x0F;
7454 /// isShuffleMaskLegal - Targets can use this to indicate that they only
7455 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7456 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7457 /// are assumed to be legal.
7458 bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef
<int> M
, EVT VT
) const {
7459 if (VT
.getVectorNumElements() == 4 &&
7460 (VT
.is128BitVector() || VT
.is64BitVector())) {
7461 unsigned PFIndexes
[4];
7462 for (unsigned i
= 0; i
!= 4; ++i
) {
7466 PFIndexes
[i
] = M
[i
];
7469 // Compute the index in the perfect shuffle table.
7470 unsigned PFTableIndex
=
7471 PFIndexes
[0]*9*9*9+PFIndexes
[1]*9*9+PFIndexes
[2]*9+PFIndexes
[3];
7472 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
7473 unsigned Cost
= (PFEntry
>> 30);
7475 if (Cost
<= 4 && (Subtarget
->hasNEON() || isLegalMVEShuffleOp(PFEntry
)))
7479 bool ReverseVEXT
, isV_UNDEF
;
7480 unsigned Imm
, WhichResult
;
7482 unsigned EltSize
= VT
.getScalarSizeInBits();
7483 if (EltSize
>= 32 ||
7484 ShuffleVectorSDNode::isSplatMask(&M
[0], VT
) ||
7485 isVREVMask(M
, VT
, 64) ||
7486 isVREVMask(M
, VT
, 32) ||
7487 isVREVMask(M
, VT
, 16))
7489 else if (Subtarget
->hasNEON() &&
7490 (isVEXTMask(M
, VT
, ReverseVEXT
, Imm
) ||
7491 isVTBLMask(M
, VT
) ||
7492 isNEONTwoResultShuffleMask(M
, VT
, WhichResult
, isV_UNDEF
)))
7494 else if (Subtarget
->hasNEON() && (VT
== MVT::v8i16
|| VT
== MVT::v16i8
) &&
7495 isReverseMask(M
, VT
))
7501 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
7502 /// the specified operations to build the shuffle.
7503 static SDValue
GeneratePerfectShuffle(unsigned PFEntry
, SDValue LHS
,
7504 SDValue RHS
, SelectionDAG
&DAG
,
7506 unsigned OpNum
= (PFEntry
>> 26) & 0x0F;
7507 unsigned LHSID
= (PFEntry
>> 13) & ((1 << 13)-1);
7508 unsigned RHSID
= (PFEntry
>> 0) & ((1 << 13)-1);
7510 if (OpNum
== OP_COPY
) {
7511 if (LHSID
== (1*9+2)*9+3) return LHS
;
7512 assert(LHSID
== ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
7516 SDValue OpLHS
, OpRHS
;
7517 OpLHS
= GeneratePerfectShuffle(PerfectShuffleTable
[LHSID
], LHS
, RHS
, DAG
, dl
);
7518 OpRHS
= GeneratePerfectShuffle(PerfectShuffleTable
[RHSID
], LHS
, RHS
, DAG
, dl
);
7519 EVT VT
= OpLHS
.getValueType();
7522 default: llvm_unreachable("Unknown shuffle opcode!");
7524 // VREV divides the vector in half and swaps within the half.
7525 if (VT
.getVectorElementType() == MVT::i32
||
7526 VT
.getVectorElementType() == MVT::f32
)
7527 return DAG
.getNode(ARMISD::VREV64
, dl
, VT
, OpLHS
);
7528 // vrev <4 x i16> -> VREV32
7529 if (VT
.getVectorElementType() == MVT::i16
)
7530 return DAG
.getNode(ARMISD::VREV32
, dl
, VT
, OpLHS
);
7531 // vrev <4 x i8> -> VREV16
7532 assert(VT
.getVectorElementType() == MVT::i8
);
7533 return DAG
.getNode(ARMISD::VREV16
, dl
, VT
, OpLHS
);
7538 return DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
7539 OpLHS
, DAG
.getConstant(OpNum
-OP_VDUP0
, dl
, MVT::i32
));
7543 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
,
7545 DAG
.getConstant(OpNum
- OP_VEXT1
+ 1, dl
, MVT::i32
));
7548 return DAG
.getNode(ARMISD::VUZP
, dl
, DAG
.getVTList(VT
, VT
),
7549 OpLHS
, OpRHS
).getValue(OpNum
-OP_VUZPL
);
7552 return DAG
.getNode(ARMISD::VZIP
, dl
, DAG
.getVTList(VT
, VT
),
7553 OpLHS
, OpRHS
).getValue(OpNum
-OP_VZIPL
);
7556 return DAG
.getNode(ARMISD::VTRN
, dl
, DAG
.getVTList(VT
, VT
),
7557 OpLHS
, OpRHS
).getValue(OpNum
-OP_VTRNL
);
7561 static SDValue
LowerVECTOR_SHUFFLEv8i8(SDValue Op
,
7562 ArrayRef
<int> ShuffleMask
,
7563 SelectionDAG
&DAG
) {
7564 // Check to see if we can use the VTBL instruction.
7565 SDValue V1
= Op
.getOperand(0);
7566 SDValue V2
= Op
.getOperand(1);
7569 SmallVector
<SDValue
, 8> VTBLMask
;
7570 for (ArrayRef
<int>::iterator
7571 I
= ShuffleMask
.begin(), E
= ShuffleMask
.end(); I
!= E
; ++I
)
7572 VTBLMask
.push_back(DAG
.getConstant(*I
, DL
, MVT::i32
));
7574 if (V2
.getNode()->isUndef())
7575 return DAG
.getNode(ARMISD::VTBL1
, DL
, MVT::v8i8
, V1
,
7576 DAG
.getBuildVector(MVT::v8i8
, DL
, VTBLMask
));
7578 return DAG
.getNode(ARMISD::VTBL2
, DL
, MVT::v8i8
, V1
, V2
,
7579 DAG
.getBuildVector(MVT::v8i8
, DL
, VTBLMask
));
7582 static SDValue
LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op
,
7583 SelectionDAG
&DAG
) {
7585 SDValue OpLHS
= Op
.getOperand(0);
7586 EVT VT
= OpLHS
.getValueType();
7588 assert((VT
== MVT::v8i16
|| VT
== MVT::v16i8
) &&
7589 "Expect an v8i16/v16i8 type");
7590 OpLHS
= DAG
.getNode(ARMISD::VREV64
, DL
, VT
, OpLHS
);
7591 // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
7592 // extract the first 8 bytes into the top double word and the last 8 bytes
7593 // into the bottom double word. The v8i16 case is similar.
7594 unsigned ExtractNum
= (VT
== MVT::v16i8
) ? 8 : 4;
7595 return DAG
.getNode(ARMISD::VEXT
, DL
, VT
, OpLHS
, OpLHS
,
7596 DAG
.getConstant(ExtractNum
, DL
, MVT::i32
));
7599 static EVT
getVectorTyFromPredicateVector(EVT VT
) {
7600 switch (VT
.getSimpleVT().SimpleTy
) {
7608 llvm_unreachable("Unexpected vector predicate type");
7612 static SDValue
PromoteMVEPredVector(SDLoc dl
, SDValue Pred
, EVT VT
,
7613 SelectionDAG
&DAG
) {
7614 // Converting from boolean predicates to integers involves creating a vector
7615 // of all ones or all zeroes and selecting the lanes based upon the real
7618 DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff), dl
, MVT::i32
);
7619 AllOnes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v16i8
, AllOnes
);
7622 DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0x0), dl
, MVT::i32
);
7623 AllZeroes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v16i8
, AllZeroes
);
7625 // Get full vector type from predicate type
7626 EVT NewVT
= getVectorTyFromPredicateVector(VT
);
7629 // If the real predicate is an v8i1 or v4i1 (not v16i1) then we need to recast
7630 // this to a v16i1. This cannot be done with an ordinary bitcast because the
7631 // sizes are not the same. We have to use a MVE specific PREDICATE_CAST node,
7632 // since we know in hardware the sizes are really the same.
7633 if (VT
!= MVT::v16i1
)
7634 RecastV1
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::v16i1
, Pred
);
7638 // Select either all ones or zeroes depending upon the real predicate bits.
7639 SDValue PredAsVector
=
7640 DAG
.getNode(ISD::VSELECT
, dl
, MVT::v16i8
, RecastV1
, AllOnes
, AllZeroes
);
7642 // Recast our new predicate-as-integer v16i8 vector into something
7643 // appropriate for the shuffle, i.e. v4i32 for a real v4i1 predicate.
7644 return DAG
.getNode(ISD::BITCAST
, dl
, NewVT
, PredAsVector
);
7647 static SDValue
LowerVECTOR_SHUFFLE_i1(SDValue Op
, SelectionDAG
&DAG
,
7648 const ARMSubtarget
*ST
) {
7649 EVT VT
= Op
.getValueType();
7650 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Op
.getNode());
7651 ArrayRef
<int> ShuffleMask
= SVN
->getMask();
7653 assert(ST
->hasMVEIntegerOps() &&
7654 "No support for vector shuffle of boolean predicates");
7656 SDValue V1
= Op
.getOperand(0);
7658 if (isReverseMask(ShuffleMask
, VT
)) {
7659 SDValue cast
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, V1
);
7660 SDValue rbit
= DAG
.getNode(ISD::BITREVERSE
, dl
, MVT::i32
, cast
);
7661 SDValue srl
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, rbit
,
7662 DAG
.getConstant(16, dl
, MVT::i32
));
7663 return DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, VT
, srl
);
7666 // Until we can come up with optimised cases for every single vector
7667 // shuffle in existence we have chosen the least painful strategy. This is
7668 // to essentially promote the boolean predicate to a 8-bit integer, where
7669 // each predicate represents a byte. Then we fall back on a normal integer
7670 // vector shuffle and convert the result back into a predicate vector. In
7671 // many cases the generated code might be even better than scalar code
7672 // operating on bits. Just imagine trying to shuffle 8 arbitrary 2-bit
7673 // fields in a register into 8 other arbitrary 2-bit fields!
7674 SDValue PredAsVector
= PromoteMVEPredVector(dl
, V1
, VT
, DAG
);
7675 EVT NewVT
= PredAsVector
.getValueType();
7678 SDValue Shuffled
= DAG
.getVectorShuffle(NewVT
, dl
, PredAsVector
,
7679 DAG
.getUNDEF(NewVT
), ShuffleMask
);
7681 // Now return the result of comparing the shuffled vector with zero,
7682 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
7683 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, Shuffled
,
7684 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
7687 static SDValue
LowerVECTOR_SHUFFLE(SDValue Op
, SelectionDAG
&DAG
,
7688 const ARMSubtarget
*ST
) {
7689 SDValue V1
= Op
.getOperand(0);
7690 SDValue V2
= Op
.getOperand(1);
7692 EVT VT
= Op
.getValueType();
7693 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Op
.getNode());
7694 unsigned EltSize
= VT
.getScalarSizeInBits();
7696 if (ST
->hasMVEIntegerOps() && EltSize
== 1)
7697 return LowerVECTOR_SHUFFLE_i1(Op
, DAG
, ST
);
7699 // Convert shuffles that are directly supported on NEON to target-specific
7700 // DAG nodes, instead of keeping them as shuffles and matching them again
7701 // during code selection. This is more efficient and avoids the possibility
7702 // of inconsistencies between legalization and selection.
7703 // FIXME: floating-point vectors should be canonicalized to integer vectors
7704 // of the same time so that they get CSEd properly.
7705 ArrayRef
<int> ShuffleMask
= SVN
->getMask();
7707 if (EltSize
<= 32) {
7708 if (SVN
->isSplat()) {
7709 int Lane
= SVN
->getSplatIndex();
7710 // If this is undef splat, generate it via "just" vdup, if possible.
7711 if (Lane
== -1) Lane
= 0;
7713 // Test if V1 is a SCALAR_TO_VECTOR.
7714 if (Lane
== 0 && V1
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
7715 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, V1
.getOperand(0));
7717 // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
7718 // (and probably will turn into a SCALAR_TO_VECTOR once legalization
7720 if (Lane
== 0 && V1
.getOpcode() == ISD::BUILD_VECTOR
&&
7721 !isa
<ConstantSDNode
>(V1
.getOperand(0))) {
7722 bool IsScalarToVector
= true;
7723 for (unsigned i
= 1, e
= V1
.getNumOperands(); i
!= e
; ++i
)
7724 if (!V1
.getOperand(i
).isUndef()) {
7725 IsScalarToVector
= false;
7728 if (IsScalarToVector
)
7729 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, V1
.getOperand(0));
7731 return DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
, V1
,
7732 DAG
.getConstant(Lane
, dl
, MVT::i32
));
7735 bool ReverseVEXT
= false;
7737 if (ST
->hasNEON() && isVEXTMask(ShuffleMask
, VT
, ReverseVEXT
, Imm
)) {
7740 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
, V1
, V2
,
7741 DAG
.getConstant(Imm
, dl
, MVT::i32
));
7744 if (isVREVMask(ShuffleMask
, VT
, 64))
7745 return DAG
.getNode(ARMISD::VREV64
, dl
, VT
, V1
);
7746 if (isVREVMask(ShuffleMask
, VT
, 32))
7747 return DAG
.getNode(ARMISD::VREV32
, dl
, VT
, V1
);
7748 if (isVREVMask(ShuffleMask
, VT
, 16))
7749 return DAG
.getNode(ARMISD::VREV16
, dl
, VT
, V1
);
7751 if (ST
->hasNEON() && V2
->isUndef() && isSingletonVEXTMask(ShuffleMask
, VT
, Imm
)) {
7752 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
, V1
, V1
,
7753 DAG
.getConstant(Imm
, dl
, MVT::i32
));
7756 // Check for Neon shuffles that modify both input vectors in place.
7757 // If both results are used, i.e., if there are two shuffles with the same
7758 // source operands and with masks corresponding to both results of one of
7759 // these operations, DAG memoization will ensure that a single node is
7760 // used for both shuffles.
7761 unsigned WhichResult
= 0;
7762 bool isV_UNDEF
= false;
7763 if (ST
->hasNEON()) {
7764 if (unsigned ShuffleOpc
= isNEONTwoResultShuffleMask(
7765 ShuffleMask
, VT
, WhichResult
, isV_UNDEF
)) {
7768 return DAG
.getNode(ShuffleOpc
, dl
, DAG
.getVTList(VT
, VT
), V1
, V2
)
7769 .getValue(WhichResult
);
7773 // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
7774 // shuffles that produce a result larger than their operands with:
7775 // shuffle(concat(v1, undef), concat(v2, undef))
7777 // shuffle(concat(v1, v2), undef)
7778 // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
7780 // This is useful in the general case, but there are special cases where
7781 // native shuffles produce larger results: the two-result ops.
7783 // Look through the concat when lowering them:
7784 // shuffle(concat(v1, v2), undef)
7786 // concat(VZIP(v1, v2):0, :1)
7788 if (ST
->hasNEON() && V1
->getOpcode() == ISD::CONCAT_VECTORS
&& V2
->isUndef()) {
7789 SDValue SubV1
= V1
->getOperand(0);
7790 SDValue SubV2
= V1
->getOperand(1);
7791 EVT SubVT
= SubV1
.getValueType();
7793 // We expect these to have been canonicalized to -1.
7794 assert(llvm::all_of(ShuffleMask
, [&](int i
) {
7795 return i
< (int)VT
.getVectorNumElements();
7796 }) && "Unexpected shuffle index into UNDEF operand!");
7798 if (unsigned ShuffleOpc
= isNEONTwoResultShuffleMask(
7799 ShuffleMask
, SubVT
, WhichResult
, isV_UNDEF
)) {
7802 assert((WhichResult
== 0) &&
7803 "In-place shuffle of concat can only have one result!");
7804 SDValue Res
= DAG
.getNode(ShuffleOpc
, dl
, DAG
.getVTList(SubVT
, SubVT
),
7806 return DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, VT
, Res
.getValue(0),
7812 // If the shuffle is not directly supported and it has 4 elements, use
7813 // the PerfectShuffle-generated table to synthesize it from other shuffles.
7814 unsigned NumElts
= VT
.getVectorNumElements();
7816 unsigned PFIndexes
[4];
7817 for (unsigned i
= 0; i
!= 4; ++i
) {
7818 if (ShuffleMask
[i
] < 0)
7821 PFIndexes
[i
] = ShuffleMask
[i
];
7824 // Compute the index in the perfect shuffle table.
7825 unsigned PFTableIndex
=
7826 PFIndexes
[0]*9*9*9+PFIndexes
[1]*9*9+PFIndexes
[2]*9+PFIndexes
[3];
7827 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
7828 unsigned Cost
= (PFEntry
>> 30);
7832 return GeneratePerfectShuffle(PFEntry
, V1
, V2
, DAG
, dl
);
7833 else if (isLegalMVEShuffleOp(PFEntry
)) {
7834 unsigned LHSID
= (PFEntry
>> 13) & ((1 << 13)-1);
7835 unsigned RHSID
= (PFEntry
>> 0) & ((1 << 13)-1);
7836 unsigned PFEntryLHS
= PerfectShuffleTable
[LHSID
];
7837 unsigned PFEntryRHS
= PerfectShuffleTable
[RHSID
];
7838 if (isLegalMVEShuffleOp(PFEntryLHS
) && isLegalMVEShuffleOp(PFEntryRHS
))
7839 return GeneratePerfectShuffle(PFEntry
, V1
, V2
, DAG
, dl
);
7844 // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
7845 if (EltSize
>= 32) {
7846 // Do the expansion with floating-point types, since that is what the VFP
7847 // registers are defined to use, and since i64 is not legal.
7848 EVT EltVT
= EVT::getFloatingPointVT(EltSize
);
7849 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElts
);
7850 V1
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, V1
);
7851 V2
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, V2
);
7852 SmallVector
<SDValue
, 8> Ops
;
7853 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7854 if (ShuffleMask
[i
] < 0)
7855 Ops
.push_back(DAG
.getUNDEF(EltVT
));
7857 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, EltVT
,
7858 ShuffleMask
[i
] < (int)NumElts
? V1
: V2
,
7859 DAG
.getConstant(ShuffleMask
[i
] & (NumElts
-1),
7862 SDValue Val
= DAG
.getNode(ARMISD::BUILD_VECTOR
, dl
, VecVT
, Ops
);
7863 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
7866 if (ST
->hasNEON() && (VT
== MVT::v8i16
|| VT
== MVT::v16i8
) && isReverseMask(ShuffleMask
, VT
))
7867 return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op
, DAG
);
7869 if (ST
->hasNEON() && VT
== MVT::v8i8
)
7870 if (SDValue NewOp
= LowerVECTOR_SHUFFLEv8i8(Op
, ShuffleMask
, DAG
))
7876 static SDValue
LowerINSERT_VECTOR_ELT_i1(SDValue Op
, SelectionDAG
&DAG
,
7877 const ARMSubtarget
*ST
) {
7878 EVT VecVT
= Op
.getOperand(0).getValueType();
7881 assert(ST
->hasMVEIntegerOps() &&
7882 "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
7885 DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, Op
->getOperand(0));
7886 unsigned Lane
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue();
7887 unsigned LaneWidth
=
7888 getVectorTyFromPredicateVector(VecVT
).getScalarSizeInBits() / 8;
7889 unsigned Mask
= ((1 << LaneWidth
) - 1) << Lane
* LaneWidth
;
7890 SDValue Ext
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, MVT::i32
,
7891 Op
.getOperand(1), DAG
.getValueType(MVT::i1
));
7892 SDValue BFI
= DAG
.getNode(ARMISD::BFI
, dl
, MVT::i32
, Conv
, Ext
,
7893 DAG
.getConstant(~Mask
, dl
, MVT::i32
));
7894 return DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, Op
.getValueType(), BFI
);
7897 SDValue
ARMTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op
,
7898 SelectionDAG
&DAG
) const {
7899 // INSERT_VECTOR_ELT is legal only for immediate indexes.
7900 SDValue Lane
= Op
.getOperand(2);
7901 if (!isa
<ConstantSDNode
>(Lane
))
7904 SDValue Elt
= Op
.getOperand(1);
7905 EVT EltVT
= Elt
.getValueType();
7907 if (Subtarget
->hasMVEIntegerOps() &&
7908 Op
.getValueType().getScalarSizeInBits() == 1)
7909 return LowerINSERT_VECTOR_ELT_i1(Op
, DAG
, Subtarget
);
7911 if (getTypeAction(*DAG
.getContext(), EltVT
) ==
7912 TargetLowering::TypePromoteFloat
) {
7913 // INSERT_VECTOR_ELT doesn't want f16 operands promoting to f32,
7914 // but the type system will try to do that if we don't intervene.
7915 // Reinterpret any such vector-element insertion as one with the
7916 // corresponding integer types.
7920 EVT IEltVT
= MVT::getIntegerVT(EltVT
.getScalarSizeInBits());
7921 assert(getTypeAction(*DAG
.getContext(), IEltVT
) !=
7922 TargetLowering::TypePromoteFloat
);
7924 SDValue VecIn
= Op
.getOperand(0);
7925 EVT VecVT
= VecIn
.getValueType();
7926 EVT IVecVT
= EVT::getVectorVT(*DAG
.getContext(), IEltVT
,
7927 VecVT
.getVectorNumElements());
7929 SDValue IElt
= DAG
.getNode(ISD::BITCAST
, dl
, IEltVT
, Elt
);
7930 SDValue IVecIn
= DAG
.getNode(ISD::BITCAST
, dl
, IVecVT
, VecIn
);
7931 SDValue IVecOut
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, IVecVT
,
7932 IVecIn
, IElt
, Lane
);
7933 return DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, IVecOut
);
7939 static SDValue
LowerEXTRACT_VECTOR_ELT_i1(SDValue Op
, SelectionDAG
&DAG
,
7940 const ARMSubtarget
*ST
) {
7941 EVT VecVT
= Op
.getOperand(0).getValueType();
7944 assert(ST
->hasMVEIntegerOps() &&
7945 "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
7948 DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, Op
->getOperand(0));
7949 unsigned Lane
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
7950 unsigned LaneWidth
=
7951 getVectorTyFromPredicateVector(VecVT
).getScalarSizeInBits() / 8;
7952 SDValue Shift
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, Conv
,
7953 DAG
.getConstant(Lane
* LaneWidth
, dl
, MVT::i32
));
7957 static SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
,
7958 const ARMSubtarget
*ST
) {
7959 // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
7960 SDValue Lane
= Op
.getOperand(1);
7961 if (!isa
<ConstantSDNode
>(Lane
))
7964 SDValue Vec
= Op
.getOperand(0);
7965 EVT VT
= Vec
.getValueType();
7967 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
7968 return LowerEXTRACT_VECTOR_ELT_i1(Op
, DAG
, ST
);
7970 if (Op
.getValueType() == MVT::i32
&& Vec
.getScalarValueSizeInBits() < 32) {
7972 return DAG
.getNode(ARMISD::VGETLANEu
, dl
, MVT::i32
, Vec
, Lane
);
7978 static SDValue
LowerCONCAT_VECTORS_i1(SDValue Op
, SelectionDAG
&DAG
,
7979 const ARMSubtarget
*ST
) {
7980 SDValue V1
= Op
.getOperand(0);
7981 SDValue V2
= Op
.getOperand(1);
7983 EVT VT
= Op
.getValueType();
7984 EVT Op1VT
= V1
.getValueType();
7985 EVT Op2VT
= V2
.getValueType();
7986 unsigned NumElts
= VT
.getVectorNumElements();
7988 assert(Op1VT
== Op2VT
&& "Operand types don't match!");
7989 assert(VT
.getScalarSizeInBits() == 1 &&
7990 "Unexpected custom CONCAT_VECTORS lowering");
7991 assert(ST
->hasMVEIntegerOps() &&
7992 "CONCAT_VECTORS lowering only supported for MVE");
7994 SDValue NewV1
= PromoteMVEPredVector(dl
, V1
, Op1VT
, DAG
);
7995 SDValue NewV2
= PromoteMVEPredVector(dl
, V2
, Op2VT
, DAG
);
7997 // We now have Op1 + Op2 promoted to vectors of integers, where v8i1 gets
7998 // promoted to v8i16, etc.
8000 MVT ElType
= getVectorTyFromPredicateVector(VT
).getScalarType().getSimpleVT();
8002 // Extract the vector elements from Op1 and Op2 one by one and truncate them
8003 // to be the right size for the destination. For example, if Op1 is v4i1 then
8004 // the promoted vector is v4i32. The result of concatentation gives a v8i1,
8005 // which when promoted is v8i16. That means each i32 element from Op1 needs
8006 // truncating to i16 and inserting in the result.
8007 EVT ConcatVT
= MVT::getVectorVT(ElType
, NumElts
);
8008 SDValue ConVec
= DAG
.getNode(ISD::UNDEF
, dl
, ConcatVT
);
8009 auto ExractInto
= [&DAG
, &dl
](SDValue NewV
, SDValue ConVec
, unsigned &j
) {
8010 EVT NewVT
= NewV
.getValueType();
8011 EVT ConcatVT
= ConVec
.getValueType();
8012 for (unsigned i
= 0, e
= NewVT
.getVectorNumElements(); i
< e
; i
++, j
++) {
8013 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
, NewV
,
8014 DAG
.getIntPtrConstant(i
, dl
));
8015 ConVec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, ConcatVT
, ConVec
, Elt
,
8016 DAG
.getConstant(j
, dl
, MVT::i32
));
8021 ConVec
= ExractInto(NewV1
, ConVec
, j
);
8022 ConVec
= ExractInto(NewV2
, ConVec
, j
);
8024 // Now return the result of comparing the subvector with zero,
8025 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
8026 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, ConVec
,
8027 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
8030 static SDValue
LowerCONCAT_VECTORS(SDValue Op
, SelectionDAG
&DAG
,
8031 const ARMSubtarget
*ST
) {
8032 EVT VT
= Op
->getValueType(0);
8033 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
8034 return LowerCONCAT_VECTORS_i1(Op
, DAG
, ST
);
8036 // The only time a CONCAT_VECTORS operation can have legal types is when
8037 // two 64-bit vectors are concatenated to a 128-bit vector.
8038 assert(Op
.getValueType().is128BitVector() && Op
.getNumOperands() == 2 &&
8039 "unexpected CONCAT_VECTORS");
8041 SDValue Val
= DAG
.getUNDEF(MVT::v2f64
);
8042 SDValue Op0
= Op
.getOperand(0);
8043 SDValue Op1
= Op
.getOperand(1);
8045 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Val
,
8046 DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Op0
),
8047 DAG
.getIntPtrConstant(0, dl
));
8049 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Val
,
8050 DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Op1
),
8051 DAG
.getIntPtrConstant(1, dl
));
8052 return DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), Val
);
8055 static SDValue
LowerEXTRACT_SUBVECTOR(SDValue Op
, SelectionDAG
&DAG
,
8056 const ARMSubtarget
*ST
) {
8057 SDValue V1
= Op
.getOperand(0);
8058 SDValue V2
= Op
.getOperand(1);
8060 EVT VT
= Op
.getValueType();
8061 EVT Op1VT
= V1
.getValueType();
8062 unsigned NumElts
= VT
.getVectorNumElements();
8063 unsigned Index
= cast
<ConstantSDNode
>(V2
)->getZExtValue();
8065 assert(VT
.getScalarSizeInBits() == 1 &&
8066 "Unexpected custom EXTRACT_SUBVECTOR lowering");
8067 assert(ST
->hasMVEIntegerOps() &&
8068 "EXTRACT_SUBVECTOR lowering only supported for MVE");
8070 SDValue NewV1
= PromoteMVEPredVector(dl
, V1
, Op1VT
, DAG
);
8072 // We now have Op1 promoted to a vector of integers, where v8i1 gets
8073 // promoted to v8i16, etc.
8075 MVT ElType
= getVectorTyFromPredicateVector(VT
).getScalarType().getSimpleVT();
8077 EVT SubVT
= MVT::getVectorVT(ElType
, NumElts
);
8078 SDValue SubVec
= DAG
.getNode(ISD::UNDEF
, dl
, SubVT
);
8079 for (unsigned i
= Index
, j
= 0; i
< (Index
+ NumElts
); i
++, j
++) {
8080 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
, NewV1
,
8081 DAG
.getIntPtrConstant(i
, dl
));
8082 SubVec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, SubVT
, SubVec
, Elt
,
8083 DAG
.getConstant(j
, dl
, MVT::i32
));
8086 // Now return the result of comparing the subvector with zero,
8087 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
8088 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, SubVec
,
8089 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
8092 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
8093 /// element has been zero/sign-extended, depending on the isSigned parameter,
8094 /// from an integer type half its size.
8095 static bool isExtendedBUILD_VECTOR(SDNode
*N
, SelectionDAG
&DAG
,
8097 // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
8098 EVT VT
= N
->getValueType(0);
8099 if (VT
== MVT::v2i64
&& N
->getOpcode() == ISD::BITCAST
) {
8100 SDNode
*BVN
= N
->getOperand(0).getNode();
8101 if (BVN
->getValueType(0) != MVT::v4i32
||
8102 BVN
->getOpcode() != ISD::BUILD_VECTOR
)
8104 unsigned LoElt
= DAG
.getDataLayout().isBigEndian() ? 1 : 0;
8105 unsigned HiElt
= 1 - LoElt
;
8106 ConstantSDNode
*Lo0
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(LoElt
));
8107 ConstantSDNode
*Hi0
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(HiElt
));
8108 ConstantSDNode
*Lo1
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(LoElt
+2));
8109 ConstantSDNode
*Hi1
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(HiElt
+2));
8110 if (!Lo0
|| !Hi0
|| !Lo1
|| !Hi1
)
8113 if (Hi0
->getSExtValue() == Lo0
->getSExtValue() >> 32 &&
8114 Hi1
->getSExtValue() == Lo1
->getSExtValue() >> 32)
8117 if (Hi0
->isNullValue() && Hi1
->isNullValue())
8123 if (N
->getOpcode() != ISD::BUILD_VECTOR
)
8126 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
8127 SDNode
*Elt
= N
->getOperand(i
).getNode();
8128 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Elt
)) {
8129 unsigned EltSize
= VT
.getScalarSizeInBits();
8130 unsigned HalfSize
= EltSize
/ 2;
8132 if (!isIntN(HalfSize
, C
->getSExtValue()))
8135 if (!isUIntN(HalfSize
, C
->getZExtValue()))
8146 /// isSignExtended - Check if a node is a vector value that is sign-extended
8147 /// or a constant BUILD_VECTOR with sign-extended elements.
8148 static bool isSignExtended(SDNode
*N
, SelectionDAG
&DAG
) {
8149 if (N
->getOpcode() == ISD::SIGN_EXTEND
|| ISD::isSEXTLoad(N
))
8151 if (isExtendedBUILD_VECTOR(N
, DAG
, true))
8156 /// isZeroExtended - Check if a node is a vector value that is zero-extended
8157 /// or a constant BUILD_VECTOR with zero-extended elements.
8158 static bool isZeroExtended(SDNode
*N
, SelectionDAG
&DAG
) {
8159 if (N
->getOpcode() == ISD::ZERO_EXTEND
|| ISD::isZEXTLoad(N
))
8161 if (isExtendedBUILD_VECTOR(N
, DAG
, false))
8166 static EVT
getExtensionTo64Bits(const EVT
&OrigVT
) {
8167 if (OrigVT
.getSizeInBits() >= 64)
8170 assert(OrigVT
.isSimple() && "Expecting a simple value type");
8172 MVT::SimpleValueType OrigSimpleTy
= OrigVT
.getSimpleVT().SimpleTy
;
8173 switch (OrigSimpleTy
) {
8174 default: llvm_unreachable("Unexpected Vector Type");
8183 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
8184 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
8185 /// We insert the required extension here to get the vector to fill a D register.
8186 static SDValue
AddRequiredExtensionForVMULL(SDValue N
, SelectionDAG
&DAG
,
8189 unsigned ExtOpcode
) {
8190 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
8191 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
8192 // 64-bits we need to insert a new extension so that it will be 64-bits.
8193 assert(ExtTy
.is128BitVector() && "Unexpected extension size");
8194 if (OrigTy
.getSizeInBits() >= 64)
8197 // Must extend size to at least 64 bits to be used as an operand for VMULL.
8198 EVT NewVT
= getExtensionTo64Bits(OrigTy
);
8200 return DAG
.getNode(ExtOpcode
, SDLoc(N
), NewVT
, N
);
8203 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
8204 /// does not do any sign/zero extension. If the original vector is less
8205 /// than 64 bits, an appropriate extension will be added after the load to
8206 /// reach a total size of 64 bits. We have to add the extension separately
8207 /// because ARM does not have a sign/zero extending load for vectors.
8208 static SDValue
SkipLoadExtensionForVMULL(LoadSDNode
*LD
, SelectionDAG
& DAG
) {
8209 EVT ExtendedTy
= getExtensionTo64Bits(LD
->getMemoryVT());
8211 // The load already has the right type.
8212 if (ExtendedTy
== LD
->getMemoryVT())
8213 return DAG
.getLoad(LD
->getMemoryVT(), SDLoc(LD
), LD
->getChain(),
8214 LD
->getBasePtr(), LD
->getPointerInfo(),
8215 LD
->getAlignment(), LD
->getMemOperand()->getFlags());
8217 // We need to create a zextload/sextload. We cannot just create a load
8218 // followed by a zext/zext node because LowerMUL is also run during normal
8219 // operation legalization where we can't create illegal types.
8220 return DAG
.getExtLoad(LD
->getExtensionType(), SDLoc(LD
), ExtendedTy
,
8221 LD
->getChain(), LD
->getBasePtr(), LD
->getPointerInfo(),
8222 LD
->getMemoryVT(), LD
->getAlignment(),
8223 LD
->getMemOperand()->getFlags());
8226 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
8227 /// extending load, or BUILD_VECTOR with extended elements, return the
8228 /// unextended value. The unextended vector should be 64 bits so that it can
8229 /// be used as an operand to a VMULL instruction. If the original vector size
8230 /// before extension is less than 64 bits we add a an extension to resize
8231 /// the vector to 64 bits.
8232 static SDValue
SkipExtensionForVMULL(SDNode
*N
, SelectionDAG
&DAG
) {
8233 if (N
->getOpcode() == ISD::SIGN_EXTEND
|| N
->getOpcode() == ISD::ZERO_EXTEND
)
8234 return AddRequiredExtensionForVMULL(N
->getOperand(0), DAG
,
8235 N
->getOperand(0)->getValueType(0),
8239 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
8240 assert((ISD::isSEXTLoad(LD
) || ISD::isZEXTLoad(LD
)) &&
8241 "Expected extending load");
8243 SDValue newLoad
= SkipLoadExtensionForVMULL(LD
, DAG
);
8244 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), newLoad
.getValue(1));
8245 unsigned Opcode
= ISD::isSEXTLoad(LD
) ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
8247 DAG
.getNode(Opcode
, SDLoc(newLoad
), LD
->getValueType(0), newLoad
);
8248 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 0), extLoad
);
8253 // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will
8254 // have been legalized as a BITCAST from v4i32.
8255 if (N
->getOpcode() == ISD::BITCAST
) {
8256 SDNode
*BVN
= N
->getOperand(0).getNode();
8257 assert(BVN
->getOpcode() == ISD::BUILD_VECTOR
&&
8258 BVN
->getValueType(0) == MVT::v4i32
&& "expected v4i32 BUILD_VECTOR");
8259 unsigned LowElt
= DAG
.getDataLayout().isBigEndian() ? 1 : 0;
8260 return DAG
.getBuildVector(
8261 MVT::v2i32
, SDLoc(N
),
8262 {BVN
->getOperand(LowElt
), BVN
->getOperand(LowElt
+ 2)});
8264 // Construct a new BUILD_VECTOR with elements truncated to half the size.
8265 assert(N
->getOpcode() == ISD::BUILD_VECTOR
&& "expected BUILD_VECTOR");
8266 EVT VT
= N
->getValueType(0);
8267 unsigned EltSize
= VT
.getScalarSizeInBits() / 2;
8268 unsigned NumElts
= VT
.getVectorNumElements();
8269 MVT TruncVT
= MVT::getIntegerVT(EltSize
);
8270 SmallVector
<SDValue
, 8> Ops
;
8272 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
8273 ConstantSDNode
*C
= cast
<ConstantSDNode
>(N
->getOperand(i
));
8274 const APInt
&CInt
= C
->getAPIntValue();
8275 // Element types smaller than 32 bits are not legal, so use i32 elements.
8276 // The values are implicitly truncated so sext vs. zext doesn't matter.
8277 Ops
.push_back(DAG
.getConstant(CInt
.zextOrTrunc(32), dl
, MVT::i32
));
8279 return DAG
.getBuildVector(MVT::getVectorVT(TruncVT
, NumElts
), dl
, Ops
);
8282 static bool isAddSubSExt(SDNode
*N
, SelectionDAG
&DAG
) {
8283 unsigned Opcode
= N
->getOpcode();
8284 if (Opcode
== ISD::ADD
|| Opcode
== ISD::SUB
) {
8285 SDNode
*N0
= N
->getOperand(0).getNode();
8286 SDNode
*N1
= N
->getOperand(1).getNode();
8287 return N0
->hasOneUse() && N1
->hasOneUse() &&
8288 isSignExtended(N0
, DAG
) && isSignExtended(N1
, DAG
);
8293 static bool isAddSubZExt(SDNode
*N
, SelectionDAG
&DAG
) {
8294 unsigned Opcode
= N
->getOpcode();
8295 if (Opcode
== ISD::ADD
|| Opcode
== ISD::SUB
) {
8296 SDNode
*N0
= N
->getOperand(0).getNode();
8297 SDNode
*N1
= N
->getOperand(1).getNode();
8298 return N0
->hasOneUse() && N1
->hasOneUse() &&
8299 isZeroExtended(N0
, DAG
) && isZeroExtended(N1
, DAG
);
8304 static SDValue
LowerMUL(SDValue Op
, SelectionDAG
&DAG
) {
8305 // Multiplications are only custom-lowered for 128-bit vectors so that
8306 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
8307 EVT VT
= Op
.getValueType();
8308 assert(VT
.is128BitVector() && VT
.isInteger() &&
8309 "unexpected type for custom-lowering ISD::MUL");
8310 SDNode
*N0
= Op
.getOperand(0).getNode();
8311 SDNode
*N1
= Op
.getOperand(1).getNode();
8312 unsigned NewOpc
= 0;
8314 bool isN0SExt
= isSignExtended(N0
, DAG
);
8315 bool isN1SExt
= isSignExtended(N1
, DAG
);
8316 if (isN0SExt
&& isN1SExt
)
8317 NewOpc
= ARMISD::VMULLs
;
8319 bool isN0ZExt
= isZeroExtended(N0
, DAG
);
8320 bool isN1ZExt
= isZeroExtended(N1
, DAG
);
8321 if (isN0ZExt
&& isN1ZExt
)
8322 NewOpc
= ARMISD::VMULLu
;
8323 else if (isN1SExt
|| isN1ZExt
) {
8324 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
8325 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
8326 if (isN1SExt
&& isAddSubSExt(N0
, DAG
)) {
8327 NewOpc
= ARMISD::VMULLs
;
8329 } else if (isN1ZExt
&& isAddSubZExt(N0
, DAG
)) {
8330 NewOpc
= ARMISD::VMULLu
;
8332 } else if (isN0ZExt
&& isAddSubZExt(N1
, DAG
)) {
8334 NewOpc
= ARMISD::VMULLu
;
8340 if (VT
== MVT::v2i64
)
8341 // Fall through to expand this. It is not legal.
8344 // Other vector multiplications are legal.
8349 // Legalize to a VMULL instruction.
8352 SDValue Op1
= SkipExtensionForVMULL(N1
, DAG
);
8354 Op0
= SkipExtensionForVMULL(N0
, DAG
);
8355 assert(Op0
.getValueType().is64BitVector() &&
8356 Op1
.getValueType().is64BitVector() &&
8357 "unexpected types for extended operands to VMULL");
8358 return DAG
.getNode(NewOpc
, DL
, VT
, Op0
, Op1
);
8361 // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
8362 // isel lowering to take advantage of no-stall back to back vmul + vmla.
8369 SDValue N00
= SkipExtensionForVMULL(N0
->getOperand(0).getNode(), DAG
);
8370 SDValue N01
= SkipExtensionForVMULL(N0
->getOperand(1).getNode(), DAG
);
8371 EVT Op1VT
= Op1
.getValueType();
8372 return DAG
.getNode(N0
->getOpcode(), DL
, VT
,
8373 DAG
.getNode(NewOpc
, DL
, VT
,
8374 DAG
.getNode(ISD::BITCAST
, DL
, Op1VT
, N00
), Op1
),
8375 DAG
.getNode(NewOpc
, DL
, VT
,
8376 DAG
.getNode(ISD::BITCAST
, DL
, Op1VT
, N01
), Op1
));
8379 static SDValue
LowerSDIV_v4i8(SDValue X
, SDValue Y
, const SDLoc
&dl
,
8380 SelectionDAG
&DAG
) {
8381 // TODO: Should this propagate fast-math-flags?
8384 // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
8385 // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
8386 X
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, X
);
8387 Y
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, Y
);
8388 X
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, X
);
8389 Y
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, Y
);
8390 // Get reciprocal estimate.
8391 // float4 recip = vrecpeq_f32(yf);
8392 Y
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8393 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
8395 // Because char has a smaller range than uchar, we can actually get away
8396 // without any newton steps. This requires that we use a weird bias
8397 // of 0xb000, however (again, this has been exhaustively tested).
8398 // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
8399 X
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, X
, Y
);
8400 X
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, X
);
8401 Y
= DAG
.getConstant(0xb000, dl
, MVT::v4i32
);
8402 X
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, X
, Y
);
8403 X
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, X
);
8404 // Convert back to short.
8405 X
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, X
);
8406 X
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, X
);
8410 static SDValue
LowerSDIV_v4i16(SDValue N0
, SDValue N1
, const SDLoc
&dl
,
8411 SelectionDAG
&DAG
) {
8412 // TODO: Should this propagate fast-math-flags?
8415 // Convert to float.
8416 // float4 yf = vcvt_f32_s32(vmovl_s16(y));
8417 // float4 xf = vcvt_f32_s32(vmovl_s16(x));
8418 N0
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, N0
);
8419 N1
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, N1
);
8420 N0
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N0
);
8421 N1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N1
);
8423 // Use reciprocal estimate and one refinement step.
8424 // float4 recip = vrecpeq_f32(yf);
8425 // recip *= vrecpsq_f32(yf, recip);
8426 N2
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8427 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
8429 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8430 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
8432 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
8433 // Because short has a smaller range than ushort, we can actually get away
8434 // with only a single newton step. This requires that we use a weird bias
8435 // of 89, however (again, this has been exhaustively tested).
8436 // float4 result = as_float4(as_int4(xf*recip) + 0x89);
8437 N0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N0
, N2
);
8438 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, N0
);
8439 N1
= DAG
.getConstant(0x89, dl
, MVT::v4i32
);
8440 N0
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, N0
, N1
);
8441 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, N0
);
8442 // Convert back to integer and return.
8443 // return vmovn_s32(vcvt_s32_f32(result));
8444 N0
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, N0
);
8445 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, N0
);
8449 static SDValue
LowerSDIV(SDValue Op
, SelectionDAG
&DAG
,
8450 const ARMSubtarget
*ST
) {
8451 EVT VT
= Op
.getValueType();
8452 assert((VT
== MVT::v4i16
|| VT
== MVT::v8i8
) &&
8453 "unexpected type for custom-lowering ISD::SDIV");
8456 SDValue N0
= Op
.getOperand(0);
8457 SDValue N1
= Op
.getOperand(1);
8460 if (VT
== MVT::v8i8
) {
8461 N0
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v8i16
, N0
);
8462 N1
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v8i16
, N1
);
8464 N2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8465 DAG
.getIntPtrConstant(4, dl
));
8466 N3
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8467 DAG
.getIntPtrConstant(4, dl
));
8468 N0
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8469 DAG
.getIntPtrConstant(0, dl
));
8470 N1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8471 DAG
.getIntPtrConstant(0, dl
));
8473 N0
= LowerSDIV_v4i8(N0
, N1
, dl
, DAG
); // v4i16
8474 N2
= LowerSDIV_v4i8(N2
, N3
, dl
, DAG
); // v4i16
8476 N0
= DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, MVT::v8i16
, N0
, N2
);
8477 N0
= LowerCONCAT_VECTORS(N0
, DAG
, ST
);
8479 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v8i8
, N0
);
8482 return LowerSDIV_v4i16(N0
, N1
, dl
, DAG
);
8485 static SDValue
LowerUDIV(SDValue Op
, SelectionDAG
&DAG
,
8486 const ARMSubtarget
*ST
) {
8487 // TODO: Should this propagate fast-math-flags?
8488 EVT VT
= Op
.getValueType();
8489 assert((VT
== MVT::v4i16
|| VT
== MVT::v8i8
) &&
8490 "unexpected type for custom-lowering ISD::UDIV");
8493 SDValue N0
= Op
.getOperand(0);
8494 SDValue N1
= Op
.getOperand(1);
8497 if (VT
== MVT::v8i8
) {
8498 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v8i16
, N0
);
8499 N1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v8i16
, N1
);
8501 N2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8502 DAG
.getIntPtrConstant(4, dl
));
8503 N3
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8504 DAG
.getIntPtrConstant(4, dl
));
8505 N0
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8506 DAG
.getIntPtrConstant(0, dl
));
8507 N1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8508 DAG
.getIntPtrConstant(0, dl
));
8510 N0
= LowerSDIV_v4i16(N0
, N1
, dl
, DAG
); // v4i16
8511 N2
= LowerSDIV_v4i16(N2
, N3
, dl
, DAG
); // v4i16
8513 N0
= DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, MVT::v8i16
, N0
, N2
);
8514 N0
= LowerCONCAT_VECTORS(N0
, DAG
, ST
);
8516 N0
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v8i8
,
8517 DAG
.getConstant(Intrinsic::arm_neon_vqmovnsu
, dl
,
8523 // v4i16 sdiv ... Convert to float.
8524 // float4 yf = vcvt_f32_s32(vmovl_u16(y));
8525 // float4 xf = vcvt_f32_s32(vmovl_u16(x));
8526 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v4i32
, N0
);
8527 N1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v4i32
, N1
);
8528 N0
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N0
);
8529 SDValue BN1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N1
);
8531 // Use reciprocal estimate and two refinement steps.
8532 // float4 recip = vrecpeq_f32(yf);
8533 // recip *= vrecpsq_f32(yf, recip);
8534 // recip *= vrecpsq_f32(yf, recip);
8535 N2
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8536 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
8538 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8539 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
8541 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
8542 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8543 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
8545 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
8546 // Simply multiplying by the reciprocal estimate can leave us a few ulps
8547 // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
8548 // and that it will never cause us to return an answer too large).
8549 // float4 result = as_float4(as_int4(xf*recip) + 2);
8550 N0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N0
, N2
);
8551 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, N0
);
8552 N1
= DAG
.getConstant(2, dl
, MVT::v4i32
);
8553 N0
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, N0
, N1
);
8554 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, N0
);
8555 // Convert back to integer and return.
8556 // return vmovn_u32(vcvt_s32_f32(result));
8557 N0
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, N0
);
8558 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, N0
);
8562 static SDValue
LowerADDSUBCARRY(SDValue Op
, SelectionDAG
&DAG
) {
8563 SDNode
*N
= Op
.getNode();
8564 EVT VT
= N
->getValueType(0);
8565 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
8567 SDValue Carry
= Op
.getOperand(2);
8572 if (Op
.getOpcode() == ISD::ADDCARRY
) {
8573 // This converts the boolean value carry into the carry flag.
8574 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
8576 // Do the addition proper using the carry flag we wanted.
8577 Result
= DAG
.getNode(ARMISD::ADDE
, DL
, VTs
, Op
.getOperand(0),
8578 Op
.getOperand(1), Carry
);
8580 // Now convert the carry flag into a boolean value.
8581 Carry
= ConvertCarryFlagToBooleanCarry(Result
.getValue(1), VT
, DAG
);
8583 // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
8584 // have to invert the carry first.
8585 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
8586 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
8587 // This converts the boolean value carry into the carry flag.
8588 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
8590 // Do the subtraction proper using the carry flag we wanted.
8591 Result
= DAG
.getNode(ARMISD::SUBE
, DL
, VTs
, Op
.getOperand(0),
8592 Op
.getOperand(1), Carry
);
8594 // Now convert the carry flag into a boolean value.
8595 Carry
= ConvertCarryFlagToBooleanCarry(Result
.getValue(1), VT
, DAG
);
8596 // But the carry returned by ARMISD::SUBE is not a borrow as expected
8597 // by ISD::SUBCARRY, so compute 1 - C.
8598 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
8599 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
8602 // Return both values.
8603 return DAG
.getNode(ISD::MERGE_VALUES
, DL
, N
->getVTList(), Result
, Carry
);
8606 SDValue
ARMTargetLowering::LowerFSINCOS(SDValue Op
, SelectionDAG
&DAG
) const {
8607 assert(Subtarget
->isTargetDarwin());
8609 // For iOS, we want to call an alternative entry point: __sincos_stret,
8610 // return values are passed via sret.
8612 SDValue Arg
= Op
.getOperand(0);
8613 EVT ArgVT
= Arg
.getValueType();
8614 Type
*ArgTy
= ArgVT
.getTypeForEVT(*DAG
.getContext());
8615 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
8617 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
8618 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8620 // Pair of floats / doubles used to pass the result.
8621 Type
*RetTy
= StructType::get(ArgTy
, ArgTy
);
8622 auto &DL
= DAG
.getDataLayout();
8625 bool ShouldUseSRet
= Subtarget
->isAPCS_ABI();
8627 if (ShouldUseSRet
) {
8628 // Create stack object for sret.
8629 const uint64_t ByteSize
= DL
.getTypeAllocSize(RetTy
);
8630 const unsigned StackAlign
= DL
.getPrefTypeAlignment(RetTy
);
8631 int FrameIdx
= MFI
.CreateStackObject(ByteSize
, StackAlign
, false);
8632 SRet
= DAG
.getFrameIndex(FrameIdx
, TLI
.getPointerTy(DL
));
8636 Entry
.Ty
= RetTy
->getPointerTo();
8637 Entry
.IsSExt
= false;
8638 Entry
.IsZExt
= false;
8639 Entry
.IsSRet
= true;
8640 Args
.push_back(Entry
);
8641 RetTy
= Type::getVoidTy(*DAG
.getContext());
8647 Entry
.IsSExt
= false;
8648 Entry
.IsZExt
= false;
8649 Args
.push_back(Entry
);
8652 (ArgVT
== MVT::f64
) ? RTLIB::SINCOS_STRET_F64
: RTLIB::SINCOS_STRET_F32
;
8653 const char *LibcallName
= getLibcallName(LC
);
8654 CallingConv::ID CC
= getLibcallCallingConv(LC
);
8655 SDValue Callee
= DAG
.getExternalSymbol(LibcallName
, getPointerTy(DL
));
8657 TargetLowering::CallLoweringInfo
CLI(DAG
);
8659 .setChain(DAG
.getEntryNode())
8660 .setCallee(CC
, RetTy
, Callee
, std::move(Args
))
8661 .setDiscardResult(ShouldUseSRet
);
8662 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
8665 return CallResult
.first
;
8668 DAG
.getLoad(ArgVT
, dl
, CallResult
.second
, SRet
, MachinePointerInfo());
8670 // Address of cos field.
8671 SDValue Add
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, SRet
,
8672 DAG
.getIntPtrConstant(ArgVT
.getStoreSize(), dl
));
8674 DAG
.getLoad(ArgVT
, dl
, LoadSin
.getValue(1), Add
, MachinePointerInfo());
8676 SDVTList Tys
= DAG
.getVTList(ArgVT
, ArgVT
);
8677 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, Tys
,
8678 LoadSin
.getValue(0), LoadCos
.getValue(0));
8681 SDValue
ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op
, SelectionDAG
&DAG
,
8683 SDValue
&Chain
) const {
8684 EVT VT
= Op
.getValueType();
8685 assert((VT
== MVT::i32
|| VT
== MVT::i64
) &&
8686 "unexpected type for custom lowering DIV");
8689 const auto &DL
= DAG
.getDataLayout();
8690 const auto &TLI
= DAG
.getTargetLoweringInfo();
8692 const char *Name
= nullptr;
8694 Name
= (VT
== MVT::i32
) ? "__rt_sdiv" : "__rt_sdiv64";
8696 Name
= (VT
== MVT::i32
) ? "__rt_udiv" : "__rt_udiv64";
8698 SDValue ES
= DAG
.getExternalSymbol(Name
, TLI
.getPointerTy(DL
));
8700 ARMTargetLowering::ArgListTy Args
;
8702 for (auto AI
: {1, 0}) {
8704 Arg
.Node
= Op
.getOperand(AI
);
8705 Arg
.Ty
= Arg
.Node
.getValueType().getTypeForEVT(*DAG
.getContext());
8706 Args
.push_back(Arg
);
8709 CallLoweringInfo
CLI(DAG
);
8712 .setCallee(CallingConv::ARM_AAPCS_VFP
, VT
.getTypeForEVT(*DAG
.getContext()),
8713 ES
, std::move(Args
));
8715 return LowerCallTo(CLI
).first
;
8718 // This is a code size optimisation: return the original SDIV node to
8719 // DAGCombiner when we don't want to expand SDIV into a sequence of
8720 // instructions, and an empty node otherwise which will cause the
8721 // SDIV to be expanded in DAGCombine.
8723 ARMTargetLowering::BuildSDIVPow2(SDNode
*N
, const APInt
&Divisor
,
8725 SmallVectorImpl
<SDNode
*> &Created
) const {
8726 // TODO: Support SREM
8727 if (N
->getOpcode() != ISD::SDIV
)
8730 const auto &ST
= static_cast<const ARMSubtarget
&>(DAG
.getSubtarget());
8731 const bool MinSize
= ST
.hasMinSize();
8732 const bool HasDivide
= ST
.isThumb() ? ST
.hasDivideInThumbMode()
8733 : ST
.hasDivideInARMMode();
8735 // Don't touch vector types; rewriting this may lead to scalarizing
8737 if (N
->getOperand(0).getValueType().isVector())
8740 // Bail if MinSize is not set, and also for both ARM and Thumb mode we need
8741 // hwdiv support for this to be really profitable.
8742 if (!(MinSize
&& HasDivide
))
8745 // ARM mode is a bit simpler than Thumb: we can handle large power
8746 // of 2 immediates with 1 mov instruction; no further checks required,
8747 // just return the sdiv node.
8749 return SDValue(N
, 0);
8751 // In Thumb mode, immediates larger than 128 need a wide 4-byte MOV,
8752 // and thus lose the code size benefits of a MOVS that requires only 2.
8753 // TargetTransformInfo and 'getIntImmCodeSizeCost' could be helpful here,
8754 // but as it's doing exactly this, it's not worth the trouble to get TTI.
8755 if (Divisor
.sgt(128))
8758 return SDValue(N
, 0);
8761 SDValue
ARMTargetLowering::LowerDIV_Windows(SDValue Op
, SelectionDAG
&DAG
,
8762 bool Signed
) const {
8763 assert(Op
.getValueType() == MVT::i32
&&
8764 "unexpected type for custom lowering DIV");
8767 SDValue DBZCHK
= DAG
.getNode(ARMISD::WIN__DBZCHK
, dl
, MVT::Other
,
8768 DAG
.getEntryNode(), Op
.getOperand(1));
8770 return LowerWindowsDIVLibCall(Op
, DAG
, Signed
, DBZCHK
);
8773 static SDValue
WinDBZCheckDenominator(SelectionDAG
&DAG
, SDNode
*N
, SDValue InChain
) {
8775 SDValue Op
= N
->getOperand(1);
8776 if (N
->getValueType(0) == MVT::i32
)
8777 return DAG
.getNode(ARMISD::WIN__DBZCHK
, DL
, MVT::Other
, InChain
, Op
);
8778 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, Op
,
8779 DAG
.getConstant(0, DL
, MVT::i32
));
8780 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, Op
,
8781 DAG
.getConstant(1, DL
, MVT::i32
));
8782 return DAG
.getNode(ARMISD::WIN__DBZCHK
, DL
, MVT::Other
, InChain
,
8783 DAG
.getNode(ISD::OR
, DL
, MVT::i32
, Lo
, Hi
));
8786 void ARMTargetLowering::ExpandDIV_Windows(
8787 SDValue Op
, SelectionDAG
&DAG
, bool Signed
,
8788 SmallVectorImpl
<SDValue
> &Results
) const {
8789 const auto &DL
= DAG
.getDataLayout();
8790 const auto &TLI
= DAG
.getTargetLoweringInfo();
8792 assert(Op
.getValueType() == MVT::i64
&&
8793 "unexpected type for custom lowering DIV");
8796 SDValue DBZCHK
= WinDBZCheckDenominator(DAG
, Op
.getNode(), DAG
.getEntryNode());
8798 SDValue Result
= LowerWindowsDIVLibCall(Op
, DAG
, Signed
, DBZCHK
);
8800 SDValue Lower
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Result
);
8801 SDValue Upper
= DAG
.getNode(ISD::SRL
, dl
, MVT::i64
, Result
,
8802 DAG
.getConstant(32, dl
, TLI
.getPointerTy(DL
)));
8803 Upper
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Upper
);
8805 Results
.push_back(Lower
);
8806 Results
.push_back(Upper
);
8809 static SDValue
LowerPredicateLoad(SDValue Op
, SelectionDAG
&DAG
) {
8810 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
.getNode());
8811 EVT MemVT
= LD
->getMemoryVT();
8812 assert((MemVT
== MVT::v4i1
|| MemVT
== MVT::v8i1
|| MemVT
== MVT::v16i1
) &&
8813 "Expected a predicate type!");
8814 assert(MemVT
== Op
.getValueType());
8815 assert(LD
->getExtensionType() == ISD::NON_EXTLOAD
&&
8816 "Expected a non-extending load");
8817 assert(LD
->isUnindexed() && "Expected a unindexed load");
8819 // The basic MVE VLDR on a v4i1/v8i1 actually loads the entire 16bit
8820 // predicate, with the "v4i1" bits spread out over the 16 bits loaded. We
8821 // need to make sure that 8/4 bits are actually loaded into the correct
8822 // place, which means loading the value and then shuffling the values into
8823 // the bottom bits of the predicate.
8824 // Equally, VLDR for an v16i1 will actually load 32bits (so will be incorrect
8828 SDValue Load
= DAG
.getExtLoad(
8829 ISD::EXTLOAD
, dl
, MVT::i32
, LD
->getChain(), LD
->getBasePtr(),
8830 EVT::getIntegerVT(*DAG
.getContext(), MemVT
.getSizeInBits()),
8831 LD
->getMemOperand());
8832 SDValue Pred
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::v16i1
, Load
);
8833 if (MemVT
!= MVT::v16i1
)
8834 Pred
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MemVT
, Pred
,
8835 DAG
.getConstant(0, dl
, MVT::i32
));
8836 return DAG
.getMergeValues({Pred
, Load
.getValue(1)}, dl
);
8839 static SDValue
LowerPredicateStore(SDValue Op
, SelectionDAG
&DAG
) {
8840 StoreSDNode
*ST
= cast
<StoreSDNode
>(Op
.getNode());
8841 EVT MemVT
= ST
->getMemoryVT();
8842 assert((MemVT
== MVT::v4i1
|| MemVT
== MVT::v8i1
|| MemVT
== MVT::v16i1
) &&
8843 "Expected a predicate type!");
8844 assert(MemVT
== ST
->getValue().getValueType());
8845 assert(!ST
->isTruncatingStore() && "Expected a non-extending store");
8846 assert(ST
->isUnindexed() && "Expected a unindexed store");
8848 // Only store the v4i1 or v8i1 worth of bits, via a buildvector with top bits
8849 // unset and a scalar store.
8851 SDValue Build
= ST
->getValue();
8852 if (MemVT
!= MVT::v16i1
) {
8853 SmallVector
<SDValue
, 16> Ops
;
8854 for (unsigned I
= 0; I
< MemVT
.getVectorNumElements(); I
++)
8855 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
, Build
,
8856 DAG
.getConstant(I
, dl
, MVT::i32
)));
8857 for (unsigned I
= MemVT
.getVectorNumElements(); I
< 16; I
++)
8858 Ops
.push_back(DAG
.getUNDEF(MVT::i32
));
8859 Build
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v16i1
, Ops
);
8861 SDValue GRP
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, Build
);
8862 return DAG
.getTruncStore(
8863 ST
->getChain(), dl
, GRP
, ST
->getBasePtr(),
8864 EVT::getIntegerVT(*DAG
.getContext(), MemVT
.getSizeInBits()),
8865 ST
->getMemOperand());
8868 static SDValue
LowerMLOAD(SDValue Op
, SelectionDAG
&DAG
) {
8869 MaskedLoadSDNode
*N
= cast
<MaskedLoadSDNode
>(Op
.getNode());
8870 MVT VT
= Op
.getSimpleValueType();
8871 SDValue Mask
= N
->getMask();
8872 SDValue PassThru
= N
->getPassThru();
8875 if (ISD::isBuildVectorAllZeros(PassThru
.getNode()) ||
8876 (PassThru
->getOpcode() == ARMISD::VMOVIMM
&&
8877 isNullConstant(PassThru
->getOperand(0))))
8880 // MVE Masked loads use zero as the passthru value. Here we convert undef to
8881 // zero too, and other values are lowered to a select.
8882 SDValue ZeroVec
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
8883 DAG
.getTargetConstant(0, dl
, MVT::i32
));
8884 SDValue NewLoad
= DAG
.getMaskedLoad(
8885 VT
, dl
, N
->getChain(), N
->getBasePtr(), Mask
, ZeroVec
, N
->getMemoryVT(),
8886 N
->getMemOperand(), N
->getExtensionType(), N
->isExpandingLoad());
8887 SDValue Combo
= NewLoad
;
8888 if (!PassThru
.isUndef())
8889 Combo
= DAG
.getNode(ISD::VSELECT
, dl
, VT
, Mask
, NewLoad
, PassThru
);
8890 return DAG
.getMergeValues({Combo
, NewLoad
.getValue(1)}, dl
);
8893 static SDValue
LowerAtomicLoadStore(SDValue Op
, SelectionDAG
&DAG
) {
8894 if (isStrongerThanMonotonic(cast
<AtomicSDNode
>(Op
)->getOrdering()))
8895 // Acquire/Release load/store is not legal for targets without a dmb or
8896 // equivalent available.
8899 // Monotonic load/store is legal for all targets.
8903 static void ReplaceREADCYCLECOUNTER(SDNode
*N
,
8904 SmallVectorImpl
<SDValue
> &Results
,
8906 const ARMSubtarget
*Subtarget
) {
8908 // Under Power Management extensions, the cycle-count is:
8909 // mrc p15, #0, <Rt>, c9, c13, #0
8910 SDValue Ops
[] = { N
->getOperand(0), // Chain
8911 DAG
.getTargetConstant(Intrinsic::arm_mrc
, DL
, MVT::i32
),
8912 DAG
.getTargetConstant(15, DL
, MVT::i32
),
8913 DAG
.getTargetConstant(0, DL
, MVT::i32
),
8914 DAG
.getTargetConstant(9, DL
, MVT::i32
),
8915 DAG
.getTargetConstant(13, DL
, MVT::i32
),
8916 DAG
.getTargetConstant(0, DL
, MVT::i32
)
8919 SDValue Cycles32
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, DL
,
8920 DAG
.getVTList(MVT::i32
, MVT::Other
), Ops
);
8921 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, Cycles32
,
8922 DAG
.getConstant(0, DL
, MVT::i32
)));
8923 Results
.push_back(Cycles32
.getValue(1));
8926 static SDValue
createGPRPairNode(SelectionDAG
&DAG
, SDValue V
) {
8927 SDLoc
dl(V
.getNode());
8928 SDValue VLo
= DAG
.getAnyExtOrTrunc(V
, dl
, MVT::i32
);
8929 SDValue VHi
= DAG
.getAnyExtOrTrunc(
8930 DAG
.getNode(ISD::SRL
, dl
, MVT::i64
, V
, DAG
.getConstant(32, dl
, MVT::i32
)),
8932 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
8934 std::swap (VLo
, VHi
);
8936 DAG
.getTargetConstant(ARM::GPRPairRegClassID
, dl
, MVT::i32
);
8937 SDValue SubReg0
= DAG
.getTargetConstant(ARM::gsub_0
, dl
, MVT::i32
);
8938 SDValue SubReg1
= DAG
.getTargetConstant(ARM::gsub_1
, dl
, MVT::i32
);
8939 const SDValue Ops
[] = { RegClass
, VLo
, SubReg0
, VHi
, SubReg1
};
8941 DAG
.getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
, MVT::Untyped
, Ops
), 0);
8944 static void ReplaceCMP_SWAP_64Results(SDNode
*N
,
8945 SmallVectorImpl
<SDValue
> & Results
,
8946 SelectionDAG
&DAG
) {
8947 assert(N
->getValueType(0) == MVT::i64
&&
8948 "AtomicCmpSwap on types less than 64 should be legal");
8949 SDValue Ops
[] = {N
->getOperand(1),
8950 createGPRPairNode(DAG
, N
->getOperand(2)),
8951 createGPRPairNode(DAG
, N
->getOperand(3)),
8953 SDNode
*CmpSwap
= DAG
.getMachineNode(
8954 ARM::CMP_SWAP_64
, SDLoc(N
),
8955 DAG
.getVTList(MVT::Untyped
, MVT::i32
, MVT::Other
), Ops
);
8957 MachineMemOperand
*MemOp
= cast
<MemSDNode
>(N
)->getMemOperand();
8958 DAG
.setNodeMemRefs(cast
<MachineSDNode
>(CmpSwap
), {MemOp
});
8960 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
8963 DAG
.getTargetExtractSubreg(isBigEndian
? ARM::gsub_1
: ARM::gsub_0
,
8964 SDLoc(N
), MVT::i32
, SDValue(CmpSwap
, 0)));
8966 DAG
.getTargetExtractSubreg(isBigEndian
? ARM::gsub_0
: ARM::gsub_1
,
8967 SDLoc(N
), MVT::i32
, SDValue(CmpSwap
, 0)));
8968 Results
.push_back(SDValue(CmpSwap
, 2));
8971 static SDValue
LowerFPOWI(SDValue Op
, const ARMSubtarget
&Subtarget
,
8972 SelectionDAG
&DAG
) {
8973 const auto &TLI
= DAG
.getTargetLoweringInfo();
8975 assert(Subtarget
.getTargetTriple().isOSMSVCRT() &&
8976 "Custom lowering is MSVCRT specific!");
8979 SDValue Val
= Op
.getOperand(0);
8980 MVT Ty
= Val
->getSimpleValueType(0);
8981 SDValue Exponent
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, Ty
, Op
.getOperand(1));
8982 SDValue Callee
= DAG
.getExternalSymbol(Ty
== MVT::f32
? "powf" : "pow",
8983 TLI
.getPointerTy(DAG
.getDataLayout()));
8985 TargetLowering::ArgListTy Args
;
8986 TargetLowering::ArgListEntry Entry
;
8989 Entry
.Ty
= Val
.getValueType().getTypeForEVT(*DAG
.getContext());
8990 Entry
.IsZExt
= true;
8991 Args
.push_back(Entry
);
8993 Entry
.Node
= Exponent
;
8994 Entry
.Ty
= Exponent
.getValueType().getTypeForEVT(*DAG
.getContext());
8995 Entry
.IsZExt
= true;
8996 Args
.push_back(Entry
);
8998 Type
*LCRTy
= Val
.getValueType().getTypeForEVT(*DAG
.getContext());
9000 // In the in-chain to the call is the entry node If we are emitting a
9001 // tailcall, the chain will be mutated if the node has a non-entry input
9003 SDValue InChain
= DAG
.getEntryNode();
9004 SDValue TCChain
= InChain
;
9006 const Function
&F
= DAG
.getMachineFunction().getFunction();
9007 bool IsTC
= TLI
.isInTailCallPosition(DAG
, Op
.getNode(), TCChain
) &&
9008 F
.getReturnType() == LCRTy
;
9012 TargetLowering::CallLoweringInfo
CLI(DAG
);
9015 .setCallee(CallingConv::ARM_AAPCS_VFP
, LCRTy
, Callee
, std::move(Args
))
9017 std::pair
<SDValue
, SDValue
> CI
= TLI
.LowerCallTo(CLI
);
9019 // Return the chain (the DAG root) if it is a tail call
9020 return !CI
.second
.getNode() ? DAG
.getRoot() : CI
.first
;
9023 SDValue
ARMTargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const {
9024 LLVM_DEBUG(dbgs() << "Lowering node: "; Op
.dump());
9025 switch (Op
.getOpcode()) {
9026 default: llvm_unreachable("Don't know how to custom lower this!");
9027 case ISD::WRITE_REGISTER
: return LowerWRITE_REGISTER(Op
, DAG
);
9028 case ISD::ConstantPool
: return LowerConstantPool(Op
, DAG
);
9029 case ISD::BlockAddress
: return LowerBlockAddress(Op
, DAG
);
9030 case ISD::GlobalAddress
: return LowerGlobalAddress(Op
, DAG
);
9031 case ISD::GlobalTLSAddress
: return LowerGlobalTLSAddress(Op
, DAG
);
9032 case ISD::SELECT
: return LowerSELECT(Op
, DAG
);
9033 case ISD::SELECT_CC
: return LowerSELECT_CC(Op
, DAG
);
9034 case ISD::BRCOND
: return LowerBRCOND(Op
, DAG
);
9035 case ISD::BR_CC
: return LowerBR_CC(Op
, DAG
);
9036 case ISD::BR_JT
: return LowerBR_JT(Op
, DAG
);
9037 case ISD::VASTART
: return LowerVASTART(Op
, DAG
);
9038 case ISD::ATOMIC_FENCE
: return LowerATOMIC_FENCE(Op
, DAG
, Subtarget
);
9039 case ISD::PREFETCH
: return LowerPREFETCH(Op
, DAG
, Subtarget
);
9040 case ISD::SINT_TO_FP
:
9041 case ISD::UINT_TO_FP
: return LowerINT_TO_FP(Op
, DAG
);
9042 case ISD::FP_TO_SINT
:
9043 case ISD::FP_TO_UINT
: return LowerFP_TO_INT(Op
, DAG
);
9044 case ISD::FCOPYSIGN
: return LowerFCOPYSIGN(Op
, DAG
);
9045 case ISD::RETURNADDR
: return LowerRETURNADDR(Op
, DAG
);
9046 case ISD::FRAMEADDR
: return LowerFRAMEADDR(Op
, DAG
);
9047 case ISD::EH_SJLJ_SETJMP
: return LowerEH_SJLJ_SETJMP(Op
, DAG
);
9048 case ISD::EH_SJLJ_LONGJMP
: return LowerEH_SJLJ_LONGJMP(Op
, DAG
);
9049 case ISD::EH_SJLJ_SETUP_DISPATCH
: return LowerEH_SJLJ_SETUP_DISPATCH(Op
, DAG
);
9050 case ISD::INTRINSIC_VOID
: return LowerINTRINSIC_VOID(Op
, DAG
, Subtarget
);
9051 case ISD::INTRINSIC_WO_CHAIN
: return LowerINTRINSIC_WO_CHAIN(Op
, DAG
,
9053 case ISD::BITCAST
: return ExpandBITCAST(Op
.getNode(), DAG
, Subtarget
);
9056 case ISD::SRA
: return LowerShift(Op
.getNode(), DAG
, Subtarget
);
9057 case ISD::SREM
: return LowerREM(Op
.getNode(), DAG
);
9058 case ISD::UREM
: return LowerREM(Op
.getNode(), DAG
);
9059 case ISD::SHL_PARTS
: return LowerShiftLeftParts(Op
, DAG
);
9060 case ISD::SRL_PARTS
:
9061 case ISD::SRA_PARTS
: return LowerShiftRightParts(Op
, DAG
);
9063 case ISD::CTTZ_ZERO_UNDEF
: return LowerCTTZ(Op
.getNode(), DAG
, Subtarget
);
9064 case ISD::CTPOP
: return LowerCTPOP(Op
.getNode(), DAG
, Subtarget
);
9065 case ISD::SETCC
: return LowerVSETCC(Op
, DAG
, Subtarget
);
9066 case ISD::SETCCCARRY
: return LowerSETCCCARRY(Op
, DAG
);
9067 case ISD::ConstantFP
: return LowerConstantFP(Op
, DAG
, Subtarget
);
9068 case ISD::BUILD_VECTOR
: return LowerBUILD_VECTOR(Op
, DAG
, Subtarget
);
9069 case ISD::VECTOR_SHUFFLE
: return LowerVECTOR_SHUFFLE(Op
, DAG
, Subtarget
);
9070 case ISD::EXTRACT_SUBVECTOR
: return LowerEXTRACT_SUBVECTOR(Op
, DAG
, Subtarget
);
9071 case ISD::INSERT_VECTOR_ELT
: return LowerINSERT_VECTOR_ELT(Op
, DAG
);
9072 case ISD::EXTRACT_VECTOR_ELT
: return LowerEXTRACT_VECTOR_ELT(Op
, DAG
, Subtarget
);
9073 case ISD::CONCAT_VECTORS
: return LowerCONCAT_VECTORS(Op
, DAG
, Subtarget
);
9074 case ISD::FLT_ROUNDS_
: return LowerFLT_ROUNDS_(Op
, DAG
);
9075 case ISD::MUL
: return LowerMUL(Op
, DAG
);
9077 if (Subtarget
->isTargetWindows() && !Op
.getValueType().isVector())
9078 return LowerDIV_Windows(Op
, DAG
, /* Signed */ true);
9079 return LowerSDIV(Op
, DAG
, Subtarget
);
9081 if (Subtarget
->isTargetWindows() && !Op
.getValueType().isVector())
9082 return LowerDIV_Windows(Op
, DAG
, /* Signed */ false);
9083 return LowerUDIV(Op
, DAG
, Subtarget
);
9085 case ISD::SUBCARRY
: return LowerADDSUBCARRY(Op
, DAG
);
9088 return LowerSignedALUO(Op
, DAG
);
9091 return LowerUnsignedALUO(Op
, DAG
);
9093 return LowerPredicateLoad(Op
, DAG
);
9095 return LowerPredicateStore(Op
, DAG
);
9097 return LowerMLOAD(Op
, DAG
);
9098 case ISD::ATOMIC_LOAD
:
9099 case ISD::ATOMIC_STORE
: return LowerAtomicLoadStore(Op
, DAG
);
9100 case ISD::FSINCOS
: return LowerFSINCOS(Op
, DAG
);
9102 case ISD::UDIVREM
: return LowerDivRem(Op
, DAG
);
9103 case ISD::DYNAMIC_STACKALLOC
:
9104 if (Subtarget
->isTargetWindows())
9105 return LowerDYNAMIC_STACKALLOC(Op
, DAG
);
9106 llvm_unreachable("Don't know how to custom lower this!");
9107 case ISD::FP_ROUND
: return LowerFP_ROUND(Op
, DAG
);
9108 case ISD::FP_EXTEND
: return LowerFP_EXTEND(Op
, DAG
);
9109 case ISD::FPOWI
: return LowerFPOWI(Op
, *Subtarget
, DAG
);
9110 case ARMISD::WIN__DBZCHK
: return SDValue();
9114 static void ReplaceLongIntrinsic(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
9115 SelectionDAG
&DAG
) {
9116 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
9118 if (IntNo
== Intrinsic::arm_smlald
)
9119 Opc
= ARMISD::SMLALD
;
9120 else if (IntNo
== Intrinsic::arm_smlaldx
)
9121 Opc
= ARMISD::SMLALDX
;
9122 else if (IntNo
== Intrinsic::arm_smlsld
)
9123 Opc
= ARMISD::SMLSLD
;
9124 else if (IntNo
== Intrinsic::arm_smlsldx
)
9125 Opc
= ARMISD::SMLSLDX
;
9130 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
9132 DAG
.getConstant(0, dl
, MVT::i32
));
9133 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
9135 DAG
.getConstant(1, dl
, MVT::i32
));
9137 SDValue LongMul
= DAG
.getNode(Opc
, dl
,
9138 DAG
.getVTList(MVT::i32
, MVT::i32
),
9139 N
->getOperand(1), N
->getOperand(2),
9141 Results
.push_back(LongMul
.getValue(0));
9142 Results
.push_back(LongMul
.getValue(1));
9145 /// ReplaceNodeResults - Replace the results of node with an illegal result
9146 /// type with new values built out of custom code.
9147 void ARMTargetLowering::ReplaceNodeResults(SDNode
*N
,
9148 SmallVectorImpl
<SDValue
> &Results
,
9149 SelectionDAG
&DAG
) const {
9151 switch (N
->getOpcode()) {
9153 llvm_unreachable("Don't know how to custom expand this!");
9154 case ISD::READ_REGISTER
:
9155 ExpandREAD_REGISTER(N
, Results
, DAG
);
9158 Res
= ExpandBITCAST(N
, DAG
, Subtarget
);
9163 Res
= Expand64BitShift(N
, DAG
, Subtarget
);
9167 Res
= LowerREM(N
, DAG
);
9171 Res
= LowerDivRem(SDValue(N
, 0), DAG
);
9172 assert(Res
.getNumOperands() == 2 && "DivRem needs two values");
9173 Results
.push_back(Res
.getValue(0));
9174 Results
.push_back(Res
.getValue(1));
9176 case ISD::READCYCLECOUNTER
:
9177 ReplaceREADCYCLECOUNTER(N
, Results
, DAG
, Subtarget
);
9181 assert(Subtarget
->isTargetWindows() && "can only expand DIV on Windows");
9182 return ExpandDIV_Windows(SDValue(N
, 0), DAG
, N
->getOpcode() == ISD::SDIV
,
9184 case ISD::ATOMIC_CMP_SWAP
:
9185 ReplaceCMP_SWAP_64Results(N
, Results
, DAG
);
9187 case ISD::INTRINSIC_WO_CHAIN
:
9188 return ReplaceLongIntrinsic(N
, Results
, DAG
);
9190 lowerABS(N
, Results
, DAG
);
9195 Results
.push_back(Res
);
9198 //===----------------------------------------------------------------------===//
9199 // ARM Scheduler Hooks
9200 //===----------------------------------------------------------------------===//
9202 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
9203 /// registers the function context.
9204 void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr
&MI
,
9205 MachineBasicBlock
*MBB
,
9206 MachineBasicBlock
*DispatchBB
,
9208 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
9209 "ROPI/RWPI not currently supported with SjLj");
9210 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9211 DebugLoc dl
= MI
.getDebugLoc();
9212 MachineFunction
*MF
= MBB
->getParent();
9213 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
9214 MachineConstantPool
*MCP
= MF
->getConstantPool();
9215 ARMFunctionInfo
*AFI
= MF
->getInfo
<ARMFunctionInfo
>();
9216 const Function
&F
= MF
->getFunction();
9218 bool isThumb
= Subtarget
->isThumb();
9219 bool isThumb2
= Subtarget
->isThumb2();
9221 unsigned PCLabelId
= AFI
->createPICLabelUId();
9222 unsigned PCAdj
= (isThumb
|| isThumb2
) ? 4 : 8;
9223 ARMConstantPoolValue
*CPV
=
9224 ARMConstantPoolMBB::Create(F
.getContext(), DispatchBB
, PCLabelId
, PCAdj
);
9225 unsigned CPI
= MCP
->getConstantPoolIndex(CPV
, 4);
9227 const TargetRegisterClass
*TRC
= isThumb
? &ARM::tGPRRegClass
9228 : &ARM::GPRRegClass
;
9230 // Grab constant pool and fixed stack memory operands.
9231 MachineMemOperand
*CPMMO
=
9232 MF
->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF
),
9233 MachineMemOperand::MOLoad
, 4, 4);
9235 MachineMemOperand
*FIMMOSt
=
9236 MF
->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF
, FI
),
9237 MachineMemOperand::MOStore
, 4, 4);
9239 // Load the address of the dispatch MBB into the jump buffer.
9241 // Incoming value: jbuf
9242 // ldr.n r5, LCPI1_1
9245 // str r5, [$jbuf, #+4] ; &jbuf[1]
9246 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9247 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2LDRpci
), NewVReg1
)
9248 .addConstantPoolIndex(CPI
)
9249 .addMemOperand(CPMMO
)
9250 .add(predOps(ARMCC::AL
));
9251 // Set the low bit because of thumb mode.
9252 Register NewVReg2
= MRI
->createVirtualRegister(TRC
);
9253 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2ORRri
), NewVReg2
)
9254 .addReg(NewVReg1
, RegState::Kill
)
9256 .add(predOps(ARMCC::AL
))
9258 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9259 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tPICADD
), NewVReg3
)
9260 .addReg(NewVReg2
, RegState::Kill
)
9262 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2STRi12
))
9263 .addReg(NewVReg3
, RegState::Kill
)
9265 .addImm(36) // &jbuf[1] :: pc
9266 .addMemOperand(FIMMOSt
)
9267 .add(predOps(ARMCC::AL
));
9268 } else if (isThumb
) {
9269 // Incoming value: jbuf
9270 // ldr.n r1, LCPI1_4
9274 // add r2, $jbuf, #+4 ; &jbuf[1]
9276 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9277 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tLDRpci
), NewVReg1
)
9278 .addConstantPoolIndex(CPI
)
9279 .addMemOperand(CPMMO
)
9280 .add(predOps(ARMCC::AL
));
9281 Register NewVReg2
= MRI
->createVirtualRegister(TRC
);
9282 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tPICADD
), NewVReg2
)
9283 .addReg(NewVReg1
, RegState::Kill
)
9285 // Set the low bit because of thumb mode.
9286 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9287 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tMOVi8
), NewVReg3
)
9288 .addReg(ARM::CPSR
, RegState::Define
)
9290 .add(predOps(ARMCC::AL
));
9291 Register NewVReg4
= MRI
->createVirtualRegister(TRC
);
9292 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tORR
), NewVReg4
)
9293 .addReg(ARM::CPSR
, RegState::Define
)
9294 .addReg(NewVReg2
, RegState::Kill
)
9295 .addReg(NewVReg3
, RegState::Kill
)
9296 .add(predOps(ARMCC::AL
));
9297 Register NewVReg5
= MRI
->createVirtualRegister(TRC
);
9298 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tADDframe
), NewVReg5
)
9300 .addImm(36); // &jbuf[1] :: pc
9301 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tSTRi
))
9302 .addReg(NewVReg4
, RegState::Kill
)
9303 .addReg(NewVReg5
, RegState::Kill
)
9305 .addMemOperand(FIMMOSt
)
9306 .add(predOps(ARMCC::AL
));
9308 // Incoming value: jbuf
9311 // str r1, [$jbuf, #+4] ; &jbuf[1]
9312 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9313 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::LDRi12
), NewVReg1
)
9314 .addConstantPoolIndex(CPI
)
9316 .addMemOperand(CPMMO
)
9317 .add(predOps(ARMCC::AL
));
9318 Register NewVReg2
= MRI
->createVirtualRegister(TRC
);
9319 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::PICADD
), NewVReg2
)
9320 .addReg(NewVReg1
, RegState::Kill
)
9322 .add(predOps(ARMCC::AL
));
9323 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::STRi12
))
9324 .addReg(NewVReg2
, RegState::Kill
)
9326 .addImm(36) // &jbuf[1] :: pc
9327 .addMemOperand(FIMMOSt
)
9328 .add(predOps(ARMCC::AL
));
9332 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr
&MI
,
9333 MachineBasicBlock
*MBB
) const {
9334 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9335 DebugLoc dl
= MI
.getDebugLoc();
9336 MachineFunction
*MF
= MBB
->getParent();
9337 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
9338 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
9339 int FI
= MFI
.getFunctionContextIndex();
9341 const TargetRegisterClass
*TRC
= Subtarget
->isThumb() ? &ARM::tGPRRegClass
9342 : &ARM::GPRnopcRegClass
;
9344 // Get a mapping of the call site numbers to all of the landing pads they're
9346 DenseMap
<unsigned, SmallVector
<MachineBasicBlock
*, 2>> CallSiteNumToLPad
;
9347 unsigned MaxCSNum
= 0;
9348 for (MachineFunction::iterator BB
= MF
->begin(), E
= MF
->end(); BB
!= E
;
9350 if (!BB
->isEHPad()) continue;
9352 // FIXME: We should assert that the EH_LABEL is the first MI in the landing
9354 for (MachineBasicBlock::iterator
9355 II
= BB
->begin(), IE
= BB
->end(); II
!= IE
; ++II
) {
9356 if (!II
->isEHLabel()) continue;
9358 MCSymbol
*Sym
= II
->getOperand(0).getMCSymbol();
9359 if (!MF
->hasCallSiteLandingPad(Sym
)) continue;
9361 SmallVectorImpl
<unsigned> &CallSiteIdxs
= MF
->getCallSiteLandingPad(Sym
);
9362 for (SmallVectorImpl
<unsigned>::iterator
9363 CSI
= CallSiteIdxs
.begin(), CSE
= CallSiteIdxs
.end();
9364 CSI
!= CSE
; ++CSI
) {
9365 CallSiteNumToLPad
[*CSI
].push_back(&*BB
);
9366 MaxCSNum
= std::max(MaxCSNum
, *CSI
);
9372 // Get an ordered list of the machine basic blocks for the jump table.
9373 std::vector
<MachineBasicBlock
*> LPadList
;
9374 SmallPtrSet
<MachineBasicBlock
*, 32> InvokeBBs
;
9375 LPadList
.reserve(CallSiteNumToLPad
.size());
9376 for (unsigned I
= 1; I
<= MaxCSNum
; ++I
) {
9377 SmallVectorImpl
<MachineBasicBlock
*> &MBBList
= CallSiteNumToLPad
[I
];
9378 for (SmallVectorImpl
<MachineBasicBlock
*>::iterator
9379 II
= MBBList
.begin(), IE
= MBBList
.end(); II
!= IE
; ++II
) {
9380 LPadList
.push_back(*II
);
9381 InvokeBBs
.insert((*II
)->pred_begin(), (*II
)->pred_end());
9385 assert(!LPadList
.empty() &&
9386 "No landing pad destinations for the dispatch jump table!");
9388 // Create the jump table and associated information.
9389 MachineJumpTableInfo
*JTI
=
9390 MF
->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline
);
9391 unsigned MJTI
= JTI
->createJumpTableIndex(LPadList
);
9393 // Create the MBBs for the dispatch code.
9395 // Shove the dispatch's address into the return slot in the function context.
9396 MachineBasicBlock
*DispatchBB
= MF
->CreateMachineBasicBlock();
9397 DispatchBB
->setIsEHPad();
9399 MachineBasicBlock
*TrapBB
= MF
->CreateMachineBasicBlock();
9400 unsigned trap_opcode
;
9401 if (Subtarget
->isThumb())
9402 trap_opcode
= ARM::tTRAP
;
9404 trap_opcode
= Subtarget
->useNaClTrap() ? ARM::TRAPNaCl
: ARM::TRAP
;
9406 BuildMI(TrapBB
, dl
, TII
->get(trap_opcode
));
9407 DispatchBB
->addSuccessor(TrapBB
);
9409 MachineBasicBlock
*DispContBB
= MF
->CreateMachineBasicBlock();
9410 DispatchBB
->addSuccessor(DispContBB
);
9413 MF
->insert(MF
->end(), DispatchBB
);
9414 MF
->insert(MF
->end(), DispContBB
);
9415 MF
->insert(MF
->end(), TrapBB
);
9417 // Insert code into the entry block that creates and registers the function
9419 SetupEntryBlockForSjLj(MI
, MBB
, DispatchBB
, FI
);
9421 MachineMemOperand
*FIMMOLd
= MF
->getMachineMemOperand(
9422 MachinePointerInfo::getFixedStack(*MF
, FI
),
9423 MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
, 4, 4);
9425 MachineInstrBuilder MIB
;
9426 MIB
= BuildMI(DispatchBB
, dl
, TII
->get(ARM::Int_eh_sjlj_dispatchsetup
));
9428 const ARMBaseInstrInfo
*AII
= static_cast<const ARMBaseInstrInfo
*>(TII
);
9429 const ARMBaseRegisterInfo
&RI
= AII
->getRegisterInfo();
9431 // Add a register mask with no preserved registers. This results in all
9432 // registers being marked as clobbered. This can't work if the dispatch block
9433 // is in a Thumb1 function and is linked with ARM code which uses the FP
9434 // registers, as there is no way to preserve the FP registers in Thumb1 mode.
9435 MIB
.addRegMask(RI
.getSjLjDispatchPreservedMask(*MF
));
9437 bool IsPositionIndependent
= isPositionIndependent();
9438 unsigned NumLPads
= LPadList
.size();
9439 if (Subtarget
->isThumb2()) {
9440 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9441 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2LDRi12
), NewVReg1
)
9444 .addMemOperand(FIMMOLd
)
9445 .add(predOps(ARMCC::AL
));
9447 if (NumLPads
< 256) {
9448 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2CMPri
))
9450 .addImm(LPadList
.size())
9451 .add(predOps(ARMCC::AL
));
9453 Register VReg1
= MRI
->createVirtualRegister(TRC
);
9454 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2MOVi16
), VReg1
)
9455 .addImm(NumLPads
& 0xFFFF)
9456 .add(predOps(ARMCC::AL
));
9458 unsigned VReg2
= VReg1
;
9459 if ((NumLPads
& 0xFFFF0000) != 0) {
9460 VReg2
= MRI
->createVirtualRegister(TRC
);
9461 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2MOVTi16
), VReg2
)
9463 .addImm(NumLPads
>> 16)
9464 .add(predOps(ARMCC::AL
));
9467 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2CMPrr
))
9470 .add(predOps(ARMCC::AL
));
9473 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2Bcc
))
9478 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9479 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2LEApcrelJT
), NewVReg3
)
9480 .addJumpTableIndex(MJTI
)
9481 .add(predOps(ARMCC::AL
));
9483 Register NewVReg4
= MRI
->createVirtualRegister(TRC
);
9484 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2ADDrs
), NewVReg4
)
9485 .addReg(NewVReg3
, RegState::Kill
)
9487 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl
, 2))
9488 .add(predOps(ARMCC::AL
))
9491 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2BR_JT
))
9492 .addReg(NewVReg4
, RegState::Kill
)
9494 .addJumpTableIndex(MJTI
);
9495 } else if (Subtarget
->isThumb()) {
9496 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9497 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tLDRspi
), NewVReg1
)
9500 .addMemOperand(FIMMOLd
)
9501 .add(predOps(ARMCC::AL
));
9503 if (NumLPads
< 256) {
9504 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tCMPi8
))
9507 .add(predOps(ARMCC::AL
));
9509 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
9510 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
9511 const Constant
*C
= ConstantInt::get(Int32Ty
, NumLPads
);
9513 // MachineConstantPool wants an explicit alignment.
9514 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
9516 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
9517 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
9519 Register VReg1
= MRI
->createVirtualRegister(TRC
);
9520 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tLDRpci
))
9521 .addReg(VReg1
, RegState::Define
)
9522 .addConstantPoolIndex(Idx
)
9523 .add(predOps(ARMCC::AL
));
9524 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tCMPr
))
9527 .add(predOps(ARMCC::AL
));
9530 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tBcc
))
9535 Register NewVReg2
= MRI
->createVirtualRegister(TRC
);
9536 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLSLri
), NewVReg2
)
9537 .addReg(ARM::CPSR
, RegState::Define
)
9540 .add(predOps(ARMCC::AL
));
9542 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9543 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLEApcrelJT
), NewVReg3
)
9544 .addJumpTableIndex(MJTI
)
9545 .add(predOps(ARMCC::AL
));
9547 Register NewVReg4
= MRI
->createVirtualRegister(TRC
);
9548 BuildMI(DispContBB
, dl
, TII
->get(ARM::tADDrr
), NewVReg4
)
9549 .addReg(ARM::CPSR
, RegState::Define
)
9550 .addReg(NewVReg2
, RegState::Kill
)
9552 .add(predOps(ARMCC::AL
));
9554 MachineMemOperand
*JTMMOLd
= MF
->getMachineMemOperand(
9555 MachinePointerInfo::getJumpTable(*MF
), MachineMemOperand::MOLoad
, 4, 4);
9557 Register NewVReg5
= MRI
->createVirtualRegister(TRC
);
9558 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLDRi
), NewVReg5
)
9559 .addReg(NewVReg4
, RegState::Kill
)
9561 .addMemOperand(JTMMOLd
)
9562 .add(predOps(ARMCC::AL
));
9564 unsigned NewVReg6
= NewVReg5
;
9565 if (IsPositionIndependent
) {
9566 NewVReg6
= MRI
->createVirtualRegister(TRC
);
9567 BuildMI(DispContBB
, dl
, TII
->get(ARM::tADDrr
), NewVReg6
)
9568 .addReg(ARM::CPSR
, RegState::Define
)
9569 .addReg(NewVReg5
, RegState::Kill
)
9571 .add(predOps(ARMCC::AL
));
9574 BuildMI(DispContBB
, dl
, TII
->get(ARM::tBR_JTr
))
9575 .addReg(NewVReg6
, RegState::Kill
)
9576 .addJumpTableIndex(MJTI
);
9578 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9579 BuildMI(DispatchBB
, dl
, TII
->get(ARM::LDRi12
), NewVReg1
)
9582 .addMemOperand(FIMMOLd
)
9583 .add(predOps(ARMCC::AL
));
9585 if (NumLPads
< 256) {
9586 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPri
))
9589 .add(predOps(ARMCC::AL
));
9590 } else if (Subtarget
->hasV6T2Ops() && isUInt
<16>(NumLPads
)) {
9591 Register VReg1
= MRI
->createVirtualRegister(TRC
);
9592 BuildMI(DispatchBB
, dl
, TII
->get(ARM::MOVi16
), VReg1
)
9593 .addImm(NumLPads
& 0xFFFF)
9594 .add(predOps(ARMCC::AL
));
9596 unsigned VReg2
= VReg1
;
9597 if ((NumLPads
& 0xFFFF0000) != 0) {
9598 VReg2
= MRI
->createVirtualRegister(TRC
);
9599 BuildMI(DispatchBB
, dl
, TII
->get(ARM::MOVTi16
), VReg2
)
9601 .addImm(NumLPads
>> 16)
9602 .add(predOps(ARMCC::AL
));
9605 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPrr
))
9608 .add(predOps(ARMCC::AL
));
9610 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
9611 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
9612 const Constant
*C
= ConstantInt::get(Int32Ty
, NumLPads
);
9614 // MachineConstantPool wants an explicit alignment.
9615 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
9617 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
9618 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
9620 Register VReg1
= MRI
->createVirtualRegister(TRC
);
9621 BuildMI(DispatchBB
, dl
, TII
->get(ARM::LDRcp
))
9622 .addReg(VReg1
, RegState::Define
)
9623 .addConstantPoolIndex(Idx
)
9625 .add(predOps(ARMCC::AL
));
9626 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPrr
))
9628 .addReg(VReg1
, RegState::Kill
)
9629 .add(predOps(ARMCC::AL
));
9632 BuildMI(DispatchBB
, dl
, TII
->get(ARM::Bcc
))
9637 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9638 BuildMI(DispContBB
, dl
, TII
->get(ARM::MOVsi
), NewVReg3
)
9640 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl
, 2))
9641 .add(predOps(ARMCC::AL
))
9643 Register NewVReg4
= MRI
->createVirtualRegister(TRC
);
9644 BuildMI(DispContBB
, dl
, TII
->get(ARM::LEApcrelJT
), NewVReg4
)
9645 .addJumpTableIndex(MJTI
)
9646 .add(predOps(ARMCC::AL
));
9648 MachineMemOperand
*JTMMOLd
= MF
->getMachineMemOperand(
9649 MachinePointerInfo::getJumpTable(*MF
), MachineMemOperand::MOLoad
, 4, 4);
9650 Register NewVReg5
= MRI
->createVirtualRegister(TRC
);
9651 BuildMI(DispContBB
, dl
, TII
->get(ARM::LDRrs
), NewVReg5
)
9652 .addReg(NewVReg3
, RegState::Kill
)
9655 .addMemOperand(JTMMOLd
)
9656 .add(predOps(ARMCC::AL
));
9658 if (IsPositionIndependent
) {
9659 BuildMI(DispContBB
, dl
, TII
->get(ARM::BR_JTadd
))
9660 .addReg(NewVReg5
, RegState::Kill
)
9662 .addJumpTableIndex(MJTI
);
9664 BuildMI(DispContBB
, dl
, TII
->get(ARM::BR_JTr
))
9665 .addReg(NewVReg5
, RegState::Kill
)
9666 .addJumpTableIndex(MJTI
);
9670 // Add the jump table entries as successors to the MBB.
9671 SmallPtrSet
<MachineBasicBlock
*, 8> SeenMBBs
;
9672 for (std::vector
<MachineBasicBlock
*>::iterator
9673 I
= LPadList
.begin(), E
= LPadList
.end(); I
!= E
; ++I
) {
9674 MachineBasicBlock
*CurMBB
= *I
;
9675 if (SeenMBBs
.insert(CurMBB
).second
)
9676 DispContBB
->addSuccessor(CurMBB
);
9679 // N.B. the order the invoke BBs are processed in doesn't matter here.
9680 const MCPhysReg
*SavedRegs
= RI
.getCalleeSavedRegs(MF
);
9681 SmallVector
<MachineBasicBlock
*, 64> MBBLPads
;
9682 for (MachineBasicBlock
*BB
: InvokeBBs
) {
9684 // Remove the landing pad successor from the invoke block and replace it
9685 // with the new dispatch block.
9686 SmallVector
<MachineBasicBlock
*, 4> Successors(BB
->succ_begin(),
9688 while (!Successors
.empty()) {
9689 MachineBasicBlock
*SMBB
= Successors
.pop_back_val();
9690 if (SMBB
->isEHPad()) {
9691 BB
->removeSuccessor(SMBB
);
9692 MBBLPads
.push_back(SMBB
);
9696 BB
->addSuccessor(DispatchBB
, BranchProbability::getZero());
9697 BB
->normalizeSuccProbs();
9699 // Find the invoke call and mark all of the callee-saved registers as
9700 // 'implicit defined' so that they're spilled. This prevents code from
9701 // moving instructions to before the EH block, where they will never be
9703 for (MachineBasicBlock::reverse_iterator
9704 II
= BB
->rbegin(), IE
= BB
->rend(); II
!= IE
; ++II
) {
9705 if (!II
->isCall()) continue;
9707 DenseMap
<unsigned, bool> DefRegs
;
9708 for (MachineInstr::mop_iterator
9709 OI
= II
->operands_begin(), OE
= II
->operands_end();
9711 if (!OI
->isReg()) continue;
9712 DefRegs
[OI
->getReg()] = true;
9715 MachineInstrBuilder
MIB(*MF
, &*II
);
9717 for (unsigned i
= 0; SavedRegs
[i
] != 0; ++i
) {
9718 unsigned Reg
= SavedRegs
[i
];
9719 if (Subtarget
->isThumb2() &&
9720 !ARM::tGPRRegClass
.contains(Reg
) &&
9721 !ARM::hGPRRegClass
.contains(Reg
))
9723 if (Subtarget
->isThumb1Only() && !ARM::tGPRRegClass
.contains(Reg
))
9725 if (!Subtarget
->isThumb() && !ARM::GPRRegClass
.contains(Reg
))
9728 MIB
.addReg(Reg
, RegState::ImplicitDefine
| RegState::Dead
);
9735 // Mark all former landing pads as non-landing pads. The dispatch is the only
9737 for (SmallVectorImpl
<MachineBasicBlock
*>::iterator
9738 I
= MBBLPads
.begin(), E
= MBBLPads
.end(); I
!= E
; ++I
)
9739 (*I
)->setIsEHPad(false);
9741 // The instruction is gone now.
9742 MI
.eraseFromParent();
9746 MachineBasicBlock
*OtherSucc(MachineBasicBlock
*MBB
, MachineBasicBlock
*Succ
) {
9747 for (MachineBasicBlock::succ_iterator I
= MBB
->succ_begin(),
9748 E
= MBB
->succ_end(); I
!= E
; ++I
)
9751 llvm_unreachable("Expecting a BB with two successors!");
9754 /// Return the load opcode for a given load size. If load size >= 8,
9755 /// neon opcode will be returned.
9756 static unsigned getLdOpcode(unsigned LdSize
, bool IsThumb1
, bool IsThumb2
) {
9758 return LdSize
== 16 ? ARM::VLD1q32wb_fixed
9759 : LdSize
== 8 ? ARM::VLD1d32wb_fixed
: 0;
9761 return LdSize
== 4 ? ARM::tLDRi
9762 : LdSize
== 2 ? ARM::tLDRHi
9763 : LdSize
== 1 ? ARM::tLDRBi
: 0;
9765 return LdSize
== 4 ? ARM::t2LDR_POST
9766 : LdSize
== 2 ? ARM::t2LDRH_POST
9767 : LdSize
== 1 ? ARM::t2LDRB_POST
: 0;
9768 return LdSize
== 4 ? ARM::LDR_POST_IMM
9769 : LdSize
== 2 ? ARM::LDRH_POST
9770 : LdSize
== 1 ? ARM::LDRB_POST_IMM
: 0;
9773 /// Return the store opcode for a given store size. If store size >= 8,
9774 /// neon opcode will be returned.
9775 static unsigned getStOpcode(unsigned StSize
, bool IsThumb1
, bool IsThumb2
) {
9777 return StSize
== 16 ? ARM::VST1q32wb_fixed
9778 : StSize
== 8 ? ARM::VST1d32wb_fixed
: 0;
9780 return StSize
== 4 ? ARM::tSTRi
9781 : StSize
== 2 ? ARM::tSTRHi
9782 : StSize
== 1 ? ARM::tSTRBi
: 0;
9784 return StSize
== 4 ? ARM::t2STR_POST
9785 : StSize
== 2 ? ARM::t2STRH_POST
9786 : StSize
== 1 ? ARM::t2STRB_POST
: 0;
9787 return StSize
== 4 ? ARM::STR_POST_IMM
9788 : StSize
== 2 ? ARM::STRH_POST
9789 : StSize
== 1 ? ARM::STRB_POST_IMM
: 0;
9792 /// Emit a post-increment load operation with given size. The instructions
9793 /// will be added to BB at Pos.
9794 static void emitPostLd(MachineBasicBlock
*BB
, MachineBasicBlock::iterator Pos
,
9795 const TargetInstrInfo
*TII
, const DebugLoc
&dl
,
9796 unsigned LdSize
, unsigned Data
, unsigned AddrIn
,
9797 unsigned AddrOut
, bool IsThumb1
, bool IsThumb2
) {
9798 unsigned LdOpc
= getLdOpcode(LdSize
, IsThumb1
, IsThumb2
);
9799 assert(LdOpc
!= 0 && "Should have a load opcode");
9801 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9802 .addReg(AddrOut
, RegState::Define
)
9805 .add(predOps(ARMCC::AL
));
9806 } else if (IsThumb1
) {
9807 // load + update AddrIn
9808 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9811 .add(predOps(ARMCC::AL
));
9812 BuildMI(*BB
, Pos
, dl
, TII
->get(ARM::tADDi8
), AddrOut
)
9813 .add(t1CondCodeOp())
9816 .add(predOps(ARMCC::AL
));
9817 } else if (IsThumb2
) {
9818 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9819 .addReg(AddrOut
, RegState::Define
)
9822 .add(predOps(ARMCC::AL
));
9824 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9825 .addReg(AddrOut
, RegState::Define
)
9829 .add(predOps(ARMCC::AL
));
9833 /// Emit a post-increment store operation with given size. The instructions
9834 /// will be added to BB at Pos.
9835 static void emitPostSt(MachineBasicBlock
*BB
, MachineBasicBlock::iterator Pos
,
9836 const TargetInstrInfo
*TII
, const DebugLoc
&dl
,
9837 unsigned StSize
, unsigned Data
, unsigned AddrIn
,
9838 unsigned AddrOut
, bool IsThumb1
, bool IsThumb2
) {
9839 unsigned StOpc
= getStOpcode(StSize
, IsThumb1
, IsThumb2
);
9840 assert(StOpc
!= 0 && "Should have a store opcode");
9842 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9846 .add(predOps(ARMCC::AL
));
9847 } else if (IsThumb1
) {
9848 // store + update AddrIn
9849 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
))
9853 .add(predOps(ARMCC::AL
));
9854 BuildMI(*BB
, Pos
, dl
, TII
->get(ARM::tADDi8
), AddrOut
)
9855 .add(t1CondCodeOp())
9858 .add(predOps(ARMCC::AL
));
9859 } else if (IsThumb2
) {
9860 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9864 .add(predOps(ARMCC::AL
));
9866 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9871 .add(predOps(ARMCC::AL
));
9876 ARMTargetLowering::EmitStructByval(MachineInstr
&MI
,
9877 MachineBasicBlock
*BB
) const {
9878 // This pseudo instruction has 3 operands: dst, src, size
9879 // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
9880 // Otherwise, we will generate unrolled scalar copies.
9881 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9882 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
9883 MachineFunction::iterator It
= ++BB
->getIterator();
9885 Register dest
= MI
.getOperand(0).getReg();
9886 Register src
= MI
.getOperand(1).getReg();
9887 unsigned SizeVal
= MI
.getOperand(2).getImm();
9888 unsigned Align
= MI
.getOperand(3).getImm();
9889 DebugLoc dl
= MI
.getDebugLoc();
9891 MachineFunction
*MF
= BB
->getParent();
9892 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
9893 unsigned UnitSize
= 0;
9894 const TargetRegisterClass
*TRC
= nullptr;
9895 const TargetRegisterClass
*VecTRC
= nullptr;
9897 bool IsThumb1
= Subtarget
->isThumb1Only();
9898 bool IsThumb2
= Subtarget
->isThumb2();
9899 bool IsThumb
= Subtarget
->isThumb();
9903 } else if (Align
& 2) {
9906 // Check whether we can use NEON instructions.
9907 if (!MF
->getFunction().hasFnAttribute(Attribute::NoImplicitFloat
) &&
9908 Subtarget
->hasNEON()) {
9909 if ((Align
% 16 == 0) && SizeVal
>= 16)
9911 else if ((Align
% 8 == 0) && SizeVal
>= 8)
9914 // Can't use NEON instructions.
9919 // Select the correct opcode and register class for unit size load/store
9920 bool IsNeon
= UnitSize
>= 8;
9921 TRC
= IsThumb
? &ARM::tGPRRegClass
: &ARM::GPRRegClass
;
9923 VecTRC
= UnitSize
== 16 ? &ARM::DPairRegClass
9924 : UnitSize
== 8 ? &ARM::DPRRegClass
9927 unsigned BytesLeft
= SizeVal
% UnitSize
;
9928 unsigned LoopSize
= SizeVal
- BytesLeft
;
9930 if (SizeVal
<= Subtarget
->getMaxInlineSizeThreshold()) {
9931 // Use LDR and STR to copy.
9932 // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
9933 // [destOut] = STR_POST(scratch, destIn, UnitSize)
9934 unsigned srcIn
= src
;
9935 unsigned destIn
= dest
;
9936 for (unsigned i
= 0; i
< LoopSize
; i
+=UnitSize
) {
9937 Register srcOut
= MRI
.createVirtualRegister(TRC
);
9938 Register destOut
= MRI
.createVirtualRegister(TRC
);
9939 Register scratch
= MRI
.createVirtualRegister(IsNeon
? VecTRC
: TRC
);
9940 emitPostLd(BB
, MI
, TII
, dl
, UnitSize
, scratch
, srcIn
, srcOut
,
9941 IsThumb1
, IsThumb2
);
9942 emitPostSt(BB
, MI
, TII
, dl
, UnitSize
, scratch
, destIn
, destOut
,
9943 IsThumb1
, IsThumb2
);
9948 // Handle the leftover bytes with LDRB and STRB.
9949 // [scratch, srcOut] = LDRB_POST(srcIn, 1)
9950 // [destOut] = STRB_POST(scratch, destIn, 1)
9951 for (unsigned i
= 0; i
< BytesLeft
; i
++) {
9952 Register srcOut
= MRI
.createVirtualRegister(TRC
);
9953 Register destOut
= MRI
.createVirtualRegister(TRC
);
9954 Register scratch
= MRI
.createVirtualRegister(TRC
);
9955 emitPostLd(BB
, MI
, TII
, dl
, 1, scratch
, srcIn
, srcOut
,
9956 IsThumb1
, IsThumb2
);
9957 emitPostSt(BB
, MI
, TII
, dl
, 1, scratch
, destIn
, destOut
,
9958 IsThumb1
, IsThumb2
);
9962 MI
.eraseFromParent(); // The instruction is gone now.
9966 // Expand the pseudo op to a loop.
9969 // movw varEnd, # --> with thumb2
9971 // ldrcp varEnd, idx --> without thumb2
9972 // fallthrough --> loopMBB
9974 // PHI varPhi, varEnd, varLoop
9975 // PHI srcPhi, src, srcLoop
9976 // PHI destPhi, dst, destLoop
9977 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
9978 // [destLoop] = STR_POST(scratch, destPhi, UnitSize)
9979 // subs varLoop, varPhi, #UnitSize
9981 // fallthrough --> exitMBB
9983 // epilogue to handle left-over bytes
9984 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
9985 // [destOut] = STRB_POST(scratch, destLoop, 1)
9986 MachineBasicBlock
*loopMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
9987 MachineBasicBlock
*exitMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
9988 MF
->insert(It
, loopMBB
);
9989 MF
->insert(It
, exitMBB
);
9991 // Transfer the remainder of BB and its successor edges to exitMBB.
9992 exitMBB
->splice(exitMBB
->begin(), BB
,
9993 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
9994 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
9996 // Load an immediate to varEnd.
9997 Register varEnd
= MRI
.createVirtualRegister(TRC
);
9998 if (Subtarget
->useMovt()) {
9999 unsigned Vtmp
= varEnd
;
10000 if ((LoopSize
& 0xFFFF0000) != 0)
10001 Vtmp
= MRI
.createVirtualRegister(TRC
);
10002 BuildMI(BB
, dl
, TII
->get(IsThumb
? ARM::t2MOVi16
: ARM::MOVi16
), Vtmp
)
10003 .addImm(LoopSize
& 0xFFFF)
10004 .add(predOps(ARMCC::AL
));
10006 if ((LoopSize
& 0xFFFF0000) != 0)
10007 BuildMI(BB
, dl
, TII
->get(IsThumb
? ARM::t2MOVTi16
: ARM::MOVTi16
), varEnd
)
10009 .addImm(LoopSize
>> 16)
10010 .add(predOps(ARMCC::AL
));
10012 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
10013 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
10014 const Constant
*C
= ConstantInt::get(Int32Ty
, LoopSize
);
10016 // MachineConstantPool wants an explicit alignment.
10017 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
10019 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
10020 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
10021 MachineMemOperand
*CPMMO
=
10022 MF
->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF
),
10023 MachineMemOperand::MOLoad
, 4, 4);
10026 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::tLDRpci
))
10027 .addReg(varEnd
, RegState::Define
)
10028 .addConstantPoolIndex(Idx
)
10029 .add(predOps(ARMCC::AL
))
10030 .addMemOperand(CPMMO
);
10032 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::LDRcp
))
10033 .addReg(varEnd
, RegState::Define
)
10034 .addConstantPoolIndex(Idx
)
10036 .add(predOps(ARMCC::AL
))
10037 .addMemOperand(CPMMO
);
10039 BB
->addSuccessor(loopMBB
);
10041 // Generate the loop body:
10042 // varPhi = PHI(varLoop, varEnd)
10043 // srcPhi = PHI(srcLoop, src)
10044 // destPhi = PHI(destLoop, dst)
10045 MachineBasicBlock
*entryBB
= BB
;
10047 Register varLoop
= MRI
.createVirtualRegister(TRC
);
10048 Register varPhi
= MRI
.createVirtualRegister(TRC
);
10049 Register srcLoop
= MRI
.createVirtualRegister(TRC
);
10050 Register srcPhi
= MRI
.createVirtualRegister(TRC
);
10051 Register destLoop
= MRI
.createVirtualRegister(TRC
);
10052 Register destPhi
= MRI
.createVirtualRegister(TRC
);
10054 BuildMI(*BB
, BB
->begin(), dl
, TII
->get(ARM::PHI
), varPhi
)
10055 .addReg(varLoop
).addMBB(loopMBB
)
10056 .addReg(varEnd
).addMBB(entryBB
);
10057 BuildMI(BB
, dl
, TII
->get(ARM::PHI
), srcPhi
)
10058 .addReg(srcLoop
).addMBB(loopMBB
)
10059 .addReg(src
).addMBB(entryBB
);
10060 BuildMI(BB
, dl
, TII
->get(ARM::PHI
), destPhi
)
10061 .addReg(destLoop
).addMBB(loopMBB
)
10062 .addReg(dest
).addMBB(entryBB
);
10064 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
10065 // [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
10066 Register scratch
= MRI
.createVirtualRegister(IsNeon
? VecTRC
: TRC
);
10067 emitPostLd(BB
, BB
->end(), TII
, dl
, UnitSize
, scratch
, srcPhi
, srcLoop
,
10068 IsThumb1
, IsThumb2
);
10069 emitPostSt(BB
, BB
->end(), TII
, dl
, UnitSize
, scratch
, destPhi
, destLoop
,
10070 IsThumb1
, IsThumb2
);
10072 // Decrement loop variable by UnitSize.
10074 BuildMI(*BB
, BB
->end(), dl
, TII
->get(ARM::tSUBi8
), varLoop
)
10075 .add(t1CondCodeOp())
10078 .add(predOps(ARMCC::AL
));
10080 MachineInstrBuilder MIB
=
10081 BuildMI(*BB
, BB
->end(), dl
,
10082 TII
->get(IsThumb2
? ARM::t2SUBri
: ARM::SUBri
), varLoop
);
10085 .add(predOps(ARMCC::AL
))
10086 .add(condCodeOp());
10087 MIB
->getOperand(5).setReg(ARM::CPSR
);
10088 MIB
->getOperand(5).setIsDef(true);
10090 BuildMI(*BB
, BB
->end(), dl
,
10091 TII
->get(IsThumb1
? ARM::tBcc
: IsThumb2
? ARM::t2Bcc
: ARM::Bcc
))
10092 .addMBB(loopMBB
).addImm(ARMCC::NE
).addReg(ARM::CPSR
);
10094 // loopMBB can loop back to loopMBB or fall through to exitMBB.
10095 BB
->addSuccessor(loopMBB
);
10096 BB
->addSuccessor(exitMBB
);
10098 // Add epilogue to handle BytesLeft.
10100 auto StartOfExit
= exitMBB
->begin();
10102 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
10103 // [destOut] = STRB_POST(scratch, destLoop, 1)
10104 unsigned srcIn
= srcLoop
;
10105 unsigned destIn
= destLoop
;
10106 for (unsigned i
= 0; i
< BytesLeft
; i
++) {
10107 Register srcOut
= MRI
.createVirtualRegister(TRC
);
10108 Register destOut
= MRI
.createVirtualRegister(TRC
);
10109 Register scratch
= MRI
.createVirtualRegister(TRC
);
10110 emitPostLd(BB
, StartOfExit
, TII
, dl
, 1, scratch
, srcIn
, srcOut
,
10111 IsThumb1
, IsThumb2
);
10112 emitPostSt(BB
, StartOfExit
, TII
, dl
, 1, scratch
, destIn
, destOut
,
10113 IsThumb1
, IsThumb2
);
10118 MI
.eraseFromParent(); // The instruction is gone now.
10122 MachineBasicBlock
*
10123 ARMTargetLowering::EmitLowered__chkstk(MachineInstr
&MI
,
10124 MachineBasicBlock
*MBB
) const {
10125 const TargetMachine
&TM
= getTargetMachine();
10126 const TargetInstrInfo
&TII
= *Subtarget
->getInstrInfo();
10127 DebugLoc DL
= MI
.getDebugLoc();
10129 assert(Subtarget
->isTargetWindows() &&
10130 "__chkstk is only supported on Windows");
10131 assert(Subtarget
->isThumb2() && "Windows on ARM requires Thumb-2 mode");
10133 // __chkstk takes the number of words to allocate on the stack in R4, and
10134 // returns the stack adjustment in number of bytes in R4. This will not
10135 // clober any other registers (other than the obvious lr).
10137 // Although, technically, IP should be considered a register which may be
10138 // clobbered, the call itself will not touch it. Windows on ARM is a pure
10139 // thumb-2 environment, so there is no interworking required. As a result, we
10140 // do not expect a veneer to be emitted by the linker, clobbering IP.
10142 // Each module receives its own copy of __chkstk, so no import thunk is
10143 // required, again, ensuring that IP is not clobbered.
10145 // Finally, although some linkers may theoretically provide a trampoline for
10146 // out of range calls (which is quite common due to a 32M range limitation of
10147 // branches for Thumb), we can generate the long-call version via
10148 // -mcmodel=large, alleviating the need for the trampoline which may clobber
10151 switch (TM
.getCodeModel()) {
10152 case CodeModel::Tiny
:
10153 llvm_unreachable("Tiny code model not available on ARM.");
10154 case CodeModel::Small
:
10155 case CodeModel::Medium
:
10156 case CodeModel::Kernel
:
10157 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::tBL
))
10158 .add(predOps(ARMCC::AL
))
10159 .addExternalSymbol("__chkstk")
10160 .addReg(ARM::R4
, RegState::Implicit
| RegState::Kill
)
10161 .addReg(ARM::R4
, RegState::Implicit
| RegState::Define
)
10163 RegState::Implicit
| RegState::Define
| RegState::Dead
)
10165 RegState::Implicit
| RegState::Define
| RegState::Dead
);
10167 case CodeModel::Large
: {
10168 MachineRegisterInfo
&MRI
= MBB
->getParent()->getRegInfo();
10169 Register Reg
= MRI
.createVirtualRegister(&ARM::rGPRRegClass
);
10171 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::t2MOVi32imm
), Reg
)
10172 .addExternalSymbol("__chkstk");
10173 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::tBLXr
))
10174 .add(predOps(ARMCC::AL
))
10175 .addReg(Reg
, RegState::Kill
)
10176 .addReg(ARM::R4
, RegState::Implicit
| RegState::Kill
)
10177 .addReg(ARM::R4
, RegState::Implicit
| RegState::Define
)
10179 RegState::Implicit
| RegState::Define
| RegState::Dead
)
10181 RegState::Implicit
| RegState::Define
| RegState::Dead
);
10186 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::t2SUBrr
), ARM::SP
)
10187 .addReg(ARM::SP
, RegState::Kill
)
10188 .addReg(ARM::R4
, RegState::Kill
)
10189 .setMIFlags(MachineInstr::FrameSetup
)
10190 .add(predOps(ARMCC::AL
))
10191 .add(condCodeOp());
10193 MI
.eraseFromParent();
10197 MachineBasicBlock
*
10198 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr
&MI
,
10199 MachineBasicBlock
*MBB
) const {
10200 DebugLoc DL
= MI
.getDebugLoc();
10201 MachineFunction
*MF
= MBB
->getParent();
10202 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
10204 MachineBasicBlock
*ContBB
= MF
->CreateMachineBasicBlock();
10205 MF
->insert(++MBB
->getIterator(), ContBB
);
10206 ContBB
->splice(ContBB
->begin(), MBB
,
10207 std::next(MachineBasicBlock::iterator(MI
)), MBB
->end());
10208 ContBB
->transferSuccessorsAndUpdatePHIs(MBB
);
10209 MBB
->addSuccessor(ContBB
);
10211 MachineBasicBlock
*TrapBB
= MF
->CreateMachineBasicBlock();
10212 BuildMI(TrapBB
, DL
, TII
->get(ARM::t__brkdiv0
));
10213 MF
->push_back(TrapBB
);
10214 MBB
->addSuccessor(TrapBB
);
10216 BuildMI(*MBB
, MI
, DL
, TII
->get(ARM::tCMPi8
))
10217 .addReg(MI
.getOperand(0).getReg())
10219 .add(predOps(ARMCC::AL
));
10220 BuildMI(*MBB
, MI
, DL
, TII
->get(ARM::t2Bcc
))
10223 .addReg(ARM::CPSR
);
10225 MI
.eraseFromParent();
10229 // The CPSR operand of SelectItr might be missing a kill marker
10230 // because there were multiple uses of CPSR, and ISel didn't know
10231 // which to mark. Figure out whether SelectItr should have had a
10232 // kill marker, and set it if it should. Returns the correct kill
10234 static bool checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr
,
10235 MachineBasicBlock
* BB
,
10236 const TargetRegisterInfo
* TRI
) {
10237 // Scan forward through BB for a use/def of CPSR.
10238 MachineBasicBlock::iterator
miI(std::next(SelectItr
));
10239 for (MachineBasicBlock::iterator miE
= BB
->end(); miI
!= miE
; ++miI
) {
10240 const MachineInstr
& mi
= *miI
;
10241 if (mi
.readsRegister(ARM::CPSR
))
10243 if (mi
.definesRegister(ARM::CPSR
))
10244 break; // Should have kill-flag - update below.
10247 // If we hit the end of the block, check whether CPSR is live into a
10249 if (miI
== BB
->end()) {
10250 for (MachineBasicBlock::succ_iterator sItr
= BB
->succ_begin(),
10251 sEnd
= BB
->succ_end();
10252 sItr
!= sEnd
; ++sItr
) {
10253 MachineBasicBlock
* succ
= *sItr
;
10254 if (succ
->isLiveIn(ARM::CPSR
))
10259 // We found a def, or hit the end of the basic block and CPSR wasn't live
10260 // out. SelectMI should have a kill flag on CPSR.
10261 SelectItr
->addRegisterKilled(ARM::CPSR
, TRI
);
10265 MachineBasicBlock
*
10266 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr
&MI
,
10267 MachineBasicBlock
*BB
) const {
10268 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
10269 DebugLoc dl
= MI
.getDebugLoc();
10270 bool isThumb2
= Subtarget
->isThumb2();
10271 switch (MI
.getOpcode()) {
10274 llvm_unreachable("Unexpected instr type to insert");
10277 // Thumb1 post-indexed loads are really just single-register LDMs.
10278 case ARM::tLDR_postidx
: {
10279 MachineOperand
Def(MI
.getOperand(1));
10280 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::tLDMIA_UPD
))
10282 .add(MI
.getOperand(2)) // Rn
10283 .add(MI
.getOperand(3)) // PredImm
10284 .add(MI
.getOperand(4)) // PredReg
10285 .add(MI
.getOperand(0)) // Rt
10287 MI
.eraseFromParent();
10291 // The Thumb2 pre-indexed stores have the same MI operands, they just
10292 // define them differently in the .td files from the isel patterns, so
10293 // they need pseudos.
10294 case ARM::t2STR_preidx
:
10295 MI
.setDesc(TII
->get(ARM::t2STR_PRE
));
10297 case ARM::t2STRB_preidx
:
10298 MI
.setDesc(TII
->get(ARM::t2STRB_PRE
));
10300 case ARM::t2STRH_preidx
:
10301 MI
.setDesc(TII
->get(ARM::t2STRH_PRE
));
10304 case ARM::STRi_preidx
:
10305 case ARM::STRBi_preidx
: {
10306 unsigned NewOpc
= MI
.getOpcode() == ARM::STRi_preidx
? ARM::STR_PRE_IMM
10307 : ARM::STRB_PRE_IMM
;
10308 // Decode the offset.
10309 unsigned Offset
= MI
.getOperand(4).getImm();
10310 bool isSub
= ARM_AM::getAM2Op(Offset
) == ARM_AM::sub
;
10311 Offset
= ARM_AM::getAM2Offset(Offset
);
10315 MachineMemOperand
*MMO
= *MI
.memoperands_begin();
10316 BuildMI(*BB
, MI
, dl
, TII
->get(NewOpc
))
10317 .add(MI
.getOperand(0)) // Rn_wb
10318 .add(MI
.getOperand(1)) // Rt
10319 .add(MI
.getOperand(2)) // Rn
10320 .addImm(Offset
) // offset (skip GPR==zero_reg)
10321 .add(MI
.getOperand(5)) // pred
10322 .add(MI
.getOperand(6))
10323 .addMemOperand(MMO
);
10324 MI
.eraseFromParent();
10327 case ARM::STRr_preidx
:
10328 case ARM::STRBr_preidx
:
10329 case ARM::STRH_preidx
: {
10331 switch (MI
.getOpcode()) {
10332 default: llvm_unreachable("unexpected opcode!");
10333 case ARM::STRr_preidx
: NewOpc
= ARM::STR_PRE_REG
; break;
10334 case ARM::STRBr_preidx
: NewOpc
= ARM::STRB_PRE_REG
; break;
10335 case ARM::STRH_preidx
: NewOpc
= ARM::STRH_PRE
; break;
10337 MachineInstrBuilder MIB
= BuildMI(*BB
, MI
, dl
, TII
->get(NewOpc
));
10338 for (unsigned i
= 0; i
< MI
.getNumOperands(); ++i
)
10339 MIB
.add(MI
.getOperand(i
));
10340 MI
.eraseFromParent();
10344 case ARM::tMOVCCr_pseudo
: {
10345 // To "insert" a SELECT_CC instruction, we actually have to insert the
10346 // diamond control-flow pattern. The incoming instruction knows the
10347 // destination vreg to set, the condition code register to branch on, the
10348 // true/false values to select between, and a branch opcode to use.
10349 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
10350 MachineFunction::iterator It
= ++BB
->getIterator();
10355 // cmpTY ccX, r1, r2
10357 // fallthrough --> copy0MBB
10358 MachineBasicBlock
*thisMBB
= BB
;
10359 MachineFunction
*F
= BB
->getParent();
10360 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
10361 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
10362 F
->insert(It
, copy0MBB
);
10363 F
->insert(It
, sinkMBB
);
10365 // Check whether CPSR is live past the tMOVCCr_pseudo.
10366 const TargetRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
10367 if (!MI
.killsRegister(ARM::CPSR
) &&
10368 !checkAndUpdateCPSRKill(MI
, thisMBB
, TRI
)) {
10369 copy0MBB
->addLiveIn(ARM::CPSR
);
10370 sinkMBB
->addLiveIn(ARM::CPSR
);
10373 // Transfer the remainder of BB and its successor edges to sinkMBB.
10374 sinkMBB
->splice(sinkMBB
->begin(), BB
,
10375 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10376 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
10378 BB
->addSuccessor(copy0MBB
);
10379 BB
->addSuccessor(sinkMBB
);
10381 BuildMI(BB
, dl
, TII
->get(ARM::tBcc
))
10383 .addImm(MI
.getOperand(3).getImm())
10384 .addReg(MI
.getOperand(4).getReg());
10387 // %FalseValue = ...
10388 // # fallthrough to sinkMBB
10391 // Update machine-CFG edges
10392 BB
->addSuccessor(sinkMBB
);
10395 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10398 BuildMI(*BB
, BB
->begin(), dl
, TII
->get(ARM::PHI
), MI
.getOperand(0).getReg())
10399 .addReg(MI
.getOperand(1).getReg())
10401 .addReg(MI
.getOperand(2).getReg())
10404 MI
.eraseFromParent(); // The pseudo instruction is gone now.
10409 case ARM::BCCZi64
: {
10410 // If there is an unconditional branch to the other successor, remove it.
10411 BB
->erase(std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10413 // Compare both parts that make up the double comparison separately for
10415 bool RHSisZero
= MI
.getOpcode() == ARM::BCCZi64
;
10417 Register LHS1
= MI
.getOperand(1).getReg();
10418 Register LHS2
= MI
.getOperand(2).getReg();
10420 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
10423 .add(predOps(ARMCC::AL
));
10424 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
10425 .addReg(LHS2
).addImm(0)
10426 .addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
10428 Register RHS1
= MI
.getOperand(3).getReg();
10429 Register RHS2
= MI
.getOperand(4).getReg();
10430 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPrr
: ARM::CMPrr
))
10433 .add(predOps(ARMCC::AL
));
10434 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPrr
: ARM::CMPrr
))
10435 .addReg(LHS2
).addReg(RHS2
)
10436 .addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
10439 MachineBasicBlock
*destMBB
= MI
.getOperand(RHSisZero
? 3 : 5).getMBB();
10440 MachineBasicBlock
*exitMBB
= OtherSucc(BB
, destMBB
);
10441 if (MI
.getOperand(0).getImm() == ARMCC::NE
)
10442 std::swap(destMBB
, exitMBB
);
10444 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2Bcc
: ARM::Bcc
))
10445 .addMBB(destMBB
).addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
10447 BuildMI(BB
, dl
, TII
->get(ARM::t2B
))
10449 .add(predOps(ARMCC::AL
));
10451 BuildMI(BB
, dl
, TII
->get(ARM::B
)) .addMBB(exitMBB
);
10453 MI
.eraseFromParent(); // The pseudo instruction is gone now.
10457 case ARM::Int_eh_sjlj_setjmp
:
10458 case ARM::Int_eh_sjlj_setjmp_nofp
:
10459 case ARM::tInt_eh_sjlj_setjmp
:
10460 case ARM::t2Int_eh_sjlj_setjmp
:
10461 case ARM::t2Int_eh_sjlj_setjmp_nofp
:
10464 case ARM::Int_eh_sjlj_setup_dispatch
:
10465 EmitSjLjDispatchBlock(MI
, BB
);
10470 // To insert an ABS instruction, we have to insert the
10471 // diamond control-flow pattern. The incoming instruction knows the
10472 // source vreg to test against 0, the destination vreg to set,
10473 // the condition code register to branch on, the
10474 // true/false values to select between, and a branch opcode to use.
10479 // BCC (branch to SinkBB if V0 >= 0)
10480 // RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0)
10481 // SinkBB: V1 = PHI(V2, V3)
10482 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
10483 MachineFunction::iterator BBI
= ++BB
->getIterator();
10484 MachineFunction
*Fn
= BB
->getParent();
10485 MachineBasicBlock
*RSBBB
= Fn
->CreateMachineBasicBlock(LLVM_BB
);
10486 MachineBasicBlock
*SinkBB
= Fn
->CreateMachineBasicBlock(LLVM_BB
);
10487 Fn
->insert(BBI
, RSBBB
);
10488 Fn
->insert(BBI
, SinkBB
);
10490 Register ABSSrcReg
= MI
.getOperand(1).getReg();
10491 Register ABSDstReg
= MI
.getOperand(0).getReg();
10492 bool ABSSrcKIll
= MI
.getOperand(1).isKill();
10493 bool isThumb2
= Subtarget
->isThumb2();
10494 MachineRegisterInfo
&MRI
= Fn
->getRegInfo();
10495 // In Thumb mode S must not be specified if source register is the SP or
10496 // PC and if destination register is the SP, so restrict register class
10497 Register NewRsbDstReg
= MRI
.createVirtualRegister(
10498 isThumb2
? &ARM::rGPRRegClass
: &ARM::GPRRegClass
);
10500 // Transfer the remainder of BB and its successor edges to sinkMBB.
10501 SinkBB
->splice(SinkBB
->begin(), BB
,
10502 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10503 SinkBB
->transferSuccessorsAndUpdatePHIs(BB
);
10505 BB
->addSuccessor(RSBBB
);
10506 BB
->addSuccessor(SinkBB
);
10508 // fall through to SinkMBB
10509 RSBBB
->addSuccessor(SinkBB
);
10511 // insert a cmp at the end of BB
10512 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
10515 .add(predOps(ARMCC::AL
));
10517 // insert a bcc with opposite CC to ARMCC::MI at the end of BB
10519 TII
->get(isThumb2
? ARM::t2Bcc
: ARM::Bcc
)).addMBB(SinkBB
)
10520 .addImm(ARMCC::getOppositeCondition(ARMCC::MI
)).addReg(ARM::CPSR
);
10522 // insert rsbri in RSBBB
10523 // Note: BCC and rsbri will be converted into predicated rsbmi
10524 // by if-conversion pass
10525 BuildMI(*RSBBB
, RSBBB
->begin(), dl
,
10526 TII
->get(isThumb2
? ARM::t2RSBri
: ARM::RSBri
), NewRsbDstReg
)
10527 .addReg(ABSSrcReg
, ABSSrcKIll
? RegState::Kill
: 0)
10529 .add(predOps(ARMCC::AL
))
10530 .add(condCodeOp());
10532 // insert PHI in SinkBB,
10533 // reuse ABSDstReg to not change uses of ABS instruction
10534 BuildMI(*SinkBB
, SinkBB
->begin(), dl
,
10535 TII
->get(ARM::PHI
), ABSDstReg
)
10536 .addReg(NewRsbDstReg
).addMBB(RSBBB
)
10537 .addReg(ABSSrcReg
).addMBB(BB
);
10539 // remove ABS instruction
10540 MI
.eraseFromParent();
10542 // return last added BB
10545 case ARM::COPY_STRUCT_BYVAL_I32
:
10547 return EmitStructByval(MI
, BB
);
10548 case ARM::WIN__CHKSTK
:
10549 return EmitLowered__chkstk(MI
, BB
);
10550 case ARM::WIN__DBZCHK
:
10551 return EmitLowered__dbzchk(MI
, BB
);
10555 /// Attaches vregs to MEMCPY that it will use as scratch registers
10556 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
10557 /// instead of as a custom inserter because we need the use list from the SDNode.
10558 static void attachMEMCPYScratchRegs(const ARMSubtarget
*Subtarget
,
10559 MachineInstr
&MI
, const SDNode
*Node
) {
10560 bool isThumb1
= Subtarget
->isThumb1Only();
10562 DebugLoc DL
= MI
.getDebugLoc();
10563 MachineFunction
*MF
= MI
.getParent()->getParent();
10564 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
10565 MachineInstrBuilder
MIB(*MF
, MI
);
10567 // If the new dst/src is unused mark it as dead.
10568 if (!Node
->hasAnyUseOfValue(0)) {
10569 MI
.getOperand(0).setIsDead(true);
10571 if (!Node
->hasAnyUseOfValue(1)) {
10572 MI
.getOperand(1).setIsDead(true);
10575 // The MEMCPY both defines and kills the scratch registers.
10576 for (unsigned I
= 0; I
!= MI
.getOperand(4).getImm(); ++I
) {
10577 Register TmpReg
= MRI
.createVirtualRegister(isThumb1
? &ARM::tGPRRegClass
10578 : &ARM::GPRRegClass
);
10579 MIB
.addReg(TmpReg
, RegState::Define
|RegState::Dead
);
10583 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr
&MI
,
10584 SDNode
*Node
) const {
10585 if (MI
.getOpcode() == ARM::MEMCPY
) {
10586 attachMEMCPYScratchRegs(Subtarget
, MI
, Node
);
10590 const MCInstrDesc
*MCID
= &MI
.getDesc();
10591 // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
10592 // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
10593 // operand is still set to noreg. If needed, set the optional operand's
10594 // register to CPSR, and remove the redundant implicit def.
10596 // e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR).
10598 // Rename pseudo opcodes.
10599 unsigned NewOpc
= convertAddSubFlagsOpcode(MI
.getOpcode());
10602 const ARMBaseInstrInfo
*TII
= Subtarget
->getInstrInfo();
10603 MCID
= &TII
->get(NewOpc
);
10605 assert(MCID
->getNumOperands() ==
10606 MI
.getDesc().getNumOperands() + 5 - MI
.getDesc().getSize()
10607 && "converted opcode should be the same except for cc_out"
10608 " (and, on Thumb1, pred)");
10612 // Add the optional cc_out operand
10613 MI
.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
10615 // On Thumb1, move all input operands to the end, then add the predicate
10616 if (Subtarget
->isThumb1Only()) {
10617 for (unsigned c
= MCID
->getNumOperands() - 4; c
--;) {
10618 MI
.addOperand(MI
.getOperand(1));
10619 MI
.RemoveOperand(1);
10622 // Restore the ties
10623 for (unsigned i
= MI
.getNumOperands(); i
--;) {
10624 const MachineOperand
& op
= MI
.getOperand(i
);
10625 if (op
.isReg() && op
.isUse()) {
10626 int DefIdx
= MCID
->getOperandConstraint(i
, MCOI::TIED_TO
);
10628 MI
.tieOperands(DefIdx
, i
);
10632 MI
.addOperand(MachineOperand::CreateImm(ARMCC::AL
));
10633 MI
.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false));
10636 ccOutIdx
= MCID
->getNumOperands() - 1;
10638 ccOutIdx
= MCID
->getNumOperands() - 1;
10640 // Any ARM instruction that sets the 's' bit should specify an optional
10641 // "cc_out" operand in the last operand position.
10642 if (!MI
.hasOptionalDef() || !MCID
->OpInfo
[ccOutIdx
].isOptionalDef()) {
10643 assert(!NewOpc
&& "Optional cc_out operand required");
10646 // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
10647 // since we already have an optional CPSR def.
10648 bool definesCPSR
= false;
10649 bool deadCPSR
= false;
10650 for (unsigned i
= MCID
->getNumOperands(), e
= MI
.getNumOperands(); i
!= e
;
10652 const MachineOperand
&MO
= MI
.getOperand(i
);
10653 if (MO
.isReg() && MO
.isDef() && MO
.getReg() == ARM::CPSR
) {
10654 definesCPSR
= true;
10657 MI
.RemoveOperand(i
);
10661 if (!definesCPSR
) {
10662 assert(!NewOpc
&& "Optional cc_out operand required");
10665 assert(deadCPSR
== !Node
->hasAnyUseOfValue(1) && "inconsistent dead flag");
10667 assert(!MI
.getOperand(ccOutIdx
).getReg() &&
10668 "expect uninitialized optional cc_out operand");
10669 // Thumb1 instructions must have the S bit even if the CPSR is dead.
10670 if (!Subtarget
->isThumb1Only())
10674 // If this instruction was defined with an optional CPSR def and its dag node
10675 // had a live implicit CPSR def, then activate the optional CPSR def.
10676 MachineOperand
&MO
= MI
.getOperand(ccOutIdx
);
10677 MO
.setReg(ARM::CPSR
);
10681 //===----------------------------------------------------------------------===//
10682 // ARM Optimization Hooks
10683 //===----------------------------------------------------------------------===//
10685 // Helper function that checks if N is a null or all ones constant.
10686 static inline bool isZeroOrAllOnes(SDValue N
, bool AllOnes
) {
10687 return AllOnes
? isAllOnesConstant(N
) : isNullConstant(N
);
10690 // Return true if N is conditionally 0 or all ones.
10691 // Detects these expressions where cc is an i1 value:
10693 // (select cc 0, y) [AllOnes=0]
10694 // (select cc y, 0) [AllOnes=0]
10695 // (zext cc) [AllOnes=0]
10696 // (sext cc) [AllOnes=0/1]
10697 // (select cc -1, y) [AllOnes=1]
10698 // (select cc y, -1) [AllOnes=1]
10700 // Invert is set when N is the null/all ones constant when CC is false.
10701 // OtherOp is set to the alternative value of N.
10702 static bool isConditionalZeroOrAllOnes(SDNode
*N
, bool AllOnes
,
10703 SDValue
&CC
, bool &Invert
,
10705 SelectionDAG
&DAG
) {
10706 switch (N
->getOpcode()) {
10707 default: return false;
10708 case ISD::SELECT
: {
10709 CC
= N
->getOperand(0);
10710 SDValue N1
= N
->getOperand(1);
10711 SDValue N2
= N
->getOperand(2);
10712 if (isZeroOrAllOnes(N1
, AllOnes
)) {
10717 if (isZeroOrAllOnes(N2
, AllOnes
)) {
10724 case ISD::ZERO_EXTEND
:
10725 // (zext cc) can never be the all ones value.
10729 case ISD::SIGN_EXTEND
: {
10731 EVT VT
= N
->getValueType(0);
10732 CC
= N
->getOperand(0);
10733 if (CC
.getValueType() != MVT::i1
|| CC
.getOpcode() != ISD::SETCC
)
10737 // When looking for an AllOnes constant, N is an sext, and the 'other'
10739 OtherOp
= DAG
.getConstant(0, dl
, VT
);
10740 else if (N
->getOpcode() == ISD::ZERO_EXTEND
)
10741 // When looking for a 0 constant, N can be zext or sext.
10742 OtherOp
= DAG
.getConstant(1, dl
, VT
);
10744 OtherOp
= DAG
.getConstant(APInt::getAllOnesValue(VT
.getSizeInBits()), dl
,
10751 // Combine a constant select operand into its use:
10753 // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
10754 // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
10755 // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1]
10756 // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
10757 // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
10759 // The transform is rejected if the select doesn't have a constant operand that
10760 // is null, or all ones when AllOnes is set.
10762 // Also recognize sext/zext from i1:
10764 // (add (zext cc), x) -> (select cc (add x, 1), x)
10765 // (add (sext cc), x) -> (select cc (add x, -1), x)
10767 // These transformations eventually create predicated instructions.
10769 // @param N The node to transform.
10770 // @param Slct The N operand that is a select.
10771 // @param OtherOp The other N operand (x above).
10772 // @param DCI Context.
10773 // @param AllOnes Require the select constant to be all ones instead of null.
10774 // @returns The new node, or SDValue() on failure.
10776 SDValue
combineSelectAndUse(SDNode
*N
, SDValue Slct
, SDValue OtherOp
,
10777 TargetLowering::DAGCombinerInfo
&DCI
,
10778 bool AllOnes
= false) {
10779 SelectionDAG
&DAG
= DCI
.DAG
;
10780 EVT VT
= N
->getValueType(0);
10781 SDValue NonConstantVal
;
10783 bool SwapSelectOps
;
10784 if (!isConditionalZeroOrAllOnes(Slct
.getNode(), AllOnes
, CCOp
, SwapSelectOps
,
10785 NonConstantVal
, DAG
))
10788 // Slct is now know to be the desired identity constant when CC is true.
10789 SDValue TrueVal
= OtherOp
;
10790 SDValue FalseVal
= DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
,
10791 OtherOp
, NonConstantVal
);
10792 // Unless SwapSelectOps says CC should be false.
10794 std::swap(TrueVal
, FalseVal
);
10796 return DAG
.getNode(ISD::SELECT
, SDLoc(N
), VT
,
10797 CCOp
, TrueVal
, FalseVal
);
10800 // Attempt combineSelectAndUse on each operand of a commutative operator N.
10802 SDValue
combineSelectAndUseCommutative(SDNode
*N
, bool AllOnes
,
10803 TargetLowering::DAGCombinerInfo
&DCI
) {
10804 SDValue N0
= N
->getOperand(0);
10805 SDValue N1
= N
->getOperand(1);
10806 if (N0
.getNode()->hasOneUse())
10807 if (SDValue Result
= combineSelectAndUse(N
, N0
, N1
, DCI
, AllOnes
))
10809 if (N1
.getNode()->hasOneUse())
10810 if (SDValue Result
= combineSelectAndUse(N
, N1
, N0
, DCI
, AllOnes
))
10815 static bool IsVUZPShuffleNode(SDNode
*N
) {
10816 // VUZP shuffle node.
10817 if (N
->getOpcode() == ARMISD::VUZP
)
10820 // "VUZP" on i32 is an alias for VTRN.
10821 if (N
->getOpcode() == ARMISD::VTRN
&& N
->getValueType(0) == MVT::v2i32
)
10827 static SDValue
AddCombineToVPADD(SDNode
*N
, SDValue N0
, SDValue N1
,
10828 TargetLowering::DAGCombinerInfo
&DCI
,
10829 const ARMSubtarget
*Subtarget
) {
10830 // Look for ADD(VUZP.0, VUZP.1).
10831 if (!IsVUZPShuffleNode(N0
.getNode()) || N0
.getNode() != N1
.getNode() ||
10835 // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
10836 if (!N
->getValueType(0).is64BitVector())
10840 SelectionDAG
&DAG
= DCI
.DAG
;
10841 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10843 SDNode
*Unzip
= N0
.getNode();
10844 EVT VT
= N
->getValueType(0);
10846 SmallVector
<SDValue
, 8> Ops
;
10847 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpadd
, dl
,
10848 TLI
.getPointerTy(DAG
.getDataLayout())));
10849 Ops
.push_back(Unzip
->getOperand(0));
10850 Ops
.push_back(Unzip
->getOperand(1));
10852 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
, Ops
);
10855 static SDValue
AddCombineVUZPToVPADDL(SDNode
*N
, SDValue N0
, SDValue N1
,
10856 TargetLowering::DAGCombinerInfo
&DCI
,
10857 const ARMSubtarget
*Subtarget
) {
10858 // Check for two extended operands.
10859 if (!(N0
.getOpcode() == ISD::SIGN_EXTEND
&&
10860 N1
.getOpcode() == ISD::SIGN_EXTEND
) &&
10861 !(N0
.getOpcode() == ISD::ZERO_EXTEND
&&
10862 N1
.getOpcode() == ISD::ZERO_EXTEND
))
10865 SDValue N00
= N0
.getOperand(0);
10866 SDValue N10
= N1
.getOperand(0);
10868 // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
10869 if (!IsVUZPShuffleNode(N00
.getNode()) || N00
.getNode() != N10
.getNode() ||
10873 // We only recognize Q register paddl here; this can't be reached until
10874 // after type legalization.
10875 if (!N00
.getValueType().is64BitVector() ||
10876 !N0
.getValueType().is128BitVector())
10879 // Generate vpaddl.
10880 SelectionDAG
&DAG
= DCI
.DAG
;
10881 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10883 EVT VT
= N
->getValueType(0);
10885 SmallVector
<SDValue
, 8> Ops
;
10886 // Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
10888 if (N0
.getOpcode() == ISD::SIGN_EXTEND
)
10889 Opcode
= Intrinsic::arm_neon_vpaddls
;
10891 Opcode
= Intrinsic::arm_neon_vpaddlu
;
10892 Ops
.push_back(DAG
.getConstant(Opcode
, dl
,
10893 TLI
.getPointerTy(DAG
.getDataLayout())));
10894 EVT ElemTy
= N00
.getValueType().getVectorElementType();
10895 unsigned NumElts
= VT
.getVectorNumElements();
10896 EVT ConcatVT
= EVT::getVectorVT(*DAG
.getContext(), ElemTy
, NumElts
* 2);
10897 SDValue Concat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), ConcatVT
,
10898 N00
.getOperand(0), N00
.getOperand(1));
10899 Ops
.push_back(Concat
);
10901 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
, Ops
);
10904 // FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
10905 // an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
10906 // much easier to match.
10908 AddCombineBUILD_VECTORToVPADDL(SDNode
*N
, SDValue N0
, SDValue N1
,
10909 TargetLowering::DAGCombinerInfo
&DCI
,
10910 const ARMSubtarget
*Subtarget
) {
10911 // Only perform optimization if after legalize, and if NEON is available. We
10912 // also expected both operands to be BUILD_VECTORs.
10913 if (DCI
.isBeforeLegalize() || !Subtarget
->hasNEON()
10914 || N0
.getOpcode() != ISD::BUILD_VECTOR
10915 || N1
.getOpcode() != ISD::BUILD_VECTOR
)
10918 // Check output type since VPADDL operand elements can only be 8, 16, or 32.
10919 EVT VT
= N
->getValueType(0);
10920 if (!VT
.isInteger() || VT
.getVectorElementType() == MVT::i64
)
10923 // Check that the vector operands are of the right form.
10924 // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
10925 // operands, where N is the size of the formed vector.
10926 // Each EXTRACT_VECTOR should have the same input vector and odd or even
10927 // index such that we have a pair wise add pattern.
10929 // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
10930 if (N0
->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT
)
10932 SDValue Vec
= N0
->getOperand(0)->getOperand(0);
10933 SDNode
*V
= Vec
.getNode();
10934 unsigned nextIndex
= 0;
10936 // For each operands to the ADD which are BUILD_VECTORs,
10937 // check to see if each of their operands are an EXTRACT_VECTOR with
10938 // the same vector and appropriate index.
10939 for (unsigned i
= 0, e
= N0
->getNumOperands(); i
!= e
; ++i
) {
10940 if (N0
->getOperand(i
)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
10941 && N1
->getOperand(i
)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
10943 SDValue ExtVec0
= N0
->getOperand(i
);
10944 SDValue ExtVec1
= N1
->getOperand(i
);
10946 // First operand is the vector, verify its the same.
10947 if (V
!= ExtVec0
->getOperand(0).getNode() ||
10948 V
!= ExtVec1
->getOperand(0).getNode())
10951 // Second is the constant, verify its correct.
10952 ConstantSDNode
*C0
= dyn_cast
<ConstantSDNode
>(ExtVec0
->getOperand(1));
10953 ConstantSDNode
*C1
= dyn_cast
<ConstantSDNode
>(ExtVec1
->getOperand(1));
10955 // For the constant, we want to see all the even or all the odd.
10956 if (!C0
|| !C1
|| C0
->getZExtValue() != nextIndex
10957 || C1
->getZExtValue() != nextIndex
+1)
10960 // Increment index.
10966 // Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure
10967 // we're using the entire input vector, otherwise there's a size/legality
10968 // mismatch somewhere.
10969 if (nextIndex
!= Vec
.getValueType().getVectorNumElements() ||
10970 Vec
.getValueType().getVectorElementType() == VT
.getVectorElementType())
10973 // Create VPADDL node.
10974 SelectionDAG
&DAG
= DCI
.DAG
;
10975 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10979 // Build operand list.
10980 SmallVector
<SDValue
, 8> Ops
;
10981 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpaddls
, dl
,
10982 TLI
.getPointerTy(DAG
.getDataLayout())));
10984 // Input is the vector.
10985 Ops
.push_back(Vec
);
10987 // Get widened type and narrowed type.
10989 unsigned numElem
= VT
.getVectorNumElements();
10991 EVT inputLaneType
= Vec
.getValueType().getVectorElementType();
10992 switch (inputLaneType
.getSimpleVT().SimpleTy
) {
10993 case MVT::i8
: widenType
= MVT::getVectorVT(MVT::i16
, numElem
); break;
10994 case MVT::i16
: widenType
= MVT::getVectorVT(MVT::i32
, numElem
); break;
10995 case MVT::i32
: widenType
= MVT::getVectorVT(MVT::i64
, numElem
); break;
10997 llvm_unreachable("Invalid vector element type for padd optimization.");
11000 SDValue tmp
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, widenType
, Ops
);
11001 unsigned ExtOp
= VT
.bitsGT(tmp
.getValueType()) ? ISD::ANY_EXTEND
: ISD::TRUNCATE
;
11002 return DAG
.getNode(ExtOp
, dl
, VT
, tmp
);
11005 static SDValue
findMUL_LOHI(SDValue V
) {
11006 if (V
->getOpcode() == ISD::UMUL_LOHI
||
11007 V
->getOpcode() == ISD::SMUL_LOHI
)
11012 static SDValue
AddCombineTo64BitSMLAL16(SDNode
*AddcNode
, SDNode
*AddeNode
,
11013 TargetLowering::DAGCombinerInfo
&DCI
,
11014 const ARMSubtarget
*Subtarget
) {
11015 if (Subtarget
->isThumb()) {
11016 if (!Subtarget
->hasDSP())
11018 } else if (!Subtarget
->hasV5TEOps())
11021 // SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and
11022 // accumulates the product into a 64-bit value. The 16-bit values will
11023 // be sign extended somehow or SRA'd into 32-bit values
11024 // (addc (adde (mul 16bit, 16bit), lo), hi)
11025 SDValue Mul
= AddcNode
->getOperand(0);
11026 SDValue Lo
= AddcNode
->getOperand(1);
11027 if (Mul
.getOpcode() != ISD::MUL
) {
11028 Lo
= AddcNode
->getOperand(0);
11029 Mul
= AddcNode
->getOperand(1);
11030 if (Mul
.getOpcode() != ISD::MUL
)
11034 SDValue SRA
= AddeNode
->getOperand(0);
11035 SDValue Hi
= AddeNode
->getOperand(1);
11036 if (SRA
.getOpcode() != ISD::SRA
) {
11037 SRA
= AddeNode
->getOperand(1);
11038 Hi
= AddeNode
->getOperand(0);
11039 if (SRA
.getOpcode() != ISD::SRA
)
11042 if (auto Const
= dyn_cast
<ConstantSDNode
>(SRA
.getOperand(1))) {
11043 if (Const
->getZExtValue() != 31)
11048 if (SRA
.getOperand(0) != Mul
)
11051 SelectionDAG
&DAG
= DCI
.DAG
;
11052 SDLoc
dl(AddcNode
);
11053 unsigned Opcode
= 0;
11057 if (isS16(Mul
.getOperand(0), DAG
) && isS16(Mul
.getOperand(1), DAG
)) {
11058 Opcode
= ARMISD::SMLALBB
;
11059 Op0
= Mul
.getOperand(0);
11060 Op1
= Mul
.getOperand(1);
11061 } else if (isS16(Mul
.getOperand(0), DAG
) && isSRA16(Mul
.getOperand(1))) {
11062 Opcode
= ARMISD::SMLALBT
;
11063 Op0
= Mul
.getOperand(0);
11064 Op1
= Mul
.getOperand(1).getOperand(0);
11065 } else if (isSRA16(Mul
.getOperand(0)) && isS16(Mul
.getOperand(1), DAG
)) {
11066 Opcode
= ARMISD::SMLALTB
;
11067 Op0
= Mul
.getOperand(0).getOperand(0);
11068 Op1
= Mul
.getOperand(1);
11069 } else if (isSRA16(Mul
.getOperand(0)) && isSRA16(Mul
.getOperand(1))) {
11070 Opcode
= ARMISD::SMLALTT
;
11071 Op0
= Mul
->getOperand(0).getOperand(0);
11072 Op1
= Mul
->getOperand(1).getOperand(0);
11078 SDValue SMLAL
= DAG
.getNode(Opcode
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
11080 // Replace the ADDs' nodes uses by the MLA node's values.
11081 SDValue
HiMLALResult(SMLAL
.getNode(), 1);
11082 SDValue
LoMLALResult(SMLAL
.getNode(), 0);
11084 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcNode
, 0), LoMLALResult
);
11085 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeNode
, 0), HiMLALResult
);
11087 // Return original node to notify the driver to stop replacing.
11088 SDValue
resNode(AddcNode
, 0);
11092 static SDValue
AddCombineTo64bitMLAL(SDNode
*AddeSubeNode
,
11093 TargetLowering::DAGCombinerInfo
&DCI
,
11094 const ARMSubtarget
*Subtarget
) {
11095 // Look for multiply add opportunities.
11096 // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
11097 // each add nodes consumes a value from ISD::UMUL_LOHI and there is
11098 // a glue link from the first add to the second add.
11099 // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
11100 // a S/UMLAL instruction.
11103 // V \ [no multiline comment]
11109 // In the special case where only the higher part of a signed result is used
11110 // and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts
11111 // a constant with the exact value of 0x80000000, we recognize we are dealing
11112 // with a "rounded multiply and add" (or subtract) and transform it into
11113 // either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively.
11115 assert((AddeSubeNode
->getOpcode() == ARMISD::ADDE
||
11116 AddeSubeNode
->getOpcode() == ARMISD::SUBE
) &&
11117 "Expect an ADDE or SUBE");
11119 assert(AddeSubeNode
->getNumOperands() == 3 &&
11120 AddeSubeNode
->getOperand(2).getValueType() == MVT::i32
&&
11121 "ADDE node has the wrong inputs");
11123 // Check that we are chained to the right ADDC or SUBC node.
11124 SDNode
*AddcSubcNode
= AddeSubeNode
->getOperand(2).getNode();
11125 if ((AddeSubeNode
->getOpcode() == ARMISD::ADDE
&&
11126 AddcSubcNode
->getOpcode() != ARMISD::ADDC
) ||
11127 (AddeSubeNode
->getOpcode() == ARMISD::SUBE
&&
11128 AddcSubcNode
->getOpcode() != ARMISD::SUBC
))
11131 SDValue AddcSubcOp0
= AddcSubcNode
->getOperand(0);
11132 SDValue AddcSubcOp1
= AddcSubcNode
->getOperand(1);
11134 // Check if the two operands are from the same mul_lohi node.
11135 if (AddcSubcOp0
.getNode() == AddcSubcOp1
.getNode())
11138 assert(AddcSubcNode
->getNumValues() == 2 &&
11139 AddcSubcNode
->getValueType(0) == MVT::i32
&&
11140 "Expect ADDC with two result values. First: i32");
11142 // Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it
11143 // maybe a SMLAL which multiplies two 16-bit values.
11144 if (AddeSubeNode
->getOpcode() == ARMISD::ADDE
&&
11145 AddcSubcOp0
->getOpcode() != ISD::UMUL_LOHI
&&
11146 AddcSubcOp0
->getOpcode() != ISD::SMUL_LOHI
&&
11147 AddcSubcOp1
->getOpcode() != ISD::UMUL_LOHI
&&
11148 AddcSubcOp1
->getOpcode() != ISD::SMUL_LOHI
)
11149 return AddCombineTo64BitSMLAL16(AddcSubcNode
, AddeSubeNode
, DCI
, Subtarget
);
11151 // Check for the triangle shape.
11152 SDValue AddeSubeOp0
= AddeSubeNode
->getOperand(0);
11153 SDValue AddeSubeOp1
= AddeSubeNode
->getOperand(1);
11155 // Make sure that the ADDE/SUBE operands are not coming from the same node.
11156 if (AddeSubeOp0
.getNode() == AddeSubeOp1
.getNode())
11159 // Find the MUL_LOHI node walking up ADDE/SUBE's operands.
11160 bool IsLeftOperandMUL
= false;
11161 SDValue MULOp
= findMUL_LOHI(AddeSubeOp0
);
11162 if (MULOp
== SDValue())
11163 MULOp
= findMUL_LOHI(AddeSubeOp1
);
11165 IsLeftOperandMUL
= true;
11166 if (MULOp
== SDValue())
11169 // Figure out the right opcode.
11170 unsigned Opc
= MULOp
->getOpcode();
11171 unsigned FinalOpc
= (Opc
== ISD::SMUL_LOHI
) ? ARMISD::SMLAL
: ARMISD::UMLAL
;
11173 // Figure out the high and low input values to the MLAL node.
11174 SDValue
*HiAddSub
= nullptr;
11175 SDValue
*LoMul
= nullptr;
11176 SDValue
*LowAddSub
= nullptr;
11178 // Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI.
11179 if ((AddeSubeOp0
!= MULOp
.getValue(1)) && (AddeSubeOp1
!= MULOp
.getValue(1)))
11182 if (IsLeftOperandMUL
)
11183 HiAddSub
= &AddeSubeOp1
;
11185 HiAddSub
= &AddeSubeOp0
;
11187 // Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node
11188 // whose low result is fed to the ADDC/SUBC we are checking.
11190 if (AddcSubcOp0
== MULOp
.getValue(0)) {
11191 LoMul
= &AddcSubcOp0
;
11192 LowAddSub
= &AddcSubcOp1
;
11194 if (AddcSubcOp1
== MULOp
.getValue(0)) {
11195 LoMul
= &AddcSubcOp1
;
11196 LowAddSub
= &AddcSubcOp0
;
11202 // If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC
11203 // the replacement below will create a cycle.
11204 if (AddcSubcNode
== HiAddSub
->getNode() ||
11205 AddcSubcNode
->isPredecessorOf(HiAddSub
->getNode()))
11208 // Create the merged node.
11209 SelectionDAG
&DAG
= DCI
.DAG
;
11211 // Start building operand list.
11212 SmallVector
<SDValue
, 8> Ops
;
11213 Ops
.push_back(LoMul
->getOperand(0));
11214 Ops
.push_back(LoMul
->getOperand(1));
11216 // Check whether we can use SMMLAR, SMMLSR or SMMULR instead. For this to be
11217 // the case, we must be doing signed multiplication and only use the higher
11218 // part of the result of the MLAL, furthermore the LowAddSub must be a constant
11219 // addition or subtraction with the value of 0x800000.
11220 if (Subtarget
->hasV6Ops() && Subtarget
->hasDSP() && Subtarget
->useMulOps() &&
11221 FinalOpc
== ARMISD::SMLAL
&& !AddeSubeNode
->hasAnyUseOfValue(1) &&
11222 LowAddSub
->getNode()->getOpcode() == ISD::Constant
&&
11223 static_cast<ConstantSDNode
*>(LowAddSub
->getNode())->getZExtValue() ==
11225 Ops
.push_back(*HiAddSub
);
11226 if (AddcSubcNode
->getOpcode() == ARMISD::SUBC
) {
11227 FinalOpc
= ARMISD::SMMLSR
;
11229 FinalOpc
= ARMISD::SMMLAR
;
11231 SDValue NewNode
= DAG
.getNode(FinalOpc
, SDLoc(AddcSubcNode
), MVT::i32
, Ops
);
11232 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode
, 0), NewNode
);
11234 return SDValue(AddeSubeNode
, 0);
11235 } else if (AddcSubcNode
->getOpcode() == ARMISD::SUBC
)
11236 // SMMLS is generated during instruction selection and the rest of this
11237 // function can not handle the case where AddcSubcNode is a SUBC.
11240 // Finish building the operand list for {U/S}MLAL
11241 Ops
.push_back(*LowAddSub
);
11242 Ops
.push_back(*HiAddSub
);
11244 SDValue MLALNode
= DAG
.getNode(FinalOpc
, SDLoc(AddcSubcNode
),
11245 DAG
.getVTList(MVT::i32
, MVT::i32
), Ops
);
11247 // Replace the ADDs' nodes uses by the MLA node's values.
11248 SDValue
HiMLALResult(MLALNode
.getNode(), 1);
11249 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode
, 0), HiMLALResult
);
11251 SDValue
LoMLALResult(MLALNode
.getNode(), 0);
11252 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode
, 0), LoMLALResult
);
11254 // Return original node to notify the driver to stop replacing.
11255 return SDValue(AddeSubeNode
, 0);
11258 static SDValue
AddCombineTo64bitUMAAL(SDNode
*AddeNode
,
11259 TargetLowering::DAGCombinerInfo
&DCI
,
11260 const ARMSubtarget
*Subtarget
) {
11261 // UMAAL is similar to UMLAL except that it adds two unsigned values.
11262 // While trying to combine for the other MLAL nodes, first search for the
11263 // chance to use UMAAL. Check if Addc uses a node which has already
11264 // been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde
11265 // as the addend, and it's handled in PerformUMLALCombine.
11267 if (!Subtarget
->hasV6Ops() || !Subtarget
->hasDSP())
11268 return AddCombineTo64bitMLAL(AddeNode
, DCI
, Subtarget
);
11270 // Check that we have a glued ADDC node.
11271 SDNode
* AddcNode
= AddeNode
->getOperand(2).getNode();
11272 if (AddcNode
->getOpcode() != ARMISD::ADDC
)
11275 // Find the converted UMAAL or quit if it doesn't exist.
11276 SDNode
*UmlalNode
= nullptr;
11278 if (AddcNode
->getOperand(0).getOpcode() == ARMISD::UMLAL
) {
11279 UmlalNode
= AddcNode
->getOperand(0).getNode();
11280 AddHi
= AddcNode
->getOperand(1);
11281 } else if (AddcNode
->getOperand(1).getOpcode() == ARMISD::UMLAL
) {
11282 UmlalNode
= AddcNode
->getOperand(1).getNode();
11283 AddHi
= AddcNode
->getOperand(0);
11285 return AddCombineTo64bitMLAL(AddeNode
, DCI
, Subtarget
);
11288 // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
11289 // the ADDC as well as Zero.
11290 if (!isNullConstant(UmlalNode
->getOperand(3)))
11293 if ((isNullConstant(AddeNode
->getOperand(0)) &&
11294 AddeNode
->getOperand(1).getNode() == UmlalNode
) ||
11295 (AddeNode
->getOperand(0).getNode() == UmlalNode
&&
11296 isNullConstant(AddeNode
->getOperand(1)))) {
11297 SelectionDAG
&DAG
= DCI
.DAG
;
11298 SDValue Ops
[] = { UmlalNode
->getOperand(0), UmlalNode
->getOperand(1),
11299 UmlalNode
->getOperand(2), AddHi
};
11300 SDValue UMAAL
= DAG
.getNode(ARMISD::UMAAL
, SDLoc(AddcNode
),
11301 DAG
.getVTList(MVT::i32
, MVT::i32
), Ops
);
11303 // Replace the ADDs' nodes uses by the UMAAL node's values.
11304 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeNode
, 0), SDValue(UMAAL
.getNode(), 1));
11305 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcNode
, 0), SDValue(UMAAL
.getNode(), 0));
11307 // Return original node to notify the driver to stop replacing.
11308 return SDValue(AddeNode
, 0);
11313 static SDValue
PerformUMLALCombine(SDNode
*N
, SelectionDAG
&DAG
,
11314 const ARMSubtarget
*Subtarget
) {
11315 if (!Subtarget
->hasV6Ops() || !Subtarget
->hasDSP())
11318 // Check that we have a pair of ADDC and ADDE as operands.
11319 // Both addends of the ADDE must be zero.
11320 SDNode
* AddcNode
= N
->getOperand(2).getNode();
11321 SDNode
* AddeNode
= N
->getOperand(3).getNode();
11322 if ((AddcNode
->getOpcode() == ARMISD::ADDC
) &&
11323 (AddeNode
->getOpcode() == ARMISD::ADDE
) &&
11324 isNullConstant(AddeNode
->getOperand(0)) &&
11325 isNullConstant(AddeNode
->getOperand(1)) &&
11326 (AddeNode
->getOperand(2).getNode() == AddcNode
))
11327 return DAG
.getNode(ARMISD::UMAAL
, SDLoc(N
),
11328 DAG
.getVTList(MVT::i32
, MVT::i32
),
11329 {N
->getOperand(0), N
->getOperand(1),
11330 AddcNode
->getOperand(0), AddcNode
->getOperand(1)});
11335 static SDValue
PerformAddcSubcCombine(SDNode
*N
,
11336 TargetLowering::DAGCombinerInfo
&DCI
,
11337 const ARMSubtarget
*Subtarget
) {
11338 SelectionDAG
&DAG(DCI
.DAG
);
11340 if (N
->getOpcode() == ARMISD::SUBC
) {
11341 // (SUBC (ADDE 0, 0, C), 1) -> C
11342 SDValue LHS
= N
->getOperand(0);
11343 SDValue RHS
= N
->getOperand(1);
11344 if (LHS
->getOpcode() == ARMISD::ADDE
&&
11345 isNullConstant(LHS
->getOperand(0)) &&
11346 isNullConstant(LHS
->getOperand(1)) && isOneConstant(RHS
)) {
11347 return DCI
.CombineTo(N
, SDValue(N
, 0), LHS
->getOperand(2));
11351 if (Subtarget
->isThumb1Only()) {
11352 SDValue RHS
= N
->getOperand(1);
11353 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(RHS
)) {
11354 int32_t imm
= C
->getSExtValue();
11355 if (imm
< 0 && imm
> std::numeric_limits
<int>::min()) {
11357 RHS
= DAG
.getConstant(-imm
, DL
, MVT::i32
);
11358 unsigned Opcode
= (N
->getOpcode() == ARMISD::ADDC
) ? ARMISD::SUBC
11360 return DAG
.getNode(Opcode
, DL
, N
->getVTList(), N
->getOperand(0), RHS
);
11368 static SDValue
PerformAddeSubeCombine(SDNode
*N
,
11369 TargetLowering::DAGCombinerInfo
&DCI
,
11370 const ARMSubtarget
*Subtarget
) {
11371 if (Subtarget
->isThumb1Only()) {
11372 SelectionDAG
&DAG
= DCI
.DAG
;
11373 SDValue RHS
= N
->getOperand(1);
11374 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(RHS
)) {
11375 int64_t imm
= C
->getSExtValue();
11379 // The with-carry-in form matches bitwise not instead of the negation.
11380 // Effectively, the inverse interpretation of the carry flag already
11381 // accounts for part of the negation.
11382 RHS
= DAG
.getConstant(~imm
, DL
, MVT::i32
);
11384 unsigned Opcode
= (N
->getOpcode() == ARMISD::ADDE
) ? ARMISD::SUBE
11386 return DAG
.getNode(Opcode
, DL
, N
->getVTList(),
11387 N
->getOperand(0), RHS
, N
->getOperand(2));
11390 } else if (N
->getOperand(1)->getOpcode() == ISD::SMUL_LOHI
) {
11391 return AddCombineTo64bitMLAL(N
, DCI
, Subtarget
);
11396 static SDValue
PerformABSCombine(SDNode
*N
,
11397 TargetLowering::DAGCombinerInfo
&DCI
,
11398 const ARMSubtarget
*Subtarget
) {
11400 SelectionDAG
&DAG
= DCI
.DAG
;
11401 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
11403 if (TLI
.isOperationLegal(N
->getOpcode(), N
->getValueType(0)))
11406 if (!TLI
.expandABS(N
, res
, DAG
))
11412 /// PerformADDECombine - Target-specific dag combine transform from
11413 /// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or
11414 /// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
11415 static SDValue
PerformADDECombine(SDNode
*N
,
11416 TargetLowering::DAGCombinerInfo
&DCI
,
11417 const ARMSubtarget
*Subtarget
) {
11418 // Only ARM and Thumb2 support UMLAL/SMLAL.
11419 if (Subtarget
->isThumb1Only())
11420 return PerformAddeSubeCombine(N
, DCI
, Subtarget
);
11422 // Only perform the checks after legalize when the pattern is available.
11423 if (DCI
.isBeforeLegalize()) return SDValue();
11425 return AddCombineTo64bitUMAAL(N
, DCI
, Subtarget
);
11428 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
11429 /// operands N0 and N1. This is a helper for PerformADDCombine that is
11430 /// called with the default operands, and if that fails, with commuted
11432 static SDValue
PerformADDCombineWithOperands(SDNode
*N
, SDValue N0
, SDValue N1
,
11433 TargetLowering::DAGCombinerInfo
&DCI
,
11434 const ARMSubtarget
*Subtarget
){
11435 // Attempt to create vpadd for this add.
11436 if (SDValue Result
= AddCombineToVPADD(N
, N0
, N1
, DCI
, Subtarget
))
11439 // Attempt to create vpaddl for this add.
11440 if (SDValue Result
= AddCombineVUZPToVPADDL(N
, N0
, N1
, DCI
, Subtarget
))
11442 if (SDValue Result
= AddCombineBUILD_VECTORToVPADDL(N
, N0
, N1
, DCI
,
11446 // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
11447 if (N0
.getNode()->hasOneUse())
11448 if (SDValue Result
= combineSelectAndUse(N
, N0
, N1
, DCI
))
11454 ARMTargetLowering::isDesirableToCommuteWithShift(const SDNode
*N
,
11455 CombineLevel Level
) const {
11456 if (Level
== BeforeLegalizeTypes
)
11459 if (N
->getOpcode() != ISD::SHL
)
11462 if (Subtarget
->isThumb1Only()) {
11463 // Avoid making expensive immediates by commuting shifts. (This logic
11464 // only applies to Thumb1 because ARM and Thumb2 immediates can be shifted
11466 if (N
->getOpcode() != ISD::SHL
)
11468 SDValue N1
= N
->getOperand(0);
11469 if (N1
->getOpcode() != ISD::ADD
&& N1
->getOpcode() != ISD::AND
&&
11470 N1
->getOpcode() != ISD::OR
&& N1
->getOpcode() != ISD::XOR
)
11472 if (auto *Const
= dyn_cast
<ConstantSDNode
>(N1
->getOperand(1))) {
11473 if (Const
->getAPIntValue().ult(256))
11475 if (N1
->getOpcode() == ISD::ADD
&& Const
->getAPIntValue().slt(0) &&
11476 Const
->getAPIntValue().sgt(-256))
11482 // Turn off commute-with-shift transform after legalization, so it doesn't
11483 // conflict with PerformSHLSimplify. (We could try to detect when
11484 // PerformSHLSimplify would trigger more precisely, but it isn't
11485 // really necessary.)
11489 bool ARMTargetLowering::shouldFoldConstantShiftPairToMask(
11490 const SDNode
*N
, CombineLevel Level
) const {
11491 if (!Subtarget
->isThumb1Only())
11494 if (Level
== BeforeLegalizeTypes
)
11500 bool ARMTargetLowering::preferIncOfAddToSubOfNot(EVT VT
) const {
11501 if (!Subtarget
->hasNEON()) {
11502 if (Subtarget
->isThumb1Only())
11503 return VT
.getScalarSizeInBits() <= 32;
11506 return VT
.isScalarInteger();
11509 static SDValue
PerformSHLSimplify(SDNode
*N
,
11510 TargetLowering::DAGCombinerInfo
&DCI
,
11511 const ARMSubtarget
*ST
) {
11512 // Allow the generic combiner to identify potential bswaps.
11513 if (DCI
.isBeforeLegalize())
11516 // DAG combiner will fold:
11517 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
11518 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2
11519 // Other code patterns that can be also be modified have the following form:
11520 // b + ((a << 1) | 510)
11521 // b + ((a << 1) & 510)
11522 // b + ((a << 1) ^ 510)
11523 // b + ((a << 1) + 510)
11525 // Many instructions can perform the shift for free, but it requires both
11526 // the operands to be registers. If c1 << c2 is too large, a mov immediate
11527 // instruction will needed. So, unfold back to the original pattern if:
11528 // - if c1 and c2 are small enough that they don't require mov imms.
11529 // - the user(s) of the node can perform an shl
11531 // No shifted operands for 16-bit instructions.
11532 if (ST
->isThumb() && ST
->isThumb1Only())
11535 // Check that all the users could perform the shl themselves.
11536 for (auto U
: N
->uses()) {
11537 switch(U
->getOpcode()) {
11547 // Check that the user isn't already using a constant because there
11548 // aren't any instructions that support an immediate operand and a
11549 // shifted operand.
11550 if (isa
<ConstantSDNode
>(U
->getOperand(0)) ||
11551 isa
<ConstantSDNode
>(U
->getOperand(1)))
11554 // Check that it's not already using a shift.
11555 if (U
->getOperand(0).getOpcode() == ISD::SHL
||
11556 U
->getOperand(1).getOpcode() == ISD::SHL
)
11562 if (N
->getOpcode() != ISD::ADD
&& N
->getOpcode() != ISD::OR
&&
11563 N
->getOpcode() != ISD::XOR
&& N
->getOpcode() != ISD::AND
)
11566 if (N
->getOperand(0).getOpcode() != ISD::SHL
)
11569 SDValue SHL
= N
->getOperand(0);
11571 auto *C1ShlC2
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11572 auto *C2
= dyn_cast
<ConstantSDNode
>(SHL
.getOperand(1));
11573 if (!C1ShlC2
|| !C2
)
11576 APInt C2Int
= C2
->getAPIntValue();
11577 APInt C1Int
= C1ShlC2
->getAPIntValue();
11579 // Check that performing a lshr will not lose any information.
11580 APInt Mask
= APInt::getHighBitsSet(C2Int
.getBitWidth(),
11581 C2Int
.getBitWidth() - C2
->getZExtValue());
11582 if ((C1Int
& Mask
) != C1Int
)
11585 // Shift the first constant.
11586 C1Int
.lshrInPlace(C2Int
);
11588 // The immediates are encoded as an 8-bit value that can be rotated.
11589 auto LargeImm
= [](const APInt
&Imm
) {
11590 unsigned Zeros
= Imm
.countLeadingZeros() + Imm
.countTrailingZeros();
11591 return Imm
.getBitWidth() - Zeros
> 8;
11594 if (LargeImm(C1Int
) || LargeImm(C2Int
))
11597 SelectionDAG
&DAG
= DCI
.DAG
;
11599 SDValue X
= SHL
.getOperand(0);
11600 SDValue BinOp
= DAG
.getNode(N
->getOpcode(), dl
, MVT::i32
, X
,
11601 DAG
.getConstant(C1Int
, dl
, MVT::i32
));
11602 // Shift left to compensate for the lshr of C1Int.
11603 SDValue Res
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, BinOp
, SHL
.getOperand(1));
11605 LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL
.getOperand(0).dump();
11606 SHL
.dump(); N
->dump());
11607 LLVM_DEBUG(dbgs() << "Into:\n"; X
.dump(); BinOp
.dump(); Res
.dump());
11612 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
11614 static SDValue
PerformADDCombine(SDNode
*N
,
11615 TargetLowering::DAGCombinerInfo
&DCI
,
11616 const ARMSubtarget
*Subtarget
) {
11617 SDValue N0
= N
->getOperand(0);
11618 SDValue N1
= N
->getOperand(1);
11620 // Only works one way, because it needs an immediate operand.
11621 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
11624 // First try with the default operand order.
11625 if (SDValue Result
= PerformADDCombineWithOperands(N
, N0
, N1
, DCI
, Subtarget
))
11628 // If that didn't work, try again with the operands commuted.
11629 return PerformADDCombineWithOperands(N
, N1
, N0
, DCI
, Subtarget
);
11632 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
11634 static SDValue
PerformSUBCombine(SDNode
*N
,
11635 TargetLowering::DAGCombinerInfo
&DCI
) {
11636 SDValue N0
= N
->getOperand(0);
11637 SDValue N1
= N
->getOperand(1);
11639 // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
11640 if (N1
.getNode()->hasOneUse())
11641 if (SDValue Result
= combineSelectAndUse(N
, N1
, N0
, DCI
))
11647 /// PerformVMULCombine
11648 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
11649 /// special multiplier accumulator forwarding.
11650 /// vmul d3, d0, d2
11651 /// vmla d3, d1, d2
11653 /// vadd d3, d0, d1
11654 /// vmul d3, d3, d2
11655 // However, for (A + B) * (A + B),
11662 static SDValue
PerformVMULCombine(SDNode
*N
,
11663 TargetLowering::DAGCombinerInfo
&DCI
,
11664 const ARMSubtarget
*Subtarget
) {
11665 if (!Subtarget
->hasVMLxForwarding())
11668 SelectionDAG
&DAG
= DCI
.DAG
;
11669 SDValue N0
= N
->getOperand(0);
11670 SDValue N1
= N
->getOperand(1);
11671 unsigned Opcode
= N0
.getOpcode();
11672 if (Opcode
!= ISD::ADD
&& Opcode
!= ISD::SUB
&&
11673 Opcode
!= ISD::FADD
&& Opcode
!= ISD::FSUB
) {
11674 Opcode
= N1
.getOpcode();
11675 if (Opcode
!= ISD::ADD
&& Opcode
!= ISD::SUB
&&
11676 Opcode
!= ISD::FADD
&& Opcode
!= ISD::FSUB
)
11684 EVT VT
= N
->getValueType(0);
11686 SDValue N00
= N0
->getOperand(0);
11687 SDValue N01
= N0
->getOperand(1);
11688 return DAG
.getNode(Opcode
, DL
, VT
,
11689 DAG
.getNode(ISD::MUL
, DL
, VT
, N00
, N1
),
11690 DAG
.getNode(ISD::MUL
, DL
, VT
, N01
, N1
));
11693 static SDValue
PerformMULCombine(SDNode
*N
,
11694 TargetLowering::DAGCombinerInfo
&DCI
,
11695 const ARMSubtarget
*Subtarget
) {
11696 SelectionDAG
&DAG
= DCI
.DAG
;
11698 if (Subtarget
->isThumb1Only())
11701 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
11704 EVT VT
= N
->getValueType(0);
11705 if (VT
.is64BitVector() || VT
.is128BitVector())
11706 return PerformVMULCombine(N
, DCI
, Subtarget
);
11707 if (VT
!= MVT::i32
)
11710 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11714 int64_t MulAmt
= C
->getSExtValue();
11715 unsigned ShiftAmt
= countTrailingZeros
<uint64_t>(MulAmt
);
11717 ShiftAmt
= ShiftAmt
& (32 - 1);
11718 SDValue V
= N
->getOperand(0);
11722 MulAmt
>>= ShiftAmt
;
11725 if (isPowerOf2_32(MulAmt
- 1)) {
11726 // (mul x, 2^N + 1) => (add (shl x, N), x)
11727 Res
= DAG
.getNode(ISD::ADD
, DL
, VT
,
11729 DAG
.getNode(ISD::SHL
, DL
, VT
,
11731 DAG
.getConstant(Log2_32(MulAmt
- 1), DL
,
11733 } else if (isPowerOf2_32(MulAmt
+ 1)) {
11734 // (mul x, 2^N - 1) => (sub (shl x, N), x)
11735 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11736 DAG
.getNode(ISD::SHL
, DL
, VT
,
11738 DAG
.getConstant(Log2_32(MulAmt
+ 1), DL
,
11744 uint64_t MulAmtAbs
= -MulAmt
;
11745 if (isPowerOf2_32(MulAmtAbs
+ 1)) {
11746 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
11747 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11749 DAG
.getNode(ISD::SHL
, DL
, VT
,
11751 DAG
.getConstant(Log2_32(MulAmtAbs
+ 1), DL
,
11753 } else if (isPowerOf2_32(MulAmtAbs
- 1)) {
11754 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
11755 Res
= DAG
.getNode(ISD::ADD
, DL
, VT
,
11757 DAG
.getNode(ISD::SHL
, DL
, VT
,
11759 DAG
.getConstant(Log2_32(MulAmtAbs
- 1), DL
,
11761 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11762 DAG
.getConstant(0, DL
, MVT::i32
), Res
);
11768 Res
= DAG
.getNode(ISD::SHL
, DL
, VT
,
11769 Res
, DAG
.getConstant(ShiftAmt
, DL
, MVT::i32
));
11771 // Do not add new nodes to DAG combiner worklist.
11772 DCI
.CombineTo(N
, Res
, false);
11776 static SDValue
CombineANDShift(SDNode
*N
,
11777 TargetLowering::DAGCombinerInfo
&DCI
,
11778 const ARMSubtarget
*Subtarget
) {
11779 // Allow DAGCombine to pattern-match before we touch the canonical form.
11780 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
11783 if (N
->getValueType(0) != MVT::i32
)
11786 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11790 uint32_t C1
= (uint32_t)N1C
->getZExtValue();
11791 // Don't transform uxtb/uxth.
11792 if (C1
== 255 || C1
== 65535)
11795 SDNode
*N0
= N
->getOperand(0).getNode();
11796 if (!N0
->hasOneUse())
11799 if (N0
->getOpcode() != ISD::SHL
&& N0
->getOpcode() != ISD::SRL
)
11802 bool LeftShift
= N0
->getOpcode() == ISD::SHL
;
11804 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1));
11808 uint32_t C2
= (uint32_t)N01C
->getZExtValue();
11809 if (!C2
|| C2
>= 32)
11812 // Clear irrelevant bits in the mask.
11818 SelectionDAG
&DAG
= DCI
.DAG
;
11821 // We have a pattern of the form "(and (shl x, c2) c1)" or
11822 // "(and (srl x, c2) c1)", where c1 is a shifted mask. Try to
11823 // transform to a pair of shifts, to save materializing c1.
11825 // First pattern: right shift, then mask off leading bits.
11826 // FIXME: Use demanded bits?
11827 if (!LeftShift
&& isMask_32(C1
)) {
11828 uint32_t C3
= countLeadingZeros(C1
);
11830 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
11831 DAG
.getConstant(C3
- C2
, DL
, MVT::i32
));
11832 return DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SHL
,
11833 DAG
.getConstant(C3
, DL
, MVT::i32
));
11837 // First pattern, reversed: left shift, then mask off trailing bits.
11838 if (LeftShift
&& isMask_32(~C1
)) {
11839 uint32_t C3
= countTrailingZeros(C1
);
11841 SDValue SHL
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, N0
->getOperand(0),
11842 DAG
.getConstant(C3
- C2
, DL
, MVT::i32
));
11843 return DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, SHL
,
11844 DAG
.getConstant(C3
, DL
, MVT::i32
));
11848 // Second pattern: left shift, then mask off leading bits.
11849 // FIXME: Use demanded bits?
11850 if (LeftShift
&& isShiftedMask_32(C1
)) {
11851 uint32_t Trailing
= countTrailingZeros(C1
);
11852 uint32_t C3
= countLeadingZeros(C1
);
11853 if (Trailing
== C2
&& C2
+ C3
< 32) {
11854 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
11855 DAG
.getConstant(C2
+ C3
, DL
, MVT::i32
));
11856 return DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SHL
,
11857 DAG
.getConstant(C3
, DL
, MVT::i32
));
11861 // Second pattern, reversed: right shift, then mask off trailing bits.
11862 // FIXME: Handle other patterns of known/demanded bits.
11863 if (!LeftShift
&& isShiftedMask_32(C1
)) {
11864 uint32_t Leading
= countLeadingZeros(C1
);
11865 uint32_t C3
= countTrailingZeros(C1
);
11866 if (Leading
== C2
&& C2
+ C3
< 32) {
11867 SDValue SHL
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, N0
->getOperand(0),
11868 DAG
.getConstant(C2
+ C3
, DL
, MVT::i32
));
11869 return DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, SHL
,
11870 DAG
.getConstant(C3
, DL
, MVT::i32
));
11874 // FIXME: Transform "(and (shl x, c2) c1)" ->
11875 // "(shl (and x, c1>>c2), c2)" if "c1 >> c2" is a cheaper immediate than
11880 static SDValue
PerformANDCombine(SDNode
*N
,
11881 TargetLowering::DAGCombinerInfo
&DCI
,
11882 const ARMSubtarget
*Subtarget
) {
11883 // Attempt to use immediate-form VBIC
11884 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(N
->getOperand(1));
11886 EVT VT
= N
->getValueType(0);
11887 SelectionDAG
&DAG
= DCI
.DAG
;
11889 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
11892 APInt SplatBits
, SplatUndef
;
11893 unsigned SplatBitSize
;
11895 if (BVN
&& Subtarget
->hasNEON() &&
11896 BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
11897 if (SplatBitSize
<= 64) {
11899 SDValue Val
= isVMOVModifiedImm((~SplatBits
).getZExtValue(),
11900 SplatUndef
.getZExtValue(), SplatBitSize
,
11901 DAG
, dl
, VbicVT
, VT
.is128BitVector(),
11903 if (Val
.getNode()) {
11905 DAG
.getNode(ISD::BITCAST
, dl
, VbicVT
, N
->getOperand(0));
11906 SDValue Vbic
= DAG
.getNode(ARMISD::VBICIMM
, dl
, VbicVT
, Input
, Val
);
11907 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vbic
);
11912 if (!Subtarget
->isThumb1Only()) {
11913 // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
11914 if (SDValue Result
= combineSelectAndUseCommutative(N
, true, DCI
))
11917 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
11921 if (Subtarget
->isThumb1Only())
11922 if (SDValue Result
= CombineANDShift(N
, DCI
, Subtarget
))
11928 // Try combining OR nodes to SMULWB, SMULWT.
11929 static SDValue
PerformORCombineToSMULWBT(SDNode
*OR
,
11930 TargetLowering::DAGCombinerInfo
&DCI
,
11931 const ARMSubtarget
*Subtarget
) {
11932 if (!Subtarget
->hasV6Ops() ||
11933 (Subtarget
->isThumb() &&
11934 (!Subtarget
->hasThumb2() || !Subtarget
->hasDSP())))
11937 SDValue SRL
= OR
->getOperand(0);
11938 SDValue SHL
= OR
->getOperand(1);
11940 if (SRL
.getOpcode() != ISD::SRL
|| SHL
.getOpcode() != ISD::SHL
) {
11941 SRL
= OR
->getOperand(1);
11942 SHL
= OR
->getOperand(0);
11944 if (!isSRL16(SRL
) || !isSHL16(SHL
))
11947 // The first operands to the shifts need to be the two results from the
11948 // same smul_lohi node.
11949 if ((SRL
.getOperand(0).getNode() != SHL
.getOperand(0).getNode()) ||
11950 SRL
.getOperand(0).getOpcode() != ISD::SMUL_LOHI
)
11953 SDNode
*SMULLOHI
= SRL
.getOperand(0).getNode();
11954 if (SRL
.getOperand(0) != SDValue(SMULLOHI
, 0) ||
11955 SHL
.getOperand(0) != SDValue(SMULLOHI
, 1))
11959 // (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
11960 // For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
11961 // For SMUWB the 16-bit value will signed extended somehow.
11962 // For SMULWT only the SRA is required.
11963 // Check both sides of SMUL_LOHI
11964 SDValue OpS16
= SMULLOHI
->getOperand(0);
11965 SDValue OpS32
= SMULLOHI
->getOperand(1);
11967 SelectionDAG
&DAG
= DCI
.DAG
;
11968 if (!isS16(OpS16
, DAG
) && !isSRA16(OpS16
)) {
11970 OpS32
= SMULLOHI
->getOperand(0);
11974 unsigned Opcode
= 0;
11975 if (isS16(OpS16
, DAG
))
11976 Opcode
= ARMISD::SMULWB
;
11977 else if (isSRA16(OpS16
)) {
11978 Opcode
= ARMISD::SMULWT
;
11979 OpS16
= OpS16
->getOperand(0);
11984 SDValue Res
= DAG
.getNode(Opcode
, dl
, MVT::i32
, OpS32
, OpS16
);
11985 DAG
.ReplaceAllUsesOfValueWith(SDValue(OR
, 0), Res
);
11986 return SDValue(OR
, 0);
11989 static SDValue
PerformORCombineToBFI(SDNode
*N
,
11990 TargetLowering::DAGCombinerInfo
&DCI
,
11991 const ARMSubtarget
*Subtarget
) {
11992 // BFI is only available on V6T2+
11993 if (Subtarget
->isThumb1Only() || !Subtarget
->hasV6T2Ops())
11996 EVT VT
= N
->getValueType(0);
11997 SDValue N0
= N
->getOperand(0);
11998 SDValue N1
= N
->getOperand(1);
11999 SelectionDAG
&DAG
= DCI
.DAG
;
12001 // 1) or (and A, mask), val => ARMbfi A, val, mask
12002 // iff (val & mask) == val
12004 // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
12005 // 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
12006 // && mask == ~mask2
12007 // 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
12008 // && ~mask == mask2
12009 // (i.e., copy a bitfield value into another bitfield of the same width)
12011 if (VT
!= MVT::i32
)
12014 SDValue N00
= N0
.getOperand(0);
12016 // The value and the mask need to be constants so we can verify this is
12017 // actually a bitfield set. If the mask is 0xffff, we can do better
12018 // via a movt instruction, so don't use BFI in that case.
12019 SDValue MaskOp
= N0
.getOperand(1);
12020 ConstantSDNode
*MaskC
= dyn_cast
<ConstantSDNode
>(MaskOp
);
12023 unsigned Mask
= MaskC
->getZExtValue();
12024 if (Mask
== 0xffff)
12027 // Case (1): or (and A, mask), val => ARMbfi A, val, mask
12028 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
12030 unsigned Val
= N1C
->getZExtValue();
12031 if ((Val
& ~Mask
) != Val
)
12034 if (ARM::isBitFieldInvertedMask(Mask
)) {
12035 Val
>>= countTrailingZeros(~Mask
);
12037 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N00
,
12038 DAG
.getConstant(Val
, DL
, MVT::i32
),
12039 DAG
.getConstant(Mask
, DL
, MVT::i32
));
12041 DCI
.CombineTo(N
, Res
, false);
12042 // Return value from the original node to inform the combiner than N is
12044 return SDValue(N
, 0);
12046 } else if (N1
.getOpcode() == ISD::AND
) {
12047 // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
12048 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
12051 unsigned Mask2
= N11C
->getZExtValue();
12053 // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
12055 if (ARM::isBitFieldInvertedMask(Mask
) &&
12056 (Mask
== ~Mask2
)) {
12057 // The pack halfword instruction works better for masks that fit it,
12058 // so use that when it's available.
12059 if (Subtarget
->hasDSP() &&
12060 (Mask
== 0xffff || Mask
== 0xffff0000))
12063 unsigned amt
= countTrailingZeros(Mask2
);
12064 Res
= DAG
.getNode(ISD::SRL
, DL
, VT
, N1
.getOperand(0),
12065 DAG
.getConstant(amt
, DL
, MVT::i32
));
12066 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N00
, Res
,
12067 DAG
.getConstant(Mask
, DL
, MVT::i32
));
12068 DCI
.CombineTo(N
, Res
, false);
12069 // Return value from the original node to inform the combiner than N is
12071 return SDValue(N
, 0);
12072 } else if (ARM::isBitFieldInvertedMask(~Mask
) &&
12073 (~Mask
== Mask2
)) {
12074 // The pack halfword instruction works better for masks that fit it,
12075 // so use that when it's available.
12076 if (Subtarget
->hasDSP() &&
12077 (Mask2
== 0xffff || Mask2
== 0xffff0000))
12080 unsigned lsb
= countTrailingZeros(Mask
);
12081 Res
= DAG
.getNode(ISD::SRL
, DL
, VT
, N00
,
12082 DAG
.getConstant(lsb
, DL
, MVT::i32
));
12083 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N1
.getOperand(0), Res
,
12084 DAG
.getConstant(Mask2
, DL
, MVT::i32
));
12085 DCI
.CombineTo(N
, Res
, false);
12086 // Return value from the original node to inform the combiner than N is
12088 return SDValue(N
, 0);
12092 if (DAG
.MaskedValueIsZero(N1
, MaskC
->getAPIntValue()) &&
12093 N00
.getOpcode() == ISD::SHL
&& isa
<ConstantSDNode
>(N00
.getOperand(1)) &&
12094 ARM::isBitFieldInvertedMask(~Mask
)) {
12095 // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
12096 // where lsb(mask) == #shamt and masked bits of B are known zero.
12097 SDValue ShAmt
= N00
.getOperand(1);
12098 unsigned ShAmtC
= cast
<ConstantSDNode
>(ShAmt
)->getZExtValue();
12099 unsigned LSB
= countTrailingZeros(Mask
);
12103 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N1
, N00
.getOperand(0),
12104 DAG
.getConstant(~Mask
, DL
, MVT::i32
));
12106 DCI
.CombineTo(N
, Res
, false);
12107 // Return value from the original node to inform the combiner than N is
12109 return SDValue(N
, 0);
12115 static bool isValidMVECond(unsigned CC
, bool IsFloat
) {
12132 static SDValue
PerformORCombine_i1(SDNode
*N
,
12133 TargetLowering::DAGCombinerInfo
&DCI
,
12134 const ARMSubtarget
*Subtarget
) {
12135 // Try to invert "or A, B" -> "and ~A, ~B", as the "and" is easier to chain
12136 // together with predicates
12137 EVT VT
= N
->getValueType(0);
12138 SDValue N0
= N
->getOperand(0);
12139 SDValue N1
= N
->getOperand(1);
12141 ARMCC::CondCodes CondCode0
= ARMCC::AL
;
12142 ARMCC::CondCodes CondCode1
= ARMCC::AL
;
12143 if (N0
->getOpcode() == ARMISD::VCMP
)
12144 CondCode0
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N0
->getOperand(2))
12146 else if (N0
->getOpcode() == ARMISD::VCMPZ
)
12147 CondCode0
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N0
->getOperand(1))
12149 if (N1
->getOpcode() == ARMISD::VCMP
)
12150 CondCode1
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N1
->getOperand(2))
12152 else if (N1
->getOpcode() == ARMISD::VCMPZ
)
12153 CondCode1
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N1
->getOperand(1))
12156 if (CondCode0
== ARMCC::AL
|| CondCode1
== ARMCC::AL
)
12159 unsigned Opposite0
= ARMCC::getOppositeCondition(CondCode0
);
12160 unsigned Opposite1
= ARMCC::getOppositeCondition(CondCode1
);
12162 if (!isValidMVECond(Opposite0
,
12163 N0
->getOperand(0)->getValueType(0).isFloatingPoint()) ||
12164 !isValidMVECond(Opposite1
,
12165 N1
->getOperand(0)->getValueType(0).isFloatingPoint()))
12168 SmallVector
<SDValue
, 4> Ops0
;
12169 Ops0
.push_back(N0
->getOperand(0));
12170 if (N0
->getOpcode() == ARMISD::VCMP
)
12171 Ops0
.push_back(N0
->getOperand(1));
12172 Ops0
.push_back(DCI
.DAG
.getConstant(Opposite0
, SDLoc(N0
), MVT::i32
));
12173 SmallVector
<SDValue
, 4> Ops1
;
12174 Ops1
.push_back(N1
->getOperand(0));
12175 if (N1
->getOpcode() == ARMISD::VCMP
)
12176 Ops1
.push_back(N1
->getOperand(1));
12177 Ops1
.push_back(DCI
.DAG
.getConstant(Opposite1
, SDLoc(N1
), MVT::i32
));
12179 SDValue NewN0
= DCI
.DAG
.getNode(N0
->getOpcode(), SDLoc(N0
), VT
, Ops0
);
12180 SDValue NewN1
= DCI
.DAG
.getNode(N1
->getOpcode(), SDLoc(N1
), VT
, Ops1
);
12181 SDValue And
= DCI
.DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, NewN0
, NewN1
);
12182 return DCI
.DAG
.getNode(ISD::XOR
, SDLoc(N
), VT
, And
,
12183 DCI
.DAG
.getAllOnesConstant(SDLoc(N
), VT
));
12186 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
12187 static SDValue
PerformORCombine(SDNode
*N
,
12188 TargetLowering::DAGCombinerInfo
&DCI
,
12189 const ARMSubtarget
*Subtarget
) {
12190 // Attempt to use immediate-form VORR
12191 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(N
->getOperand(1));
12193 EVT VT
= N
->getValueType(0);
12194 SelectionDAG
&DAG
= DCI
.DAG
;
12196 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
12199 APInt SplatBits
, SplatUndef
;
12200 unsigned SplatBitSize
;
12202 if (BVN
&& Subtarget
->hasNEON() &&
12203 BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
12204 if (SplatBitSize
<= 64) {
12206 SDValue Val
= isVMOVModifiedImm(SplatBits
.getZExtValue(),
12207 SplatUndef
.getZExtValue(), SplatBitSize
,
12208 DAG
, dl
, VorrVT
, VT
.is128BitVector(),
12210 if (Val
.getNode()) {
12212 DAG
.getNode(ISD::BITCAST
, dl
, VorrVT
, N
->getOperand(0));
12213 SDValue Vorr
= DAG
.getNode(ARMISD::VORRIMM
, dl
, VorrVT
, Input
, Val
);
12214 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vorr
);
12219 if (!Subtarget
->isThumb1Only()) {
12220 // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
12221 if (SDValue Result
= combineSelectAndUseCommutative(N
, false, DCI
))
12223 if (SDValue Result
= PerformORCombineToSMULWBT(N
, DCI
, Subtarget
))
12227 SDValue N0
= N
->getOperand(0);
12228 SDValue N1
= N
->getOperand(1);
12230 // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
12231 if (Subtarget
->hasNEON() && N1
.getOpcode() == ISD::AND
&& VT
.isVector() &&
12232 DAG
.getTargetLoweringInfo().isTypeLegal(VT
)) {
12234 // The code below optimizes (or (and X, Y), Z).
12235 // The AND operand needs to have a single user to make these optimizations
12237 if (N0
.getOpcode() != ISD::AND
|| !N0
.hasOneUse())
12241 unsigned SplatBitSize
;
12244 APInt SplatBits0
, SplatBits1
;
12245 BuildVectorSDNode
*BVN0
= dyn_cast
<BuildVectorSDNode
>(N0
->getOperand(1));
12246 BuildVectorSDNode
*BVN1
= dyn_cast
<BuildVectorSDNode
>(N1
->getOperand(1));
12247 // Ensure that the second operand of both ands are constants
12248 if (BVN0
&& BVN0
->isConstantSplat(SplatBits0
, SplatUndef
, SplatBitSize
,
12249 HasAnyUndefs
) && !HasAnyUndefs
) {
12250 if (BVN1
&& BVN1
->isConstantSplat(SplatBits1
, SplatUndef
, SplatBitSize
,
12251 HasAnyUndefs
) && !HasAnyUndefs
) {
12252 // Ensure that the bit width of the constants are the same and that
12253 // the splat arguments are logical inverses as per the pattern we
12254 // are trying to simplify.
12255 if (SplatBits0
.getBitWidth() == SplatBits1
.getBitWidth() &&
12256 SplatBits0
== ~SplatBits1
) {
12257 // Canonicalize the vector type to make instruction selection
12259 EVT CanonicalVT
= VT
.is128BitVector() ? MVT::v4i32
: MVT::v2i32
;
12260 SDValue Result
= DAG
.getNode(ARMISD::VBSL
, dl
, CanonicalVT
,
12263 N1
->getOperand(0));
12264 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Result
);
12270 if (Subtarget
->hasMVEIntegerOps() &&
12271 (VT
== MVT::v4i1
|| VT
== MVT::v8i1
|| VT
== MVT::v16i1
))
12272 return PerformORCombine_i1(N
, DCI
, Subtarget
);
12274 // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
12276 if (N0
.getOpcode() == ISD::AND
&& N0
.hasOneUse()) {
12277 if (SDValue Res
= PerformORCombineToBFI(N
, DCI
, Subtarget
))
12281 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
12287 static SDValue
PerformXORCombine(SDNode
*N
,
12288 TargetLowering::DAGCombinerInfo
&DCI
,
12289 const ARMSubtarget
*Subtarget
) {
12290 EVT VT
= N
->getValueType(0);
12291 SelectionDAG
&DAG
= DCI
.DAG
;
12293 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
12296 if (!Subtarget
->isThumb1Only()) {
12297 // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
12298 if (SDValue Result
= combineSelectAndUseCommutative(N
, false, DCI
))
12301 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
12308 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
12309 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
12310 // their position in "to" (Rd).
12311 static SDValue
ParseBFI(SDNode
*N
, APInt
&ToMask
, APInt
&FromMask
) {
12312 assert(N
->getOpcode() == ARMISD::BFI
);
12314 SDValue From
= N
->getOperand(1);
12315 ToMask
= ~cast
<ConstantSDNode
>(N
->getOperand(2))->getAPIntValue();
12316 FromMask
= APInt::getLowBitsSet(ToMask
.getBitWidth(), ToMask
.countPopulation());
12318 // If the Base came from a SHR #C, we can deduce that it is really testing bit
12319 // #C in the base of the SHR.
12320 if (From
->getOpcode() == ISD::SRL
&&
12321 isa
<ConstantSDNode
>(From
->getOperand(1))) {
12322 APInt Shift
= cast
<ConstantSDNode
>(From
->getOperand(1))->getAPIntValue();
12323 assert(Shift
.getLimitedValue() < 32 && "Shift too large!");
12324 FromMask
<<= Shift
.getLimitedValue(31);
12325 From
= From
->getOperand(0);
12331 // If A and B contain one contiguous set of bits, does A | B == A . B?
12333 // Neither A nor B must be zero.
12334 static bool BitsProperlyConcatenate(const APInt
&A
, const APInt
&B
) {
12335 unsigned LastActiveBitInA
= A
.countTrailingZeros();
12336 unsigned FirstActiveBitInB
= B
.getBitWidth() - B
.countLeadingZeros() - 1;
12337 return LastActiveBitInA
- 1 == FirstActiveBitInB
;
12340 static SDValue
FindBFIToCombineWith(SDNode
*N
) {
12341 // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
12343 APInt ToMask
, FromMask
;
12344 SDValue From
= ParseBFI(N
, ToMask
, FromMask
);
12345 SDValue To
= N
->getOperand(0);
12347 // Now check for a compatible BFI to merge with. We can pass through BFIs that
12348 // aren't compatible, but not if they set the same bit in their destination as
12349 // we do (or that of any BFI we're going to combine with).
12351 APInt CombinedToMask
= ToMask
;
12352 while (V
.getOpcode() == ARMISD::BFI
) {
12353 APInt NewToMask
, NewFromMask
;
12354 SDValue NewFrom
= ParseBFI(V
.getNode(), NewToMask
, NewFromMask
);
12355 if (NewFrom
!= From
) {
12356 // This BFI has a different base. Keep going.
12357 CombinedToMask
|= NewToMask
;
12358 V
= V
.getOperand(0);
12362 // Do the written bits conflict with any we've seen so far?
12363 if ((NewToMask
& CombinedToMask
).getBoolValue())
12364 // Conflicting bits - bail out because going further is unsafe.
12367 // Are the new bits contiguous when combined with the old bits?
12368 if (BitsProperlyConcatenate(ToMask
, NewToMask
) &&
12369 BitsProperlyConcatenate(FromMask
, NewFromMask
))
12371 if (BitsProperlyConcatenate(NewToMask
, ToMask
) &&
12372 BitsProperlyConcatenate(NewFromMask
, FromMask
))
12375 // We've seen a write to some bits, so track it.
12376 CombinedToMask
|= NewToMask
;
12378 V
= V
.getOperand(0);
12384 static SDValue
PerformBFICombine(SDNode
*N
,
12385 TargetLowering::DAGCombinerInfo
&DCI
) {
12386 SDValue N1
= N
->getOperand(1);
12387 if (N1
.getOpcode() == ISD::AND
) {
12388 // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
12389 // the bits being cleared by the AND are not demanded by the BFI.
12390 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
12393 unsigned InvMask
= cast
<ConstantSDNode
>(N
->getOperand(2))->getZExtValue();
12394 unsigned LSB
= countTrailingZeros(~InvMask
);
12395 unsigned Width
= (32 - countLeadingZeros(~InvMask
)) - LSB
;
12397 static_cast<unsigned>(std::numeric_limits
<unsigned>::digits
) &&
12398 "undefined behavior");
12399 unsigned Mask
= (1u << Width
) - 1;
12400 unsigned Mask2
= N11C
->getZExtValue();
12401 if ((Mask
& (~Mask2
)) == 0)
12402 return DCI
.DAG
.getNode(ARMISD::BFI
, SDLoc(N
), N
->getValueType(0),
12403 N
->getOperand(0), N1
.getOperand(0),
12405 } else if (N
->getOperand(0).getOpcode() == ARMISD::BFI
) {
12406 // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
12407 // Keep track of any consecutive bits set that all come from the same base
12408 // value. We can combine these together into a single BFI.
12409 SDValue CombineBFI
= FindBFIToCombineWith(N
);
12410 if (CombineBFI
== SDValue())
12413 // We've found a BFI.
12414 APInt ToMask1
, FromMask1
;
12415 SDValue From1
= ParseBFI(N
, ToMask1
, FromMask1
);
12417 APInt ToMask2
, FromMask2
;
12418 SDValue From2
= ParseBFI(CombineBFI
.getNode(), ToMask2
, FromMask2
);
12419 assert(From1
== From2
);
12422 // First, unlink CombineBFI.
12423 DCI
.DAG
.ReplaceAllUsesWith(CombineBFI
, CombineBFI
.getOperand(0));
12424 // Then create a new BFI, combining the two together.
12425 APInt NewFromMask
= FromMask1
| FromMask2
;
12426 APInt NewToMask
= ToMask1
| ToMask2
;
12428 EVT VT
= N
->getValueType(0);
12431 if (NewFromMask
[0] == 0)
12432 From1
= DCI
.DAG
.getNode(
12433 ISD::SRL
, dl
, VT
, From1
,
12434 DCI
.DAG
.getConstant(NewFromMask
.countTrailingZeros(), dl
, VT
));
12435 return DCI
.DAG
.getNode(ARMISD::BFI
, dl
, VT
, N
->getOperand(0), From1
,
12436 DCI
.DAG
.getConstant(~NewToMask
, dl
, VT
));
12441 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
12442 /// ARMISD::VMOVRRD.
12443 static SDValue
PerformVMOVRRDCombine(SDNode
*N
,
12444 TargetLowering::DAGCombinerInfo
&DCI
,
12445 const ARMSubtarget
*Subtarget
) {
12446 // vmovrrd(vmovdrr x, y) -> x,y
12447 SDValue InDouble
= N
->getOperand(0);
12448 if (InDouble
.getOpcode() == ARMISD::VMOVDRR
&& Subtarget
->hasFP64())
12449 return DCI
.CombineTo(N
, InDouble
.getOperand(0), InDouble
.getOperand(1));
12451 // vmovrrd(load f64) -> (load i32), (load i32)
12452 SDNode
*InNode
= InDouble
.getNode();
12453 if (ISD::isNormalLoad(InNode
) && InNode
->hasOneUse() &&
12454 InNode
->getValueType(0) == MVT::f64
&&
12455 InNode
->getOperand(1).getOpcode() == ISD::FrameIndex
&&
12456 !cast
<LoadSDNode
>(InNode
)->isVolatile()) {
12457 // TODO: Should this be done for non-FrameIndex operands?
12458 LoadSDNode
*LD
= cast
<LoadSDNode
>(InNode
);
12460 SelectionDAG
&DAG
= DCI
.DAG
;
12462 SDValue BasePtr
= LD
->getBasePtr();
12464 DAG
.getLoad(MVT::i32
, DL
, LD
->getChain(), BasePtr
, LD
->getPointerInfo(),
12465 LD
->getAlignment(), LD
->getMemOperand()->getFlags());
12467 SDValue OffsetPtr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, BasePtr
,
12468 DAG
.getConstant(4, DL
, MVT::i32
));
12470 SDValue NewLD2
= DAG
.getLoad(MVT::i32
, DL
, LD
->getChain(), OffsetPtr
,
12471 LD
->getPointerInfo().getWithOffset(4),
12472 std::min(4U, LD
->getAlignment()),
12473 LD
->getMemOperand()->getFlags());
12475 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), NewLD2
.getValue(1));
12476 if (DCI
.DAG
.getDataLayout().isBigEndian())
12477 std::swap (NewLD1
, NewLD2
);
12478 SDValue Result
= DCI
.CombineTo(N
, NewLD1
, NewLD2
);
12485 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
12486 /// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands.
12487 static SDValue
PerformVMOVDRRCombine(SDNode
*N
, SelectionDAG
&DAG
) {
12488 // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
12489 SDValue Op0
= N
->getOperand(0);
12490 SDValue Op1
= N
->getOperand(1);
12491 if (Op0
.getOpcode() == ISD::BITCAST
)
12492 Op0
= Op0
.getOperand(0);
12493 if (Op1
.getOpcode() == ISD::BITCAST
)
12494 Op1
= Op1
.getOperand(0);
12495 if (Op0
.getOpcode() == ARMISD::VMOVRRD
&&
12496 Op0
.getNode() == Op1
.getNode() &&
12497 Op0
.getResNo() == 0 && Op1
.getResNo() == 1)
12498 return DAG
.getNode(ISD::BITCAST
, SDLoc(N
),
12499 N
->getValueType(0), Op0
.getOperand(0));
12503 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
12504 /// are normal, non-volatile loads. If so, it is profitable to bitcast an
12505 /// i64 vector to have f64 elements, since the value can then be loaded
12506 /// directly into a VFP register.
12507 static bool hasNormalLoadOperand(SDNode
*N
) {
12508 unsigned NumElts
= N
->getValueType(0).getVectorNumElements();
12509 for (unsigned i
= 0; i
< NumElts
; ++i
) {
12510 SDNode
*Elt
= N
->getOperand(i
).getNode();
12511 if (ISD::isNormalLoad(Elt
) && !cast
<LoadSDNode
>(Elt
)->isVolatile())
12517 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
12518 /// ISD::BUILD_VECTOR.
12519 static SDValue
PerformBUILD_VECTORCombine(SDNode
*N
,
12520 TargetLowering::DAGCombinerInfo
&DCI
,
12521 const ARMSubtarget
*Subtarget
) {
12522 // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
12523 // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value
12524 // into a pair of GPRs, which is fine when the value is used as a scalar,
12525 // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
12526 SelectionDAG
&DAG
= DCI
.DAG
;
12527 if (N
->getNumOperands() == 2)
12528 if (SDValue RV
= PerformVMOVDRRCombine(N
, DAG
))
12531 // Load i64 elements as f64 values so that type legalization does not split
12532 // them up into i32 values.
12533 EVT VT
= N
->getValueType(0);
12534 if (VT
.getVectorElementType() != MVT::i64
|| !hasNormalLoadOperand(N
))
12537 SmallVector
<SDValue
, 8> Ops
;
12538 unsigned NumElts
= VT
.getVectorNumElements();
12539 for (unsigned i
= 0; i
< NumElts
; ++i
) {
12540 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, N
->getOperand(i
));
12542 // Make the DAGCombiner fold the bitcast.
12543 DCI
.AddToWorklist(V
.getNode());
12545 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
, NumElts
);
12546 SDValue BV
= DAG
.getBuildVector(FloatVT
, dl
, Ops
);
12547 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, BV
);
12550 /// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
12552 PerformARMBUILD_VECTORCombine(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
) {
12553 // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
12554 // At that time, we may have inserted bitcasts from integer to float.
12555 // If these bitcasts have survived DAGCombine, change the lowering of this
12556 // BUILD_VECTOR in something more vector friendly, i.e., that does not
12557 // force to use floating point types.
12559 // Make sure we can change the type of the vector.
12560 // This is possible iff:
12561 // 1. The vector is only used in a bitcast to a integer type. I.e.,
12562 // 1.1. Vector is used only once.
12563 // 1.2. Use is a bit convert to an integer type.
12564 // 2. The size of its operands are 32-bits (64-bits are not legal).
12565 EVT VT
= N
->getValueType(0);
12566 EVT EltVT
= VT
.getVectorElementType();
12568 // Check 1.1. and 2.
12569 if (EltVT
.getSizeInBits() != 32 || !N
->hasOneUse())
12572 // By construction, the input type must be float.
12573 assert(EltVT
== MVT::f32
&& "Unexpected type!");
12576 SDNode
*Use
= *N
->use_begin();
12577 if (Use
->getOpcode() != ISD::BITCAST
||
12578 Use
->getValueType(0).isFloatingPoint())
12581 // Check profitability.
12582 // Model is, if more than half of the relevant operands are bitcast from
12583 // i32, turn the build_vector into a sequence of insert_vector_elt.
12584 // Relevant operands are everything that is not statically
12585 // (i.e., at compile time) bitcasted.
12586 unsigned NumOfBitCastedElts
= 0;
12587 unsigned NumElts
= VT
.getVectorNumElements();
12588 unsigned NumOfRelevantElts
= NumElts
;
12589 for (unsigned Idx
= 0; Idx
< NumElts
; ++Idx
) {
12590 SDValue Elt
= N
->getOperand(Idx
);
12591 if (Elt
->getOpcode() == ISD::BITCAST
) {
12592 // Assume only bit cast to i32 will go away.
12593 if (Elt
->getOperand(0).getValueType() == MVT::i32
)
12594 ++NumOfBitCastedElts
;
12595 } else if (Elt
.isUndef() || isa
<ConstantSDNode
>(Elt
))
12596 // Constants are statically casted, thus do not count them as
12597 // relevant operands.
12598 --NumOfRelevantElts
;
12601 // Check if more than half of the elements require a non-free bitcast.
12602 if (NumOfBitCastedElts
<= NumOfRelevantElts
/ 2)
12605 SelectionDAG
&DAG
= DCI
.DAG
;
12606 // Create the new vector type.
12607 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::i32
, NumElts
);
12608 // Check if the type is legal.
12609 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
12610 if (!TLI
.isTypeLegal(VecVT
))
12614 // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
12615 // => BITCAST INSERT_VECTOR_ELT
12616 // (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
12617 // (BITCAST EN), N.
12618 SDValue Vec
= DAG
.getUNDEF(VecVT
);
12620 for (unsigned Idx
= 0 ; Idx
< NumElts
; ++Idx
) {
12621 SDValue V
= N
->getOperand(Idx
);
12624 if (V
.getOpcode() == ISD::BITCAST
&&
12625 V
->getOperand(0).getValueType() == MVT::i32
)
12626 // Fold obvious case.
12627 V
= V
.getOperand(0);
12629 V
= DAG
.getNode(ISD::BITCAST
, SDLoc(V
), MVT::i32
, V
);
12630 // Make the DAGCombiner fold the bitcasts.
12631 DCI
.AddToWorklist(V
.getNode());
12633 SDValue LaneIdx
= DAG
.getConstant(Idx
, dl
, MVT::i32
);
12634 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VecVT
, Vec
, V
, LaneIdx
);
12636 Vec
= DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vec
);
12637 // Make the DAGCombiner fold the bitcasts.
12638 DCI
.AddToWorklist(Vec
.getNode());
12643 PerformPREDICATE_CASTCombine(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
) {
12644 EVT VT
= N
->getValueType(0);
12645 SDValue Op
= N
->getOperand(0);
12648 // PREDICATE_CAST(PREDICATE_CAST(x)) == PREDICATE_CAST(x)
12649 if (Op
->getOpcode() == ARMISD::PREDICATE_CAST
) {
12650 // If the valuetypes are the same, we can remove the cast entirely.
12651 if (Op
->getOperand(0).getValueType() == VT
)
12652 return Op
->getOperand(0);
12653 return DCI
.DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
,
12654 Op
->getOperand(0).getValueType(), Op
->getOperand(0));
12660 /// PerformInsertEltCombine - Target-specific dag combine xforms for
12661 /// ISD::INSERT_VECTOR_ELT.
12662 static SDValue
PerformInsertEltCombine(SDNode
*N
,
12663 TargetLowering::DAGCombinerInfo
&DCI
) {
12664 // Bitcast an i64 load inserted into a vector to f64.
12665 // Otherwise, the i64 value will be legalized to a pair of i32 values.
12666 EVT VT
= N
->getValueType(0);
12667 SDNode
*Elt
= N
->getOperand(1).getNode();
12668 if (VT
.getVectorElementType() != MVT::i64
||
12669 !ISD::isNormalLoad(Elt
) || cast
<LoadSDNode
>(Elt
)->isVolatile())
12672 SelectionDAG
&DAG
= DCI
.DAG
;
12674 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
,
12675 VT
.getVectorNumElements());
12676 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, dl
, FloatVT
, N
->getOperand(0));
12677 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, N
->getOperand(1));
12678 // Make the DAGCombiner fold the bitcasts.
12679 DCI
.AddToWorklist(Vec
.getNode());
12680 DCI
.AddToWorklist(V
.getNode());
12681 SDValue InsElt
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, FloatVT
,
12682 Vec
, V
, N
->getOperand(2));
12683 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, InsElt
);
12686 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
12687 /// ISD::VECTOR_SHUFFLE.
12688 static SDValue
PerformVECTOR_SHUFFLECombine(SDNode
*N
, SelectionDAG
&DAG
) {
12689 // The LLVM shufflevector instruction does not require the shuffle mask
12690 // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
12691 // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the
12692 // operands do not match the mask length, they are extended by concatenating
12693 // them with undef vectors. That is probably the right thing for other
12694 // targets, but for NEON it is better to concatenate two double-register
12695 // size vector operands into a single quad-register size vector. Do that
12696 // transformation here:
12697 // shuffle(concat(v1, undef), concat(v2, undef)) ->
12698 // shuffle(concat(v1, v2), undef)
12699 SDValue Op0
= N
->getOperand(0);
12700 SDValue Op1
= N
->getOperand(1);
12701 if (Op0
.getOpcode() != ISD::CONCAT_VECTORS
||
12702 Op1
.getOpcode() != ISD::CONCAT_VECTORS
||
12703 Op0
.getNumOperands() != 2 ||
12704 Op1
.getNumOperands() != 2)
12706 SDValue Concat0Op1
= Op0
.getOperand(1);
12707 SDValue Concat1Op1
= Op1
.getOperand(1);
12708 if (!Concat0Op1
.isUndef() || !Concat1Op1
.isUndef())
12710 // Skip the transformation if any of the types are illegal.
12711 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
12712 EVT VT
= N
->getValueType(0);
12713 if (!TLI
.isTypeLegal(VT
) ||
12714 !TLI
.isTypeLegal(Concat0Op1
.getValueType()) ||
12715 !TLI
.isTypeLegal(Concat1Op1
.getValueType()))
12718 SDValue NewConcat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
,
12719 Op0
.getOperand(0), Op1
.getOperand(0));
12720 // Translate the shuffle mask.
12721 SmallVector
<int, 16> NewMask
;
12722 unsigned NumElts
= VT
.getVectorNumElements();
12723 unsigned HalfElts
= NumElts
/2;
12724 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
12725 for (unsigned n
= 0; n
< NumElts
; ++n
) {
12726 int MaskElt
= SVN
->getMaskElt(n
);
12728 if (MaskElt
< (int)HalfElts
)
12730 else if (MaskElt
>= (int)NumElts
&& MaskElt
< (int)(NumElts
+ HalfElts
))
12731 NewElt
= HalfElts
+ MaskElt
- NumElts
;
12732 NewMask
.push_back(NewElt
);
12734 return DAG
.getVectorShuffle(VT
, SDLoc(N
), NewConcat
,
12735 DAG
.getUNDEF(VT
), NewMask
);
12738 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
12739 /// NEON load/store intrinsics, and generic vector load/stores, to merge
12740 /// base address updates.
12741 /// For generic load/stores, the memory type is assumed to be a vector.
12742 /// The caller is assumed to have checked legality.
12743 static SDValue
CombineBaseUpdate(SDNode
*N
,
12744 TargetLowering::DAGCombinerInfo
&DCI
) {
12745 SelectionDAG
&DAG
= DCI
.DAG
;
12746 const bool isIntrinsic
= (N
->getOpcode() == ISD::INTRINSIC_VOID
||
12747 N
->getOpcode() == ISD::INTRINSIC_W_CHAIN
);
12748 const bool isStore
= N
->getOpcode() == ISD::STORE
;
12749 const unsigned AddrOpIdx
= ((isIntrinsic
|| isStore
) ? 2 : 1);
12750 SDValue Addr
= N
->getOperand(AddrOpIdx
);
12751 MemSDNode
*MemN
= cast
<MemSDNode
>(N
);
12754 // Search for a use of the address operand that is an increment.
12755 for (SDNode::use_iterator UI
= Addr
.getNode()->use_begin(),
12756 UE
= Addr
.getNode()->use_end(); UI
!= UE
; ++UI
) {
12757 SDNode
*User
= *UI
;
12758 if (User
->getOpcode() != ISD::ADD
||
12759 UI
.getUse().getResNo() != Addr
.getResNo())
12762 // Check that the add is independent of the load/store. Otherwise, folding
12763 // it would create a cycle. We can avoid searching through Addr as it's a
12764 // predecessor to both.
12765 SmallPtrSet
<const SDNode
*, 32> Visited
;
12766 SmallVector
<const SDNode
*, 16> Worklist
;
12767 Visited
.insert(Addr
.getNode());
12768 Worklist
.push_back(N
);
12769 Worklist
.push_back(User
);
12770 if (SDNode::hasPredecessorHelper(N
, Visited
, Worklist
) ||
12771 SDNode::hasPredecessorHelper(User
, Visited
, Worklist
))
12774 // Find the new opcode for the updating load/store.
12775 bool isLoadOp
= true;
12776 bool isLaneOp
= false;
12777 unsigned NewOpc
= 0;
12778 unsigned NumVecs
= 0;
12780 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue();
12782 default: llvm_unreachable("unexpected intrinsic for Neon base update");
12783 case Intrinsic::arm_neon_vld1
: NewOpc
= ARMISD::VLD1_UPD
;
12784 NumVecs
= 1; break;
12785 case Intrinsic::arm_neon_vld2
: NewOpc
= ARMISD::VLD2_UPD
;
12786 NumVecs
= 2; break;
12787 case Intrinsic::arm_neon_vld3
: NewOpc
= ARMISD::VLD3_UPD
;
12788 NumVecs
= 3; break;
12789 case Intrinsic::arm_neon_vld4
: NewOpc
= ARMISD::VLD4_UPD
;
12790 NumVecs
= 4; break;
12791 case Intrinsic::arm_neon_vld2dup
:
12792 case Intrinsic::arm_neon_vld3dup
:
12793 case Intrinsic::arm_neon_vld4dup
:
12794 // TODO: Support updating VLDxDUP nodes. For now, we just skip
12795 // combining base updates for such intrinsics.
12797 case Intrinsic::arm_neon_vld2lane
: NewOpc
= ARMISD::VLD2LN_UPD
;
12798 NumVecs
= 2; isLaneOp
= true; break;
12799 case Intrinsic::arm_neon_vld3lane
: NewOpc
= ARMISD::VLD3LN_UPD
;
12800 NumVecs
= 3; isLaneOp
= true; break;
12801 case Intrinsic::arm_neon_vld4lane
: NewOpc
= ARMISD::VLD4LN_UPD
;
12802 NumVecs
= 4; isLaneOp
= true; break;
12803 case Intrinsic::arm_neon_vst1
: NewOpc
= ARMISD::VST1_UPD
;
12804 NumVecs
= 1; isLoadOp
= false; break;
12805 case Intrinsic::arm_neon_vst2
: NewOpc
= ARMISD::VST2_UPD
;
12806 NumVecs
= 2; isLoadOp
= false; break;
12807 case Intrinsic::arm_neon_vst3
: NewOpc
= ARMISD::VST3_UPD
;
12808 NumVecs
= 3; isLoadOp
= false; break;
12809 case Intrinsic::arm_neon_vst4
: NewOpc
= ARMISD::VST4_UPD
;
12810 NumVecs
= 4; isLoadOp
= false; break;
12811 case Intrinsic::arm_neon_vst2lane
: NewOpc
= ARMISD::VST2LN_UPD
;
12812 NumVecs
= 2; isLoadOp
= false; isLaneOp
= true; break;
12813 case Intrinsic::arm_neon_vst3lane
: NewOpc
= ARMISD::VST3LN_UPD
;
12814 NumVecs
= 3; isLoadOp
= false; isLaneOp
= true; break;
12815 case Intrinsic::arm_neon_vst4lane
: NewOpc
= ARMISD::VST4LN_UPD
;
12816 NumVecs
= 4; isLoadOp
= false; isLaneOp
= true; break;
12820 switch (N
->getOpcode()) {
12821 default: llvm_unreachable("unexpected opcode for Neon base update");
12822 case ARMISD::VLD1DUP
: NewOpc
= ARMISD::VLD1DUP_UPD
; NumVecs
= 1; break;
12823 case ARMISD::VLD2DUP
: NewOpc
= ARMISD::VLD2DUP_UPD
; NumVecs
= 2; break;
12824 case ARMISD::VLD3DUP
: NewOpc
= ARMISD::VLD3DUP_UPD
; NumVecs
= 3; break;
12825 case ARMISD::VLD4DUP
: NewOpc
= ARMISD::VLD4DUP_UPD
; NumVecs
= 4; break;
12826 case ISD::LOAD
: NewOpc
= ARMISD::VLD1_UPD
;
12827 NumVecs
= 1; isLaneOp
= false; break;
12828 case ISD::STORE
: NewOpc
= ARMISD::VST1_UPD
;
12829 NumVecs
= 1; isLaneOp
= false; isLoadOp
= false; break;
12833 // Find the size of memory referenced by the load/store.
12836 VecTy
= N
->getValueType(0);
12837 } else if (isIntrinsic
) {
12838 VecTy
= N
->getOperand(AddrOpIdx
+1).getValueType();
12840 assert(isStore
&& "Node has to be a load, a store, or an intrinsic!");
12841 VecTy
= N
->getOperand(1).getValueType();
12844 unsigned NumBytes
= NumVecs
* VecTy
.getSizeInBits() / 8;
12846 NumBytes
/= VecTy
.getVectorNumElements();
12848 // If the increment is a constant, it must match the memory ref size.
12849 SDValue Inc
= User
->getOperand(User
->getOperand(0) == Addr
? 1 : 0);
12850 ConstantSDNode
*CInc
= dyn_cast
<ConstantSDNode
>(Inc
.getNode());
12851 if (NumBytes
>= 3 * 16 && (!CInc
|| CInc
->getZExtValue() != NumBytes
)) {
12852 // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
12853 // separate instructions that make it harder to use a non-constant update.
12857 // OK, we found an ADD we can fold into the base update.
12858 // Now, create a _UPD node, taking care of not breaking alignment.
12860 EVT AlignedVecTy
= VecTy
;
12861 unsigned Alignment
= MemN
->getAlignment();
12863 // If this is a less-than-standard-aligned load/store, change the type to
12864 // match the standard alignment.
12865 // The alignment is overlooked when selecting _UPD variants; and it's
12866 // easier to introduce bitcasts here than fix that.
12867 // There are 3 ways to get to this base-update combine:
12868 // - intrinsics: they are assumed to be properly aligned (to the standard
12869 // alignment of the memory type), so we don't need to do anything.
12870 // - ARMISD::VLDx nodes: they are only generated from the aforementioned
12871 // intrinsics, so, likewise, there's nothing to do.
12872 // - generic load/store instructions: the alignment is specified as an
12873 // explicit operand, rather than implicitly as the standard alignment
12874 // of the memory type (like the intrisics). We need to change the
12875 // memory type to match the explicit alignment. That way, we don't
12876 // generate non-standard-aligned ARMISD::VLDx nodes.
12877 if (isa
<LSBaseSDNode
>(N
)) {
12878 if (Alignment
== 0)
12880 if (Alignment
< VecTy
.getScalarSizeInBits() / 8) {
12881 MVT EltTy
= MVT::getIntegerVT(Alignment
* 8);
12882 assert(NumVecs
== 1 && "Unexpected multi-element generic load/store.");
12883 assert(!isLaneOp
&& "Unexpected generic load/store lane.");
12884 unsigned NumElts
= NumBytes
/ (EltTy
.getSizeInBits() / 8);
12885 AlignedVecTy
= MVT::getVectorVT(EltTy
, NumElts
);
12887 // Don't set an explicit alignment on regular load/stores that we want
12888 // to transform to VLD/VST 1_UPD nodes.
12889 // This matches the behavior of regular load/stores, which only get an
12890 // explicit alignment if the MMO alignment is larger than the standard
12891 // alignment of the memory type.
12892 // Intrinsics, however, always get an explicit alignment, set to the
12893 // alignment of the MMO.
12897 // Create the new updating load/store node.
12898 // First, create an SDVTList for the new updating node's results.
12900 unsigned NumResultVecs
= (isLoadOp
? NumVecs
: 0);
12902 for (n
= 0; n
< NumResultVecs
; ++n
)
12903 Tys
[n
] = AlignedVecTy
;
12904 Tys
[n
++] = MVT::i32
;
12905 Tys
[n
] = MVT::Other
;
12906 SDVTList SDTys
= DAG
.getVTList(makeArrayRef(Tys
, NumResultVecs
+2));
12908 // Then, gather the new node's operands.
12909 SmallVector
<SDValue
, 8> Ops
;
12910 Ops
.push_back(N
->getOperand(0)); // incoming chain
12911 Ops
.push_back(N
->getOperand(AddrOpIdx
));
12912 Ops
.push_back(Inc
);
12914 if (StoreSDNode
*StN
= dyn_cast
<StoreSDNode
>(N
)) {
12915 // Try to match the intrinsic's signature
12916 Ops
.push_back(StN
->getValue());
12918 // Loads (and of course intrinsics) match the intrinsics' signature,
12919 // so just add all but the alignment operand.
12920 for (unsigned i
= AddrOpIdx
+ 1; i
< N
->getNumOperands() - 1; ++i
)
12921 Ops
.push_back(N
->getOperand(i
));
12924 // For all node types, the alignment operand is always the last one.
12925 Ops
.push_back(DAG
.getConstant(Alignment
, dl
, MVT::i32
));
12927 // If this is a non-standard-aligned STORE, the penultimate operand is the
12928 // stored value. Bitcast it to the aligned type.
12929 if (AlignedVecTy
!= VecTy
&& N
->getOpcode() == ISD::STORE
) {
12930 SDValue
&StVal
= Ops
[Ops
.size()-2];
12931 StVal
= DAG
.getNode(ISD::BITCAST
, dl
, AlignedVecTy
, StVal
);
12934 EVT LoadVT
= isLaneOp
? VecTy
.getVectorElementType() : AlignedVecTy
;
12935 SDValue UpdN
= DAG
.getMemIntrinsicNode(NewOpc
, dl
, SDTys
, Ops
, LoadVT
,
12936 MemN
->getMemOperand());
12938 // Update the uses.
12939 SmallVector
<SDValue
, 5> NewResults
;
12940 for (unsigned i
= 0; i
< NumResultVecs
; ++i
)
12941 NewResults
.push_back(SDValue(UpdN
.getNode(), i
));
12943 // If this is an non-standard-aligned LOAD, the first result is the loaded
12944 // value. Bitcast it to the expected result type.
12945 if (AlignedVecTy
!= VecTy
&& N
->getOpcode() == ISD::LOAD
) {
12946 SDValue
&LdVal
= NewResults
[0];
12947 LdVal
= DAG
.getNode(ISD::BITCAST
, dl
, VecTy
, LdVal
);
12950 NewResults
.push_back(SDValue(UpdN
.getNode(), NumResultVecs
+1)); // chain
12951 DCI
.CombineTo(N
, NewResults
);
12952 DCI
.CombineTo(User
, SDValue(UpdN
.getNode(), NumResultVecs
));
12959 static SDValue
PerformVLDCombine(SDNode
*N
,
12960 TargetLowering::DAGCombinerInfo
&DCI
) {
12961 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
12964 return CombineBaseUpdate(N
, DCI
);
12967 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
12968 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
12969 /// are also VDUPLANEs. If so, combine them to a vldN-dup operation and
12971 static bool CombineVLDDUP(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
) {
12972 SelectionDAG
&DAG
= DCI
.DAG
;
12973 EVT VT
= N
->getValueType(0);
12974 // vldN-dup instructions only support 64-bit vectors for N > 1.
12975 if (!VT
.is64BitVector())
12978 // Check if the VDUPLANE operand is a vldN-dup intrinsic.
12979 SDNode
*VLD
= N
->getOperand(0).getNode();
12980 if (VLD
->getOpcode() != ISD::INTRINSIC_W_CHAIN
)
12982 unsigned NumVecs
= 0;
12983 unsigned NewOpc
= 0;
12984 unsigned IntNo
= cast
<ConstantSDNode
>(VLD
->getOperand(1))->getZExtValue();
12985 if (IntNo
== Intrinsic::arm_neon_vld2lane
) {
12987 NewOpc
= ARMISD::VLD2DUP
;
12988 } else if (IntNo
== Intrinsic::arm_neon_vld3lane
) {
12990 NewOpc
= ARMISD::VLD3DUP
;
12991 } else if (IntNo
== Intrinsic::arm_neon_vld4lane
) {
12993 NewOpc
= ARMISD::VLD4DUP
;
12998 // First check that all the vldN-lane uses are VDUPLANEs and that the lane
12999 // numbers match the load.
13000 unsigned VLDLaneNo
=
13001 cast
<ConstantSDNode
>(VLD
->getOperand(NumVecs
+3))->getZExtValue();
13002 for (SDNode::use_iterator UI
= VLD
->use_begin(), UE
= VLD
->use_end();
13004 // Ignore uses of the chain result.
13005 if (UI
.getUse().getResNo() == NumVecs
)
13007 SDNode
*User
= *UI
;
13008 if (User
->getOpcode() != ARMISD::VDUPLANE
||
13009 VLDLaneNo
!= cast
<ConstantSDNode
>(User
->getOperand(1))->getZExtValue())
13013 // Create the vldN-dup node.
13016 for (n
= 0; n
< NumVecs
; ++n
)
13018 Tys
[n
] = MVT::Other
;
13019 SDVTList SDTys
= DAG
.getVTList(makeArrayRef(Tys
, NumVecs
+1));
13020 SDValue Ops
[] = { VLD
->getOperand(0), VLD
->getOperand(2) };
13021 MemIntrinsicSDNode
*VLDMemInt
= cast
<MemIntrinsicSDNode
>(VLD
);
13022 SDValue VLDDup
= DAG
.getMemIntrinsicNode(NewOpc
, SDLoc(VLD
), SDTys
,
13023 Ops
, VLDMemInt
->getMemoryVT(),
13024 VLDMemInt
->getMemOperand());
13026 // Update the uses.
13027 for (SDNode::use_iterator UI
= VLD
->use_begin(), UE
= VLD
->use_end();
13029 unsigned ResNo
= UI
.getUse().getResNo();
13030 // Ignore uses of the chain result.
13031 if (ResNo
== NumVecs
)
13033 SDNode
*User
= *UI
;
13034 DCI
.CombineTo(User
, SDValue(VLDDup
.getNode(), ResNo
));
13037 // Now the vldN-lane intrinsic is dead except for its chain result.
13038 // Update uses of the chain.
13039 std::vector
<SDValue
> VLDDupResults
;
13040 for (unsigned n
= 0; n
< NumVecs
; ++n
)
13041 VLDDupResults
.push_back(SDValue(VLDDup
.getNode(), n
));
13042 VLDDupResults
.push_back(SDValue(VLDDup
.getNode(), NumVecs
));
13043 DCI
.CombineTo(VLD
, VLDDupResults
);
13048 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
13049 /// ARMISD::VDUPLANE.
13050 static SDValue
PerformVDUPLANECombine(SDNode
*N
,
13051 TargetLowering::DAGCombinerInfo
&DCI
) {
13052 SDValue Op
= N
->getOperand(0);
13054 // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
13055 // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
13056 if (CombineVLDDUP(N
, DCI
))
13057 return SDValue(N
, 0);
13059 // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
13060 // redundant. Ignore bit_converts for now; element sizes are checked below.
13061 while (Op
.getOpcode() == ISD::BITCAST
)
13062 Op
= Op
.getOperand(0);
13063 if (Op
.getOpcode() != ARMISD::VMOVIMM
&& Op
.getOpcode() != ARMISD::VMVNIMM
)
13066 // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
13067 unsigned EltSize
= Op
.getScalarValueSizeInBits();
13068 // The canonical VMOV for a zero vector uses a 32-bit element size.
13069 unsigned Imm
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
13071 if (ARM_AM::decodeVMOVModImm(Imm
, EltBits
) == 0)
13073 EVT VT
= N
->getValueType(0);
13074 if (EltSize
> VT
.getScalarSizeInBits())
13077 return DCI
.DAG
.getNode(ISD::BITCAST
, SDLoc(N
), VT
, Op
);
13080 /// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
13081 static SDValue
PerformVDUPCombine(SDNode
*N
,
13082 TargetLowering::DAGCombinerInfo
&DCI
,
13083 const ARMSubtarget
*Subtarget
) {
13084 SelectionDAG
&DAG
= DCI
.DAG
;
13085 SDValue Op
= N
->getOperand(0);
13087 if (!Subtarget
->hasNEON())
13090 // Match VDUP(LOAD) -> VLD1DUP.
13091 // We match this pattern here rather than waiting for isel because the
13092 // transform is only legal for unindexed loads.
13093 LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(Op
.getNode());
13094 if (LD
&& Op
.hasOneUse() && LD
->isUnindexed() &&
13095 LD
->getMemoryVT() == N
->getValueType(0).getVectorElementType()) {
13096 SDValue Ops
[] = { LD
->getOperand(0), LD
->getOperand(1),
13097 DAG
.getConstant(LD
->getAlignment(), SDLoc(N
), MVT::i32
) };
13098 SDVTList SDTys
= DAG
.getVTList(N
->getValueType(0), MVT::Other
);
13099 SDValue VLDDup
= DAG
.getMemIntrinsicNode(ARMISD::VLD1DUP
, SDLoc(N
), SDTys
,
13100 Ops
, LD
->getMemoryVT(),
13101 LD
->getMemOperand());
13102 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), VLDDup
.getValue(1));
13109 static SDValue
PerformLOADCombine(SDNode
*N
,
13110 TargetLowering::DAGCombinerInfo
&DCI
) {
13111 EVT VT
= N
->getValueType(0);
13113 // If this is a legal vector load, try to combine it into a VLD1_UPD.
13114 if (ISD::isNormalLoad(N
) && VT
.isVector() &&
13115 DCI
.DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
13116 return CombineBaseUpdate(N
, DCI
);
13121 // Optimize trunc store (of multiple scalars) to shuffle and store. First,
13122 // pack all of the elements in one place. Next, store to memory in fewer
13124 SDValue
PerformTruncatingStoreCombine(StoreSDNode
*St
, SelectionDAG
&DAG
) {
13125 SDValue StVal
= St
->getValue();
13126 EVT VT
= StVal
.getValueType();
13127 if (!St
->isTruncatingStore() || !VT
.isVector())
13129 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
13130 EVT StVT
= St
->getMemoryVT();
13131 unsigned NumElems
= VT
.getVectorNumElements();
13132 assert(StVT
!= VT
&& "Cannot truncate to the same type");
13133 unsigned FromEltSz
= VT
.getScalarSizeInBits();
13134 unsigned ToEltSz
= StVT
.getScalarSizeInBits();
13136 // From, To sizes and ElemCount must be pow of two
13137 if (!isPowerOf2_32(NumElems
* FromEltSz
* ToEltSz
))
13140 // We are going to use the original vector elt for storing.
13141 // Accumulated smaller vector elements must be a multiple of the store size.
13142 if (0 != (NumElems
* FromEltSz
) % ToEltSz
)
13145 unsigned SizeRatio
= FromEltSz
/ ToEltSz
;
13146 assert(SizeRatio
* NumElems
* ToEltSz
== VT
.getSizeInBits());
13148 // Create a type on which we perform the shuffle.
13149 EVT WideVecVT
= EVT::getVectorVT(*DAG
.getContext(), StVT
.getScalarType(),
13150 NumElems
* SizeRatio
);
13151 assert(WideVecVT
.getSizeInBits() == VT
.getSizeInBits());
13154 SDValue WideVec
= DAG
.getNode(ISD::BITCAST
, DL
, WideVecVT
, StVal
);
13155 SmallVector
<int, 8> ShuffleVec(NumElems
* SizeRatio
, -1);
13156 for (unsigned i
= 0; i
< NumElems
; ++i
)
13157 ShuffleVec
[i
] = DAG
.getDataLayout().isBigEndian() ? (i
+ 1) * SizeRatio
- 1
13160 // Can't shuffle using an illegal type.
13161 if (!TLI
.isTypeLegal(WideVecVT
))
13164 SDValue Shuff
= DAG
.getVectorShuffle(
13165 WideVecVT
, DL
, WideVec
, DAG
.getUNDEF(WideVec
.getValueType()), ShuffleVec
);
13166 // At this point all of the data is stored at the bottom of the
13167 // register. We now need to save it to mem.
13169 // Find the largest store unit
13170 MVT StoreType
= MVT::i8
;
13171 for (MVT Tp
: MVT::integer_valuetypes()) {
13172 if (TLI
.isTypeLegal(Tp
) && Tp
.getSizeInBits() <= NumElems
* ToEltSz
)
13175 // Didn't find a legal store type.
13176 if (!TLI
.isTypeLegal(StoreType
))
13179 // Bitcast the original vector into a vector of store-size units
13181 EVT::getVectorVT(*DAG
.getContext(), StoreType
,
13182 VT
.getSizeInBits() / EVT(StoreType
).getSizeInBits());
13183 assert(StoreVecVT
.getSizeInBits() == VT
.getSizeInBits());
13184 SDValue ShuffWide
= DAG
.getNode(ISD::BITCAST
, DL
, StoreVecVT
, Shuff
);
13185 SmallVector
<SDValue
, 8> Chains
;
13186 SDValue Increment
= DAG
.getConstant(StoreType
.getSizeInBits() / 8, DL
,
13187 TLI
.getPointerTy(DAG
.getDataLayout()));
13188 SDValue BasePtr
= St
->getBasePtr();
13190 // Perform one or more big stores into memory.
13191 unsigned E
= (ToEltSz
* NumElems
) / StoreType
.getSizeInBits();
13192 for (unsigned I
= 0; I
< E
; I
++) {
13193 SDValue SubVec
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, StoreType
,
13194 ShuffWide
, DAG
.getIntPtrConstant(I
, DL
));
13196 DAG
.getStore(St
->getChain(), DL
, SubVec
, BasePtr
, St
->getPointerInfo(),
13197 St
->getAlignment(), St
->getMemOperand()->getFlags());
13199 DAG
.getNode(ISD::ADD
, DL
, BasePtr
.getValueType(), BasePtr
, Increment
);
13200 Chains
.push_back(Ch
);
13202 return DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Chains
);
13205 // Try taking a single vector store from an truncate (which would otherwise turn
13206 // into an expensive buildvector) and splitting it into a series of narrowing
13208 SDValue
PerformSplittingToNarrowingStores(StoreSDNode
*St
, SelectionDAG
&DAG
) {
13209 if (!St
->isSimple() || St
->isTruncatingStore() || !St
->isUnindexed())
13211 SDValue Trunc
= St
->getValue();
13212 if (Trunc
->getOpcode() != ISD::TRUNCATE
)
13214 EVT FromVT
= Trunc
->getOperand(0).getValueType();
13215 EVT ToVT
= Trunc
.getValueType();
13216 if (!ToVT
.isVector())
13218 assert(FromVT
.getVectorNumElements() == ToVT
.getVectorNumElements());
13219 EVT ToEltVT
= ToVT
.getVectorElementType();
13220 EVT FromEltVT
= FromVT
.getVectorElementType();
13222 unsigned NumElements
= 0;
13223 if (FromEltVT
== MVT::i32
&& (ToEltVT
== MVT::i16
|| ToEltVT
== MVT::i8
))
13225 if (FromEltVT
== MVT::i16
&& ToEltVT
== MVT::i8
)
13227 if (NumElements
== 0 || FromVT
.getVectorNumElements() == NumElements
||
13228 FromVT
.getVectorNumElements() % NumElements
!= 0)
13232 // Details about the old store
13233 SDValue Ch
= St
->getChain();
13234 SDValue BasePtr
= St
->getBasePtr();
13235 unsigned Alignment
= St
->getOriginalAlignment();
13236 MachineMemOperand::Flags MMOFlags
= St
->getMemOperand()->getFlags();
13237 AAMDNodes AAInfo
= St
->getAAInfo();
13239 EVT NewFromVT
= EVT::getVectorVT(*DAG
.getContext(), FromEltVT
, NumElements
);
13240 EVT NewToVT
= EVT::getVectorVT(*DAG
.getContext(), ToEltVT
, NumElements
);
13242 SmallVector
<SDValue
, 4> Stores
;
13243 for (unsigned i
= 0; i
< FromVT
.getVectorNumElements() / NumElements
; i
++) {
13244 unsigned NewOffset
= i
* NumElements
* ToEltVT
.getSizeInBits() / 8;
13245 SDValue NewPtr
= DAG
.getObjectPtrOffset(DL
, BasePtr
, NewOffset
);
13248 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NewFromVT
, Trunc
.getOperand(0),
13249 DAG
.getConstant(i
* NumElements
, DL
, MVT::i32
));
13250 SDValue Store
= DAG
.getTruncStore(
13251 Ch
, DL
, Extract
, NewPtr
, St
->getPointerInfo().getWithOffset(NewOffset
),
13252 NewToVT
, Alignment
, MMOFlags
, AAInfo
);
13253 Stores
.push_back(Store
);
13255 return DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Stores
);
13258 /// PerformSTORECombine - Target-specific dag combine xforms for
13260 static SDValue
PerformSTORECombine(SDNode
*N
,
13261 TargetLowering::DAGCombinerInfo
&DCI
,
13262 const ARMSubtarget
*Subtarget
) {
13263 StoreSDNode
*St
= cast
<StoreSDNode
>(N
);
13264 if (St
->isVolatile())
13266 SDValue StVal
= St
->getValue();
13267 EVT VT
= StVal
.getValueType();
13269 if (Subtarget
->hasNEON())
13270 if (SDValue Store
= PerformTruncatingStoreCombine(St
, DCI
.DAG
))
13273 if (Subtarget
->hasMVEIntegerOps())
13274 if (SDValue NewToken
= PerformSplittingToNarrowingStores(St
, DCI
.DAG
))
13277 if (!ISD::isNormalStore(St
))
13280 // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
13281 // ARM stores of arguments in the same cache line.
13282 if (StVal
.getNode()->getOpcode() == ARMISD::VMOVDRR
&&
13283 StVal
.getNode()->hasOneUse()) {
13284 SelectionDAG
&DAG
= DCI
.DAG
;
13285 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
13287 SDValue BasePtr
= St
->getBasePtr();
13288 SDValue NewST1
= DAG
.getStore(
13289 St
->getChain(), DL
, StVal
.getNode()->getOperand(isBigEndian
? 1 : 0),
13290 BasePtr
, St
->getPointerInfo(), St
->getAlignment(),
13291 St
->getMemOperand()->getFlags());
13293 SDValue OffsetPtr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, BasePtr
,
13294 DAG
.getConstant(4, DL
, MVT::i32
));
13295 return DAG
.getStore(NewST1
.getValue(0), DL
,
13296 StVal
.getNode()->getOperand(isBigEndian
? 0 : 1),
13297 OffsetPtr
, St
->getPointerInfo(),
13298 std::min(4U, St
->getAlignment() / 2),
13299 St
->getMemOperand()->getFlags());
13302 if (StVal
.getValueType() == MVT::i64
&&
13303 StVal
.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
13305 // Bitcast an i64 store extracted from a vector to f64.
13306 // Otherwise, the i64 value will be legalized to a pair of i32 values.
13307 SelectionDAG
&DAG
= DCI
.DAG
;
13309 SDValue IntVec
= StVal
.getOperand(0);
13310 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
,
13311 IntVec
.getValueType().getVectorNumElements());
13312 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, dl
, FloatVT
, IntVec
);
13313 SDValue ExtElt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
,
13314 Vec
, StVal
.getOperand(1));
13316 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i64
, ExtElt
);
13317 // Make the DAGCombiner fold the bitcasts.
13318 DCI
.AddToWorklist(Vec
.getNode());
13319 DCI
.AddToWorklist(ExtElt
.getNode());
13320 DCI
.AddToWorklist(V
.getNode());
13321 return DAG
.getStore(St
->getChain(), dl
, V
, St
->getBasePtr(),
13322 St
->getPointerInfo(), St
->getAlignment(),
13323 St
->getMemOperand()->getFlags(), St
->getAAInfo());
13326 // If this is a legal vector store, try to combine it into a VST1_UPD.
13327 if (Subtarget
->hasNEON() && ISD::isNormalStore(N
) && VT
.isVector() &&
13328 DCI
.DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
13329 return CombineBaseUpdate(N
, DCI
);
13334 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
13335 /// can replace combinations of VMUL and VCVT (floating-point to integer)
13336 /// when the VMUL has a constant operand that is a power of 2.
13338 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
13339 /// vmul.f32 d16, d17, d16
13340 /// vcvt.s32.f32 d16, d16
13342 /// vcvt.s32.f32 d16, d16, #3
13343 static SDValue
PerformVCVTCombine(SDNode
*N
, SelectionDAG
&DAG
,
13344 const ARMSubtarget
*Subtarget
) {
13345 if (!Subtarget
->hasNEON())
13348 SDValue Op
= N
->getOperand(0);
13349 if (!Op
.getValueType().isVector() || !Op
.getValueType().isSimple() ||
13350 Op
.getOpcode() != ISD::FMUL
)
13353 SDValue ConstVec
= Op
->getOperand(1);
13354 if (!isa
<BuildVectorSDNode
>(ConstVec
))
13357 MVT FloatTy
= Op
.getSimpleValueType().getVectorElementType();
13358 uint32_t FloatBits
= FloatTy
.getSizeInBits();
13359 MVT IntTy
= N
->getSimpleValueType(0).getVectorElementType();
13360 uint32_t IntBits
= IntTy
.getSizeInBits();
13361 unsigned NumLanes
= Op
.getValueType().getVectorNumElements();
13362 if (FloatBits
!= 32 || IntBits
> 32 || (NumLanes
!= 4 && NumLanes
!= 2)) {
13363 // These instructions only exist converting from f32 to i32. We can handle
13364 // smaller integers by generating an extra truncate, but larger ones would
13365 // be lossy. We also can't handle anything other than 2 or 4 lanes, since
13366 // these intructions only support v2i32/v4i32 types.
13370 BitVector UndefElements
;
13371 BuildVectorSDNode
*BV
= cast
<BuildVectorSDNode
>(ConstVec
);
13372 int32_t C
= BV
->getConstantFPSplatPow2ToLog2Int(&UndefElements
, 33);
13373 if (C
== -1 || C
== 0 || C
> 32)
13377 bool isSigned
= N
->getOpcode() == ISD::FP_TO_SINT
;
13378 unsigned IntrinsicOpcode
= isSigned
? Intrinsic::arm_neon_vcvtfp2fxs
:
13379 Intrinsic::arm_neon_vcvtfp2fxu
;
13380 SDValue FixConv
= DAG
.getNode(
13381 ISD::INTRINSIC_WO_CHAIN
, dl
, NumLanes
== 2 ? MVT::v2i32
: MVT::v4i32
,
13382 DAG
.getConstant(IntrinsicOpcode
, dl
, MVT::i32
), Op
->getOperand(0),
13383 DAG
.getConstant(C
, dl
, MVT::i32
));
13385 if (IntBits
< FloatBits
)
13386 FixConv
= DAG
.getNode(ISD::TRUNCATE
, dl
, N
->getValueType(0), FixConv
);
13391 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
13392 /// can replace combinations of VCVT (integer to floating-point) and VDIV
13393 /// when the VDIV has a constant operand that is a power of 2.
13395 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
13396 /// vcvt.f32.s32 d16, d16
13397 /// vdiv.f32 d16, d17, d16
13399 /// vcvt.f32.s32 d16, d16, #3
13400 static SDValue
PerformVDIVCombine(SDNode
*N
, SelectionDAG
&DAG
,
13401 const ARMSubtarget
*Subtarget
) {
13402 if (!Subtarget
->hasNEON())
13405 SDValue Op
= N
->getOperand(0);
13406 unsigned OpOpcode
= Op
.getNode()->getOpcode();
13407 if (!N
->getValueType(0).isVector() || !N
->getValueType(0).isSimple() ||
13408 (OpOpcode
!= ISD::SINT_TO_FP
&& OpOpcode
!= ISD::UINT_TO_FP
))
13411 SDValue ConstVec
= N
->getOperand(1);
13412 if (!isa
<BuildVectorSDNode
>(ConstVec
))
13415 MVT FloatTy
= N
->getSimpleValueType(0).getVectorElementType();
13416 uint32_t FloatBits
= FloatTy
.getSizeInBits();
13417 MVT IntTy
= Op
.getOperand(0).getSimpleValueType().getVectorElementType();
13418 uint32_t IntBits
= IntTy
.getSizeInBits();
13419 unsigned NumLanes
= Op
.getValueType().getVectorNumElements();
13420 if (FloatBits
!= 32 || IntBits
> 32 || (NumLanes
!= 4 && NumLanes
!= 2)) {
13421 // These instructions only exist converting from i32 to f32. We can handle
13422 // smaller integers by generating an extra extend, but larger ones would
13423 // be lossy. We also can't handle anything other than 2 or 4 lanes, since
13424 // these intructions only support v2i32/v4i32 types.
13428 BitVector UndefElements
;
13429 BuildVectorSDNode
*BV
= cast
<BuildVectorSDNode
>(ConstVec
);
13430 int32_t C
= BV
->getConstantFPSplatPow2ToLog2Int(&UndefElements
, 33);
13431 if (C
== -1 || C
== 0 || C
> 32)
13435 bool isSigned
= OpOpcode
== ISD::SINT_TO_FP
;
13436 SDValue ConvInput
= Op
.getOperand(0);
13437 if (IntBits
< FloatBits
)
13438 ConvInput
= DAG
.getNode(isSigned
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
,
13439 dl
, NumLanes
== 2 ? MVT::v2i32
: MVT::v4i32
,
13442 unsigned IntrinsicOpcode
= isSigned
? Intrinsic::arm_neon_vcvtfxs2fp
:
13443 Intrinsic::arm_neon_vcvtfxu2fp
;
13444 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
,
13446 DAG
.getConstant(IntrinsicOpcode
, dl
, MVT::i32
),
13447 ConvInput
, DAG
.getConstant(C
, dl
, MVT::i32
));
13450 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
13451 static SDValue
PerformIntrinsicCombine(SDNode
*N
, SelectionDAG
&DAG
) {
13452 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
13455 // Don't do anything for most intrinsics.
13458 // Vector shifts: check for immediate versions and lower them.
13459 // Note: This is done during DAG combining instead of DAG legalizing because
13460 // the build_vectors for 64-bit vector element shift counts are generally
13461 // not legal, and it is hard to see their values after they get legalized to
13462 // loads from a constant pool.
13463 case Intrinsic::arm_neon_vshifts
:
13464 case Intrinsic::arm_neon_vshiftu
:
13465 case Intrinsic::arm_neon_vrshifts
:
13466 case Intrinsic::arm_neon_vrshiftu
:
13467 case Intrinsic::arm_neon_vrshiftn
:
13468 case Intrinsic::arm_neon_vqshifts
:
13469 case Intrinsic::arm_neon_vqshiftu
:
13470 case Intrinsic::arm_neon_vqshiftsu
:
13471 case Intrinsic::arm_neon_vqshiftns
:
13472 case Intrinsic::arm_neon_vqshiftnu
:
13473 case Intrinsic::arm_neon_vqshiftnsu
:
13474 case Intrinsic::arm_neon_vqrshiftns
:
13475 case Intrinsic::arm_neon_vqrshiftnu
:
13476 case Intrinsic::arm_neon_vqrshiftnsu
: {
13477 EVT VT
= N
->getOperand(1).getValueType();
13479 unsigned VShiftOpc
= 0;
13482 case Intrinsic::arm_neon_vshifts
:
13483 case Intrinsic::arm_neon_vshiftu
:
13484 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
)) {
13485 VShiftOpc
= ARMISD::VSHLIMM
;
13488 if (isVShiftRImm(N
->getOperand(2), VT
, false, true, Cnt
)) {
13489 VShiftOpc
= (IntNo
== Intrinsic::arm_neon_vshifts
? ARMISD::VSHRsIMM
13490 : ARMISD::VSHRuIMM
);
13495 case Intrinsic::arm_neon_vrshifts
:
13496 case Intrinsic::arm_neon_vrshiftu
:
13497 if (isVShiftRImm(N
->getOperand(2), VT
, false, true, Cnt
))
13501 case Intrinsic::arm_neon_vqshifts
:
13502 case Intrinsic::arm_neon_vqshiftu
:
13503 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
))
13507 case Intrinsic::arm_neon_vqshiftsu
:
13508 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
))
13510 llvm_unreachable("invalid shift count for vqshlu intrinsic");
13512 case Intrinsic::arm_neon_vrshiftn
:
13513 case Intrinsic::arm_neon_vqshiftns
:
13514 case Intrinsic::arm_neon_vqshiftnu
:
13515 case Intrinsic::arm_neon_vqshiftnsu
:
13516 case Intrinsic::arm_neon_vqrshiftns
:
13517 case Intrinsic::arm_neon_vqrshiftnu
:
13518 case Intrinsic::arm_neon_vqrshiftnsu
:
13519 // Narrowing shifts require an immediate right shift.
13520 if (isVShiftRImm(N
->getOperand(2), VT
, true, true, Cnt
))
13522 llvm_unreachable("invalid shift count for narrowing vector shift "
13526 llvm_unreachable("unhandled vector shift");
13530 case Intrinsic::arm_neon_vshifts
:
13531 case Intrinsic::arm_neon_vshiftu
:
13532 // Opcode already set above.
13534 case Intrinsic::arm_neon_vrshifts
:
13535 VShiftOpc
= ARMISD::VRSHRsIMM
;
13537 case Intrinsic::arm_neon_vrshiftu
:
13538 VShiftOpc
= ARMISD::VRSHRuIMM
;
13540 case Intrinsic::arm_neon_vrshiftn
:
13541 VShiftOpc
= ARMISD::VRSHRNIMM
;
13543 case Intrinsic::arm_neon_vqshifts
:
13544 VShiftOpc
= ARMISD::VQSHLsIMM
;
13546 case Intrinsic::arm_neon_vqshiftu
:
13547 VShiftOpc
= ARMISD::VQSHLuIMM
;
13549 case Intrinsic::arm_neon_vqshiftsu
:
13550 VShiftOpc
= ARMISD::VQSHLsuIMM
;
13552 case Intrinsic::arm_neon_vqshiftns
:
13553 VShiftOpc
= ARMISD::VQSHRNsIMM
;
13555 case Intrinsic::arm_neon_vqshiftnu
:
13556 VShiftOpc
= ARMISD::VQSHRNuIMM
;
13558 case Intrinsic::arm_neon_vqshiftnsu
:
13559 VShiftOpc
= ARMISD::VQSHRNsuIMM
;
13561 case Intrinsic::arm_neon_vqrshiftns
:
13562 VShiftOpc
= ARMISD::VQRSHRNsIMM
;
13564 case Intrinsic::arm_neon_vqrshiftnu
:
13565 VShiftOpc
= ARMISD::VQRSHRNuIMM
;
13567 case Intrinsic::arm_neon_vqrshiftnsu
:
13568 VShiftOpc
= ARMISD::VQRSHRNsuIMM
;
13573 return DAG
.getNode(VShiftOpc
, dl
, N
->getValueType(0),
13574 N
->getOperand(1), DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13577 case Intrinsic::arm_neon_vshiftins
: {
13578 EVT VT
= N
->getOperand(1).getValueType();
13580 unsigned VShiftOpc
= 0;
13582 if (isVShiftLImm(N
->getOperand(3), VT
, false, Cnt
))
13583 VShiftOpc
= ARMISD::VSLIIMM
;
13584 else if (isVShiftRImm(N
->getOperand(3), VT
, false, true, Cnt
))
13585 VShiftOpc
= ARMISD::VSRIIMM
;
13587 llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
13591 return DAG
.getNode(VShiftOpc
, dl
, N
->getValueType(0),
13592 N
->getOperand(1), N
->getOperand(2),
13593 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13596 case Intrinsic::arm_neon_vqrshifts
:
13597 case Intrinsic::arm_neon_vqrshiftu
:
13598 // No immediate versions of these to check for.
13605 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
13606 /// lowers them. As with the vector shift intrinsics, this is done during DAG
13607 /// combining instead of DAG legalizing because the build_vectors for 64-bit
13608 /// vector element shift counts are generally not legal, and it is hard to see
13609 /// their values after they get legalized to loads from a constant pool.
13610 static SDValue
PerformShiftCombine(SDNode
*N
,
13611 TargetLowering::DAGCombinerInfo
&DCI
,
13612 const ARMSubtarget
*ST
) {
13613 SelectionDAG
&DAG
= DCI
.DAG
;
13614 EVT VT
= N
->getValueType(0);
13615 if (N
->getOpcode() == ISD::SRL
&& VT
== MVT::i32
&& ST
->hasV6Ops()) {
13616 // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
13617 // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
13618 SDValue N1
= N
->getOperand(1);
13619 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N1
)) {
13620 SDValue N0
= N
->getOperand(0);
13621 if (C
->getZExtValue() == 16 && N0
.getOpcode() == ISD::BSWAP
&&
13622 DAG
.MaskedValueIsZero(N0
.getOperand(0),
13623 APInt::getHighBitsSet(32, 16)))
13624 return DAG
.getNode(ISD::ROTR
, SDLoc(N
), VT
, N0
, N1
);
13628 if (ST
->isThumb1Only() && N
->getOpcode() == ISD::SHL
&& VT
== MVT::i32
&&
13629 N
->getOperand(0)->getOpcode() == ISD::AND
&&
13630 N
->getOperand(0)->hasOneUse()) {
13631 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
13633 // Look for the pattern (shl (and x, AndMask), ShiftAmt). This doesn't
13634 // usually show up because instcombine prefers to canonicalize it to
13635 // (and (shl x, ShiftAmt) (shl AndMask, ShiftAmt)), but the shift can come
13636 // out of GEP lowering in some cases.
13637 SDValue N0
= N
->getOperand(0);
13638 ConstantSDNode
*ShiftAmtNode
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
13641 uint32_t ShiftAmt
= static_cast<uint32_t>(ShiftAmtNode
->getZExtValue());
13642 ConstantSDNode
*AndMaskNode
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1));
13645 uint32_t AndMask
= static_cast<uint32_t>(AndMaskNode
->getZExtValue());
13646 // Don't transform uxtb/uxth.
13647 if (AndMask
== 255 || AndMask
== 65535)
13649 if (isMask_32(AndMask
)) {
13650 uint32_t MaskedBits
= countLeadingZeros(AndMask
);
13651 if (MaskedBits
> ShiftAmt
) {
13653 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
13654 DAG
.getConstant(MaskedBits
, DL
, MVT::i32
));
13655 return DAG
.getNode(
13656 ISD::SRL
, DL
, MVT::i32
, SHL
,
13657 DAG
.getConstant(MaskedBits
- ShiftAmt
, DL
, MVT::i32
));
13662 // Nothing to be done for scalar shifts.
13663 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
13664 if (!VT
.isVector() || !TLI
.isTypeLegal(VT
))
13666 if (ST
->hasMVEIntegerOps() && VT
== MVT::v2i64
)
13671 switch (N
->getOpcode()) {
13672 default: llvm_unreachable("unexpected shift opcode");
13675 if (isVShiftLImm(N
->getOperand(1), VT
, false, Cnt
)) {
13677 return DAG
.getNode(ARMISD::VSHLIMM
, dl
, VT
, N
->getOperand(0),
13678 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13684 if (isVShiftRImm(N
->getOperand(1), VT
, false, false, Cnt
)) {
13685 unsigned VShiftOpc
=
13686 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHRsIMM
: ARMISD::VSHRuIMM
);
13688 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0),
13689 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13695 // Look for a sign/zero extend of a larger than legal load. This can be split
13696 // into two extending loads, which are simpler to deal with than an arbitrary
13698 SDValue
PerformSplittingToWideningLoad(SDNode
*N
, SelectionDAG
&DAG
) {
13699 SDValue N0
= N
->getOperand(0);
13700 if (N0
.getOpcode() != ISD::LOAD
)
13702 LoadSDNode
*LD
= cast
<LoadSDNode
>(N0
.getNode());
13703 if (!LD
->isSimple() || !N0
.hasOneUse() || LD
->isIndexed() ||
13704 LD
->getExtensionType() != ISD::NON_EXTLOAD
)
13706 EVT FromVT
= LD
->getValueType(0);
13707 EVT ToVT
= N
->getValueType(0);
13708 if (!ToVT
.isVector())
13710 assert(FromVT
.getVectorNumElements() == ToVT
.getVectorNumElements());
13711 EVT ToEltVT
= ToVT
.getVectorElementType();
13712 EVT FromEltVT
= FromVT
.getVectorElementType();
13714 unsigned NumElements
= 0;
13715 if (ToEltVT
== MVT::i32
&& (FromEltVT
== MVT::i16
|| FromEltVT
== MVT::i8
))
13717 if (ToEltVT
== MVT::i16
&& FromEltVT
== MVT::i8
)
13719 if (NumElements
== 0 ||
13720 FromVT
.getVectorNumElements() == NumElements
||
13721 FromVT
.getVectorNumElements() % NumElements
!= 0 ||
13722 !isPowerOf2_32(NumElements
))
13726 // Details about the old load
13727 SDValue Ch
= LD
->getChain();
13728 SDValue BasePtr
= LD
->getBasePtr();
13729 unsigned Alignment
= LD
->getOriginalAlignment();
13730 MachineMemOperand::Flags MMOFlags
= LD
->getMemOperand()->getFlags();
13731 AAMDNodes AAInfo
= LD
->getAAInfo();
13733 ISD::LoadExtType NewExtType
=
13734 N
->getOpcode() == ISD::SIGN_EXTEND
? ISD::SEXTLOAD
: ISD::ZEXTLOAD
;
13735 SDValue Offset
= DAG
.getUNDEF(BasePtr
.getValueType());
13736 EVT NewFromVT
= FromVT
.getHalfNumVectorElementsVT(*DAG
.getContext());
13737 EVT NewToVT
= ToVT
.getHalfNumVectorElementsVT(*DAG
.getContext());
13738 unsigned NewOffset
= NewFromVT
.getSizeInBits() / 8;
13739 SDValue NewPtr
= DAG
.getObjectPtrOffset(DL
, BasePtr
, NewOffset
);
13741 // Split the load in half, each side of which is extended separately. This
13742 // is good enough, as legalisation will take it from there. They are either
13743 // already legal or they will be split further into something that is
13746 DAG
.getLoad(ISD::UNINDEXED
, NewExtType
, NewToVT
, DL
, Ch
, BasePtr
, Offset
,
13747 LD
->getPointerInfo(), NewFromVT
, Alignment
, MMOFlags
, AAInfo
);
13749 DAG
.getLoad(ISD::UNINDEXED
, NewExtType
, NewToVT
, DL
, Ch
, NewPtr
, Offset
,
13750 LD
->getPointerInfo().getWithOffset(NewOffset
), NewFromVT
,
13751 Alignment
, MMOFlags
, AAInfo
);
13753 SDValue NewChain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
,
13754 SDValue(NewLoad1
.getNode(), 1),
13755 SDValue(NewLoad2
.getNode(), 1));
13756 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), NewChain
);
13757 return DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, ToVT
, NewLoad1
, NewLoad2
);
13760 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
13761 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
13762 static SDValue
PerformExtendCombine(SDNode
*N
, SelectionDAG
&DAG
,
13763 const ARMSubtarget
*ST
) {
13764 SDValue N0
= N
->getOperand(0);
13766 // Check for sign- and zero-extensions of vector extract operations of 8-
13767 // and 16-bit vector elements. NEON supports these directly. They are
13768 // handled during DAG combining because type legalization will promote them
13769 // to 32-bit types and it is messy to recognize the operations after that.
13770 if (ST
->hasNEON() && N0
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
13771 SDValue Vec
= N0
.getOperand(0);
13772 SDValue Lane
= N0
.getOperand(1);
13773 EVT VT
= N
->getValueType(0);
13774 EVT EltVT
= N0
.getValueType();
13775 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
13777 if (VT
== MVT::i32
&&
13778 (EltVT
== MVT::i8
|| EltVT
== MVT::i16
) &&
13779 TLI
.isTypeLegal(Vec
.getValueType()) &&
13780 isa
<ConstantSDNode
>(Lane
)) {
13783 switch (N
->getOpcode()) {
13784 default: llvm_unreachable("unexpected opcode");
13785 case ISD::SIGN_EXTEND
:
13786 Opc
= ARMISD::VGETLANEs
;
13788 case ISD::ZERO_EXTEND
:
13789 case ISD::ANY_EXTEND
:
13790 Opc
= ARMISD::VGETLANEu
;
13793 return DAG
.getNode(Opc
, SDLoc(N
), VT
, Vec
, Lane
);
13797 if (ST
->hasMVEIntegerOps())
13798 if (SDValue NewLoad
= PerformSplittingToWideningLoad(N
, DAG
))
13804 static const APInt
*isPowerOf2Constant(SDValue V
) {
13805 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(V
);
13808 const APInt
*CV
= &C
->getAPIntValue();
13809 return CV
->isPowerOf2() ? CV
: nullptr;
13812 SDValue
ARMTargetLowering::PerformCMOVToBFICombine(SDNode
*CMOV
, SelectionDAG
&DAG
) const {
13813 // If we have a CMOV, OR and AND combination such as:
13818 // * CN is a single bit;
13819 // * All bits covered by CM are known zero in y
13821 // Then we can convert this into a sequence of BFI instructions. This will
13822 // always be a win if CM is a single bit, will always be no worse than the
13823 // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
13824 // three bits (due to the extra IT instruction).
13826 SDValue Op0
= CMOV
->getOperand(0);
13827 SDValue Op1
= CMOV
->getOperand(1);
13828 auto CCNode
= cast
<ConstantSDNode
>(CMOV
->getOperand(2));
13829 auto CC
= CCNode
->getAPIntValue().getLimitedValue();
13830 SDValue CmpZ
= CMOV
->getOperand(4);
13832 // The compare must be against zero.
13833 if (!isNullConstant(CmpZ
->getOperand(1)))
13836 assert(CmpZ
->getOpcode() == ARMISD::CMPZ
);
13837 SDValue And
= CmpZ
->getOperand(0);
13838 if (And
->getOpcode() != ISD::AND
)
13840 const APInt
*AndC
= isPowerOf2Constant(And
->getOperand(1));
13843 SDValue X
= And
->getOperand(0);
13845 if (CC
== ARMCC::EQ
) {
13846 // We're performing an "equal to zero" compare. Swap the operands so we
13847 // canonicalize on a "not equal to zero" compare.
13848 std::swap(Op0
, Op1
);
13850 assert(CC
== ARMCC::NE
&& "How can a CMPZ node not be EQ or NE?");
13853 if (Op1
->getOpcode() != ISD::OR
)
13856 ConstantSDNode
*OrC
= dyn_cast
<ConstantSDNode
>(Op1
->getOperand(1));
13859 SDValue Y
= Op1
->getOperand(0);
13864 // Now, is it profitable to continue?
13865 APInt OrCI
= OrC
->getAPIntValue();
13866 unsigned Heuristic
= Subtarget
->isThumb() ? 3 : 2;
13867 if (OrCI
.countPopulation() > Heuristic
)
13870 // Lastly, can we determine that the bits defined by OrCI
13872 KnownBits Known
= DAG
.computeKnownBits(Y
);
13873 if ((OrCI
& Known
.Zero
) != OrCI
)
13876 // OK, we can do the combine.
13879 EVT VT
= X
.getValueType();
13880 unsigned BitInX
= AndC
->logBase2();
13883 // We must shift X first.
13884 X
= DAG
.getNode(ISD::SRL
, dl
, VT
, X
,
13885 DAG
.getConstant(BitInX
, dl
, VT
));
13888 for (unsigned BitInY
= 0, NumActiveBits
= OrCI
.getActiveBits();
13889 BitInY
< NumActiveBits
; ++BitInY
) {
13890 if (OrCI
[BitInY
] == 0)
13892 APInt
Mask(VT
.getSizeInBits(), 0);
13893 Mask
.setBit(BitInY
);
13894 V
= DAG
.getNode(ARMISD::BFI
, dl
, VT
, V
, X
,
13895 // Confusingly, the operand is an *inverted* mask.
13896 DAG
.getConstant(~Mask
, dl
, VT
));
13902 // Given N, the value controlling the conditional branch, search for the loop
13903 // intrinsic, returning it, along with how the value is used. We need to handle
13904 // patterns such as the following:
13905 // (brcond (xor (setcc (loop.decrement), 0, ne), 1), exit)
13906 // (brcond (setcc (loop.decrement), 0, eq), exit)
13907 // (brcond (setcc (loop.decrement), 0, ne), header)
13908 static SDValue
SearchLoopIntrinsic(SDValue N
, ISD::CondCode
&CC
, int &Imm
,
13910 switch (N
->getOpcode()) {
13914 if (!isa
<ConstantSDNode
>(N
.getOperand(1)))
13916 if (!cast
<ConstantSDNode
>(N
.getOperand(1))->isOne())
13919 return SearchLoopIntrinsic(N
.getOperand(0), CC
, Imm
, Negate
);
13922 auto *Const
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
13925 if (Const
->isNullValue())
13927 else if (Const
->isOne())
13931 CC
= cast
<CondCodeSDNode
>(N
.getOperand(2))->get();
13932 return SearchLoopIntrinsic(N
->getOperand(0), CC
, Imm
, Negate
);
13934 case ISD::INTRINSIC_W_CHAIN
: {
13935 unsigned IntOp
= cast
<ConstantSDNode
>(N
.getOperand(1))->getZExtValue();
13936 if (IntOp
!= Intrinsic::test_set_loop_iterations
&&
13937 IntOp
!= Intrinsic::loop_decrement_reg
)
13945 static SDValue
PerformHWLoopCombine(SDNode
*N
,
13946 TargetLowering::DAGCombinerInfo
&DCI
,
13947 const ARMSubtarget
*ST
) {
13949 // The hwloop intrinsics that we're interested are used for control-flow,
13950 // either for entering or exiting the loop:
13951 // - test.set.loop.iterations will test whether its operand is zero. If it
13952 // is zero, the proceeding branch should not enter the loop.
13953 // - loop.decrement.reg also tests whether its operand is zero. If it is
13954 // zero, the proceeding branch should not branch back to the beginning of
13956 // So here, we need to check that how the brcond is using the result of each
13957 // of the intrinsics to ensure that we're branching to the right place at the
13963 bool Negate
= false;
13964 SDValue Chain
= N
->getOperand(0);
13967 if (N
->getOpcode() == ISD::BRCOND
) {
13969 Cond
= N
->getOperand(1);
13970 Dest
= N
->getOperand(2);
13972 assert(N
->getOpcode() == ISD::BR_CC
&& "Expected BRCOND or BR_CC!");
13973 CC
= cast
<CondCodeSDNode
>(N
->getOperand(1))->get();
13974 Cond
= N
->getOperand(2);
13975 Dest
= N
->getOperand(4);
13976 if (auto *Const
= dyn_cast
<ConstantSDNode
>(N
->getOperand(3))) {
13977 if (!Const
->isOne() && !Const
->isNullValue())
13979 Imm
= Const
->getZExtValue();
13984 SDValue Int
= SearchLoopIntrinsic(Cond
, CC
, Imm
, Negate
);
13989 CC
= ISD::getSetCCInverse(CC
, true);
13991 auto IsTrueIfZero
= [](ISD::CondCode CC
, int Imm
) {
13992 return (CC
== ISD::SETEQ
&& Imm
== 0) ||
13993 (CC
== ISD::SETNE
&& Imm
== 1) ||
13994 (CC
== ISD::SETLT
&& Imm
== 1) ||
13995 (CC
== ISD::SETULT
&& Imm
== 1);
13998 auto IsFalseIfZero
= [](ISD::CondCode CC
, int Imm
) {
13999 return (CC
== ISD::SETEQ
&& Imm
== 1) ||
14000 (CC
== ISD::SETNE
&& Imm
== 0) ||
14001 (CC
== ISD::SETGT
&& Imm
== 0) ||
14002 (CC
== ISD::SETUGT
&& Imm
== 0) ||
14003 (CC
== ISD::SETGE
&& Imm
== 1) ||
14004 (CC
== ISD::SETUGE
&& Imm
== 1);
14007 assert((IsTrueIfZero(CC
, Imm
) || IsFalseIfZero(CC
, Imm
)) &&
14008 "unsupported condition");
14011 SelectionDAG
&DAG
= DCI
.DAG
;
14012 SDValue Elements
= Int
.getOperand(2);
14013 unsigned IntOp
= cast
<ConstantSDNode
>(Int
->getOperand(1))->getZExtValue();
14014 assert((N
->hasOneUse() && N
->use_begin()->getOpcode() == ISD::BR
)
14015 && "expected single br user");
14016 SDNode
*Br
= *N
->use_begin();
14017 SDValue OtherTarget
= Br
->getOperand(1);
14019 // Update the unconditional branch to branch to the given Dest.
14020 auto UpdateUncondBr
= [](SDNode
*Br
, SDValue Dest
, SelectionDAG
&DAG
) {
14021 SDValue NewBrOps
[] = { Br
->getOperand(0), Dest
};
14022 SDValue NewBr
= DAG
.getNode(ISD::BR
, SDLoc(Br
), MVT::Other
, NewBrOps
);
14023 DAG
.ReplaceAllUsesOfValueWith(SDValue(Br
, 0), NewBr
);
14026 if (IntOp
== Intrinsic::test_set_loop_iterations
) {
14028 // We expect this 'instruction' to branch when the counter is zero.
14029 if (IsTrueIfZero(CC
, Imm
)) {
14030 SDValue Ops
[] = { Chain
, Elements
, Dest
};
14031 Res
= DAG
.getNode(ARMISD::WLS
, dl
, MVT::Other
, Ops
);
14033 // The logic is the reverse of what we need for WLS, so find the other
14034 // basic block target: the target of the proceeding br.
14035 UpdateUncondBr(Br
, Dest
, DAG
);
14037 SDValue Ops
[] = { Chain
, Elements
, OtherTarget
};
14038 Res
= DAG
.getNode(ARMISD::WLS
, dl
, MVT::Other
, Ops
);
14040 DAG
.ReplaceAllUsesOfValueWith(Int
.getValue(1), Int
.getOperand(0));
14043 SDValue Size
= DAG
.getTargetConstant(
14044 cast
<ConstantSDNode
>(Int
.getOperand(3))->getZExtValue(), dl
, MVT::i32
);
14045 SDValue Args
[] = { Int
.getOperand(0), Elements
, Size
, };
14046 SDValue LoopDec
= DAG
.getNode(ARMISD::LOOP_DEC
, dl
,
14047 DAG
.getVTList(MVT::i32
, MVT::Other
), Args
);
14048 DAG
.ReplaceAllUsesWith(Int
.getNode(), LoopDec
.getNode());
14050 // We expect this instruction to branch when the count is not zero.
14051 SDValue Target
= IsFalseIfZero(CC
, Imm
) ? Dest
: OtherTarget
;
14053 // Update the unconditional branch to target the loop preheader if we've
14054 // found the condition has been reversed.
14055 if (Target
== OtherTarget
)
14056 UpdateUncondBr(Br
, Dest
, DAG
);
14058 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
14059 SDValue(LoopDec
.getNode(), 1), Chain
);
14061 SDValue EndArgs
[] = { Chain
, SDValue(LoopDec
.getNode(), 0), Target
};
14062 return DAG
.getNode(ARMISD::LE
, dl
, MVT::Other
, EndArgs
);
14067 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
14069 ARMTargetLowering::PerformBRCONDCombine(SDNode
*N
, SelectionDAG
&DAG
) const {
14070 SDValue Cmp
= N
->getOperand(4);
14071 if (Cmp
.getOpcode() != ARMISD::CMPZ
)
14072 // Only looking at NE cases.
14075 EVT VT
= N
->getValueType(0);
14077 SDValue LHS
= Cmp
.getOperand(0);
14078 SDValue RHS
= Cmp
.getOperand(1);
14079 SDValue Chain
= N
->getOperand(0);
14080 SDValue BB
= N
->getOperand(1);
14081 SDValue ARMcc
= N
->getOperand(2);
14082 ARMCC::CondCodes CC
=
14083 (ARMCC::CondCodes
)cast
<ConstantSDNode
>(ARMcc
)->getZExtValue();
14085 // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
14086 // -> (brcond Chain BB CC CPSR Cmp)
14087 if (CC
== ARMCC::NE
&& LHS
.getOpcode() == ISD::AND
&& LHS
->hasOneUse() &&
14088 LHS
->getOperand(0)->getOpcode() == ARMISD::CMOV
&&
14089 LHS
->getOperand(0)->hasOneUse()) {
14090 auto *LHS00C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0)->getOperand(0));
14091 auto *LHS01C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0)->getOperand(1));
14092 auto *LHS1C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(1));
14093 auto *RHSC
= dyn_cast
<ConstantSDNode
>(RHS
);
14094 if ((LHS00C
&& LHS00C
->getZExtValue() == 0) &&
14095 (LHS01C
&& LHS01C
->getZExtValue() == 1) &&
14096 (LHS1C
&& LHS1C
->getZExtValue() == 1) &&
14097 (RHSC
&& RHSC
->getZExtValue() == 0)) {
14098 return DAG
.getNode(
14099 ARMISD::BRCOND
, dl
, VT
, Chain
, BB
, LHS
->getOperand(0)->getOperand(2),
14100 LHS
->getOperand(0)->getOperand(3), LHS
->getOperand(0)->getOperand(4));
14107 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
14109 ARMTargetLowering::PerformCMOVCombine(SDNode
*N
, SelectionDAG
&DAG
) const {
14110 SDValue Cmp
= N
->getOperand(4);
14111 if (Cmp
.getOpcode() != ARMISD::CMPZ
)
14112 // Only looking at EQ and NE cases.
14115 EVT VT
= N
->getValueType(0);
14117 SDValue LHS
= Cmp
.getOperand(0);
14118 SDValue RHS
= Cmp
.getOperand(1);
14119 SDValue FalseVal
= N
->getOperand(0);
14120 SDValue TrueVal
= N
->getOperand(1);
14121 SDValue ARMcc
= N
->getOperand(2);
14122 ARMCC::CondCodes CC
=
14123 (ARMCC::CondCodes
)cast
<ConstantSDNode
>(ARMcc
)->getZExtValue();
14125 // BFI is only available on V6T2+.
14126 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV6T2Ops()) {
14127 SDValue R
= PerformCMOVToBFICombine(N
, DAG
);
14148 /// FIXME: Turn this into a target neutral optimization?
14150 if (CC
== ARMCC::NE
&& FalseVal
== RHS
&& FalseVal
!= LHS
) {
14151 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LHS
, TrueVal
, ARMcc
,
14152 N
->getOperand(3), Cmp
);
14153 } else if (CC
== ARMCC::EQ
&& TrueVal
== RHS
) {
14155 SDValue NewCmp
= getARMCmp(LHS
, RHS
, ISD::SETNE
, ARMcc
, DAG
, dl
);
14156 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LHS
, FalseVal
, ARMcc
,
14157 N
->getOperand(3), NewCmp
);
14160 // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
14161 // -> (cmov F T CC CPSR Cmp)
14162 if (CC
== ARMCC::NE
&& LHS
.getOpcode() == ARMISD::CMOV
&& LHS
->hasOneUse()) {
14163 auto *LHS0C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0));
14164 auto *LHS1C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(1));
14165 auto *RHSC
= dyn_cast
<ConstantSDNode
>(RHS
);
14166 if ((LHS0C
&& LHS0C
->getZExtValue() == 0) &&
14167 (LHS1C
&& LHS1C
->getZExtValue() == 1) &&
14168 (RHSC
&& RHSC
->getZExtValue() == 0)) {
14169 return DAG
.getNode(ARMISD::CMOV
, dl
, VT
, FalseVal
, TrueVal
,
14170 LHS
->getOperand(2), LHS
->getOperand(3),
14171 LHS
->getOperand(4));
14175 if (!VT
.isInteger())
14178 // Materialize a boolean comparison for integers so we can avoid branching.
14179 if (isNullConstant(FalseVal
)) {
14180 if (CC
== ARMCC::EQ
&& isOneConstant(TrueVal
)) {
14181 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV5TOps()) {
14182 // If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it
14183 // right 5 bits will make that 32 be 1, otherwise it will be 0.
14184 // CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5
14185 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, LHS
, RHS
);
14186 Res
= DAG
.getNode(ISD::SRL
, dl
, VT
, DAG
.getNode(ISD::CTLZ
, dl
, VT
, Sub
),
14187 DAG
.getConstant(5, dl
, MVT::i32
));
14189 // CMOV 0, 1, ==, (CMPZ x, y) ->
14190 // (ADDCARRY (SUB x, y), t:0, t:1)
14191 // where t = (SUBCARRY 0, (SUB x, y), 0)
14193 // The SUBCARRY computes 0 - (x - y) and this will give a borrow when
14194 // x != y. In other words, a carry C == 1 when x == y, C == 0
14196 // The final ADDCARRY computes
14197 // x - y + (0 - (x - y)) + C == C
14198 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, LHS
, RHS
);
14199 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
14200 SDValue Neg
= DAG
.getNode(ISD::USUBO
, dl
, VTs
, FalseVal
, Sub
);
14201 // ISD::SUBCARRY returns a borrow but we want the carry here
14204 DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
14205 DAG
.getConstant(1, dl
, MVT::i32
), Neg
.getValue(1));
14206 Res
= DAG
.getNode(ISD::ADDCARRY
, dl
, VTs
, Sub
, Neg
, Carry
);
14208 } else if (CC
== ARMCC::NE
&& !isNullConstant(RHS
) &&
14209 (!Subtarget
->isThumb1Only() || isPowerOf2Constant(TrueVal
))) {
14210 // This seems pointless but will allow us to combine it further below.
14211 // CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
14213 DAG
.getNode(ARMISD::SUBS
, dl
, DAG
.getVTList(VT
, MVT::i32
), LHS
, RHS
);
14214 SDValue CPSRGlue
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, ARM::CPSR
,
14215 Sub
.getValue(1), SDValue());
14216 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, Sub
, TrueVal
, ARMcc
,
14217 N
->getOperand(3), CPSRGlue
.getValue(1));
14220 } else if (isNullConstant(TrueVal
)) {
14221 if (CC
== ARMCC::EQ
&& !isNullConstant(RHS
) &&
14222 (!Subtarget
->isThumb1Only() || isPowerOf2Constant(FalseVal
))) {
14223 // This seems pointless but will allow us to combine it further below
14224 // Note that we change == for != as this is the dual for the case above.
14225 // CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
14227 DAG
.getNode(ARMISD::SUBS
, dl
, DAG
.getVTList(VT
, MVT::i32
), LHS
, RHS
);
14228 SDValue CPSRGlue
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, ARM::CPSR
,
14229 Sub
.getValue(1), SDValue());
14230 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, Sub
, FalseVal
,
14231 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
),
14232 N
->getOperand(3), CPSRGlue
.getValue(1));
14237 // On Thumb1, the DAG above may be further combined if z is a power of 2
14239 // CMOV (SUBS x, y), z, !=, (SUBS x, y):1 ->
14240 // t1 = (USUBO (SUB x, y), 1)
14241 // t2 = (SUBCARRY (SUB x, y), t1:0, t1:1)
14242 // Result = if K != 0 then (SHL t2:0, K) else t2:0
14244 // This also handles the special case of comparing against zero; it's
14245 // essentially, the same pattern, except there's no SUBS:
14246 // CMOV x, z, !=, (CMPZ x, 0) ->
14247 // t1 = (USUBO x, 1)
14248 // t2 = (SUBCARRY x, t1:0, t1:1)
14249 // Result = if K != 0 then (SHL t2:0, K) else t2:0
14250 const APInt
*TrueConst
;
14251 if (Subtarget
->isThumb1Only() && CC
== ARMCC::NE
&&
14252 ((FalseVal
.getOpcode() == ARMISD::SUBS
&&
14253 FalseVal
.getOperand(0) == LHS
&& FalseVal
.getOperand(1) == RHS
) ||
14254 (FalseVal
== LHS
&& isNullConstant(RHS
))) &&
14255 (TrueConst
= isPowerOf2Constant(TrueVal
))) {
14256 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
14257 unsigned ShiftAmount
= TrueConst
->logBase2();
14259 TrueVal
= DAG
.getConstant(1, dl
, VT
);
14260 SDValue Subc
= DAG
.getNode(ISD::USUBO
, dl
, VTs
, FalseVal
, TrueVal
);
14261 Res
= DAG
.getNode(ISD::SUBCARRY
, dl
, VTs
, FalseVal
, Subc
, Subc
.getValue(1));
14264 Res
= DAG
.getNode(ISD::SHL
, dl
, VT
, Res
,
14265 DAG
.getConstant(ShiftAmount
, dl
, MVT::i32
));
14268 if (Res
.getNode()) {
14269 KnownBits Known
= DAG
.computeKnownBits(SDValue(N
,0));
14270 // Capture demanded bits information that would be otherwise lost.
14271 if (Known
.Zero
== 0xfffffffe)
14272 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
14273 DAG
.getValueType(MVT::i1
));
14274 else if (Known
.Zero
== 0xffffff00)
14275 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
14276 DAG
.getValueType(MVT::i8
));
14277 else if (Known
.Zero
== 0xffff0000)
14278 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
14279 DAG
.getValueType(MVT::i16
));
14285 SDValue
ARMTargetLowering::PerformDAGCombine(SDNode
*N
,
14286 DAGCombinerInfo
&DCI
) const {
14287 switch (N
->getOpcode()) {
14289 case ISD::ABS
: return PerformABSCombine(N
, DCI
, Subtarget
);
14290 case ARMISD::ADDE
: return PerformADDECombine(N
, DCI
, Subtarget
);
14291 case ARMISD::UMLAL
: return PerformUMLALCombine(N
, DCI
.DAG
, Subtarget
);
14292 case ISD::ADD
: return PerformADDCombine(N
, DCI
, Subtarget
);
14293 case ISD::SUB
: return PerformSUBCombine(N
, DCI
);
14294 case ISD::MUL
: return PerformMULCombine(N
, DCI
, Subtarget
);
14295 case ISD::OR
: return PerformORCombine(N
, DCI
, Subtarget
);
14296 case ISD::XOR
: return PerformXORCombine(N
, DCI
, Subtarget
);
14297 case ISD::AND
: return PerformANDCombine(N
, DCI
, Subtarget
);
14299 case ISD::BR_CC
: return PerformHWLoopCombine(N
, DCI
, Subtarget
);
14301 case ARMISD::SUBC
: return PerformAddcSubcCombine(N
, DCI
, Subtarget
);
14302 case ARMISD::SUBE
: return PerformAddeSubeCombine(N
, DCI
, Subtarget
);
14303 case ARMISD::BFI
: return PerformBFICombine(N
, DCI
);
14304 case ARMISD::VMOVRRD
: return PerformVMOVRRDCombine(N
, DCI
, Subtarget
);
14305 case ARMISD::VMOVDRR
: return PerformVMOVDRRCombine(N
, DCI
.DAG
);
14306 case ISD::STORE
: return PerformSTORECombine(N
, DCI
, Subtarget
);
14307 case ISD::BUILD_VECTOR
: return PerformBUILD_VECTORCombine(N
, DCI
, Subtarget
);
14308 case ISD::INSERT_VECTOR_ELT
: return PerformInsertEltCombine(N
, DCI
);
14309 case ISD::VECTOR_SHUFFLE
: return PerformVECTOR_SHUFFLECombine(N
, DCI
.DAG
);
14310 case ARMISD::VDUPLANE
: return PerformVDUPLANECombine(N
, DCI
);
14311 case ARMISD::VDUP
: return PerformVDUPCombine(N
, DCI
, Subtarget
);
14312 case ISD::FP_TO_SINT
:
14313 case ISD::FP_TO_UINT
:
14314 return PerformVCVTCombine(N
, DCI
.DAG
, Subtarget
);
14316 return PerformVDIVCombine(N
, DCI
.DAG
, Subtarget
);
14317 case ISD::INTRINSIC_WO_CHAIN
: return PerformIntrinsicCombine(N
, DCI
.DAG
);
14321 return PerformShiftCombine(N
, DCI
, Subtarget
);
14322 case ISD::SIGN_EXTEND
:
14323 case ISD::ZERO_EXTEND
:
14324 case ISD::ANY_EXTEND
: return PerformExtendCombine(N
, DCI
.DAG
, Subtarget
);
14325 case ARMISD::CMOV
: return PerformCMOVCombine(N
, DCI
.DAG
);
14326 case ARMISD::BRCOND
: return PerformBRCONDCombine(N
, DCI
.DAG
);
14327 case ISD::LOAD
: return PerformLOADCombine(N
, DCI
);
14328 case ARMISD::VLD1DUP
:
14329 case ARMISD::VLD2DUP
:
14330 case ARMISD::VLD3DUP
:
14331 case ARMISD::VLD4DUP
:
14332 return PerformVLDCombine(N
, DCI
);
14333 case ARMISD::BUILD_VECTOR
:
14334 return PerformARMBUILD_VECTORCombine(N
, DCI
);
14335 case ARMISD::PREDICATE_CAST
:
14336 return PerformPREDICATE_CASTCombine(N
, DCI
);
14337 case ARMISD::SMULWB
: {
14338 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
14339 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, 16);
14340 if (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
))
14344 case ARMISD::SMULWT
: {
14345 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
14346 APInt DemandedMask
= APInt::getHighBitsSet(BitWidth
, 16);
14347 if (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
))
14351 case ARMISD::SMLALBB
: {
14352 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
14353 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, 16);
14354 if ((SimplifyDemandedBits(N
->getOperand(0), DemandedMask
, DCI
)) ||
14355 (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
)))
14359 case ARMISD::SMLALBT
: {
14360 unsigned LowWidth
= N
->getOperand(0).getValueType().getSizeInBits();
14361 APInt LowMask
= APInt::getLowBitsSet(LowWidth
, 16);
14362 unsigned HighWidth
= N
->getOperand(1).getValueType().getSizeInBits();
14363 APInt HighMask
= APInt::getHighBitsSet(HighWidth
, 16);
14364 if ((SimplifyDemandedBits(N
->getOperand(0), LowMask
, DCI
)) ||
14365 (SimplifyDemandedBits(N
->getOperand(1), HighMask
, DCI
)))
14369 case ARMISD::SMLALTB
: {
14370 unsigned HighWidth
= N
->getOperand(0).getValueType().getSizeInBits();
14371 APInt HighMask
= APInt::getHighBitsSet(HighWidth
, 16);
14372 unsigned LowWidth
= N
->getOperand(1).getValueType().getSizeInBits();
14373 APInt LowMask
= APInt::getLowBitsSet(LowWidth
, 16);
14374 if ((SimplifyDemandedBits(N
->getOperand(0), HighMask
, DCI
)) ||
14375 (SimplifyDemandedBits(N
->getOperand(1), LowMask
, DCI
)))
14379 case ARMISD::SMLALTT
: {
14380 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
14381 APInt DemandedMask
= APInt::getHighBitsSet(BitWidth
, 16);
14382 if ((SimplifyDemandedBits(N
->getOperand(0), DemandedMask
, DCI
)) ||
14383 (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
)))
14387 case ISD::INTRINSIC_VOID
:
14388 case ISD::INTRINSIC_W_CHAIN
:
14389 switch (cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue()) {
14390 case Intrinsic::arm_neon_vld1
:
14391 case Intrinsic::arm_neon_vld1x2
:
14392 case Intrinsic::arm_neon_vld1x3
:
14393 case Intrinsic::arm_neon_vld1x4
:
14394 case Intrinsic::arm_neon_vld2
:
14395 case Intrinsic::arm_neon_vld3
:
14396 case Intrinsic::arm_neon_vld4
:
14397 case Intrinsic::arm_neon_vld2lane
:
14398 case Intrinsic::arm_neon_vld3lane
:
14399 case Intrinsic::arm_neon_vld4lane
:
14400 case Intrinsic::arm_neon_vld2dup
:
14401 case Intrinsic::arm_neon_vld3dup
:
14402 case Intrinsic::arm_neon_vld4dup
:
14403 case Intrinsic::arm_neon_vst1
:
14404 case Intrinsic::arm_neon_vst1x2
:
14405 case Intrinsic::arm_neon_vst1x3
:
14406 case Intrinsic::arm_neon_vst1x4
:
14407 case Intrinsic::arm_neon_vst2
:
14408 case Intrinsic::arm_neon_vst3
:
14409 case Intrinsic::arm_neon_vst4
:
14410 case Intrinsic::arm_neon_vst2lane
:
14411 case Intrinsic::arm_neon_vst3lane
:
14412 case Intrinsic::arm_neon_vst4lane
:
14413 return PerformVLDCombine(N
, DCI
);
14421 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc
,
14423 return (VT
== MVT::f32
) && (Opc
== ISD::LOAD
|| Opc
== ISD::STORE
);
14426 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT
, unsigned,
14427 unsigned Alignment
,
14428 MachineMemOperand::Flags
,
14429 bool *Fast
) const {
14430 // Depends what it gets converted into if the type is weird.
14431 if (!VT
.isSimple())
14434 // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
14435 bool AllowsUnaligned
= Subtarget
->allowsUnalignedMem();
14436 auto Ty
= VT
.getSimpleVT().SimpleTy
;
14438 if (Ty
== MVT::i8
|| Ty
== MVT::i16
|| Ty
== MVT::i32
) {
14439 // Unaligned access can use (for example) LRDB, LRDH, LDR
14440 if (AllowsUnaligned
) {
14442 *Fast
= Subtarget
->hasV7Ops();
14447 if (Ty
== MVT::f64
|| Ty
== MVT::v2f64
) {
14448 // For any little-endian targets with neon, we can support unaligned ld/st
14449 // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
14450 // A big-endian target may also explicitly support unaligned accesses
14451 if (Subtarget
->hasNEON() && (AllowsUnaligned
|| Subtarget
->isLittle())) {
14458 if (!Subtarget
->hasMVEIntegerOps())
14461 // These are for predicates
14462 if ((Ty
== MVT::v16i1
|| Ty
== MVT::v8i1
|| Ty
== MVT::v4i1
)) {
14468 // These are for truncated stores/narrowing loads. They are fine so long as
14469 // the alignment is at least the size of the item being loaded
14470 if ((Ty
== MVT::v4i8
|| Ty
== MVT::v8i8
|| Ty
== MVT::v4i16
) &&
14471 Alignment
>= VT
.getScalarSizeInBits() / 8) {
14477 // In little-endian MVE, the store instructions VSTRB.U8, VSTRH.U16 and
14478 // VSTRW.U32 all store the vector register in exactly the same format, and
14479 // differ only in the range of their immediate offset field and the required
14480 // alignment. So there is always a store that can be used, regardless of
14483 // For big endian, that is not the case. But can still emit a (VSTRB.U8;
14484 // VREV64.8) pair and get the same effect. This will likely be better than
14485 // aligning the vector through the stack.
14486 if (Ty
== MVT::v16i8
|| Ty
== MVT::v8i16
|| Ty
== MVT::v8f16
||
14487 Ty
== MVT::v4i32
|| Ty
== MVT::v4f32
|| Ty
== MVT::v2i64
||
14488 Ty
== MVT::v2f64
) {
14497 static bool memOpAlign(unsigned DstAlign
, unsigned SrcAlign
,
14498 unsigned AlignCheck
) {
14499 return ((SrcAlign
== 0 || SrcAlign
% AlignCheck
== 0) &&
14500 (DstAlign
== 0 || DstAlign
% AlignCheck
== 0));
14503 EVT
ARMTargetLowering::getOptimalMemOpType(
14504 uint64_t Size
, unsigned DstAlign
, unsigned SrcAlign
, bool IsMemset
,
14505 bool ZeroMemset
, bool MemcpyStrSrc
,
14506 const AttributeList
&FuncAttributes
) const {
14507 // See if we can use NEON instructions for this...
14508 if ((!IsMemset
|| ZeroMemset
) && Subtarget
->hasNEON() &&
14509 !FuncAttributes
.hasFnAttribute(Attribute::NoImplicitFloat
)) {
14512 (memOpAlign(SrcAlign
, DstAlign
, 16) ||
14513 (allowsMisalignedMemoryAccesses(MVT::v2f64
, 0, 1,
14514 MachineMemOperand::MONone
, &Fast
) &&
14517 } else if (Size
>= 8 &&
14518 (memOpAlign(SrcAlign
, DstAlign
, 8) ||
14519 (allowsMisalignedMemoryAccesses(
14520 MVT::f64
, 0, 1, MachineMemOperand::MONone
, &Fast
) &&
14526 // Let the target-independent logic figure it out.
14530 // 64-bit integers are split into their high and low parts and held in two
14531 // different registers, so the trunc is free since the low register can just
14533 bool ARMTargetLowering::isTruncateFree(Type
*SrcTy
, Type
*DstTy
) const {
14534 if (!SrcTy
->isIntegerTy() || !DstTy
->isIntegerTy())
14536 unsigned SrcBits
= SrcTy
->getPrimitiveSizeInBits();
14537 unsigned DestBits
= DstTy
->getPrimitiveSizeInBits();
14538 return (SrcBits
== 64 && DestBits
== 32);
14541 bool ARMTargetLowering::isTruncateFree(EVT SrcVT
, EVT DstVT
) const {
14542 if (SrcVT
.isVector() || DstVT
.isVector() || !SrcVT
.isInteger() ||
14543 !DstVT
.isInteger())
14545 unsigned SrcBits
= SrcVT
.getSizeInBits();
14546 unsigned DestBits
= DstVT
.getSizeInBits();
14547 return (SrcBits
== 64 && DestBits
== 32);
14550 bool ARMTargetLowering::isZExtFree(SDValue Val
, EVT VT2
) const {
14551 if (Val
.getOpcode() != ISD::LOAD
)
14554 EVT VT1
= Val
.getValueType();
14555 if (!VT1
.isSimple() || !VT1
.isInteger() ||
14556 !VT2
.isSimple() || !VT2
.isInteger())
14559 switch (VT1
.getSimpleVT().SimpleTy
) {
14564 // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
14571 bool ARMTargetLowering::isFNegFree(EVT VT
) const {
14572 if (!VT
.isSimple())
14575 // There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that
14576 // negate values directly (fneg is free). So, we don't want to let the DAG
14577 // combiner rewrite fneg into xors and some other instructions. For f16 and
14578 // FullFP16 argument passing, some bitcast nodes may be introduced,
14579 // triggering this DAG combine rewrite, so we are avoiding that with this.
14580 switch (VT
.getSimpleVT().SimpleTy
) {
14583 return Subtarget
->hasFullFP16();
14589 /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
14590 /// of the vector elements.
14591 static bool areExtractExts(Value
*Ext1
, Value
*Ext2
) {
14592 auto areExtDoubled
= [](Instruction
*Ext
) {
14593 return Ext
->getType()->getScalarSizeInBits() ==
14594 2 * Ext
->getOperand(0)->getType()->getScalarSizeInBits();
14597 if (!match(Ext1
, m_ZExtOrSExt(m_Value())) ||
14598 !match(Ext2
, m_ZExtOrSExt(m_Value())) ||
14599 !areExtDoubled(cast
<Instruction
>(Ext1
)) ||
14600 !areExtDoubled(cast
<Instruction
>(Ext2
)))
14606 /// Check if sinking \p I's operands to I's basic block is profitable, because
14607 /// the operands can be folded into a target instruction, e.g.
14608 /// sext/zext can be folded into vsubl.
14609 bool ARMTargetLowering::shouldSinkOperands(Instruction
*I
,
14610 SmallVectorImpl
<Use
*> &Ops
) const {
14611 if (!I
->getType()->isVectorTy())
14614 if (Subtarget
->hasNEON()) {
14615 switch (I
->getOpcode()) {
14616 case Instruction::Sub
:
14617 case Instruction::Add
: {
14618 if (!areExtractExts(I
->getOperand(0), I
->getOperand(1)))
14620 Ops
.push_back(&I
->getOperandUse(0));
14621 Ops
.push_back(&I
->getOperandUse(1));
14629 if (!Subtarget
->hasMVEIntegerOps())
14632 auto IsSinker
= [](Instruction
*I
, int Operand
) {
14633 switch (I
->getOpcode()) {
14634 case Instruction::Add
:
14635 case Instruction::Mul
:
14637 case Instruction::Sub
:
14638 return Operand
== 1;
14645 if (!isa
<ShuffleVectorInst
>(I
->getOperand(Op
)))
14647 if (!IsSinker(I
, Op
))
14649 if (!match(I
->getOperand(Op
),
14650 m_ShuffleVector(m_InsertElement(m_Undef(), m_Value(), m_ZeroInt()),
14651 m_Undef(), m_Zero()))) {
14654 Instruction
*Shuffle
= cast
<Instruction
>(I
->getOperand(Op
));
14655 // All uses of the shuffle should be sunk to avoid duplicating it across gpr
14656 // and vector registers
14657 for (Use
&U
: Shuffle
->uses()) {
14658 Instruction
*Insn
= cast
<Instruction
>(U
.getUser());
14659 if (!IsSinker(Insn
, U
.getOperandNo()))
14662 Ops
.push_back(&Shuffle
->getOperandUse(0));
14663 Ops
.push_back(&I
->getOperandUse(Op
));
14667 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal
) const {
14668 EVT VT
= ExtVal
.getValueType();
14670 if (!isTypeLegal(VT
))
14673 // Don't create a loadext if we can fold the extension into a wide/long
14675 // If there's more than one user instruction, the loadext is desirable no
14676 // matter what. There can be two uses by the same instruction.
14677 if (ExtVal
->use_empty() ||
14678 !ExtVal
->use_begin()->isOnlyUserOf(ExtVal
.getNode()))
14681 SDNode
*U
= *ExtVal
->use_begin();
14682 if ((U
->getOpcode() == ISD::ADD
|| U
->getOpcode() == ISD::SUB
||
14683 U
->getOpcode() == ISD::SHL
|| U
->getOpcode() == ARMISD::VSHLIMM
))
14689 bool ARMTargetLowering::allowTruncateForTailCall(Type
*Ty1
, Type
*Ty2
) const {
14690 if (!Ty1
->isIntegerTy() || !Ty2
->isIntegerTy())
14693 if (!isTypeLegal(EVT::getEVT(Ty1
)))
14696 assert(Ty1
->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
14698 // Assuming the caller doesn't have a zeroext or signext return parameter,
14699 // truncation all the way down to i1 is valid.
14703 int ARMTargetLowering::getScalingFactorCost(const DataLayout
&DL
,
14704 const AddrMode
&AM
, Type
*Ty
,
14705 unsigned AS
) const {
14706 if (isLegalAddressingMode(DL
, AM
, Ty
, AS
)) {
14707 if (Subtarget
->hasFPAO())
14708 return AM
.Scale
< 0 ? 1 : 0; // positive offsets execute faster
14714 static bool isLegalT1AddressImmediate(int64_t V
, EVT VT
) {
14718 unsigned Scale
= 1;
14719 switch (VT
.getSimpleVT().SimpleTy
) {
14729 // On thumb1 we load most things (i32, i64, floats, etc) with a LDR
14735 if ((V
& (Scale
- 1)) != 0)
14737 return isUInt
<5>(V
/ Scale
);
14740 static bool isLegalT2AddressImmediate(int64_t V
, EVT VT
,
14741 const ARMSubtarget
*Subtarget
) {
14742 if (!VT
.isInteger() && !VT
.isFloatingPoint())
14744 if (VT
.isVector() && Subtarget
->hasNEON())
14746 if (VT
.isVector() && VT
.isFloatingPoint() && Subtarget
->hasMVEIntegerOps() &&
14747 !Subtarget
->hasMVEFloatOps())
14750 bool IsNeg
= false;
14756 unsigned NumBytes
= std::max(VT
.getSizeInBits() / 8, 1U);
14758 // MVE: size * imm7
14759 if (VT
.isVector() && Subtarget
->hasMVEIntegerOps()) {
14760 switch (VT
.getSimpleVT().getVectorElementType().SimpleTy
) {
14763 return isShiftedUInt
<7,2>(V
);
14766 return isShiftedUInt
<7,1>(V
);
14768 return isUInt
<7>(V
);
14774 // half VLDR: 2 * imm8
14775 if (VT
.isFloatingPoint() && NumBytes
== 2 && Subtarget
->hasFPRegs16())
14776 return isShiftedUInt
<8, 1>(V
);
14777 // VLDR and LDRD: 4 * imm8
14778 if ((VT
.isFloatingPoint() && Subtarget
->hasVFP2Base()) || NumBytes
== 8)
14779 return isShiftedUInt
<8, 2>(V
);
14781 if (NumBytes
== 1 || NumBytes
== 2 || NumBytes
== 4) {
14782 // + imm12 or - imm8
14784 return isUInt
<8>(V
);
14785 return isUInt
<12>(V
);
14791 /// isLegalAddressImmediate - Return true if the integer value can be used
14792 /// as the offset of the target addressing mode for load / store of the
14794 static bool isLegalAddressImmediate(int64_t V
, EVT VT
,
14795 const ARMSubtarget
*Subtarget
) {
14799 if (!VT
.isSimple())
14802 if (Subtarget
->isThumb1Only())
14803 return isLegalT1AddressImmediate(V
, VT
);
14804 else if (Subtarget
->isThumb2())
14805 return isLegalT2AddressImmediate(V
, VT
, Subtarget
);
14810 switch (VT
.getSimpleVT().SimpleTy
) {
14811 default: return false;
14816 return isUInt
<12>(V
);
14819 return isUInt
<8>(V
);
14822 if (!Subtarget
->hasVFP2Base()) // FIXME: NEON?
14824 return isShiftedUInt
<8, 2>(V
);
14828 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode
&AM
,
14830 int Scale
= AM
.Scale
;
14834 switch (VT
.getSimpleVT().SimpleTy
) {
14835 default: return false;
14843 Scale
= Scale
& ~1;
14844 return Scale
== 2 || Scale
== 4 || Scale
== 8;
14846 // FIXME: What are we trying to model here? ldrd doesn't have an r + r
14847 // version in Thumb mode.
14851 // r * 2 (this can be lowered to r + r).
14852 if (!AM
.HasBaseReg
&& Scale
== 2)
14856 // Note, we allow "void" uses (basically, uses that aren't loads or
14857 // stores), because arm allows folding a scale into many arithmetic
14858 // operations. This should be made more precise and revisited later.
14860 // Allow r << imm, but the imm has to be a multiple of two.
14861 if (Scale
& 1) return false;
14862 return isPowerOf2_32(Scale
);
14866 bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode
&AM
,
14868 const int Scale
= AM
.Scale
;
14870 // Negative scales are not supported in Thumb1.
14874 // Thumb1 addressing modes do not support register scaling excepting the
14875 // following cases:
14876 // 1. Scale == 1 means no scaling.
14877 // 2. Scale == 2 this can be lowered to r + r if there is no base register.
14878 return (Scale
== 1) || (!AM
.HasBaseReg
&& Scale
== 2);
14881 /// isLegalAddressingMode - Return true if the addressing mode represented
14882 /// by AM is legal for this target, for a load/store of the specified type.
14883 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout
&DL
,
14884 const AddrMode
&AM
, Type
*Ty
,
14885 unsigned AS
, Instruction
*I
) const {
14886 EVT VT
= getValueType(DL
, Ty
, true);
14887 if (!isLegalAddressImmediate(AM
.BaseOffs
, VT
, Subtarget
))
14890 // Can never fold addr of global into load/store.
14894 switch (AM
.Scale
) {
14895 case 0: // no scale reg, must be "r+i" or "r", or "i".
14898 // ARM doesn't support any R+R*scale+imm addr modes.
14902 if (!VT
.isSimple())
14905 if (Subtarget
->isThumb1Only())
14906 return isLegalT1ScaledAddressingMode(AM
, VT
);
14908 if (Subtarget
->isThumb2())
14909 return isLegalT2ScaledAddressingMode(AM
, VT
);
14911 int Scale
= AM
.Scale
;
14912 switch (VT
.getSimpleVT().SimpleTy
) {
14913 default: return false;
14917 if (Scale
< 0) Scale
= -Scale
;
14921 return isPowerOf2_32(Scale
& ~1);
14925 if (Scale
== 1 || (AM
.HasBaseReg
&& Scale
== -1))
14927 // r * 2 (this can be lowered to r + r).
14928 if (!AM
.HasBaseReg
&& Scale
== 2)
14933 // Note, we allow "void" uses (basically, uses that aren't loads or
14934 // stores), because arm allows folding a scale into many arithmetic
14935 // operations. This should be made more precise and revisited later.
14937 // Allow r << imm, but the imm has to be a multiple of two.
14938 if (Scale
& 1) return false;
14939 return isPowerOf2_32(Scale
);
14945 /// isLegalICmpImmediate - Return true if the specified immediate is legal
14946 /// icmp immediate, that is the target has icmp instructions which can compare
14947 /// a register against the immediate without having to materialize the
14948 /// immediate into a register.
14949 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm
) const {
14950 // Thumb2 and ARM modes can use cmn for negative immediates.
14951 if (!Subtarget
->isThumb())
14952 return ARM_AM::getSOImmVal((uint32_t)Imm
) != -1 ||
14953 ARM_AM::getSOImmVal(-(uint32_t)Imm
) != -1;
14954 if (Subtarget
->isThumb2())
14955 return ARM_AM::getT2SOImmVal((uint32_t)Imm
) != -1 ||
14956 ARM_AM::getT2SOImmVal(-(uint32_t)Imm
) != -1;
14957 // Thumb1 doesn't have cmn, and only 8-bit immediates.
14958 return Imm
>= 0 && Imm
<= 255;
14961 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
14962 /// *or sub* immediate, that is the target has add or sub instructions which can
14963 /// add a register with the immediate without having to materialize the
14964 /// immediate into a register.
14965 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm
) const {
14966 // Same encoding for add/sub, just flip the sign.
14967 int64_t AbsImm
= std::abs(Imm
);
14968 if (!Subtarget
->isThumb())
14969 return ARM_AM::getSOImmVal(AbsImm
) != -1;
14970 if (Subtarget
->isThumb2())
14971 return ARM_AM::getT2SOImmVal(AbsImm
) != -1;
14972 // Thumb1 only has 8-bit unsigned immediate.
14973 return AbsImm
>= 0 && AbsImm
<= 255;
14976 static bool getARMIndexedAddressParts(SDNode
*Ptr
, EVT VT
,
14977 bool isSEXTLoad
, SDValue
&Base
,
14978 SDValue
&Offset
, bool &isInc
,
14979 SelectionDAG
&DAG
) {
14980 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
14983 if (VT
== MVT::i16
|| ((VT
== MVT::i8
|| VT
== MVT::i1
) && isSEXTLoad
)) {
14984 // AddressingMode 3
14985 Base
= Ptr
->getOperand(0);
14986 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
14987 int RHSC
= (int)RHS
->getZExtValue();
14988 if (RHSC
< 0 && RHSC
> -256) {
14989 assert(Ptr
->getOpcode() == ISD::ADD
);
14991 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14995 isInc
= (Ptr
->getOpcode() == ISD::ADD
);
14996 Offset
= Ptr
->getOperand(1);
14998 } else if (VT
== MVT::i32
|| VT
== MVT::i8
|| VT
== MVT::i1
) {
14999 // AddressingMode 2
15000 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
15001 int RHSC
= (int)RHS
->getZExtValue();
15002 if (RHSC
< 0 && RHSC
> -0x1000) {
15003 assert(Ptr
->getOpcode() == ISD::ADD
);
15005 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
15006 Base
= Ptr
->getOperand(0);
15011 if (Ptr
->getOpcode() == ISD::ADD
) {
15013 ARM_AM::ShiftOpc ShOpcVal
=
15014 ARM_AM::getShiftOpcForNode(Ptr
->getOperand(0).getOpcode());
15015 if (ShOpcVal
!= ARM_AM::no_shift
) {
15016 Base
= Ptr
->getOperand(1);
15017 Offset
= Ptr
->getOperand(0);
15019 Base
= Ptr
->getOperand(0);
15020 Offset
= Ptr
->getOperand(1);
15025 isInc
= (Ptr
->getOpcode() == ISD::ADD
);
15026 Base
= Ptr
->getOperand(0);
15027 Offset
= Ptr
->getOperand(1);
15031 // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
15035 static bool getT2IndexedAddressParts(SDNode
*Ptr
, EVT VT
,
15036 bool isSEXTLoad
, SDValue
&Base
,
15037 SDValue
&Offset
, bool &isInc
,
15038 SelectionDAG
&DAG
) {
15039 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
15042 Base
= Ptr
->getOperand(0);
15043 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
15044 int RHSC
= (int)RHS
->getZExtValue();
15045 if (RHSC
< 0 && RHSC
> -0x100) { // 8 bits.
15046 assert(Ptr
->getOpcode() == ISD::ADD
);
15048 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
15050 } else if (RHSC
> 0 && RHSC
< 0x100) { // 8 bit, no zero.
15051 isInc
= Ptr
->getOpcode() == ISD::ADD
;
15052 Offset
= DAG
.getConstant(RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
15060 static bool getMVEIndexedAddressParts(SDNode
*Ptr
, EVT VT
, unsigned Align
,
15061 bool isSEXTLoad
, bool isLE
, SDValue
&Base
,
15062 SDValue
&Offset
, bool &isInc
,
15063 SelectionDAG
&DAG
) {
15064 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
15066 if (!isa
<ConstantSDNode
>(Ptr
->getOperand(1)))
15069 ConstantSDNode
*RHS
= cast
<ConstantSDNode
>(Ptr
->getOperand(1));
15070 int RHSC
= (int)RHS
->getZExtValue();
15072 auto IsInRange
= [&](int RHSC
, int Limit
, int Scale
) {
15073 if (RHSC
< 0 && RHSC
> -Limit
* Scale
&& RHSC
% Scale
== 0) {
15074 assert(Ptr
->getOpcode() == ISD::ADD
);
15076 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
15078 } else if (RHSC
> 0 && RHSC
< Limit
* Scale
&& RHSC
% Scale
== 0) {
15079 isInc
= Ptr
->getOpcode() == ISD::ADD
;
15080 Offset
= DAG
.getConstant(RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
15086 // Try to find a matching instruction based on s/zext, Alignment, Offset and
15088 Base
= Ptr
->getOperand(0);
15089 if (VT
== MVT::v4i16
) {
15090 if (Align
>= 2 && IsInRange(RHSC
, 0x80, 2))
15092 } else if (VT
== MVT::v4i8
|| VT
== MVT::v8i8
) {
15093 if (IsInRange(RHSC
, 0x80, 1))
15095 } else if (Align
>= 4 && (isLE
|| VT
== MVT::v4i32
|| VT
== MVT::v4f32
) &&
15096 IsInRange(RHSC
, 0x80, 4))
15098 else if (Align
>= 2 && (isLE
|| VT
== MVT::v8i16
|| VT
== MVT::v8f16
) &&
15099 IsInRange(RHSC
, 0x80, 2))
15101 else if ((isLE
|| VT
== MVT::v16i8
) && IsInRange(RHSC
, 0x80, 1))
15106 /// getPreIndexedAddressParts - returns true by value, base pointer and
15107 /// offset pointer and addressing mode by reference if the node's address
15108 /// can be legally represented as pre-indexed load / store address.
15110 ARMTargetLowering::getPreIndexedAddressParts(SDNode
*N
, SDValue
&Base
,
15112 ISD::MemIndexedMode
&AM
,
15113 SelectionDAG
&DAG
) const {
15114 if (Subtarget
->isThumb1Only())
15120 bool isSEXTLoad
= false;
15121 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
15122 Ptr
= LD
->getBasePtr();
15123 VT
= LD
->getMemoryVT();
15124 Align
= LD
->getAlignment();
15125 isSEXTLoad
= LD
->getExtensionType() == ISD::SEXTLOAD
;
15126 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
15127 Ptr
= ST
->getBasePtr();
15128 VT
= ST
->getMemoryVT();
15129 Align
= ST
->getAlignment();
15134 bool isLegal
= false;
15136 isLegal
= Subtarget
->hasMVEIntegerOps() &&
15137 getMVEIndexedAddressParts(Ptr
.getNode(), VT
, Align
, isSEXTLoad
,
15138 Subtarget
->isLittle(), Base
, Offset
,
15141 if (Subtarget
->isThumb2())
15142 isLegal
= getT2IndexedAddressParts(Ptr
.getNode(), VT
, isSEXTLoad
, Base
,
15143 Offset
, isInc
, DAG
);
15145 isLegal
= getARMIndexedAddressParts(Ptr
.getNode(), VT
, isSEXTLoad
, Base
,
15146 Offset
, isInc
, DAG
);
15151 AM
= isInc
? ISD::PRE_INC
: ISD::PRE_DEC
;
15155 /// getPostIndexedAddressParts - returns true by value, base pointer and
15156 /// offset pointer and addressing mode by reference if this node can be
15157 /// combined with a load / store to form a post-indexed load / store.
15158 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode
*N
, SDNode
*Op
,
15161 ISD::MemIndexedMode
&AM
,
15162 SelectionDAG
&DAG
) const {
15166 bool isSEXTLoad
= false, isNonExt
;
15167 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
15168 VT
= LD
->getMemoryVT();
15169 Ptr
= LD
->getBasePtr();
15170 Align
= LD
->getAlignment();
15171 isSEXTLoad
= LD
->getExtensionType() == ISD::SEXTLOAD
;
15172 isNonExt
= LD
->getExtensionType() == ISD::NON_EXTLOAD
;
15173 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
15174 VT
= ST
->getMemoryVT();
15175 Ptr
= ST
->getBasePtr();
15176 Align
= ST
->getAlignment();
15177 isNonExt
= !ST
->isTruncatingStore();
15181 if (Subtarget
->isThumb1Only()) {
15182 // Thumb-1 can do a limited post-inc load or store as an updating LDM. It
15183 // must be non-extending/truncating, i32, with an offset of 4.
15184 assert(Op
->getValueType(0) == MVT::i32
&& "Non-i32 post-inc op?!");
15185 if (Op
->getOpcode() != ISD::ADD
|| !isNonExt
)
15187 auto *RHS
= dyn_cast
<ConstantSDNode
>(Op
->getOperand(1));
15188 if (!RHS
|| RHS
->getZExtValue() != 4)
15191 Offset
= Op
->getOperand(1);
15192 Base
= Op
->getOperand(0);
15193 AM
= ISD::POST_INC
;
15198 bool isLegal
= false;
15200 isLegal
= Subtarget
->hasMVEIntegerOps() &&
15201 getMVEIndexedAddressParts(Op
, VT
, Align
, isSEXTLoad
,
15202 Subtarget
->isLittle(), Base
, Offset
,
15205 if (Subtarget
->isThumb2())
15206 isLegal
= getT2IndexedAddressParts(Op
, VT
, isSEXTLoad
, Base
, Offset
,
15209 isLegal
= getARMIndexedAddressParts(Op
, VT
, isSEXTLoad
, Base
, Offset
,
15216 // Swap base ptr and offset to catch more post-index load / store when
15217 // it's legal. In Thumb2 mode, offset must be an immediate.
15218 if (Ptr
== Offset
&& Op
->getOpcode() == ISD::ADD
&&
15219 !Subtarget
->isThumb2())
15220 std::swap(Base
, Offset
);
15222 // Post-indexed load / store update the base pointer.
15227 AM
= isInc
? ISD::POST_INC
: ISD::POST_DEC
;
15231 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op
,
15233 const APInt
&DemandedElts
,
15234 const SelectionDAG
&DAG
,
15235 unsigned Depth
) const {
15236 unsigned BitWidth
= Known
.getBitWidth();
15238 switch (Op
.getOpcode()) {
15244 // Special cases when we convert a carry to a boolean.
15245 if (Op
.getResNo() == 0) {
15246 SDValue LHS
= Op
.getOperand(0);
15247 SDValue RHS
= Op
.getOperand(1);
15248 // (ADDE 0, 0, C) will give us a single bit.
15249 if (Op
->getOpcode() == ARMISD::ADDE
&& isNullConstant(LHS
) &&
15250 isNullConstant(RHS
)) {
15251 Known
.Zero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- 1);
15256 case ARMISD::CMOV
: {
15257 // Bits are known zero/one if known on the LHS and RHS.
15258 Known
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+1);
15259 if (Known
.isUnknown())
15262 KnownBits KnownRHS
= DAG
.computeKnownBits(Op
.getOperand(1), Depth
+1);
15263 Known
.Zero
&= KnownRHS
.Zero
;
15264 Known
.One
&= KnownRHS
.One
;
15267 case ISD::INTRINSIC_W_CHAIN
: {
15268 ConstantSDNode
*CN
= cast
<ConstantSDNode
>(Op
->getOperand(1));
15269 Intrinsic::ID IntID
= static_cast<Intrinsic::ID
>(CN
->getZExtValue());
15272 case Intrinsic::arm_ldaex
:
15273 case Intrinsic::arm_ldrex
: {
15274 EVT VT
= cast
<MemIntrinsicSDNode
>(Op
)->getMemoryVT();
15275 unsigned MemBits
= VT
.getScalarSizeInBits();
15276 Known
.Zero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- MemBits
);
15281 case ARMISD::BFI
: {
15282 // Conservatively, we can recurse down the first operand
15283 // and just mask out all affected bits.
15284 Known
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+ 1);
15286 // The operand to BFI is already a mask suitable for removing the bits it
15288 ConstantSDNode
*CI
= cast
<ConstantSDNode
>(Op
.getOperand(2));
15289 const APInt
&Mask
= CI
->getAPIntValue();
15290 Known
.Zero
&= Mask
;
15294 case ARMISD::VGETLANEs
:
15295 case ARMISD::VGETLANEu
: {
15296 const SDValue
&SrcSV
= Op
.getOperand(0);
15297 EVT VecVT
= SrcSV
.getValueType();
15298 assert(VecVT
.isVector() && "VGETLANE expected a vector type");
15299 const unsigned NumSrcElts
= VecVT
.getVectorNumElements();
15300 ConstantSDNode
*Pos
= cast
<ConstantSDNode
>(Op
.getOperand(1).getNode());
15301 assert(Pos
->getAPIntValue().ult(NumSrcElts
) &&
15302 "VGETLANE index out of bounds");
15303 unsigned Idx
= Pos
->getZExtValue();
15304 APInt DemandedElt
= APInt::getOneBitSet(NumSrcElts
, Idx
);
15305 Known
= DAG
.computeKnownBits(SrcSV
, DemandedElt
, Depth
+ 1);
15307 EVT VT
= Op
.getValueType();
15308 const unsigned DstSz
= VT
.getScalarSizeInBits();
15309 const unsigned SrcSz
= VecVT
.getVectorElementType().getSizeInBits();
15311 assert(SrcSz
== Known
.getBitWidth());
15312 assert(DstSz
> SrcSz
);
15313 if (Op
.getOpcode() == ARMISD::VGETLANEs
)
15314 Known
= Known
.sext(DstSz
);
15316 Known
= Known
.zext(DstSz
, true /* extended bits are known zero */);
15318 assert(DstSz
== Known
.getBitWidth());
15325 ARMTargetLowering::targetShrinkDemandedConstant(SDValue Op
,
15326 const APInt
&DemandedAPInt
,
15327 TargetLoweringOpt
&TLO
) const {
15328 // Delay optimization, so we don't have to deal with illegal types, or block
15333 // Only optimize AND for now.
15334 if (Op
.getOpcode() != ISD::AND
)
15337 EVT VT
= Op
.getValueType();
15343 assert(VT
== MVT::i32
&& "Unexpected integer type");
15345 // Make sure the RHS really is a constant.
15346 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
15350 unsigned Mask
= C
->getZExtValue();
15352 unsigned Demanded
= DemandedAPInt
.getZExtValue();
15353 unsigned ShrunkMask
= Mask
& Demanded
;
15354 unsigned ExpandedMask
= Mask
| ~Demanded
;
15356 // If the mask is all zeros, let the target-independent code replace the
15357 // result with zero.
15358 if (ShrunkMask
== 0)
15361 // If the mask is all ones, erase the AND. (Currently, the target-independent
15362 // code won't do this, so we have to do it explicitly to avoid an infinite
15363 // loop in obscure cases.)
15364 if (ExpandedMask
== ~0U)
15365 return TLO
.CombineTo(Op
, Op
.getOperand(0));
15367 auto IsLegalMask
= [ShrunkMask
, ExpandedMask
](unsigned Mask
) -> bool {
15368 return (ShrunkMask
& Mask
) == ShrunkMask
&& (~ExpandedMask
& Mask
) == 0;
15370 auto UseMask
= [Mask
, Op
, VT
, &TLO
](unsigned NewMask
) -> bool {
15371 if (NewMask
== Mask
)
15374 SDValue NewC
= TLO
.DAG
.getConstant(NewMask
, DL
, VT
);
15375 SDValue NewOp
= TLO
.DAG
.getNode(ISD::AND
, DL
, VT
, Op
.getOperand(0), NewC
);
15376 return TLO
.CombineTo(Op
, NewOp
);
15379 // Prefer uxtb mask.
15380 if (IsLegalMask(0xFF))
15381 return UseMask(0xFF);
15383 // Prefer uxth mask.
15384 if (IsLegalMask(0xFFFF))
15385 return UseMask(0xFFFF);
15387 // [1, 255] is Thumb1 movs+ands, legal immediate for ARM/Thumb2.
15388 // FIXME: Prefer a contiguous sequence of bits for other optimizations.
15389 if (ShrunkMask
< 256)
15390 return UseMask(ShrunkMask
);
15392 // [-256, -2] is Thumb1 movs+bics, legal immediate for ARM/Thumb2.
15393 // FIXME: Prefer a contiguous sequence of bits for other optimizations.
15394 if ((int)ExpandedMask
<= -2 && (int)ExpandedMask
>= -256)
15395 return UseMask(ExpandedMask
);
15397 // Potential improvements:
15399 // We could try to recognize lsls+lsrs or lsrs+lsls pairs here.
15400 // We could try to prefer Thumb1 immediates which can be lowered to a
15401 // two-instruction sequence.
15402 // We could try to recognize more legal ARM/Thumb2 immediates here.
15408 //===----------------------------------------------------------------------===//
15409 // ARM Inline Assembly Support
15410 //===----------------------------------------------------------------------===//
15412 bool ARMTargetLowering::ExpandInlineAsm(CallInst
*CI
) const {
15413 // Looking for "rev" which is V6+.
15414 if (!Subtarget
->hasV6Ops())
15417 InlineAsm
*IA
= cast
<InlineAsm
>(CI
->getCalledValue());
15418 std::string AsmStr
= IA
->getAsmString();
15419 SmallVector
<StringRef
, 4> AsmPieces
;
15420 SplitString(AsmStr
, AsmPieces
, ";\n");
15422 switch (AsmPieces
.size()) {
15423 default: return false;
15425 AsmStr
= AsmPieces
[0];
15427 SplitString(AsmStr
, AsmPieces
, " \t,");
15430 if (AsmPieces
.size() == 3 &&
15431 AsmPieces
[0] == "rev" && AsmPieces
[1] == "$0" && AsmPieces
[2] == "$1" &&
15432 IA
->getConstraintString().compare(0, 4, "=l,l") == 0) {
15433 IntegerType
*Ty
= dyn_cast
<IntegerType
>(CI
->getType());
15434 if (Ty
&& Ty
->getBitWidth() == 32)
15435 return IntrinsicLowering::LowerToByteSwap(CI
);
15443 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT
) const {
15444 // At this point, we have to lower this constraint to something else, so we
15445 // lower it to an "r" or "w". However, by doing this we will force the result
15446 // to be in register, while the X constraint is much more permissive.
15448 // Although we are correct (we are free to emit anything, without
15449 // constraints), we might break use cases that would expect us to be more
15450 // efficient and emit something else.
15451 if (!Subtarget
->hasVFP2Base())
15453 if (ConstraintVT
.isFloatingPoint())
15455 if (ConstraintVT
.isVector() && Subtarget
->hasNEON() &&
15456 (ConstraintVT
.getSizeInBits() == 64 ||
15457 ConstraintVT
.getSizeInBits() == 128))
15463 /// getConstraintType - Given a constraint letter, return the type of
15464 /// constraint it is for this target.
15465 ARMTargetLowering::ConstraintType
15466 ARMTargetLowering::getConstraintType(StringRef Constraint
) const {
15467 unsigned S
= Constraint
.size();
15469 switch (Constraint
[0]) {
15471 case 'l': return C_RegisterClass
;
15472 case 'w': return C_RegisterClass
;
15473 case 'h': return C_RegisterClass
;
15474 case 'x': return C_RegisterClass
;
15475 case 't': return C_RegisterClass
;
15476 case 'j': return C_Immediate
; // Constant for movw.
15477 // An address with a single base register. Due to the way we
15478 // currently handle addresses it is the same as an 'r' memory constraint.
15479 case 'Q': return C_Memory
;
15481 } else if (S
== 2) {
15482 switch (Constraint
[0]) {
15484 case 'T': return C_RegisterClass
;
15485 // All 'U+' constraints are addresses.
15486 case 'U': return C_Memory
;
15489 return TargetLowering::getConstraintType(Constraint
);
15492 /// Examine constraint type and operand type and determine a weight value.
15493 /// This object must already have been set up with the operand type
15494 /// and the current alternative constraint selected.
15495 TargetLowering::ConstraintWeight
15496 ARMTargetLowering::getSingleConstraintMatchWeight(
15497 AsmOperandInfo
&info
, const char *constraint
) const {
15498 ConstraintWeight weight
= CW_Invalid
;
15499 Value
*CallOperandVal
= info
.CallOperandVal
;
15500 // If we don't have a value, we can't do a match,
15501 // but allow it at the lowest weight.
15502 if (!CallOperandVal
)
15504 Type
*type
= CallOperandVal
->getType();
15505 // Look at the constraint type.
15506 switch (*constraint
) {
15508 weight
= TargetLowering::getSingleConstraintMatchWeight(info
, constraint
);
15511 if (type
->isIntegerTy()) {
15512 if (Subtarget
->isThumb())
15513 weight
= CW_SpecificReg
;
15515 weight
= CW_Register
;
15519 if (type
->isFloatingPointTy())
15520 weight
= CW_Register
;
15526 using RCPair
= std::pair
<unsigned, const TargetRegisterClass
*>;
15528 RCPair
ARMTargetLowering::getRegForInlineAsmConstraint(
15529 const TargetRegisterInfo
*TRI
, StringRef Constraint
, MVT VT
) const {
15530 switch (Constraint
.size()) {
15532 // GCC ARM Constraint Letters
15533 switch (Constraint
[0]) {
15534 case 'l': // Low regs or general regs.
15535 if (Subtarget
->isThumb())
15536 return RCPair(0U, &ARM::tGPRRegClass
);
15537 return RCPair(0U, &ARM::GPRRegClass
);
15538 case 'h': // High regs or no regs.
15539 if (Subtarget
->isThumb())
15540 return RCPair(0U, &ARM::hGPRRegClass
);
15543 if (Subtarget
->isThumb1Only())
15544 return RCPair(0U, &ARM::tGPRRegClass
);
15545 return RCPair(0U, &ARM::GPRRegClass
);
15547 if (VT
== MVT::Other
)
15549 if (VT
== MVT::f32
)
15550 return RCPair(0U, &ARM::SPRRegClass
);
15551 if (VT
.getSizeInBits() == 64)
15552 return RCPair(0U, &ARM::DPRRegClass
);
15553 if (VT
.getSizeInBits() == 128)
15554 return RCPair(0U, &ARM::QPRRegClass
);
15557 if (VT
== MVT::Other
)
15559 if (VT
== MVT::f32
)
15560 return RCPair(0U, &ARM::SPR_8RegClass
);
15561 if (VT
.getSizeInBits() == 64)
15562 return RCPair(0U, &ARM::DPR_8RegClass
);
15563 if (VT
.getSizeInBits() == 128)
15564 return RCPair(0U, &ARM::QPR_8RegClass
);
15567 if (VT
== MVT::Other
)
15569 if (VT
== MVT::f32
|| VT
== MVT::i32
)
15570 return RCPair(0U, &ARM::SPRRegClass
);
15571 if (VT
.getSizeInBits() == 64)
15572 return RCPair(0U, &ARM::DPR_VFP2RegClass
);
15573 if (VT
.getSizeInBits() == 128)
15574 return RCPair(0U, &ARM::QPR_VFP2RegClass
);
15580 if (Constraint
[0] == 'T') {
15581 switch (Constraint
[1]) {
15585 return RCPair(0U, &ARM::tGPREvenRegClass
);
15587 return RCPair(0U, &ARM::tGPROddRegClass
);
15596 if (StringRef("{cc}").equals_lower(Constraint
))
15597 return std::make_pair(unsigned(ARM::CPSR
), &ARM::CCRRegClass
);
15599 return TargetLowering::getRegForInlineAsmConstraint(TRI
, Constraint
, VT
);
15602 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15603 /// vector. If it is invalid, don't add anything to Ops.
15604 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
15605 std::string
&Constraint
,
15606 std::vector
<SDValue
>&Ops
,
15607 SelectionDAG
&DAG
) const {
15610 // Currently only support length 1 constraints.
15611 if (Constraint
.length() != 1) return;
15613 char ConstraintLetter
= Constraint
[0];
15614 switch (ConstraintLetter
) {
15617 case 'I': case 'J': case 'K': case 'L':
15618 case 'M': case 'N': case 'O':
15619 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
);
15623 int64_t CVal64
= C
->getSExtValue();
15624 int CVal
= (int) CVal64
;
15625 // None of these constraints allow values larger than 32 bits. Check
15626 // that the value fits in an int.
15627 if (CVal
!= CVal64
)
15630 switch (ConstraintLetter
) {
15632 // Constant suitable for movw, must be between 0 and
15634 if (Subtarget
->hasV6T2Ops() || (Subtarget
->hasV8MBaselineOps()))
15635 if (CVal
>= 0 && CVal
<= 65535)
15639 if (Subtarget
->isThumb1Only()) {
15640 // This must be a constant between 0 and 255, for ADD
15642 if (CVal
>= 0 && CVal
<= 255)
15644 } else if (Subtarget
->isThumb2()) {
15645 // A constant that can be used as an immediate value in a
15646 // data-processing instruction.
15647 if (ARM_AM::getT2SOImmVal(CVal
) != -1)
15650 // A constant that can be used as an immediate value in a
15651 // data-processing instruction.
15652 if (ARM_AM::getSOImmVal(CVal
) != -1)
15658 if (Subtarget
->isThumb1Only()) {
15659 // This must be a constant between -255 and -1, for negated ADD
15660 // immediates. This can be used in GCC with an "n" modifier that
15661 // prints the negated value, for use with SUB instructions. It is
15662 // not useful otherwise but is implemented for compatibility.
15663 if (CVal
>= -255 && CVal
<= -1)
15666 // This must be a constant between -4095 and 4095. It is not clear
15667 // what this constraint is intended for. Implemented for
15668 // compatibility with GCC.
15669 if (CVal
>= -4095 && CVal
<= 4095)
15675 if (Subtarget
->isThumb1Only()) {
15676 // A 32-bit value where only one byte has a nonzero value. Exclude
15677 // zero to match GCC. This constraint is used by GCC internally for
15678 // constants that can be loaded with a move/shift combination.
15679 // It is not useful otherwise but is implemented for compatibility.
15680 if (CVal
!= 0 && ARM_AM::isThumbImmShiftedVal(CVal
))
15682 } else if (Subtarget
->isThumb2()) {
15683 // A constant whose bitwise inverse can be used as an immediate
15684 // value in a data-processing instruction. This can be used in GCC
15685 // with a "B" modifier that prints the inverted value, for use with
15686 // BIC and MVN instructions. It is not useful otherwise but is
15687 // implemented for compatibility.
15688 if (ARM_AM::getT2SOImmVal(~CVal
) != -1)
15691 // A constant whose bitwise inverse can be used as an immediate
15692 // value in a data-processing instruction. This can be used in GCC
15693 // with a "B" modifier that prints the inverted value, for use with
15694 // BIC and MVN instructions. It is not useful otherwise but is
15695 // implemented for compatibility.
15696 if (ARM_AM::getSOImmVal(~CVal
) != -1)
15702 if (Subtarget
->isThumb1Only()) {
15703 // This must be a constant between -7 and 7,
15704 // for 3-operand ADD/SUB immediate instructions.
15705 if (CVal
>= -7 && CVal
< 7)
15707 } else if (Subtarget
->isThumb2()) {
15708 // A constant whose negation can be used as an immediate value in a
15709 // data-processing instruction. This can be used in GCC with an "n"
15710 // modifier that prints the negated value, for use with SUB
15711 // instructions. It is not useful otherwise but is implemented for
15713 if (ARM_AM::getT2SOImmVal(-CVal
) != -1)
15716 // A constant whose negation can be used as an immediate value in a
15717 // data-processing instruction. This can be used in GCC with an "n"
15718 // modifier that prints the negated value, for use with SUB
15719 // instructions. It is not useful otherwise but is implemented for
15721 if (ARM_AM::getSOImmVal(-CVal
) != -1)
15727 if (Subtarget
->isThumb1Only()) {
15728 // This must be a multiple of 4 between 0 and 1020, for
15729 // ADD sp + immediate.
15730 if ((CVal
>= 0 && CVal
<= 1020) && ((CVal
& 3) == 0))
15733 // A power of two or a constant between 0 and 32. This is used in
15734 // GCC for the shift amount on shifted register operands, but it is
15735 // useful in general for any shift amounts.
15736 if ((CVal
>= 0 && CVal
<= 32) || ((CVal
& (CVal
- 1)) == 0))
15742 if (Subtarget
->isThumb1Only()) {
15743 // This must be a constant between 0 and 31, for shift amounts.
15744 if (CVal
>= 0 && CVal
<= 31)
15750 if (Subtarget
->isThumb1Only()) {
15751 // This must be a multiple of 4 between -508 and 508, for
15752 // ADD/SUB sp = sp + immediate.
15753 if ((CVal
>= -508 && CVal
<= 508) && ((CVal
& 3) == 0))
15758 Result
= DAG
.getTargetConstant(CVal
, SDLoc(Op
), Op
.getValueType());
15762 if (Result
.getNode()) {
15763 Ops
.push_back(Result
);
15766 return TargetLowering::LowerAsmOperandForConstraint(Op
, Constraint
, Ops
, DAG
);
15769 static RTLIB::Libcall
getDivRemLibcall(
15770 const SDNode
*N
, MVT::SimpleValueType SVT
) {
15771 assert((N
->getOpcode() == ISD::SDIVREM
|| N
->getOpcode() == ISD::UDIVREM
||
15772 N
->getOpcode() == ISD::SREM
|| N
->getOpcode() == ISD::UREM
) &&
15773 "Unhandled Opcode in getDivRemLibcall");
15774 bool isSigned
= N
->getOpcode() == ISD::SDIVREM
||
15775 N
->getOpcode() == ISD::SREM
;
15778 default: llvm_unreachable("Unexpected request for libcall!");
15779 case MVT::i8
: LC
= isSigned
? RTLIB::SDIVREM_I8
: RTLIB::UDIVREM_I8
; break;
15780 case MVT::i16
: LC
= isSigned
? RTLIB::SDIVREM_I16
: RTLIB::UDIVREM_I16
; break;
15781 case MVT::i32
: LC
= isSigned
? RTLIB::SDIVREM_I32
: RTLIB::UDIVREM_I32
; break;
15782 case MVT::i64
: LC
= isSigned
? RTLIB::SDIVREM_I64
: RTLIB::UDIVREM_I64
; break;
15787 static TargetLowering::ArgListTy
getDivRemArgList(
15788 const SDNode
*N
, LLVMContext
*Context
, const ARMSubtarget
*Subtarget
) {
15789 assert((N
->getOpcode() == ISD::SDIVREM
|| N
->getOpcode() == ISD::UDIVREM
||
15790 N
->getOpcode() == ISD::SREM
|| N
->getOpcode() == ISD::UREM
) &&
15791 "Unhandled Opcode in getDivRemArgList");
15792 bool isSigned
= N
->getOpcode() == ISD::SDIVREM
||
15793 N
->getOpcode() == ISD::SREM
;
15794 TargetLowering::ArgListTy Args
;
15795 TargetLowering::ArgListEntry Entry
;
15796 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
15797 EVT ArgVT
= N
->getOperand(i
).getValueType();
15798 Type
*ArgTy
= ArgVT
.getTypeForEVT(*Context
);
15799 Entry
.Node
= N
->getOperand(i
);
15801 Entry
.IsSExt
= isSigned
;
15802 Entry
.IsZExt
= !isSigned
;
15803 Args
.push_back(Entry
);
15805 if (Subtarget
->isTargetWindows() && Args
.size() >= 2)
15806 std::swap(Args
[0], Args
[1]);
15810 SDValue
ARMTargetLowering::LowerDivRem(SDValue Op
, SelectionDAG
&DAG
) const {
15811 assert((Subtarget
->isTargetAEABI() || Subtarget
->isTargetAndroid() ||
15812 Subtarget
->isTargetGNUAEABI() || Subtarget
->isTargetMuslAEABI() ||
15813 Subtarget
->isTargetWindows()) &&
15814 "Register-based DivRem lowering only");
15815 unsigned Opcode
= Op
->getOpcode();
15816 assert((Opcode
== ISD::SDIVREM
|| Opcode
== ISD::UDIVREM
) &&
15817 "Invalid opcode for Div/Rem lowering");
15818 bool isSigned
= (Opcode
== ISD::SDIVREM
);
15819 EVT VT
= Op
->getValueType(0);
15820 Type
*Ty
= VT
.getTypeForEVT(*DAG
.getContext());
15823 // If the target has hardware divide, use divide + multiply + subtract:
15825 // rem = a - b * div
15826 // return {div, rem}
15827 // This should be lowered into UDIV/SDIV + MLS later on.
15828 bool hasDivide
= Subtarget
->isThumb() ? Subtarget
->hasDivideInThumbMode()
15829 : Subtarget
->hasDivideInARMMode();
15830 if (hasDivide
&& Op
->getValueType(0).isSimple() &&
15831 Op
->getSimpleValueType(0) == MVT::i32
) {
15832 unsigned DivOpcode
= isSigned
? ISD::SDIV
: ISD::UDIV
;
15833 const SDValue Dividend
= Op
->getOperand(0);
15834 const SDValue Divisor
= Op
->getOperand(1);
15835 SDValue Div
= DAG
.getNode(DivOpcode
, dl
, VT
, Dividend
, Divisor
);
15836 SDValue Mul
= DAG
.getNode(ISD::MUL
, dl
, VT
, Div
, Divisor
);
15837 SDValue Rem
= DAG
.getNode(ISD::SUB
, dl
, VT
, Dividend
, Mul
);
15839 SDValue Values
[2] = {Div
, Rem
};
15840 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, DAG
.getVTList(VT
, VT
), Values
);
15843 RTLIB::Libcall LC
= getDivRemLibcall(Op
.getNode(),
15844 VT
.getSimpleVT().SimpleTy
);
15845 SDValue InChain
= DAG
.getEntryNode();
15847 TargetLowering::ArgListTy Args
= getDivRemArgList(Op
.getNode(),
15851 SDValue Callee
= DAG
.getExternalSymbol(getLibcallName(LC
),
15852 getPointerTy(DAG
.getDataLayout()));
15854 Type
*RetTy
= StructType::get(Ty
, Ty
);
15856 if (Subtarget
->isTargetWindows())
15857 InChain
= WinDBZCheckDenominator(DAG
, Op
.getNode(), InChain
);
15859 TargetLowering::CallLoweringInfo
CLI(DAG
);
15860 CLI
.setDebugLoc(dl
).setChain(InChain
)
15861 .setCallee(getLibcallCallingConv(LC
), RetTy
, Callee
, std::move(Args
))
15862 .setInRegister().setSExtResult(isSigned
).setZExtResult(!isSigned
);
15864 std::pair
<SDValue
, SDValue
> CallInfo
= LowerCallTo(CLI
);
15865 return CallInfo
.first
;
15868 // Lowers REM using divmod helpers
15869 // see RTABI section 4.2/4.3
15870 SDValue
ARMTargetLowering::LowerREM(SDNode
*N
, SelectionDAG
&DAG
) const {
15871 // Build return types (div and rem)
15872 std::vector
<Type
*> RetTyParams
;
15873 Type
*RetTyElement
;
15875 switch (N
->getValueType(0).getSimpleVT().SimpleTy
) {
15876 default: llvm_unreachable("Unexpected request for libcall!");
15877 case MVT::i8
: RetTyElement
= Type::getInt8Ty(*DAG
.getContext()); break;
15878 case MVT::i16
: RetTyElement
= Type::getInt16Ty(*DAG
.getContext()); break;
15879 case MVT::i32
: RetTyElement
= Type::getInt32Ty(*DAG
.getContext()); break;
15880 case MVT::i64
: RetTyElement
= Type::getInt64Ty(*DAG
.getContext()); break;
15883 RetTyParams
.push_back(RetTyElement
);
15884 RetTyParams
.push_back(RetTyElement
);
15885 ArrayRef
<Type
*> ret
= ArrayRef
<Type
*>(RetTyParams
);
15886 Type
*RetTy
= StructType::get(*DAG
.getContext(), ret
);
15888 RTLIB::Libcall LC
= getDivRemLibcall(N
, N
->getValueType(0).getSimpleVT().
15890 SDValue InChain
= DAG
.getEntryNode();
15891 TargetLowering::ArgListTy Args
= getDivRemArgList(N
, DAG
.getContext(),
15893 bool isSigned
= N
->getOpcode() == ISD::SREM
;
15894 SDValue Callee
= DAG
.getExternalSymbol(getLibcallName(LC
),
15895 getPointerTy(DAG
.getDataLayout()));
15897 if (Subtarget
->isTargetWindows())
15898 InChain
= WinDBZCheckDenominator(DAG
, N
, InChain
);
15901 CallLoweringInfo
CLI(DAG
);
15902 CLI
.setChain(InChain
)
15903 .setCallee(CallingConv::ARM_AAPCS
, RetTy
, Callee
, std::move(Args
))
15904 .setSExtResult(isSigned
).setZExtResult(!isSigned
).setDebugLoc(SDLoc(N
));
15905 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
15907 // Return second (rem) result operand (first contains div)
15908 SDNode
*ResNode
= CallResult
.first
.getNode();
15909 assert(ResNode
->getNumOperands() == 2 && "divmod should return two operands");
15910 return ResNode
->getOperand(1);
15914 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op
, SelectionDAG
&DAG
) const {
15915 assert(Subtarget
->isTargetWindows() && "unsupported target platform");
15919 SDValue Chain
= Op
.getOperand(0);
15920 SDValue Size
= Op
.getOperand(1);
15922 if (DAG
.getMachineFunction().getFunction().hasFnAttribute(
15923 "no-stack-arg-probe")) {
15924 unsigned Align
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue();
15925 SDValue SP
= DAG
.getCopyFromReg(Chain
, DL
, ARM::SP
, MVT::i32
);
15926 Chain
= SP
.getValue(1);
15927 SP
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
, SP
, Size
);
15929 SP
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, SP
.getValue(0),
15930 DAG
.getConstant(-(uint64_t)Align
, DL
, MVT::i32
));
15931 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::SP
, SP
);
15932 SDValue Ops
[2] = { SP
, Chain
};
15933 return DAG
.getMergeValues(Ops
, DL
);
15936 SDValue Words
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, Size
,
15937 DAG
.getConstant(2, DL
, MVT::i32
));
15940 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::R4
, Words
, Flag
);
15941 Flag
= Chain
.getValue(1);
15943 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
15944 Chain
= DAG
.getNode(ARMISD::WIN__CHKSTK
, DL
, NodeTys
, Chain
, Flag
);
15946 SDValue NewSP
= DAG
.getCopyFromReg(Chain
, DL
, ARM::SP
, MVT::i32
);
15947 Chain
= NewSP
.getValue(1);
15949 SDValue Ops
[2] = { NewSP
, Chain
};
15950 return DAG
.getMergeValues(Ops
, DL
);
15953 SDValue
ARMTargetLowering::LowerFP_EXTEND(SDValue Op
, SelectionDAG
&DAG
) const {
15954 SDValue SrcVal
= Op
.getOperand(0);
15955 const unsigned DstSz
= Op
.getValueType().getSizeInBits();
15956 const unsigned SrcSz
= SrcVal
.getValueType().getSizeInBits();
15957 assert(DstSz
> SrcSz
&& DstSz
<= 64 && SrcSz
>= 16 &&
15958 "Unexpected type for custom-lowering FP_EXTEND");
15960 assert((!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()) &&
15961 "With both FP DP and 16, any FP conversion is legal!");
15963 assert(!(DstSz
== 32 && Subtarget
->hasFP16()) &&
15964 "With FP16, 16 to 32 conversion is legal!");
15966 // Either we are converting from 16 -> 64, without FP16 and/or
15967 // FP.double-precision or without Armv8-fp. So we must do it in two
15969 // Or we are converting from 32 -> 64 without fp.double-precision or 16 -> 32
15970 // without FP16. So we must do a function call.
15973 MakeLibCallOptions CallOptions
;
15975 // Instruction from 16 -> 32
15976 if (Subtarget
->hasFP16())
15977 SrcVal
= DAG
.getNode(ISD::FP_EXTEND
, Loc
, MVT::f32
, SrcVal
);
15978 // Lib call from 16 -> 32
15980 LC
= RTLIB::getFPEXT(MVT::f16
, MVT::f32
);
15981 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
15982 "Unexpected type for custom-lowering FP_EXTEND");
15984 makeLibCall(DAG
, LC
, MVT::f32
, SrcVal
, CallOptions
, Loc
).first
;
15990 // For sure now SrcVal is 32 bits
15991 if (Subtarget
->hasFP64()) // Instruction from 32 -> 64
15992 return DAG
.getNode(ISD::FP_EXTEND
, Loc
, MVT::f64
, SrcVal
);
15994 LC
= RTLIB::getFPEXT(MVT::f32
, MVT::f64
);
15995 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
15996 "Unexpected type for custom-lowering FP_EXTEND");
15997 return makeLibCall(DAG
, LC
, MVT::f64
, SrcVal
, CallOptions
, Loc
).first
;
16000 SDValue
ARMTargetLowering::LowerFP_ROUND(SDValue Op
, SelectionDAG
&DAG
) const {
16001 SDValue SrcVal
= Op
.getOperand(0);
16002 EVT SrcVT
= SrcVal
.getValueType();
16003 EVT DstVT
= Op
.getValueType();
16004 const unsigned DstSz
= Op
.getValueType().getSizeInBits();
16005 const unsigned SrcSz
= SrcVT
.getSizeInBits();
16007 assert(DstSz
< SrcSz
&& SrcSz
<= 64 && DstSz
>= 16 &&
16008 "Unexpected type for custom-lowering FP_ROUND");
16010 assert((!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()) &&
16011 "With both FP DP and 16, any FP conversion is legal!");
16015 // Instruction from 32 -> 16 if hasFP16 is valid
16016 if (SrcSz
== 32 && Subtarget
->hasFP16())
16019 // Lib call from 32 -> 16 / 64 -> [32, 16]
16020 RTLIB::Libcall LC
= RTLIB::getFPROUND(SrcVT
, DstVT
);
16021 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
16022 "Unexpected type for custom-lowering FP_ROUND");
16023 MakeLibCallOptions CallOptions
;
16024 return makeLibCall(DAG
, LC
, DstVT
, SrcVal
, CallOptions
, Loc
).first
;
16027 void ARMTargetLowering::lowerABS(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
16028 SelectionDAG
&DAG
) const {
16029 assert(N
->getValueType(0) == MVT::i64
&& "Unexpected type (!= i64) on ABS.");
16030 MVT HalfT
= MVT::i32
;
16032 SDValue Hi
, Lo
, Tmp
;
16034 if (!isOperationLegalOrCustom(ISD::ADDCARRY
, HalfT
) ||
16035 !isOperationLegalOrCustom(ISD::UADDO
, HalfT
))
16038 unsigned OpTypeBits
= HalfT
.getScalarSizeInBits();
16039 SDVTList VTList
= DAG
.getVTList(HalfT
, MVT::i1
);
16041 Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, HalfT
, N
->getOperand(0),
16042 DAG
.getConstant(0, dl
, HalfT
));
16043 Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, HalfT
, N
->getOperand(0),
16044 DAG
.getConstant(1, dl
, HalfT
));
16046 Tmp
= DAG
.getNode(ISD::SRA
, dl
, HalfT
, Hi
,
16047 DAG
.getConstant(OpTypeBits
- 1, dl
,
16048 getShiftAmountTy(HalfT
, DAG
.getDataLayout())));
16049 Lo
= DAG
.getNode(ISD::UADDO
, dl
, VTList
, Tmp
, Lo
);
16050 Hi
= DAG
.getNode(ISD::ADDCARRY
, dl
, VTList
, Tmp
, Hi
,
16051 SDValue(Lo
.getNode(), 1));
16052 Hi
= DAG
.getNode(ISD::XOR
, dl
, HalfT
, Tmp
, Hi
);
16053 Lo
= DAG
.getNode(ISD::XOR
, dl
, HalfT
, Tmp
, Lo
);
16055 Results
.push_back(Lo
);
16056 Results
.push_back(Hi
);
16060 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const {
16061 // The ARM target isn't yet aware of offsets.
16065 bool ARM::isBitFieldInvertedMask(unsigned v
) {
16066 if (v
== 0xffffffff)
16069 // there can be 1's on either or both "outsides", all the "inside"
16070 // bits must be 0's
16071 return isShiftedMask_32(~v
);
16074 /// isFPImmLegal - Returns true if the target can instruction select the
16075 /// specified FP immediate natively. If false, the legalizer will
16076 /// materialize the FP immediate as a load from a constant pool.
16077 bool ARMTargetLowering::isFPImmLegal(const APFloat
&Imm
, EVT VT
,
16078 bool ForCodeSize
) const {
16079 if (!Subtarget
->hasVFP3Base())
16081 if (VT
== MVT::f16
&& Subtarget
->hasFullFP16())
16082 return ARM_AM::getFP16Imm(Imm
) != -1;
16083 if (VT
== MVT::f32
)
16084 return ARM_AM::getFP32Imm(Imm
) != -1;
16085 if (VT
== MVT::f64
&& Subtarget
->hasFP64())
16086 return ARM_AM::getFP64Imm(Imm
) != -1;
16090 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
16091 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
16092 /// specified in the intrinsic calls.
16093 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo
&Info
,
16095 MachineFunction
&MF
,
16096 unsigned Intrinsic
) const {
16097 switch (Intrinsic
) {
16098 case Intrinsic::arm_neon_vld1
:
16099 case Intrinsic::arm_neon_vld2
:
16100 case Intrinsic::arm_neon_vld3
:
16101 case Intrinsic::arm_neon_vld4
:
16102 case Intrinsic::arm_neon_vld2lane
:
16103 case Intrinsic::arm_neon_vld3lane
:
16104 case Intrinsic::arm_neon_vld4lane
:
16105 case Intrinsic::arm_neon_vld2dup
:
16106 case Intrinsic::arm_neon_vld3dup
:
16107 case Intrinsic::arm_neon_vld4dup
: {
16108 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
16109 // Conservatively set memVT to the entire set of vectors loaded.
16110 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
16111 uint64_t NumElts
= DL
.getTypeSizeInBits(I
.getType()) / 64;
16112 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
16113 Info
.ptrVal
= I
.getArgOperand(0);
16115 Value
*AlignArg
= I
.getArgOperand(I
.getNumArgOperands() - 1);
16116 Info
.align
= MaybeAlign(cast
<ConstantInt
>(AlignArg
)->getZExtValue());
16117 // volatile loads with NEON intrinsics not supported
16118 Info
.flags
= MachineMemOperand::MOLoad
;
16121 case Intrinsic::arm_neon_vld1x2
:
16122 case Intrinsic::arm_neon_vld1x3
:
16123 case Intrinsic::arm_neon_vld1x4
: {
16124 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
16125 // Conservatively set memVT to the entire set of vectors loaded.
16126 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
16127 uint64_t NumElts
= DL
.getTypeSizeInBits(I
.getType()) / 64;
16128 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
16129 Info
.ptrVal
= I
.getArgOperand(I
.getNumArgOperands() - 1);
16131 Info
.align
.reset();
16132 // volatile loads with NEON intrinsics not supported
16133 Info
.flags
= MachineMemOperand::MOLoad
;
16136 case Intrinsic::arm_neon_vst1
:
16137 case Intrinsic::arm_neon_vst2
:
16138 case Intrinsic::arm_neon_vst3
:
16139 case Intrinsic::arm_neon_vst4
:
16140 case Intrinsic::arm_neon_vst2lane
:
16141 case Intrinsic::arm_neon_vst3lane
:
16142 case Intrinsic::arm_neon_vst4lane
: {
16143 Info
.opc
= ISD::INTRINSIC_VOID
;
16144 // Conservatively set memVT to the entire set of vectors stored.
16145 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
16146 unsigned NumElts
= 0;
16147 for (unsigned ArgI
= 1, ArgE
= I
.getNumArgOperands(); ArgI
< ArgE
; ++ArgI
) {
16148 Type
*ArgTy
= I
.getArgOperand(ArgI
)->getType();
16149 if (!ArgTy
->isVectorTy())
16151 NumElts
+= DL
.getTypeSizeInBits(ArgTy
) / 64;
16153 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
16154 Info
.ptrVal
= I
.getArgOperand(0);
16156 Value
*AlignArg
= I
.getArgOperand(I
.getNumArgOperands() - 1);
16157 Info
.align
= MaybeAlign(cast
<ConstantInt
>(AlignArg
)->getZExtValue());
16158 // volatile stores with NEON intrinsics not supported
16159 Info
.flags
= MachineMemOperand::MOStore
;
16162 case Intrinsic::arm_neon_vst1x2
:
16163 case Intrinsic::arm_neon_vst1x3
:
16164 case Intrinsic::arm_neon_vst1x4
: {
16165 Info
.opc
= ISD::INTRINSIC_VOID
;
16166 // Conservatively set memVT to the entire set of vectors stored.
16167 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
16168 unsigned NumElts
= 0;
16169 for (unsigned ArgI
= 1, ArgE
= I
.getNumArgOperands(); ArgI
< ArgE
; ++ArgI
) {
16170 Type
*ArgTy
= I
.getArgOperand(ArgI
)->getType();
16171 if (!ArgTy
->isVectorTy())
16173 NumElts
+= DL
.getTypeSizeInBits(ArgTy
) / 64;
16175 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
16176 Info
.ptrVal
= I
.getArgOperand(0);
16178 Info
.align
.reset();
16179 // volatile stores with NEON intrinsics not supported
16180 Info
.flags
= MachineMemOperand::MOStore
;
16183 case Intrinsic::arm_ldaex
:
16184 case Intrinsic::arm_ldrex
: {
16185 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
16186 PointerType
*PtrTy
= cast
<PointerType
>(I
.getArgOperand(0)->getType());
16187 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
16188 Info
.memVT
= MVT::getVT(PtrTy
->getElementType());
16189 Info
.ptrVal
= I
.getArgOperand(0);
16191 Info
.align
= MaybeAlign(DL
.getABITypeAlignment(PtrTy
->getElementType()));
16192 Info
.flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
;
16195 case Intrinsic::arm_stlex
:
16196 case Intrinsic::arm_strex
: {
16197 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
16198 PointerType
*PtrTy
= cast
<PointerType
>(I
.getArgOperand(1)->getType());
16199 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
16200 Info
.memVT
= MVT::getVT(PtrTy
->getElementType());
16201 Info
.ptrVal
= I
.getArgOperand(1);
16203 Info
.align
= MaybeAlign(DL
.getABITypeAlignment(PtrTy
->getElementType()));
16204 Info
.flags
= MachineMemOperand::MOStore
| MachineMemOperand::MOVolatile
;
16207 case Intrinsic::arm_stlexd
:
16208 case Intrinsic::arm_strexd
:
16209 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
16210 Info
.memVT
= MVT::i64
;
16211 Info
.ptrVal
= I
.getArgOperand(2);
16213 Info
.align
= Align(8);
16214 Info
.flags
= MachineMemOperand::MOStore
| MachineMemOperand::MOVolatile
;
16217 case Intrinsic::arm_ldaexd
:
16218 case Intrinsic::arm_ldrexd
:
16219 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
16220 Info
.memVT
= MVT::i64
;
16221 Info
.ptrVal
= I
.getArgOperand(0);
16223 Info
.align
= Align(8);
16224 Info
.flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
;
16234 /// Returns true if it is beneficial to convert a load of a constant
16235 /// to just the constant itself.
16236 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt
&Imm
,
16238 assert(Ty
->isIntegerTy());
16240 unsigned Bits
= Ty
->getPrimitiveSizeInBits();
16241 if (Bits
== 0 || Bits
> 32)
16246 bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT
, EVT SrcVT
,
16247 unsigned Index
) const {
16248 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR
, ResVT
))
16251 return (Index
== 0 || Index
== ResVT
.getVectorNumElements());
16254 Instruction
* ARMTargetLowering::makeDMB(IRBuilder
<> &Builder
,
16255 ARM_MB::MemBOpt Domain
) const {
16256 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
16258 // First, if the target has no DMB, see what fallback we can use.
16259 if (!Subtarget
->hasDataBarrier()) {
16260 // Some ARMv6 cpus can support data barriers with an mcr instruction.
16261 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
16263 if (Subtarget
->hasV6Ops() && !Subtarget
->isThumb()) {
16264 Function
*MCR
= Intrinsic::getDeclaration(M
, Intrinsic::arm_mcr
);
16265 Value
* args
[6] = {Builder
.getInt32(15), Builder
.getInt32(0),
16266 Builder
.getInt32(0), Builder
.getInt32(7),
16267 Builder
.getInt32(10), Builder
.getInt32(5)};
16268 return Builder
.CreateCall(MCR
, args
);
16270 // Instead of using barriers, atomic accesses on these subtargets use
16272 llvm_unreachable("makeDMB on a target so old that it has no barriers");
16275 Function
*DMB
= Intrinsic::getDeclaration(M
, Intrinsic::arm_dmb
);
16276 // Only a full system barrier exists in the M-class architectures.
16277 Domain
= Subtarget
->isMClass() ? ARM_MB::SY
: Domain
;
16278 Constant
*CDomain
= Builder
.getInt32(Domain
);
16279 return Builder
.CreateCall(DMB
, CDomain
);
16283 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
16284 Instruction
*ARMTargetLowering::emitLeadingFence(IRBuilder
<> &Builder
,
16286 AtomicOrdering Ord
) const {
16288 case AtomicOrdering::NotAtomic
:
16289 case AtomicOrdering::Unordered
:
16290 llvm_unreachable("Invalid fence: unordered/non-atomic");
16291 case AtomicOrdering::Monotonic
:
16292 case AtomicOrdering::Acquire
:
16293 return nullptr; // Nothing to do
16294 case AtomicOrdering::SequentiallyConsistent
:
16295 if (!Inst
->hasAtomicStore())
16296 return nullptr; // Nothing to do
16298 case AtomicOrdering::Release
:
16299 case AtomicOrdering::AcquireRelease
:
16300 if (Subtarget
->preferISHSTBarriers())
16301 return makeDMB(Builder
, ARM_MB::ISHST
);
16302 // FIXME: add a comment with a link to documentation justifying this.
16304 return makeDMB(Builder
, ARM_MB::ISH
);
16306 llvm_unreachable("Unknown fence ordering in emitLeadingFence");
16309 Instruction
*ARMTargetLowering::emitTrailingFence(IRBuilder
<> &Builder
,
16311 AtomicOrdering Ord
) const {
16313 case AtomicOrdering::NotAtomic
:
16314 case AtomicOrdering::Unordered
:
16315 llvm_unreachable("Invalid fence: unordered/not-atomic");
16316 case AtomicOrdering::Monotonic
:
16317 case AtomicOrdering::Release
:
16318 return nullptr; // Nothing to do
16319 case AtomicOrdering::Acquire
:
16320 case AtomicOrdering::AcquireRelease
:
16321 case AtomicOrdering::SequentiallyConsistent
:
16322 return makeDMB(Builder
, ARM_MB::ISH
);
16324 llvm_unreachable("Unknown fence ordering in emitTrailingFence");
16327 // Loads and stores less than 64-bits are already atomic; ones above that
16328 // are doomed anyway, so defer to the default libcall and blame the OS when
16329 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
16330 // anything for those.
16331 bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst
*SI
) const {
16332 unsigned Size
= SI
->getValueOperand()->getType()->getPrimitiveSizeInBits();
16333 return (Size
== 64) && !Subtarget
->isMClass();
16336 // Loads and stores less than 64-bits are already atomic; ones above that
16337 // are doomed anyway, so defer to the default libcall and blame the OS when
16338 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
16339 // anything for those.
16340 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
16341 // guarantee, see DDI0406C ARM architecture reference manual,
16342 // sections A8.8.72-74 LDRD)
16343 TargetLowering::AtomicExpansionKind
16344 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst
*LI
) const {
16345 unsigned Size
= LI
->getType()->getPrimitiveSizeInBits();
16346 return ((Size
== 64) && !Subtarget
->isMClass()) ? AtomicExpansionKind::LLOnly
16347 : AtomicExpansionKind::None
;
16350 // For the real atomic operations, we have ldrex/strex up to 32 bits,
16351 // and up to 64 bits on the non-M profiles
16352 TargetLowering::AtomicExpansionKind
16353 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst
*AI
) const {
16354 if (AI
->isFloatingPointOperation())
16355 return AtomicExpansionKind::CmpXChg
;
16357 unsigned Size
= AI
->getType()->getPrimitiveSizeInBits();
16358 bool hasAtomicRMW
= !Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps();
16359 return (Size
<= (Subtarget
->isMClass() ? 32U : 64U) && hasAtomicRMW
)
16360 ? AtomicExpansionKind::LLSC
16361 : AtomicExpansionKind::None
;
16364 TargetLowering::AtomicExpansionKind
16365 ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst
*AI
) const {
16366 // At -O0, fast-regalloc cannot cope with the live vregs necessary to
16367 // implement cmpxchg without spilling. If the address being exchanged is also
16368 // on the stack and close enough to the spill slot, this can lead to a
16369 // situation where the monitor always gets cleared and the atomic operation
16370 // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
16371 bool HasAtomicCmpXchg
=
16372 !Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps();
16373 if (getTargetMachine().getOptLevel() != 0 && HasAtomicCmpXchg
)
16374 return AtomicExpansionKind::LLSC
;
16375 return AtomicExpansionKind::None
;
16378 bool ARMTargetLowering::shouldInsertFencesForAtomic(
16379 const Instruction
*I
) const {
16380 return InsertFencesForAtomic
;
16383 // This has so far only been implemented for MachO.
16384 bool ARMTargetLowering::useLoadStackGuardNode() const {
16385 return Subtarget
->isTargetMachO();
16388 void ARMTargetLowering::insertSSPDeclarations(Module
&M
) const {
16389 if (!Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
16390 return TargetLowering::insertSSPDeclarations(M
);
16392 // MSVC CRT has a global variable holding security cookie.
16393 M
.getOrInsertGlobal("__security_cookie",
16394 Type::getInt8PtrTy(M
.getContext()));
16396 // MSVC CRT has a function to validate security cookie.
16397 FunctionCallee SecurityCheckCookie
= M
.getOrInsertFunction(
16398 "__security_check_cookie", Type::getVoidTy(M
.getContext()),
16399 Type::getInt8PtrTy(M
.getContext()));
16400 if (Function
*F
= dyn_cast
<Function
>(SecurityCheckCookie
.getCallee()))
16401 F
->addAttribute(1, Attribute::AttrKind::InReg
);
16404 Value
*ARMTargetLowering::getSDagStackGuard(const Module
&M
) const {
16405 // MSVC CRT has a global variable holding security cookie.
16406 if (Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
16407 return M
.getGlobalVariable("__security_cookie");
16408 return TargetLowering::getSDagStackGuard(M
);
16411 Function
*ARMTargetLowering::getSSPStackGuardCheck(const Module
&M
) const {
16412 // MSVC CRT has a function to validate security cookie.
16413 if (Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
16414 return M
.getFunction("__security_check_cookie");
16415 return TargetLowering::getSSPStackGuardCheck(M
);
16418 bool ARMTargetLowering::canCombineStoreAndExtract(Type
*VectorTy
, Value
*Idx
,
16419 unsigned &Cost
) const {
16420 // If we do not have NEON, vector types are not natively supported.
16421 if (!Subtarget
->hasNEON())
16424 // Floating point values and vector values map to the same register file.
16425 // Therefore, although we could do a store extract of a vector type, this is
16426 // better to leave at float as we have more freedom in the addressing mode for
16428 if (VectorTy
->isFPOrFPVectorTy())
16431 // If the index is unknown at compile time, this is very expensive to lower
16432 // and it is not possible to combine the store with the extract.
16433 if (!isa
<ConstantInt
>(Idx
))
16436 assert(VectorTy
->isVectorTy() && "VectorTy is not a vector type");
16437 unsigned BitWidth
= cast
<VectorType
>(VectorTy
)->getBitWidth();
16438 // We can do a store + vector extract on any vector that fits perfectly in a D
16440 if (BitWidth
== 64 || BitWidth
== 128) {
16447 bool ARMTargetLowering::isCheapToSpeculateCttz() const {
16448 return Subtarget
->hasV6T2Ops();
16451 bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
16452 return Subtarget
->hasV6T2Ops();
16455 bool ARMTargetLowering::shouldExpandShift(SelectionDAG
&DAG
, SDNode
*N
) const {
16456 return !Subtarget
->hasMinSize();
16459 Value
*ARMTargetLowering::emitLoadLinked(IRBuilder
<> &Builder
, Value
*Addr
,
16460 AtomicOrdering Ord
) const {
16461 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
16462 Type
*ValTy
= cast
<PointerType
>(Addr
->getType())->getElementType();
16463 bool IsAcquire
= isAcquireOrStronger(Ord
);
16465 // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
16466 // intrinsic must return {i32, i32} and we have to recombine them into a
16467 // single i64 here.
16468 if (ValTy
->getPrimitiveSizeInBits() == 64) {
16469 Intrinsic::ID Int
=
16470 IsAcquire
? Intrinsic::arm_ldaexd
: Intrinsic::arm_ldrexd
;
16471 Function
*Ldrex
= Intrinsic::getDeclaration(M
, Int
);
16473 Addr
= Builder
.CreateBitCast(Addr
, Type::getInt8PtrTy(M
->getContext()));
16474 Value
*LoHi
= Builder
.CreateCall(Ldrex
, Addr
, "lohi");
16476 Value
*Lo
= Builder
.CreateExtractValue(LoHi
, 0, "lo");
16477 Value
*Hi
= Builder
.CreateExtractValue(LoHi
, 1, "hi");
16478 if (!Subtarget
->isLittle())
16479 std::swap (Lo
, Hi
);
16480 Lo
= Builder
.CreateZExt(Lo
, ValTy
, "lo64");
16481 Hi
= Builder
.CreateZExt(Hi
, ValTy
, "hi64");
16482 return Builder
.CreateOr(
16483 Lo
, Builder
.CreateShl(Hi
, ConstantInt::get(ValTy
, 32)), "val64");
16486 Type
*Tys
[] = { Addr
->getType() };
16487 Intrinsic::ID Int
= IsAcquire
? Intrinsic::arm_ldaex
: Intrinsic::arm_ldrex
;
16488 Function
*Ldrex
= Intrinsic::getDeclaration(M
, Int
, Tys
);
16490 return Builder
.CreateTruncOrBitCast(
16491 Builder
.CreateCall(Ldrex
, Addr
),
16492 cast
<PointerType
>(Addr
->getType())->getElementType());
16495 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
16496 IRBuilder
<> &Builder
) const {
16497 if (!Subtarget
->hasV7Ops())
16499 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
16500 Builder
.CreateCall(Intrinsic::getDeclaration(M
, Intrinsic::arm_clrex
));
16503 Value
*ARMTargetLowering::emitStoreConditional(IRBuilder
<> &Builder
, Value
*Val
,
16505 AtomicOrdering Ord
) const {
16506 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
16507 bool IsRelease
= isReleaseOrStronger(Ord
);
16509 // Since the intrinsics must have legal type, the i64 intrinsics take two
16510 // parameters: "i32, i32". We must marshal Val into the appropriate form
16511 // before the call.
16512 if (Val
->getType()->getPrimitiveSizeInBits() == 64) {
16513 Intrinsic::ID Int
=
16514 IsRelease
? Intrinsic::arm_stlexd
: Intrinsic::arm_strexd
;
16515 Function
*Strex
= Intrinsic::getDeclaration(M
, Int
);
16516 Type
*Int32Ty
= Type::getInt32Ty(M
->getContext());
16518 Value
*Lo
= Builder
.CreateTrunc(Val
, Int32Ty
, "lo");
16519 Value
*Hi
= Builder
.CreateTrunc(Builder
.CreateLShr(Val
, 32), Int32Ty
, "hi");
16520 if (!Subtarget
->isLittle())
16522 Addr
= Builder
.CreateBitCast(Addr
, Type::getInt8PtrTy(M
->getContext()));
16523 return Builder
.CreateCall(Strex
, {Lo
, Hi
, Addr
});
16526 Intrinsic::ID Int
= IsRelease
? Intrinsic::arm_stlex
: Intrinsic::arm_strex
;
16527 Type
*Tys
[] = { Addr
->getType() };
16528 Function
*Strex
= Intrinsic::getDeclaration(M
, Int
, Tys
);
16530 return Builder
.CreateCall(
16531 Strex
, {Builder
.CreateZExtOrBitCast(
16532 Val
, Strex
->getFunctionType()->getParamType(0)),
16537 bool ARMTargetLowering::alignLoopsWithOptSize() const {
16538 return Subtarget
->isMClass();
16541 /// A helper function for determining the number of interleaved accesses we
16542 /// will generate when lowering accesses of the given type.
16544 ARMTargetLowering::getNumInterleavedAccesses(VectorType
*VecTy
,
16545 const DataLayout
&DL
) const {
16546 return (DL
.getTypeSizeInBits(VecTy
) + 127) / 128;
16549 bool ARMTargetLowering::isLegalInterleavedAccessType(
16550 VectorType
*VecTy
, const DataLayout
&DL
) const {
16552 unsigned VecSize
= DL
.getTypeSizeInBits(VecTy
);
16553 unsigned ElSize
= DL
.getTypeSizeInBits(VecTy
->getElementType());
16555 // Ensure the vector doesn't have f16 elements. Even though we could do an
16556 // i16 vldN, we can't hold the f16 vectors and will end up converting via
16558 if (VecTy
->getElementType()->isHalfTy())
16561 // Ensure the number of vector elements is greater than 1.
16562 if (VecTy
->getNumElements() < 2)
16565 // Ensure the element type is legal.
16566 if (ElSize
!= 8 && ElSize
!= 16 && ElSize
!= 32)
16569 // Ensure the total vector size is 64 or a multiple of 128. Types larger than
16570 // 128 will be split into multiple interleaved accesses.
16571 return VecSize
== 64 || VecSize
% 128 == 0;
16574 unsigned ARMTargetLowering::getMaxSupportedInterleaveFactor() const {
16575 if (Subtarget
->hasNEON())
16577 return TargetLoweringBase::getMaxSupportedInterleaveFactor();
16580 /// Lower an interleaved load into a vldN intrinsic.
16582 /// E.g. Lower an interleaved load (Factor = 2):
16583 /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
16584 /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
16585 /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
16588 /// %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
16589 /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
16590 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
16591 bool ARMTargetLowering::lowerInterleavedLoad(
16592 LoadInst
*LI
, ArrayRef
<ShuffleVectorInst
*> Shuffles
,
16593 ArrayRef
<unsigned> Indices
, unsigned Factor
) const {
16594 assert(Factor
>= 2 && Factor
<= getMaxSupportedInterleaveFactor() &&
16595 "Invalid interleave factor");
16596 assert(!Shuffles
.empty() && "Empty shufflevector input");
16597 assert(Shuffles
.size() == Indices
.size() &&
16598 "Unmatched number of shufflevectors and indices");
16600 VectorType
*VecTy
= Shuffles
[0]->getType();
16601 Type
*EltTy
= VecTy
->getVectorElementType();
16603 const DataLayout
&DL
= LI
->getModule()->getDataLayout();
16605 // Skip if we do not have NEON and skip illegal vector types. We can
16606 // "legalize" wide vector types into multiple interleaved accesses as long as
16607 // the vector types are divisible by 128.
16608 if (!Subtarget
->hasNEON() || !isLegalInterleavedAccessType(VecTy
, DL
))
16611 unsigned NumLoads
= getNumInterleavedAccesses(VecTy
, DL
);
16613 // A pointer vector can not be the return type of the ldN intrinsics. Need to
16614 // load integer vectors first and then convert to pointer vectors.
16615 if (EltTy
->isPointerTy())
16617 VectorType::get(DL
.getIntPtrType(EltTy
), VecTy
->getVectorNumElements());
16619 IRBuilder
<> Builder(LI
);
16621 // The base address of the load.
16622 Value
*BaseAddr
= LI
->getPointerOperand();
16624 if (NumLoads
> 1) {
16625 // If we're going to generate more than one load, reset the sub-vector type
16626 // to something legal.
16627 VecTy
= VectorType::get(VecTy
->getVectorElementType(),
16628 VecTy
->getVectorNumElements() / NumLoads
);
16630 // We will compute the pointer operand of each load from the original base
16631 // address using GEPs. Cast the base address to a pointer to the scalar
16633 BaseAddr
= Builder
.CreateBitCast(
16634 BaseAddr
, VecTy
->getVectorElementType()->getPointerTo(
16635 LI
->getPointerAddressSpace()));
16638 assert(isTypeLegal(EVT::getEVT(VecTy
)) && "Illegal vldN vector type!");
16640 Type
*Int8Ptr
= Builder
.getInt8PtrTy(LI
->getPointerAddressSpace());
16641 Type
*Tys
[] = {VecTy
, Int8Ptr
};
16642 static const Intrinsic::ID LoadInts
[3] = {Intrinsic::arm_neon_vld2
,
16643 Intrinsic::arm_neon_vld3
,
16644 Intrinsic::arm_neon_vld4
};
16645 Function
*VldnFunc
=
16646 Intrinsic::getDeclaration(LI
->getModule(), LoadInts
[Factor
- 2], Tys
);
16648 // Holds sub-vectors extracted from the load intrinsic return values. The
16649 // sub-vectors are associated with the shufflevector instructions they will
16651 DenseMap
<ShuffleVectorInst
*, SmallVector
<Value
*, 4>> SubVecs
;
16653 for (unsigned LoadCount
= 0; LoadCount
< NumLoads
; ++LoadCount
) {
16654 // If we're generating more than one load, compute the base address of
16655 // subsequent loads as an offset from the previous.
16658 Builder
.CreateConstGEP1_32(VecTy
->getVectorElementType(), BaseAddr
,
16659 VecTy
->getVectorNumElements() * Factor
);
16661 SmallVector
<Value
*, 2> Ops
;
16662 Ops
.push_back(Builder
.CreateBitCast(BaseAddr
, Int8Ptr
));
16663 Ops
.push_back(Builder
.getInt32(LI
->getAlignment()));
16665 CallInst
*VldN
= Builder
.CreateCall(VldnFunc
, Ops
, "vldN");
16667 // Replace uses of each shufflevector with the corresponding vector loaded
16669 for (unsigned i
= 0; i
< Shuffles
.size(); i
++) {
16670 ShuffleVectorInst
*SV
= Shuffles
[i
];
16671 unsigned Index
= Indices
[i
];
16673 Value
*SubVec
= Builder
.CreateExtractValue(VldN
, Index
);
16675 // Convert the integer vector to pointer vector if the element is pointer.
16676 if (EltTy
->isPointerTy())
16677 SubVec
= Builder
.CreateIntToPtr(
16678 SubVec
, VectorType::get(SV
->getType()->getVectorElementType(),
16679 VecTy
->getVectorNumElements()));
16681 SubVecs
[SV
].push_back(SubVec
);
16685 // Replace uses of the shufflevector instructions with the sub-vectors
16686 // returned by the load intrinsic. If a shufflevector instruction is
16687 // associated with more than one sub-vector, those sub-vectors will be
16688 // concatenated into a single wide vector.
16689 for (ShuffleVectorInst
*SVI
: Shuffles
) {
16690 auto &SubVec
= SubVecs
[SVI
];
16692 SubVec
.size() > 1 ? concatenateVectors(Builder
, SubVec
) : SubVec
[0];
16693 SVI
->replaceAllUsesWith(WideVec
);
16699 /// Lower an interleaved store into a vstN intrinsic.
16701 /// E.g. Lower an interleaved store (Factor = 3):
16702 /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
16703 /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
16704 /// store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
16707 /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
16708 /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
16709 /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
16710 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
16712 /// Note that the new shufflevectors will be removed and we'll only generate one
16713 /// vst3 instruction in CodeGen.
16715 /// Example for a more general valid mask (Factor 3). Lower:
16716 /// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
16717 /// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
16718 /// store <12 x i32> %i.vec, <12 x i32>* %ptr
16721 /// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
16722 /// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
16723 /// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
16724 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
16725 bool ARMTargetLowering::lowerInterleavedStore(StoreInst
*SI
,
16726 ShuffleVectorInst
*SVI
,
16727 unsigned Factor
) const {
16728 assert(Factor
>= 2 && Factor
<= getMaxSupportedInterleaveFactor() &&
16729 "Invalid interleave factor");
16731 VectorType
*VecTy
= SVI
->getType();
16732 assert(VecTy
->getVectorNumElements() % Factor
== 0 &&
16733 "Invalid interleaved store");
16735 unsigned LaneLen
= VecTy
->getVectorNumElements() / Factor
;
16736 Type
*EltTy
= VecTy
->getVectorElementType();
16737 VectorType
*SubVecTy
= VectorType::get(EltTy
, LaneLen
);
16739 const DataLayout
&DL
= SI
->getModule()->getDataLayout();
16741 // Skip if we do not have NEON and skip illegal vector types. We can
16742 // "legalize" wide vector types into multiple interleaved accesses as long as
16743 // the vector types are divisible by 128.
16744 if (!Subtarget
->hasNEON() || !isLegalInterleavedAccessType(SubVecTy
, DL
))
16747 unsigned NumStores
= getNumInterleavedAccesses(SubVecTy
, DL
);
16749 Value
*Op0
= SVI
->getOperand(0);
16750 Value
*Op1
= SVI
->getOperand(1);
16751 IRBuilder
<> Builder(SI
);
16753 // StN intrinsics don't support pointer vectors as arguments. Convert pointer
16754 // vectors to integer vectors.
16755 if (EltTy
->isPointerTy()) {
16756 Type
*IntTy
= DL
.getIntPtrType(EltTy
);
16758 // Convert to the corresponding integer vector.
16760 VectorType::get(IntTy
, Op0
->getType()->getVectorNumElements());
16761 Op0
= Builder
.CreatePtrToInt(Op0
, IntVecTy
);
16762 Op1
= Builder
.CreatePtrToInt(Op1
, IntVecTy
);
16764 SubVecTy
= VectorType::get(IntTy
, LaneLen
);
16767 // The base address of the store.
16768 Value
*BaseAddr
= SI
->getPointerOperand();
16770 if (NumStores
> 1) {
16771 // If we're going to generate more than one store, reset the lane length
16772 // and sub-vector type to something legal.
16773 LaneLen
/= NumStores
;
16774 SubVecTy
= VectorType::get(SubVecTy
->getVectorElementType(), LaneLen
);
16776 // We will compute the pointer operand of each store from the original base
16777 // address using GEPs. Cast the base address to a pointer to the scalar
16779 BaseAddr
= Builder
.CreateBitCast(
16780 BaseAddr
, SubVecTy
->getVectorElementType()->getPointerTo(
16781 SI
->getPointerAddressSpace()));
16784 assert(isTypeLegal(EVT::getEVT(SubVecTy
)) && "Illegal vstN vector type!");
16786 auto Mask
= SVI
->getShuffleMask();
16788 Type
*Int8Ptr
= Builder
.getInt8PtrTy(SI
->getPointerAddressSpace());
16789 Type
*Tys
[] = {Int8Ptr
, SubVecTy
};
16790 static const Intrinsic::ID StoreInts
[3] = {Intrinsic::arm_neon_vst2
,
16791 Intrinsic::arm_neon_vst3
,
16792 Intrinsic::arm_neon_vst4
};
16794 for (unsigned StoreCount
= 0; StoreCount
< NumStores
; ++StoreCount
) {
16795 // If we generating more than one store, we compute the base address of
16796 // subsequent stores as an offset from the previous.
16797 if (StoreCount
> 0)
16798 BaseAddr
= Builder
.CreateConstGEP1_32(SubVecTy
->getVectorElementType(),
16799 BaseAddr
, LaneLen
* Factor
);
16801 SmallVector
<Value
*, 6> Ops
;
16802 Ops
.push_back(Builder
.CreateBitCast(BaseAddr
, Int8Ptr
));
16804 Function
*VstNFunc
=
16805 Intrinsic::getDeclaration(SI
->getModule(), StoreInts
[Factor
- 2], Tys
);
16807 // Split the shufflevector operands into sub vectors for the new vstN call.
16808 for (unsigned i
= 0; i
< Factor
; i
++) {
16809 unsigned IdxI
= StoreCount
* LaneLen
* Factor
+ i
;
16810 if (Mask
[IdxI
] >= 0) {
16811 Ops
.push_back(Builder
.CreateShuffleVector(
16812 Op0
, Op1
, createSequentialMask(Builder
, Mask
[IdxI
], LaneLen
, 0)));
16814 unsigned StartMask
= 0;
16815 for (unsigned j
= 1; j
< LaneLen
; j
++) {
16816 unsigned IdxJ
= StoreCount
* LaneLen
* Factor
+ j
;
16817 if (Mask
[IdxJ
* Factor
+ IdxI
] >= 0) {
16818 StartMask
= Mask
[IdxJ
* Factor
+ IdxI
] - IdxJ
;
16822 // Note: If all elements in a chunk are undefs, StartMask=0!
16823 // Note: Filling undef gaps with random elements is ok, since
16824 // those elements were being written anyway (with undefs).
16825 // In the case of all undefs we're defaulting to using elems from 0
16826 // Note: StartMask cannot be negative, it's checked in
16827 // isReInterleaveMask
16828 Ops
.push_back(Builder
.CreateShuffleVector(
16829 Op0
, Op1
, createSequentialMask(Builder
, StartMask
, LaneLen
, 0)));
16833 Ops
.push_back(Builder
.getInt32(SI
->getAlignment()));
16834 Builder
.CreateCall(VstNFunc
, Ops
);
16847 static bool isHomogeneousAggregate(Type
*Ty
, HABaseType
&Base
,
16848 uint64_t &Members
) {
16849 if (auto *ST
= dyn_cast
<StructType
>(Ty
)) {
16850 for (unsigned i
= 0; i
< ST
->getNumElements(); ++i
) {
16851 uint64_t SubMembers
= 0;
16852 if (!isHomogeneousAggregate(ST
->getElementType(i
), Base
, SubMembers
))
16854 Members
+= SubMembers
;
16856 } else if (auto *AT
= dyn_cast
<ArrayType
>(Ty
)) {
16857 uint64_t SubMembers
= 0;
16858 if (!isHomogeneousAggregate(AT
->getElementType(), Base
, SubMembers
))
16860 Members
+= SubMembers
* AT
->getNumElements();
16861 } else if (Ty
->isFloatTy()) {
16862 if (Base
!= HA_UNKNOWN
&& Base
!= HA_FLOAT
)
16866 } else if (Ty
->isDoubleTy()) {
16867 if (Base
!= HA_UNKNOWN
&& Base
!= HA_DOUBLE
)
16871 } else if (auto *VT
= dyn_cast
<VectorType
>(Ty
)) {
16878 return VT
->getBitWidth() == 64;
16880 return VT
->getBitWidth() == 128;
16882 switch (VT
->getBitWidth()) {
16895 return (Members
> 0 && Members
<= 4);
16898 /// Return the correct alignment for the current calling convention.
16900 ARMTargetLowering::getABIAlignmentForCallingConv(Type
*ArgTy
,
16901 DataLayout DL
) const {
16902 if (!ArgTy
->isVectorTy())
16903 return DL
.getABITypeAlignment(ArgTy
);
16905 // Avoid over-aligning vector parameters. It would require realigning the
16906 // stack and waste space for no real benefit.
16907 return std::min(DL
.getABITypeAlignment(ArgTy
),
16908 (unsigned)DL
.getStackAlignment().value());
16911 /// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
16912 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
16913 /// passing according to AAPCS rules.
16914 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
16915 Type
*Ty
, CallingConv::ID CallConv
, bool isVarArg
) const {
16916 if (getEffectiveCallingConv(CallConv
, isVarArg
) !=
16917 CallingConv::ARM_AAPCS_VFP
)
16920 HABaseType Base
= HA_UNKNOWN
;
16921 uint64_t Members
= 0;
16922 bool IsHA
= isHomogeneousAggregate(Ty
, Base
, Members
);
16923 LLVM_DEBUG(dbgs() << "isHA: " << IsHA
<< " "; Ty
->dump());
16925 bool IsIntArray
= Ty
->isArrayTy() && Ty
->getArrayElementType()->isIntegerTy();
16926 return IsHA
|| IsIntArray
;
16929 unsigned ARMTargetLowering::getExceptionPointerRegister(
16930 const Constant
*PersonalityFn
) const {
16931 // Platforms which do not use SjLj EH may return values in these registers
16932 // via the personality function.
16933 return Subtarget
->useSjLjEH() ? ARM::NoRegister
: ARM::R0
;
16936 unsigned ARMTargetLowering::getExceptionSelectorRegister(
16937 const Constant
*PersonalityFn
) const {
16938 // Platforms which do not use SjLj EH may return values in these registers
16939 // via the personality function.
16940 return Subtarget
->useSjLjEH() ? ARM::NoRegister
: ARM::R1
;
16943 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock
*Entry
) const {
16944 // Update IsSplitCSR in ARMFunctionInfo.
16945 ARMFunctionInfo
*AFI
= Entry
->getParent()->getInfo
<ARMFunctionInfo
>();
16946 AFI
->setIsSplitCSR(true);
16949 void ARMTargetLowering::insertCopiesSplitCSR(
16950 MachineBasicBlock
*Entry
,
16951 const SmallVectorImpl
<MachineBasicBlock
*> &Exits
) const {
16952 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
16953 const MCPhysReg
*IStart
= TRI
->getCalleeSavedRegsViaCopy(Entry
->getParent());
16957 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
16958 MachineRegisterInfo
*MRI
= &Entry
->getParent()->getRegInfo();
16959 MachineBasicBlock::iterator MBBI
= Entry
->begin();
16960 for (const MCPhysReg
*I
= IStart
; *I
; ++I
) {
16961 const TargetRegisterClass
*RC
= nullptr;
16962 if (ARM::GPRRegClass
.contains(*I
))
16963 RC
= &ARM::GPRRegClass
;
16964 else if (ARM::DPRRegClass
.contains(*I
))
16965 RC
= &ARM::DPRRegClass
;
16967 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
16969 Register NewVR
= MRI
->createVirtualRegister(RC
);
16970 // Create copy from CSR to a virtual register.
16971 // FIXME: this currently does not emit CFI pseudo-instructions, it works
16972 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
16973 // nounwind. If we want to generalize this later, we may need to emit
16974 // CFI pseudo-instructions.
16975 assert(Entry
->getParent()->getFunction().hasFnAttribute(
16976 Attribute::NoUnwind
) &&
16977 "Function should be nounwind in insertCopiesSplitCSR!");
16978 Entry
->addLiveIn(*I
);
16979 BuildMI(*Entry
, MBBI
, DebugLoc(), TII
->get(TargetOpcode::COPY
), NewVR
)
16982 // Insert the copy-back instructions right before the terminator.
16983 for (auto *Exit
: Exits
)
16984 BuildMI(*Exit
, Exit
->getFirstTerminator(), DebugLoc(),
16985 TII
->get(TargetOpcode::COPY
), *I
)
16990 void ARMTargetLowering::finalizeLowering(MachineFunction
&MF
) const {
16991 MF
.getFrameInfo().computeMaxCallFrameSize(MF
);
16992 TargetLoweringBase::finalizeLowering(MF
);