1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass moves instructions into successor blocks when possible, so that
11 // they aren't executed on paths where their results aren't needed.
13 // This pass is not intended to be a replacement or a complete alternative
14 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
15 // constructs that are not exposed before lowering and instruction selection.
17 //===----------------------------------------------------------------------===//
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/SparseBitVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
27 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
28 #include "llvm/CodeGen/MachineDominators.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineFunctionPass.h"
31 #include "llvm/CodeGen/MachineInstr.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachinePostDominators.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/TargetInstrInfo.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/DebugInfoMetadata.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/BranchProbability.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/raw_ostream.h"
56 #define DEBUG_TYPE "machine-sink"
59 SplitEdges("machine-sink-split",
60 cl::desc("Split critical edges during machine sinking"),
61 cl::init(true), cl::Hidden
);
64 UseBlockFreqInfo("machine-sink-bfi",
65 cl::desc("Use block frequency info to find successors to sink"),
66 cl::init(true), cl::Hidden
);
68 static cl::opt
<unsigned> SplitEdgeProbabilityThreshold(
69 "machine-sink-split-probability-threshold",
71 "Percentage threshold for splitting single-instruction critical edge. "
72 "If the branch threshold is higher than this threshold, we allow "
73 "speculative execution of up to 1 instruction to avoid branching to "
74 "splitted critical edge"),
75 cl::init(40), cl::Hidden
);
77 STATISTIC(NumSunk
, "Number of machine instructions sunk");
78 STATISTIC(NumSplit
, "Number of critical edges split");
79 STATISTIC(NumCoalesces
, "Number of copies coalesced");
80 STATISTIC(NumPostRACopySink
, "Number of copies sunk after RA");
84 class MachineSinking
: public MachineFunctionPass
{
85 const TargetInstrInfo
*TII
;
86 const TargetRegisterInfo
*TRI
;
87 MachineRegisterInfo
*MRI
; // Machine register information
88 MachineDominatorTree
*DT
; // Machine dominator tree
89 MachinePostDominatorTree
*PDT
; // Machine post dominator tree
91 const MachineBlockFrequencyInfo
*MBFI
;
92 const MachineBranchProbabilityInfo
*MBPI
;
95 // Remember which edges have been considered for breaking.
96 SmallSet
<std::pair
<MachineBasicBlock
*, MachineBasicBlock
*>, 8>
98 // Remember which edges we are about to split.
99 // This is different from CEBCandidates since those edges
101 SetVector
<std::pair
<MachineBasicBlock
*, MachineBasicBlock
*>> ToSplit
;
103 SparseBitVector
<> RegsToClearKillFlags
;
105 using AllSuccsCache
=
106 std::map
<MachineBasicBlock
*, SmallVector
<MachineBasicBlock
*, 4>>;
109 static char ID
; // Pass identification
111 MachineSinking() : MachineFunctionPass(ID
) {
112 initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
115 bool runOnMachineFunction(MachineFunction
&MF
) override
;
117 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
118 AU
.setPreservesCFG();
119 MachineFunctionPass::getAnalysisUsage(AU
);
120 AU
.addRequired
<AAResultsWrapperPass
>();
121 AU
.addRequired
<MachineDominatorTree
>();
122 AU
.addRequired
<MachinePostDominatorTree
>();
123 AU
.addRequired
<MachineLoopInfo
>();
124 AU
.addRequired
<MachineBranchProbabilityInfo
>();
125 AU
.addPreserved
<MachineDominatorTree
>();
126 AU
.addPreserved
<MachinePostDominatorTree
>();
127 AU
.addPreserved
<MachineLoopInfo
>();
128 if (UseBlockFreqInfo
)
129 AU
.addRequired
<MachineBlockFrequencyInfo
>();
132 void releaseMemory() override
{
133 CEBCandidates
.clear();
137 bool ProcessBlock(MachineBasicBlock
&MBB
);
138 bool isWorthBreakingCriticalEdge(MachineInstr
&MI
,
139 MachineBasicBlock
*From
,
140 MachineBasicBlock
*To
);
142 /// Postpone the splitting of the given critical
143 /// edge (\p From, \p To).
145 /// We do not split the edges on the fly. Indeed, this invalidates
146 /// the dominance information and thus triggers a lot of updates
147 /// of that information underneath.
148 /// Instead, we postpone all the splits after each iteration of
149 /// the main loop. That way, the information is at least valid
150 /// for the lifetime of an iteration.
152 /// \return True if the edge is marked as toSplit, false otherwise.
153 /// False can be returned if, for instance, this is not profitable.
154 bool PostponeSplitCriticalEdge(MachineInstr
&MI
,
155 MachineBasicBlock
*From
,
156 MachineBasicBlock
*To
,
158 bool SinkInstruction(MachineInstr
&MI
, bool &SawStore
,
160 AllSuccsCache
&AllSuccessors
);
161 bool AllUsesDominatedByBlock(unsigned Reg
, MachineBasicBlock
*MBB
,
162 MachineBasicBlock
*DefMBB
,
163 bool &BreakPHIEdge
, bool &LocalUse
) const;
164 MachineBasicBlock
*FindSuccToSinkTo(MachineInstr
&MI
, MachineBasicBlock
*MBB
,
165 bool &BreakPHIEdge
, AllSuccsCache
&AllSuccessors
);
166 bool isProfitableToSinkTo(unsigned Reg
, MachineInstr
&MI
,
167 MachineBasicBlock
*MBB
,
168 MachineBasicBlock
*SuccToSinkTo
,
169 AllSuccsCache
&AllSuccessors
);
171 bool PerformTrivialForwardCoalescing(MachineInstr
&MI
,
172 MachineBasicBlock
*MBB
);
174 SmallVector
<MachineBasicBlock
*, 4> &
175 GetAllSortedSuccessors(MachineInstr
&MI
, MachineBasicBlock
*MBB
,
176 AllSuccsCache
&AllSuccessors
) const;
179 } // end anonymous namespace
181 char MachineSinking::ID
= 0;
183 char &llvm::MachineSinkingID
= MachineSinking::ID
;
185 INITIALIZE_PASS_BEGIN(MachineSinking
, DEBUG_TYPE
,
186 "Machine code sinking", false, false)
187 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo
)
188 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree
)
189 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
190 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
191 INITIALIZE_PASS_END(MachineSinking
, DEBUG_TYPE
,
192 "Machine code sinking", false, false)
194 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr
&MI
,
195 MachineBasicBlock
*MBB
) {
199 unsigned SrcReg
= MI
.getOperand(1).getReg();
200 unsigned DstReg
= MI
.getOperand(0).getReg();
201 if (!TargetRegisterInfo::isVirtualRegister(SrcReg
) ||
202 !TargetRegisterInfo::isVirtualRegister(DstReg
) ||
203 !MRI
->hasOneNonDBGUse(SrcReg
))
206 const TargetRegisterClass
*SRC
= MRI
->getRegClass(SrcReg
);
207 const TargetRegisterClass
*DRC
= MRI
->getRegClass(DstReg
);
211 MachineInstr
*DefMI
= MRI
->getVRegDef(SrcReg
);
212 if (DefMI
->isCopyLike())
214 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI
);
215 LLVM_DEBUG(dbgs() << "*** to: " << MI
);
216 MRI
->replaceRegWith(DstReg
, SrcReg
);
217 MI
.eraseFromParent();
219 // Conservatively, clear any kill flags, since it's possible that they are no
221 MRI
->clearKillFlags(SrcReg
);
227 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
228 /// occur in blocks dominated by the specified block. If any use is in the
229 /// definition block, then return false since it is never legal to move def
232 MachineSinking::AllUsesDominatedByBlock(unsigned Reg
,
233 MachineBasicBlock
*MBB
,
234 MachineBasicBlock
*DefMBB
,
236 bool &LocalUse
) const {
237 assert(TargetRegisterInfo::isVirtualRegister(Reg
) &&
238 "Only makes sense for vregs");
240 // Ignore debug uses because debug info doesn't affect the code.
241 if (MRI
->use_nodbg_empty(Reg
))
244 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
245 // into and they are all PHI nodes. In this case, machine-sink must break
246 // the critical edge first. e.g.
248 // %bb.1: derived from LLVM BB %bb4.preheader
249 // Predecessors according to CFG: %bb.0
251 // %reg16385 = DEC64_32r %reg16437, implicit-def dead %eflags
253 // JE_4 <%bb.37>, implicit %eflags
254 // Successors according to CFG: %bb.37 %bb.2
256 // %bb.2: derived from LLVM BB %bb.nph
257 // Predecessors according to CFG: %bb.0 %bb.1
258 // %reg16386 = PHI %reg16434, %bb.0, %reg16385, %bb.1
260 for (MachineOperand
&MO
: MRI
->use_nodbg_operands(Reg
)) {
261 MachineInstr
*UseInst
= MO
.getParent();
262 unsigned OpNo
= &MO
- &UseInst
->getOperand(0);
263 MachineBasicBlock
*UseBlock
= UseInst
->getParent();
264 if (!(UseBlock
== MBB
&& UseInst
->isPHI() &&
265 UseInst
->getOperand(OpNo
+1).getMBB() == DefMBB
)) {
266 BreakPHIEdge
= false;
273 for (MachineOperand
&MO
: MRI
->use_nodbg_operands(Reg
)) {
274 // Determine the block of the use.
275 MachineInstr
*UseInst
= MO
.getParent();
276 unsigned OpNo
= &MO
- &UseInst
->getOperand(0);
277 MachineBasicBlock
*UseBlock
= UseInst
->getParent();
278 if (UseInst
->isPHI()) {
279 // PHI nodes use the operand in the predecessor block, not the block with
281 UseBlock
= UseInst
->getOperand(OpNo
+1).getMBB();
282 } else if (UseBlock
== DefMBB
) {
287 // Check that it dominates.
288 if (!DT
->dominates(MBB
, UseBlock
))
295 bool MachineSinking::runOnMachineFunction(MachineFunction
&MF
) {
296 if (skipFunction(MF
.getFunction()))
299 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n");
301 TII
= MF
.getSubtarget().getInstrInfo();
302 TRI
= MF
.getSubtarget().getRegisterInfo();
303 MRI
= &MF
.getRegInfo();
304 DT
= &getAnalysis
<MachineDominatorTree
>();
305 PDT
= &getAnalysis
<MachinePostDominatorTree
>();
306 LI
= &getAnalysis
<MachineLoopInfo
>();
307 MBFI
= UseBlockFreqInfo
? &getAnalysis
<MachineBlockFrequencyInfo
>() : nullptr;
308 MBPI
= &getAnalysis
<MachineBranchProbabilityInfo
>();
309 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
311 bool EverMadeChange
= false;
314 bool MadeChange
= false;
316 // Process all basic blocks.
317 CEBCandidates
.clear();
320 MadeChange
|= ProcessBlock(MBB
);
322 // If we have anything we marked as toSplit, split it now.
323 for (auto &Pair
: ToSplit
) {
324 auto NewSucc
= Pair
.first
->SplitCriticalEdge(Pair
.second
, *this);
325 if (NewSucc
!= nullptr) {
326 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: "
327 << printMBBReference(*Pair
.first
) << " -- "
328 << printMBBReference(*NewSucc
) << " -- "
329 << printMBBReference(*Pair
.second
) << '\n');
333 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n");
335 // If this iteration over the code changed anything, keep iterating.
336 if (!MadeChange
) break;
337 EverMadeChange
= true;
340 // Now clear any kill flags for recorded registers.
341 for (auto I
: RegsToClearKillFlags
)
342 MRI
->clearKillFlags(I
);
343 RegsToClearKillFlags
.clear();
345 return EverMadeChange
;
348 bool MachineSinking::ProcessBlock(MachineBasicBlock
&MBB
) {
349 // Can't sink anything out of a block that has less than two successors.
350 if (MBB
.succ_size() <= 1 || MBB
.empty()) return false;
352 // Don't bother sinking code out of unreachable blocks. In addition to being
353 // unprofitable, it can also lead to infinite looping, because in an
354 // unreachable loop there may be nowhere to stop.
355 if (!DT
->isReachableFromEntry(&MBB
)) return false;
357 bool MadeChange
= false;
359 // Cache all successors, sorted by frequency info and loop depth.
360 AllSuccsCache AllSuccessors
;
362 // Walk the basic block bottom-up. Remember if we saw a store.
363 MachineBasicBlock::iterator I
= MBB
.end();
365 bool ProcessedBegin
, SawStore
= false;
367 MachineInstr
&MI
= *I
; // The instruction to sink.
369 // Predecrement I (if it's not begin) so that it isn't invalidated by
371 ProcessedBegin
= I
== MBB
.begin();
375 if (MI
.isDebugInstr())
378 bool Joined
= PerformTrivialForwardCoalescing(MI
, &MBB
);
384 if (SinkInstruction(MI
, SawStore
, AllSuccessors
)) {
389 // If we just processed the first instruction in the block, we're done.
390 } while (!ProcessedBegin
);
395 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr
&MI
,
396 MachineBasicBlock
*From
,
397 MachineBasicBlock
*To
) {
398 // FIXME: Need much better heuristics.
400 // If the pass has already considered breaking this edge (during this pass
401 // through the function), then let's go ahead and break it. This means
402 // sinking multiple "cheap" instructions into the same block.
403 if (!CEBCandidates
.insert(std::make_pair(From
, To
)).second
)
406 if (!MI
.isCopy() && !TII
->isAsCheapAsAMove(MI
))
409 if (From
->isSuccessor(To
) && MBPI
->getEdgeProbability(From
, To
) <=
410 BranchProbability(SplitEdgeProbabilityThreshold
, 100))
413 // MI is cheap, we probably don't want to break the critical edge for it.
414 // However, if this would allow some definitions of its source operands
415 // to be sunk then it's probably worth it.
416 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
417 const MachineOperand
&MO
= MI
.getOperand(i
);
418 if (!MO
.isReg() || !MO
.isUse())
420 unsigned Reg
= MO
.getReg();
424 // We don't move live definitions of physical registers,
425 // so sinking their uses won't enable any opportunities.
426 if (TargetRegisterInfo::isPhysicalRegister(Reg
))
429 // If this instruction is the only user of a virtual register,
430 // check if breaking the edge will enable sinking
431 // both this instruction and the defining instruction.
432 if (MRI
->hasOneNonDBGUse(Reg
)) {
433 // If the definition resides in same MBB,
434 // claim it's likely we can sink these together.
435 // If definition resides elsewhere, we aren't
436 // blocking it from being sunk so don't break the edge.
437 MachineInstr
*DefMI
= MRI
->getVRegDef(Reg
);
438 if (DefMI
->getParent() == MI
.getParent())
446 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr
&MI
,
447 MachineBasicBlock
*FromBB
,
448 MachineBasicBlock
*ToBB
,
450 if (!isWorthBreakingCriticalEdge(MI
, FromBB
, ToBB
))
453 // Avoid breaking back edge. From == To means backedge for single BB loop.
454 if (!SplitEdges
|| FromBB
== ToBB
)
457 // Check for backedges of more "complex" loops.
458 if (LI
->getLoopFor(FromBB
) == LI
->getLoopFor(ToBB
) &&
459 LI
->isLoopHeader(ToBB
))
462 // It's not always legal to break critical edges and sink the computation
470 // ... no uses of v1024
476 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted:
485 // ... no uses of v1024
491 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3
492 // flow. We need to ensure the new basic block where the computation is
493 // sunk to dominates all the uses.
494 // It's only legal to break critical edge and sink the computation to the
495 // new block if all the predecessors of "To", except for "From", are
496 // not dominated by "From". Given SSA property, this means these
497 // predecessors are dominated by "To".
499 // There is no need to do this check if all the uses are PHI nodes. PHI
500 // sources are only defined on the specific predecessor edges.
502 for (MachineBasicBlock::pred_iterator PI
= ToBB
->pred_begin(),
503 E
= ToBB
->pred_end(); PI
!= E
; ++PI
) {
506 if (!DT
->dominates(ToBB
, *PI
))
511 ToSplit
.insert(std::make_pair(FromBB
, ToBB
));
516 /// isProfitableToSinkTo - Return true if it is profitable to sink MI.
517 bool MachineSinking::isProfitableToSinkTo(unsigned Reg
, MachineInstr
&MI
,
518 MachineBasicBlock
*MBB
,
519 MachineBasicBlock
*SuccToSinkTo
,
520 AllSuccsCache
&AllSuccessors
) {
521 assert (SuccToSinkTo
&& "Invalid SinkTo Candidate BB");
523 if (MBB
== SuccToSinkTo
)
526 // It is profitable if SuccToSinkTo does not post dominate current block.
527 if (!PDT
->dominates(SuccToSinkTo
, MBB
))
530 // It is profitable to sink an instruction from a deeper loop to a shallower
531 // loop, even if the latter post-dominates the former (PR21115).
532 if (LI
->getLoopDepth(MBB
) > LI
->getLoopDepth(SuccToSinkTo
))
535 // Check if only use in post dominated block is PHI instruction.
536 bool NonPHIUse
= false;
537 for (MachineInstr
&UseInst
: MRI
->use_nodbg_instructions(Reg
)) {
538 MachineBasicBlock
*UseBlock
= UseInst
.getParent();
539 if (UseBlock
== SuccToSinkTo
&& !UseInst
.isPHI())
545 // If SuccToSinkTo post dominates then also it may be profitable if MI
546 // can further profitably sinked into another block in next round.
547 bool BreakPHIEdge
= false;
548 // FIXME - If finding successor is compile time expensive then cache results.
549 if (MachineBasicBlock
*MBB2
=
550 FindSuccToSinkTo(MI
, SuccToSinkTo
, BreakPHIEdge
, AllSuccessors
))
551 return isProfitableToSinkTo(Reg
, MI
, SuccToSinkTo
, MBB2
, AllSuccessors
);
553 // If SuccToSinkTo is final destination and it is a post dominator of current
554 // block then it is not profitable to sink MI into SuccToSinkTo block.
558 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly
559 /// computing it if it was not already cached.
560 SmallVector
<MachineBasicBlock
*, 4> &
561 MachineSinking::GetAllSortedSuccessors(MachineInstr
&MI
, MachineBasicBlock
*MBB
,
562 AllSuccsCache
&AllSuccessors
) const {
563 // Do we have the sorted successors in cache ?
564 auto Succs
= AllSuccessors
.find(MBB
);
565 if (Succs
!= AllSuccessors
.end())
566 return Succs
->second
;
568 SmallVector
<MachineBasicBlock
*, 4> AllSuccs(MBB
->succ_begin(),
571 // Handle cases where sinking can happen but where the sink point isn't a
572 // successor. For example:
578 const std::vector
<MachineDomTreeNode
*> &Children
=
579 DT
->getNode(MBB
)->getChildren();
580 for (const auto &DTChild
: Children
)
581 // DomTree children of MBB that have MBB as immediate dominator are added.
582 if (DTChild
->getIDom()->getBlock() == MI
.getParent() &&
583 // Skip MBBs already added to the AllSuccs vector above.
584 !MBB
->isSuccessor(DTChild
->getBlock()))
585 AllSuccs
.push_back(DTChild
->getBlock());
587 // Sort Successors according to their loop depth or block frequency info.
589 AllSuccs
.begin(), AllSuccs
.end(),
590 [this](const MachineBasicBlock
*L
, const MachineBasicBlock
*R
) {
591 uint64_t LHSFreq
= MBFI
? MBFI
->getBlockFreq(L
).getFrequency() : 0;
592 uint64_t RHSFreq
= MBFI
? MBFI
->getBlockFreq(R
).getFrequency() : 0;
593 bool HasBlockFreq
= LHSFreq
!= 0 && RHSFreq
!= 0;
594 return HasBlockFreq
? LHSFreq
< RHSFreq
595 : LI
->getLoopDepth(L
) < LI
->getLoopDepth(R
);
598 auto it
= AllSuccessors
.insert(std::make_pair(MBB
, AllSuccs
));
600 return it
.first
->second
;
603 /// FindSuccToSinkTo - Find a successor to sink this instruction to.
605 MachineSinking::FindSuccToSinkTo(MachineInstr
&MI
, MachineBasicBlock
*MBB
,
607 AllSuccsCache
&AllSuccessors
) {
608 assert (MBB
&& "Invalid MachineBasicBlock!");
610 // Loop over all the operands of the specified instruction. If there is
611 // anything we can't handle, bail out.
613 // SuccToSinkTo - This is the successor to sink this instruction to, once we
615 MachineBasicBlock
*SuccToSinkTo
= nullptr;
616 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
617 const MachineOperand
&MO
= MI
.getOperand(i
);
618 if (!MO
.isReg()) continue; // Ignore non-register operands.
620 unsigned Reg
= MO
.getReg();
621 if (Reg
== 0) continue;
623 if (TargetRegisterInfo::isPhysicalRegister(Reg
)) {
625 // If the physreg has no defs anywhere, it's just an ambient register
626 // and we can freely move its uses. Alternatively, if it's allocatable,
627 // it could get allocated to something with a def during allocation.
628 if (!MRI
->isConstantPhysReg(Reg
))
630 } else if (!MO
.isDead()) {
631 // A def that isn't dead. We can't move it.
635 // Virtual register uses are always safe to sink.
636 if (MO
.isUse()) continue;
638 // If it's not safe to move defs of the register class, then abort.
639 if (!TII
->isSafeToMoveRegClassDefs(MRI
->getRegClass(Reg
)))
642 // Virtual register defs can only be sunk if all their uses are in blocks
643 // dominated by one of the successors.
645 // If a previous operand picked a block to sink to, then this operand
646 // must be sinkable to the same block.
647 bool LocalUse
= false;
648 if (!AllUsesDominatedByBlock(Reg
, SuccToSinkTo
, MBB
,
649 BreakPHIEdge
, LocalUse
))
655 // Otherwise, we should look at all the successors and decide which one
656 // we should sink to. If we have reliable block frequency information
657 // (frequency != 0) available, give successors with smaller frequencies
658 // higher priority, otherwise prioritize smaller loop depths.
659 for (MachineBasicBlock
*SuccBlock
:
660 GetAllSortedSuccessors(MI
, MBB
, AllSuccessors
)) {
661 bool LocalUse
= false;
662 if (AllUsesDominatedByBlock(Reg
, SuccBlock
, MBB
,
663 BreakPHIEdge
, LocalUse
)) {
664 SuccToSinkTo
= SuccBlock
;
668 // Def is used locally, it's never safe to move this def.
672 // If we couldn't find a block to sink to, ignore this instruction.
675 if (!isProfitableToSinkTo(Reg
, MI
, MBB
, SuccToSinkTo
, AllSuccessors
))
680 // It is not possible to sink an instruction into its own block. This can
681 // happen with loops.
682 if (MBB
== SuccToSinkTo
)
685 // It's not safe to sink instructions to EH landing pad. Control flow into
686 // landing pad is implicitly defined.
687 if (SuccToSinkTo
&& SuccToSinkTo
->isEHPad())
693 /// Return true if MI is likely to be usable as a memory operation by the
694 /// implicit null check optimization.
696 /// This is a "best effort" heuristic, and should not be relied upon for
697 /// correctness. This returning true does not guarantee that the implicit null
698 /// check optimization is legal over MI, and this returning false does not
699 /// guarantee MI cannot possibly be used to do a null check.
700 static bool SinkingPreventsImplicitNullCheck(MachineInstr
&MI
,
701 const TargetInstrInfo
*TII
,
702 const TargetRegisterInfo
*TRI
) {
703 using MachineBranchPredicate
= TargetInstrInfo::MachineBranchPredicate
;
705 auto *MBB
= MI
.getParent();
706 if (MBB
->pred_size() != 1)
709 auto *PredMBB
= *MBB
->pred_begin();
710 auto *PredBB
= PredMBB
->getBasicBlock();
712 // Frontends that don't use implicit null checks have no reason to emit
713 // branches with make.implicit metadata, and this function should always
714 // return false for them.
716 !PredBB
->getTerminator()->getMetadata(LLVMContext::MD_make_implicit
))
721 if (!TII
->getMemOpBaseRegImmOfs(MI
, BaseReg
, Offset
, TRI
))
724 if (!(MI
.mayLoad() && !MI
.isPredicable()))
727 MachineBranchPredicate MBP
;
728 if (TII
->analyzeBranchPredicate(*PredMBB
, MBP
, false))
731 return MBP
.LHS
.isReg() && MBP
.RHS
.isImm() && MBP
.RHS
.getImm() == 0 &&
732 (MBP
.Predicate
== MachineBranchPredicate::PRED_NE
||
733 MBP
.Predicate
== MachineBranchPredicate::PRED_EQ
) &&
734 MBP
.LHS
.getReg() == BaseReg
;
737 /// Sink an instruction and its associated debug instructions.
738 static void performSink(MachineInstr
&MI
, MachineBasicBlock
&SuccToSinkTo
,
739 MachineBasicBlock::iterator InsertPos
) {
740 // Collect matching debug values.
741 SmallVector
<MachineInstr
*, 2> DbgValuesToSink
;
742 MI
.collectDebugValues(DbgValuesToSink
);
744 // If we cannot find a location to use (merge with), then we erase the debug
745 // location to prevent debug-info driven tools from potentially reporting
746 // wrong location information.
747 if (!SuccToSinkTo
.empty() && InsertPos
!= SuccToSinkTo
.end())
748 MI
.setDebugLoc(DILocation::getMergedLocation(MI
.getDebugLoc(),
749 InsertPos
->getDebugLoc()));
751 MI
.setDebugLoc(DebugLoc());
753 // Move the instruction.
754 MachineBasicBlock
*ParentBlock
= MI
.getParent();
755 SuccToSinkTo
.splice(InsertPos
, ParentBlock
, MI
,
756 ++MachineBasicBlock::iterator(MI
));
758 // Move previously adjacent debug value instructions to the insert position.
759 for (SmallVectorImpl
<MachineInstr
*>::iterator DBI
= DbgValuesToSink
.begin(),
760 DBE
= DbgValuesToSink
.end();
762 MachineInstr
*DbgMI
= *DBI
;
763 SuccToSinkTo
.splice(InsertPos
, ParentBlock
, DbgMI
,
764 ++MachineBasicBlock::iterator(DbgMI
));
768 /// SinkInstruction - Determine whether it is safe to sink the specified machine
769 /// instruction out of its current block into a successor.
770 bool MachineSinking::SinkInstruction(MachineInstr
&MI
, bool &SawStore
,
771 AllSuccsCache
&AllSuccessors
) {
772 // Don't sink instructions that the target prefers not to sink.
773 if (!TII
->shouldSink(MI
))
776 // Check if it's safe to move the instruction.
777 if (!MI
.isSafeToMove(AA
, SawStore
))
780 // Convergent operations may not be made control-dependent on additional
782 if (MI
.isConvergent())
785 // Don't break implicit null checks. This is a performance heuristic, and not
786 // required for correctness.
787 if (SinkingPreventsImplicitNullCheck(MI
, TII
, TRI
))
790 // FIXME: This should include support for sinking instructions within the
791 // block they are currently in to shorten the live ranges. We often get
792 // instructions sunk into the top of a large block, but it would be better to
793 // also sink them down before their first use in the block. This xform has to
794 // be careful not to *increase* register pressure though, e.g. sinking
795 // "x = y + z" down if it kills y and z would increase the live ranges of y
796 // and z and only shrink the live range of x.
798 bool BreakPHIEdge
= false;
799 MachineBasicBlock
*ParentBlock
= MI
.getParent();
800 MachineBasicBlock
*SuccToSinkTo
=
801 FindSuccToSinkTo(MI
, ParentBlock
, BreakPHIEdge
, AllSuccessors
);
803 // If there are no outputs, it must have side-effects.
807 // If the instruction to move defines a dead physical register which is live
808 // when leaving the basic block, don't move it because it could turn into a
809 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
810 for (unsigned I
= 0, E
= MI
.getNumOperands(); I
!= E
; ++I
) {
811 const MachineOperand
&MO
= MI
.getOperand(I
);
812 if (!MO
.isReg()) continue;
813 unsigned Reg
= MO
.getReg();
814 if (Reg
== 0 || !TargetRegisterInfo::isPhysicalRegister(Reg
)) continue;
815 if (SuccToSinkTo
->isLiveIn(Reg
))
819 LLVM_DEBUG(dbgs() << "Sink instr " << MI
<< "\tinto block " << *SuccToSinkTo
);
821 // If the block has multiple predecessors, this is a critical edge.
822 // Decide if we can sink along it or need to break the edge.
823 if (SuccToSinkTo
->pred_size() > 1) {
824 // We cannot sink a load across a critical edge - there may be stores in
826 bool TryBreak
= false;
828 if (!MI
.isSafeToMove(AA
, store
)) {
829 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
833 // We don't want to sink across a critical edge if we don't dominate the
834 // successor. We could be introducing calculations to new code paths.
835 if (!TryBreak
&& !DT
->dominates(ParentBlock
, SuccToSinkTo
)) {
836 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
840 // Don't sink instructions into a loop.
841 if (!TryBreak
&& LI
->isLoopHeader(SuccToSinkTo
)) {
842 LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n");
846 // Otherwise we are OK with sinking along a critical edge.
848 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n");
850 // Mark this edge as to be split.
851 // If the edge can actually be split, the next iteration of the main loop
852 // will sink MI in the newly created block.
854 PostponeSplitCriticalEdge(MI
, ParentBlock
, SuccToSinkTo
, BreakPHIEdge
);
856 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
857 "break critical edge\n");
858 // The instruction will not be sunk this time.
864 // BreakPHIEdge is true if all the uses are in the successor MBB being
865 // sunken into and they are all PHI nodes. In this case, machine-sink must
866 // break the critical edge first.
867 bool Status
= PostponeSplitCriticalEdge(MI
, ParentBlock
,
868 SuccToSinkTo
, BreakPHIEdge
);
870 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
871 "break critical edge\n");
872 // The instruction will not be sunk this time.
876 // Determine where to insert into. Skip phi nodes.
877 MachineBasicBlock::iterator InsertPos
= SuccToSinkTo
->begin();
878 while (InsertPos
!= SuccToSinkTo
->end() && InsertPos
->isPHI())
881 performSink(MI
, *SuccToSinkTo
, InsertPos
);
883 // Conservatively, clear any kill flags, since it's possible that they are no
885 // Note that we have to clear the kill flags for any register this instruction
886 // uses as we may sink over another instruction which currently kills the
888 for (MachineOperand
&MO
: MI
.operands()) {
889 if (MO
.isReg() && MO
.isUse())
890 RegsToClearKillFlags
.set(MO
.getReg()); // Remember to clear kill flags.
896 //===----------------------------------------------------------------------===//
897 // This pass is not intended to be a replacement or a complete alternative
898 // for the pre-ra machine sink pass. It is only designed to sink COPY
899 // instructions which should be handled after RA.
901 // This pass sinks COPY instructions into a successor block, if the COPY is not
902 // used in the current block and the COPY is live-in to a single successor
903 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the
904 // copy on paths where their results aren't needed. This also exposes
905 // additional opportunites for dead copy elimination and shrink wrapping.
907 // These copies were either not handled by or are inserted after the MachineSink
908 // pass. As an example of the former case, the MachineSink pass cannot sink
909 // COPY instructions with allocatable source registers; for AArch64 these type
910 // of copy instructions are frequently used to move function parameters (PhyReg)
911 // into virtual registers in the entry block.
913 // For the machine IR below, this pass will sink %w19 in the entry into its
914 // successor (%bb.1) because %w19 is only live-in in %bb.1.
916 // %wzr = SUBSWri %w1, 1
922 // %w0 = ADDWrr %w0, %w19
927 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
928 // able to see %bb.0 as a candidate.
929 //===----------------------------------------------------------------------===//
932 class PostRAMachineSinking
: public MachineFunctionPass
{
934 bool runOnMachineFunction(MachineFunction
&MF
) override
;
937 PostRAMachineSinking() : MachineFunctionPass(ID
) {}
938 StringRef
getPassName() const override
{ return "PostRA Machine Sink"; }
940 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
941 AU
.setPreservesCFG();
942 MachineFunctionPass::getAnalysisUsage(AU
);
945 MachineFunctionProperties
getRequiredProperties() const override
{
946 return MachineFunctionProperties().set(
947 MachineFunctionProperties::Property::NoVRegs
);
951 /// Track which register units have been modified and used.
952 LiveRegUnits ModifiedRegUnits
, UsedRegUnits
;
954 /// Sink Copy instructions unused in the same block close to their uses in
956 bool tryToSinkCopy(MachineBasicBlock
&BB
, MachineFunction
&MF
,
957 const TargetRegisterInfo
*TRI
, const TargetInstrInfo
*TII
);
961 char PostRAMachineSinking::ID
= 0;
962 char &llvm::PostRAMachineSinkingID
= PostRAMachineSinking::ID
;
964 INITIALIZE_PASS(PostRAMachineSinking
, "postra-machine-sink",
965 "PostRA Machine Sink", false, false)
967 static bool aliasWithRegsInLiveIn(MachineBasicBlock
&MBB
, unsigned Reg
,
968 const TargetRegisterInfo
*TRI
) {
969 LiveRegUnits
LiveInRegUnits(*TRI
);
970 LiveInRegUnits
.addLiveIns(MBB
);
971 return !LiveInRegUnits
.available(Reg
);
974 static MachineBasicBlock
*
975 getSingleLiveInSuccBB(MachineBasicBlock
&CurBB
,
976 const SmallPtrSetImpl
<MachineBasicBlock
*> &SinkableBBs
,
977 unsigned Reg
, const TargetRegisterInfo
*TRI
) {
978 // Try to find a single sinkable successor in which Reg is live-in.
979 MachineBasicBlock
*BB
= nullptr;
980 for (auto *SI
: SinkableBBs
) {
981 if (aliasWithRegsInLiveIn(*SI
, Reg
, TRI
)) {
982 // If BB is set here, Reg is live-in to at least two sinkable successors,
989 // Reg is not live-in to any sinkable successors.
993 // Check if any register aliased with Reg is live-in in other successors.
994 for (auto *SI
: CurBB
.successors()) {
995 if (!SinkableBBs
.count(SI
) && aliasWithRegsInLiveIn(*SI
, Reg
, TRI
))
1001 static MachineBasicBlock
*
1002 getSingleLiveInSuccBB(MachineBasicBlock
&CurBB
,
1003 const SmallPtrSetImpl
<MachineBasicBlock
*> &SinkableBBs
,
1004 ArrayRef
<unsigned> DefedRegsInCopy
,
1005 const TargetRegisterInfo
*TRI
) {
1006 MachineBasicBlock
*SingleBB
= nullptr;
1007 for (auto DefReg
: DefedRegsInCopy
) {
1008 MachineBasicBlock
*BB
=
1009 getSingleLiveInSuccBB(CurBB
, SinkableBBs
, DefReg
, TRI
);
1010 if (!BB
|| (SingleBB
&& SingleBB
!= BB
))
1017 static void clearKillFlags(MachineInstr
*MI
, MachineBasicBlock
&CurBB
,
1018 SmallVectorImpl
<unsigned> &UsedOpsInCopy
,
1019 LiveRegUnits
&UsedRegUnits
,
1020 const TargetRegisterInfo
*TRI
) {
1021 for (auto U
: UsedOpsInCopy
) {
1022 MachineOperand
&MO
= MI
->getOperand(U
);
1023 unsigned SrcReg
= MO
.getReg();
1024 if (!UsedRegUnits
.available(SrcReg
)) {
1025 MachineBasicBlock::iterator NI
= std::next(MI
->getIterator());
1026 for (MachineInstr
&UI
: make_range(NI
, CurBB
.end())) {
1027 if (UI
.killsRegister(SrcReg
, TRI
)) {
1028 UI
.clearRegisterKills(SrcReg
, TRI
);
1037 static void updateLiveIn(MachineInstr
*MI
, MachineBasicBlock
*SuccBB
,
1038 SmallVectorImpl
<unsigned> &UsedOpsInCopy
,
1039 SmallVectorImpl
<unsigned> &DefedRegsInCopy
) {
1040 for (auto DefReg
: DefedRegsInCopy
)
1041 SuccBB
->removeLiveIn(DefReg
);
1042 for (auto U
: UsedOpsInCopy
) {
1043 unsigned Reg
= MI
->getOperand(U
).getReg();
1044 if (!SuccBB
->isLiveIn(Reg
))
1045 SuccBB
->addLiveIn(Reg
);
1049 static bool hasRegisterDependency(MachineInstr
*MI
,
1050 SmallVectorImpl
<unsigned> &UsedOpsInCopy
,
1051 SmallVectorImpl
<unsigned> &DefedRegsInCopy
,
1052 LiveRegUnits
&ModifiedRegUnits
,
1053 LiveRegUnits
&UsedRegUnits
) {
1054 bool HasRegDependency
= false;
1055 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
1056 MachineOperand
&MO
= MI
->getOperand(i
);
1059 unsigned Reg
= MO
.getReg();
1063 if (!ModifiedRegUnits
.available(Reg
) || !UsedRegUnits
.available(Reg
)) {
1064 HasRegDependency
= true;
1067 DefedRegsInCopy
.push_back(Reg
);
1069 // FIXME: instead of isUse(), readsReg() would be a better fix here,
1070 // For example, we can ignore modifications in reg with undef. However,
1071 // it's not perfectly clear if skipping the internal read is safe in all
1073 } else if (MO
.isUse()) {
1074 if (!ModifiedRegUnits
.available(Reg
)) {
1075 HasRegDependency
= true;
1078 UsedOpsInCopy
.push_back(i
);
1081 return HasRegDependency
;
1084 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock
&CurBB
,
1085 MachineFunction
&MF
,
1086 const TargetRegisterInfo
*TRI
,
1087 const TargetInstrInfo
*TII
) {
1088 SmallPtrSet
<MachineBasicBlock
*, 2> SinkableBBs
;
1089 // FIXME: For now, we sink only to a successor which has a single predecessor
1090 // so that we can directly sink COPY instructions to the successor without
1091 // adding any new block or branch instruction.
1092 for (MachineBasicBlock
*SI
: CurBB
.successors())
1093 if (!SI
->livein_empty() && SI
->pred_size() == 1)
1094 SinkableBBs
.insert(SI
);
1096 if (SinkableBBs
.empty())
1099 bool Changed
= false;
1101 // Track which registers have been modified and used between the end of the
1102 // block and the current instruction.
1103 ModifiedRegUnits
.clear();
1104 UsedRegUnits
.clear();
1106 for (auto I
= CurBB
.rbegin(), E
= CurBB
.rend(); I
!= E
;) {
1107 MachineInstr
*MI
= &*I
;
1110 if (MI
->isDebugInstr())
1113 // Do not move any instruction across function call.
1117 if (!MI
->isCopy() || !MI
->getOperand(0).isRenamable()) {
1118 LiveRegUnits::accumulateUsedDefed(*MI
, ModifiedRegUnits
, UsedRegUnits
,
1123 // Track the operand index for use in Copy.
1124 SmallVector
<unsigned, 2> UsedOpsInCopy
;
1125 // Track the register number defed in Copy.
1126 SmallVector
<unsigned, 2> DefedRegsInCopy
;
1128 // Don't sink the COPY if it would violate a register dependency.
1129 if (hasRegisterDependency(MI
, UsedOpsInCopy
, DefedRegsInCopy
,
1130 ModifiedRegUnits
, UsedRegUnits
)) {
1131 LiveRegUnits::accumulateUsedDefed(*MI
, ModifiedRegUnits
, UsedRegUnits
,
1135 assert((!UsedOpsInCopy
.empty() && !DefedRegsInCopy
.empty()) &&
1136 "Unexpect SrcReg or DefReg");
1137 MachineBasicBlock
*SuccBB
=
1138 getSingleLiveInSuccBB(CurBB
, SinkableBBs
, DefedRegsInCopy
, TRI
);
1139 // Don't sink if we cannot find a single sinkable successor in which Reg
1142 LiveRegUnits::accumulateUsedDefed(*MI
, ModifiedRegUnits
, UsedRegUnits
,
1146 assert((SuccBB
->pred_size() == 1 && *SuccBB
->pred_begin() == &CurBB
) &&
1147 "Unexpected predecessor");
1149 // Clear the kill flag if SrcReg is killed between MI and the end of the
1151 clearKillFlags(MI
, CurBB
, UsedOpsInCopy
, UsedRegUnits
, TRI
);
1152 MachineBasicBlock::iterator InsertPos
= SuccBB
->getFirstNonPHI();
1153 performSink(*MI
, *SuccBB
, InsertPos
);
1154 updateLiveIn(MI
, SuccBB
, UsedOpsInCopy
, DefedRegsInCopy
);
1157 ++NumPostRACopySink
;
1162 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction
&MF
) {
1163 bool Changed
= false;
1164 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
1165 const TargetInstrInfo
*TII
= MF
.getSubtarget().getInstrInfo();
1167 ModifiedRegUnits
.init(*TRI
);
1168 UsedRegUnits
.init(*TRI
);
1170 Changed
|= tryToSinkCopy(BB
, MF
, TRI
, TII
);