1 //===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file exposes the class definitions of all of the subclasses of the
10 // Instruction class. This is meant to be an easy way to get access to all
11 // instruction subclasses.
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_IR_INSTRUCTIONS_H
16 #define LLVM_IR_INSTRUCTIONS_H
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/ADT/iterator.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/CallingConv.h"
29 #include "llvm/IR/Constant.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/InstrTypes.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/OperandTraits.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/Use.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/AtomicOrdering.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/ErrorHandling.h"
54 //===----------------------------------------------------------------------===//
56 //===----------------------------------------------------------------------===//
58 /// an instruction to allocate memory on the stack
59 class AllocaInst
: public UnaryInstruction
{
63 // Note: Instruction needs to be a friend here to call cloneImpl.
64 friend class Instruction
;
66 AllocaInst
*cloneImpl() const;
69 explicit AllocaInst(Type
*Ty
, unsigned AddrSpace
,
70 Value
*ArraySize
= nullptr,
71 const Twine
&Name
= "",
72 Instruction
*InsertBefore
= nullptr);
73 AllocaInst(Type
*Ty
, unsigned AddrSpace
, Value
*ArraySize
,
74 const Twine
&Name
, BasicBlock
*InsertAtEnd
);
76 AllocaInst(Type
*Ty
, unsigned AddrSpace
,
77 const Twine
&Name
, Instruction
*InsertBefore
= nullptr);
78 AllocaInst(Type
*Ty
, unsigned AddrSpace
,
79 const Twine
&Name
, BasicBlock
*InsertAtEnd
);
81 AllocaInst(Type
*Ty
, unsigned AddrSpace
, Value
*ArraySize
, unsigned Align
,
82 const Twine
&Name
= "", Instruction
*InsertBefore
= nullptr);
83 AllocaInst(Type
*Ty
, unsigned AddrSpace
, Value
*ArraySize
, unsigned Align
,
84 const Twine
&Name
, BasicBlock
*InsertAtEnd
);
86 /// Return true if there is an allocation size parameter to the allocation
87 /// instruction that is not 1.
88 bool isArrayAllocation() const;
90 /// Get the number of elements allocated. For a simple allocation of a single
91 /// element, this will return a constant 1 value.
92 const Value
*getArraySize() const { return getOperand(0); }
93 Value
*getArraySize() { return getOperand(0); }
95 /// Overload to return most specific pointer type.
96 PointerType
*getType() const {
97 return cast
<PointerType
>(Instruction::getType());
100 /// Get allocation size in bits. Returns None if size can't be determined,
101 /// e.g. in case of a VLA.
102 Optional
<uint64_t> getAllocationSizeInBits(const DataLayout
&DL
) const;
104 /// Return the type that is being allocated by the instruction.
105 Type
*getAllocatedType() const { return AllocatedType
; }
106 /// for use only in special circumstances that need to generically
107 /// transform a whole instruction (eg: IR linking and vectorization).
108 void setAllocatedType(Type
*Ty
) { AllocatedType
= Ty
; }
110 /// Return the alignment of the memory that is being allocated by the
112 unsigned getAlignment() const {
113 return (1u << (getSubclassDataFromInstruction() & 31)) >> 1;
115 void setAlignment(unsigned Align
);
117 /// Return true if this alloca is in the entry block of the function and is a
118 /// constant size. If so, the code generator will fold it into the
119 /// prolog/epilog code, so it is basically free.
120 bool isStaticAlloca() const;
122 /// Return true if this alloca is used as an inalloca argument to a call. Such
123 /// allocas are never considered static even if they are in the entry block.
124 bool isUsedWithInAlloca() const {
125 return getSubclassDataFromInstruction() & 32;
128 /// Specify whether this alloca is used to represent the arguments to a call.
129 void setUsedWithInAlloca(bool V
) {
130 setInstructionSubclassData((getSubclassDataFromInstruction() & ~32) |
134 /// Return true if this alloca is used as a swifterror argument to a call.
135 bool isSwiftError() const {
136 return getSubclassDataFromInstruction() & 64;
139 /// Specify whether this alloca is used to represent a swifterror.
140 void setSwiftError(bool V
) {
141 setInstructionSubclassData((getSubclassDataFromInstruction() & ~64) |
145 // Methods for support type inquiry through isa, cast, and dyn_cast:
146 static bool classof(const Instruction
*I
) {
147 return (I
->getOpcode() == Instruction::Alloca
);
149 static bool classof(const Value
*V
) {
150 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
154 // Shadow Instruction::setInstructionSubclassData with a private forwarding
155 // method so that subclasses cannot accidentally use it.
156 void setInstructionSubclassData(unsigned short D
) {
157 Instruction::setInstructionSubclassData(D
);
161 //===----------------------------------------------------------------------===//
163 //===----------------------------------------------------------------------===//
165 /// An instruction for reading from memory. This uses the SubclassData field in
166 /// Value to store whether or not the load is volatile.
167 class LoadInst
: public UnaryInstruction
{
171 // Note: Instruction needs to be a friend here to call cloneImpl.
172 friend class Instruction
;
174 LoadInst
*cloneImpl() const;
177 LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&NameStr
= "",
178 Instruction
*InsertBefore
= nullptr);
179 LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&NameStr
, BasicBlock
*InsertAtEnd
);
180 LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
,
181 Instruction
*InsertBefore
= nullptr);
182 LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
,
183 BasicBlock
*InsertAtEnd
);
184 LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
,
185 unsigned Align
, Instruction
*InsertBefore
= nullptr);
186 LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
,
187 unsigned Align
, BasicBlock
*InsertAtEnd
);
188 LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
,
189 unsigned Align
, AtomicOrdering Order
,
190 SyncScope::ID SSID
= SyncScope::System
,
191 Instruction
*InsertBefore
= nullptr);
192 LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
,
193 unsigned Align
, AtomicOrdering Order
, SyncScope::ID SSID
,
194 BasicBlock
*InsertAtEnd
);
196 // Deprecated [opaque pointer types]
197 explicit LoadInst(Value
*Ptr
, const Twine
&NameStr
= "",
198 Instruction
*InsertBefore
= nullptr)
199 : LoadInst(Ptr
->getType()->getPointerElementType(), Ptr
, NameStr
,
201 LoadInst(Value
*Ptr
, const Twine
&NameStr
, BasicBlock
*InsertAtEnd
)
202 : LoadInst(Ptr
->getType()->getPointerElementType(), Ptr
, NameStr
,
204 LoadInst(Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
,
205 Instruction
*InsertBefore
= nullptr)
206 : LoadInst(Ptr
->getType()->getPointerElementType(), Ptr
, NameStr
,
207 isVolatile
, InsertBefore
) {}
208 LoadInst(Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
,
209 BasicBlock
*InsertAtEnd
)
210 : LoadInst(Ptr
->getType()->getPointerElementType(), Ptr
, NameStr
,
211 isVolatile
, InsertAtEnd
) {}
212 LoadInst(Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
, unsigned Align
,
213 Instruction
*InsertBefore
= nullptr)
214 : LoadInst(Ptr
->getType()->getPointerElementType(), Ptr
, NameStr
,
215 isVolatile
, Align
, InsertBefore
) {}
216 LoadInst(Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
, unsigned Align
,
217 BasicBlock
*InsertAtEnd
)
218 : LoadInst(Ptr
->getType()->getPointerElementType(), Ptr
, NameStr
,
219 isVolatile
, Align
, InsertAtEnd
) {}
220 LoadInst(Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
, unsigned Align
,
221 AtomicOrdering Order
, SyncScope::ID SSID
= SyncScope::System
,
222 Instruction
*InsertBefore
= nullptr)
223 : LoadInst(Ptr
->getType()->getPointerElementType(), Ptr
, NameStr
,
224 isVolatile
, Align
, Order
, SSID
, InsertBefore
) {}
225 LoadInst(Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
, unsigned Align
,
226 AtomicOrdering Order
, SyncScope::ID SSID
, BasicBlock
*InsertAtEnd
)
227 : LoadInst(Ptr
->getType()->getPointerElementType(), Ptr
, NameStr
,
228 isVolatile
, Align
, Order
, SSID
, InsertAtEnd
) {}
230 /// Return true if this is a load from a volatile memory location.
231 bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
233 /// Specify whether this is a volatile load or not.
234 void setVolatile(bool V
) {
235 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
239 /// Return the alignment of the access that is being performed.
240 unsigned getAlignment() const {
241 return (1 << ((getSubclassDataFromInstruction() >> 1) & 31)) >> 1;
244 void setAlignment(unsigned Align
);
246 /// Returns the ordering constraint of this load instruction.
247 AtomicOrdering
getOrdering() const {
248 return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7);
251 /// Sets the ordering constraint of this load instruction. May not be Release
252 /// or AcquireRelease.
253 void setOrdering(AtomicOrdering Ordering
) {
254 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) |
255 ((unsigned)Ordering
<< 7));
258 /// Returns the synchronization scope ID of this load instruction.
259 SyncScope::ID
getSyncScopeID() const {
263 /// Sets the synchronization scope ID of this load instruction.
264 void setSyncScopeID(SyncScope::ID SSID
) {
268 /// Sets the ordering constraint and the synchronization scope ID of this load
270 void setAtomic(AtomicOrdering Ordering
,
271 SyncScope::ID SSID
= SyncScope::System
) {
272 setOrdering(Ordering
);
273 setSyncScopeID(SSID
);
276 bool isSimple() const { return !isAtomic() && !isVolatile(); }
278 bool isUnordered() const {
279 return (getOrdering() == AtomicOrdering::NotAtomic
||
280 getOrdering() == AtomicOrdering::Unordered
) &&
284 Value
*getPointerOperand() { return getOperand(0); }
285 const Value
*getPointerOperand() const { return getOperand(0); }
286 static unsigned getPointerOperandIndex() { return 0U; }
287 Type
*getPointerOperandType() const { return getPointerOperand()->getType(); }
289 /// Returns the address space of the pointer operand.
290 unsigned getPointerAddressSpace() const {
291 return getPointerOperandType()->getPointerAddressSpace();
294 // Methods for support type inquiry through isa, cast, and dyn_cast:
295 static bool classof(const Instruction
*I
) {
296 return I
->getOpcode() == Instruction::Load
;
298 static bool classof(const Value
*V
) {
299 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
303 // Shadow Instruction::setInstructionSubclassData with a private forwarding
304 // method so that subclasses cannot accidentally use it.
305 void setInstructionSubclassData(unsigned short D
) {
306 Instruction::setInstructionSubclassData(D
);
309 /// The synchronization scope ID of this load instruction. Not quite enough
310 /// room in SubClassData for everything, so synchronization scope ID gets its
315 //===----------------------------------------------------------------------===//
317 //===----------------------------------------------------------------------===//
319 /// An instruction for storing to memory.
320 class StoreInst
: public Instruction
{
324 // Note: Instruction needs to be a friend here to call cloneImpl.
325 friend class Instruction
;
327 StoreInst
*cloneImpl() const;
330 StoreInst(Value
*Val
, Value
*Ptr
, Instruction
*InsertBefore
);
331 StoreInst(Value
*Val
, Value
*Ptr
, BasicBlock
*InsertAtEnd
);
332 StoreInst(Value
*Val
, Value
*Ptr
, bool isVolatile
= false,
333 Instruction
*InsertBefore
= nullptr);
334 StoreInst(Value
*Val
, Value
*Ptr
, bool isVolatile
, BasicBlock
*InsertAtEnd
);
335 StoreInst(Value
*Val
, Value
*Ptr
, bool isVolatile
,
336 unsigned Align
, Instruction
*InsertBefore
= nullptr);
337 StoreInst(Value
*Val
, Value
*Ptr
, bool isVolatile
,
338 unsigned Align
, BasicBlock
*InsertAtEnd
);
339 StoreInst(Value
*Val
, Value
*Ptr
, bool isVolatile
,
340 unsigned Align
, AtomicOrdering Order
,
341 SyncScope::ID SSID
= SyncScope::System
,
342 Instruction
*InsertBefore
= nullptr);
343 StoreInst(Value
*Val
, Value
*Ptr
, bool isVolatile
,
344 unsigned Align
, AtomicOrdering Order
, SyncScope::ID SSID
,
345 BasicBlock
*InsertAtEnd
);
347 // allocate space for exactly two operands
348 void *operator new(size_t s
) {
349 return User::operator new(s
, 2);
352 /// Return true if this is a store to a volatile memory location.
353 bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
355 /// Specify whether this is a volatile store or not.
356 void setVolatile(bool V
) {
357 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
361 /// Transparently provide more efficient getOperand methods.
362 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
364 /// Return the alignment of the access that is being performed
365 unsigned getAlignment() const {
366 return (1 << ((getSubclassDataFromInstruction() >> 1) & 31)) >> 1;
369 void setAlignment(unsigned Align
);
371 /// Returns the ordering constraint of this store instruction.
372 AtomicOrdering
getOrdering() const {
373 return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7);
376 /// Sets the ordering constraint of this store instruction. May not be
377 /// Acquire or AcquireRelease.
378 void setOrdering(AtomicOrdering Ordering
) {
379 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) |
380 ((unsigned)Ordering
<< 7));
383 /// Returns the synchronization scope ID of this store instruction.
384 SyncScope::ID
getSyncScopeID() const {
388 /// Sets the synchronization scope ID of this store instruction.
389 void setSyncScopeID(SyncScope::ID SSID
) {
393 /// Sets the ordering constraint and the synchronization scope ID of this
394 /// store instruction.
395 void setAtomic(AtomicOrdering Ordering
,
396 SyncScope::ID SSID
= SyncScope::System
) {
397 setOrdering(Ordering
);
398 setSyncScopeID(SSID
);
401 bool isSimple() const { return !isAtomic() && !isVolatile(); }
403 bool isUnordered() const {
404 return (getOrdering() == AtomicOrdering::NotAtomic
||
405 getOrdering() == AtomicOrdering::Unordered
) &&
409 Value
*getValueOperand() { return getOperand(0); }
410 const Value
*getValueOperand() const { return getOperand(0); }
412 Value
*getPointerOperand() { return getOperand(1); }
413 const Value
*getPointerOperand() const { return getOperand(1); }
414 static unsigned getPointerOperandIndex() { return 1U; }
415 Type
*getPointerOperandType() const { return getPointerOperand()->getType(); }
417 /// Returns the address space of the pointer operand.
418 unsigned getPointerAddressSpace() const {
419 return getPointerOperandType()->getPointerAddressSpace();
422 // Methods for support type inquiry through isa, cast, and dyn_cast:
423 static bool classof(const Instruction
*I
) {
424 return I
->getOpcode() == Instruction::Store
;
426 static bool classof(const Value
*V
) {
427 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
431 // Shadow Instruction::setInstructionSubclassData with a private forwarding
432 // method so that subclasses cannot accidentally use it.
433 void setInstructionSubclassData(unsigned short D
) {
434 Instruction::setInstructionSubclassData(D
);
437 /// The synchronization scope ID of this store instruction. Not quite enough
438 /// room in SubClassData for everything, so synchronization scope ID gets its
444 struct OperandTraits
<StoreInst
> : public FixedNumOperandTraits
<StoreInst
, 2> {
447 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst
, Value
)
449 //===----------------------------------------------------------------------===//
451 //===----------------------------------------------------------------------===//
453 /// An instruction for ordering other memory operations.
454 class FenceInst
: public Instruction
{
455 void Init(AtomicOrdering Ordering
, SyncScope::ID SSID
);
458 // Note: Instruction needs to be a friend here to call cloneImpl.
459 friend class Instruction
;
461 FenceInst
*cloneImpl() const;
464 // Ordering may only be Acquire, Release, AcquireRelease, or
465 // SequentiallyConsistent.
466 FenceInst(LLVMContext
&C
, AtomicOrdering Ordering
,
467 SyncScope::ID SSID
= SyncScope::System
,
468 Instruction
*InsertBefore
= nullptr);
469 FenceInst(LLVMContext
&C
, AtomicOrdering Ordering
, SyncScope::ID SSID
,
470 BasicBlock
*InsertAtEnd
);
472 // allocate space for exactly zero operands
473 void *operator new(size_t s
) {
474 return User::operator new(s
, 0);
477 /// Returns the ordering constraint of this fence instruction.
478 AtomicOrdering
getOrdering() const {
479 return AtomicOrdering(getSubclassDataFromInstruction() >> 1);
482 /// Sets the ordering constraint of this fence instruction. May only be
483 /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
484 void setOrdering(AtomicOrdering Ordering
) {
485 setInstructionSubclassData((getSubclassDataFromInstruction() & 1) |
486 ((unsigned)Ordering
<< 1));
489 /// Returns the synchronization scope ID of this fence instruction.
490 SyncScope::ID
getSyncScopeID() const {
494 /// Sets the synchronization scope ID of this fence instruction.
495 void setSyncScopeID(SyncScope::ID SSID
) {
499 // Methods for support type inquiry through isa, cast, and dyn_cast:
500 static bool classof(const Instruction
*I
) {
501 return I
->getOpcode() == Instruction::Fence
;
503 static bool classof(const Value
*V
) {
504 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
508 // Shadow Instruction::setInstructionSubclassData with a private forwarding
509 // method so that subclasses cannot accidentally use it.
510 void setInstructionSubclassData(unsigned short D
) {
511 Instruction::setInstructionSubclassData(D
);
514 /// The synchronization scope ID of this fence instruction. Not quite enough
515 /// room in SubClassData for everything, so synchronization scope ID gets its
520 //===----------------------------------------------------------------------===//
521 // AtomicCmpXchgInst Class
522 //===----------------------------------------------------------------------===//
524 /// An instruction that atomically checks whether a
525 /// specified value is in a memory location, and, if it is, stores a new value
526 /// there. The value returned by this instruction is a pair containing the
527 /// original value as first element, and an i1 indicating success (true) or
528 /// failure (false) as second element.
530 class AtomicCmpXchgInst
: public Instruction
{
531 void Init(Value
*Ptr
, Value
*Cmp
, Value
*NewVal
,
532 AtomicOrdering SuccessOrdering
, AtomicOrdering FailureOrdering
,
536 // Note: Instruction needs to be a friend here to call cloneImpl.
537 friend class Instruction
;
539 AtomicCmpXchgInst
*cloneImpl() const;
542 AtomicCmpXchgInst(Value
*Ptr
, Value
*Cmp
, Value
*NewVal
,
543 AtomicOrdering SuccessOrdering
,
544 AtomicOrdering FailureOrdering
,
545 SyncScope::ID SSID
, Instruction
*InsertBefore
= nullptr);
546 AtomicCmpXchgInst(Value
*Ptr
, Value
*Cmp
, Value
*NewVal
,
547 AtomicOrdering SuccessOrdering
,
548 AtomicOrdering FailureOrdering
,
549 SyncScope::ID SSID
, BasicBlock
*InsertAtEnd
);
551 // allocate space for exactly three operands
552 void *operator new(size_t s
) {
553 return User::operator new(s
, 3);
556 /// Return true if this is a cmpxchg from a volatile memory
559 bool isVolatile() const {
560 return getSubclassDataFromInstruction() & 1;
563 /// Specify whether this is a volatile cmpxchg.
565 void setVolatile(bool V
) {
566 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
570 /// Return true if this cmpxchg may spuriously fail.
571 bool isWeak() const {
572 return getSubclassDataFromInstruction() & 0x100;
575 void setWeak(bool IsWeak
) {
576 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x100) |
580 /// Transparently provide more efficient getOperand methods.
581 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
583 /// Returns the success ordering constraint of this cmpxchg instruction.
584 AtomicOrdering
getSuccessOrdering() const {
585 return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7);
588 /// Sets the success ordering constraint of this cmpxchg instruction.
589 void setSuccessOrdering(AtomicOrdering Ordering
) {
590 assert(Ordering
!= AtomicOrdering::NotAtomic
&&
591 "CmpXchg instructions can only be atomic.");
592 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x1c) |
593 ((unsigned)Ordering
<< 2));
596 /// Returns the failure ordering constraint of this cmpxchg instruction.
597 AtomicOrdering
getFailureOrdering() const {
598 return AtomicOrdering((getSubclassDataFromInstruction() >> 5) & 7);
601 /// Sets the failure ordering constraint of this cmpxchg instruction.
602 void setFailureOrdering(AtomicOrdering Ordering
) {
603 assert(Ordering
!= AtomicOrdering::NotAtomic
&&
604 "CmpXchg instructions can only be atomic.");
605 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0xe0) |
606 ((unsigned)Ordering
<< 5));
609 /// Returns the synchronization scope ID of this cmpxchg instruction.
610 SyncScope::ID
getSyncScopeID() const {
614 /// Sets the synchronization scope ID of this cmpxchg instruction.
615 void setSyncScopeID(SyncScope::ID SSID
) {
619 Value
*getPointerOperand() { return getOperand(0); }
620 const Value
*getPointerOperand() const { return getOperand(0); }
621 static unsigned getPointerOperandIndex() { return 0U; }
623 Value
*getCompareOperand() { return getOperand(1); }
624 const Value
*getCompareOperand() const { return getOperand(1); }
626 Value
*getNewValOperand() { return getOperand(2); }
627 const Value
*getNewValOperand() const { return getOperand(2); }
629 /// Returns the address space of the pointer operand.
630 unsigned getPointerAddressSpace() const {
631 return getPointerOperand()->getType()->getPointerAddressSpace();
634 /// Returns the strongest permitted ordering on failure, given the
635 /// desired ordering on success.
637 /// If the comparison in a cmpxchg operation fails, there is no atomic store
638 /// so release semantics cannot be provided. So this function drops explicit
639 /// Release requests from the AtomicOrdering. A SequentiallyConsistent
640 /// operation would remain SequentiallyConsistent.
641 static AtomicOrdering
642 getStrongestFailureOrdering(AtomicOrdering SuccessOrdering
) {
643 switch (SuccessOrdering
) {
645 llvm_unreachable("invalid cmpxchg success ordering");
646 case AtomicOrdering::Release
:
647 case AtomicOrdering::Monotonic
:
648 return AtomicOrdering::Monotonic
;
649 case AtomicOrdering::AcquireRelease
:
650 case AtomicOrdering::Acquire
:
651 return AtomicOrdering::Acquire
;
652 case AtomicOrdering::SequentiallyConsistent
:
653 return AtomicOrdering::SequentiallyConsistent
;
657 // Methods for support type inquiry through isa, cast, and dyn_cast:
658 static bool classof(const Instruction
*I
) {
659 return I
->getOpcode() == Instruction::AtomicCmpXchg
;
661 static bool classof(const Value
*V
) {
662 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
666 // Shadow Instruction::setInstructionSubclassData with a private forwarding
667 // method so that subclasses cannot accidentally use it.
668 void setInstructionSubclassData(unsigned short D
) {
669 Instruction::setInstructionSubclassData(D
);
672 /// The synchronization scope ID of this cmpxchg instruction. Not quite
673 /// enough room in SubClassData for everything, so synchronization scope ID
674 /// gets its own field.
679 struct OperandTraits
<AtomicCmpXchgInst
> :
680 public FixedNumOperandTraits
<AtomicCmpXchgInst
, 3> {
683 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst
, Value
)
685 //===----------------------------------------------------------------------===//
686 // AtomicRMWInst Class
687 //===----------------------------------------------------------------------===//
689 /// an instruction that atomically reads a memory location,
690 /// combines it with another value, and then stores the result back. Returns
693 class AtomicRMWInst
: public Instruction
{
695 // Note: Instruction needs to be a friend here to call cloneImpl.
696 friend class Instruction
;
698 AtomicRMWInst
*cloneImpl() const;
701 /// This enumeration lists the possible modifications atomicrmw can make. In
702 /// the descriptions, 'p' is the pointer to the instruction's memory location,
703 /// 'old' is the initial value of *p, and 'v' is the other value passed to the
704 /// instruction. These instructions always return 'old'.
720 /// *p = old >signed v ? old : v
722 /// *p = old <signed v ? old : v
724 /// *p = old >unsigned v ? old : v
726 /// *p = old <unsigned v ? old : v
740 AtomicRMWInst(BinOp Operation
, Value
*Ptr
, Value
*Val
,
741 AtomicOrdering Ordering
, SyncScope::ID SSID
,
742 Instruction
*InsertBefore
= nullptr);
743 AtomicRMWInst(BinOp Operation
, Value
*Ptr
, Value
*Val
,
744 AtomicOrdering Ordering
, SyncScope::ID SSID
,
745 BasicBlock
*InsertAtEnd
);
747 // allocate space for exactly two operands
748 void *operator new(size_t s
) {
749 return User::operator new(s
, 2);
752 BinOp
getOperation() const {
753 return static_cast<BinOp
>(getSubclassDataFromInstruction() >> 5);
756 static StringRef
getOperationName(BinOp Op
);
758 static bool isFPOperation(BinOp Op
) {
760 case AtomicRMWInst::FAdd
:
761 case AtomicRMWInst::FSub
:
768 void setOperation(BinOp Operation
) {
769 unsigned short SubclassData
= getSubclassDataFromInstruction();
770 setInstructionSubclassData((SubclassData
& 31) |
774 /// Return true if this is a RMW on a volatile memory location.
776 bool isVolatile() const {
777 return getSubclassDataFromInstruction() & 1;
780 /// Specify whether this is a volatile RMW or not.
782 void setVolatile(bool V
) {
783 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
787 /// Transparently provide more efficient getOperand methods.
788 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
790 /// Returns the ordering constraint of this rmw instruction.
791 AtomicOrdering
getOrdering() const {
792 return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7);
795 /// Sets the ordering constraint of this rmw instruction.
796 void setOrdering(AtomicOrdering Ordering
) {
797 assert(Ordering
!= AtomicOrdering::NotAtomic
&&
798 "atomicrmw instructions can only be atomic.");
799 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 2)) |
800 ((unsigned)Ordering
<< 2));
803 /// Returns the synchronization scope ID of this rmw instruction.
804 SyncScope::ID
getSyncScopeID() const {
808 /// Sets the synchronization scope ID of this rmw instruction.
809 void setSyncScopeID(SyncScope::ID SSID
) {
813 Value
*getPointerOperand() { return getOperand(0); }
814 const Value
*getPointerOperand() const { return getOperand(0); }
815 static unsigned getPointerOperandIndex() { return 0U; }
817 Value
*getValOperand() { return getOperand(1); }
818 const Value
*getValOperand() const { return getOperand(1); }
820 /// Returns the address space of the pointer operand.
821 unsigned getPointerAddressSpace() const {
822 return getPointerOperand()->getType()->getPointerAddressSpace();
825 bool isFloatingPointOperation() const {
826 return isFPOperation(getOperation());
829 // Methods for support type inquiry through isa, cast, and dyn_cast:
830 static bool classof(const Instruction
*I
) {
831 return I
->getOpcode() == Instruction::AtomicRMW
;
833 static bool classof(const Value
*V
) {
834 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
838 void Init(BinOp Operation
, Value
*Ptr
, Value
*Val
,
839 AtomicOrdering Ordering
, SyncScope::ID SSID
);
841 // Shadow Instruction::setInstructionSubclassData with a private forwarding
842 // method so that subclasses cannot accidentally use it.
843 void setInstructionSubclassData(unsigned short D
) {
844 Instruction::setInstructionSubclassData(D
);
847 /// The synchronization scope ID of this rmw instruction. Not quite enough
848 /// room in SubClassData for everything, so synchronization scope ID gets its
854 struct OperandTraits
<AtomicRMWInst
>
855 : public FixedNumOperandTraits
<AtomicRMWInst
,2> {
858 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst
, Value
)
860 //===----------------------------------------------------------------------===//
861 // GetElementPtrInst Class
862 //===----------------------------------------------------------------------===//
864 // checkGEPType - Simple wrapper function to give a better assertion failure
865 // message on bad indexes for a gep instruction.
867 inline Type
*checkGEPType(Type
*Ty
) {
868 assert(Ty
&& "Invalid GetElementPtrInst indices for type!");
872 /// an instruction for type-safe pointer arithmetic to
873 /// access elements of arrays and structs
875 class GetElementPtrInst
: public Instruction
{
876 Type
*SourceElementType
;
877 Type
*ResultElementType
;
879 GetElementPtrInst(const GetElementPtrInst
&GEPI
);
881 /// Constructors - Create a getelementptr instruction with a base pointer an
882 /// list of indices. The first ctor can optionally insert before an existing
883 /// instruction, the second appends the new instruction to the specified
885 inline GetElementPtrInst(Type
*PointeeType
, Value
*Ptr
,
886 ArrayRef
<Value
*> IdxList
, unsigned Values
,
887 const Twine
&NameStr
, Instruction
*InsertBefore
);
888 inline GetElementPtrInst(Type
*PointeeType
, Value
*Ptr
,
889 ArrayRef
<Value
*> IdxList
, unsigned Values
,
890 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
);
892 void init(Value
*Ptr
, ArrayRef
<Value
*> IdxList
, const Twine
&NameStr
);
895 // Note: Instruction needs to be a friend here to call cloneImpl.
896 friend class Instruction
;
898 GetElementPtrInst
*cloneImpl() const;
901 static GetElementPtrInst
*Create(Type
*PointeeType
, Value
*Ptr
,
902 ArrayRef
<Value
*> IdxList
,
903 const Twine
&NameStr
= "",
904 Instruction
*InsertBefore
= nullptr) {
905 unsigned Values
= 1 + unsigned(IdxList
.size());
908 cast
<PointerType
>(Ptr
->getType()->getScalarType())->getElementType();
912 cast
<PointerType
>(Ptr
->getType()->getScalarType())->getElementType());
913 return new (Values
) GetElementPtrInst(PointeeType
, Ptr
, IdxList
, Values
,
914 NameStr
, InsertBefore
);
917 static GetElementPtrInst
*Create(Type
*PointeeType
, Value
*Ptr
,
918 ArrayRef
<Value
*> IdxList
,
919 const Twine
&NameStr
,
920 BasicBlock
*InsertAtEnd
) {
921 unsigned Values
= 1 + unsigned(IdxList
.size());
924 cast
<PointerType
>(Ptr
->getType()->getScalarType())->getElementType();
928 cast
<PointerType
>(Ptr
->getType()->getScalarType())->getElementType());
929 return new (Values
) GetElementPtrInst(PointeeType
, Ptr
, IdxList
, Values
,
930 NameStr
, InsertAtEnd
);
933 /// Create an "inbounds" getelementptr. See the documentation for the
934 /// "inbounds" flag in LangRef.html for details.
935 static GetElementPtrInst
*CreateInBounds(Value
*Ptr
,
936 ArrayRef
<Value
*> IdxList
,
937 const Twine
&NameStr
= "",
938 Instruction
*InsertBefore
= nullptr){
939 return CreateInBounds(nullptr, Ptr
, IdxList
, NameStr
, InsertBefore
);
942 static GetElementPtrInst
*
943 CreateInBounds(Type
*PointeeType
, Value
*Ptr
, ArrayRef
<Value
*> IdxList
,
944 const Twine
&NameStr
= "",
945 Instruction
*InsertBefore
= nullptr) {
946 GetElementPtrInst
*GEP
=
947 Create(PointeeType
, Ptr
, IdxList
, NameStr
, InsertBefore
);
948 GEP
->setIsInBounds(true);
952 static GetElementPtrInst
*CreateInBounds(Value
*Ptr
,
953 ArrayRef
<Value
*> IdxList
,
954 const Twine
&NameStr
,
955 BasicBlock
*InsertAtEnd
) {
956 return CreateInBounds(nullptr, Ptr
, IdxList
, NameStr
, InsertAtEnd
);
959 static GetElementPtrInst
*CreateInBounds(Type
*PointeeType
, Value
*Ptr
,
960 ArrayRef
<Value
*> IdxList
,
961 const Twine
&NameStr
,
962 BasicBlock
*InsertAtEnd
) {
963 GetElementPtrInst
*GEP
=
964 Create(PointeeType
, Ptr
, IdxList
, NameStr
, InsertAtEnd
);
965 GEP
->setIsInBounds(true);
969 /// Transparently provide more efficient getOperand methods.
970 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
972 Type
*getSourceElementType() const { return SourceElementType
; }
974 void setSourceElementType(Type
*Ty
) { SourceElementType
= Ty
; }
975 void setResultElementType(Type
*Ty
) { ResultElementType
= Ty
; }
977 Type
*getResultElementType() const {
978 assert(ResultElementType
==
979 cast
<PointerType
>(getType()->getScalarType())->getElementType());
980 return ResultElementType
;
983 /// Returns the address space of this instruction's pointer type.
984 unsigned getAddressSpace() const {
985 // Note that this is always the same as the pointer operand's address space
986 // and that is cheaper to compute, so cheat here.
987 return getPointerAddressSpace();
990 /// Returns the type of the element that would be loaded with
991 /// a load instruction with the specified parameters.
993 /// Null is returned if the indices are invalid for the specified
996 static Type
*getIndexedType(Type
*Ty
, ArrayRef
<Value
*> IdxList
);
997 static Type
*getIndexedType(Type
*Ty
, ArrayRef
<Constant
*> IdxList
);
998 static Type
*getIndexedType(Type
*Ty
, ArrayRef
<uint64_t> IdxList
);
1000 inline op_iterator
idx_begin() { return op_begin()+1; }
1001 inline const_op_iterator
idx_begin() const { return op_begin()+1; }
1002 inline op_iterator
idx_end() { return op_end(); }
1003 inline const_op_iterator
idx_end() const { return op_end(); }
1005 inline iterator_range
<op_iterator
> indices() {
1006 return make_range(idx_begin(), idx_end());
1009 inline iterator_range
<const_op_iterator
> indices() const {
1010 return make_range(idx_begin(), idx_end());
1013 Value
*getPointerOperand() {
1014 return getOperand(0);
1016 const Value
*getPointerOperand() const {
1017 return getOperand(0);
1019 static unsigned getPointerOperandIndex() {
1020 return 0U; // get index for modifying correct operand.
1023 /// Method to return the pointer operand as a
1025 Type
*getPointerOperandType() const {
1026 return getPointerOperand()->getType();
1029 /// Returns the address space of the pointer operand.
1030 unsigned getPointerAddressSpace() const {
1031 return getPointerOperandType()->getPointerAddressSpace();
1034 /// Returns the pointer type returned by the GEP
1035 /// instruction, which may be a vector of pointers.
1036 static Type
*getGEPReturnType(Value
*Ptr
, ArrayRef
<Value
*> IdxList
) {
1037 return getGEPReturnType(
1038 cast
<PointerType
>(Ptr
->getType()->getScalarType())->getElementType(),
1041 static Type
*getGEPReturnType(Type
*ElTy
, Value
*Ptr
,
1042 ArrayRef
<Value
*> IdxList
) {
1043 Type
*PtrTy
= PointerType::get(checkGEPType(getIndexedType(ElTy
, IdxList
)),
1044 Ptr
->getType()->getPointerAddressSpace());
1046 if (Ptr
->getType()->isVectorTy()) {
1047 unsigned NumElem
= Ptr
->getType()->getVectorNumElements();
1048 return VectorType::get(PtrTy
, NumElem
);
1050 for (Value
*Index
: IdxList
)
1051 if (Index
->getType()->isVectorTy()) {
1052 unsigned NumElem
= Index
->getType()->getVectorNumElements();
1053 return VectorType::get(PtrTy
, NumElem
);
1059 unsigned getNumIndices() const { // Note: always non-negative
1060 return getNumOperands() - 1;
1063 bool hasIndices() const {
1064 return getNumOperands() > 1;
1067 /// Return true if all of the indices of this GEP are
1068 /// zeros. If so, the result pointer and the first operand have the same
1069 /// value, just potentially different types.
1070 bool hasAllZeroIndices() const;
1072 /// Return true if all of the indices of this GEP are
1073 /// constant integers. If so, the result pointer and the first operand have
1074 /// a constant offset between them.
1075 bool hasAllConstantIndices() const;
1077 /// Set or clear the inbounds flag on this GEP instruction.
1078 /// See LangRef.html for the meaning of inbounds on a getelementptr.
1079 void setIsInBounds(bool b
= true);
1081 /// Determine whether the GEP has the inbounds flag.
1082 bool isInBounds() const;
1084 /// Accumulate the constant address offset of this GEP if possible.
1086 /// This routine accepts an APInt into which it will accumulate the constant
1087 /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1088 /// all-constant, it returns false and the value of the offset APInt is
1089 /// undefined (it is *not* preserved!). The APInt passed into this routine
1090 /// must be at least as wide as the IntPtr type for the address space of
1091 /// the base GEP pointer.
1092 bool accumulateConstantOffset(const DataLayout
&DL
, APInt
&Offset
) const;
1094 // Methods for support type inquiry through isa, cast, and dyn_cast:
1095 static bool classof(const Instruction
*I
) {
1096 return (I
->getOpcode() == Instruction::GetElementPtr
);
1098 static bool classof(const Value
*V
) {
1099 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
1104 struct OperandTraits
<GetElementPtrInst
> :
1105 public VariadicOperandTraits
<GetElementPtrInst
, 1> {
1108 GetElementPtrInst::GetElementPtrInst(Type
*PointeeType
, Value
*Ptr
,
1109 ArrayRef
<Value
*> IdxList
, unsigned Values
,
1110 const Twine
&NameStr
,
1111 Instruction
*InsertBefore
)
1112 : Instruction(getGEPReturnType(PointeeType
, Ptr
, IdxList
), GetElementPtr
,
1113 OperandTraits
<GetElementPtrInst
>::op_end(this) - Values
,
1114 Values
, InsertBefore
),
1115 SourceElementType(PointeeType
),
1116 ResultElementType(getIndexedType(PointeeType
, IdxList
)) {
1117 assert(ResultElementType
==
1118 cast
<PointerType
>(getType()->getScalarType())->getElementType());
1119 init(Ptr
, IdxList
, NameStr
);
1122 GetElementPtrInst::GetElementPtrInst(Type
*PointeeType
, Value
*Ptr
,
1123 ArrayRef
<Value
*> IdxList
, unsigned Values
,
1124 const Twine
&NameStr
,
1125 BasicBlock
*InsertAtEnd
)
1126 : Instruction(getGEPReturnType(PointeeType
, Ptr
, IdxList
), GetElementPtr
,
1127 OperandTraits
<GetElementPtrInst
>::op_end(this) - Values
,
1128 Values
, InsertAtEnd
),
1129 SourceElementType(PointeeType
),
1130 ResultElementType(getIndexedType(PointeeType
, IdxList
)) {
1131 assert(ResultElementType
==
1132 cast
<PointerType
>(getType()->getScalarType())->getElementType());
1133 init(Ptr
, IdxList
, NameStr
);
1136 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst
, Value
)
1138 //===----------------------------------------------------------------------===//
1140 //===----------------------------------------------------------------------===//
1142 /// This instruction compares its operands according to the predicate given
1143 /// to the constructor. It only operates on integers or pointers. The operands
1144 /// must be identical types.
1145 /// Represent an integer comparison operator.
1146 class ICmpInst
: public CmpInst
{
1148 assert(isIntPredicate() &&
1149 "Invalid ICmp predicate value");
1150 assert(getOperand(0)->getType() == getOperand(1)->getType() &&
1151 "Both operands to ICmp instruction are not of the same type!");
1152 // Check that the operands are the right type
1153 assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||
1154 getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
1155 "Invalid operand types for ICmp instruction");
1159 // Note: Instruction needs to be a friend here to call cloneImpl.
1160 friend class Instruction
;
1162 /// Clone an identical ICmpInst
1163 ICmpInst
*cloneImpl() const;
1166 /// Constructor with insert-before-instruction semantics.
1168 Instruction
*InsertBefore
, ///< Where to insert
1169 Predicate pred
, ///< The predicate to use for the comparison
1170 Value
*LHS
, ///< The left-hand-side of the expression
1171 Value
*RHS
, ///< The right-hand-side of the expression
1172 const Twine
&NameStr
= "" ///< Name of the instruction
1173 ) : CmpInst(makeCmpResultType(LHS
->getType()),
1174 Instruction::ICmp
, pred
, LHS
, RHS
, NameStr
,
1181 /// Constructor with insert-at-end semantics.
1183 BasicBlock
&InsertAtEnd
, ///< Block to insert into.
1184 Predicate pred
, ///< The predicate to use for the comparison
1185 Value
*LHS
, ///< The left-hand-side of the expression
1186 Value
*RHS
, ///< The right-hand-side of the expression
1187 const Twine
&NameStr
= "" ///< Name of the instruction
1188 ) : CmpInst(makeCmpResultType(LHS
->getType()),
1189 Instruction::ICmp
, pred
, LHS
, RHS
, NameStr
,
1196 /// Constructor with no-insertion semantics
1198 Predicate pred
, ///< The predicate to use for the comparison
1199 Value
*LHS
, ///< The left-hand-side of the expression
1200 Value
*RHS
, ///< The right-hand-side of the expression
1201 const Twine
&NameStr
= "" ///< Name of the instruction
1202 ) : CmpInst(makeCmpResultType(LHS
->getType()),
1203 Instruction::ICmp
, pred
, LHS
, RHS
, NameStr
) {
1209 /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1210 /// @returns the predicate that would be the result if the operand were
1211 /// regarded as signed.
1212 /// Return the signed version of the predicate
1213 Predicate
getSignedPredicate() const {
1214 return getSignedPredicate(getPredicate());
1217 /// This is a static version that you can use without an instruction.
1218 /// Return the signed version of the predicate.
1219 static Predicate
getSignedPredicate(Predicate pred
);
1221 /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1222 /// @returns the predicate that would be the result if the operand were
1223 /// regarded as unsigned.
1224 /// Return the unsigned version of the predicate
1225 Predicate
getUnsignedPredicate() const {
1226 return getUnsignedPredicate(getPredicate());
1229 /// This is a static version that you can use without an instruction.
1230 /// Return the unsigned version of the predicate.
1231 static Predicate
getUnsignedPredicate(Predicate pred
);
1233 /// Return true if this predicate is either EQ or NE. This also
1234 /// tests for commutativity.
1235 static bool isEquality(Predicate P
) {
1236 return P
== ICMP_EQ
|| P
== ICMP_NE
;
1239 /// Return true if this predicate is either EQ or NE. This also
1240 /// tests for commutativity.
1241 bool isEquality() const {
1242 return isEquality(getPredicate());
1245 /// @returns true if the predicate of this ICmpInst is commutative
1246 /// Determine if this relation is commutative.
1247 bool isCommutative() const { return isEquality(); }
1249 /// Return true if the predicate is relational (not EQ or NE).
1251 bool isRelational() const {
1252 return !isEquality();
1255 /// Return true if the predicate is relational (not EQ or NE).
1257 static bool isRelational(Predicate P
) {
1258 return !isEquality(P
);
1261 /// Exchange the two operands to this instruction in such a way that it does
1262 /// not modify the semantics of the instruction. The predicate value may be
1263 /// changed to retain the same result if the predicate is order dependent
1265 /// Swap operands and adjust predicate.
1266 void swapOperands() {
1267 setPredicate(getSwappedPredicate());
1268 Op
<0>().swap(Op
<1>());
1271 // Methods for support type inquiry through isa, cast, and dyn_cast:
1272 static bool classof(const Instruction
*I
) {
1273 return I
->getOpcode() == Instruction::ICmp
;
1275 static bool classof(const Value
*V
) {
1276 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
1280 //===----------------------------------------------------------------------===//
1282 //===----------------------------------------------------------------------===//
1284 /// This instruction compares its operands according to the predicate given
1285 /// to the constructor. It only operates on floating point values or packed
1286 /// vectors of floating point values. The operands must be identical types.
1287 /// Represents a floating point comparison operator.
1288 class FCmpInst
: public CmpInst
{
1290 assert(isFPPredicate() && "Invalid FCmp predicate value");
1291 assert(getOperand(0)->getType() == getOperand(1)->getType() &&
1292 "Both operands to FCmp instruction are not of the same type!");
1293 // Check that the operands are the right type
1294 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
1295 "Invalid operand types for FCmp instruction");
1299 // Note: Instruction needs to be a friend here to call cloneImpl.
1300 friend class Instruction
;
1302 /// Clone an identical FCmpInst
1303 FCmpInst
*cloneImpl() const;
1306 /// Constructor with insert-before-instruction semantics.
1308 Instruction
*InsertBefore
, ///< Where to insert
1309 Predicate pred
, ///< The predicate to use for the comparison
1310 Value
*LHS
, ///< The left-hand-side of the expression
1311 Value
*RHS
, ///< The right-hand-side of the expression
1312 const Twine
&NameStr
= "" ///< Name of the instruction
1313 ) : CmpInst(makeCmpResultType(LHS
->getType()),
1314 Instruction::FCmp
, pred
, LHS
, RHS
, NameStr
,
1319 /// Constructor with insert-at-end semantics.
1321 BasicBlock
&InsertAtEnd
, ///< Block to insert into.
1322 Predicate pred
, ///< The predicate to use for the comparison
1323 Value
*LHS
, ///< The left-hand-side of the expression
1324 Value
*RHS
, ///< The right-hand-side of the expression
1325 const Twine
&NameStr
= "" ///< Name of the instruction
1326 ) : CmpInst(makeCmpResultType(LHS
->getType()),
1327 Instruction::FCmp
, pred
, LHS
, RHS
, NameStr
,
1332 /// Constructor with no-insertion semantics
1334 Predicate Pred
, ///< The predicate to use for the comparison
1335 Value
*LHS
, ///< The left-hand-side of the expression
1336 Value
*RHS
, ///< The right-hand-side of the expression
1337 const Twine
&NameStr
= "", ///< Name of the instruction
1338 Instruction
*FlagsSource
= nullptr
1339 ) : CmpInst(makeCmpResultType(LHS
->getType()), Instruction::FCmp
, Pred
, LHS
,
1340 RHS
, NameStr
, nullptr, FlagsSource
) {
1344 /// @returns true if the predicate of this instruction is EQ or NE.
1345 /// Determine if this is an equality predicate.
1346 static bool isEquality(Predicate Pred
) {
1347 return Pred
== FCMP_OEQ
|| Pred
== FCMP_ONE
|| Pred
== FCMP_UEQ
||
1351 /// @returns true if the predicate of this instruction is EQ or NE.
1352 /// Determine if this is an equality predicate.
1353 bool isEquality() const { return isEquality(getPredicate()); }
1355 /// @returns true if the predicate of this instruction is commutative.
1356 /// Determine if this is a commutative predicate.
1357 bool isCommutative() const {
1358 return isEquality() ||
1359 getPredicate() == FCMP_FALSE
||
1360 getPredicate() == FCMP_TRUE
||
1361 getPredicate() == FCMP_ORD
||
1362 getPredicate() == FCMP_UNO
;
1365 /// @returns true if the predicate is relational (not EQ or NE).
1366 /// Determine if this a relational predicate.
1367 bool isRelational() const { return !isEquality(); }
1369 /// Exchange the two operands to this instruction in such a way that it does
1370 /// not modify the semantics of the instruction. The predicate value may be
1371 /// changed to retain the same result if the predicate is order dependent
1373 /// Swap operands and adjust predicate.
1374 void swapOperands() {
1375 setPredicate(getSwappedPredicate());
1376 Op
<0>().swap(Op
<1>());
1379 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1380 static bool classof(const Instruction
*I
) {
1381 return I
->getOpcode() == Instruction::FCmp
;
1383 static bool classof(const Value
*V
) {
1384 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
1388 //===----------------------------------------------------------------------===//
1389 /// This class represents a function call, abstracting a target
1390 /// machine's calling convention. This class uses low bit of the SubClassData
1391 /// field to indicate whether or not this is a tail call. The rest of the bits
1392 /// hold the calling convention of the call.
1394 class CallInst
: public CallBase
{
1395 CallInst(const CallInst
&CI
);
1397 /// Construct a CallInst given a range of arguments.
1398 /// Construct a CallInst from a range of arguments
1399 inline CallInst(FunctionType
*Ty
, Value
*Func
, ArrayRef
<Value
*> Args
,
1400 ArrayRef
<OperandBundleDef
> Bundles
, const Twine
&NameStr
,
1401 Instruction
*InsertBefore
);
1403 inline CallInst(FunctionType
*Ty
, Value
*Func
, ArrayRef
<Value
*> Args
,
1404 const Twine
&NameStr
, Instruction
*InsertBefore
)
1405 : CallInst(Ty
, Func
, Args
, None
, NameStr
, InsertBefore
) {}
1407 /// Construct a CallInst given a range of arguments.
1408 /// Construct a CallInst from a range of arguments
1409 inline CallInst(FunctionType
*Ty
, Value
*Func
, ArrayRef
<Value
*> Args
,
1410 ArrayRef
<OperandBundleDef
> Bundles
, const Twine
&NameStr
,
1411 BasicBlock
*InsertAtEnd
);
1413 explicit CallInst(FunctionType
*Ty
, Value
*F
, const Twine
&NameStr
,
1414 Instruction
*InsertBefore
);
1416 CallInst(FunctionType
*ty
, Value
*F
, const Twine
&NameStr
,
1417 BasicBlock
*InsertAtEnd
);
1419 void init(FunctionType
*FTy
, Value
*Func
, ArrayRef
<Value
*> Args
,
1420 ArrayRef
<OperandBundleDef
> Bundles
, const Twine
&NameStr
);
1421 void init(FunctionType
*FTy
, Value
*Func
, const Twine
&NameStr
);
1423 /// Compute the number of operands to allocate.
1424 static int ComputeNumOperands(int NumArgs
, int NumBundleInputs
= 0) {
1425 // We need one operand for the called function, plus the input operand
1427 return 1 + NumArgs
+ NumBundleInputs
;
1431 // Note: Instruction needs to be a friend here to call cloneImpl.
1432 friend class Instruction
;
1434 CallInst
*cloneImpl() const;
1437 static CallInst
*Create(FunctionType
*Ty
, Value
*F
, const Twine
&NameStr
= "",
1438 Instruction
*InsertBefore
= nullptr) {
1439 return new (ComputeNumOperands(0)) CallInst(Ty
, F
, NameStr
, InsertBefore
);
1442 static CallInst
*Create(FunctionType
*Ty
, Value
*Func
, ArrayRef
<Value
*> Args
,
1443 const Twine
&NameStr
,
1444 Instruction
*InsertBefore
= nullptr) {
1445 return new (ComputeNumOperands(Args
.size()))
1446 CallInst(Ty
, Func
, Args
, None
, NameStr
, InsertBefore
);
1449 static CallInst
*Create(FunctionType
*Ty
, Value
*Func
, ArrayRef
<Value
*> Args
,
1450 ArrayRef
<OperandBundleDef
> Bundles
= None
,
1451 const Twine
&NameStr
= "",
1452 Instruction
*InsertBefore
= nullptr) {
1453 const int NumOperands
=
1454 ComputeNumOperands(Args
.size(), CountBundleInputs(Bundles
));
1455 const unsigned DescriptorBytes
= Bundles
.size() * sizeof(BundleOpInfo
);
1457 return new (NumOperands
, DescriptorBytes
)
1458 CallInst(Ty
, Func
, Args
, Bundles
, NameStr
, InsertBefore
);
1461 static CallInst
*Create(FunctionType
*Ty
, Value
*F
, const Twine
&NameStr
,
1462 BasicBlock
*InsertAtEnd
) {
1463 return new (ComputeNumOperands(0)) CallInst(Ty
, F
, NameStr
, InsertAtEnd
);
1466 static CallInst
*Create(FunctionType
*Ty
, Value
*Func
, ArrayRef
<Value
*> Args
,
1467 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
1468 return new (ComputeNumOperands(Args
.size()))
1469 CallInst(Ty
, Func
, Args
, None
, NameStr
, InsertAtEnd
);
1472 static CallInst
*Create(FunctionType
*Ty
, Value
*Func
, ArrayRef
<Value
*> Args
,
1473 ArrayRef
<OperandBundleDef
> Bundles
,
1474 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
1475 const int NumOperands
=
1476 ComputeNumOperands(Args
.size(), CountBundleInputs(Bundles
));
1477 const unsigned DescriptorBytes
= Bundles
.size() * sizeof(BundleOpInfo
);
1479 return new (NumOperands
, DescriptorBytes
)
1480 CallInst(Ty
, Func
, Args
, Bundles
, NameStr
, InsertAtEnd
);
1483 static CallInst
*Create(FunctionCallee Func
, const Twine
&NameStr
= "",
1484 Instruction
*InsertBefore
= nullptr) {
1485 return Create(Func
.getFunctionType(), Func
.getCallee(), NameStr
,
1489 static CallInst
*Create(FunctionCallee Func
, ArrayRef
<Value
*> Args
,
1490 ArrayRef
<OperandBundleDef
> Bundles
= None
,
1491 const Twine
&NameStr
= "",
1492 Instruction
*InsertBefore
= nullptr) {
1493 return Create(Func
.getFunctionType(), Func
.getCallee(), Args
, Bundles
,
1494 NameStr
, InsertBefore
);
1497 static CallInst
*Create(FunctionCallee Func
, ArrayRef
<Value
*> Args
,
1498 const Twine
&NameStr
,
1499 Instruction
*InsertBefore
= nullptr) {
1500 return Create(Func
.getFunctionType(), Func
.getCallee(), Args
, NameStr
,
1504 static CallInst
*Create(FunctionCallee Func
, const Twine
&NameStr
,
1505 BasicBlock
*InsertAtEnd
) {
1506 return Create(Func
.getFunctionType(), Func
.getCallee(), NameStr
,
1510 static CallInst
*Create(FunctionCallee Func
, ArrayRef
<Value
*> Args
,
1511 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
1512 return Create(Func
.getFunctionType(), Func
.getCallee(), Args
, NameStr
,
1516 static CallInst
*Create(FunctionCallee Func
, ArrayRef
<Value
*> Args
,
1517 ArrayRef
<OperandBundleDef
> Bundles
,
1518 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
1519 return Create(Func
.getFunctionType(), Func
.getCallee(), Args
, Bundles
,
1520 NameStr
, InsertAtEnd
);
1523 // Deprecated [opaque pointer types]
1524 static CallInst
*Create(Value
*Func
, const Twine
&NameStr
= "",
1525 Instruction
*InsertBefore
= nullptr) {
1526 return Create(cast
<FunctionType
>(
1527 cast
<PointerType
>(Func
->getType())->getElementType()),
1528 Func
, NameStr
, InsertBefore
);
1531 // Deprecated [opaque pointer types]
1532 static CallInst
*Create(Value
*Func
, ArrayRef
<Value
*> Args
,
1533 const Twine
&NameStr
,
1534 Instruction
*InsertBefore
= nullptr) {
1535 return Create(cast
<FunctionType
>(
1536 cast
<PointerType
>(Func
->getType())->getElementType()),
1537 Func
, Args
, NameStr
, InsertBefore
);
1540 // Deprecated [opaque pointer types]
1541 static CallInst
*Create(Value
*Func
, ArrayRef
<Value
*> Args
,
1542 ArrayRef
<OperandBundleDef
> Bundles
= None
,
1543 const Twine
&NameStr
= "",
1544 Instruction
*InsertBefore
= nullptr) {
1545 return Create(cast
<FunctionType
>(
1546 cast
<PointerType
>(Func
->getType())->getElementType()),
1547 Func
, Args
, Bundles
, NameStr
, InsertBefore
);
1550 // Deprecated [opaque pointer types]
1551 static CallInst
*Create(Value
*Func
, const Twine
&NameStr
,
1552 BasicBlock
*InsertAtEnd
) {
1553 return Create(cast
<FunctionType
>(
1554 cast
<PointerType
>(Func
->getType())->getElementType()),
1555 Func
, NameStr
, InsertAtEnd
);
1558 // Deprecated [opaque pointer types]
1559 static CallInst
*Create(Value
*Func
, ArrayRef
<Value
*> Args
,
1560 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
1561 return Create(cast
<FunctionType
>(
1562 cast
<PointerType
>(Func
->getType())->getElementType()),
1563 Func
, Args
, NameStr
, InsertAtEnd
);
1566 // Deprecated [opaque pointer types]
1567 static CallInst
*Create(Value
*Func
, ArrayRef
<Value
*> Args
,
1568 ArrayRef
<OperandBundleDef
> Bundles
,
1569 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
1570 return Create(cast
<FunctionType
>(
1571 cast
<PointerType
>(Func
->getType())->getElementType()),
1572 Func
, Args
, Bundles
, NameStr
, InsertAtEnd
);
1575 /// Create a clone of \p CI with a different set of operand bundles and
1576 /// insert it before \p InsertPt.
1578 /// The returned call instruction is identical \p CI in every way except that
1579 /// the operand bundles for the new instruction are set to the operand bundles
1581 static CallInst
*Create(CallInst
*CI
, ArrayRef
<OperandBundleDef
> Bundles
,
1582 Instruction
*InsertPt
= nullptr);
1584 /// Generate the IR for a call to malloc:
1585 /// 1. Compute the malloc call's argument as the specified type's size,
1586 /// possibly multiplied by the array size if the array size is not
1588 /// 2. Call malloc with that argument.
1589 /// 3. Bitcast the result of the malloc call to the specified type.
1590 static Instruction
*CreateMalloc(Instruction
*InsertBefore
, Type
*IntPtrTy
,
1591 Type
*AllocTy
, Value
*AllocSize
,
1592 Value
*ArraySize
= nullptr,
1593 Function
*MallocF
= nullptr,
1594 const Twine
&Name
= "");
1595 static Instruction
*CreateMalloc(BasicBlock
*InsertAtEnd
, Type
*IntPtrTy
,
1596 Type
*AllocTy
, Value
*AllocSize
,
1597 Value
*ArraySize
= nullptr,
1598 Function
*MallocF
= nullptr,
1599 const Twine
&Name
= "");
1600 static Instruction
*CreateMalloc(Instruction
*InsertBefore
, Type
*IntPtrTy
,
1601 Type
*AllocTy
, Value
*AllocSize
,
1602 Value
*ArraySize
= nullptr,
1603 ArrayRef
<OperandBundleDef
> Bundles
= None
,
1604 Function
*MallocF
= nullptr,
1605 const Twine
&Name
= "");
1606 static Instruction
*CreateMalloc(BasicBlock
*InsertAtEnd
, Type
*IntPtrTy
,
1607 Type
*AllocTy
, Value
*AllocSize
,
1608 Value
*ArraySize
= nullptr,
1609 ArrayRef
<OperandBundleDef
> Bundles
= None
,
1610 Function
*MallocF
= nullptr,
1611 const Twine
&Name
= "");
1612 /// Generate the IR for a call to the builtin free function.
1613 static Instruction
*CreateFree(Value
*Source
, Instruction
*InsertBefore
);
1614 static Instruction
*CreateFree(Value
*Source
, BasicBlock
*InsertAtEnd
);
1615 static Instruction
*CreateFree(Value
*Source
,
1616 ArrayRef
<OperandBundleDef
> Bundles
,
1617 Instruction
*InsertBefore
);
1618 static Instruction
*CreateFree(Value
*Source
,
1619 ArrayRef
<OperandBundleDef
> Bundles
,
1620 BasicBlock
*InsertAtEnd
);
1622 // Note that 'musttail' implies 'tail'.
1629 TailCallKind
getTailCallKind() const {
1630 return TailCallKind(getSubclassDataFromInstruction() & 3);
1633 bool isTailCall() const {
1634 unsigned Kind
= getSubclassDataFromInstruction() & 3;
1635 return Kind
== TCK_Tail
|| Kind
== TCK_MustTail
;
1638 bool isMustTailCall() const {
1639 return (getSubclassDataFromInstruction() & 3) == TCK_MustTail
;
1642 bool isNoTailCall() const {
1643 return (getSubclassDataFromInstruction() & 3) == TCK_NoTail
;
1646 void setTailCall(bool isTC
= true) {
1647 setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) |
1648 unsigned(isTC
? TCK_Tail
: TCK_None
));
1651 void setTailCallKind(TailCallKind TCK
) {
1652 setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) |
1656 /// Return true if the call can return twice
1657 bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice
); }
1658 void setCanReturnTwice() {
1659 addAttribute(AttributeList::FunctionIndex
, Attribute::ReturnsTwice
);
1662 // Methods for support type inquiry through isa, cast, and dyn_cast:
1663 static bool classof(const Instruction
*I
) {
1664 return I
->getOpcode() == Instruction::Call
;
1666 static bool classof(const Value
*V
) {
1667 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
1670 /// Updates profile metadata by scaling it by \p S / \p T.
1671 void updateProfWeight(uint64_t S
, uint64_t T
);
1674 // Shadow Instruction::setInstructionSubclassData with a private forwarding
1675 // method so that subclasses cannot accidentally use it.
1676 void setInstructionSubclassData(unsigned short D
) {
1677 Instruction::setInstructionSubclassData(D
);
1681 CallInst::CallInst(FunctionType
*Ty
, Value
*Func
, ArrayRef
<Value
*> Args
,
1682 ArrayRef
<OperandBundleDef
> Bundles
, const Twine
&NameStr
,
1683 BasicBlock
*InsertAtEnd
)
1684 : CallBase(Ty
->getReturnType(), Instruction::Call
,
1685 OperandTraits
<CallBase
>::op_end(this) -
1686 (Args
.size() + CountBundleInputs(Bundles
) + 1),
1687 unsigned(Args
.size() + CountBundleInputs(Bundles
) + 1),
1689 init(Ty
, Func
, Args
, Bundles
, NameStr
);
1692 CallInst::CallInst(FunctionType
*Ty
, Value
*Func
, ArrayRef
<Value
*> Args
,
1693 ArrayRef
<OperandBundleDef
> Bundles
, const Twine
&NameStr
,
1694 Instruction
*InsertBefore
)
1695 : CallBase(Ty
->getReturnType(), Instruction::Call
,
1696 OperandTraits
<CallBase
>::op_end(this) -
1697 (Args
.size() + CountBundleInputs(Bundles
) + 1),
1698 unsigned(Args
.size() + CountBundleInputs(Bundles
) + 1),
1700 init(Ty
, Func
, Args
, Bundles
, NameStr
);
1703 //===----------------------------------------------------------------------===//
1705 //===----------------------------------------------------------------------===//
1707 /// This class represents the LLVM 'select' instruction.
1709 class SelectInst
: public Instruction
{
1710 SelectInst(Value
*C
, Value
*S1
, Value
*S2
, const Twine
&NameStr
,
1711 Instruction
*InsertBefore
)
1712 : Instruction(S1
->getType(), Instruction::Select
,
1713 &Op
<0>(), 3, InsertBefore
) {
1718 SelectInst(Value
*C
, Value
*S1
, Value
*S2
, const Twine
&NameStr
,
1719 BasicBlock
*InsertAtEnd
)
1720 : Instruction(S1
->getType(), Instruction::Select
,
1721 &Op
<0>(), 3, InsertAtEnd
) {
1726 void init(Value
*C
, Value
*S1
, Value
*S2
) {
1727 assert(!areInvalidOperands(C
, S1
, S2
) && "Invalid operands for select");
1734 // Note: Instruction needs to be a friend here to call cloneImpl.
1735 friend class Instruction
;
1737 SelectInst
*cloneImpl() const;
1740 static SelectInst
*Create(Value
*C
, Value
*S1
, Value
*S2
,
1741 const Twine
&NameStr
= "",
1742 Instruction
*InsertBefore
= nullptr,
1743 Instruction
*MDFrom
= nullptr) {
1744 SelectInst
*Sel
= new(3) SelectInst(C
, S1
, S2
, NameStr
, InsertBefore
);
1746 Sel
->copyMetadata(*MDFrom
);
1750 static SelectInst
*Create(Value
*C
, Value
*S1
, Value
*S2
,
1751 const Twine
&NameStr
,
1752 BasicBlock
*InsertAtEnd
) {
1753 return new(3) SelectInst(C
, S1
, S2
, NameStr
, InsertAtEnd
);
1756 const Value
*getCondition() const { return Op
<0>(); }
1757 const Value
*getTrueValue() const { return Op
<1>(); }
1758 const Value
*getFalseValue() const { return Op
<2>(); }
1759 Value
*getCondition() { return Op
<0>(); }
1760 Value
*getTrueValue() { return Op
<1>(); }
1761 Value
*getFalseValue() { return Op
<2>(); }
1763 void setCondition(Value
*V
) { Op
<0>() = V
; }
1764 void setTrueValue(Value
*V
) { Op
<1>() = V
; }
1765 void setFalseValue(Value
*V
) { Op
<2>() = V
; }
1767 /// Swap the true and false values of the select instruction.
1768 /// This doesn't swap prof metadata.
1769 void swapValues() { Op
<1>().swap(Op
<2>()); }
1771 /// Return a string if the specified operands are invalid
1772 /// for a select operation, otherwise return null.
1773 static const char *areInvalidOperands(Value
*Cond
, Value
*True
, Value
*False
);
1775 /// Transparently provide more efficient getOperand methods.
1776 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
1778 OtherOps
getOpcode() const {
1779 return static_cast<OtherOps
>(Instruction::getOpcode());
1782 // Methods for support type inquiry through isa, cast, and dyn_cast:
1783 static bool classof(const Instruction
*I
) {
1784 return I
->getOpcode() == Instruction::Select
;
1786 static bool classof(const Value
*V
) {
1787 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
1792 struct OperandTraits
<SelectInst
> : public FixedNumOperandTraits
<SelectInst
, 3> {
1795 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst
, Value
)
1797 //===----------------------------------------------------------------------===//
1799 //===----------------------------------------------------------------------===//
1801 /// This class represents the va_arg llvm instruction, which returns
1802 /// an argument of the specified type given a va_list and increments that list
1804 class VAArgInst
: public UnaryInstruction
{
1806 // Note: Instruction needs to be a friend here to call cloneImpl.
1807 friend class Instruction
;
1809 VAArgInst
*cloneImpl() const;
1812 VAArgInst(Value
*List
, Type
*Ty
, const Twine
&NameStr
= "",
1813 Instruction
*InsertBefore
= nullptr)
1814 : UnaryInstruction(Ty
, VAArg
, List
, InsertBefore
) {
1818 VAArgInst(Value
*List
, Type
*Ty
, const Twine
&NameStr
,
1819 BasicBlock
*InsertAtEnd
)
1820 : UnaryInstruction(Ty
, VAArg
, List
, InsertAtEnd
) {
1824 Value
*getPointerOperand() { return getOperand(0); }
1825 const Value
*getPointerOperand() const { return getOperand(0); }
1826 static unsigned getPointerOperandIndex() { return 0U; }
1828 // Methods for support type inquiry through isa, cast, and dyn_cast:
1829 static bool classof(const Instruction
*I
) {
1830 return I
->getOpcode() == VAArg
;
1832 static bool classof(const Value
*V
) {
1833 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
1837 //===----------------------------------------------------------------------===//
1838 // ExtractElementInst Class
1839 //===----------------------------------------------------------------------===//
1841 /// This instruction extracts a single (scalar)
1842 /// element from a VectorType value
1844 class ExtractElementInst
: public Instruction
{
1845 ExtractElementInst(Value
*Vec
, Value
*Idx
, const Twine
&NameStr
= "",
1846 Instruction
*InsertBefore
= nullptr);
1847 ExtractElementInst(Value
*Vec
, Value
*Idx
, const Twine
&NameStr
,
1848 BasicBlock
*InsertAtEnd
);
1851 // Note: Instruction needs to be a friend here to call cloneImpl.
1852 friend class Instruction
;
1854 ExtractElementInst
*cloneImpl() const;
1857 static ExtractElementInst
*Create(Value
*Vec
, Value
*Idx
,
1858 const Twine
&NameStr
= "",
1859 Instruction
*InsertBefore
= nullptr) {
1860 return new(2) ExtractElementInst(Vec
, Idx
, NameStr
, InsertBefore
);
1863 static ExtractElementInst
*Create(Value
*Vec
, Value
*Idx
,
1864 const Twine
&NameStr
,
1865 BasicBlock
*InsertAtEnd
) {
1866 return new(2) ExtractElementInst(Vec
, Idx
, NameStr
, InsertAtEnd
);
1869 /// Return true if an extractelement instruction can be
1870 /// formed with the specified operands.
1871 static bool isValidOperands(const Value
*Vec
, const Value
*Idx
);
1873 Value
*getVectorOperand() { return Op
<0>(); }
1874 Value
*getIndexOperand() { return Op
<1>(); }
1875 const Value
*getVectorOperand() const { return Op
<0>(); }
1876 const Value
*getIndexOperand() const { return Op
<1>(); }
1878 VectorType
*getVectorOperandType() const {
1879 return cast
<VectorType
>(getVectorOperand()->getType());
1882 /// Transparently provide more efficient getOperand methods.
1883 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
1885 // Methods for support type inquiry through isa, cast, and dyn_cast:
1886 static bool classof(const Instruction
*I
) {
1887 return I
->getOpcode() == Instruction::ExtractElement
;
1889 static bool classof(const Value
*V
) {
1890 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
1895 struct OperandTraits
<ExtractElementInst
> :
1896 public FixedNumOperandTraits
<ExtractElementInst
, 2> {
1899 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst
, Value
)
1901 //===----------------------------------------------------------------------===//
1902 // InsertElementInst Class
1903 //===----------------------------------------------------------------------===//
1905 /// This instruction inserts a single (scalar)
1906 /// element into a VectorType value
1908 class InsertElementInst
: public Instruction
{
1909 InsertElementInst(Value
*Vec
, Value
*NewElt
, Value
*Idx
,
1910 const Twine
&NameStr
= "",
1911 Instruction
*InsertBefore
= nullptr);
1912 InsertElementInst(Value
*Vec
, Value
*NewElt
, Value
*Idx
, const Twine
&NameStr
,
1913 BasicBlock
*InsertAtEnd
);
1916 // Note: Instruction needs to be a friend here to call cloneImpl.
1917 friend class Instruction
;
1919 InsertElementInst
*cloneImpl() const;
1922 static InsertElementInst
*Create(Value
*Vec
, Value
*NewElt
, Value
*Idx
,
1923 const Twine
&NameStr
= "",
1924 Instruction
*InsertBefore
= nullptr) {
1925 return new(3) InsertElementInst(Vec
, NewElt
, Idx
, NameStr
, InsertBefore
);
1928 static InsertElementInst
*Create(Value
*Vec
, Value
*NewElt
, Value
*Idx
,
1929 const Twine
&NameStr
,
1930 BasicBlock
*InsertAtEnd
) {
1931 return new(3) InsertElementInst(Vec
, NewElt
, Idx
, NameStr
, InsertAtEnd
);
1934 /// Return true if an insertelement instruction can be
1935 /// formed with the specified operands.
1936 static bool isValidOperands(const Value
*Vec
, const Value
*NewElt
,
1939 /// Overload to return most specific vector type.
1941 VectorType
*getType() const {
1942 return cast
<VectorType
>(Instruction::getType());
1945 /// Transparently provide more efficient getOperand methods.
1946 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
1948 // Methods for support type inquiry through isa, cast, and dyn_cast:
1949 static bool classof(const Instruction
*I
) {
1950 return I
->getOpcode() == Instruction::InsertElement
;
1952 static bool classof(const Value
*V
) {
1953 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
1958 struct OperandTraits
<InsertElementInst
> :
1959 public FixedNumOperandTraits
<InsertElementInst
, 3> {
1962 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst
, Value
)
1964 //===----------------------------------------------------------------------===//
1965 // ShuffleVectorInst Class
1966 //===----------------------------------------------------------------------===//
1968 /// This instruction constructs a fixed permutation of two
1971 class ShuffleVectorInst
: public Instruction
{
1973 // Note: Instruction needs to be a friend here to call cloneImpl.
1974 friend class Instruction
;
1976 ShuffleVectorInst
*cloneImpl() const;
1979 ShuffleVectorInst(Value
*V1
, Value
*V2
, Value
*Mask
,
1980 const Twine
&NameStr
= "",
1981 Instruction
*InsertBefor
= nullptr);
1982 ShuffleVectorInst(Value
*V1
, Value
*V2
, Value
*Mask
,
1983 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
);
1985 // allocate space for exactly three operands
1986 void *operator new(size_t s
) {
1987 return User::operator new(s
, 3);
1990 /// Swap the first 2 operands and adjust the mask to preserve the semantics
1991 /// of the instruction.
1994 /// Return true if a shufflevector instruction can be
1995 /// formed with the specified operands.
1996 static bool isValidOperands(const Value
*V1
, const Value
*V2
,
1999 /// Overload to return most specific vector type.
2001 VectorType
*getType() const {
2002 return cast
<VectorType
>(Instruction::getType());
2005 /// Transparently provide more efficient getOperand methods.
2006 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
2008 Constant
*getMask() const {
2009 return cast
<Constant
>(getOperand(2));
2012 /// Return the shuffle mask value for the specified element of the mask.
2013 /// Return -1 if the element is undef.
2014 static int getMaskValue(const Constant
*Mask
, unsigned Elt
);
2016 /// Return the shuffle mask value of this instruction for the given element
2017 /// index. Return -1 if the element is undef.
2018 int getMaskValue(unsigned Elt
) const {
2019 return getMaskValue(getMask(), Elt
);
2022 /// Convert the input shuffle mask operand to a vector of integers. Undefined
2023 /// elements of the mask are returned as -1.
2024 static void getShuffleMask(const Constant
*Mask
,
2025 SmallVectorImpl
<int> &Result
);
2027 /// Return the mask for this instruction as a vector of integers. Undefined
2028 /// elements of the mask are returned as -1.
2029 void getShuffleMask(SmallVectorImpl
<int> &Result
) const {
2030 return getShuffleMask(getMask(), Result
);
2033 SmallVector
<int, 16> getShuffleMask() const {
2034 SmallVector
<int, 16> Mask
;
2035 getShuffleMask(Mask
);
2039 /// Return true if this shuffle returns a vector with a different number of
2040 /// elements than its source vectors.
2041 /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
2042 /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
2043 bool changesLength() const {
2044 unsigned NumSourceElts
= Op
<0>()->getType()->getVectorNumElements();
2045 unsigned NumMaskElts
= getMask()->getType()->getVectorNumElements();
2046 return NumSourceElts
!= NumMaskElts
;
2049 /// Return true if this shuffle returns a vector with a greater number of
2050 /// elements than its source vectors.
2051 /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
2052 bool increasesLength() const {
2053 unsigned NumSourceElts
= Op
<0>()->getType()->getVectorNumElements();
2054 unsigned NumMaskElts
= getMask()->getType()->getVectorNumElements();
2055 return NumSourceElts
< NumMaskElts
;
2058 /// Return true if this shuffle mask chooses elements from exactly one source
2060 /// Example: <7,5,undef,7>
2061 /// This assumes that vector operands are the same length as the mask.
2062 static bool isSingleSourceMask(ArrayRef
<int> Mask
);
2063 static bool isSingleSourceMask(const Constant
*Mask
) {
2064 assert(Mask
->getType()->isVectorTy() && "Shuffle needs vector constant.");
2065 SmallVector
<int, 16> MaskAsInts
;
2066 getShuffleMask(Mask
, MaskAsInts
);
2067 return isSingleSourceMask(MaskAsInts
);
2070 /// Return true if this shuffle chooses elements from exactly one source
2071 /// vector without changing the length of that vector.
2072 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
2073 /// TODO: Optionally allow length-changing shuffles.
2074 bool isSingleSource() const {
2075 return !changesLength() && isSingleSourceMask(getMask());
2078 /// Return true if this shuffle mask chooses elements from exactly one source
2079 /// vector without lane crossings. A shuffle using this mask is not
2080 /// necessarily a no-op because it may change the number of elements from its
2081 /// input vectors or it may provide demanded bits knowledge via undef lanes.
2082 /// Example: <undef,undef,2,3>
2083 static bool isIdentityMask(ArrayRef
<int> Mask
);
2084 static bool isIdentityMask(const Constant
*Mask
) {
2085 assert(Mask
->getType()->isVectorTy() && "Shuffle needs vector constant.");
2086 SmallVector
<int, 16> MaskAsInts
;
2087 getShuffleMask(Mask
, MaskAsInts
);
2088 return isIdentityMask(MaskAsInts
);
2091 /// Return true if this shuffle chooses elements from exactly one source
2092 /// vector without lane crossings and does not change the number of elements
2093 /// from its input vectors.
2094 /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
2095 bool isIdentity() const {
2096 return !changesLength() && isIdentityMask(getShuffleMask());
2099 /// Return true if this shuffle lengthens exactly one source vector with
2100 /// undefs in the high elements.
2101 bool isIdentityWithPadding() const;
2103 /// Return true if this shuffle extracts the first N elements of exactly one
2105 bool isIdentityWithExtract() const;
2107 /// Return true if this shuffle concatenates its 2 source vectors. This
2108 /// returns false if either input is undefined. In that case, the shuffle is
2109 /// is better classified as an identity with padding operation.
2110 bool isConcat() const;
2112 /// Return true if this shuffle mask chooses elements from its source vectors
2113 /// without lane crossings. A shuffle using this mask would be
2114 /// equivalent to a vector select with a constant condition operand.
2115 /// Example: <4,1,6,undef>
2116 /// This returns false if the mask does not choose from both input vectors.
2117 /// In that case, the shuffle is better classified as an identity shuffle.
2118 /// This assumes that vector operands are the same length as the mask
2119 /// (a length-changing shuffle can never be equivalent to a vector select).
2120 static bool isSelectMask(ArrayRef
<int> Mask
);
2121 static bool isSelectMask(const Constant
*Mask
) {
2122 assert(Mask
->getType()->isVectorTy() && "Shuffle needs vector constant.");
2123 SmallVector
<int, 16> MaskAsInts
;
2124 getShuffleMask(Mask
, MaskAsInts
);
2125 return isSelectMask(MaskAsInts
);
2128 /// Return true if this shuffle chooses elements from its source vectors
2129 /// without lane crossings and all operands have the same number of elements.
2130 /// In other words, this shuffle is equivalent to a vector select with a
2131 /// constant condition operand.
2132 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
2133 /// This returns false if the mask does not choose from both input vectors.
2134 /// In that case, the shuffle is better classified as an identity shuffle.
2135 /// TODO: Optionally allow length-changing shuffles.
2136 bool isSelect() const {
2137 return !changesLength() && isSelectMask(getMask());
2140 /// Return true if this shuffle mask swaps the order of elements from exactly
2141 /// one source vector.
2142 /// Example: <7,6,undef,4>
2143 /// This assumes that vector operands are the same length as the mask.
2144 static bool isReverseMask(ArrayRef
<int> Mask
);
2145 static bool isReverseMask(const Constant
*Mask
) {
2146 assert(Mask
->getType()->isVectorTy() && "Shuffle needs vector constant.");
2147 SmallVector
<int, 16> MaskAsInts
;
2148 getShuffleMask(Mask
, MaskAsInts
);
2149 return isReverseMask(MaskAsInts
);
2152 /// Return true if this shuffle swaps the order of elements from exactly
2153 /// one source vector.
2154 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
2155 /// TODO: Optionally allow length-changing shuffles.
2156 bool isReverse() const {
2157 return !changesLength() && isReverseMask(getMask());
2160 /// Return true if this shuffle mask chooses all elements with the same value
2161 /// as the first element of exactly one source vector.
2162 /// Example: <4,undef,undef,4>
2163 /// This assumes that vector operands are the same length as the mask.
2164 static bool isZeroEltSplatMask(ArrayRef
<int> Mask
);
2165 static bool isZeroEltSplatMask(const Constant
*Mask
) {
2166 assert(Mask
->getType()->isVectorTy() && "Shuffle needs vector constant.");
2167 SmallVector
<int, 16> MaskAsInts
;
2168 getShuffleMask(Mask
, MaskAsInts
);
2169 return isZeroEltSplatMask(MaskAsInts
);
2172 /// Return true if all elements of this shuffle are the same value as the
2173 /// first element of exactly one source vector without changing the length
2175 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
2176 /// TODO: Optionally allow length-changing shuffles.
2177 /// TODO: Optionally allow splats from other elements.
2178 bool isZeroEltSplat() const {
2179 return !changesLength() && isZeroEltSplatMask(getMask());
2182 /// Return true if this shuffle mask is a transpose mask.
2183 /// Transpose vector masks transpose a 2xn matrix. They read corresponding
2184 /// even- or odd-numbered vector elements from two n-dimensional source
2185 /// vectors and write each result into consecutive elements of an
2186 /// n-dimensional destination vector. Two shuffles are necessary to complete
2187 /// the transpose, one for the even elements and another for the odd elements.
2188 /// This description closely follows how the TRN1 and TRN2 AArch64
2189 /// instructions operate.
2191 /// For example, a simple 2x2 matrix can be transposed with:
2193 /// ; Original matrix
2197 /// ; Transposed matrix
2198 /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
2199 /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
2201 /// For matrices having greater than n columns, the resulting nx2 transposed
2202 /// matrix is stored in two result vectors such that one vector contains
2203 /// interleaved elements from all the even-numbered rows and the other vector
2204 /// contains interleaved elements from all the odd-numbered rows. For example,
2205 /// a 2x4 matrix can be transposed with:
2207 /// ; Original matrix
2208 /// m0 = < a, b, c, d >
2209 /// m1 = < e, f, g, h >
2211 /// ; Transposed matrix
2212 /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
2213 /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
2214 static bool isTransposeMask(ArrayRef
<int> Mask
);
2215 static bool isTransposeMask(const Constant
*Mask
) {
2216 assert(Mask
->getType()->isVectorTy() && "Shuffle needs vector constant.");
2217 SmallVector
<int, 16> MaskAsInts
;
2218 getShuffleMask(Mask
, MaskAsInts
);
2219 return isTransposeMask(MaskAsInts
);
2222 /// Return true if this shuffle transposes the elements of its inputs without
2223 /// changing the length of the vectors. This operation may also be known as a
2224 /// merge or interleave. See the description for isTransposeMask() for the
2225 /// exact specification.
2226 /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
2227 bool isTranspose() const {
2228 return !changesLength() && isTransposeMask(getMask());
2231 /// Return true if this shuffle mask is an extract subvector mask.
2232 /// A valid extract subvector mask returns a smaller vector from a single
2233 /// source operand. The base extraction index is returned as well.
2234 static bool isExtractSubvectorMask(ArrayRef
<int> Mask
, int NumSrcElts
,
2236 static bool isExtractSubvectorMask(const Constant
*Mask
, int NumSrcElts
,
2238 assert(Mask
->getType()->isVectorTy() && "Shuffle needs vector constant.");
2239 SmallVector
<int, 16> MaskAsInts
;
2240 getShuffleMask(Mask
, MaskAsInts
);
2241 return isExtractSubvectorMask(MaskAsInts
, NumSrcElts
, Index
);
2244 /// Return true if this shuffle mask is an extract subvector mask.
2245 bool isExtractSubvectorMask(int &Index
) const {
2246 int NumSrcElts
= Op
<0>()->getType()->getVectorNumElements();
2247 return isExtractSubvectorMask(getMask(), NumSrcElts
, Index
);
2250 /// Change values in a shuffle permute mask assuming the two vector operands
2251 /// of length InVecNumElts have swapped position.
2252 static void commuteShuffleMask(MutableArrayRef
<int> Mask
,
2253 unsigned InVecNumElts
) {
2254 for (int &Idx
: Mask
) {
2257 Idx
= Idx
< (int)InVecNumElts
? Idx
+ InVecNumElts
: Idx
- InVecNumElts
;
2258 assert(Idx
>= 0 && Idx
< (int)InVecNumElts
* 2 &&
2259 "shufflevector mask index out of range");
2263 // Methods for support type inquiry through isa, cast, and dyn_cast:
2264 static bool classof(const Instruction
*I
) {
2265 return I
->getOpcode() == Instruction::ShuffleVector
;
2267 static bool classof(const Value
*V
) {
2268 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
2273 struct OperandTraits
<ShuffleVectorInst
> :
2274 public FixedNumOperandTraits
<ShuffleVectorInst
, 3> {
2277 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst
, Value
)
2279 //===----------------------------------------------------------------------===//
2280 // ExtractValueInst Class
2281 //===----------------------------------------------------------------------===//
2283 /// This instruction extracts a struct member or array
2284 /// element value from an aggregate value.
2286 class ExtractValueInst
: public UnaryInstruction
{
2287 SmallVector
<unsigned, 4> Indices
;
2289 ExtractValueInst(const ExtractValueInst
&EVI
);
2291 /// Constructors - Create a extractvalue instruction with a base aggregate
2292 /// value and a list of indices. The first ctor can optionally insert before
2293 /// an existing instruction, the second appends the new instruction to the
2294 /// specified BasicBlock.
2295 inline ExtractValueInst(Value
*Agg
,
2296 ArrayRef
<unsigned> Idxs
,
2297 const Twine
&NameStr
,
2298 Instruction
*InsertBefore
);
2299 inline ExtractValueInst(Value
*Agg
,
2300 ArrayRef
<unsigned> Idxs
,
2301 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
);
2303 void init(ArrayRef
<unsigned> Idxs
, const Twine
&NameStr
);
2306 // Note: Instruction needs to be a friend here to call cloneImpl.
2307 friend class Instruction
;
2309 ExtractValueInst
*cloneImpl() const;
2312 static ExtractValueInst
*Create(Value
*Agg
,
2313 ArrayRef
<unsigned> Idxs
,
2314 const Twine
&NameStr
= "",
2315 Instruction
*InsertBefore
= nullptr) {
2317 ExtractValueInst(Agg
, Idxs
, NameStr
, InsertBefore
);
2320 static ExtractValueInst
*Create(Value
*Agg
,
2321 ArrayRef
<unsigned> Idxs
,
2322 const Twine
&NameStr
,
2323 BasicBlock
*InsertAtEnd
) {
2324 return new ExtractValueInst(Agg
, Idxs
, NameStr
, InsertAtEnd
);
2327 /// Returns the type of the element that would be extracted
2328 /// with an extractvalue instruction with the specified parameters.
2330 /// Null is returned if the indices are invalid for the specified type.
2331 static Type
*getIndexedType(Type
*Agg
, ArrayRef
<unsigned> Idxs
);
2333 using idx_iterator
= const unsigned*;
2335 inline idx_iterator
idx_begin() const { return Indices
.begin(); }
2336 inline idx_iterator
idx_end() const { return Indices
.end(); }
2337 inline iterator_range
<idx_iterator
> indices() const {
2338 return make_range(idx_begin(), idx_end());
2341 Value
*getAggregateOperand() {
2342 return getOperand(0);
2344 const Value
*getAggregateOperand() const {
2345 return getOperand(0);
2347 static unsigned getAggregateOperandIndex() {
2348 return 0U; // get index for modifying correct operand
2351 ArrayRef
<unsigned> getIndices() const {
2355 unsigned getNumIndices() const {
2356 return (unsigned)Indices
.size();
2359 bool hasIndices() const {
2363 // Methods for support type inquiry through isa, cast, and dyn_cast:
2364 static bool classof(const Instruction
*I
) {
2365 return I
->getOpcode() == Instruction::ExtractValue
;
2367 static bool classof(const Value
*V
) {
2368 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
2372 ExtractValueInst::ExtractValueInst(Value
*Agg
,
2373 ArrayRef
<unsigned> Idxs
,
2374 const Twine
&NameStr
,
2375 Instruction
*InsertBefore
)
2376 : UnaryInstruction(checkGEPType(getIndexedType(Agg
->getType(), Idxs
)),
2377 ExtractValue
, Agg
, InsertBefore
) {
2378 init(Idxs
, NameStr
);
2381 ExtractValueInst::ExtractValueInst(Value
*Agg
,
2382 ArrayRef
<unsigned> Idxs
,
2383 const Twine
&NameStr
,
2384 BasicBlock
*InsertAtEnd
)
2385 : UnaryInstruction(checkGEPType(getIndexedType(Agg
->getType(), Idxs
)),
2386 ExtractValue
, Agg
, InsertAtEnd
) {
2387 init(Idxs
, NameStr
);
2390 //===----------------------------------------------------------------------===//
2391 // InsertValueInst Class
2392 //===----------------------------------------------------------------------===//
2394 /// This instruction inserts a struct field of array element
2395 /// value into an aggregate value.
2397 class InsertValueInst
: public Instruction
{
2398 SmallVector
<unsigned, 4> Indices
;
2400 InsertValueInst(const InsertValueInst
&IVI
);
2402 /// Constructors - Create a insertvalue instruction with a base aggregate
2403 /// value, a value to insert, and a list of indices. The first ctor can
2404 /// optionally insert before an existing instruction, the second appends
2405 /// the new instruction to the specified BasicBlock.
2406 inline InsertValueInst(Value
*Agg
, Value
*Val
,
2407 ArrayRef
<unsigned> Idxs
,
2408 const Twine
&NameStr
,
2409 Instruction
*InsertBefore
);
2410 inline InsertValueInst(Value
*Agg
, Value
*Val
,
2411 ArrayRef
<unsigned> Idxs
,
2412 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
);
2414 /// Constructors - These two constructors are convenience methods because one
2415 /// and two index insertvalue instructions are so common.
2416 InsertValueInst(Value
*Agg
, Value
*Val
, unsigned Idx
,
2417 const Twine
&NameStr
= "",
2418 Instruction
*InsertBefore
= nullptr);
2419 InsertValueInst(Value
*Agg
, Value
*Val
, unsigned Idx
, const Twine
&NameStr
,
2420 BasicBlock
*InsertAtEnd
);
2422 void init(Value
*Agg
, Value
*Val
, ArrayRef
<unsigned> Idxs
,
2423 const Twine
&NameStr
);
2426 // Note: Instruction needs to be a friend here to call cloneImpl.
2427 friend class Instruction
;
2429 InsertValueInst
*cloneImpl() const;
2432 // allocate space for exactly two operands
2433 void *operator new(size_t s
) {
2434 return User::operator new(s
, 2);
2437 static InsertValueInst
*Create(Value
*Agg
, Value
*Val
,
2438 ArrayRef
<unsigned> Idxs
,
2439 const Twine
&NameStr
= "",
2440 Instruction
*InsertBefore
= nullptr) {
2441 return new InsertValueInst(Agg
, Val
, Idxs
, NameStr
, InsertBefore
);
2444 static InsertValueInst
*Create(Value
*Agg
, Value
*Val
,
2445 ArrayRef
<unsigned> Idxs
,
2446 const Twine
&NameStr
,
2447 BasicBlock
*InsertAtEnd
) {
2448 return new InsertValueInst(Agg
, Val
, Idxs
, NameStr
, InsertAtEnd
);
2451 /// Transparently provide more efficient getOperand methods.
2452 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
2454 using idx_iterator
= const unsigned*;
2456 inline idx_iterator
idx_begin() const { return Indices
.begin(); }
2457 inline idx_iterator
idx_end() const { return Indices
.end(); }
2458 inline iterator_range
<idx_iterator
> indices() const {
2459 return make_range(idx_begin(), idx_end());
2462 Value
*getAggregateOperand() {
2463 return getOperand(0);
2465 const Value
*getAggregateOperand() const {
2466 return getOperand(0);
2468 static unsigned getAggregateOperandIndex() {
2469 return 0U; // get index for modifying correct operand
2472 Value
*getInsertedValueOperand() {
2473 return getOperand(1);
2475 const Value
*getInsertedValueOperand() const {
2476 return getOperand(1);
2478 static unsigned getInsertedValueOperandIndex() {
2479 return 1U; // get index for modifying correct operand
2482 ArrayRef
<unsigned> getIndices() const {
2486 unsigned getNumIndices() const {
2487 return (unsigned)Indices
.size();
2490 bool hasIndices() const {
2494 // Methods for support type inquiry through isa, cast, and dyn_cast:
2495 static bool classof(const Instruction
*I
) {
2496 return I
->getOpcode() == Instruction::InsertValue
;
2498 static bool classof(const Value
*V
) {
2499 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
2504 struct OperandTraits
<InsertValueInst
> :
2505 public FixedNumOperandTraits
<InsertValueInst
, 2> {
2508 InsertValueInst::InsertValueInst(Value
*Agg
,
2510 ArrayRef
<unsigned> Idxs
,
2511 const Twine
&NameStr
,
2512 Instruction
*InsertBefore
)
2513 : Instruction(Agg
->getType(), InsertValue
,
2514 OperandTraits
<InsertValueInst
>::op_begin(this),
2516 init(Agg
, Val
, Idxs
, NameStr
);
2519 InsertValueInst::InsertValueInst(Value
*Agg
,
2521 ArrayRef
<unsigned> Idxs
,
2522 const Twine
&NameStr
,
2523 BasicBlock
*InsertAtEnd
)
2524 : Instruction(Agg
->getType(), InsertValue
,
2525 OperandTraits
<InsertValueInst
>::op_begin(this),
2527 init(Agg
, Val
, Idxs
, NameStr
);
2530 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst
, Value
)
2532 //===----------------------------------------------------------------------===//
2534 //===----------------------------------------------------------------------===//
2536 // PHINode - The PHINode class is used to represent the magical mystical PHI
2537 // node, that can not exist in nature, but can be synthesized in a computer
2538 // scientist's overactive imagination.
2540 class PHINode
: public Instruction
{
2541 /// The number of operands actually allocated. NumOperands is
2542 /// the number actually in use.
2543 unsigned ReservedSpace
;
2545 PHINode(const PHINode
&PN
);
2547 explicit PHINode(Type
*Ty
, unsigned NumReservedValues
,
2548 const Twine
&NameStr
= "",
2549 Instruction
*InsertBefore
= nullptr)
2550 : Instruction(Ty
, Instruction::PHI
, nullptr, 0, InsertBefore
),
2551 ReservedSpace(NumReservedValues
) {
2553 allocHungoffUses(ReservedSpace
);
2556 PHINode(Type
*Ty
, unsigned NumReservedValues
, const Twine
&NameStr
,
2557 BasicBlock
*InsertAtEnd
)
2558 : Instruction(Ty
, Instruction::PHI
, nullptr, 0, InsertAtEnd
),
2559 ReservedSpace(NumReservedValues
) {
2561 allocHungoffUses(ReservedSpace
);
2565 // Note: Instruction needs to be a friend here to call cloneImpl.
2566 friend class Instruction
;
2568 PHINode
*cloneImpl() const;
2570 // allocHungoffUses - this is more complicated than the generic
2571 // User::allocHungoffUses, because we have to allocate Uses for the incoming
2572 // values and pointers to the incoming blocks, all in one allocation.
2573 void allocHungoffUses(unsigned N
) {
2574 User::allocHungoffUses(N
, /* IsPhi */ true);
2578 /// Constructors - NumReservedValues is a hint for the number of incoming
2579 /// edges that this phi node will have (use 0 if you really have no idea).
2580 static PHINode
*Create(Type
*Ty
, unsigned NumReservedValues
,
2581 const Twine
&NameStr
= "",
2582 Instruction
*InsertBefore
= nullptr) {
2583 return new PHINode(Ty
, NumReservedValues
, NameStr
, InsertBefore
);
2586 static PHINode
*Create(Type
*Ty
, unsigned NumReservedValues
,
2587 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
2588 return new PHINode(Ty
, NumReservedValues
, NameStr
, InsertAtEnd
);
2591 /// Provide fast operand accessors
2592 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
2594 // Block iterator interface. This provides access to the list of incoming
2595 // basic blocks, which parallels the list of incoming values.
2597 using block_iterator
= BasicBlock
**;
2598 using const_block_iterator
= BasicBlock
* const *;
2600 block_iterator
block_begin() {
2602 reinterpret_cast<Use::UserRef
*>(op_begin() + ReservedSpace
);
2603 return reinterpret_cast<block_iterator
>(ref
+ 1);
2606 const_block_iterator
block_begin() const {
2607 const Use::UserRef
*ref
=
2608 reinterpret_cast<const Use::UserRef
*>(op_begin() + ReservedSpace
);
2609 return reinterpret_cast<const_block_iterator
>(ref
+ 1);
2612 block_iterator
block_end() {
2613 return block_begin() + getNumOperands();
2616 const_block_iterator
block_end() const {
2617 return block_begin() + getNumOperands();
2620 iterator_range
<block_iterator
> blocks() {
2621 return make_range(block_begin(), block_end());
2624 iterator_range
<const_block_iterator
> blocks() const {
2625 return make_range(block_begin(), block_end());
2628 op_range
incoming_values() { return operands(); }
2630 const_op_range
incoming_values() const { return operands(); }
2632 /// Return the number of incoming edges
2634 unsigned getNumIncomingValues() const { return getNumOperands(); }
2636 /// Return incoming value number x
2638 Value
*getIncomingValue(unsigned i
) const {
2639 return getOperand(i
);
2641 void setIncomingValue(unsigned i
, Value
*V
) {
2642 assert(V
&& "PHI node got a null value!");
2643 assert(getType() == V
->getType() &&
2644 "All operands to PHI node must be the same type as the PHI node!");
2648 static unsigned getOperandNumForIncomingValue(unsigned i
) {
2652 static unsigned getIncomingValueNumForOperand(unsigned i
) {
2656 /// Return incoming basic block number @p i.
2658 BasicBlock
*getIncomingBlock(unsigned i
) const {
2659 return block_begin()[i
];
2662 /// Return incoming basic block corresponding
2663 /// to an operand of the PHI.
2665 BasicBlock
*getIncomingBlock(const Use
&U
) const {
2666 assert(this == U
.getUser() && "Iterator doesn't point to PHI's Uses?");
2667 return getIncomingBlock(unsigned(&U
- op_begin()));
2670 /// Return incoming basic block corresponding
2671 /// to value use iterator.
2673 BasicBlock
*getIncomingBlock(Value::const_user_iterator I
) const {
2674 return getIncomingBlock(I
.getUse());
2677 void setIncomingBlock(unsigned i
, BasicBlock
*BB
) {
2678 assert(BB
&& "PHI node got a null basic block!");
2679 block_begin()[i
] = BB
;
2682 /// Replace every incoming basic block \p Old to basic block \p New.
2683 void replaceIncomingBlockWith(const BasicBlock
*Old
, BasicBlock
*New
) {
2684 assert(New
&& Old
&& "PHI node got a null basic block!");
2685 for (unsigned Op
= 0, NumOps
= getNumOperands(); Op
!= NumOps
; ++Op
)
2686 if (getIncomingBlock(Op
) == Old
)
2687 setIncomingBlock(Op
, New
);
2690 /// Add an incoming value to the end of the PHI list
2692 void addIncoming(Value
*V
, BasicBlock
*BB
) {
2693 if (getNumOperands() == ReservedSpace
)
2694 growOperands(); // Get more space!
2695 // Initialize some new operands.
2696 setNumHungOffUseOperands(getNumOperands() + 1);
2697 setIncomingValue(getNumOperands() - 1, V
);
2698 setIncomingBlock(getNumOperands() - 1, BB
);
2701 /// Remove an incoming value. This is useful if a
2702 /// predecessor basic block is deleted. The value removed is returned.
2704 /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2705 /// is true), the PHI node is destroyed and any uses of it are replaced with
2706 /// dummy values. The only time there should be zero incoming values to a PHI
2707 /// node is when the block is dead, so this strategy is sound.
2709 Value
*removeIncomingValue(unsigned Idx
, bool DeletePHIIfEmpty
= true);
2711 Value
*removeIncomingValue(const BasicBlock
*BB
, bool DeletePHIIfEmpty
=true) {
2712 int Idx
= getBasicBlockIndex(BB
);
2713 assert(Idx
>= 0 && "Invalid basic block argument to remove!");
2714 return removeIncomingValue(Idx
, DeletePHIIfEmpty
);
2717 /// Return the first index of the specified basic
2718 /// block in the value list for this PHI. Returns -1 if no instance.
2720 int getBasicBlockIndex(const BasicBlock
*BB
) const {
2721 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
2722 if (block_begin()[i
] == BB
)
2727 Value
*getIncomingValueForBlock(const BasicBlock
*BB
) const {
2728 int Idx
= getBasicBlockIndex(BB
);
2729 assert(Idx
>= 0 && "Invalid basic block argument!");
2730 return getIncomingValue(Idx
);
2733 /// Set every incoming value(s) for block \p BB to \p V.
2734 void setIncomingValueForBlock(const BasicBlock
*BB
, Value
*V
) {
2735 assert(BB
&& "PHI node got a null basic block!");
2737 for (unsigned Op
= 0, NumOps
= getNumOperands(); Op
!= NumOps
; ++Op
)
2738 if (getIncomingBlock(Op
) == BB
) {
2740 setIncomingValue(Op
, V
);
2743 assert(Found
&& "Invalid basic block argument to set!");
2746 /// If the specified PHI node always merges together the
2747 /// same value, return the value, otherwise return null.
2748 Value
*hasConstantValue() const;
2750 /// Whether the specified PHI node always merges
2751 /// together the same value, assuming undefs are equal to a unique
2752 /// non-undef value.
2753 bool hasConstantOrUndefValue() const;
2755 /// Methods for support type inquiry through isa, cast, and dyn_cast:
2756 static bool classof(const Instruction
*I
) {
2757 return I
->getOpcode() == Instruction::PHI
;
2759 static bool classof(const Value
*V
) {
2760 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
2764 void growOperands();
2768 struct OperandTraits
<PHINode
> : public HungoffOperandTraits
<2> {
2771 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode
, Value
)
2773 //===----------------------------------------------------------------------===//
2774 // LandingPadInst Class
2775 //===----------------------------------------------------------------------===//
2777 //===---------------------------------------------------------------------------
2778 /// The landingpad instruction holds all of the information
2779 /// necessary to generate correct exception handling. The landingpad instruction
2780 /// cannot be moved from the top of a landing pad block, which itself is
2781 /// accessible only from the 'unwind' edge of an invoke. This uses the
2782 /// SubclassData field in Value to store whether or not the landingpad is a
2785 class LandingPadInst
: public Instruction
{
2786 /// The number of operands actually allocated. NumOperands is
2787 /// the number actually in use.
2788 unsigned ReservedSpace
;
2790 LandingPadInst(const LandingPadInst
&LP
);
2793 enum ClauseType
{ Catch
, Filter
};
2796 explicit LandingPadInst(Type
*RetTy
, unsigned NumReservedValues
,
2797 const Twine
&NameStr
, Instruction
*InsertBefore
);
2798 explicit LandingPadInst(Type
*RetTy
, unsigned NumReservedValues
,
2799 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
);
2801 // Allocate space for exactly zero operands.
2802 void *operator new(size_t s
) {
2803 return User::operator new(s
);
2806 void growOperands(unsigned Size
);
2807 void init(unsigned NumReservedValues
, const Twine
&NameStr
);
2810 // Note: Instruction needs to be a friend here to call cloneImpl.
2811 friend class Instruction
;
2813 LandingPadInst
*cloneImpl() const;
2816 /// Constructors - NumReservedClauses is a hint for the number of incoming
2817 /// clauses that this landingpad will have (use 0 if you really have no idea).
2818 static LandingPadInst
*Create(Type
*RetTy
, unsigned NumReservedClauses
,
2819 const Twine
&NameStr
= "",
2820 Instruction
*InsertBefore
= nullptr);
2821 static LandingPadInst
*Create(Type
*RetTy
, unsigned NumReservedClauses
,
2822 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
);
2824 /// Provide fast operand accessors
2825 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
2827 /// Return 'true' if this landingpad instruction is a
2828 /// cleanup. I.e., it should be run when unwinding even if its landing pad
2829 /// doesn't catch the exception.
2830 bool isCleanup() const { return getSubclassDataFromInstruction() & 1; }
2832 /// Indicate that this landingpad instruction is a cleanup.
2833 void setCleanup(bool V
) {
2834 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
2838 /// Add a catch or filter clause to the landing pad.
2839 void addClause(Constant
*ClauseVal
);
2841 /// Get the value of the clause at index Idx. Use isCatch/isFilter to
2842 /// determine what type of clause this is.
2843 Constant
*getClause(unsigned Idx
) const {
2844 return cast
<Constant
>(getOperandList()[Idx
]);
2847 /// Return 'true' if the clause and index Idx is a catch clause.
2848 bool isCatch(unsigned Idx
) const {
2849 return !isa
<ArrayType
>(getOperandList()[Idx
]->getType());
2852 /// Return 'true' if the clause and index Idx is a filter clause.
2853 bool isFilter(unsigned Idx
) const {
2854 return isa
<ArrayType
>(getOperandList()[Idx
]->getType());
2857 /// Get the number of clauses for this landing pad.
2858 unsigned getNumClauses() const { return getNumOperands(); }
2860 /// Grow the size of the operand list to accommodate the new
2861 /// number of clauses.
2862 void reserveClauses(unsigned Size
) { growOperands(Size
); }
2864 // Methods for support type inquiry through isa, cast, and dyn_cast:
2865 static bool classof(const Instruction
*I
) {
2866 return I
->getOpcode() == Instruction::LandingPad
;
2868 static bool classof(const Value
*V
) {
2869 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
2874 struct OperandTraits
<LandingPadInst
> : public HungoffOperandTraits
<1> {
2877 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst
, Value
)
2879 //===----------------------------------------------------------------------===//
2881 //===----------------------------------------------------------------------===//
2883 //===---------------------------------------------------------------------------
2884 /// Return a value (possibly void), from a function. Execution
2885 /// does not continue in this function any longer.
2887 class ReturnInst
: public Instruction
{
2888 ReturnInst(const ReturnInst
&RI
);
2891 // ReturnInst constructors:
2892 // ReturnInst() - 'ret void' instruction
2893 // ReturnInst( null) - 'ret void' instruction
2894 // ReturnInst(Value* X) - 'ret X' instruction
2895 // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
2896 // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
2897 // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
2898 // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
2900 // NOTE: If the Value* passed is of type void then the constructor behaves as
2901 // if it was passed NULL.
2902 explicit ReturnInst(LLVMContext
&C
, Value
*retVal
= nullptr,
2903 Instruction
*InsertBefore
= nullptr);
2904 ReturnInst(LLVMContext
&C
, Value
*retVal
, BasicBlock
*InsertAtEnd
);
2905 explicit ReturnInst(LLVMContext
&C
, BasicBlock
*InsertAtEnd
);
2908 // Note: Instruction needs to be a friend here to call cloneImpl.
2909 friend class Instruction
;
2911 ReturnInst
*cloneImpl() const;
2914 static ReturnInst
* Create(LLVMContext
&C
, Value
*retVal
= nullptr,
2915 Instruction
*InsertBefore
= nullptr) {
2916 return new(!!retVal
) ReturnInst(C
, retVal
, InsertBefore
);
2919 static ReturnInst
* Create(LLVMContext
&C
, Value
*retVal
,
2920 BasicBlock
*InsertAtEnd
) {
2921 return new(!!retVal
) ReturnInst(C
, retVal
, InsertAtEnd
);
2924 static ReturnInst
* Create(LLVMContext
&C
, BasicBlock
*InsertAtEnd
) {
2925 return new(0) ReturnInst(C
, InsertAtEnd
);
2928 /// Provide fast operand accessors
2929 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
2931 /// Convenience accessor. Returns null if there is no return value.
2932 Value
*getReturnValue() const {
2933 return getNumOperands() != 0 ? getOperand(0) : nullptr;
2936 unsigned getNumSuccessors() const { return 0; }
2938 // Methods for support type inquiry through isa, cast, and dyn_cast:
2939 static bool classof(const Instruction
*I
) {
2940 return (I
->getOpcode() == Instruction::Ret
);
2942 static bool classof(const Value
*V
) {
2943 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
2947 BasicBlock
*getSuccessor(unsigned idx
) const {
2948 llvm_unreachable("ReturnInst has no successors!");
2951 void setSuccessor(unsigned idx
, BasicBlock
*B
) {
2952 llvm_unreachable("ReturnInst has no successors!");
2957 struct OperandTraits
<ReturnInst
> : public VariadicOperandTraits
<ReturnInst
> {
2960 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst
, Value
)
2962 //===----------------------------------------------------------------------===//
2964 //===----------------------------------------------------------------------===//
2966 //===---------------------------------------------------------------------------
2967 /// Conditional or Unconditional Branch instruction.
2969 class BranchInst
: public Instruction
{
2970 /// Ops list - Branches are strange. The operands are ordered:
2971 /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
2972 /// they don't have to check for cond/uncond branchness. These are mostly
2973 /// accessed relative from op_end().
2974 BranchInst(const BranchInst
&BI
);
2975 // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
2976 // BranchInst(BB *B) - 'br B'
2977 // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
2978 // BranchInst(BB* B, Inst *I) - 'br B' insert before I
2979 // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
2980 // BranchInst(BB* B, BB *I) - 'br B' insert at end
2981 // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
2982 explicit BranchInst(BasicBlock
*IfTrue
, Instruction
*InsertBefore
= nullptr);
2983 BranchInst(BasicBlock
*IfTrue
, BasicBlock
*IfFalse
, Value
*Cond
,
2984 Instruction
*InsertBefore
= nullptr);
2985 BranchInst(BasicBlock
*IfTrue
, BasicBlock
*InsertAtEnd
);
2986 BranchInst(BasicBlock
*IfTrue
, BasicBlock
*IfFalse
, Value
*Cond
,
2987 BasicBlock
*InsertAtEnd
);
2992 // Note: Instruction needs to be a friend here to call cloneImpl.
2993 friend class Instruction
;
2995 BranchInst
*cloneImpl() const;
2998 /// Iterator type that casts an operand to a basic block.
3000 /// This only makes sense because the successors are stored as adjacent
3001 /// operands for branch instructions.
3002 struct succ_op_iterator
3003 : iterator_adaptor_base
<succ_op_iterator
, value_op_iterator
,
3004 std::random_access_iterator_tag
, BasicBlock
*,
3005 ptrdiff_t, BasicBlock
*, BasicBlock
*> {
3006 explicit succ_op_iterator(value_op_iterator I
) : iterator_adaptor_base(I
) {}
3008 BasicBlock
*operator*() const { return cast
<BasicBlock
>(*I
); }
3009 BasicBlock
*operator->() const { return operator*(); }
3012 /// The const version of `succ_op_iterator`.
3013 struct const_succ_op_iterator
3014 : iterator_adaptor_base
<const_succ_op_iterator
, const_value_op_iterator
,
3015 std::random_access_iterator_tag
,
3016 const BasicBlock
*, ptrdiff_t, const BasicBlock
*,
3017 const BasicBlock
*> {
3018 explicit const_succ_op_iterator(const_value_op_iterator I
)
3019 : iterator_adaptor_base(I
) {}
3021 const BasicBlock
*operator*() const { return cast
<BasicBlock
>(*I
); }
3022 const BasicBlock
*operator->() const { return operator*(); }
3025 static BranchInst
*Create(BasicBlock
*IfTrue
,
3026 Instruction
*InsertBefore
= nullptr) {
3027 return new(1) BranchInst(IfTrue
, InsertBefore
);
3030 static BranchInst
*Create(BasicBlock
*IfTrue
, BasicBlock
*IfFalse
,
3031 Value
*Cond
, Instruction
*InsertBefore
= nullptr) {
3032 return new(3) BranchInst(IfTrue
, IfFalse
, Cond
, InsertBefore
);
3035 static BranchInst
*Create(BasicBlock
*IfTrue
, BasicBlock
*InsertAtEnd
) {
3036 return new(1) BranchInst(IfTrue
, InsertAtEnd
);
3039 static BranchInst
*Create(BasicBlock
*IfTrue
, BasicBlock
*IfFalse
,
3040 Value
*Cond
, BasicBlock
*InsertAtEnd
) {
3041 return new(3) BranchInst(IfTrue
, IfFalse
, Cond
, InsertAtEnd
);
3044 /// Transparently provide more efficient getOperand methods.
3045 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
3047 bool isUnconditional() const { return getNumOperands() == 1; }
3048 bool isConditional() const { return getNumOperands() == 3; }
3050 Value
*getCondition() const {
3051 assert(isConditional() && "Cannot get condition of an uncond branch!");
3055 void setCondition(Value
*V
) {
3056 assert(isConditional() && "Cannot set condition of unconditional branch!");
3060 unsigned getNumSuccessors() const { return 1+isConditional(); }
3062 BasicBlock
*getSuccessor(unsigned i
) const {
3063 assert(i
< getNumSuccessors() && "Successor # out of range for Branch!");
3064 return cast_or_null
<BasicBlock
>((&Op
<-1>() - i
)->get());
3067 void setSuccessor(unsigned idx
, BasicBlock
*NewSucc
) {
3068 assert(idx
< getNumSuccessors() && "Successor # out of range for Branch!");
3069 *(&Op
<-1>() - idx
) = NewSucc
;
3072 /// Swap the successors of this branch instruction.
3074 /// Swaps the successors of the branch instruction. This also swaps any
3075 /// branch weight metadata associated with the instruction so that it
3076 /// continues to map correctly to each operand.
3077 void swapSuccessors();
3079 iterator_range
<succ_op_iterator
> successors() {
3081 succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)),
3082 succ_op_iterator(value_op_end()));
3085 iterator_range
<const_succ_op_iterator
> successors() const {
3086 return make_range(const_succ_op_iterator(
3087 std::next(value_op_begin(), isConditional() ? 1 : 0)),
3088 const_succ_op_iterator(value_op_end()));
3091 // Methods for support type inquiry through isa, cast, and dyn_cast:
3092 static bool classof(const Instruction
*I
) {
3093 return (I
->getOpcode() == Instruction::Br
);
3095 static bool classof(const Value
*V
) {
3096 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
3101 struct OperandTraits
<BranchInst
> : public VariadicOperandTraits
<BranchInst
, 1> {
3104 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst
, Value
)
3106 //===----------------------------------------------------------------------===//
3108 //===----------------------------------------------------------------------===//
3110 //===---------------------------------------------------------------------------
3113 class SwitchInst
: public Instruction
{
3114 unsigned ReservedSpace
;
3116 // Operand[0] = Value to switch on
3117 // Operand[1] = Default basic block destination
3118 // Operand[2n ] = Value to match
3119 // Operand[2n+1] = BasicBlock to go to on match
3120 SwitchInst(const SwitchInst
&SI
);
3122 /// Create a new switch instruction, specifying a value to switch on and a
3123 /// default destination. The number of additional cases can be specified here
3124 /// to make memory allocation more efficient. This constructor can also
3125 /// auto-insert before another instruction.
3126 SwitchInst(Value
*Value
, BasicBlock
*Default
, unsigned NumCases
,
3127 Instruction
*InsertBefore
);
3129 /// Create a new switch instruction, specifying a value to switch on and a
3130 /// default destination. The number of additional cases can be specified here
3131 /// to make memory allocation more efficient. This constructor also
3132 /// auto-inserts at the end of the specified BasicBlock.
3133 SwitchInst(Value
*Value
, BasicBlock
*Default
, unsigned NumCases
,
3134 BasicBlock
*InsertAtEnd
);
3136 // allocate space for exactly zero operands
3137 void *operator new(size_t s
) {
3138 return User::operator new(s
);
3141 void init(Value
*Value
, BasicBlock
*Default
, unsigned NumReserved
);
3142 void growOperands();
3145 // Note: Instruction needs to be a friend here to call cloneImpl.
3146 friend class Instruction
;
3148 SwitchInst
*cloneImpl() const;
3152 static const unsigned DefaultPseudoIndex
= static_cast<unsigned>(~0L-1);
3154 template <typename CaseHandleT
> class CaseIteratorImpl
;
3156 /// A handle to a particular switch case. It exposes a convenient interface
3157 /// to both the case value and the successor block.
3159 /// We define this as a template and instantiate it to form both a const and
3160 /// non-const handle.
3161 template <typename SwitchInstT
, typename ConstantIntT
, typename BasicBlockT
>
3162 class CaseHandleImpl
{
3163 // Directly befriend both const and non-const iterators.
3164 friend class SwitchInst::CaseIteratorImpl
<
3165 CaseHandleImpl
<SwitchInstT
, ConstantIntT
, BasicBlockT
>>;
3168 // Expose the switch type we're parameterized with to the iterator.
3169 using SwitchInstType
= SwitchInstT
;
3174 CaseHandleImpl() = default;
3175 CaseHandleImpl(SwitchInstT
*SI
, ptrdiff_t Index
) : SI(SI
), Index(Index
) {}
3178 /// Resolves case value for current case.
3179 ConstantIntT
*getCaseValue() const {
3180 assert((unsigned)Index
< SI
->getNumCases() &&
3181 "Index out the number of cases.");
3182 return reinterpret_cast<ConstantIntT
*>(SI
->getOperand(2 + Index
* 2));
3185 /// Resolves successor for current case.
3186 BasicBlockT
*getCaseSuccessor() const {
3187 assert(((unsigned)Index
< SI
->getNumCases() ||
3188 (unsigned)Index
== DefaultPseudoIndex
) &&
3189 "Index out the number of cases.");
3190 return SI
->getSuccessor(getSuccessorIndex());
3193 /// Returns number of current case.
3194 unsigned getCaseIndex() const { return Index
; }
3196 /// Returns successor index for current case successor.
3197 unsigned getSuccessorIndex() const {
3198 assert(((unsigned)Index
== DefaultPseudoIndex
||
3199 (unsigned)Index
< SI
->getNumCases()) &&
3200 "Index out the number of cases.");
3201 return (unsigned)Index
!= DefaultPseudoIndex
? Index
+ 1 : 0;
3204 bool operator==(const CaseHandleImpl
&RHS
) const {
3205 assert(SI
== RHS
.SI
&& "Incompatible operators.");
3206 return Index
== RHS
.Index
;
3210 using ConstCaseHandle
=
3211 CaseHandleImpl
<const SwitchInst
, const ConstantInt
, const BasicBlock
>;
3214 : public CaseHandleImpl
<SwitchInst
, ConstantInt
, BasicBlock
> {
3215 friend class SwitchInst::CaseIteratorImpl
<CaseHandle
>;
3218 CaseHandle(SwitchInst
*SI
, ptrdiff_t Index
) : CaseHandleImpl(SI
, Index
) {}
3220 /// Sets the new value for current case.
3221 void setValue(ConstantInt
*V
) {
3222 assert((unsigned)Index
< SI
->getNumCases() &&
3223 "Index out the number of cases.");
3224 SI
->setOperand(2 + Index
*2, reinterpret_cast<Value
*>(V
));
3227 /// Sets the new successor for current case.
3228 void setSuccessor(BasicBlock
*S
) {
3229 SI
->setSuccessor(getSuccessorIndex(), S
);
3233 template <typename CaseHandleT
>
3234 class CaseIteratorImpl
3235 : public iterator_facade_base
<CaseIteratorImpl
<CaseHandleT
>,
3236 std::random_access_iterator_tag
,
3238 using SwitchInstT
= typename
CaseHandleT::SwitchInstType
;
3243 /// Default constructed iterator is in an invalid state until assigned to
3244 /// a case for a particular switch.
3245 CaseIteratorImpl() = default;
3247 /// Initializes case iterator for given SwitchInst and for given
3249 CaseIteratorImpl(SwitchInstT
*SI
, unsigned CaseNum
) : Case(SI
, CaseNum
) {}
3251 /// Initializes case iterator for given SwitchInst and for given
3252 /// successor index.
3253 static CaseIteratorImpl
fromSuccessorIndex(SwitchInstT
*SI
,
3254 unsigned SuccessorIndex
) {
3255 assert(SuccessorIndex
< SI
->getNumSuccessors() &&
3256 "Successor index # out of range!");
3257 return SuccessorIndex
!= 0 ? CaseIteratorImpl(SI
, SuccessorIndex
- 1)
3258 : CaseIteratorImpl(SI
, DefaultPseudoIndex
);
3261 /// Support converting to the const variant. This will be a no-op for const
3263 operator CaseIteratorImpl
<ConstCaseHandle
>() const {
3264 return CaseIteratorImpl
<ConstCaseHandle
>(Case
.SI
, Case
.Index
);
3267 CaseIteratorImpl
&operator+=(ptrdiff_t N
) {
3268 // Check index correctness after addition.
3269 // Note: Index == getNumCases() means end().
3270 assert(Case
.Index
+ N
>= 0 &&
3271 (unsigned)(Case
.Index
+ N
) <= Case
.SI
->getNumCases() &&
3272 "Case.Index out the number of cases.");
3276 CaseIteratorImpl
&operator-=(ptrdiff_t N
) {
3277 // Check index correctness after subtraction.
3278 // Note: Case.Index == getNumCases() means end().
3279 assert(Case
.Index
- N
>= 0 &&
3280 (unsigned)(Case
.Index
- N
) <= Case
.SI
->getNumCases() &&
3281 "Case.Index out the number of cases.");
3285 ptrdiff_t operator-(const CaseIteratorImpl
&RHS
) const {
3286 assert(Case
.SI
== RHS
.Case
.SI
&& "Incompatible operators.");
3287 return Case
.Index
- RHS
.Case
.Index
;
3289 bool operator==(const CaseIteratorImpl
&RHS
) const {
3290 return Case
== RHS
.Case
;
3292 bool operator<(const CaseIteratorImpl
&RHS
) const {
3293 assert(Case
.SI
== RHS
.Case
.SI
&& "Incompatible operators.");
3294 return Case
.Index
< RHS
.Case
.Index
;
3296 CaseHandleT
&operator*() { return Case
; }
3297 const CaseHandleT
&operator*() const { return Case
; }
3300 using CaseIt
= CaseIteratorImpl
<CaseHandle
>;
3301 using ConstCaseIt
= CaseIteratorImpl
<ConstCaseHandle
>;
3303 static SwitchInst
*Create(Value
*Value
, BasicBlock
*Default
,
3305 Instruction
*InsertBefore
= nullptr) {
3306 return new SwitchInst(Value
, Default
, NumCases
, InsertBefore
);
3309 static SwitchInst
*Create(Value
*Value
, BasicBlock
*Default
,
3310 unsigned NumCases
, BasicBlock
*InsertAtEnd
) {
3311 return new SwitchInst(Value
, Default
, NumCases
, InsertAtEnd
);
3314 /// Provide fast operand accessors
3315 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
3317 // Accessor Methods for Switch stmt
3318 Value
*getCondition() const { return getOperand(0); }
3319 void setCondition(Value
*V
) { setOperand(0, V
); }
3321 BasicBlock
*getDefaultDest() const {
3322 return cast
<BasicBlock
>(getOperand(1));
3325 void setDefaultDest(BasicBlock
*DefaultCase
) {
3326 setOperand(1, reinterpret_cast<Value
*>(DefaultCase
));
3329 /// Return the number of 'cases' in this switch instruction, excluding the
3331 unsigned getNumCases() const {
3332 return getNumOperands()/2 - 1;
3335 /// Returns a read/write iterator that points to the first case in the
3337 CaseIt
case_begin() {
3338 return CaseIt(this, 0);
3341 /// Returns a read-only iterator that points to the first case in the
3343 ConstCaseIt
case_begin() const {
3344 return ConstCaseIt(this, 0);
3347 /// Returns a read/write iterator that points one past the last in the
3350 return CaseIt(this, getNumCases());
3353 /// Returns a read-only iterator that points one past the last in the
3355 ConstCaseIt
case_end() const {
3356 return ConstCaseIt(this, getNumCases());
3359 /// Iteration adapter for range-for loops.
3360 iterator_range
<CaseIt
> cases() {
3361 return make_range(case_begin(), case_end());
3364 /// Constant iteration adapter for range-for loops.
3365 iterator_range
<ConstCaseIt
> cases() const {
3366 return make_range(case_begin(), case_end());
3369 /// Returns an iterator that points to the default case.
3370 /// Note: this iterator allows to resolve successor only. Attempt
3371 /// to resolve case value causes an assertion.
3372 /// Also note, that increment and decrement also causes an assertion and
3373 /// makes iterator invalid.
3374 CaseIt
case_default() {
3375 return CaseIt(this, DefaultPseudoIndex
);
3377 ConstCaseIt
case_default() const {
3378 return ConstCaseIt(this, DefaultPseudoIndex
);
3381 /// Search all of the case values for the specified constant. If it is
3382 /// explicitly handled, return the case iterator of it, otherwise return
3383 /// default case iterator to indicate that it is handled by the default
3385 CaseIt
findCaseValue(const ConstantInt
*C
) {
3386 CaseIt I
= llvm::find_if(
3387 cases(), [C
](CaseHandle
&Case
) { return Case
.getCaseValue() == C
; });
3388 if (I
!= case_end())
3391 return case_default();
3393 ConstCaseIt
findCaseValue(const ConstantInt
*C
) const {
3394 ConstCaseIt I
= llvm::find_if(cases(), [C
](ConstCaseHandle
&Case
) {
3395 return Case
.getCaseValue() == C
;
3397 if (I
!= case_end())
3400 return case_default();
3403 /// Finds the unique case value for a given successor. Returns null if the
3404 /// successor is not found, not unique, or is the default case.
3405 ConstantInt
*findCaseDest(BasicBlock
*BB
) {
3406 if (BB
== getDefaultDest())
3409 ConstantInt
*CI
= nullptr;
3410 for (auto Case
: cases()) {
3411 if (Case
.getCaseSuccessor() != BB
)
3415 return nullptr; // Multiple cases lead to BB.
3417 CI
= Case
.getCaseValue();
3423 /// Add an entry to the switch instruction.
3425 /// This action invalidates case_end(). Old case_end() iterator will
3426 /// point to the added case.
3427 void addCase(ConstantInt
*OnVal
, BasicBlock
*Dest
);
3429 /// This method removes the specified case and its successor from the switch
3430 /// instruction. Note that this operation may reorder the remaining cases at
3431 /// index idx and above.
3433 /// This action invalidates iterators for all cases following the one removed,
3434 /// including the case_end() iterator. It returns an iterator for the next
3436 CaseIt
removeCase(CaseIt I
);
3438 unsigned getNumSuccessors() const { return getNumOperands()/2; }
3439 BasicBlock
*getSuccessor(unsigned idx
) const {
3440 assert(idx
< getNumSuccessors() &&"Successor idx out of range for switch!");
3441 return cast
<BasicBlock
>(getOperand(idx
*2+1));
3443 void setSuccessor(unsigned idx
, BasicBlock
*NewSucc
) {
3444 assert(idx
< getNumSuccessors() && "Successor # out of range for switch!");
3445 setOperand(idx
* 2 + 1, NewSucc
);
3448 // Methods for support type inquiry through isa, cast, and dyn_cast:
3449 static bool classof(const Instruction
*I
) {
3450 return I
->getOpcode() == Instruction::Switch
;
3452 static bool classof(const Value
*V
) {
3453 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
3457 /// A wrapper class to simplify modification of SwitchInst cases along with
3458 /// their prof branch_weights metadata.
3459 class SwitchInstProfUpdateWrapper
{
3461 Optional
<SmallVector
<uint32_t, 8> > Weights
= None
;
3462 bool Changed
= false;
3465 static MDNode
*getProfBranchWeightsMD(const SwitchInst
&SI
);
3467 MDNode
*buildProfBranchWeightsMD();
3472 using CaseWeightOpt
= Optional
<uint32_t>;
3473 SwitchInst
*operator->() { return &SI
; }
3474 SwitchInst
&operator*() { return SI
; }
3475 operator SwitchInst
*() { return &SI
; }
3477 SwitchInstProfUpdateWrapper(SwitchInst
&SI
) : SI(SI
) { init(); }
3479 ~SwitchInstProfUpdateWrapper() {
3481 SI
.setMetadata(LLVMContext::MD_prof
, buildProfBranchWeightsMD());
3484 /// Delegate the call to the underlying SwitchInst::removeCase() and remove
3485 /// correspondent branch weight.
3486 SwitchInst::CaseIt
removeCase(SwitchInst::CaseIt I
);
3488 /// Delegate the call to the underlying SwitchInst::addCase() and set the
3489 /// specified branch weight for the added case.
3490 void addCase(ConstantInt
*OnVal
, BasicBlock
*Dest
, CaseWeightOpt W
);
3492 /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark
3493 /// this object to not touch the underlying SwitchInst in destructor.
3494 SymbolTableList
<Instruction
>::iterator
eraseFromParent();
3496 void setSuccessorWeight(unsigned idx
, CaseWeightOpt W
);
3497 CaseWeightOpt
getSuccessorWeight(unsigned idx
);
3499 static CaseWeightOpt
getSuccessorWeight(const SwitchInst
&SI
, unsigned idx
);
3503 struct OperandTraits
<SwitchInst
> : public HungoffOperandTraits
<2> {
3506 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst
, Value
)
3508 //===----------------------------------------------------------------------===//
3509 // IndirectBrInst Class
3510 //===----------------------------------------------------------------------===//
3512 //===---------------------------------------------------------------------------
3513 /// Indirect Branch Instruction.
3515 class IndirectBrInst
: public Instruction
{
3516 unsigned ReservedSpace
;
3518 // Operand[0] = Address to jump to
3519 // Operand[n+1] = n-th destination
3520 IndirectBrInst(const IndirectBrInst
&IBI
);
3522 /// Create a new indirectbr instruction, specifying an
3523 /// Address to jump to. The number of expected destinations can be specified
3524 /// here to make memory allocation more efficient. This constructor can also
3525 /// autoinsert before another instruction.
3526 IndirectBrInst(Value
*Address
, unsigned NumDests
, Instruction
*InsertBefore
);
3528 /// Create a new indirectbr instruction, specifying an
3529 /// Address to jump to. The number of expected destinations can be specified
3530 /// here to make memory allocation more efficient. This constructor also
3531 /// autoinserts at the end of the specified BasicBlock.
3532 IndirectBrInst(Value
*Address
, unsigned NumDests
, BasicBlock
*InsertAtEnd
);
3534 // allocate space for exactly zero operands
3535 void *operator new(size_t s
) {
3536 return User::operator new(s
);
3539 void init(Value
*Address
, unsigned NumDests
);
3540 void growOperands();
3543 // Note: Instruction needs to be a friend here to call cloneImpl.
3544 friend class Instruction
;
3546 IndirectBrInst
*cloneImpl() const;
3549 /// Iterator type that casts an operand to a basic block.
3551 /// This only makes sense because the successors are stored as adjacent
3552 /// operands for indirectbr instructions.
3553 struct succ_op_iterator
3554 : iterator_adaptor_base
<succ_op_iterator
, value_op_iterator
,
3555 std::random_access_iterator_tag
, BasicBlock
*,
3556 ptrdiff_t, BasicBlock
*, BasicBlock
*> {
3557 explicit succ_op_iterator(value_op_iterator I
) : iterator_adaptor_base(I
) {}
3559 BasicBlock
*operator*() const { return cast
<BasicBlock
>(*I
); }
3560 BasicBlock
*operator->() const { return operator*(); }
3563 /// The const version of `succ_op_iterator`.
3564 struct const_succ_op_iterator
3565 : iterator_adaptor_base
<const_succ_op_iterator
, const_value_op_iterator
,
3566 std::random_access_iterator_tag
,
3567 const BasicBlock
*, ptrdiff_t, const BasicBlock
*,
3568 const BasicBlock
*> {
3569 explicit const_succ_op_iterator(const_value_op_iterator I
)
3570 : iterator_adaptor_base(I
) {}
3572 const BasicBlock
*operator*() const { return cast
<BasicBlock
>(*I
); }
3573 const BasicBlock
*operator->() const { return operator*(); }
3576 static IndirectBrInst
*Create(Value
*Address
, unsigned NumDests
,
3577 Instruction
*InsertBefore
= nullptr) {
3578 return new IndirectBrInst(Address
, NumDests
, InsertBefore
);
3581 static IndirectBrInst
*Create(Value
*Address
, unsigned NumDests
,
3582 BasicBlock
*InsertAtEnd
) {
3583 return new IndirectBrInst(Address
, NumDests
, InsertAtEnd
);
3586 /// Provide fast operand accessors.
3587 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
3589 // Accessor Methods for IndirectBrInst instruction.
3590 Value
*getAddress() { return getOperand(0); }
3591 const Value
*getAddress() const { return getOperand(0); }
3592 void setAddress(Value
*V
) { setOperand(0, V
); }
3594 /// return the number of possible destinations in this
3595 /// indirectbr instruction.
3596 unsigned getNumDestinations() const { return getNumOperands()-1; }
3598 /// Return the specified destination.
3599 BasicBlock
*getDestination(unsigned i
) { return getSuccessor(i
); }
3600 const BasicBlock
*getDestination(unsigned i
) const { return getSuccessor(i
); }
3602 /// Add a destination.
3604 void addDestination(BasicBlock
*Dest
);
3606 /// This method removes the specified successor from the
3607 /// indirectbr instruction.
3608 void removeDestination(unsigned i
);
3610 unsigned getNumSuccessors() const { return getNumOperands()-1; }
3611 BasicBlock
*getSuccessor(unsigned i
) const {
3612 return cast
<BasicBlock
>(getOperand(i
+1));
3614 void setSuccessor(unsigned i
, BasicBlock
*NewSucc
) {
3615 setOperand(i
+ 1, NewSucc
);
3618 iterator_range
<succ_op_iterator
> successors() {
3619 return make_range(succ_op_iterator(std::next(value_op_begin())),
3620 succ_op_iterator(value_op_end()));
3623 iterator_range
<const_succ_op_iterator
> successors() const {
3624 return make_range(const_succ_op_iterator(std::next(value_op_begin())),
3625 const_succ_op_iterator(value_op_end()));
3628 // Methods for support type inquiry through isa, cast, and dyn_cast:
3629 static bool classof(const Instruction
*I
) {
3630 return I
->getOpcode() == Instruction::IndirectBr
;
3632 static bool classof(const Value
*V
) {
3633 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
3638 struct OperandTraits
<IndirectBrInst
> : public HungoffOperandTraits
<1> {
3641 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst
, Value
)
3643 //===----------------------------------------------------------------------===//
3645 //===----------------------------------------------------------------------===//
3647 /// Invoke instruction. The SubclassData field is used to hold the
3648 /// calling convention of the call.
3650 class InvokeInst
: public CallBase
{
3651 /// The number of operands for this call beyond the called function,
3652 /// arguments, and operand bundles.
3653 static constexpr int NumExtraOperands
= 2;
3655 /// The index from the end of the operand array to the normal destination.
3656 static constexpr int NormalDestOpEndIdx
= -3;
3658 /// The index from the end of the operand array to the unwind destination.
3659 static constexpr int UnwindDestOpEndIdx
= -2;
3661 InvokeInst(const InvokeInst
&BI
);
3663 /// Construct an InvokeInst given a range of arguments.
3665 /// Construct an InvokeInst from a range of arguments
3666 inline InvokeInst(FunctionType
*Ty
, Value
*Func
, BasicBlock
*IfNormal
,
3667 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3668 ArrayRef
<OperandBundleDef
> Bundles
, int NumOperands
,
3669 const Twine
&NameStr
, Instruction
*InsertBefore
);
3671 inline InvokeInst(FunctionType
*Ty
, Value
*Func
, BasicBlock
*IfNormal
,
3672 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3673 ArrayRef
<OperandBundleDef
> Bundles
, int NumOperands
,
3674 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
);
3676 void init(FunctionType
*Ty
, Value
*Func
, BasicBlock
*IfNormal
,
3677 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3678 ArrayRef
<OperandBundleDef
> Bundles
, const Twine
&NameStr
);
3680 /// Compute the number of operands to allocate.
3681 static int ComputeNumOperands(int NumArgs
, int NumBundleInputs
= 0) {
3682 // We need one operand for the called function, plus our extra operands and
3683 // the input operand counts provided.
3684 return 1 + NumExtraOperands
+ NumArgs
+ NumBundleInputs
;
3688 // Note: Instruction needs to be a friend here to call cloneImpl.
3689 friend class Instruction
;
3691 InvokeInst
*cloneImpl() const;
3694 static InvokeInst
*Create(FunctionType
*Ty
, Value
*Func
, BasicBlock
*IfNormal
,
3695 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3696 const Twine
&NameStr
,
3697 Instruction
*InsertBefore
= nullptr) {
3698 int NumOperands
= ComputeNumOperands(Args
.size());
3699 return new (NumOperands
)
3700 InvokeInst(Ty
, Func
, IfNormal
, IfException
, Args
, None
, NumOperands
,
3701 NameStr
, InsertBefore
);
3704 static InvokeInst
*Create(FunctionType
*Ty
, Value
*Func
, BasicBlock
*IfNormal
,
3705 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3706 ArrayRef
<OperandBundleDef
> Bundles
= None
,
3707 const Twine
&NameStr
= "",
3708 Instruction
*InsertBefore
= nullptr) {
3710 ComputeNumOperands(Args
.size(), CountBundleInputs(Bundles
));
3711 unsigned DescriptorBytes
= Bundles
.size() * sizeof(BundleOpInfo
);
3713 return new (NumOperands
, DescriptorBytes
)
3714 InvokeInst(Ty
, Func
, IfNormal
, IfException
, Args
, Bundles
, NumOperands
,
3715 NameStr
, InsertBefore
);
3718 static InvokeInst
*Create(FunctionType
*Ty
, Value
*Func
, BasicBlock
*IfNormal
,
3719 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3720 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
3721 int NumOperands
= ComputeNumOperands(Args
.size());
3722 return new (NumOperands
)
3723 InvokeInst(Ty
, Func
, IfNormal
, IfException
, Args
, None
, NumOperands
,
3724 NameStr
, InsertAtEnd
);
3727 static InvokeInst
*Create(FunctionType
*Ty
, Value
*Func
, BasicBlock
*IfNormal
,
3728 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3729 ArrayRef
<OperandBundleDef
> Bundles
,
3730 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
3732 ComputeNumOperands(Args
.size(), CountBundleInputs(Bundles
));
3733 unsigned DescriptorBytes
= Bundles
.size() * sizeof(BundleOpInfo
);
3735 return new (NumOperands
, DescriptorBytes
)
3736 InvokeInst(Ty
, Func
, IfNormal
, IfException
, Args
, Bundles
, NumOperands
,
3737 NameStr
, InsertAtEnd
);
3740 static InvokeInst
*Create(FunctionCallee Func
, BasicBlock
*IfNormal
,
3741 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3742 const Twine
&NameStr
,
3743 Instruction
*InsertBefore
= nullptr) {
3744 return Create(Func
.getFunctionType(), Func
.getCallee(), IfNormal
,
3745 IfException
, Args
, None
, NameStr
, InsertBefore
);
3748 static InvokeInst
*Create(FunctionCallee Func
, BasicBlock
*IfNormal
,
3749 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3750 ArrayRef
<OperandBundleDef
> Bundles
= None
,
3751 const Twine
&NameStr
= "",
3752 Instruction
*InsertBefore
= nullptr) {
3753 return Create(Func
.getFunctionType(), Func
.getCallee(), IfNormal
,
3754 IfException
, Args
, Bundles
, NameStr
, InsertBefore
);
3757 static InvokeInst
*Create(FunctionCallee Func
, BasicBlock
*IfNormal
,
3758 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3759 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
3760 return Create(Func
.getFunctionType(), Func
.getCallee(), IfNormal
,
3761 IfException
, Args
, NameStr
, InsertAtEnd
);
3764 static InvokeInst
*Create(FunctionCallee Func
, BasicBlock
*IfNormal
,
3765 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3766 ArrayRef
<OperandBundleDef
> Bundles
,
3767 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
3768 return Create(Func
.getFunctionType(), Func
.getCallee(), IfNormal
,
3769 IfException
, Args
, Bundles
, NameStr
, InsertAtEnd
);
3772 // Deprecated [opaque pointer types]
3773 static InvokeInst
*Create(Value
*Func
, BasicBlock
*IfNormal
,
3774 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3775 const Twine
&NameStr
,
3776 Instruction
*InsertBefore
= nullptr) {
3777 return Create(cast
<FunctionType
>(
3778 cast
<PointerType
>(Func
->getType())->getElementType()),
3779 Func
, IfNormal
, IfException
, Args
, None
, NameStr
,
3783 // Deprecated [opaque pointer types]
3784 static InvokeInst
*Create(Value
*Func
, BasicBlock
*IfNormal
,
3785 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3786 ArrayRef
<OperandBundleDef
> Bundles
= None
,
3787 const Twine
&NameStr
= "",
3788 Instruction
*InsertBefore
= nullptr) {
3789 return Create(cast
<FunctionType
>(
3790 cast
<PointerType
>(Func
->getType())->getElementType()),
3791 Func
, IfNormal
, IfException
, Args
, Bundles
, NameStr
,
3795 // Deprecated [opaque pointer types]
3796 static InvokeInst
*Create(Value
*Func
, BasicBlock
*IfNormal
,
3797 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3798 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
3799 return Create(cast
<FunctionType
>(
3800 cast
<PointerType
>(Func
->getType())->getElementType()),
3801 Func
, IfNormal
, IfException
, Args
, NameStr
, InsertAtEnd
);
3804 // Deprecated [opaque pointer types]
3805 static InvokeInst
*Create(Value
*Func
, BasicBlock
*IfNormal
,
3806 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3807 ArrayRef
<OperandBundleDef
> Bundles
,
3808 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
3809 return Create(cast
<FunctionType
>(
3810 cast
<PointerType
>(Func
->getType())->getElementType()),
3811 Func
, IfNormal
, IfException
, Args
, Bundles
, NameStr
,
3815 /// Create a clone of \p II with a different set of operand bundles and
3816 /// insert it before \p InsertPt.
3818 /// The returned invoke instruction is identical to \p II in every way except
3819 /// that the operand bundles for the new instruction are set to the operand
3820 /// bundles in \p Bundles.
3821 static InvokeInst
*Create(InvokeInst
*II
, ArrayRef
<OperandBundleDef
> Bundles
,
3822 Instruction
*InsertPt
= nullptr);
3824 /// Determine if the call should not perform indirect branch tracking.
3825 bool doesNoCfCheck() const { return hasFnAttr(Attribute::NoCfCheck
); }
3827 /// Determine if the call cannot unwind.
3828 bool doesNotThrow() const { return hasFnAttr(Attribute::NoUnwind
); }
3829 void setDoesNotThrow() {
3830 addAttribute(AttributeList::FunctionIndex
, Attribute::NoUnwind
);
3833 // get*Dest - Return the destination basic blocks...
3834 BasicBlock
*getNormalDest() const {
3835 return cast
<BasicBlock
>(Op
<NormalDestOpEndIdx
>());
3837 BasicBlock
*getUnwindDest() const {
3838 return cast
<BasicBlock
>(Op
<UnwindDestOpEndIdx
>());
3840 void setNormalDest(BasicBlock
*B
) {
3841 Op
<NormalDestOpEndIdx
>() = reinterpret_cast<Value
*>(B
);
3843 void setUnwindDest(BasicBlock
*B
) {
3844 Op
<UnwindDestOpEndIdx
>() = reinterpret_cast<Value
*>(B
);
3847 /// Get the landingpad instruction from the landing pad
3848 /// block (the unwind destination).
3849 LandingPadInst
*getLandingPadInst() const;
3851 BasicBlock
*getSuccessor(unsigned i
) const {
3852 assert(i
< 2 && "Successor # out of range for invoke!");
3853 return i
== 0 ? getNormalDest() : getUnwindDest();
3856 void setSuccessor(unsigned i
, BasicBlock
*NewSucc
) {
3857 assert(i
< 2 && "Successor # out of range for invoke!");
3859 setNormalDest(NewSucc
);
3861 setUnwindDest(NewSucc
);
3864 unsigned getNumSuccessors() const { return 2; }
3866 // Methods for support type inquiry through isa, cast, and dyn_cast:
3867 static bool classof(const Instruction
*I
) {
3868 return (I
->getOpcode() == Instruction::Invoke
);
3870 static bool classof(const Value
*V
) {
3871 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
3876 // Shadow Instruction::setInstructionSubclassData with a private forwarding
3877 // method so that subclasses cannot accidentally use it.
3878 void setInstructionSubclassData(unsigned short D
) {
3879 Instruction::setInstructionSubclassData(D
);
3883 InvokeInst::InvokeInst(FunctionType
*Ty
, Value
*Func
, BasicBlock
*IfNormal
,
3884 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3885 ArrayRef
<OperandBundleDef
> Bundles
, int NumOperands
,
3886 const Twine
&NameStr
, Instruction
*InsertBefore
)
3887 : CallBase(Ty
->getReturnType(), Instruction::Invoke
,
3888 OperandTraits
<CallBase
>::op_end(this) - NumOperands
, NumOperands
,
3890 init(Ty
, Func
, IfNormal
, IfException
, Args
, Bundles
, NameStr
);
3893 InvokeInst::InvokeInst(FunctionType
*Ty
, Value
*Func
, BasicBlock
*IfNormal
,
3894 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3895 ArrayRef
<OperandBundleDef
> Bundles
, int NumOperands
,
3896 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
)
3897 : CallBase(Ty
->getReturnType(), Instruction::Invoke
,
3898 OperandTraits
<CallBase
>::op_end(this) - NumOperands
, NumOperands
,
3900 init(Ty
, Func
, IfNormal
, IfException
, Args
, Bundles
, NameStr
);
3903 //===----------------------------------------------------------------------===//
3905 //===----------------------------------------------------------------------===//
3907 /// CallBr instruction, tracking function calls that may not return control but
3908 /// instead transfer it to a third location. The SubclassData field is used to
3909 /// hold the calling convention of the call.
3911 class CallBrInst
: public CallBase
{
3913 unsigned NumIndirectDests
;
3915 CallBrInst(const CallBrInst
&BI
);
3917 /// Construct a CallBrInst given a range of arguments.
3919 /// Construct a CallBrInst from a range of arguments
3920 inline CallBrInst(FunctionType
*Ty
, Value
*Func
, BasicBlock
*DefaultDest
,
3921 ArrayRef
<BasicBlock
*> IndirectDests
,
3922 ArrayRef
<Value
*> Args
,
3923 ArrayRef
<OperandBundleDef
> Bundles
, int NumOperands
,
3924 const Twine
&NameStr
, Instruction
*InsertBefore
);
3926 inline CallBrInst(FunctionType
*Ty
, Value
*Func
, BasicBlock
*DefaultDest
,
3927 ArrayRef
<BasicBlock
*> IndirectDests
,
3928 ArrayRef
<Value
*> Args
,
3929 ArrayRef
<OperandBundleDef
> Bundles
, int NumOperands
,
3930 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
);
3932 void init(FunctionType
*FTy
, Value
*Func
, BasicBlock
*DefaultDest
,
3933 ArrayRef
<BasicBlock
*> IndirectDests
, ArrayRef
<Value
*> Args
,
3934 ArrayRef
<OperandBundleDef
> Bundles
, const Twine
&NameStr
);
3936 /// Should the Indirect Destinations change, scan + update the Arg list.
3937 void updateArgBlockAddresses(unsigned i
, BasicBlock
*B
);
3939 /// Compute the number of operands to allocate.
3940 static int ComputeNumOperands(int NumArgs
, int NumIndirectDests
,
3941 int NumBundleInputs
= 0) {
3942 // We need one operand for the called function, plus our extra operands and
3943 // the input operand counts provided.
3944 return 2 + NumIndirectDests
+ NumArgs
+ NumBundleInputs
;
3948 // Note: Instruction needs to be a friend here to call cloneImpl.
3949 friend class Instruction
;
3951 CallBrInst
*cloneImpl() const;
3954 static CallBrInst
*Create(FunctionType
*Ty
, Value
*Func
,
3955 BasicBlock
*DefaultDest
,
3956 ArrayRef
<BasicBlock
*> IndirectDests
,
3957 ArrayRef
<Value
*> Args
, const Twine
&NameStr
,
3958 Instruction
*InsertBefore
= nullptr) {
3959 int NumOperands
= ComputeNumOperands(Args
.size(), IndirectDests
.size());
3960 return new (NumOperands
)
3961 CallBrInst(Ty
, Func
, DefaultDest
, IndirectDests
, Args
, None
,
3962 NumOperands
, NameStr
, InsertBefore
);
3965 static CallBrInst
*Create(FunctionType
*Ty
, Value
*Func
,
3966 BasicBlock
*DefaultDest
,
3967 ArrayRef
<BasicBlock
*> IndirectDests
,
3968 ArrayRef
<Value
*> Args
,
3969 ArrayRef
<OperandBundleDef
> Bundles
= None
,
3970 const Twine
&NameStr
= "",
3971 Instruction
*InsertBefore
= nullptr) {
3972 int NumOperands
= ComputeNumOperands(Args
.size(), IndirectDests
.size(),
3973 CountBundleInputs(Bundles
));
3974 unsigned DescriptorBytes
= Bundles
.size() * sizeof(BundleOpInfo
);
3976 return new (NumOperands
, DescriptorBytes
)
3977 CallBrInst(Ty
, Func
, DefaultDest
, IndirectDests
, Args
, Bundles
,
3978 NumOperands
, NameStr
, InsertBefore
);
3981 static CallBrInst
*Create(FunctionType
*Ty
, Value
*Func
,
3982 BasicBlock
*DefaultDest
,
3983 ArrayRef
<BasicBlock
*> IndirectDests
,
3984 ArrayRef
<Value
*> Args
, const Twine
&NameStr
,
3985 BasicBlock
*InsertAtEnd
) {
3986 int NumOperands
= ComputeNumOperands(Args
.size(), IndirectDests
.size());
3987 return new (NumOperands
)
3988 CallBrInst(Ty
, Func
, DefaultDest
, IndirectDests
, Args
, None
,
3989 NumOperands
, NameStr
, InsertAtEnd
);
3992 static CallBrInst
*Create(FunctionType
*Ty
, Value
*Func
,
3993 BasicBlock
*DefaultDest
,
3994 ArrayRef
<BasicBlock
*> IndirectDests
,
3995 ArrayRef
<Value
*> Args
,
3996 ArrayRef
<OperandBundleDef
> Bundles
,
3997 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
3998 int NumOperands
= ComputeNumOperands(Args
.size(), IndirectDests
.size(),
3999 CountBundleInputs(Bundles
));
4000 unsigned DescriptorBytes
= Bundles
.size() * sizeof(BundleOpInfo
);
4002 return new (NumOperands
, DescriptorBytes
)
4003 CallBrInst(Ty
, Func
, DefaultDest
, IndirectDests
, Args
, Bundles
,
4004 NumOperands
, NameStr
, InsertAtEnd
);
4007 static CallBrInst
*Create(FunctionCallee Func
, BasicBlock
*DefaultDest
,
4008 ArrayRef
<BasicBlock
*> IndirectDests
,
4009 ArrayRef
<Value
*> Args
, const Twine
&NameStr
,
4010 Instruction
*InsertBefore
= nullptr) {
4011 return Create(Func
.getFunctionType(), Func
.getCallee(), DefaultDest
,
4012 IndirectDests
, Args
, NameStr
, InsertBefore
);
4015 static CallBrInst
*Create(FunctionCallee Func
, BasicBlock
*DefaultDest
,
4016 ArrayRef
<BasicBlock
*> IndirectDests
,
4017 ArrayRef
<Value
*> Args
,
4018 ArrayRef
<OperandBundleDef
> Bundles
= None
,
4019 const Twine
&NameStr
= "",
4020 Instruction
*InsertBefore
= nullptr) {
4021 return Create(Func
.getFunctionType(), Func
.getCallee(), DefaultDest
,
4022 IndirectDests
, Args
, Bundles
, NameStr
, InsertBefore
);
4025 static CallBrInst
*Create(FunctionCallee Func
, BasicBlock
*DefaultDest
,
4026 ArrayRef
<BasicBlock
*> IndirectDests
,
4027 ArrayRef
<Value
*> Args
, const Twine
&NameStr
,
4028 BasicBlock
*InsertAtEnd
) {
4029 return Create(Func
.getFunctionType(), Func
.getCallee(), DefaultDest
,
4030 IndirectDests
, Args
, NameStr
, InsertAtEnd
);
4033 static CallBrInst
*Create(FunctionCallee Func
,
4034 BasicBlock
*DefaultDest
,
4035 ArrayRef
<BasicBlock
*> IndirectDests
,
4036 ArrayRef
<Value
*> Args
,
4037 ArrayRef
<OperandBundleDef
> Bundles
,
4038 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
4039 return Create(Func
.getFunctionType(), Func
.getCallee(), DefaultDest
,
4040 IndirectDests
, Args
, Bundles
, NameStr
, InsertAtEnd
);
4043 /// Create a clone of \p CBI with a different set of operand bundles and
4044 /// insert it before \p InsertPt.
4046 /// The returned callbr instruction is identical to \p CBI in every way
4047 /// except that the operand bundles for the new instruction are set to the
4048 /// operand bundles in \p Bundles.
4049 static CallBrInst
*Create(CallBrInst
*CBI
,
4050 ArrayRef
<OperandBundleDef
> Bundles
,
4051 Instruction
*InsertPt
= nullptr);
4053 /// Return the number of callbr indirect dest labels.
4055 unsigned getNumIndirectDests() const { return NumIndirectDests
; }
4057 /// getIndirectDestLabel - Return the i-th indirect dest label.
4059 Value
*getIndirectDestLabel(unsigned i
) const {
4060 assert(i
< getNumIndirectDests() && "Out of bounds!");
4061 return getOperand(i
+ getNumArgOperands() + getNumTotalBundleOperands() +
4065 Value
*getIndirectDestLabelUse(unsigned i
) const {
4066 assert(i
< getNumIndirectDests() && "Out of bounds!");
4067 return getOperandUse(i
+ getNumArgOperands() + getNumTotalBundleOperands() +
4071 // Return the destination basic blocks...
4072 BasicBlock
*getDefaultDest() const {
4073 return cast
<BasicBlock
>(*(&Op
<-1>() - getNumIndirectDests() - 1));
4075 BasicBlock
*getIndirectDest(unsigned i
) const {
4076 return cast_or_null
<BasicBlock
>(*(&Op
<-1>() - getNumIndirectDests() + i
));
4078 SmallVector
<BasicBlock
*, 16> getIndirectDests() const {
4079 SmallVector
<BasicBlock
*, 16> IndirectDests
;
4080 for (unsigned i
= 0, e
= getNumIndirectDests(); i
< e
; ++i
)
4081 IndirectDests
.push_back(getIndirectDest(i
));
4082 return IndirectDests
;
4084 void setDefaultDest(BasicBlock
*B
) {
4085 *(&Op
<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value
*>(B
);
4087 void setIndirectDest(unsigned i
, BasicBlock
*B
) {
4088 updateArgBlockAddresses(i
, B
);
4089 *(&Op
<-1>() - getNumIndirectDests() + i
) = reinterpret_cast<Value
*>(B
);
4092 BasicBlock
*getSuccessor(unsigned i
) const {
4093 assert(i
< getNumSuccessors() + 1 &&
4094 "Successor # out of range for callbr!");
4095 return i
== 0 ? getDefaultDest() : getIndirectDest(i
- 1);
4098 void setSuccessor(unsigned i
, BasicBlock
*NewSucc
) {
4099 assert(i
< getNumIndirectDests() + 1 &&
4100 "Successor # out of range for callbr!");
4101 return i
== 0 ? setDefaultDest(NewSucc
) : setIndirectDest(i
- 1, NewSucc
);
4104 unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; }
4106 // Methods for support type inquiry through isa, cast, and dyn_cast:
4107 static bool classof(const Instruction
*I
) {
4108 return (I
->getOpcode() == Instruction::CallBr
);
4110 static bool classof(const Value
*V
) {
4111 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4116 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4117 // method so that subclasses cannot accidentally use it.
4118 void setInstructionSubclassData(unsigned short D
) {
4119 Instruction::setInstructionSubclassData(D
);
4123 CallBrInst::CallBrInst(FunctionType
*Ty
, Value
*Func
, BasicBlock
*DefaultDest
,
4124 ArrayRef
<BasicBlock
*> IndirectDests
,
4125 ArrayRef
<Value
*> Args
,
4126 ArrayRef
<OperandBundleDef
> Bundles
, int NumOperands
,
4127 const Twine
&NameStr
, Instruction
*InsertBefore
)
4128 : CallBase(Ty
->getReturnType(), Instruction::CallBr
,
4129 OperandTraits
<CallBase
>::op_end(this) - NumOperands
, NumOperands
,
4131 init(Ty
, Func
, DefaultDest
, IndirectDests
, Args
, Bundles
, NameStr
);
4134 CallBrInst::CallBrInst(FunctionType
*Ty
, Value
*Func
, BasicBlock
*DefaultDest
,
4135 ArrayRef
<BasicBlock
*> IndirectDests
,
4136 ArrayRef
<Value
*> Args
,
4137 ArrayRef
<OperandBundleDef
> Bundles
, int NumOperands
,
4138 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
)
4141 cast
<PointerType
>(Func
->getType())->getElementType())
4143 Instruction::CallBr
,
4144 OperandTraits
<CallBase
>::op_end(this) - NumOperands
, NumOperands
,
4146 init(Ty
, Func
, DefaultDest
, IndirectDests
, Args
, Bundles
, NameStr
);
4149 //===----------------------------------------------------------------------===//
4151 //===----------------------------------------------------------------------===//
4153 //===---------------------------------------------------------------------------
4154 /// Resume the propagation of an exception.
4156 class ResumeInst
: public Instruction
{
4157 ResumeInst(const ResumeInst
&RI
);
4159 explicit ResumeInst(Value
*Exn
, Instruction
*InsertBefore
=nullptr);
4160 ResumeInst(Value
*Exn
, BasicBlock
*InsertAtEnd
);
4163 // Note: Instruction needs to be a friend here to call cloneImpl.
4164 friend class Instruction
;
4166 ResumeInst
*cloneImpl() const;
4169 static ResumeInst
*Create(Value
*Exn
, Instruction
*InsertBefore
= nullptr) {
4170 return new(1) ResumeInst(Exn
, InsertBefore
);
4173 static ResumeInst
*Create(Value
*Exn
, BasicBlock
*InsertAtEnd
) {
4174 return new(1) ResumeInst(Exn
, InsertAtEnd
);
4177 /// Provide fast operand accessors
4178 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
4180 /// Convenience accessor.
4181 Value
*getValue() const { return Op
<0>(); }
4183 unsigned getNumSuccessors() const { return 0; }
4185 // Methods for support type inquiry through isa, cast, and dyn_cast:
4186 static bool classof(const Instruction
*I
) {
4187 return I
->getOpcode() == Instruction::Resume
;
4189 static bool classof(const Value
*V
) {
4190 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4194 BasicBlock
*getSuccessor(unsigned idx
) const {
4195 llvm_unreachable("ResumeInst has no successors!");
4198 void setSuccessor(unsigned idx
, BasicBlock
*NewSucc
) {
4199 llvm_unreachable("ResumeInst has no successors!");
4204 struct OperandTraits
<ResumeInst
> :
4205 public FixedNumOperandTraits
<ResumeInst
, 1> {
4208 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst
, Value
)
4210 //===----------------------------------------------------------------------===//
4211 // CatchSwitchInst Class
4212 //===----------------------------------------------------------------------===//
4213 class CatchSwitchInst
: public Instruction
{
4214 /// The number of operands actually allocated. NumOperands is
4215 /// the number actually in use.
4216 unsigned ReservedSpace
;
4218 // Operand[0] = Outer scope
4219 // Operand[1] = Unwind block destination
4220 // Operand[n] = BasicBlock to go to on match
4221 CatchSwitchInst(const CatchSwitchInst
&CSI
);
4223 /// Create a new switch instruction, specifying a
4224 /// default destination. The number of additional handlers can be specified
4225 /// here to make memory allocation more efficient.
4226 /// This constructor can also autoinsert before another instruction.
4227 CatchSwitchInst(Value
*ParentPad
, BasicBlock
*UnwindDest
,
4228 unsigned NumHandlers
, const Twine
&NameStr
,
4229 Instruction
*InsertBefore
);
4231 /// Create a new switch instruction, specifying a
4232 /// default destination. The number of additional handlers can be specified
4233 /// here to make memory allocation more efficient.
4234 /// This constructor also autoinserts at the end of the specified BasicBlock.
4235 CatchSwitchInst(Value
*ParentPad
, BasicBlock
*UnwindDest
,
4236 unsigned NumHandlers
, const Twine
&NameStr
,
4237 BasicBlock
*InsertAtEnd
);
4239 // allocate space for exactly zero operands
4240 void *operator new(size_t s
) { return User::operator new(s
); }
4242 void init(Value
*ParentPad
, BasicBlock
*UnwindDest
, unsigned NumReserved
);
4243 void growOperands(unsigned Size
);
4246 // Note: Instruction needs to be a friend here to call cloneImpl.
4247 friend class Instruction
;
4249 CatchSwitchInst
*cloneImpl() const;
4252 static CatchSwitchInst
*Create(Value
*ParentPad
, BasicBlock
*UnwindDest
,
4253 unsigned NumHandlers
,
4254 const Twine
&NameStr
= "",
4255 Instruction
*InsertBefore
= nullptr) {
4256 return new CatchSwitchInst(ParentPad
, UnwindDest
, NumHandlers
, NameStr
,
4260 static CatchSwitchInst
*Create(Value
*ParentPad
, BasicBlock
*UnwindDest
,
4261 unsigned NumHandlers
, const Twine
&NameStr
,
4262 BasicBlock
*InsertAtEnd
) {
4263 return new CatchSwitchInst(ParentPad
, UnwindDest
, NumHandlers
, NameStr
,
4267 /// Provide fast operand accessors
4268 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
4270 // Accessor Methods for CatchSwitch stmt
4271 Value
*getParentPad() const { return getOperand(0); }
4272 void setParentPad(Value
*ParentPad
) { setOperand(0, ParentPad
); }
4274 // Accessor Methods for CatchSwitch stmt
4275 bool hasUnwindDest() const { return getSubclassDataFromInstruction() & 1; }
4276 bool unwindsToCaller() const { return !hasUnwindDest(); }
4277 BasicBlock
*getUnwindDest() const {
4278 if (hasUnwindDest())
4279 return cast
<BasicBlock
>(getOperand(1));
4282 void setUnwindDest(BasicBlock
*UnwindDest
) {
4284 assert(hasUnwindDest());
4285 setOperand(1, UnwindDest
);
4288 /// return the number of 'handlers' in this catchswitch
4289 /// instruction, except the default handler
4290 unsigned getNumHandlers() const {
4291 if (hasUnwindDest())
4292 return getNumOperands() - 2;
4293 return getNumOperands() - 1;
4297 static BasicBlock
*handler_helper(Value
*V
) { return cast
<BasicBlock
>(V
); }
4298 static const BasicBlock
*handler_helper(const Value
*V
) {
4299 return cast
<BasicBlock
>(V
);
4303 using DerefFnTy
= BasicBlock
*(*)(Value
*);
4304 using handler_iterator
= mapped_iterator
<op_iterator
, DerefFnTy
>;
4305 using handler_range
= iterator_range
<handler_iterator
>;
4306 using ConstDerefFnTy
= const BasicBlock
*(*)(const Value
*);
4307 using const_handler_iterator
=
4308 mapped_iterator
<const_op_iterator
, ConstDerefFnTy
>;
4309 using const_handler_range
= iterator_range
<const_handler_iterator
>;
4311 /// Returns an iterator that points to the first handler in CatchSwitchInst.
4312 handler_iterator
handler_begin() {
4313 op_iterator It
= op_begin() + 1;
4314 if (hasUnwindDest())
4316 return handler_iterator(It
, DerefFnTy(handler_helper
));
4319 /// Returns an iterator that points to the first handler in the
4320 /// CatchSwitchInst.
4321 const_handler_iterator
handler_begin() const {
4322 const_op_iterator It
= op_begin() + 1;
4323 if (hasUnwindDest())
4325 return const_handler_iterator(It
, ConstDerefFnTy(handler_helper
));
4328 /// Returns a read-only iterator that points one past the last
4329 /// handler in the CatchSwitchInst.
4330 handler_iterator
handler_end() {
4331 return handler_iterator(op_end(), DerefFnTy(handler_helper
));
4334 /// Returns an iterator that points one past the last handler in the
4335 /// CatchSwitchInst.
4336 const_handler_iterator
handler_end() const {
4337 return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper
));
4340 /// iteration adapter for range-for loops.
4341 handler_range
handlers() {
4342 return make_range(handler_begin(), handler_end());
4345 /// iteration adapter for range-for loops.
4346 const_handler_range
handlers() const {
4347 return make_range(handler_begin(), handler_end());
4350 /// Add an entry to the switch instruction...
4352 /// This action invalidates handler_end(). Old handler_end() iterator will
4353 /// point to the added handler.
4354 void addHandler(BasicBlock
*Dest
);
4356 void removeHandler(handler_iterator HI
);
4358 unsigned getNumSuccessors() const { return getNumOperands() - 1; }
4359 BasicBlock
*getSuccessor(unsigned Idx
) const {
4360 assert(Idx
< getNumSuccessors() &&
4361 "Successor # out of range for catchswitch!");
4362 return cast
<BasicBlock
>(getOperand(Idx
+ 1));
4364 void setSuccessor(unsigned Idx
, BasicBlock
*NewSucc
) {
4365 assert(Idx
< getNumSuccessors() &&
4366 "Successor # out of range for catchswitch!");
4367 setOperand(Idx
+ 1, NewSucc
);
4370 // Methods for support type inquiry through isa, cast, and dyn_cast:
4371 static bool classof(const Instruction
*I
) {
4372 return I
->getOpcode() == Instruction::CatchSwitch
;
4374 static bool classof(const Value
*V
) {
4375 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4380 struct OperandTraits
<CatchSwitchInst
> : public HungoffOperandTraits
<2> {};
4382 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst
, Value
)
4384 //===----------------------------------------------------------------------===//
4385 // CleanupPadInst Class
4386 //===----------------------------------------------------------------------===//
4387 class CleanupPadInst
: public FuncletPadInst
{
4389 explicit CleanupPadInst(Value
*ParentPad
, ArrayRef
<Value
*> Args
,
4390 unsigned Values
, const Twine
&NameStr
,
4391 Instruction
*InsertBefore
)
4392 : FuncletPadInst(Instruction::CleanupPad
, ParentPad
, Args
, Values
,
4393 NameStr
, InsertBefore
) {}
4394 explicit CleanupPadInst(Value
*ParentPad
, ArrayRef
<Value
*> Args
,
4395 unsigned Values
, const Twine
&NameStr
,
4396 BasicBlock
*InsertAtEnd
)
4397 : FuncletPadInst(Instruction::CleanupPad
, ParentPad
, Args
, Values
,
4398 NameStr
, InsertAtEnd
) {}
4401 static CleanupPadInst
*Create(Value
*ParentPad
, ArrayRef
<Value
*> Args
= None
,
4402 const Twine
&NameStr
= "",
4403 Instruction
*InsertBefore
= nullptr) {
4404 unsigned Values
= 1 + Args
.size();
4406 CleanupPadInst(ParentPad
, Args
, Values
, NameStr
, InsertBefore
);
4409 static CleanupPadInst
*Create(Value
*ParentPad
, ArrayRef
<Value
*> Args
,
4410 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
4411 unsigned Values
= 1 + Args
.size();
4413 CleanupPadInst(ParentPad
, Args
, Values
, NameStr
, InsertAtEnd
);
4416 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4417 static bool classof(const Instruction
*I
) {
4418 return I
->getOpcode() == Instruction::CleanupPad
;
4420 static bool classof(const Value
*V
) {
4421 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4425 //===----------------------------------------------------------------------===//
4426 // CatchPadInst Class
4427 //===----------------------------------------------------------------------===//
4428 class CatchPadInst
: public FuncletPadInst
{
4430 explicit CatchPadInst(Value
*CatchSwitch
, ArrayRef
<Value
*> Args
,
4431 unsigned Values
, const Twine
&NameStr
,
4432 Instruction
*InsertBefore
)
4433 : FuncletPadInst(Instruction::CatchPad
, CatchSwitch
, Args
, Values
,
4434 NameStr
, InsertBefore
) {}
4435 explicit CatchPadInst(Value
*CatchSwitch
, ArrayRef
<Value
*> Args
,
4436 unsigned Values
, const Twine
&NameStr
,
4437 BasicBlock
*InsertAtEnd
)
4438 : FuncletPadInst(Instruction::CatchPad
, CatchSwitch
, Args
, Values
,
4439 NameStr
, InsertAtEnd
) {}
4442 static CatchPadInst
*Create(Value
*CatchSwitch
, ArrayRef
<Value
*> Args
,
4443 const Twine
&NameStr
= "",
4444 Instruction
*InsertBefore
= nullptr) {
4445 unsigned Values
= 1 + Args
.size();
4447 CatchPadInst(CatchSwitch
, Args
, Values
, NameStr
, InsertBefore
);
4450 static CatchPadInst
*Create(Value
*CatchSwitch
, ArrayRef
<Value
*> Args
,
4451 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
4452 unsigned Values
= 1 + Args
.size();
4454 CatchPadInst(CatchSwitch
, Args
, Values
, NameStr
, InsertAtEnd
);
4457 /// Convenience accessors
4458 CatchSwitchInst
*getCatchSwitch() const {
4459 return cast
<CatchSwitchInst
>(Op
<-1>());
4461 void setCatchSwitch(Value
*CatchSwitch
) {
4462 assert(CatchSwitch
);
4463 Op
<-1>() = CatchSwitch
;
4466 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4467 static bool classof(const Instruction
*I
) {
4468 return I
->getOpcode() == Instruction::CatchPad
;
4470 static bool classof(const Value
*V
) {
4471 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4475 //===----------------------------------------------------------------------===//
4476 // CatchReturnInst Class
4477 //===----------------------------------------------------------------------===//
4479 class CatchReturnInst
: public Instruction
{
4480 CatchReturnInst(const CatchReturnInst
&RI
);
4481 CatchReturnInst(Value
*CatchPad
, BasicBlock
*BB
, Instruction
*InsertBefore
);
4482 CatchReturnInst(Value
*CatchPad
, BasicBlock
*BB
, BasicBlock
*InsertAtEnd
);
4484 void init(Value
*CatchPad
, BasicBlock
*BB
);
4487 // Note: Instruction needs to be a friend here to call cloneImpl.
4488 friend class Instruction
;
4490 CatchReturnInst
*cloneImpl() const;
4493 static CatchReturnInst
*Create(Value
*CatchPad
, BasicBlock
*BB
,
4494 Instruction
*InsertBefore
= nullptr) {
4497 return new (2) CatchReturnInst(CatchPad
, BB
, InsertBefore
);
4500 static CatchReturnInst
*Create(Value
*CatchPad
, BasicBlock
*BB
,
4501 BasicBlock
*InsertAtEnd
) {
4504 return new (2) CatchReturnInst(CatchPad
, BB
, InsertAtEnd
);
4507 /// Provide fast operand accessors
4508 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
4510 /// Convenience accessors.
4511 CatchPadInst
*getCatchPad() const { return cast
<CatchPadInst
>(Op
<0>()); }
4512 void setCatchPad(CatchPadInst
*CatchPad
) {
4517 BasicBlock
*getSuccessor() const { return cast
<BasicBlock
>(Op
<1>()); }
4518 void setSuccessor(BasicBlock
*NewSucc
) {
4522 unsigned getNumSuccessors() const { return 1; }
4524 /// Get the parentPad of this catchret's catchpad's catchswitch.
4525 /// The successor block is implicitly a member of this funclet.
4526 Value
*getCatchSwitchParentPad() const {
4527 return getCatchPad()->getCatchSwitch()->getParentPad();
4530 // Methods for support type inquiry through isa, cast, and dyn_cast:
4531 static bool classof(const Instruction
*I
) {
4532 return (I
->getOpcode() == Instruction::CatchRet
);
4534 static bool classof(const Value
*V
) {
4535 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4539 BasicBlock
*getSuccessor(unsigned Idx
) const {
4540 assert(Idx
< getNumSuccessors() && "Successor # out of range for catchret!");
4541 return getSuccessor();
4544 void setSuccessor(unsigned Idx
, BasicBlock
*B
) {
4545 assert(Idx
< getNumSuccessors() && "Successor # out of range for catchret!");
4551 struct OperandTraits
<CatchReturnInst
>
4552 : public FixedNumOperandTraits
<CatchReturnInst
, 2> {};
4554 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst
, Value
)
4556 //===----------------------------------------------------------------------===//
4557 // CleanupReturnInst Class
4558 //===----------------------------------------------------------------------===//
4560 class CleanupReturnInst
: public Instruction
{
4562 CleanupReturnInst(const CleanupReturnInst
&RI
);
4563 CleanupReturnInst(Value
*CleanupPad
, BasicBlock
*UnwindBB
, unsigned Values
,
4564 Instruction
*InsertBefore
= nullptr);
4565 CleanupReturnInst(Value
*CleanupPad
, BasicBlock
*UnwindBB
, unsigned Values
,
4566 BasicBlock
*InsertAtEnd
);
4568 void init(Value
*CleanupPad
, BasicBlock
*UnwindBB
);
4571 // Note: Instruction needs to be a friend here to call cloneImpl.
4572 friend class Instruction
;
4574 CleanupReturnInst
*cloneImpl() const;
4577 static CleanupReturnInst
*Create(Value
*CleanupPad
,
4578 BasicBlock
*UnwindBB
= nullptr,
4579 Instruction
*InsertBefore
= nullptr) {
4581 unsigned Values
= 1;
4585 CleanupReturnInst(CleanupPad
, UnwindBB
, Values
, InsertBefore
);
4588 static CleanupReturnInst
*Create(Value
*CleanupPad
, BasicBlock
*UnwindBB
,
4589 BasicBlock
*InsertAtEnd
) {
4591 unsigned Values
= 1;
4595 CleanupReturnInst(CleanupPad
, UnwindBB
, Values
, InsertAtEnd
);
4598 /// Provide fast operand accessors
4599 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
4601 bool hasUnwindDest() const { return getSubclassDataFromInstruction() & 1; }
4602 bool unwindsToCaller() const { return !hasUnwindDest(); }
4604 /// Convenience accessor.
4605 CleanupPadInst
*getCleanupPad() const {
4606 return cast
<CleanupPadInst
>(Op
<0>());
4608 void setCleanupPad(CleanupPadInst
*CleanupPad
) {
4610 Op
<0>() = CleanupPad
;
4613 unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; }
4615 BasicBlock
*getUnwindDest() const {
4616 return hasUnwindDest() ? cast
<BasicBlock
>(Op
<1>()) : nullptr;
4618 void setUnwindDest(BasicBlock
*NewDest
) {
4620 assert(hasUnwindDest());
4624 // Methods for support type inquiry through isa, cast, and dyn_cast:
4625 static bool classof(const Instruction
*I
) {
4626 return (I
->getOpcode() == Instruction::CleanupRet
);
4628 static bool classof(const Value
*V
) {
4629 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4633 BasicBlock
*getSuccessor(unsigned Idx
) const {
4635 return getUnwindDest();
4638 void setSuccessor(unsigned Idx
, BasicBlock
*B
) {
4643 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4644 // method so that subclasses cannot accidentally use it.
4645 void setInstructionSubclassData(unsigned short D
) {
4646 Instruction::setInstructionSubclassData(D
);
4651 struct OperandTraits
<CleanupReturnInst
>
4652 : public VariadicOperandTraits
<CleanupReturnInst
, /*MINARITY=*/1> {};
4654 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst
, Value
)
4656 //===----------------------------------------------------------------------===//
4657 // UnreachableInst Class
4658 //===----------------------------------------------------------------------===//
4660 //===---------------------------------------------------------------------------
4661 /// This function has undefined behavior. In particular, the
4662 /// presence of this instruction indicates some higher level knowledge that the
4663 /// end of the block cannot be reached.
4665 class UnreachableInst
: public Instruction
{
4667 // Note: Instruction needs to be a friend here to call cloneImpl.
4668 friend class Instruction
;
4670 UnreachableInst
*cloneImpl() const;
4673 explicit UnreachableInst(LLVMContext
&C
, Instruction
*InsertBefore
= nullptr);
4674 explicit UnreachableInst(LLVMContext
&C
, BasicBlock
*InsertAtEnd
);
4676 // allocate space for exactly zero operands
4677 void *operator new(size_t s
) {
4678 return User::operator new(s
, 0);
4681 unsigned getNumSuccessors() const { return 0; }
4683 // Methods for support type inquiry through isa, cast, and dyn_cast:
4684 static bool classof(const Instruction
*I
) {
4685 return I
->getOpcode() == Instruction::Unreachable
;
4687 static bool classof(const Value
*V
) {
4688 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4692 BasicBlock
*getSuccessor(unsigned idx
) const {
4693 llvm_unreachable("UnreachableInst has no successors!");
4696 void setSuccessor(unsigned idx
, BasicBlock
*B
) {
4697 llvm_unreachable("UnreachableInst has no successors!");
4701 //===----------------------------------------------------------------------===//
4703 //===----------------------------------------------------------------------===//
4705 /// This class represents a truncation of integer types.
4706 class TruncInst
: public CastInst
{
4708 // Note: Instruction needs to be a friend here to call cloneImpl.
4709 friend class Instruction
;
4711 /// Clone an identical TruncInst
4712 TruncInst
*cloneImpl() const;
4715 /// Constructor with insert-before-instruction semantics
4717 Value
*S
, ///< The value to be truncated
4718 Type
*Ty
, ///< The (smaller) type to truncate to
4719 const Twine
&NameStr
= "", ///< A name for the new instruction
4720 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
4723 /// Constructor with insert-at-end-of-block semantics
4725 Value
*S
, ///< The value to be truncated
4726 Type
*Ty
, ///< The (smaller) type to truncate to
4727 const Twine
&NameStr
, ///< A name for the new instruction
4728 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
4731 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4732 static bool classof(const Instruction
*I
) {
4733 return I
->getOpcode() == Trunc
;
4735 static bool classof(const Value
*V
) {
4736 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4740 //===----------------------------------------------------------------------===//
4742 //===----------------------------------------------------------------------===//
4744 /// This class represents zero extension of integer types.
4745 class ZExtInst
: public CastInst
{
4747 // Note: Instruction needs to be a friend here to call cloneImpl.
4748 friend class Instruction
;
4750 /// Clone an identical ZExtInst
4751 ZExtInst
*cloneImpl() const;
4754 /// Constructor with insert-before-instruction semantics
4756 Value
*S
, ///< The value to be zero extended
4757 Type
*Ty
, ///< The type to zero extend to
4758 const Twine
&NameStr
= "", ///< A name for the new instruction
4759 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
4762 /// Constructor with insert-at-end semantics.
4764 Value
*S
, ///< The value to be zero extended
4765 Type
*Ty
, ///< The type to zero extend to
4766 const Twine
&NameStr
, ///< A name for the new instruction
4767 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
4770 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4771 static bool classof(const Instruction
*I
) {
4772 return I
->getOpcode() == ZExt
;
4774 static bool classof(const Value
*V
) {
4775 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4779 //===----------------------------------------------------------------------===//
4781 //===----------------------------------------------------------------------===//
4783 /// This class represents a sign extension of integer types.
4784 class SExtInst
: public CastInst
{
4786 // Note: Instruction needs to be a friend here to call cloneImpl.
4787 friend class Instruction
;
4789 /// Clone an identical SExtInst
4790 SExtInst
*cloneImpl() const;
4793 /// Constructor with insert-before-instruction semantics
4795 Value
*S
, ///< The value to be sign extended
4796 Type
*Ty
, ///< The type to sign extend to
4797 const Twine
&NameStr
= "", ///< A name for the new instruction
4798 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
4801 /// Constructor with insert-at-end-of-block semantics
4803 Value
*S
, ///< The value to be sign extended
4804 Type
*Ty
, ///< The type to sign extend to
4805 const Twine
&NameStr
, ///< A name for the new instruction
4806 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
4809 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4810 static bool classof(const Instruction
*I
) {
4811 return I
->getOpcode() == SExt
;
4813 static bool classof(const Value
*V
) {
4814 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4818 //===----------------------------------------------------------------------===//
4819 // FPTruncInst Class
4820 //===----------------------------------------------------------------------===//
4822 /// This class represents a truncation of floating point types.
4823 class FPTruncInst
: public CastInst
{
4825 // Note: Instruction needs to be a friend here to call cloneImpl.
4826 friend class Instruction
;
4828 /// Clone an identical FPTruncInst
4829 FPTruncInst
*cloneImpl() const;
4832 /// Constructor with insert-before-instruction semantics
4834 Value
*S
, ///< The value to be truncated
4835 Type
*Ty
, ///< The type to truncate to
4836 const Twine
&NameStr
= "", ///< A name for the new instruction
4837 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
4840 /// Constructor with insert-before-instruction semantics
4842 Value
*S
, ///< The value to be truncated
4843 Type
*Ty
, ///< The type to truncate to
4844 const Twine
&NameStr
, ///< A name for the new instruction
4845 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
4848 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4849 static bool classof(const Instruction
*I
) {
4850 return I
->getOpcode() == FPTrunc
;
4852 static bool classof(const Value
*V
) {
4853 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4857 //===----------------------------------------------------------------------===//
4859 //===----------------------------------------------------------------------===//
4861 /// This class represents an extension of floating point types.
4862 class FPExtInst
: public CastInst
{
4864 // Note: Instruction needs to be a friend here to call cloneImpl.
4865 friend class Instruction
;
4867 /// Clone an identical FPExtInst
4868 FPExtInst
*cloneImpl() const;
4871 /// Constructor with insert-before-instruction semantics
4873 Value
*S
, ///< The value to be extended
4874 Type
*Ty
, ///< The type to extend to
4875 const Twine
&NameStr
= "", ///< A name for the new instruction
4876 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
4879 /// Constructor with insert-at-end-of-block semantics
4881 Value
*S
, ///< The value to be extended
4882 Type
*Ty
, ///< The type to extend to
4883 const Twine
&NameStr
, ///< A name for the new instruction
4884 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
4887 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4888 static bool classof(const Instruction
*I
) {
4889 return I
->getOpcode() == FPExt
;
4891 static bool classof(const Value
*V
) {
4892 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4896 //===----------------------------------------------------------------------===//
4898 //===----------------------------------------------------------------------===//
4900 /// This class represents a cast unsigned integer to floating point.
4901 class UIToFPInst
: public CastInst
{
4903 // Note: Instruction needs to be a friend here to call cloneImpl.
4904 friend class Instruction
;
4906 /// Clone an identical UIToFPInst
4907 UIToFPInst
*cloneImpl() const;
4910 /// Constructor with insert-before-instruction semantics
4912 Value
*S
, ///< The value to be converted
4913 Type
*Ty
, ///< The type to convert to
4914 const Twine
&NameStr
= "", ///< A name for the new instruction
4915 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
4918 /// Constructor with insert-at-end-of-block semantics
4920 Value
*S
, ///< The value to be converted
4921 Type
*Ty
, ///< The type to convert to
4922 const Twine
&NameStr
, ///< A name for the new instruction
4923 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
4926 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4927 static bool classof(const Instruction
*I
) {
4928 return I
->getOpcode() == UIToFP
;
4930 static bool classof(const Value
*V
) {
4931 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4935 //===----------------------------------------------------------------------===//
4937 //===----------------------------------------------------------------------===//
4939 /// This class represents a cast from signed integer to floating point.
4940 class SIToFPInst
: public CastInst
{
4942 // Note: Instruction needs to be a friend here to call cloneImpl.
4943 friend class Instruction
;
4945 /// Clone an identical SIToFPInst
4946 SIToFPInst
*cloneImpl() const;
4949 /// Constructor with insert-before-instruction semantics
4951 Value
*S
, ///< The value to be converted
4952 Type
*Ty
, ///< The type to convert to
4953 const Twine
&NameStr
= "", ///< A name for the new instruction
4954 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
4957 /// Constructor with insert-at-end-of-block semantics
4959 Value
*S
, ///< The value to be converted
4960 Type
*Ty
, ///< The type to convert to
4961 const Twine
&NameStr
, ///< A name for the new instruction
4962 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
4965 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4966 static bool classof(const Instruction
*I
) {
4967 return I
->getOpcode() == SIToFP
;
4969 static bool classof(const Value
*V
) {
4970 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4974 //===----------------------------------------------------------------------===//
4976 //===----------------------------------------------------------------------===//
4978 /// This class represents a cast from floating point to unsigned integer
4979 class FPToUIInst
: public CastInst
{
4981 // Note: Instruction needs to be a friend here to call cloneImpl.
4982 friend class Instruction
;
4984 /// Clone an identical FPToUIInst
4985 FPToUIInst
*cloneImpl() const;
4988 /// Constructor with insert-before-instruction semantics
4990 Value
*S
, ///< The value to be converted
4991 Type
*Ty
, ///< The type to convert to
4992 const Twine
&NameStr
= "", ///< A name for the new instruction
4993 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
4996 /// Constructor with insert-at-end-of-block semantics
4998 Value
*S
, ///< The value to be converted
4999 Type
*Ty
, ///< The type to convert to
5000 const Twine
&NameStr
, ///< A name for the new instruction
5001 BasicBlock
*InsertAtEnd
///< Where to insert the new instruction
5004 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5005 static bool classof(const Instruction
*I
) {
5006 return I
->getOpcode() == FPToUI
;
5008 static bool classof(const Value
*V
) {
5009 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
5013 //===----------------------------------------------------------------------===//
5015 //===----------------------------------------------------------------------===//
5017 /// This class represents a cast from floating point to signed integer.
5018 class FPToSIInst
: public CastInst
{
5020 // Note: Instruction needs to be a friend here to call cloneImpl.
5021 friend class Instruction
;
5023 /// Clone an identical FPToSIInst
5024 FPToSIInst
*cloneImpl() const;
5027 /// Constructor with insert-before-instruction semantics
5029 Value
*S
, ///< The value to be converted
5030 Type
*Ty
, ///< The type to convert to
5031 const Twine
&NameStr
= "", ///< A name for the new instruction
5032 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
5035 /// Constructor with insert-at-end-of-block semantics
5037 Value
*S
, ///< The value to be converted
5038 Type
*Ty
, ///< The type to convert to
5039 const Twine
&NameStr
, ///< A name for the new instruction
5040 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
5043 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5044 static bool classof(const Instruction
*I
) {
5045 return I
->getOpcode() == FPToSI
;
5047 static bool classof(const Value
*V
) {
5048 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
5052 //===----------------------------------------------------------------------===//
5053 // IntToPtrInst Class
5054 //===----------------------------------------------------------------------===//
5056 /// This class represents a cast from an integer to a pointer.
5057 class IntToPtrInst
: public CastInst
{
5059 // Note: Instruction needs to be a friend here to call cloneImpl.
5060 friend class Instruction
;
5062 /// Constructor with insert-before-instruction semantics
5064 Value
*S
, ///< The value to be converted
5065 Type
*Ty
, ///< The type to convert to
5066 const Twine
&NameStr
= "", ///< A name for the new instruction
5067 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
5070 /// Constructor with insert-at-end-of-block semantics
5072 Value
*S
, ///< The value to be converted
5073 Type
*Ty
, ///< The type to convert to
5074 const Twine
&NameStr
, ///< A name for the new instruction
5075 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
5078 /// Clone an identical IntToPtrInst.
5079 IntToPtrInst
*cloneImpl() const;
5081 /// Returns the address space of this instruction's pointer type.
5082 unsigned getAddressSpace() const {
5083 return getType()->getPointerAddressSpace();
5086 // Methods for support type inquiry through isa, cast, and dyn_cast:
5087 static bool classof(const Instruction
*I
) {
5088 return I
->getOpcode() == IntToPtr
;
5090 static bool classof(const Value
*V
) {
5091 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
5095 //===----------------------------------------------------------------------===//
5096 // PtrToIntInst Class
5097 //===----------------------------------------------------------------------===//
5099 /// This class represents a cast from a pointer to an integer.
5100 class PtrToIntInst
: public CastInst
{
5102 // Note: Instruction needs to be a friend here to call cloneImpl.
5103 friend class Instruction
;
5105 /// Clone an identical PtrToIntInst.
5106 PtrToIntInst
*cloneImpl() const;
5109 /// Constructor with insert-before-instruction semantics
5111 Value
*S
, ///< The value to be converted
5112 Type
*Ty
, ///< The type to convert to
5113 const Twine
&NameStr
= "", ///< A name for the new instruction
5114 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
5117 /// Constructor with insert-at-end-of-block semantics
5119 Value
*S
, ///< The value to be converted
5120 Type
*Ty
, ///< The type to convert to
5121 const Twine
&NameStr
, ///< A name for the new instruction
5122 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
5125 /// Gets the pointer operand.
5126 Value
*getPointerOperand() { return getOperand(0); }
5127 /// Gets the pointer operand.
5128 const Value
*getPointerOperand() const { return getOperand(0); }
5129 /// Gets the operand index of the pointer operand.
5130 static unsigned getPointerOperandIndex() { return 0U; }
5132 /// Returns the address space of the pointer operand.
5133 unsigned getPointerAddressSpace() const {
5134 return getPointerOperand()->getType()->getPointerAddressSpace();
5137 // Methods for support type inquiry through isa, cast, and dyn_cast:
5138 static bool classof(const Instruction
*I
) {
5139 return I
->getOpcode() == PtrToInt
;
5141 static bool classof(const Value
*V
) {
5142 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
5146 //===----------------------------------------------------------------------===//
5147 // BitCastInst Class
5148 //===----------------------------------------------------------------------===//
5150 /// This class represents a no-op cast from one type to another.
5151 class BitCastInst
: public CastInst
{
5153 // Note: Instruction needs to be a friend here to call cloneImpl.
5154 friend class Instruction
;
5156 /// Clone an identical BitCastInst.
5157 BitCastInst
*cloneImpl() const;
5160 /// Constructor with insert-before-instruction semantics
5162 Value
*S
, ///< The value to be casted
5163 Type
*Ty
, ///< The type to casted to
5164 const Twine
&NameStr
= "", ///< A name for the new instruction
5165 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
5168 /// Constructor with insert-at-end-of-block semantics
5170 Value
*S
, ///< The value to be casted
5171 Type
*Ty
, ///< The type to casted to
5172 const Twine
&NameStr
, ///< A name for the new instruction
5173 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
5176 // Methods for support type inquiry through isa, cast, and dyn_cast:
5177 static bool classof(const Instruction
*I
) {
5178 return I
->getOpcode() == BitCast
;
5180 static bool classof(const Value
*V
) {
5181 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
5185 //===----------------------------------------------------------------------===//
5186 // AddrSpaceCastInst Class
5187 //===----------------------------------------------------------------------===//
5189 /// This class represents a conversion between pointers from one address space
5191 class AddrSpaceCastInst
: public CastInst
{
5193 // Note: Instruction needs to be a friend here to call cloneImpl.
5194 friend class Instruction
;
5196 /// Clone an identical AddrSpaceCastInst.
5197 AddrSpaceCastInst
*cloneImpl() const;
5200 /// Constructor with insert-before-instruction semantics
5202 Value
*S
, ///< The value to be casted
5203 Type
*Ty
, ///< The type to casted to
5204 const Twine
&NameStr
= "", ///< A name for the new instruction
5205 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
5208 /// Constructor with insert-at-end-of-block semantics
5210 Value
*S
, ///< The value to be casted
5211 Type
*Ty
, ///< The type to casted to
5212 const Twine
&NameStr
, ///< A name for the new instruction
5213 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
5216 // Methods for support type inquiry through isa, cast, and dyn_cast:
5217 static bool classof(const Instruction
*I
) {
5218 return I
->getOpcode() == AddrSpaceCast
;
5220 static bool classof(const Value
*V
) {
5221 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
5224 /// Gets the pointer operand.
5225 Value
*getPointerOperand() {
5226 return getOperand(0);
5229 /// Gets the pointer operand.
5230 const Value
*getPointerOperand() const {
5231 return getOperand(0);
5234 /// Gets the operand index of the pointer operand.
5235 static unsigned getPointerOperandIndex() {
5239 /// Returns the address space of the pointer operand.
5240 unsigned getSrcAddressSpace() const {
5241 return getPointerOperand()->getType()->getPointerAddressSpace();
5244 /// Returns the address space of the result.
5245 unsigned getDestAddressSpace() const {
5246 return getType()->getPointerAddressSpace();
5250 /// A helper function that returns the pointer operand of a load or store
5251 /// instruction. Returns nullptr if not load or store.
5252 inline const Value
*getLoadStorePointerOperand(const Value
*V
) {
5253 if (auto *Load
= dyn_cast
<LoadInst
>(V
))
5254 return Load
->getPointerOperand();
5255 if (auto *Store
= dyn_cast
<StoreInst
>(V
))
5256 return Store
->getPointerOperand();
5259 inline Value
*getLoadStorePointerOperand(Value
*V
) {
5260 return const_cast<Value
*>(
5261 getLoadStorePointerOperand(static_cast<const Value
*>(V
)));
5264 /// A helper function that returns the pointer operand of a load, store
5265 /// or GEP instruction. Returns nullptr if not load, store, or GEP.
5266 inline const Value
*getPointerOperand(const Value
*V
) {
5267 if (auto *Ptr
= getLoadStorePointerOperand(V
))
5269 if (auto *Gep
= dyn_cast
<GetElementPtrInst
>(V
))
5270 return Gep
->getPointerOperand();
5273 inline Value
*getPointerOperand(Value
*V
) {
5274 return const_cast<Value
*>(getPointerOperand(static_cast<const Value
*>(V
)));
5277 /// A helper function that returns the alignment of load or store instruction.
5278 inline unsigned getLoadStoreAlignment(Value
*I
) {
5279 assert((isa
<LoadInst
>(I
) || isa
<StoreInst
>(I
)) &&
5280 "Expected Load or Store instruction");
5281 if (auto *LI
= dyn_cast
<LoadInst
>(I
))
5282 return LI
->getAlignment();
5283 return cast
<StoreInst
>(I
)->getAlignment();
5286 /// A helper function that returns the address space of the pointer operand of
5287 /// load or store instruction.
5288 inline unsigned getLoadStoreAddressSpace(Value
*I
) {
5289 assert((isa
<LoadInst
>(I
) || isa
<StoreInst
>(I
)) &&
5290 "Expected Load or Store instruction");
5291 if (auto *LI
= dyn_cast
<LoadInst
>(I
))
5292 return LI
->getPointerAddressSpace();
5293 return cast
<StoreInst
>(I
)->getPointerAddressSpace();
5296 } // end namespace llvm
5298 #endif // LLVM_IR_INSTRUCTIONS_H