1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
11 /// This is the parent TargetLowering class for hardware code gen
14 //===----------------------------------------------------------------------===//
16 #define AMDGPU_LOG2E_F 1.44269504088896340735992468100189214f
17 #define AMDGPU_LN2_F 0.693147180559945309417232121458176568f
18 #define AMDGPU_LN10_F 2.30258509299404568401799145468436421f
20 #include "AMDGPUISelLowering.h"
22 #include "AMDGPUCallLowering.h"
23 #include "AMDGPUFrameLowering.h"
24 #include "AMDGPUIntrinsicInfo.h"
25 #include "AMDGPURegisterInfo.h"
26 #include "AMDGPUSubtarget.h"
27 #include "AMDGPUTargetMachine.h"
28 #include "Utils/AMDGPUBaseInfo.h"
29 #include "R600MachineFunctionInfo.h"
30 #include "SIInstrInfo.h"
31 #include "SIMachineFunctionInfo.h"
32 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
33 #include "llvm/CodeGen/Analysis.h"
34 #include "llvm/CodeGen/CallingConvLower.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/SelectionDAG.h"
38 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DiagnosticInfo.h"
41 #include "llvm/Support/KnownBits.h"
44 static bool allocateCCRegs(unsigned ValNo
, MVT ValVT
, MVT LocVT
,
45 CCValAssign::LocInfo LocInfo
,
46 ISD::ArgFlagsTy ArgFlags
, CCState
&State
,
47 const TargetRegisterClass
*RC
,
49 ArrayRef
<MCPhysReg
> RegList
= makeArrayRef(RC
->begin(), NumRegs
);
50 unsigned RegResult
= State
.AllocateReg(RegList
);
51 if (RegResult
== AMDGPU::NoRegister
)
54 State
.addLoc(CCValAssign::getReg(ValNo
, ValVT
, RegResult
, LocVT
, LocInfo
));
58 static bool allocateSGPRTuple(unsigned ValNo
, MVT ValVT
, MVT LocVT
,
59 CCValAssign::LocInfo LocInfo
,
60 ISD::ArgFlagsTy ArgFlags
, CCState
&State
) {
61 switch (LocVT
.SimpleTy
) {
69 return allocateCCRegs(ValNo
, ValVT
, LocVT
, LocInfo
, ArgFlags
, State
,
70 &AMDGPU::SGPR_64RegClass
, 20);
77 // Allocate up to VGPR31.
79 // TODO: Since there are no VGPR alignent requirements would it be better to
80 // split into individual scalar registers?
81 static bool allocateVGPRTuple(unsigned ValNo
, MVT ValVT
, MVT LocVT
,
82 CCValAssign::LocInfo LocInfo
,
83 ISD::ArgFlagsTy ArgFlags
, CCState
&State
) {
84 switch (LocVT
.SimpleTy
) {
91 return allocateCCRegs(ValNo
, ValVT
, LocVT
, LocInfo
, ArgFlags
, State
,
92 &AMDGPU::VReg_64RegClass
, 31);
98 return allocateCCRegs(ValNo
, ValVT
, LocVT
, LocInfo
, ArgFlags
, State
,
99 &AMDGPU::VReg_128RegClass
, 29);
103 return allocateCCRegs(ValNo
, ValVT
, LocVT
, LocInfo
, ArgFlags
, State
,
104 &AMDGPU::VReg_256RegClass
, 25);
109 return allocateCCRegs(ValNo
, ValVT
, LocVT
, LocInfo
, ArgFlags
, State
,
110 &AMDGPU::VReg_512RegClass
, 17);
118 #include "AMDGPUGenCallingConv.inc"
120 // Find a larger type to do a load / store of a vector with.
121 EVT
AMDGPUTargetLowering::getEquivalentMemType(LLVMContext
&Ctx
, EVT VT
) {
122 unsigned StoreSize
= VT
.getStoreSizeInBits();
124 return EVT::getIntegerVT(Ctx
, StoreSize
);
126 assert(StoreSize
% 32 == 0 && "Store size not a multiple of 32");
127 return EVT::getVectorVT(Ctx
, MVT::i32
, StoreSize
/ 32);
130 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op
, SelectionDAG
&DAG
) {
132 EVT VT
= Op
.getValueType();
133 DAG
.computeKnownBits(Op
, Known
);
135 return VT
.getSizeInBits() - Known
.countMinLeadingZeros();
138 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op
, SelectionDAG
&DAG
) {
139 EVT VT
= Op
.getValueType();
141 // In order for this to be a signed 24-bit value, bit 23, must
143 return VT
.getSizeInBits() - DAG
.ComputeNumSignBits(Op
);
146 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine
&TM
,
147 const AMDGPUSubtarget
&STI
)
148 : TargetLowering(TM
), Subtarget(&STI
) {
149 // Lower floating point store/load to integer store/load to reduce the number
150 // of patterns in tablegen.
151 setOperationAction(ISD::LOAD
, MVT::f32
, Promote
);
152 AddPromotedToType(ISD::LOAD
, MVT::f32
, MVT::i32
);
154 setOperationAction(ISD::LOAD
, MVT::v2f32
, Promote
);
155 AddPromotedToType(ISD::LOAD
, MVT::v2f32
, MVT::v2i32
);
157 setOperationAction(ISD::LOAD
, MVT::v4f32
, Promote
);
158 AddPromotedToType(ISD::LOAD
, MVT::v4f32
, MVT::v4i32
);
160 setOperationAction(ISD::LOAD
, MVT::v8f32
, Promote
);
161 AddPromotedToType(ISD::LOAD
, MVT::v8f32
, MVT::v8i32
);
163 setOperationAction(ISD::LOAD
, MVT::v16f32
, Promote
);
164 AddPromotedToType(ISD::LOAD
, MVT::v16f32
, MVT::v16i32
);
166 setOperationAction(ISD::LOAD
, MVT::i64
, Promote
);
167 AddPromotedToType(ISD::LOAD
, MVT::i64
, MVT::v2i32
);
169 setOperationAction(ISD::LOAD
, MVT::v2i64
, Promote
);
170 AddPromotedToType(ISD::LOAD
, MVT::v2i64
, MVT::v4i32
);
172 setOperationAction(ISD::LOAD
, MVT::f64
, Promote
);
173 AddPromotedToType(ISD::LOAD
, MVT::f64
, MVT::v2i32
);
175 setOperationAction(ISD::LOAD
, MVT::v2f64
, Promote
);
176 AddPromotedToType(ISD::LOAD
, MVT::v2f64
, MVT::v4i32
);
178 // There are no 64-bit extloads. These should be done as a 32-bit extload and
179 // an extension to 64-bit.
180 for (MVT VT
: MVT::integer_valuetypes()) {
181 setLoadExtAction(ISD::EXTLOAD
, MVT::i64
, VT
, Expand
);
182 setLoadExtAction(ISD::SEXTLOAD
, MVT::i64
, VT
, Expand
);
183 setLoadExtAction(ISD::ZEXTLOAD
, MVT::i64
, VT
, Expand
);
186 for (MVT VT
: MVT::integer_valuetypes()) {
190 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Promote
);
191 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i8
, Legal
);
192 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i16
, Legal
);
193 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i32
, Expand
);
195 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i1
, Promote
);
196 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i8
, Legal
);
197 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i16
, Legal
);
198 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i32
, Expand
);
200 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i1
, Promote
);
201 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i8
, Legal
);
202 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i16
, Legal
);
203 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i32
, Expand
);
206 for (MVT VT
: MVT::integer_vector_valuetypes()) {
207 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::v2i8
, Expand
);
208 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::v2i8
, Expand
);
209 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::v2i8
, Expand
);
210 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::v4i8
, Expand
);
211 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::v4i8
, Expand
);
212 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::v4i8
, Expand
);
213 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::v2i16
, Expand
);
214 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::v2i16
, Expand
);
215 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::v2i16
, Expand
);
216 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::v4i16
, Expand
);
217 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::v4i16
, Expand
);
218 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::v4i16
, Expand
);
221 setLoadExtAction(ISD::EXTLOAD
, MVT::f32
, MVT::f16
, Expand
);
222 setLoadExtAction(ISD::EXTLOAD
, MVT::v2f32
, MVT::v2f16
, Expand
);
223 setLoadExtAction(ISD::EXTLOAD
, MVT::v4f32
, MVT::v4f16
, Expand
);
224 setLoadExtAction(ISD::EXTLOAD
, MVT::v8f32
, MVT::v8f16
, Expand
);
226 setLoadExtAction(ISD::EXTLOAD
, MVT::f64
, MVT::f32
, Expand
);
227 setLoadExtAction(ISD::EXTLOAD
, MVT::v2f64
, MVT::v2f32
, Expand
);
228 setLoadExtAction(ISD::EXTLOAD
, MVT::v4f64
, MVT::v4f32
, Expand
);
229 setLoadExtAction(ISD::EXTLOAD
, MVT::v8f64
, MVT::v8f32
, Expand
);
231 setLoadExtAction(ISD::EXTLOAD
, MVT::f64
, MVT::f16
, Expand
);
232 setLoadExtAction(ISD::EXTLOAD
, MVT::v2f64
, MVT::v2f16
, Expand
);
233 setLoadExtAction(ISD::EXTLOAD
, MVT::v4f64
, MVT::v4f16
, Expand
);
234 setLoadExtAction(ISD::EXTLOAD
, MVT::v8f64
, MVT::v8f16
, Expand
);
236 setOperationAction(ISD::STORE
, MVT::f32
, Promote
);
237 AddPromotedToType(ISD::STORE
, MVT::f32
, MVT::i32
);
239 setOperationAction(ISD::STORE
, MVT::v2f32
, Promote
);
240 AddPromotedToType(ISD::STORE
, MVT::v2f32
, MVT::v2i32
);
242 setOperationAction(ISD::STORE
, MVT::v4f32
, Promote
);
243 AddPromotedToType(ISD::STORE
, MVT::v4f32
, MVT::v4i32
);
245 setOperationAction(ISD::STORE
, MVT::v8f32
, Promote
);
246 AddPromotedToType(ISD::STORE
, MVT::v8f32
, MVT::v8i32
);
248 setOperationAction(ISD::STORE
, MVT::v16f32
, Promote
);
249 AddPromotedToType(ISD::STORE
, MVT::v16f32
, MVT::v16i32
);
251 setOperationAction(ISD::STORE
, MVT::i64
, Promote
);
252 AddPromotedToType(ISD::STORE
, MVT::i64
, MVT::v2i32
);
254 setOperationAction(ISD::STORE
, MVT::v2i64
, Promote
);
255 AddPromotedToType(ISD::STORE
, MVT::v2i64
, MVT::v4i32
);
257 setOperationAction(ISD::STORE
, MVT::f64
, Promote
);
258 AddPromotedToType(ISD::STORE
, MVT::f64
, MVT::v2i32
);
260 setOperationAction(ISD::STORE
, MVT::v2f64
, Promote
);
261 AddPromotedToType(ISD::STORE
, MVT::v2f64
, MVT::v4i32
);
263 setTruncStoreAction(MVT::i64
, MVT::i1
, Expand
);
264 setTruncStoreAction(MVT::i64
, MVT::i8
, Expand
);
265 setTruncStoreAction(MVT::i64
, MVT::i16
, Expand
);
266 setTruncStoreAction(MVT::i64
, MVT::i32
, Expand
);
268 setTruncStoreAction(MVT::v2i64
, MVT::v2i1
, Expand
);
269 setTruncStoreAction(MVT::v2i64
, MVT::v2i8
, Expand
);
270 setTruncStoreAction(MVT::v2i64
, MVT::v2i16
, Expand
);
271 setTruncStoreAction(MVT::v2i64
, MVT::v2i32
, Expand
);
273 setTruncStoreAction(MVT::f32
, MVT::f16
, Expand
);
274 setTruncStoreAction(MVT::v2f32
, MVT::v2f16
, Expand
);
275 setTruncStoreAction(MVT::v4f32
, MVT::v4f16
, Expand
);
276 setTruncStoreAction(MVT::v8f32
, MVT::v8f16
, Expand
);
278 setTruncStoreAction(MVT::f64
, MVT::f16
, Expand
);
279 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
281 setTruncStoreAction(MVT::v2f64
, MVT::v2f32
, Expand
);
282 setTruncStoreAction(MVT::v2f64
, MVT::v2f16
, Expand
);
284 setTruncStoreAction(MVT::v4f64
, MVT::v4f32
, Expand
);
285 setTruncStoreAction(MVT::v4f64
, MVT::v4f16
, Expand
);
287 setTruncStoreAction(MVT::v8f64
, MVT::v8f32
, Expand
);
288 setTruncStoreAction(MVT::v8f64
, MVT::v8f16
, Expand
);
291 setOperationAction(ISD::Constant
, MVT::i32
, Legal
);
292 setOperationAction(ISD::Constant
, MVT::i64
, Legal
);
293 setOperationAction(ISD::ConstantFP
, MVT::f32
, Legal
);
294 setOperationAction(ISD::ConstantFP
, MVT::f64
, Legal
);
296 setOperationAction(ISD::BR_JT
, MVT::Other
, Expand
);
297 setOperationAction(ISD::BRIND
, MVT::Other
, Expand
);
299 // This is totally unsupported, just custom lower to produce an error.
300 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Custom
);
302 // Library functions. These default to Expand, but we have instructions
304 setOperationAction(ISD::FCEIL
, MVT::f32
, Legal
);
305 setOperationAction(ISD::FEXP2
, MVT::f32
, Legal
);
306 setOperationAction(ISD::FPOW
, MVT::f32
, Legal
);
307 setOperationAction(ISD::FLOG2
, MVT::f32
, Legal
);
308 setOperationAction(ISD::FABS
, MVT::f32
, Legal
);
309 setOperationAction(ISD::FFLOOR
, MVT::f32
, Legal
);
310 setOperationAction(ISD::FRINT
, MVT::f32
, Legal
);
311 setOperationAction(ISD::FTRUNC
, MVT::f32
, Legal
);
312 setOperationAction(ISD::FMINNUM
, MVT::f32
, Legal
);
313 setOperationAction(ISD::FMAXNUM
, MVT::f32
, Legal
);
315 setOperationAction(ISD::FROUND
, MVT::f32
, Custom
);
316 setOperationAction(ISD::FROUND
, MVT::f64
, Custom
);
318 setOperationAction(ISD::FLOG
, MVT::f32
, Custom
);
319 setOperationAction(ISD::FLOG10
, MVT::f32
, Custom
);
320 setOperationAction(ISD::FEXP
, MVT::f32
, Custom
);
323 setOperationAction(ISD::FNEARBYINT
, MVT::f32
, Custom
);
324 setOperationAction(ISD::FNEARBYINT
, MVT::f64
, Custom
);
326 setOperationAction(ISD::FREM
, MVT::f32
, Custom
);
327 setOperationAction(ISD::FREM
, MVT::f64
, Custom
);
329 // Expand to fneg + fadd.
330 setOperationAction(ISD::FSUB
, MVT::f64
, Expand
);
332 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v4i32
, Custom
);
333 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v4f32
, Custom
);
334 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v8i32
, Custom
);
335 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v8f32
, Custom
);
336 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v2f32
, Custom
);
337 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v2i32
, Custom
);
338 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v4f32
, Custom
);
339 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v4i32
, Custom
);
340 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v8f32
, Custom
);
341 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v8i32
, Custom
);
343 setOperationAction(ISD::FP16_TO_FP
, MVT::f64
, Expand
);
344 setOperationAction(ISD::FP_TO_FP16
, MVT::f64
, Custom
);
345 setOperationAction(ISD::FP_TO_FP16
, MVT::f32
, Custom
);
347 const MVT ScalarIntVTs
[] = { MVT::i32
, MVT::i64
};
348 for (MVT VT
: ScalarIntVTs
) {
349 // These should use [SU]DIVREM, so set them to expand
350 setOperationAction(ISD::SDIV
, VT
, Expand
);
351 setOperationAction(ISD::UDIV
, VT
, Expand
);
352 setOperationAction(ISD::SREM
, VT
, Expand
);
353 setOperationAction(ISD::UREM
, VT
, Expand
);
355 // GPU does not have divrem function for signed or unsigned.
356 setOperationAction(ISD::SDIVREM
, VT
, Custom
);
357 setOperationAction(ISD::UDIVREM
, VT
, Custom
);
359 // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
360 setOperationAction(ISD::SMUL_LOHI
, VT
, Expand
);
361 setOperationAction(ISD::UMUL_LOHI
, VT
, Expand
);
363 setOperationAction(ISD::BSWAP
, VT
, Expand
);
364 setOperationAction(ISD::CTTZ
, VT
, Expand
);
365 setOperationAction(ISD::CTLZ
, VT
, Expand
);
367 // AMDGPU uses ADDC/SUBC/ADDE/SUBE
368 setOperationAction(ISD::ADDC
, VT
, Legal
);
369 setOperationAction(ISD::SUBC
, VT
, Legal
);
370 setOperationAction(ISD::ADDE
, VT
, Legal
);
371 setOperationAction(ISD::SUBE
, VT
, Legal
);
374 // The hardware supports 32-bit ROTR, but not ROTL.
375 setOperationAction(ISD::ROTL
, MVT::i32
, Expand
);
376 setOperationAction(ISD::ROTL
, MVT::i64
, Expand
);
377 setOperationAction(ISD::ROTR
, MVT::i64
, Expand
);
379 setOperationAction(ISD::MUL
, MVT::i64
, Expand
);
380 setOperationAction(ISD::MULHU
, MVT::i64
, Expand
);
381 setOperationAction(ISD::MULHS
, MVT::i64
, Expand
);
382 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Custom
);
383 setOperationAction(ISD::SINT_TO_FP
, MVT::i64
, Custom
);
384 setOperationAction(ISD::FP_TO_SINT
, MVT::i64
, Custom
);
385 setOperationAction(ISD::FP_TO_UINT
, MVT::i64
, Custom
);
386 setOperationAction(ISD::SELECT_CC
, MVT::i64
, Expand
);
388 setOperationAction(ISD::SMIN
, MVT::i32
, Legal
);
389 setOperationAction(ISD::UMIN
, MVT::i32
, Legal
);
390 setOperationAction(ISD::SMAX
, MVT::i32
, Legal
);
391 setOperationAction(ISD::UMAX
, MVT::i32
, Legal
);
393 setOperationAction(ISD::CTTZ
, MVT::i64
, Custom
);
394 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::i64
, Custom
);
395 setOperationAction(ISD::CTLZ
, MVT::i64
, Custom
);
396 setOperationAction(ISD::CTLZ_ZERO_UNDEF
, MVT::i64
, Custom
);
398 static const MVT::SimpleValueType VectorIntTypes
[] = {
399 MVT::v2i32
, MVT::v4i32
402 for (MVT VT
: VectorIntTypes
) {
403 // Expand the following operations for the current type by default.
404 setOperationAction(ISD::ADD
, VT
, Expand
);
405 setOperationAction(ISD::AND
, VT
, Expand
);
406 setOperationAction(ISD::FP_TO_SINT
, VT
, Expand
);
407 setOperationAction(ISD::FP_TO_UINT
, VT
, Expand
);
408 setOperationAction(ISD::MUL
, VT
, Expand
);
409 setOperationAction(ISD::MULHU
, VT
, Expand
);
410 setOperationAction(ISD::MULHS
, VT
, Expand
);
411 setOperationAction(ISD::OR
, VT
, Expand
);
412 setOperationAction(ISD::SHL
, VT
, Expand
);
413 setOperationAction(ISD::SRA
, VT
, Expand
);
414 setOperationAction(ISD::SRL
, VT
, Expand
);
415 setOperationAction(ISD::ROTL
, VT
, Expand
);
416 setOperationAction(ISD::ROTR
, VT
, Expand
);
417 setOperationAction(ISD::SUB
, VT
, Expand
);
418 setOperationAction(ISD::SINT_TO_FP
, VT
, Expand
);
419 setOperationAction(ISD::UINT_TO_FP
, VT
, Expand
);
420 setOperationAction(ISD::SDIV
, VT
, Expand
);
421 setOperationAction(ISD::UDIV
, VT
, Expand
);
422 setOperationAction(ISD::SREM
, VT
, Expand
);
423 setOperationAction(ISD::UREM
, VT
, Expand
);
424 setOperationAction(ISD::SMUL_LOHI
, VT
, Expand
);
425 setOperationAction(ISD::UMUL_LOHI
, VT
, Expand
);
426 setOperationAction(ISD::SDIVREM
, VT
, Custom
);
427 setOperationAction(ISD::UDIVREM
, VT
, Expand
);
428 setOperationAction(ISD::SELECT
, VT
, Expand
);
429 setOperationAction(ISD::VSELECT
, VT
, Expand
);
430 setOperationAction(ISD::SELECT_CC
, VT
, Expand
);
431 setOperationAction(ISD::XOR
, VT
, Expand
);
432 setOperationAction(ISD::BSWAP
, VT
, Expand
);
433 setOperationAction(ISD::CTPOP
, VT
, Expand
);
434 setOperationAction(ISD::CTTZ
, VT
, Expand
);
435 setOperationAction(ISD::CTLZ
, VT
, Expand
);
436 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Expand
);
437 setOperationAction(ISD::SETCC
, VT
, Expand
);
440 static const MVT::SimpleValueType FloatVectorTypes
[] = {
441 MVT::v2f32
, MVT::v4f32
444 for (MVT VT
: FloatVectorTypes
) {
445 setOperationAction(ISD::FABS
, VT
, Expand
);
446 setOperationAction(ISD::FMINNUM
, VT
, Expand
);
447 setOperationAction(ISD::FMAXNUM
, VT
, Expand
);
448 setOperationAction(ISD::FADD
, VT
, Expand
);
449 setOperationAction(ISD::FCEIL
, VT
, Expand
);
450 setOperationAction(ISD::FCOS
, VT
, Expand
);
451 setOperationAction(ISD::FDIV
, VT
, Expand
);
452 setOperationAction(ISD::FEXP2
, VT
, Expand
);
453 setOperationAction(ISD::FEXP
, VT
, Expand
);
454 setOperationAction(ISD::FLOG2
, VT
, Expand
);
455 setOperationAction(ISD::FREM
, VT
, Expand
);
456 setOperationAction(ISD::FLOG
, VT
, Expand
);
457 setOperationAction(ISD::FLOG10
, VT
, Expand
);
458 setOperationAction(ISD::FPOW
, VT
, Expand
);
459 setOperationAction(ISD::FFLOOR
, VT
, Expand
);
460 setOperationAction(ISD::FTRUNC
, VT
, Expand
);
461 setOperationAction(ISD::FMUL
, VT
, Expand
);
462 setOperationAction(ISD::FMA
, VT
, Expand
);
463 setOperationAction(ISD::FRINT
, VT
, Expand
);
464 setOperationAction(ISD::FNEARBYINT
, VT
, Expand
);
465 setOperationAction(ISD::FSQRT
, VT
, Expand
);
466 setOperationAction(ISD::FSIN
, VT
, Expand
);
467 setOperationAction(ISD::FSUB
, VT
, Expand
);
468 setOperationAction(ISD::FNEG
, VT
, Expand
);
469 setOperationAction(ISD::VSELECT
, VT
, Expand
);
470 setOperationAction(ISD::SELECT_CC
, VT
, Expand
);
471 setOperationAction(ISD::FCOPYSIGN
, VT
, Expand
);
472 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Expand
);
473 setOperationAction(ISD::SETCC
, VT
, Expand
);
474 setOperationAction(ISD::FCANONICALIZE
, VT
, Expand
);
477 // This causes using an unrolled select operation rather than expansion with
478 // bit operations. This is in general better, but the alternative using BFI
479 // instructions may be better if the select sources are SGPRs.
480 setOperationAction(ISD::SELECT
, MVT::v2f32
, Promote
);
481 AddPromotedToType(ISD::SELECT
, MVT::v2f32
, MVT::v2i32
);
483 setOperationAction(ISD::SELECT
, MVT::v4f32
, Promote
);
484 AddPromotedToType(ISD::SELECT
, MVT::v4f32
, MVT::v4i32
);
486 // There are no libcalls of any kind.
487 for (int I
= 0; I
< RTLIB::UNKNOWN_LIBCALL
; ++I
)
488 setLibcallName(static_cast<RTLIB::Libcall
>(I
), nullptr);
490 setBooleanContents(ZeroOrNegativeOneBooleanContent
);
491 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent
);
493 setSchedulingPreference(Sched::RegPressure
);
494 setJumpIsExpensive(true);
496 // FIXME: This is only partially true. If we have to do vector compares, any
497 // SGPR pair can be a condition register. If we have a uniform condition, we
498 // are better off doing SALU operations, where there is only one SCC. For now,
499 // we don't have a way of knowing during instruction selection if a condition
500 // will be uniform and we always use vector compares. Assume we are using
501 // vector compares until that is fixed.
502 setHasMultipleConditionRegisters(true);
504 PredictableSelectIsExpensive
= false;
506 // We want to find all load dependencies for long chains of stores to enable
507 // merging into very wide vectors. The problem is with vectors with > 4
508 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
509 // vectors are a legal type, even though we have to split the loads
510 // usually. When we can more precisely specify load legality per address
511 // space, we should be able to make FindBetterChain/MergeConsecutiveStores
512 // smarter so that they can figure out what to do in 2 iterations without all
513 // N > 4 stores on the same chain.
514 GatherAllAliasesMaxDepth
= 16;
516 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
517 // about these during lowering.
518 MaxStoresPerMemcpy
= 0xffffffff;
519 MaxStoresPerMemmove
= 0xffffffff;
520 MaxStoresPerMemset
= 0xffffffff;
522 setTargetDAGCombine(ISD::BITCAST
);
523 setTargetDAGCombine(ISD::SHL
);
524 setTargetDAGCombine(ISD::SRA
);
525 setTargetDAGCombine(ISD::SRL
);
526 setTargetDAGCombine(ISD::TRUNCATE
);
527 setTargetDAGCombine(ISD::MUL
);
528 setTargetDAGCombine(ISD::MULHU
);
529 setTargetDAGCombine(ISD::MULHS
);
530 setTargetDAGCombine(ISD::SELECT
);
531 setTargetDAGCombine(ISD::SELECT_CC
);
532 setTargetDAGCombine(ISD::STORE
);
533 setTargetDAGCombine(ISD::FADD
);
534 setTargetDAGCombine(ISD::FSUB
);
535 setTargetDAGCombine(ISD::FNEG
);
536 setTargetDAGCombine(ISD::FABS
);
537 setTargetDAGCombine(ISD::AssertZext
);
538 setTargetDAGCombine(ISD::AssertSext
);
541 //===----------------------------------------------------------------------===//
542 // Target Information
543 //===----------------------------------------------------------------------===//
546 static bool fnegFoldsIntoOp(unsigned Opc
) {
558 case ISD::FNEARBYINT
:
559 case ISD::FCANONICALIZE
:
561 case AMDGPUISD::RCP_LEGACY
:
562 case AMDGPUISD::RCP_IFLAG
:
563 case AMDGPUISD::SIN_HW
:
564 case AMDGPUISD::FMUL_LEGACY
:
565 case AMDGPUISD::FMIN_LEGACY
:
566 case AMDGPUISD::FMAX_LEGACY
:
567 case AMDGPUISD::FMED3
:
574 /// \p returns true if the operation will definitely need to use a 64-bit
575 /// encoding, and thus will use a VOP3 encoding regardless of the source
578 static bool opMustUseVOP3Encoding(const SDNode
*N
, MVT VT
) {
579 return N
->getNumOperands() > 2 || VT
== MVT::f64
;
582 // Most FP instructions support source modifiers, but this could be refined
585 static bool hasSourceMods(const SDNode
*N
) {
586 if (isa
<MemSDNode
>(N
))
589 switch (N
->getOpcode()) {
595 case AMDGPUISD::INTERP_P1
:
596 case AMDGPUISD::INTERP_P2
:
597 case AMDGPUISD::DIV_SCALE
:
599 // TODO: Should really be looking at the users of the bitcast. These are
600 // problematic because bitcasts are used to legalize all stores to integer
609 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode
*N
,
610 unsigned CostThreshold
) {
611 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
612 // it is truly free to use a source modifier in all cases. If there are
613 // multiple users but for each one will necessitate using VOP3, there will be
614 // a code size increase. Try to avoid increasing code size unless we know it
615 // will save on the instruction count.
616 unsigned NumMayIncreaseSize
= 0;
617 MVT VT
= N
->getValueType(0).getScalarType().getSimpleVT();
619 // XXX - Should this limit number of uses to check?
620 for (const SDNode
*U
: N
->uses()) {
621 if (!hasSourceMods(U
))
624 if (!opMustUseVOP3Encoding(U
, VT
)) {
625 if (++NumMayIncreaseSize
> CostThreshold
)
633 MVT
AMDGPUTargetLowering::getVectorIdxTy(const DataLayout
&) const {
637 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType
) const {
641 // The backend supports 32 and 64 bit floating point immediates.
642 // FIXME: Why are we reporting vectors of FP immediates as legal?
643 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat
&Imm
, EVT VT
) const {
644 EVT ScalarVT
= VT
.getScalarType();
645 return (ScalarVT
== MVT::f32
|| ScalarVT
== MVT::f64
||
646 (ScalarVT
== MVT::f16
&& Subtarget
->has16BitInsts()));
649 // We don't want to shrink f64 / f32 constants.
650 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT
) const {
651 EVT ScalarVT
= VT
.getScalarType();
652 return (ScalarVT
!= MVT::f32
&& ScalarVT
!= MVT::f64
);
655 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode
*N
,
659 unsigned NewSize
= NewVT
.getStoreSizeInBits();
661 // If we are reducing to a 32-bit load, this is always better.
665 EVT OldVT
= N
->getValueType(0);
666 unsigned OldSize
= OldVT
.getStoreSizeInBits();
668 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
669 // extloads, so doing one requires using a buffer_load. In cases where we
670 // still couldn't use a scalar load, using the wider load shouldn't really
673 // If the old size already had to be an extload, there's no harm in continuing
674 // to reduce the width.
675 return (OldSize
< 32);
678 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy
,
681 assert(LoadTy
.getSizeInBits() == CastTy
.getSizeInBits());
683 if (LoadTy
.getScalarType() == MVT::i32
)
686 unsigned LScalarSize
= LoadTy
.getScalarSizeInBits();
687 unsigned CastScalarSize
= CastTy
.getScalarSizeInBits();
689 return (LScalarSize
< CastScalarSize
) ||
690 (CastScalarSize
>= 32);
693 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
694 // profitable with the expansion for 64-bit since it's generally good to
696 // FIXME: These should really have the size as a parameter.
697 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
701 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
705 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode
* N
) const {
706 switch (N
->getOpcode()) {
709 case ISD::EntryToken
:
710 case ISD::TokenFactor
:
712 case ISD::INTRINSIC_WO_CHAIN
:
714 unsigned IntrID
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
718 case Intrinsic::amdgcn_readfirstlane
:
719 case Intrinsic::amdgcn_readlane
:
726 const LoadSDNode
* L
= dyn_cast
<LoadSDNode
>(N
);
727 if (L
->getMemOperand()->getAddrSpace()
728 == AMDGPUAS::CONSTANT_ADDRESS_32BIT
)
736 //===---------------------------------------------------------------------===//
738 //===---------------------------------------------------------------------===//
740 bool AMDGPUTargetLowering::isFAbsFree(EVT VT
) const {
741 assert(VT
.isFloatingPoint());
743 // Packed operations do not have a fabs modifier.
744 return VT
== MVT::f32
|| VT
== MVT::f64
||
745 (Subtarget
->has16BitInsts() && VT
== MVT::f16
);
748 bool AMDGPUTargetLowering::isFNegFree(EVT VT
) const {
749 assert(VT
.isFloatingPoint());
750 return VT
== MVT::f32
|| VT
== MVT::f64
||
751 (Subtarget
->has16BitInsts() && VT
== MVT::f16
) ||
752 (Subtarget
->hasVOP3PInsts() && VT
== MVT::v2f16
);
755 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT
,
761 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT
) const {
762 // There are few operations which truly have vector input operands. Any vector
763 // operation is going to involve operations on each component, and a
764 // build_vector will be a copy per element, so it always makes sense to use a
765 // build_vector input in place of the extracted element to avoid a copy into a
768 // We should probably only do this if all users are extracts only, but this
769 // should be the common case.
773 bool AMDGPUTargetLowering::isTruncateFree(EVT Source
, EVT Dest
) const {
774 // Truncate is just accessing a subregister.
776 unsigned SrcSize
= Source
.getSizeInBits();
777 unsigned DestSize
= Dest
.getSizeInBits();
779 return DestSize
< SrcSize
&& DestSize
% 32 == 0 ;
782 bool AMDGPUTargetLowering::isTruncateFree(Type
*Source
, Type
*Dest
) const {
783 // Truncate is just accessing a subregister.
785 unsigned SrcSize
= Source
->getScalarSizeInBits();
786 unsigned DestSize
= Dest
->getScalarSizeInBits();
788 if (DestSize
== 16 && Subtarget
->has16BitInsts())
789 return SrcSize
>= 32;
791 return DestSize
< SrcSize
&& DestSize
% 32 == 0;
794 bool AMDGPUTargetLowering::isZExtFree(Type
*Src
, Type
*Dest
) const {
795 unsigned SrcSize
= Src
->getScalarSizeInBits();
796 unsigned DestSize
= Dest
->getScalarSizeInBits();
798 if (SrcSize
== 16 && Subtarget
->has16BitInsts())
799 return DestSize
>= 32;
801 return SrcSize
== 32 && DestSize
== 64;
804 bool AMDGPUTargetLowering::isZExtFree(EVT Src
, EVT Dest
) const {
805 // Any register load of a 64-bit value really requires 2 32-bit moves. For all
806 // practical purposes, the extra mov 0 to load a 64-bit is free. As used,
807 // this will enable reducing 64-bit operations the 32-bit, which is always
811 return Dest
== MVT::i32
||Dest
== MVT::i64
;
813 return Src
== MVT::i32
&& Dest
== MVT::i64
;
816 bool AMDGPUTargetLowering::isZExtFree(SDValue Val
, EVT VT2
) const {
817 return isZExtFree(Val
.getValueType(), VT2
);
820 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT
, EVT DestVT
) const {
821 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
822 // limited number of native 64-bit operations. Shrinking an operation to fit
823 // in a single 32-bit register should always be helpful. As currently used,
824 // this is much less general than the name suggests, and is only used in
825 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
826 // not profitable, and may actually be harmful.
827 return SrcVT
.getSizeInBits() > 32 && DestVT
.getSizeInBits() == 32;
830 //===---------------------------------------------------------------------===//
831 // TargetLowering Callbacks
832 //===---------------------------------------------------------------------===//
834 CCAssignFn
*AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC
,
837 case CallingConv::AMDGPU_KERNEL
:
838 case CallingConv::SPIR_KERNEL
:
839 llvm_unreachable("kernels should not be handled here");
840 case CallingConv::AMDGPU_VS
:
841 case CallingConv::AMDGPU_GS
:
842 case CallingConv::AMDGPU_PS
:
843 case CallingConv::AMDGPU_CS
:
844 case CallingConv::AMDGPU_HS
:
845 case CallingConv::AMDGPU_ES
:
846 case CallingConv::AMDGPU_LS
:
849 case CallingConv::Fast
:
850 case CallingConv::Cold
:
851 return CC_AMDGPU_Func
;
853 report_fatal_error("Unsupported calling convention.");
857 CCAssignFn
*AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC
,
860 case CallingConv::AMDGPU_KERNEL
:
861 case CallingConv::SPIR_KERNEL
:
862 llvm_unreachable("kernels should not be handled here");
863 case CallingConv::AMDGPU_VS
:
864 case CallingConv::AMDGPU_GS
:
865 case CallingConv::AMDGPU_PS
:
866 case CallingConv::AMDGPU_CS
:
867 case CallingConv::AMDGPU_HS
:
868 case CallingConv::AMDGPU_ES
:
869 case CallingConv::AMDGPU_LS
:
870 return RetCC_SI_Shader
;
872 case CallingConv::Fast
:
873 case CallingConv::Cold
:
874 return RetCC_AMDGPU_Func
;
876 report_fatal_error("Unsupported calling convention.");
880 /// The SelectionDAGBuilder will automatically promote function arguments
881 /// with illegal types. However, this does not work for the AMDGPU targets
882 /// since the function arguments are stored in memory as these illegal types.
883 /// In order to handle this properly we need to get the original types sizes
884 /// from the LLVM IR Function and fixup the ISD:InputArg values before
885 /// passing them to AnalyzeFormalArguments()
887 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
888 /// input values across multiple registers. Each item in the Ins array
889 /// represents a single value that will be stored in registers. Ins[x].VT is
890 /// the value type of the value that will be stored in the register, so
891 /// whatever SDNode we lower the argument to needs to be this type.
893 /// In order to correctly lower the arguments we need to know the size of each
894 /// argument. Since Ins[x].VT gives us the size of the register that will
895 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
896 /// for the orignal function argument so that we can deduce the correct memory
897 /// type to use for Ins[x]. In most cases the correct memory type will be
898 /// Ins[x].ArgVT. However, this will not always be the case. If, for example,
899 /// we have a kernel argument of type v8i8, this argument will be split into
900 /// 8 parts and each part will be represented by its own item in the Ins array.
901 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
902 /// the argument before it was split. From this, we deduce that the memory type
903 /// for each individual part is i8. We pass the memory type as LocVT to the
904 /// calling convention analysis function and the register type (Ins[x].VT) as
906 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(
908 const SmallVectorImpl
<ISD::InputArg
> &Ins
) const {
909 const MachineFunction
&MF
= State
.getMachineFunction();
910 const Function
&Fn
= MF
.getFunction();
911 LLVMContext
&Ctx
= Fn
.getParent()->getContext();
912 const AMDGPUSubtarget
&ST
= AMDGPUSubtarget::get(MF
);
913 const unsigned ExplicitOffset
= ST
.getExplicitKernelArgOffset(Fn
);
914 CallingConv::ID CC
= Fn
.getCallingConv();
916 unsigned MaxAlign
= 1;
917 uint64_t ExplicitArgOffset
= 0;
918 const DataLayout
&DL
= Fn
.getParent()->getDataLayout();
920 unsigned InIndex
= 0;
922 for (const Argument
&Arg
: Fn
.args()) {
923 Type
*BaseArgTy
= Arg
.getType();
924 unsigned Align
= DL
.getABITypeAlignment(BaseArgTy
);
925 MaxAlign
= std::max(Align
, MaxAlign
);
926 unsigned AllocSize
= DL
.getTypeAllocSize(BaseArgTy
);
928 uint64_t ArgOffset
= alignTo(ExplicitArgOffset
, Align
) + ExplicitOffset
;
929 ExplicitArgOffset
= alignTo(ExplicitArgOffset
, Align
) + AllocSize
;
931 // We're basically throwing away everything passed into us and starting over
932 // to get accurate in-memory offsets. The "PartOffset" is completely useless
933 // to us as computed in Ins.
935 // We also need to figure out what type legalization is trying to do to get
936 // the correct memory offsets.
938 SmallVector
<EVT
, 16> ValueVTs
;
939 SmallVector
<uint64_t, 16> Offsets
;
940 ComputeValueVTs(*this, DL
, BaseArgTy
, ValueVTs
, &Offsets
, ArgOffset
);
942 for (unsigned Value
= 0, NumValues
= ValueVTs
.size();
943 Value
!= NumValues
; ++Value
) {
944 uint64_t BasePartOffset
= Offsets
[Value
];
946 EVT ArgVT
= ValueVTs
[Value
];
948 MVT RegisterVT
= getRegisterTypeForCallingConv(Ctx
, CC
, ArgVT
);
949 unsigned NumRegs
= getNumRegistersForCallingConv(Ctx
, CC
, ArgVT
);
952 // This argument is not split, so the IR type is the memory type.
953 if (ArgVT
.isExtended()) {
954 // We have an extended type, like i24, so we should just use the
960 } else if (ArgVT
.isVector() && RegisterVT
.isVector() &&
961 ArgVT
.getScalarType() == RegisterVT
.getScalarType()) {
962 assert(ArgVT
.getVectorNumElements() > RegisterVT
.getVectorNumElements());
963 // We have a vector value which has been split into a vector with
964 // the same scalar type, but fewer elements. This should handle
965 // all the floating-point vector types.
967 } else if (ArgVT
.isVector() &&
968 ArgVT
.getVectorNumElements() == NumRegs
) {
969 // This arg has been split so that each element is stored in a separate
971 MemVT
= ArgVT
.getScalarType();
972 } else if (ArgVT
.isExtended()) {
973 // We have an extended type, like i65.
976 unsigned MemoryBits
= ArgVT
.getStoreSizeInBits() / NumRegs
;
977 assert(ArgVT
.getStoreSizeInBits() % NumRegs
== 0);
978 if (RegisterVT
.isInteger()) {
979 MemVT
= EVT::getIntegerVT(State
.getContext(), MemoryBits
);
980 } else if (RegisterVT
.isVector()) {
981 assert(!RegisterVT
.getScalarType().isFloatingPoint());
982 unsigned NumElements
= RegisterVT
.getVectorNumElements();
983 assert(MemoryBits
% NumElements
== 0);
984 // This vector type has been split into another vector type with
985 // a different elements size.
986 EVT ScalarVT
= EVT::getIntegerVT(State
.getContext(),
987 MemoryBits
/ NumElements
);
988 MemVT
= EVT::getVectorVT(State
.getContext(), ScalarVT
, NumElements
);
990 llvm_unreachable("cannot deduce memory type.");
994 // Convert one element vectors to scalar.
995 if (MemVT
.isVector() && MemVT
.getVectorNumElements() == 1)
996 MemVT
= MemVT
.getScalarType();
998 if (MemVT
.isExtended()) {
999 // This should really only happen if we have vec3 arguments
1000 assert(MemVT
.isVector() && MemVT
.getVectorNumElements() == 3);
1001 MemVT
= MemVT
.getPow2VectorType(State
.getContext());
1004 unsigned PartOffset
= 0;
1005 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
1006 State
.addLoc(CCValAssign::getCustomMem(InIndex
++, RegisterVT
,
1007 BasePartOffset
+ PartOffset
,
1008 MemVT
.getSimpleVT(),
1009 CCValAssign::Full
));
1010 PartOffset
+= MemVT
.getStoreSize();
1016 SDValue
AMDGPUTargetLowering::LowerReturn(
1017 SDValue Chain
, CallingConv::ID CallConv
,
1019 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1020 const SmallVectorImpl
<SDValue
> &OutVals
,
1021 const SDLoc
&DL
, SelectionDAG
&DAG
) const {
1022 // FIXME: Fails for r600 tests
1023 //assert(!isVarArg && Outs.empty() && OutVals.empty() &&
1024 // "wave terminate should not have return values");
1025 return DAG
.getNode(AMDGPUISD::ENDPGM
, DL
, MVT::Other
, Chain
);
1028 //===---------------------------------------------------------------------===//
1029 // Target specific lowering
1030 //===---------------------------------------------------------------------===//
1032 /// Selects the correct CCAssignFn for a given CallingConvention value.
1033 CCAssignFn
*AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC
,
1035 return AMDGPUCallLowering::CCAssignFnForCall(CC
, IsVarArg
);
1038 CCAssignFn
*AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC
,
1040 return AMDGPUCallLowering::CCAssignFnForReturn(CC
, IsVarArg
);
1043 SDValue
AMDGPUTargetLowering::addTokenForArgument(SDValue Chain
,
1045 MachineFrameInfo
&MFI
,
1046 int ClobberedFI
) const {
1047 SmallVector
<SDValue
, 8> ArgChains
;
1048 int64_t FirstByte
= MFI
.getObjectOffset(ClobberedFI
);
1049 int64_t LastByte
= FirstByte
+ MFI
.getObjectSize(ClobberedFI
) - 1;
1051 // Include the original chain at the beginning of the list. When this is
1052 // used by target LowerCall hooks, this helps legalize find the
1053 // CALLSEQ_BEGIN node.
1054 ArgChains
.push_back(Chain
);
1056 // Add a chain value for each stack argument corresponding
1057 for (SDNode::use_iterator U
= DAG
.getEntryNode().getNode()->use_begin(),
1058 UE
= DAG
.getEntryNode().getNode()->use_end();
1060 if (LoadSDNode
*L
= dyn_cast
<LoadSDNode
>(*U
)) {
1061 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(L
->getBasePtr())) {
1062 if (FI
->getIndex() < 0) {
1063 int64_t InFirstByte
= MFI
.getObjectOffset(FI
->getIndex());
1064 int64_t InLastByte
= InFirstByte
;
1065 InLastByte
+= MFI
.getObjectSize(FI
->getIndex()) - 1;
1067 if ((InFirstByte
<= FirstByte
&& FirstByte
<= InLastByte
) ||
1068 (FirstByte
<= InFirstByte
&& InFirstByte
<= LastByte
))
1069 ArgChains
.push_back(SDValue(L
, 1));
1075 // Build a tokenfactor for all the chains.
1076 return DAG
.getNode(ISD::TokenFactor
, SDLoc(Chain
), MVT::Other
, ArgChains
);
1079 SDValue
AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo
&CLI
,
1080 SmallVectorImpl
<SDValue
> &InVals
,
1081 StringRef Reason
) const {
1082 SDValue Callee
= CLI
.Callee
;
1083 SelectionDAG
&DAG
= CLI
.DAG
;
1085 const Function
&Fn
= DAG
.getMachineFunction().getFunction();
1087 StringRef
FuncName("<unknown>");
1089 if (const ExternalSymbolSDNode
*G
= dyn_cast
<ExternalSymbolSDNode
>(Callee
))
1090 FuncName
= G
->getSymbol();
1091 else if (const GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
1092 FuncName
= G
->getGlobal()->getName();
1094 DiagnosticInfoUnsupported
NoCalls(
1095 Fn
, Reason
+ FuncName
, CLI
.DL
.getDebugLoc());
1096 DAG
.getContext()->diagnose(NoCalls
);
1098 if (!CLI
.IsTailCall
) {
1099 for (unsigned I
= 0, E
= CLI
.Ins
.size(); I
!= E
; ++I
)
1100 InVals
.push_back(DAG
.getUNDEF(CLI
.Ins
[I
].VT
));
1103 return DAG
.getEntryNode();
1106 SDValue
AMDGPUTargetLowering::LowerCall(CallLoweringInfo
&CLI
,
1107 SmallVectorImpl
<SDValue
> &InVals
) const {
1108 return lowerUnhandledCall(CLI
, InVals
, "unsupported call to function ");
1111 SDValue
AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op
,
1112 SelectionDAG
&DAG
) const {
1113 const Function
&Fn
= DAG
.getMachineFunction().getFunction();
1115 DiagnosticInfoUnsupported
NoDynamicAlloca(Fn
, "unsupported dynamic alloca",
1116 SDLoc(Op
).getDebugLoc());
1117 DAG
.getContext()->diagnose(NoDynamicAlloca
);
1118 auto Ops
= {DAG
.getConstant(0, SDLoc(), Op
.getValueType()), Op
.getOperand(0)};
1119 return DAG
.getMergeValues(Ops
, SDLoc());
1122 SDValue
AMDGPUTargetLowering::LowerOperation(SDValue Op
,
1123 SelectionDAG
&DAG
) const {
1124 switch (Op
.getOpcode()) {
1126 Op
->print(errs(), &DAG
);
1127 llvm_unreachable("Custom lowering code for this"
1128 "instruction is not implemented yet!");
1130 case ISD::SIGN_EXTEND_INREG
: return LowerSIGN_EXTEND_INREG(Op
, DAG
);
1131 case ISD::CONCAT_VECTORS
: return LowerCONCAT_VECTORS(Op
, DAG
);
1132 case ISD::EXTRACT_SUBVECTOR
: return LowerEXTRACT_SUBVECTOR(Op
, DAG
);
1133 case ISD::UDIVREM
: return LowerUDIVREM(Op
, DAG
);
1134 case ISD::SDIVREM
: return LowerSDIVREM(Op
, DAG
);
1135 case ISD::FREM
: return LowerFREM(Op
, DAG
);
1136 case ISD::FCEIL
: return LowerFCEIL(Op
, DAG
);
1137 case ISD::FTRUNC
: return LowerFTRUNC(Op
, DAG
);
1138 case ISD::FRINT
: return LowerFRINT(Op
, DAG
);
1139 case ISD::FNEARBYINT
: return LowerFNEARBYINT(Op
, DAG
);
1140 case ISD::FROUND
: return LowerFROUND(Op
, DAG
);
1141 case ISD::FFLOOR
: return LowerFFLOOR(Op
, DAG
);
1143 return LowerFLOG(Op
, DAG
, 1 / AMDGPU_LOG2E_F
);
1145 return LowerFLOG(Op
, DAG
, AMDGPU_LN2_F
/ AMDGPU_LN10_F
);
1147 return lowerFEXP(Op
, DAG
);
1148 case ISD::SINT_TO_FP
: return LowerSINT_TO_FP(Op
, DAG
);
1149 case ISD::UINT_TO_FP
: return LowerUINT_TO_FP(Op
, DAG
);
1150 case ISD::FP_TO_FP16
: return LowerFP_TO_FP16(Op
, DAG
);
1151 case ISD::FP_TO_SINT
: return LowerFP_TO_SINT(Op
, DAG
);
1152 case ISD::FP_TO_UINT
: return LowerFP_TO_UINT(Op
, DAG
);
1154 case ISD::CTTZ_ZERO_UNDEF
:
1156 case ISD::CTLZ_ZERO_UNDEF
:
1157 return LowerCTLZ_CTTZ(Op
, DAG
);
1158 case ISD::DYNAMIC_STACKALLOC
: return LowerDYNAMIC_STACKALLOC(Op
, DAG
);
1163 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode
*N
,
1164 SmallVectorImpl
<SDValue
> &Results
,
1165 SelectionDAG
&DAG
) const {
1166 switch (N
->getOpcode()) {
1167 case ISD::SIGN_EXTEND_INREG
:
1168 // Different parts of legalization seem to interpret which type of
1169 // sign_extend_inreg is the one to check for custom lowering. The extended
1170 // from type is what really matters, but some places check for custom
1171 // lowering of the result type. This results in trying to use
1172 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
1173 // nothing here and let the illegal result integer be handled normally.
1180 static bool hasDefinedInitializer(const GlobalValue
*GV
) {
1181 const GlobalVariable
*GVar
= dyn_cast
<GlobalVariable
>(GV
);
1182 if (!GVar
|| !GVar
->hasInitializer())
1185 return !isa
<UndefValue
>(GVar
->getInitializer());
1188 SDValue
AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction
* MFI
,
1190 SelectionDAG
&DAG
) const {
1192 const DataLayout
&DL
= DAG
.getDataLayout();
1193 GlobalAddressSDNode
*G
= cast
<GlobalAddressSDNode
>(Op
);
1194 const GlobalValue
*GV
= G
->getGlobal();
1196 if (G
->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS
||
1197 G
->getAddressSpace() == AMDGPUAS::REGION_ADDRESS
) {
1198 if (!MFI
->isEntryFunction()) {
1199 const Function
&Fn
= DAG
.getMachineFunction().getFunction();
1200 DiagnosticInfoUnsupported
BadLDSDecl(
1201 Fn
, "local memory global used by non-kernel function", SDLoc(Op
).getDebugLoc());
1202 DAG
.getContext()->diagnose(BadLDSDecl
);
1205 // XXX: What does the value of G->getOffset() mean?
1206 assert(G
->getOffset() == 0 &&
1207 "Do not know what to do with an non-zero offset");
1209 // TODO: We could emit code to handle the initialization somewhere.
1210 if (!hasDefinedInitializer(GV
)) {
1211 unsigned Offset
= MFI
->allocateLDSGlobal(DL
, *GV
);
1212 return DAG
.getConstant(Offset
, SDLoc(Op
), Op
.getValueType());
1216 const Function
&Fn
= DAG
.getMachineFunction().getFunction();
1217 DiagnosticInfoUnsupported
BadInit(
1218 Fn
, "unsupported initializer for address space", SDLoc(Op
).getDebugLoc());
1219 DAG
.getContext()->diagnose(BadInit
);
1223 SDValue
AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op
,
1224 SelectionDAG
&DAG
) const {
1225 SmallVector
<SDValue
, 8> Args
;
1227 EVT VT
= Op
.getValueType();
1228 if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
1230 SDValue Lo
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::i32
, Op
.getOperand(0));
1231 SDValue Hi
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::i32
, Op
.getOperand(1));
1233 SDValue BV
= DAG
.getBuildVector(MVT::v2i32
, SL
, { Lo
, Hi
});
1234 return DAG
.getNode(ISD::BITCAST
, SL
, VT
, BV
);
1237 for (const SDUse
&U
: Op
->ops())
1238 DAG
.ExtractVectorElements(U
.get(), Args
);
1240 return DAG
.getBuildVector(Op
.getValueType(), SDLoc(Op
), Args
);
1243 SDValue
AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op
,
1244 SelectionDAG
&DAG
) const {
1246 SmallVector
<SDValue
, 8> Args
;
1247 unsigned Start
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
1248 EVT VT
= Op
.getValueType();
1249 DAG
.ExtractVectorElements(Op
.getOperand(0), Args
, Start
,
1250 VT
.getVectorNumElements());
1252 return DAG
.getBuildVector(Op
.getValueType(), SDLoc(Op
), Args
);
1255 /// Generate Min/Max node
1256 SDValue
AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc
&DL
, EVT VT
,
1257 SDValue LHS
, SDValue RHS
,
1258 SDValue True
, SDValue False
,
1260 DAGCombinerInfo
&DCI
) const {
1261 if (!(LHS
== True
&& RHS
== False
) && !(LHS
== False
&& RHS
== True
))
1264 SelectionDAG
&DAG
= DCI
.DAG
;
1265 ISD::CondCode CCOpcode
= cast
<CondCodeSDNode
>(CC
)->get();
1274 case ISD::SETFALSE2
:
1283 return DAG
.getNode(AMDGPUISD::FMIN_LEGACY
, DL
, VT
, RHS
, LHS
);
1284 return DAG
.getNode(AMDGPUISD::FMAX_LEGACY
, DL
, VT
, LHS
, RHS
);
1290 // Ordered. Assume ordered for undefined.
1292 // Only do this after legalization to avoid interfering with other combines
1293 // which might occur.
1294 if (DCI
.getDAGCombineLevel() < AfterLegalizeDAG
&&
1295 !DCI
.isCalledByLegalizer())
1298 // We need to permute the operands to get the correct NaN behavior. The
1299 // selected operand is the second one based on the failing compare with NaN,
1300 // so permute it based on the compare type the hardware uses.
1302 return DAG
.getNode(AMDGPUISD::FMIN_LEGACY
, DL
, VT
, LHS
, RHS
);
1303 return DAG
.getNode(AMDGPUISD::FMAX_LEGACY
, DL
, VT
, RHS
, LHS
);
1308 return DAG
.getNode(AMDGPUISD::FMAX_LEGACY
, DL
, VT
, RHS
, LHS
);
1309 return DAG
.getNode(AMDGPUISD::FMIN_LEGACY
, DL
, VT
, LHS
, RHS
);
1315 if (DCI
.getDAGCombineLevel() < AfterLegalizeDAG
&&
1316 !DCI
.isCalledByLegalizer())
1320 return DAG
.getNode(AMDGPUISD::FMAX_LEGACY
, DL
, VT
, LHS
, RHS
);
1321 return DAG
.getNode(AMDGPUISD::FMIN_LEGACY
, DL
, VT
, RHS
, LHS
);
1323 case ISD::SETCC_INVALID
:
1324 llvm_unreachable("Invalid setcc condcode!");
1329 std::pair
<SDValue
, SDValue
>
1330 AMDGPUTargetLowering::split64BitValue(SDValue Op
, SelectionDAG
&DAG
) const {
1333 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Op
);
1335 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
1336 const SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
1338 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, Zero
);
1339 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, One
);
1341 return std::make_pair(Lo
, Hi
);
1344 SDValue
AMDGPUTargetLowering::getLoHalf64(SDValue Op
, SelectionDAG
&DAG
) const {
1347 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Op
);
1348 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
1349 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, Zero
);
1352 SDValue
AMDGPUTargetLowering::getHiHalf64(SDValue Op
, SelectionDAG
&DAG
) const {
1355 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Op
);
1356 const SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
1357 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, One
);
1360 SDValue
AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op
,
1361 SelectionDAG
&DAG
) const {
1362 LoadSDNode
*Load
= cast
<LoadSDNode
>(Op
);
1363 EVT VT
= Op
.getValueType();
1366 // If this is a 2 element vector, we really want to scalarize and not create
1367 // weird 1 element vectors.
1368 if (VT
.getVectorNumElements() == 2)
1369 return scalarizeVectorLoad(Load
, DAG
);
1371 SDValue BasePtr
= Load
->getBasePtr();
1372 EVT MemVT
= Load
->getMemoryVT();
1375 const MachinePointerInfo
&SrcValue
= Load
->getMemOperand()->getPointerInfo();
1378 EVT LoMemVT
, HiMemVT
;
1381 std::tie(LoVT
, HiVT
) = DAG
.GetSplitDestVTs(VT
);
1382 std::tie(LoMemVT
, HiMemVT
) = DAG
.GetSplitDestVTs(MemVT
);
1383 std::tie(Lo
, Hi
) = DAG
.SplitVector(Op
, SL
, LoVT
, HiVT
);
1385 unsigned Size
= LoMemVT
.getStoreSize();
1386 unsigned BaseAlign
= Load
->getAlignment();
1387 unsigned HiAlign
= MinAlign(BaseAlign
, Size
);
1389 SDValue LoLoad
= DAG
.getExtLoad(Load
->getExtensionType(), SL
, LoVT
,
1390 Load
->getChain(), BasePtr
, SrcValue
, LoMemVT
,
1391 BaseAlign
, Load
->getMemOperand()->getFlags());
1392 SDValue HiPtr
= DAG
.getObjectPtrOffset(SL
, BasePtr
, Size
);
1394 DAG
.getExtLoad(Load
->getExtensionType(), SL
, HiVT
, Load
->getChain(),
1395 HiPtr
, SrcValue
.getWithOffset(LoMemVT
.getStoreSize()),
1396 HiMemVT
, HiAlign
, Load
->getMemOperand()->getFlags());
1399 DAG
.getNode(ISD::CONCAT_VECTORS
, SL
, VT
, LoLoad
, HiLoad
),
1400 DAG
.getNode(ISD::TokenFactor
, SL
, MVT::Other
,
1401 LoLoad
.getValue(1), HiLoad
.getValue(1))
1404 return DAG
.getMergeValues(Ops
, SL
);
1407 SDValue
AMDGPUTargetLowering::SplitVectorStore(SDValue Op
,
1408 SelectionDAG
&DAG
) const {
1409 StoreSDNode
*Store
= cast
<StoreSDNode
>(Op
);
1410 SDValue Val
= Store
->getValue();
1411 EVT VT
= Val
.getValueType();
1413 // If this is a 2 element vector, we really want to scalarize and not create
1414 // weird 1 element vectors.
1415 if (VT
.getVectorNumElements() == 2)
1416 return scalarizeVectorStore(Store
, DAG
);
1418 EVT MemVT
= Store
->getMemoryVT();
1419 SDValue Chain
= Store
->getChain();
1420 SDValue BasePtr
= Store
->getBasePtr();
1424 EVT LoMemVT
, HiMemVT
;
1427 std::tie(LoVT
, HiVT
) = DAG
.GetSplitDestVTs(VT
);
1428 std::tie(LoMemVT
, HiMemVT
) = DAG
.GetSplitDestVTs(MemVT
);
1429 std::tie(Lo
, Hi
) = DAG
.SplitVector(Val
, SL
, LoVT
, HiVT
);
1431 SDValue HiPtr
= DAG
.getObjectPtrOffset(SL
, BasePtr
, LoMemVT
.getStoreSize());
1433 const MachinePointerInfo
&SrcValue
= Store
->getMemOperand()->getPointerInfo();
1434 unsigned BaseAlign
= Store
->getAlignment();
1435 unsigned Size
= LoMemVT
.getStoreSize();
1436 unsigned HiAlign
= MinAlign(BaseAlign
, Size
);
1439 DAG
.getTruncStore(Chain
, SL
, Lo
, BasePtr
, SrcValue
, LoMemVT
, BaseAlign
,
1440 Store
->getMemOperand()->getFlags());
1442 DAG
.getTruncStore(Chain
, SL
, Hi
, HiPtr
, SrcValue
.getWithOffset(Size
),
1443 HiMemVT
, HiAlign
, Store
->getMemOperand()->getFlags());
1445 return DAG
.getNode(ISD::TokenFactor
, SL
, MVT::Other
, LoStore
, HiStore
);
1448 // This is a shortcut for integer division because we have fast i32<->f32
1449 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1450 // float is enough to accurately represent up to a 24-bit signed integer.
1451 SDValue
AMDGPUTargetLowering::LowerDIVREM24(SDValue Op
, SelectionDAG
&DAG
,
1454 EVT VT
= Op
.getValueType();
1455 SDValue LHS
= Op
.getOperand(0);
1456 SDValue RHS
= Op
.getOperand(1);
1457 MVT IntVT
= MVT::i32
;
1458 MVT FltVT
= MVT::f32
;
1460 unsigned LHSSignBits
= DAG
.ComputeNumSignBits(LHS
);
1461 if (LHSSignBits
< 9)
1464 unsigned RHSSignBits
= DAG
.ComputeNumSignBits(RHS
);
1465 if (RHSSignBits
< 9)
1468 unsigned BitSize
= VT
.getSizeInBits();
1469 unsigned SignBits
= std::min(LHSSignBits
, RHSSignBits
);
1470 unsigned DivBits
= BitSize
- SignBits
;
1474 ISD::NodeType ToFp
= Sign
? ISD::SINT_TO_FP
: ISD::UINT_TO_FP
;
1475 ISD::NodeType ToInt
= Sign
? ISD::FP_TO_SINT
: ISD::FP_TO_UINT
;
1477 SDValue jq
= DAG
.getConstant(1, DL
, IntVT
);
1480 // char|short jq = ia ^ ib;
1481 jq
= DAG
.getNode(ISD::XOR
, DL
, VT
, LHS
, RHS
);
1483 // jq = jq >> (bitsize - 2)
1484 jq
= DAG
.getNode(ISD::SRA
, DL
, VT
, jq
,
1485 DAG
.getConstant(BitSize
- 2, DL
, VT
));
1488 jq
= DAG
.getNode(ISD::OR
, DL
, VT
, jq
, DAG
.getConstant(1, DL
, VT
));
1491 // int ia = (int)LHS;
1494 // int ib, (int)RHS;
1497 // float fa = (float)ia;
1498 SDValue fa
= DAG
.getNode(ToFp
, DL
, FltVT
, ia
);
1500 // float fb = (float)ib;
1501 SDValue fb
= DAG
.getNode(ToFp
, DL
, FltVT
, ib
);
1503 SDValue fq
= DAG
.getNode(ISD::FMUL
, DL
, FltVT
,
1504 fa
, DAG
.getNode(AMDGPUISD::RCP
, DL
, FltVT
, fb
));
1507 fq
= DAG
.getNode(ISD::FTRUNC
, DL
, FltVT
, fq
);
1509 // float fqneg = -fq;
1510 SDValue fqneg
= DAG
.getNode(ISD::FNEG
, DL
, FltVT
, fq
);
1512 // float fr = mad(fqneg, fb, fa);
1513 unsigned OpCode
= Subtarget
->hasFP32Denormals() ?
1514 (unsigned)AMDGPUISD::FMAD_FTZ
:
1515 (unsigned)ISD::FMAD
;
1516 SDValue fr
= DAG
.getNode(OpCode
, DL
, FltVT
, fqneg
, fb
, fa
);
1518 // int iq = (int)fq;
1519 SDValue iq
= DAG
.getNode(ToInt
, DL
, IntVT
, fq
);
1522 fr
= DAG
.getNode(ISD::FABS
, DL
, FltVT
, fr
);
1525 fb
= DAG
.getNode(ISD::FABS
, DL
, FltVT
, fb
);
1527 EVT SetCCVT
= getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
1529 // int cv = fr >= fb;
1530 SDValue cv
= DAG
.getSetCC(DL
, SetCCVT
, fr
, fb
, ISD::SETOGE
);
1532 // jq = (cv ? jq : 0);
1533 jq
= DAG
.getNode(ISD::SELECT
, DL
, VT
, cv
, jq
, DAG
.getConstant(0, DL
, VT
));
1536 SDValue Div
= DAG
.getNode(ISD::ADD
, DL
, VT
, iq
, jq
);
1538 // Rem needs compensation, it's easier to recompute it
1539 SDValue Rem
= DAG
.getNode(ISD::MUL
, DL
, VT
, Div
, RHS
);
1540 Rem
= DAG
.getNode(ISD::SUB
, DL
, VT
, LHS
, Rem
);
1542 // Truncate to number of bits this divide really is.
1545 = DAG
.getValueType(EVT::getIntegerVT(*DAG
.getContext(), DivBits
));
1546 Div
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, VT
, Div
, InRegSize
);
1547 Rem
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, VT
, Rem
, InRegSize
);
1549 SDValue TruncMask
= DAG
.getConstant((UINT64_C(1) << DivBits
) - 1, DL
, VT
);
1550 Div
= DAG
.getNode(ISD::AND
, DL
, VT
, Div
, TruncMask
);
1551 Rem
= DAG
.getNode(ISD::AND
, DL
, VT
, Rem
, TruncMask
);
1554 return DAG
.getMergeValues({ Div
, Rem
}, DL
);
1557 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op
,
1559 SmallVectorImpl
<SDValue
> &Results
) const {
1561 EVT VT
= Op
.getValueType();
1563 assert(VT
== MVT::i64
&& "LowerUDIVREM64 expects an i64");
1565 EVT HalfVT
= VT
.getHalfSizedIntegerVT(*DAG
.getContext());
1567 SDValue One
= DAG
.getConstant(1, DL
, HalfVT
);
1568 SDValue Zero
= DAG
.getConstant(0, DL
, HalfVT
);
1571 SDValue LHS
= Op
.getOperand(0);
1572 SDValue LHS_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, LHS
, Zero
);
1573 SDValue LHS_Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, LHS
, One
);
1575 SDValue RHS
= Op
.getOperand(1);
1576 SDValue RHS_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, RHS
, Zero
);
1577 SDValue RHS_Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, RHS
, One
);
1579 if (DAG
.MaskedValueIsZero(RHS
, APInt::getHighBitsSet(64, 32)) &&
1580 DAG
.MaskedValueIsZero(LHS
, APInt::getHighBitsSet(64, 32))) {
1582 SDValue Res
= DAG
.getNode(ISD::UDIVREM
, DL
, DAG
.getVTList(HalfVT
, HalfVT
),
1585 SDValue DIV
= DAG
.getBuildVector(MVT::v2i32
, DL
, {Res
.getValue(0), Zero
});
1586 SDValue REM
= DAG
.getBuildVector(MVT::v2i32
, DL
, {Res
.getValue(1), Zero
});
1588 Results
.push_back(DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, DIV
));
1589 Results
.push_back(DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, REM
));
1593 if (isTypeLegal(MVT::i64
)) {
1594 // Compute denominator reciprocal.
1595 unsigned FMAD
= Subtarget
->hasFP32Denormals() ?
1596 (unsigned)AMDGPUISD::FMAD_FTZ
:
1597 (unsigned)ISD::FMAD
;
1599 SDValue Cvt_Lo
= DAG
.getNode(ISD::UINT_TO_FP
, DL
, MVT::f32
, RHS_Lo
);
1600 SDValue Cvt_Hi
= DAG
.getNode(ISD::UINT_TO_FP
, DL
, MVT::f32
, RHS_Hi
);
1601 SDValue Mad1
= DAG
.getNode(FMAD
, DL
, MVT::f32
, Cvt_Hi
,
1602 DAG
.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL
, MVT::f32
),
1604 SDValue Rcp
= DAG
.getNode(AMDGPUISD::RCP
, DL
, MVT::f32
, Mad1
);
1605 SDValue Mul1
= DAG
.getNode(ISD::FMUL
, DL
, MVT::f32
, Rcp
,
1606 DAG
.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL
, MVT::f32
));
1607 SDValue Mul2
= DAG
.getNode(ISD::FMUL
, DL
, MVT::f32
, Mul1
,
1608 DAG
.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL
, MVT::f32
));
1609 SDValue Trunc
= DAG
.getNode(ISD::FTRUNC
, DL
, MVT::f32
, Mul2
);
1610 SDValue Mad2
= DAG
.getNode(FMAD
, DL
, MVT::f32
, Trunc
,
1611 DAG
.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL
, MVT::f32
),
1613 SDValue Rcp_Lo
= DAG
.getNode(ISD::FP_TO_UINT
, DL
, HalfVT
, Mad2
);
1614 SDValue Rcp_Hi
= DAG
.getNode(ISD::FP_TO_UINT
, DL
, HalfVT
, Trunc
);
1615 SDValue Rcp64
= DAG
.getBitcast(VT
,
1616 DAG
.getBuildVector(MVT::v2i32
, DL
, {Rcp_Lo
, Rcp_Hi
}));
1618 SDValue Zero64
= DAG
.getConstant(0, DL
, VT
);
1619 SDValue One64
= DAG
.getConstant(1, DL
, VT
);
1620 SDValue Zero1
= DAG
.getConstant(0, DL
, MVT::i1
);
1621 SDVTList HalfCarryVT
= DAG
.getVTList(HalfVT
, MVT::i1
);
1623 SDValue Neg_RHS
= DAG
.getNode(ISD::SUB
, DL
, VT
, Zero64
, RHS
);
1624 SDValue Mullo1
= DAG
.getNode(ISD::MUL
, DL
, VT
, Neg_RHS
, Rcp64
);
1625 SDValue Mulhi1
= DAG
.getNode(ISD::MULHU
, DL
, VT
, Rcp64
, Mullo1
);
1626 SDValue Mulhi1_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, Mulhi1
,
1628 SDValue Mulhi1_Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, Mulhi1
,
1631 SDValue Add1_Lo
= DAG
.getNode(ISD::ADDCARRY
, DL
, HalfCarryVT
, Rcp_Lo
,
1633 SDValue Add1_Hi
= DAG
.getNode(ISD::ADDCARRY
, DL
, HalfCarryVT
, Rcp_Hi
,
1634 Mulhi1_Hi
, Add1_Lo
.getValue(1));
1635 SDValue Add1_HiNc
= DAG
.getNode(ISD::ADD
, DL
, HalfVT
, Rcp_Hi
, Mulhi1_Hi
);
1636 SDValue Add1
= DAG
.getBitcast(VT
,
1637 DAG
.getBuildVector(MVT::v2i32
, DL
, {Add1_Lo
, Add1_Hi
}));
1639 SDValue Mullo2
= DAG
.getNode(ISD::MUL
, DL
, VT
, Neg_RHS
, Add1
);
1640 SDValue Mulhi2
= DAG
.getNode(ISD::MULHU
, DL
, VT
, Add1
, Mullo2
);
1641 SDValue Mulhi2_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, Mulhi2
,
1643 SDValue Mulhi2_Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, Mulhi2
,
1646 SDValue Add2_Lo
= DAG
.getNode(ISD::ADDCARRY
, DL
, HalfCarryVT
, Add1_Lo
,
1648 SDValue Add2_HiC
= DAG
.getNode(ISD::ADDCARRY
, DL
, HalfCarryVT
, Add1_HiNc
,
1649 Mulhi2_Hi
, Add1_Lo
.getValue(1));
1650 SDValue Add2_Hi
= DAG
.getNode(ISD::ADDCARRY
, DL
, HalfCarryVT
, Add2_HiC
,
1651 Zero
, Add2_Lo
.getValue(1));
1652 SDValue Add2
= DAG
.getBitcast(VT
,
1653 DAG
.getBuildVector(MVT::v2i32
, DL
, {Add2_Lo
, Add2_Hi
}));
1654 SDValue Mulhi3
= DAG
.getNode(ISD::MULHU
, DL
, VT
, LHS
, Add2
);
1656 SDValue Mul3
= DAG
.getNode(ISD::MUL
, DL
, VT
, RHS
, Mulhi3
);
1658 SDValue Mul3_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, Mul3
, Zero
);
1659 SDValue Mul3_Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, Mul3
, One
);
1660 SDValue Sub1_Lo
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, LHS_Lo
,
1662 SDValue Sub1_Hi
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, LHS_Hi
,
1663 Mul3_Hi
, Sub1_Lo
.getValue(1));
1664 SDValue Sub1_Mi
= DAG
.getNode(ISD::SUB
, DL
, HalfVT
, LHS_Hi
, Mul3_Hi
);
1665 SDValue Sub1
= DAG
.getBitcast(VT
,
1666 DAG
.getBuildVector(MVT::v2i32
, DL
, {Sub1_Lo
, Sub1_Hi
}));
1668 SDValue MinusOne
= DAG
.getConstant(0xffffffffu
, DL
, HalfVT
);
1669 SDValue C1
= DAG
.getSelectCC(DL
, Sub1_Hi
, RHS_Hi
, MinusOne
, Zero
,
1671 SDValue C2
= DAG
.getSelectCC(DL
, Sub1_Lo
, RHS_Lo
, MinusOne
, Zero
,
1673 SDValue C3
= DAG
.getSelectCC(DL
, Sub1_Hi
, RHS_Hi
, C2
, C1
, ISD::SETEQ
);
1675 // TODO: Here and below portions of the code can be enclosed into if/endif.
1676 // Currently control flow is unconditional and we have 4 selects after
1677 // potential endif to substitute PHIs.
1680 SDValue Sub2_Lo
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, Sub1_Lo
,
1682 SDValue Sub2_Mi
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, Sub1_Mi
,
1683 RHS_Hi
, Sub1_Lo
.getValue(1));
1684 SDValue Sub2_Hi
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, Sub2_Mi
,
1685 Zero
, Sub2_Lo
.getValue(1));
1686 SDValue Sub2
= DAG
.getBitcast(VT
,
1687 DAG
.getBuildVector(MVT::v2i32
, DL
, {Sub2_Lo
, Sub2_Hi
}));
1689 SDValue Add3
= DAG
.getNode(ISD::ADD
, DL
, VT
, Mulhi3
, One64
);
1691 SDValue C4
= DAG
.getSelectCC(DL
, Sub2_Hi
, RHS_Hi
, MinusOne
, Zero
,
1693 SDValue C5
= DAG
.getSelectCC(DL
, Sub2_Lo
, RHS_Lo
, MinusOne
, Zero
,
1695 SDValue C6
= DAG
.getSelectCC(DL
, Sub2_Hi
, RHS_Hi
, C5
, C4
, ISD::SETEQ
);
1698 SDValue Add4
= DAG
.getNode(ISD::ADD
, DL
, VT
, Add3
, One64
);
1700 SDValue Sub3_Lo
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, Sub2_Lo
,
1702 SDValue Sub3_Mi
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, Sub2_Mi
,
1703 RHS_Hi
, Sub2_Lo
.getValue(1));
1704 SDValue Sub3_Hi
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, Sub3_Mi
,
1705 Zero
, Sub3_Lo
.getValue(1));
1706 SDValue Sub3
= DAG
.getBitcast(VT
,
1707 DAG
.getBuildVector(MVT::v2i32
, DL
, {Sub3_Lo
, Sub3_Hi
}));
1712 SDValue Sel1
= DAG
.getSelectCC(DL
, C6
, Zero
, Add4
, Add3
, ISD::SETNE
);
1713 SDValue Div
= DAG
.getSelectCC(DL
, C3
, Zero
, Sel1
, Mulhi3
, ISD::SETNE
);
1715 SDValue Sel2
= DAG
.getSelectCC(DL
, C6
, Zero
, Sub3
, Sub2
, ISD::SETNE
);
1716 SDValue Rem
= DAG
.getSelectCC(DL
, C3
, Zero
, Sel2
, Sub1
, ISD::SETNE
);
1718 Results
.push_back(Div
);
1719 Results
.push_back(Rem
);
1725 // Get Speculative values
1726 SDValue DIV_Part
= DAG
.getNode(ISD::UDIV
, DL
, HalfVT
, LHS_Hi
, RHS_Lo
);
1727 SDValue REM_Part
= DAG
.getNode(ISD::UREM
, DL
, HalfVT
, LHS_Hi
, RHS_Lo
);
1729 SDValue REM_Lo
= DAG
.getSelectCC(DL
, RHS_Hi
, Zero
, REM_Part
, LHS_Hi
, ISD::SETEQ
);
1730 SDValue REM
= DAG
.getBuildVector(MVT::v2i32
, DL
, {REM_Lo
, Zero
});
1731 REM
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, REM
);
1733 SDValue DIV_Hi
= DAG
.getSelectCC(DL
, RHS_Hi
, Zero
, DIV_Part
, Zero
, ISD::SETEQ
);
1734 SDValue DIV_Lo
= Zero
;
1736 const unsigned halfBitWidth
= HalfVT
.getSizeInBits();
1738 for (unsigned i
= 0; i
< halfBitWidth
; ++i
) {
1739 const unsigned bitPos
= halfBitWidth
- i
- 1;
1740 SDValue POS
= DAG
.getConstant(bitPos
, DL
, HalfVT
);
1741 // Get value of high bit
1742 SDValue HBit
= DAG
.getNode(ISD::SRL
, DL
, HalfVT
, LHS_Lo
, POS
);
1743 HBit
= DAG
.getNode(ISD::AND
, DL
, HalfVT
, HBit
, One
);
1744 HBit
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, HBit
);
1747 REM
= DAG
.getNode(ISD::SHL
, DL
, VT
, REM
, DAG
.getConstant(1, DL
, VT
));
1749 REM
= DAG
.getNode(ISD::OR
, DL
, VT
, REM
, HBit
);
1751 SDValue BIT
= DAG
.getConstant(1ULL << bitPos
, DL
, HalfVT
);
1752 SDValue realBIT
= DAG
.getSelectCC(DL
, REM
, RHS
, BIT
, Zero
, ISD::SETUGE
);
1754 DIV_Lo
= DAG
.getNode(ISD::OR
, DL
, HalfVT
, DIV_Lo
, realBIT
);
1757 SDValue REM_sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, REM
, RHS
);
1758 REM
= DAG
.getSelectCC(DL
, REM
, RHS
, REM_sub
, REM
, ISD::SETUGE
);
1761 SDValue DIV
= DAG
.getBuildVector(MVT::v2i32
, DL
, {DIV_Lo
, DIV_Hi
});
1762 DIV
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, DIV
);
1763 Results
.push_back(DIV
);
1764 Results
.push_back(REM
);
1767 SDValue
AMDGPUTargetLowering::LowerUDIVREM(SDValue Op
,
1768 SelectionDAG
&DAG
) const {
1770 EVT VT
= Op
.getValueType();
1772 if (VT
== MVT::i64
) {
1773 SmallVector
<SDValue
, 2> Results
;
1774 LowerUDIVREM64(Op
, DAG
, Results
);
1775 return DAG
.getMergeValues(Results
, DL
);
1778 if (VT
== MVT::i32
) {
1779 if (SDValue Res
= LowerDIVREM24(Op
, DAG
, false))
1783 SDValue Num
= Op
.getOperand(0);
1784 SDValue Den
= Op
.getOperand(1);
1786 // RCP = URECIP(Den) = 2^32 / Den + e
1787 // e is rounding error.
1788 SDValue RCP
= DAG
.getNode(AMDGPUISD::URECIP
, DL
, VT
, Den
);
1790 // RCP_LO = mul(RCP, Den) */
1791 SDValue RCP_LO
= DAG
.getNode(ISD::MUL
, DL
, VT
, RCP
, Den
);
1793 // RCP_HI = mulhu (RCP, Den) */
1794 SDValue RCP_HI
= DAG
.getNode(ISD::MULHU
, DL
, VT
, RCP
, Den
);
1796 // NEG_RCP_LO = -RCP_LO
1797 SDValue NEG_RCP_LO
= DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
),
1800 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1801 SDValue ABS_RCP_LO
= DAG
.getSelectCC(DL
, RCP_HI
, DAG
.getConstant(0, DL
, VT
),
1804 // Calculate the rounding error from the URECIP instruction
1805 // E = mulhu(ABS_RCP_LO, RCP)
1806 SDValue E
= DAG
.getNode(ISD::MULHU
, DL
, VT
, ABS_RCP_LO
, RCP
);
1808 // RCP_A_E = RCP + E
1809 SDValue RCP_A_E
= DAG
.getNode(ISD::ADD
, DL
, VT
, RCP
, E
);
1811 // RCP_S_E = RCP - E
1812 SDValue RCP_S_E
= DAG
.getNode(ISD::SUB
, DL
, VT
, RCP
, E
);
1814 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1815 SDValue Tmp0
= DAG
.getSelectCC(DL
, RCP_HI
, DAG
.getConstant(0, DL
, VT
),
1818 // Quotient = mulhu(Tmp0, Num)
1819 SDValue Quotient
= DAG
.getNode(ISD::MULHU
, DL
, VT
, Tmp0
, Num
);
1821 // Num_S_Remainder = Quotient * Den
1822 SDValue Num_S_Remainder
= DAG
.getNode(ISD::MUL
, DL
, VT
, Quotient
, Den
);
1824 // Remainder = Num - Num_S_Remainder
1825 SDValue Remainder
= DAG
.getNode(ISD::SUB
, DL
, VT
, Num
, Num_S_Remainder
);
1827 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1828 SDValue Remainder_GE_Den
= DAG
.getSelectCC(DL
, Remainder
, Den
,
1829 DAG
.getConstant(-1, DL
, VT
),
1830 DAG
.getConstant(0, DL
, VT
),
1832 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1833 SDValue Remainder_GE_Zero
= DAG
.getSelectCC(DL
, Num
,
1835 DAG
.getConstant(-1, DL
, VT
),
1836 DAG
.getConstant(0, DL
, VT
),
1838 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1839 SDValue Tmp1
= DAG
.getNode(ISD::AND
, DL
, VT
, Remainder_GE_Den
,
1842 // Calculate Division result:
1844 // Quotient_A_One = Quotient + 1
1845 SDValue Quotient_A_One
= DAG
.getNode(ISD::ADD
, DL
, VT
, Quotient
,
1846 DAG
.getConstant(1, DL
, VT
));
1848 // Quotient_S_One = Quotient - 1
1849 SDValue Quotient_S_One
= DAG
.getNode(ISD::SUB
, DL
, VT
, Quotient
,
1850 DAG
.getConstant(1, DL
, VT
));
1852 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1853 SDValue Div
= DAG
.getSelectCC(DL
, Tmp1
, DAG
.getConstant(0, DL
, VT
),
1854 Quotient
, Quotient_A_One
, ISD::SETEQ
);
1856 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1857 Div
= DAG
.getSelectCC(DL
, Remainder_GE_Zero
, DAG
.getConstant(0, DL
, VT
),
1858 Quotient_S_One
, Div
, ISD::SETEQ
);
1860 // Calculate Rem result:
1862 // Remainder_S_Den = Remainder - Den
1863 SDValue Remainder_S_Den
= DAG
.getNode(ISD::SUB
, DL
, VT
, Remainder
, Den
);
1865 // Remainder_A_Den = Remainder + Den
1866 SDValue Remainder_A_Den
= DAG
.getNode(ISD::ADD
, DL
, VT
, Remainder
, Den
);
1868 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1869 SDValue Rem
= DAG
.getSelectCC(DL
, Tmp1
, DAG
.getConstant(0, DL
, VT
),
1870 Remainder
, Remainder_S_Den
, ISD::SETEQ
);
1872 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1873 Rem
= DAG
.getSelectCC(DL
, Remainder_GE_Zero
, DAG
.getConstant(0, DL
, VT
),
1874 Remainder_A_Den
, Rem
, ISD::SETEQ
);
1879 return DAG
.getMergeValues(Ops
, DL
);
1882 SDValue
AMDGPUTargetLowering::LowerSDIVREM(SDValue Op
,
1883 SelectionDAG
&DAG
) const {
1885 EVT VT
= Op
.getValueType();
1887 SDValue LHS
= Op
.getOperand(0);
1888 SDValue RHS
= Op
.getOperand(1);
1890 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
1891 SDValue NegOne
= DAG
.getConstant(-1, DL
, VT
);
1893 if (VT
== MVT::i32
) {
1894 if (SDValue Res
= LowerDIVREM24(Op
, DAG
, true))
1898 if (VT
== MVT::i64
&&
1899 DAG
.ComputeNumSignBits(LHS
) > 32 &&
1900 DAG
.ComputeNumSignBits(RHS
) > 32) {
1901 EVT HalfVT
= VT
.getHalfSizedIntegerVT(*DAG
.getContext());
1904 SDValue LHS_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, LHS
, Zero
);
1905 SDValue RHS_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, RHS
, Zero
);
1906 SDValue DIVREM
= DAG
.getNode(ISD::SDIVREM
, DL
, DAG
.getVTList(HalfVT
, HalfVT
),
1909 DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, DIVREM
.getValue(0)),
1910 DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, DIVREM
.getValue(1))
1912 return DAG
.getMergeValues(Res
, DL
);
1915 SDValue LHSign
= DAG
.getSelectCC(DL
, LHS
, Zero
, NegOne
, Zero
, ISD::SETLT
);
1916 SDValue RHSign
= DAG
.getSelectCC(DL
, RHS
, Zero
, NegOne
, Zero
, ISD::SETLT
);
1917 SDValue DSign
= DAG
.getNode(ISD::XOR
, DL
, VT
, LHSign
, RHSign
);
1918 SDValue RSign
= LHSign
; // Remainder sign is the same as LHS
1920 LHS
= DAG
.getNode(ISD::ADD
, DL
, VT
, LHS
, LHSign
);
1921 RHS
= DAG
.getNode(ISD::ADD
, DL
, VT
, RHS
, RHSign
);
1923 LHS
= DAG
.getNode(ISD::XOR
, DL
, VT
, LHS
, LHSign
);
1924 RHS
= DAG
.getNode(ISD::XOR
, DL
, VT
, RHS
, RHSign
);
1926 SDValue Div
= DAG
.getNode(ISD::UDIVREM
, DL
, DAG
.getVTList(VT
, VT
), LHS
, RHS
);
1927 SDValue Rem
= Div
.getValue(1);
1929 Div
= DAG
.getNode(ISD::XOR
, DL
, VT
, Div
, DSign
);
1930 Rem
= DAG
.getNode(ISD::XOR
, DL
, VT
, Rem
, RSign
);
1932 Div
= DAG
.getNode(ISD::SUB
, DL
, VT
, Div
, DSign
);
1933 Rem
= DAG
.getNode(ISD::SUB
, DL
, VT
, Rem
, RSign
);
1939 return DAG
.getMergeValues(Res
, DL
);
1942 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
1943 SDValue
AMDGPUTargetLowering::LowerFREM(SDValue Op
, SelectionDAG
&DAG
) const {
1945 EVT VT
= Op
.getValueType();
1946 SDValue X
= Op
.getOperand(0);
1947 SDValue Y
= Op
.getOperand(1);
1949 // TODO: Should this propagate fast-math-flags?
1951 SDValue Div
= DAG
.getNode(ISD::FDIV
, SL
, VT
, X
, Y
);
1952 SDValue Floor
= DAG
.getNode(ISD::FTRUNC
, SL
, VT
, Div
);
1953 SDValue Mul
= DAG
.getNode(ISD::FMUL
, SL
, VT
, Floor
, Y
);
1955 return DAG
.getNode(ISD::FSUB
, SL
, VT
, X
, Mul
);
1958 SDValue
AMDGPUTargetLowering::LowerFCEIL(SDValue Op
, SelectionDAG
&DAG
) const {
1960 SDValue Src
= Op
.getOperand(0);
1962 // result = trunc(src)
1963 // if (src > 0.0 && src != result)
1966 SDValue Trunc
= DAG
.getNode(ISD::FTRUNC
, SL
, MVT::f64
, Src
);
1968 const SDValue Zero
= DAG
.getConstantFP(0.0, SL
, MVT::f64
);
1969 const SDValue One
= DAG
.getConstantFP(1.0, SL
, MVT::f64
);
1972 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), MVT::f64
);
1974 SDValue Lt0
= DAG
.getSetCC(SL
, SetCCVT
, Src
, Zero
, ISD::SETOGT
);
1975 SDValue NeTrunc
= DAG
.getSetCC(SL
, SetCCVT
, Src
, Trunc
, ISD::SETONE
);
1976 SDValue And
= DAG
.getNode(ISD::AND
, SL
, SetCCVT
, Lt0
, NeTrunc
);
1978 SDValue Add
= DAG
.getNode(ISD::SELECT
, SL
, MVT::f64
, And
, One
, Zero
);
1979 // TODO: Should this propagate fast-math-flags?
1980 return DAG
.getNode(ISD::FADD
, SL
, MVT::f64
, Trunc
, Add
);
1983 static SDValue
extractF64Exponent(SDValue Hi
, const SDLoc
&SL
,
1984 SelectionDAG
&DAG
) {
1985 const unsigned FractBits
= 52;
1986 const unsigned ExpBits
= 11;
1988 SDValue ExpPart
= DAG
.getNode(AMDGPUISD::BFE_U32
, SL
, MVT::i32
,
1990 DAG
.getConstant(FractBits
- 32, SL
, MVT::i32
),
1991 DAG
.getConstant(ExpBits
, SL
, MVT::i32
));
1992 SDValue Exp
= DAG
.getNode(ISD::SUB
, SL
, MVT::i32
, ExpPart
,
1993 DAG
.getConstant(1023, SL
, MVT::i32
));
1998 SDValue
AMDGPUTargetLowering::LowerFTRUNC(SDValue Op
, SelectionDAG
&DAG
) const {
2000 SDValue Src
= Op
.getOperand(0);
2002 assert(Op
.getValueType() == MVT::f64
);
2004 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
2005 const SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
2007 SDValue VecSrc
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Src
);
2009 // Extract the upper half, since this is where we will find the sign and
2011 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, VecSrc
, One
);
2013 SDValue Exp
= extractF64Exponent(Hi
, SL
, DAG
);
2015 const unsigned FractBits
= 52;
2017 // Extract the sign bit.
2018 const SDValue SignBitMask
= DAG
.getConstant(UINT32_C(1) << 31, SL
, MVT::i32
);
2019 SDValue SignBit
= DAG
.getNode(ISD::AND
, SL
, MVT::i32
, Hi
, SignBitMask
);
2021 // Extend back to 64-bits.
2022 SDValue SignBit64
= DAG
.getBuildVector(MVT::v2i32
, SL
, {Zero
, SignBit
});
2023 SignBit64
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, SignBit64
);
2025 SDValue BcInt
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, Src
);
2026 const SDValue FractMask
2027 = DAG
.getConstant((UINT64_C(1) << FractBits
) - 1, SL
, MVT::i64
);
2029 SDValue Shr
= DAG
.getNode(ISD::SRA
, SL
, MVT::i64
, FractMask
, Exp
);
2030 SDValue Not
= DAG
.getNOT(SL
, Shr
, MVT::i64
);
2031 SDValue Tmp0
= DAG
.getNode(ISD::AND
, SL
, MVT::i64
, BcInt
, Not
);
2034 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), MVT::i32
);
2036 const SDValue FiftyOne
= DAG
.getConstant(FractBits
- 1, SL
, MVT::i32
);
2038 SDValue ExpLt0
= DAG
.getSetCC(SL
, SetCCVT
, Exp
, Zero
, ISD::SETLT
);
2039 SDValue ExpGt51
= DAG
.getSetCC(SL
, SetCCVT
, Exp
, FiftyOne
, ISD::SETGT
);
2041 SDValue Tmp1
= DAG
.getNode(ISD::SELECT
, SL
, MVT::i64
, ExpLt0
, SignBit64
, Tmp0
);
2042 SDValue Tmp2
= DAG
.getNode(ISD::SELECT
, SL
, MVT::i64
, ExpGt51
, BcInt
, Tmp1
);
2044 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::f64
, Tmp2
);
2047 SDValue
AMDGPUTargetLowering::LowerFRINT(SDValue Op
, SelectionDAG
&DAG
) const {
2049 SDValue Src
= Op
.getOperand(0);
2051 assert(Op
.getValueType() == MVT::f64
);
2053 APFloat
C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
2054 SDValue C1
= DAG
.getConstantFP(C1Val
, SL
, MVT::f64
);
2055 SDValue CopySign
= DAG
.getNode(ISD::FCOPYSIGN
, SL
, MVT::f64
, C1
, Src
);
2057 // TODO: Should this propagate fast-math-flags?
2059 SDValue Tmp1
= DAG
.getNode(ISD::FADD
, SL
, MVT::f64
, Src
, CopySign
);
2060 SDValue Tmp2
= DAG
.getNode(ISD::FSUB
, SL
, MVT::f64
, Tmp1
, CopySign
);
2062 SDValue Fabs
= DAG
.getNode(ISD::FABS
, SL
, MVT::f64
, Src
);
2064 APFloat
C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
2065 SDValue C2
= DAG
.getConstantFP(C2Val
, SL
, MVT::f64
);
2068 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), MVT::f64
);
2069 SDValue Cond
= DAG
.getSetCC(SL
, SetCCVT
, Fabs
, C2
, ISD::SETOGT
);
2071 return DAG
.getSelect(SL
, MVT::f64
, Cond
, Src
, Tmp2
);
2074 SDValue
AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op
, SelectionDAG
&DAG
) const {
2075 // FNEARBYINT and FRINT are the same, except in their handling of FP
2076 // exceptions. Those aren't really meaningful for us, and OpenCL only has
2077 // rint, so just treat them as equivalent.
2078 return DAG
.getNode(ISD::FRINT
, SDLoc(Op
), Op
.getValueType(), Op
.getOperand(0));
2081 // XXX - May require not supporting f32 denormals?
2083 // Don't handle v2f16. The extra instructions to scalarize and repack around the
2084 // compare and vselect end up producing worse code than scalarizing the whole
2086 SDValue
AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op
, SelectionDAG
&DAG
) const {
2088 SDValue X
= Op
.getOperand(0);
2089 EVT VT
= Op
.getValueType();
2091 SDValue T
= DAG
.getNode(ISD::FTRUNC
, SL
, VT
, X
);
2093 // TODO: Should this propagate fast-math-flags?
2095 SDValue Diff
= DAG
.getNode(ISD::FSUB
, SL
, VT
, X
, T
);
2097 SDValue AbsDiff
= DAG
.getNode(ISD::FABS
, SL
, VT
, Diff
);
2099 const SDValue Zero
= DAG
.getConstantFP(0.0, SL
, VT
);
2100 const SDValue One
= DAG
.getConstantFP(1.0, SL
, VT
);
2101 const SDValue Half
= DAG
.getConstantFP(0.5, SL
, VT
);
2103 SDValue SignOne
= DAG
.getNode(ISD::FCOPYSIGN
, SL
, VT
, One
, X
);
2106 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
2108 SDValue Cmp
= DAG
.getSetCC(SL
, SetCCVT
, AbsDiff
, Half
, ISD::SETOGE
);
2110 SDValue Sel
= DAG
.getNode(ISD::SELECT
, SL
, VT
, Cmp
, SignOne
, Zero
);
2112 return DAG
.getNode(ISD::FADD
, SL
, VT
, T
, Sel
);
2115 SDValue
AMDGPUTargetLowering::LowerFROUND64(SDValue Op
, SelectionDAG
&DAG
) const {
2117 SDValue X
= Op
.getOperand(0);
2119 SDValue L
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, X
);
2121 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
2122 const SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
2123 const SDValue NegOne
= DAG
.getConstant(-1, SL
, MVT::i32
);
2124 const SDValue FiftyOne
= DAG
.getConstant(51, SL
, MVT::i32
);
2126 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), MVT::i32
);
2128 SDValue BC
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, X
);
2130 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, BC
, One
);
2132 SDValue Exp
= extractF64Exponent(Hi
, SL
, DAG
);
2134 const SDValue Mask
= DAG
.getConstant(INT64_C(0x000fffffffffffff), SL
,
2137 SDValue M
= DAG
.getNode(ISD::SRA
, SL
, MVT::i64
, Mask
, Exp
);
2138 SDValue D
= DAG
.getNode(ISD::SRA
, SL
, MVT::i64
,
2139 DAG
.getConstant(INT64_C(0x0008000000000000), SL
,
2143 SDValue Tmp0
= DAG
.getNode(ISD::AND
, SL
, MVT::i64
, L
, M
);
2144 SDValue Tmp1
= DAG
.getSetCC(SL
, SetCCVT
,
2145 DAG
.getConstant(0, SL
, MVT::i64
), Tmp0
,
2148 SDValue Tmp2
= DAG
.getNode(ISD::SELECT
, SL
, MVT::i64
, Tmp1
,
2149 D
, DAG
.getConstant(0, SL
, MVT::i64
));
2150 SDValue K
= DAG
.getNode(ISD::ADD
, SL
, MVT::i64
, L
, Tmp2
);
2152 K
= DAG
.getNode(ISD::AND
, SL
, MVT::i64
, K
, DAG
.getNOT(SL
, M
, MVT::i64
));
2153 K
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::f64
, K
);
2155 SDValue ExpLt0
= DAG
.getSetCC(SL
, SetCCVT
, Exp
, Zero
, ISD::SETLT
);
2156 SDValue ExpGt51
= DAG
.getSetCC(SL
, SetCCVT
, Exp
, FiftyOne
, ISD::SETGT
);
2157 SDValue ExpEqNegOne
= DAG
.getSetCC(SL
, SetCCVT
, NegOne
, Exp
, ISD::SETEQ
);
2159 SDValue Mag
= DAG
.getNode(ISD::SELECT
, SL
, MVT::f64
,
2161 DAG
.getConstantFP(1.0, SL
, MVT::f64
),
2162 DAG
.getConstantFP(0.0, SL
, MVT::f64
));
2164 SDValue S
= DAG
.getNode(ISD::FCOPYSIGN
, SL
, MVT::f64
, Mag
, X
);
2166 K
= DAG
.getNode(ISD::SELECT
, SL
, MVT::f64
, ExpLt0
, S
, K
);
2167 K
= DAG
.getNode(ISD::SELECT
, SL
, MVT::f64
, ExpGt51
, X
, K
);
2172 SDValue
AMDGPUTargetLowering::LowerFROUND(SDValue Op
, SelectionDAG
&DAG
) const {
2173 EVT VT
= Op
.getValueType();
2175 if (VT
== MVT::f32
|| VT
== MVT::f16
)
2176 return LowerFROUND32_16(Op
, DAG
);
2179 return LowerFROUND64(Op
, DAG
);
2181 llvm_unreachable("unhandled type");
2184 SDValue
AMDGPUTargetLowering::LowerFFLOOR(SDValue Op
, SelectionDAG
&DAG
) const {
2186 SDValue Src
= Op
.getOperand(0);
2188 // result = trunc(src);
2189 // if (src < 0.0 && src != result)
2192 SDValue Trunc
= DAG
.getNode(ISD::FTRUNC
, SL
, MVT::f64
, Src
);
2194 const SDValue Zero
= DAG
.getConstantFP(0.0, SL
, MVT::f64
);
2195 const SDValue NegOne
= DAG
.getConstantFP(-1.0, SL
, MVT::f64
);
2198 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), MVT::f64
);
2200 SDValue Lt0
= DAG
.getSetCC(SL
, SetCCVT
, Src
, Zero
, ISD::SETOLT
);
2201 SDValue NeTrunc
= DAG
.getSetCC(SL
, SetCCVT
, Src
, Trunc
, ISD::SETONE
);
2202 SDValue And
= DAG
.getNode(ISD::AND
, SL
, SetCCVT
, Lt0
, NeTrunc
);
2204 SDValue Add
= DAG
.getNode(ISD::SELECT
, SL
, MVT::f64
, And
, NegOne
, Zero
);
2205 // TODO: Should this propagate fast-math-flags?
2206 return DAG
.getNode(ISD::FADD
, SL
, MVT::f64
, Trunc
, Add
);
2209 SDValue
AMDGPUTargetLowering::LowerFLOG(SDValue Op
, SelectionDAG
&DAG
,
2210 double Log2BaseInverted
) const {
2211 EVT VT
= Op
.getValueType();
2214 SDValue Operand
= Op
.getOperand(0);
2215 SDValue Log2Operand
= DAG
.getNode(ISD::FLOG2
, SL
, VT
, Operand
);
2216 SDValue Log2BaseInvertedOperand
= DAG
.getConstantFP(Log2BaseInverted
, SL
, VT
);
2218 return DAG
.getNode(ISD::FMUL
, SL
, VT
, Log2Operand
, Log2BaseInvertedOperand
);
2221 // Return M_LOG2E of appropriate type
2222 static SDValue
getLog2EVal(SelectionDAG
&DAG
, const SDLoc
&SL
, EVT VT
) {
2223 switch (VT
.getScalarType().getSimpleVT().SimpleTy
) {
2225 return DAG
.getConstantFP(1.44269504088896340735992468100189214f
, SL
, VT
);
2227 return DAG
.getConstantFP(
2228 APFloat(APFloat::IEEEhalf(), "1.44269504088896340735992468100189214"),
2231 return DAG
.getConstantFP(
2232 APFloat(APFloat::IEEEdouble(), "0x1.71547652b82fep+0"), SL
, VT
);
2234 llvm_unreachable("unsupported fp type");
2238 // exp2(M_LOG2E_F * f);
2239 SDValue
AMDGPUTargetLowering::lowerFEXP(SDValue Op
, SelectionDAG
&DAG
) const {
2240 EVT VT
= Op
.getValueType();
2242 SDValue Src
= Op
.getOperand(0);
2244 const SDValue K
= getLog2EVal(DAG
, SL
, VT
);
2245 SDValue Mul
= DAG
.getNode(ISD::FMUL
, SL
, VT
, Src
, K
, Op
->getFlags());
2246 return DAG
.getNode(ISD::FEXP2
, SL
, VT
, Mul
, Op
->getFlags());
2249 static bool isCtlzOpc(unsigned Opc
) {
2250 return Opc
== ISD::CTLZ
|| Opc
== ISD::CTLZ_ZERO_UNDEF
;
2253 static bool isCttzOpc(unsigned Opc
) {
2254 return Opc
== ISD::CTTZ
|| Opc
== ISD::CTTZ_ZERO_UNDEF
;
2257 SDValue
AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op
, SelectionDAG
&DAG
) const {
2259 SDValue Src
= Op
.getOperand(0);
2260 bool ZeroUndef
= Op
.getOpcode() == ISD::CTTZ_ZERO_UNDEF
||
2261 Op
.getOpcode() == ISD::CTLZ_ZERO_UNDEF
;
2263 unsigned ISDOpc
, NewOpc
;
2264 if (isCtlzOpc(Op
.getOpcode())) {
2265 ISDOpc
= ISD::CTLZ_ZERO_UNDEF
;
2266 NewOpc
= AMDGPUISD::FFBH_U32
;
2267 } else if (isCttzOpc(Op
.getOpcode())) {
2268 ISDOpc
= ISD::CTTZ_ZERO_UNDEF
;
2269 NewOpc
= AMDGPUISD::FFBL_B32
;
2271 llvm_unreachable("Unexpected OPCode!!!");
2274 if (ZeroUndef
&& Src
.getValueType() == MVT::i32
)
2275 return DAG
.getNode(NewOpc
, SL
, MVT::i32
, Src
);
2277 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Src
);
2279 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
2280 const SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
2282 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, Zero
);
2283 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, One
);
2285 EVT SetCCVT
= getSetCCResultType(DAG
.getDataLayout(),
2286 *DAG
.getContext(), MVT::i32
);
2288 SDValue HiOrLo
= isCtlzOpc(Op
.getOpcode()) ? Hi
: Lo
;
2289 SDValue Hi0orLo0
= DAG
.getSetCC(SL
, SetCCVT
, HiOrLo
, Zero
, ISD::SETEQ
);
2291 SDValue OprLo
= DAG
.getNode(ISDOpc
, SL
, MVT::i32
, Lo
);
2292 SDValue OprHi
= DAG
.getNode(ISDOpc
, SL
, MVT::i32
, Hi
);
2294 const SDValue Bits32
= DAG
.getConstant(32, SL
, MVT::i32
);
2295 SDValue Add
, NewOpr
;
2296 if (isCtlzOpc(Op
.getOpcode())) {
2297 Add
= DAG
.getNode(ISD::ADD
, SL
, MVT::i32
, OprLo
, Bits32
);
2298 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
2299 NewOpr
= DAG
.getNode(ISD::SELECT
, SL
, MVT::i32
, Hi0orLo0
, Add
, OprHi
);
2301 Add
= DAG
.getNode(ISD::ADD
, SL
, MVT::i32
, OprHi
, Bits32
);
2302 // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x))
2303 NewOpr
= DAG
.getNode(ISD::SELECT
, SL
, MVT::i32
, Hi0orLo0
, Add
, OprLo
);
2307 // Test if the full 64-bit input is zero.
2309 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
2310 // which we probably don't want.
2311 SDValue LoOrHi
= isCtlzOpc(Op
.getOpcode()) ? Lo
: Hi
;
2312 SDValue Lo0OrHi0
= DAG
.getSetCC(SL
, SetCCVT
, LoOrHi
, Zero
, ISD::SETEQ
);
2313 SDValue SrcIsZero
= DAG
.getNode(ISD::AND
, SL
, SetCCVT
, Lo0OrHi0
, Hi0orLo0
);
2315 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
2316 // with the same cycles, otherwise it is slower.
2317 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
2318 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
2320 const SDValue Bits32
= DAG
.getConstant(64, SL
, MVT::i32
);
2322 // The instruction returns -1 for 0 input, but the defined intrinsic
2323 // behavior is to return the number of bits.
2324 NewOpr
= DAG
.getNode(ISD::SELECT
, SL
, MVT::i32
,
2325 SrcIsZero
, Bits32
, NewOpr
);
2328 return DAG
.getNode(ISD::ZERO_EXTEND
, SL
, MVT::i64
, NewOpr
);
2331 SDValue
AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op
, SelectionDAG
&DAG
,
2332 bool Signed
) const {
2336 // uint lz = clz(u);
2337 // uint e = (u != 0) ? 127U + 63U - lz : 0;
2338 // u = (u << lz) & 0x7fffffffffffffffUL;
2339 // ulong t = u & 0xffffffffffUL;
2340 // uint v = (e << 23) | (uint)(u >> 40);
2341 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
2342 // return as_float(v + r);
2347 // long s = l >> 63;
2348 // float r = cul2f((l + s) ^ s);
2349 // return s ? -r : r;
2353 SDValue Src
= Op
.getOperand(0);
2358 const SDValue SignBit
= DAG
.getConstant(63, SL
, MVT::i64
);
2359 S
= DAG
.getNode(ISD::SRA
, SL
, MVT::i64
, L
, SignBit
);
2361 SDValue LPlusS
= DAG
.getNode(ISD::ADD
, SL
, MVT::i64
, L
, S
);
2362 L
= DAG
.getNode(ISD::XOR
, SL
, MVT::i64
, LPlusS
, S
);
2365 EVT SetCCVT
= getSetCCResultType(DAG
.getDataLayout(),
2366 *DAG
.getContext(), MVT::f32
);
2369 SDValue ZeroI32
= DAG
.getConstant(0, SL
, MVT::i32
);
2370 SDValue ZeroI64
= DAG
.getConstant(0, SL
, MVT::i64
);
2371 SDValue LZ
= DAG
.getNode(ISD::CTLZ_ZERO_UNDEF
, SL
, MVT::i64
, L
);
2372 LZ
= DAG
.getNode(ISD::TRUNCATE
, SL
, MVT::i32
, LZ
);
2374 SDValue K
= DAG
.getConstant(127U + 63U, SL
, MVT::i32
);
2375 SDValue E
= DAG
.getSelect(SL
, MVT::i32
,
2376 DAG
.getSetCC(SL
, SetCCVT
, L
, ZeroI64
, ISD::SETNE
),
2377 DAG
.getNode(ISD::SUB
, SL
, MVT::i32
, K
, LZ
),
2380 SDValue U
= DAG
.getNode(ISD::AND
, SL
, MVT::i64
,
2381 DAG
.getNode(ISD::SHL
, SL
, MVT::i64
, L
, LZ
),
2382 DAG
.getConstant((-1ULL) >> 1, SL
, MVT::i64
));
2384 SDValue T
= DAG
.getNode(ISD::AND
, SL
, MVT::i64
, U
,
2385 DAG
.getConstant(0xffffffffffULL
, SL
, MVT::i64
));
2387 SDValue UShl
= DAG
.getNode(ISD::SRL
, SL
, MVT::i64
,
2388 U
, DAG
.getConstant(40, SL
, MVT::i64
));
2390 SDValue V
= DAG
.getNode(ISD::OR
, SL
, MVT::i32
,
2391 DAG
.getNode(ISD::SHL
, SL
, MVT::i32
, E
, DAG
.getConstant(23, SL
, MVT::i32
)),
2392 DAG
.getNode(ISD::TRUNCATE
, SL
, MVT::i32
, UShl
));
2394 SDValue C
= DAG
.getConstant(0x8000000000ULL
, SL
, MVT::i64
);
2395 SDValue RCmp
= DAG
.getSetCC(SL
, SetCCVT
, T
, C
, ISD::SETUGT
);
2396 SDValue TCmp
= DAG
.getSetCC(SL
, SetCCVT
, T
, C
, ISD::SETEQ
);
2398 SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
2400 SDValue VTrunc1
= DAG
.getNode(ISD::AND
, SL
, MVT::i32
, V
, One
);
2402 SDValue R
= DAG
.getSelect(SL
, MVT::i32
,
2405 DAG
.getSelect(SL
, MVT::i32
, TCmp
, VTrunc1
, ZeroI32
));
2406 R
= DAG
.getNode(ISD::ADD
, SL
, MVT::i32
, V
, R
);
2407 R
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::f32
, R
);
2412 SDValue RNeg
= DAG
.getNode(ISD::FNEG
, SL
, MVT::f32
, R
);
2413 return DAG
.getSelect(SL
, MVT::f32
, DAG
.getSExtOrTrunc(S
, SL
, SetCCVT
), RNeg
, R
);
2416 SDValue
AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op
, SelectionDAG
&DAG
,
2417 bool Signed
) const {
2419 SDValue Src
= Op
.getOperand(0);
2421 SDValue BC
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Src
);
2423 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, BC
,
2424 DAG
.getConstant(0, SL
, MVT::i32
));
2425 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, BC
,
2426 DAG
.getConstant(1, SL
, MVT::i32
));
2428 SDValue CvtHi
= DAG
.getNode(Signed
? ISD::SINT_TO_FP
: ISD::UINT_TO_FP
,
2431 SDValue CvtLo
= DAG
.getNode(ISD::UINT_TO_FP
, SL
, MVT::f64
, Lo
);
2433 SDValue LdExp
= DAG
.getNode(AMDGPUISD::LDEXP
, SL
, MVT::f64
, CvtHi
,
2434 DAG
.getConstant(32, SL
, MVT::i32
));
2435 // TODO: Should this propagate fast-math-flags?
2436 return DAG
.getNode(ISD::FADD
, SL
, MVT::f64
, LdExp
, CvtLo
);
2439 SDValue
AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op
,
2440 SelectionDAG
&DAG
) const {
2441 assert(Op
.getOperand(0).getValueType() == MVT::i64
&&
2442 "operation should be legal");
2444 // TODO: Factor out code common with LowerSINT_TO_FP.
2446 EVT DestVT
= Op
.getValueType();
2447 if (Subtarget
->has16BitInsts() && DestVT
== MVT::f16
) {
2449 SDValue Src
= Op
.getOperand(0);
2451 SDValue IntToFp32
= DAG
.getNode(Op
.getOpcode(), DL
, MVT::f32
, Src
);
2452 SDValue FPRoundFlag
= DAG
.getIntPtrConstant(0, SDLoc(Op
));
2454 DAG
.getNode(ISD::FP_ROUND
, DL
, MVT::f16
, IntToFp32
, FPRoundFlag
);
2459 if (DestVT
== MVT::f32
)
2460 return LowerINT_TO_FP32(Op
, DAG
, false);
2462 assert(DestVT
== MVT::f64
);
2463 return LowerINT_TO_FP64(Op
, DAG
, false);
2466 SDValue
AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op
,
2467 SelectionDAG
&DAG
) const {
2468 assert(Op
.getOperand(0).getValueType() == MVT::i64
&&
2469 "operation should be legal");
2471 // TODO: Factor out code common with LowerUINT_TO_FP.
2473 EVT DestVT
= Op
.getValueType();
2474 if (Subtarget
->has16BitInsts() && DestVT
== MVT::f16
) {
2476 SDValue Src
= Op
.getOperand(0);
2478 SDValue IntToFp32
= DAG
.getNode(Op
.getOpcode(), DL
, MVT::f32
, Src
);
2479 SDValue FPRoundFlag
= DAG
.getIntPtrConstant(0, SDLoc(Op
));
2481 DAG
.getNode(ISD::FP_ROUND
, DL
, MVT::f16
, IntToFp32
, FPRoundFlag
);
2486 if (DestVT
== MVT::f32
)
2487 return LowerINT_TO_FP32(Op
, DAG
, true);
2489 assert(DestVT
== MVT::f64
);
2490 return LowerINT_TO_FP64(Op
, DAG
, true);
2493 SDValue
AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op
, SelectionDAG
&DAG
,
2494 bool Signed
) const {
2497 SDValue Src
= Op
.getOperand(0);
2499 SDValue Trunc
= DAG
.getNode(ISD::FTRUNC
, SL
, MVT::f64
, Src
);
2501 SDValue K0
= DAG
.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL
,
2503 SDValue K1
= DAG
.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL
,
2505 // TODO: Should this propagate fast-math-flags?
2506 SDValue Mul
= DAG
.getNode(ISD::FMUL
, SL
, MVT::f64
, Trunc
, K0
);
2508 SDValue FloorMul
= DAG
.getNode(ISD::FFLOOR
, SL
, MVT::f64
, Mul
);
2511 SDValue Fma
= DAG
.getNode(ISD::FMA
, SL
, MVT::f64
, FloorMul
, K1
, Trunc
);
2513 SDValue Hi
= DAG
.getNode(Signed
? ISD::FP_TO_SINT
: ISD::FP_TO_UINT
, SL
,
2514 MVT::i32
, FloorMul
);
2515 SDValue Lo
= DAG
.getNode(ISD::FP_TO_UINT
, SL
, MVT::i32
, Fma
);
2517 SDValue Result
= DAG
.getBuildVector(MVT::v2i32
, SL
, {Lo
, Hi
});
2519 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, Result
);
2522 SDValue
AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op
, SelectionDAG
&DAG
) const {
2524 SDValue N0
= Op
.getOperand(0);
2526 // Convert to target node to get known bits
2527 if (N0
.getValueType() == MVT::f32
)
2528 return DAG
.getNode(AMDGPUISD::FP_TO_FP16
, DL
, Op
.getValueType(), N0
);
2530 if (getTargetMachine().Options
.UnsafeFPMath
) {
2531 // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2535 assert(N0
.getSimpleValueType() == MVT::f64
);
2537 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2538 const unsigned ExpMask
= 0x7ff;
2539 const unsigned ExpBiasf64
= 1023;
2540 const unsigned ExpBiasf16
= 15;
2541 SDValue Zero
= DAG
.getConstant(0, DL
, MVT::i32
);
2542 SDValue One
= DAG
.getConstant(1, DL
, MVT::i32
);
2543 SDValue U
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, N0
);
2544 SDValue UH
= DAG
.getNode(ISD::SRL
, DL
, MVT::i64
, U
,
2545 DAG
.getConstant(32, DL
, MVT::i64
));
2546 UH
= DAG
.getZExtOrTrunc(UH
, DL
, MVT::i32
);
2547 U
= DAG
.getZExtOrTrunc(U
, DL
, MVT::i32
);
2548 SDValue E
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, UH
,
2549 DAG
.getConstant(20, DL
, MVT::i64
));
2550 E
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, E
,
2551 DAG
.getConstant(ExpMask
, DL
, MVT::i32
));
2552 // Subtract the fp64 exponent bias (1023) to get the real exponent and
2553 // add the f16 bias (15) to get the biased exponent for the f16 format.
2554 E
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, E
,
2555 DAG
.getConstant(-ExpBiasf64
+ ExpBiasf16
, DL
, MVT::i32
));
2557 SDValue M
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, UH
,
2558 DAG
.getConstant(8, DL
, MVT::i32
));
2559 M
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, M
,
2560 DAG
.getConstant(0xffe, DL
, MVT::i32
));
2562 SDValue MaskedSig
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, UH
,
2563 DAG
.getConstant(0x1ff, DL
, MVT::i32
));
2564 MaskedSig
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, MaskedSig
, U
);
2566 SDValue Lo40Set
= DAG
.getSelectCC(DL
, MaskedSig
, Zero
, Zero
, One
, ISD::SETEQ
);
2567 M
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, M
, Lo40Set
);
2569 // (M != 0 ? 0x0200 : 0) | 0x7c00;
2570 SDValue I
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
,
2571 DAG
.getSelectCC(DL
, M
, Zero
, DAG
.getConstant(0x0200, DL
, MVT::i32
),
2572 Zero
, ISD::SETNE
), DAG
.getConstant(0x7c00, DL
, MVT::i32
));
2574 // N = M | (E << 12);
2575 SDValue N
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, M
,
2576 DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, E
,
2577 DAG
.getConstant(12, DL
, MVT::i32
)));
2579 // B = clamp(1-E, 0, 13);
2580 SDValue OneSubExp
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
2582 SDValue B
= DAG
.getNode(ISD::SMAX
, DL
, MVT::i32
, OneSubExp
, Zero
);
2583 B
= DAG
.getNode(ISD::SMIN
, DL
, MVT::i32
, B
,
2584 DAG
.getConstant(13, DL
, MVT::i32
));
2586 SDValue SigSetHigh
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, M
,
2587 DAG
.getConstant(0x1000, DL
, MVT::i32
));
2589 SDValue D
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SigSetHigh
, B
);
2590 SDValue D0
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, D
, B
);
2591 SDValue D1
= DAG
.getSelectCC(DL
, D0
, SigSetHigh
, One
, Zero
, ISD::SETNE
);
2592 D
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, D
, D1
);
2594 SDValue V
= DAG
.getSelectCC(DL
, E
, One
, D
, N
, ISD::SETLT
);
2595 SDValue VLow3
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, V
,
2596 DAG
.getConstant(0x7, DL
, MVT::i32
));
2597 V
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, V
,
2598 DAG
.getConstant(2, DL
, MVT::i32
));
2599 SDValue V0
= DAG
.getSelectCC(DL
, VLow3
, DAG
.getConstant(3, DL
, MVT::i32
),
2600 One
, Zero
, ISD::SETEQ
);
2601 SDValue V1
= DAG
.getSelectCC(DL
, VLow3
, DAG
.getConstant(5, DL
, MVT::i32
),
2602 One
, Zero
, ISD::SETGT
);
2603 V1
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, V0
, V1
);
2604 V
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, V
, V1
);
2606 V
= DAG
.getSelectCC(DL
, E
, DAG
.getConstant(30, DL
, MVT::i32
),
2607 DAG
.getConstant(0x7c00, DL
, MVT::i32
), V
, ISD::SETGT
);
2608 V
= DAG
.getSelectCC(DL
, E
, DAG
.getConstant(1039, DL
, MVT::i32
),
2611 // Extract the sign bit.
2612 SDValue Sign
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, UH
,
2613 DAG
.getConstant(16, DL
, MVT::i32
));
2614 Sign
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, Sign
,
2615 DAG
.getConstant(0x8000, DL
, MVT::i32
));
2617 V
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, Sign
, V
);
2618 return DAG
.getZExtOrTrunc(V
, DL
, Op
.getValueType());
2621 SDValue
AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op
,
2622 SelectionDAG
&DAG
) const {
2623 SDValue Src
= Op
.getOperand(0);
2625 // TODO: Factor out code common with LowerFP_TO_UINT.
2627 EVT SrcVT
= Src
.getValueType();
2628 if (Subtarget
->has16BitInsts() && SrcVT
== MVT::f16
) {
2631 SDValue FPExtend
= DAG
.getNode(ISD::FP_EXTEND
, DL
, MVT::f32
, Src
);
2633 DAG
.getNode(Op
.getOpcode(), DL
, MVT::i64
, FPExtend
);
2638 if (Op
.getValueType() == MVT::i64
&& Src
.getValueType() == MVT::f64
)
2639 return LowerFP64_TO_INT(Op
, DAG
, true);
2644 SDValue
AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op
,
2645 SelectionDAG
&DAG
) const {
2646 SDValue Src
= Op
.getOperand(0);
2648 // TODO: Factor out code common with LowerFP_TO_SINT.
2650 EVT SrcVT
= Src
.getValueType();
2651 if (Subtarget
->has16BitInsts() && SrcVT
== MVT::f16
) {
2654 SDValue FPExtend
= DAG
.getNode(ISD::FP_EXTEND
, DL
, MVT::f32
, Src
);
2656 DAG
.getNode(Op
.getOpcode(), DL
, MVT::i64
, FPExtend
);
2661 if (Op
.getValueType() == MVT::i64
&& Src
.getValueType() == MVT::f64
)
2662 return LowerFP64_TO_INT(Op
, DAG
, false);
2667 SDValue
AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op
,
2668 SelectionDAG
&DAG
) const {
2669 EVT ExtraVT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
2670 MVT VT
= Op
.getSimpleValueType();
2671 MVT ScalarVT
= VT
.getScalarType();
2673 assert(VT
.isVector());
2675 SDValue Src
= Op
.getOperand(0);
2678 // TODO: Don't scalarize on Evergreen?
2679 unsigned NElts
= VT
.getVectorNumElements();
2680 SmallVector
<SDValue
, 8> Args
;
2681 DAG
.ExtractVectorElements(Src
, Args
, 0, NElts
);
2683 SDValue VTOp
= DAG
.getValueType(ExtraVT
.getScalarType());
2684 for (unsigned I
= 0; I
< NElts
; ++I
)
2685 Args
[I
] = DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, ScalarVT
, Args
[I
], VTOp
);
2687 return DAG
.getBuildVector(VT
, DL
, Args
);
2690 //===----------------------------------------------------------------------===//
2691 // Custom DAG optimizations
2692 //===----------------------------------------------------------------------===//
2694 static bool isU24(SDValue Op
, SelectionDAG
&DAG
) {
2695 return AMDGPUTargetLowering::numBitsUnsigned(Op
, DAG
) <= 24;
2698 static bool isI24(SDValue Op
, SelectionDAG
&DAG
) {
2699 EVT VT
= Op
.getValueType();
2700 return VT
.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2701 // as unsigned 24-bit values.
2702 AMDGPUTargetLowering::numBitsSigned(Op
, DAG
) < 24;
2705 static bool simplifyI24(SDNode
*Node24
, unsigned OpIdx
,
2706 TargetLowering::DAGCombinerInfo
&DCI
) {
2708 SelectionDAG
&DAG
= DCI
.DAG
;
2709 SDValue Op
= Node24
->getOperand(OpIdx
);
2710 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2711 EVT VT
= Op
.getValueType();
2713 APInt Demanded
= APInt::getLowBitsSet(VT
.getSizeInBits(), 24);
2714 APInt KnownZero
, KnownOne
;
2715 TargetLowering::TargetLoweringOpt
TLO(DAG
, true, true);
2716 if (TLI
.SimplifyDemandedBits(Node24
, OpIdx
, Demanded
, DCI
, TLO
))
2722 template <typename IntTy
>
2723 static SDValue
constantFoldBFE(SelectionDAG
&DAG
, IntTy Src0
, uint32_t Offset
,
2724 uint32_t Width
, const SDLoc
&DL
) {
2725 if (Width
+ Offset
< 32) {
2726 uint32_t Shl
= static_cast<uint32_t>(Src0
) << (32 - Offset
- Width
);
2727 IntTy Result
= static_cast<IntTy
>(Shl
) >> (32 - Width
);
2728 return DAG
.getConstant(Result
, DL
, MVT::i32
);
2731 return DAG
.getConstant(Src0
>> Offset
, DL
, MVT::i32
);
2734 static bool hasVolatileUser(SDNode
*Val
) {
2735 for (SDNode
*U
: Val
->uses()) {
2736 if (MemSDNode
*M
= dyn_cast
<MemSDNode
>(U
)) {
2737 if (M
->isVolatile())
2745 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT
) const {
2746 // i32 vectors are the canonical memory type.
2747 if (VT
.getScalarType() == MVT::i32
|| isTypeLegal(VT
))
2750 if (!VT
.isByteSized())
2753 unsigned Size
= VT
.getStoreSize();
2755 if ((Size
== 1 || Size
== 2 || Size
== 4) && !VT
.isVector())
2758 if (Size
== 3 || (Size
> 4 && (Size
% 4 != 0)))
2764 // Replace load of an illegal type with a store of a bitcast to a friendlier
2766 SDValue
AMDGPUTargetLowering::performLoadCombine(SDNode
*N
,
2767 DAGCombinerInfo
&DCI
) const {
2768 if (!DCI
.isBeforeLegalize())
2771 LoadSDNode
*LN
= cast
<LoadSDNode
>(N
);
2772 if (LN
->isVolatile() || !ISD::isNormalLoad(LN
) || hasVolatileUser(LN
))
2776 SelectionDAG
&DAG
= DCI
.DAG
;
2777 EVT VT
= LN
->getMemoryVT();
2779 unsigned Size
= VT
.getStoreSize();
2780 unsigned Align
= LN
->getAlignment();
2781 if (Align
< Size
&& isTypeLegal(VT
)) {
2783 unsigned AS
= LN
->getAddressSpace();
2785 // Expand unaligned loads earlier than legalization. Due to visitation order
2786 // problems during legalization, the emitted instructions to pack and unpack
2787 // the bytes again are not eliminated in the case of an unaligned copy.
2788 if (!allowsMisalignedMemoryAccesses(VT
, AS
, Align
, &IsFast
)) {
2790 return scalarizeVectorLoad(LN
, DAG
);
2793 std::tie(Ops
[0], Ops
[1]) = expandUnalignedLoad(LN
, DAG
);
2794 return DAG
.getMergeValues(Ops
, SDLoc(N
));
2801 if (!shouldCombineMemoryType(VT
))
2804 EVT NewVT
= getEquivalentMemType(*DAG
.getContext(), VT
);
2807 = DAG
.getLoad(NewVT
, SL
, LN
->getChain(),
2808 LN
->getBasePtr(), LN
->getMemOperand());
2810 SDValue BC
= DAG
.getNode(ISD::BITCAST
, SL
, VT
, NewLoad
);
2811 DCI
.CombineTo(N
, BC
, NewLoad
.getValue(1));
2812 return SDValue(N
, 0);
2815 // Replace store of an illegal type with a store of a bitcast to a friendlier
2817 SDValue
AMDGPUTargetLowering::performStoreCombine(SDNode
*N
,
2818 DAGCombinerInfo
&DCI
) const {
2819 if (!DCI
.isBeforeLegalize())
2822 StoreSDNode
*SN
= cast
<StoreSDNode
>(N
);
2823 if (SN
->isVolatile() || !ISD::isNormalStore(SN
))
2826 EVT VT
= SN
->getMemoryVT();
2827 unsigned Size
= VT
.getStoreSize();
2830 SelectionDAG
&DAG
= DCI
.DAG
;
2831 unsigned Align
= SN
->getAlignment();
2832 if (Align
< Size
&& isTypeLegal(VT
)) {
2834 unsigned AS
= SN
->getAddressSpace();
2836 // Expand unaligned stores earlier than legalization. Due to visitation
2837 // order problems during legalization, the emitted instructions to pack and
2838 // unpack the bytes again are not eliminated in the case of an unaligned
2840 if (!allowsMisalignedMemoryAccesses(VT
, AS
, Align
, &IsFast
)) {
2842 return scalarizeVectorStore(SN
, DAG
);
2844 return expandUnalignedStore(SN
, DAG
);
2851 if (!shouldCombineMemoryType(VT
))
2854 EVT NewVT
= getEquivalentMemType(*DAG
.getContext(), VT
);
2855 SDValue Val
= SN
->getValue();
2857 //DCI.AddToWorklist(Val.getNode());
2859 bool OtherUses
= !Val
.hasOneUse();
2860 SDValue CastVal
= DAG
.getNode(ISD::BITCAST
, SL
, NewVT
, Val
);
2862 SDValue CastBack
= DAG
.getNode(ISD::BITCAST
, SL
, VT
, CastVal
);
2863 DAG
.ReplaceAllUsesOfValueWith(Val
, CastBack
);
2866 return DAG
.getStore(SN
->getChain(), SL
, CastVal
,
2867 SN
->getBasePtr(), SN
->getMemOperand());
2870 // FIXME: This should go in generic DAG combiner with an isTruncateFree check,
2871 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
2873 SDValue
AMDGPUTargetLowering::performAssertSZExtCombine(SDNode
*N
,
2874 DAGCombinerInfo
&DCI
) const {
2875 SelectionDAG
&DAG
= DCI
.DAG
;
2876 SDValue N0
= N
->getOperand(0);
2878 // (vt2 (assertzext (truncate vt0:x), vt1)) ->
2879 // (vt2 (truncate (assertzext vt0:x, vt1)))
2880 if (N0
.getOpcode() == ISD::TRUNCATE
) {
2881 SDValue N1
= N
->getOperand(1);
2882 EVT ExtVT
= cast
<VTSDNode
>(N1
)->getVT();
2885 SDValue Src
= N0
.getOperand(0);
2886 EVT SrcVT
= Src
.getValueType();
2887 if (SrcVT
.bitsGE(ExtVT
)) {
2888 SDValue NewInReg
= DAG
.getNode(N
->getOpcode(), SL
, SrcVT
, Src
, N1
);
2889 return DAG
.getNode(ISD::TRUNCATE
, SL
, N
->getValueType(0), NewInReg
);
2895 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the
2896 /// binary operation \p Opc to it with the corresponding constant operands.
2897 SDValue
AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
2898 DAGCombinerInfo
&DCI
, const SDLoc
&SL
,
2899 unsigned Opc
, SDValue LHS
,
2900 uint32_t ValLo
, uint32_t ValHi
) const {
2901 SelectionDAG
&DAG
= DCI
.DAG
;
2903 std::tie(Lo
, Hi
) = split64BitValue(LHS
, DAG
);
2905 SDValue LoRHS
= DAG
.getConstant(ValLo
, SL
, MVT::i32
);
2906 SDValue HiRHS
= DAG
.getConstant(ValHi
, SL
, MVT::i32
);
2908 SDValue LoAnd
= DAG
.getNode(Opc
, SL
, MVT::i32
, Lo
, LoRHS
);
2909 SDValue HiAnd
= DAG
.getNode(Opc
, SL
, MVT::i32
, Hi
, HiRHS
);
2911 // Re-visit the ands. It's possible we eliminated one of them and it could
2912 // simplify the vector.
2913 DCI
.AddToWorklist(Lo
.getNode());
2914 DCI
.AddToWorklist(Hi
.getNode());
2916 SDValue Vec
= DAG
.getBuildVector(MVT::v2i32
, SL
, {LoAnd
, HiAnd
});
2917 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, Vec
);
2920 SDValue
AMDGPUTargetLowering::performShlCombine(SDNode
*N
,
2921 DAGCombinerInfo
&DCI
) const {
2922 EVT VT
= N
->getValueType(0);
2924 ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
2928 SDValue LHS
= N
->getOperand(0);
2929 unsigned RHSVal
= RHS
->getZExtValue();
2934 SelectionDAG
&DAG
= DCI
.DAG
;
2936 switch (LHS
->getOpcode()) {
2939 case ISD::ZERO_EXTEND
:
2940 case ISD::SIGN_EXTEND
:
2941 case ISD::ANY_EXTEND
: {
2942 SDValue X
= LHS
->getOperand(0);
2944 if (VT
== MVT::i32
&& RHSVal
== 16 && X
.getValueType() == MVT::i16
&&
2945 isOperationLegal(ISD::BUILD_VECTOR
, MVT::v2i16
)) {
2946 // Prefer build_vector as the canonical form if packed types are legal.
2947 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x
2948 SDValue Vec
= DAG
.getBuildVector(MVT::v2i16
, SL
,
2949 { DAG
.getConstant(0, SL
, MVT::i16
), LHS
->getOperand(0) });
2950 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i32
, Vec
);
2953 // shl (ext x) => zext (shl x), if shift does not overflow int
2957 DAG
.computeKnownBits(X
, Known
);
2958 unsigned LZ
= Known
.countMinLeadingZeros();
2961 EVT XVT
= X
.getValueType();
2962 SDValue Shl
= DAG
.getNode(ISD::SHL
, SL
, XVT
, X
, SDValue(RHS
, 0));
2963 return DAG
.getZExtOrTrunc(Shl
, SL
, VT
);
2970 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
2972 // On some subtargets, 64-bit shift is a quarter rate instruction. In the
2973 // common case, splitting this into a move and a 32-bit shift is faster and
2974 // the same code size.
2978 SDValue ShiftAmt
= DAG
.getConstant(RHSVal
- 32, SL
, MVT::i32
);
2980 SDValue Lo
= DAG
.getNode(ISD::TRUNCATE
, SL
, MVT::i32
, LHS
);
2981 SDValue NewShift
= DAG
.getNode(ISD::SHL
, SL
, MVT::i32
, Lo
, ShiftAmt
);
2983 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
2985 SDValue Vec
= DAG
.getBuildVector(MVT::v2i32
, SL
, {Zero
, NewShift
});
2986 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, Vec
);
2989 SDValue
AMDGPUTargetLowering::performSraCombine(SDNode
*N
,
2990 DAGCombinerInfo
&DCI
) const {
2991 if (N
->getValueType(0) != MVT::i64
)
2994 const ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
2998 SelectionDAG
&DAG
= DCI
.DAG
;
3000 unsigned RHSVal
= RHS
->getZExtValue();
3002 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
3004 SDValue Hi
= getHiHalf64(N
->getOperand(0), DAG
);
3005 SDValue NewShift
= DAG
.getNode(ISD::SRA
, SL
, MVT::i32
, Hi
,
3006 DAG
.getConstant(31, SL
, MVT::i32
));
3008 SDValue BuildVec
= DAG
.getBuildVector(MVT::v2i32
, SL
, {Hi
, NewShift
});
3009 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, BuildVec
);
3012 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
3014 SDValue Hi
= getHiHalf64(N
->getOperand(0), DAG
);
3015 SDValue NewShift
= DAG
.getNode(ISD::SRA
, SL
, MVT::i32
, Hi
,
3016 DAG
.getConstant(31, SL
, MVT::i32
));
3017 SDValue BuildVec
= DAG
.getBuildVector(MVT::v2i32
, SL
, {NewShift
, NewShift
});
3018 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, BuildVec
);
3024 SDValue
AMDGPUTargetLowering::performSrlCombine(SDNode
*N
,
3025 DAGCombinerInfo
&DCI
) const {
3026 if (N
->getValueType(0) != MVT::i64
)
3029 const ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
3033 unsigned ShiftAmt
= RHS
->getZExtValue();
3037 // srl i64:x, C for C >= 32
3039 // build_pair (srl hi_32(x), C - 32), 0
3041 SelectionDAG
&DAG
= DCI
.DAG
;
3044 SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
3045 SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
3047 SDValue VecOp
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, N
->getOperand(0));
3048 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
,
3051 SDValue NewConst
= DAG
.getConstant(ShiftAmt
- 32, SL
, MVT::i32
);
3052 SDValue NewShift
= DAG
.getNode(ISD::SRL
, SL
, MVT::i32
, Hi
, NewConst
);
3054 SDValue BuildPair
= DAG
.getBuildVector(MVT::v2i32
, SL
, {NewShift
, Zero
});
3056 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, BuildPair
);
3059 SDValue
AMDGPUTargetLowering::performTruncateCombine(
3060 SDNode
*N
, DAGCombinerInfo
&DCI
) const {
3062 SelectionDAG
&DAG
= DCI
.DAG
;
3063 EVT VT
= N
->getValueType(0);
3064 SDValue Src
= N
->getOperand(0);
3066 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x)
3067 if (Src
.getOpcode() == ISD::BITCAST
) {
3068 SDValue Vec
= Src
.getOperand(0);
3069 if (Vec
.getOpcode() == ISD::BUILD_VECTOR
) {
3070 SDValue Elt0
= Vec
.getOperand(0);
3071 EVT EltVT
= Elt0
.getValueType();
3072 if (VT
.getSizeInBits() <= EltVT
.getSizeInBits()) {
3073 if (EltVT
.isFloatingPoint()) {
3074 Elt0
= DAG
.getNode(ISD::BITCAST
, SL
,
3075 EltVT
.changeTypeToInteger(), Elt0
);
3078 return DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, Elt0
);
3083 // Equivalent of above for accessing the high element of a vector as an
3084 // integer operation.
3085 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y)
3086 if (Src
.getOpcode() == ISD::SRL
&& !VT
.isVector()) {
3087 if (auto K
= isConstOrConstSplat(Src
.getOperand(1))) {
3088 if (2 * K
->getZExtValue() == Src
.getValueType().getScalarSizeInBits()) {
3089 SDValue BV
= stripBitcast(Src
.getOperand(0));
3090 if (BV
.getOpcode() == ISD::BUILD_VECTOR
&&
3091 BV
.getValueType().getVectorNumElements() == 2) {
3092 SDValue SrcElt
= BV
.getOperand(1);
3093 EVT SrcEltVT
= SrcElt
.getValueType();
3094 if (SrcEltVT
.isFloatingPoint()) {
3095 SrcElt
= DAG
.getNode(ISD::BITCAST
, SL
,
3096 SrcEltVT
.changeTypeToInteger(), SrcElt
);
3099 return DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, SrcElt
);
3105 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit.
3107 // i16 (trunc (srl i64:x, K)), K <= 16 ->
3108 // i16 (trunc (srl (i32 (trunc x), K)))
3109 if (VT
.getScalarSizeInBits() < 32) {
3110 EVT SrcVT
= Src
.getValueType();
3111 if (SrcVT
.getScalarSizeInBits() > 32 &&
3112 (Src
.getOpcode() == ISD::SRL
||
3113 Src
.getOpcode() == ISD::SRA
||
3114 Src
.getOpcode() == ISD::SHL
)) {
3115 SDValue Amt
= Src
.getOperand(1);
3117 DAG
.computeKnownBits(Amt
, Known
);
3118 unsigned Size
= VT
.getScalarSizeInBits();
3119 if ((Known
.isConstant() && Known
.getConstant().ule(Size
)) ||
3120 (Known
.getBitWidth() - Known
.countMinLeadingZeros() <= Log2_32(Size
))) {
3121 EVT MidVT
= VT
.isVector() ?
3122 EVT::getVectorVT(*DAG
.getContext(), MVT::i32
,
3123 VT
.getVectorNumElements()) : MVT::i32
;
3125 EVT NewShiftVT
= getShiftAmountTy(MidVT
, DAG
.getDataLayout());
3126 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SL
, MidVT
,
3128 DCI
.AddToWorklist(Trunc
.getNode());
3130 if (Amt
.getValueType() != NewShiftVT
) {
3131 Amt
= DAG
.getZExtOrTrunc(Amt
, SL
, NewShiftVT
);
3132 DCI
.AddToWorklist(Amt
.getNode());
3135 SDValue ShrunkShift
= DAG
.getNode(Src
.getOpcode(), SL
, MidVT
,
3137 return DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, ShrunkShift
);
3145 // We need to specifically handle i64 mul here to avoid unnecessary conversion
3146 // instructions. If we only match on the legalized i64 mul expansion,
3147 // SimplifyDemandedBits will be unable to remove them because there will be
3148 // multiple uses due to the separate mul + mulh[su].
3149 static SDValue
getMul24(SelectionDAG
&DAG
, const SDLoc
&SL
,
3150 SDValue N0
, SDValue N1
, unsigned Size
, bool Signed
) {
3152 unsigned MulOpc
= Signed
? AMDGPUISD::MUL_I24
: AMDGPUISD::MUL_U24
;
3153 return DAG
.getNode(MulOpc
, SL
, MVT::i32
, N0
, N1
);
3156 // Because we want to eliminate extension instructions before the
3157 // operation, we need to create a single user here (i.e. not the separate
3158 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it.
3160 unsigned MulOpc
= Signed
? AMDGPUISD::MUL_LOHI_I24
: AMDGPUISD::MUL_LOHI_U24
;
3162 SDValue Mul
= DAG
.getNode(MulOpc
, SL
,
3163 DAG
.getVTList(MVT::i32
, MVT::i32
), N0
, N1
);
3165 return DAG
.getNode(ISD::BUILD_PAIR
, SL
, MVT::i64
,
3166 Mul
.getValue(0), Mul
.getValue(1));
3169 SDValue
AMDGPUTargetLowering::performMulCombine(SDNode
*N
,
3170 DAGCombinerInfo
&DCI
) const {
3171 EVT VT
= N
->getValueType(0);
3173 unsigned Size
= VT
.getSizeInBits();
3174 if (VT
.isVector() || Size
> 64)
3177 // There are i16 integer mul/mad.
3178 if (Subtarget
->has16BitInsts() && VT
.getScalarType().bitsLE(MVT::i16
))
3181 SelectionDAG
&DAG
= DCI
.DAG
;
3184 SDValue N0
= N
->getOperand(0);
3185 SDValue N1
= N
->getOperand(1);
3187 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends
3188 // in the source into any_extends if the result of the mul is truncated. Since
3189 // we can assume the high bits are whatever we want, use the underlying value
3190 // to avoid the unknown high bits from interfering.
3191 if (N0
.getOpcode() == ISD::ANY_EXTEND
)
3192 N0
= N0
.getOperand(0);
3194 if (N1
.getOpcode() == ISD::ANY_EXTEND
)
3195 N1
= N1
.getOperand(0);
3199 if (Subtarget
->hasMulU24() && isU24(N0
, DAG
) && isU24(N1
, DAG
)) {
3200 N0
= DAG
.getZExtOrTrunc(N0
, DL
, MVT::i32
);
3201 N1
= DAG
.getZExtOrTrunc(N1
, DL
, MVT::i32
);
3202 Mul
= getMul24(DAG
, DL
, N0
, N1
, Size
, false);
3203 } else if (Subtarget
->hasMulI24() && isI24(N0
, DAG
) && isI24(N1
, DAG
)) {
3204 N0
= DAG
.getSExtOrTrunc(N0
, DL
, MVT::i32
);
3205 N1
= DAG
.getSExtOrTrunc(N1
, DL
, MVT::i32
);
3206 Mul
= getMul24(DAG
, DL
, N0
, N1
, Size
, true);
3211 // We need to use sext even for MUL_U24, because MUL_U24 is used
3212 // for signed multiply of 8 and 16-bit types.
3213 return DAG
.getSExtOrTrunc(Mul
, DL
, VT
);
3216 SDValue
AMDGPUTargetLowering::performMulhsCombine(SDNode
*N
,
3217 DAGCombinerInfo
&DCI
) const {
3218 EVT VT
= N
->getValueType(0);
3220 if (!Subtarget
->hasMulI24() || VT
.isVector())
3223 SelectionDAG
&DAG
= DCI
.DAG
;
3226 SDValue N0
= N
->getOperand(0);
3227 SDValue N1
= N
->getOperand(1);
3229 if (!isI24(N0
, DAG
) || !isI24(N1
, DAG
))
3232 N0
= DAG
.getSExtOrTrunc(N0
, DL
, MVT::i32
);
3233 N1
= DAG
.getSExtOrTrunc(N1
, DL
, MVT::i32
);
3235 SDValue Mulhi
= DAG
.getNode(AMDGPUISD::MULHI_I24
, DL
, MVT::i32
, N0
, N1
);
3236 DCI
.AddToWorklist(Mulhi
.getNode());
3237 return DAG
.getSExtOrTrunc(Mulhi
, DL
, VT
);
3240 SDValue
AMDGPUTargetLowering::performMulhuCombine(SDNode
*N
,
3241 DAGCombinerInfo
&DCI
) const {
3242 EVT VT
= N
->getValueType(0);
3244 if (!Subtarget
->hasMulU24() || VT
.isVector() || VT
.getSizeInBits() > 32)
3247 SelectionDAG
&DAG
= DCI
.DAG
;
3250 SDValue N0
= N
->getOperand(0);
3251 SDValue N1
= N
->getOperand(1);
3253 if (!isU24(N0
, DAG
) || !isU24(N1
, DAG
))
3256 N0
= DAG
.getZExtOrTrunc(N0
, DL
, MVT::i32
);
3257 N1
= DAG
.getZExtOrTrunc(N1
, DL
, MVT::i32
);
3259 SDValue Mulhi
= DAG
.getNode(AMDGPUISD::MULHI_U24
, DL
, MVT::i32
, N0
, N1
);
3260 DCI
.AddToWorklist(Mulhi
.getNode());
3261 return DAG
.getZExtOrTrunc(Mulhi
, DL
, VT
);
3264 SDValue
AMDGPUTargetLowering::performMulLoHi24Combine(
3265 SDNode
*N
, DAGCombinerInfo
&DCI
) const {
3266 SelectionDAG
&DAG
= DCI
.DAG
;
3268 // Simplify demanded bits before splitting into multiple users.
3269 if (simplifyI24(N
, 0, DCI
) || simplifyI24(N
, 1, DCI
))
3272 SDValue N0
= N
->getOperand(0);
3273 SDValue N1
= N
->getOperand(1);
3275 bool Signed
= (N
->getOpcode() == AMDGPUISD::MUL_LOHI_I24
);
3277 unsigned MulLoOpc
= Signed
? AMDGPUISD::MUL_I24
: AMDGPUISD::MUL_U24
;
3278 unsigned MulHiOpc
= Signed
? AMDGPUISD::MULHI_I24
: AMDGPUISD::MULHI_U24
;
3282 SDValue MulLo
= DAG
.getNode(MulLoOpc
, SL
, MVT::i32
, N0
, N1
);
3283 SDValue MulHi
= DAG
.getNode(MulHiOpc
, SL
, MVT::i32
, N0
, N1
);
3284 return DAG
.getMergeValues({ MulLo
, MulHi
}, SL
);
3287 static bool isNegativeOne(SDValue Val
) {
3288 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Val
))
3289 return C
->isAllOnesValue();
3293 SDValue
AMDGPUTargetLowering::getFFBX_U32(SelectionDAG
&DAG
,
3296 unsigned Opc
) const {
3297 EVT VT
= Op
.getValueType();
3298 EVT LegalVT
= getTypeToTransformTo(*DAG
.getContext(), VT
);
3299 if (LegalVT
!= MVT::i32
&& (Subtarget
->has16BitInsts() &&
3300 LegalVT
!= MVT::i16
))
3304 Op
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, MVT::i32
, Op
);
3306 SDValue FFBX
= DAG
.getNode(Opc
, DL
, MVT::i32
, Op
);
3308 FFBX
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, FFBX
);
3313 // The native instructions return -1 on 0 input. Optimize out a select that
3314 // produces -1 on 0.
3316 // TODO: If zero is not undef, we could also do this if the output is compared
3317 // against the bitwidth.
3319 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
3320 SDValue
AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc
&SL
, SDValue Cond
,
3321 SDValue LHS
, SDValue RHS
,
3322 DAGCombinerInfo
&DCI
) const {
3323 ConstantSDNode
*CmpRhs
= dyn_cast
<ConstantSDNode
>(Cond
.getOperand(1));
3324 if (!CmpRhs
|| !CmpRhs
->isNullValue())
3327 SelectionDAG
&DAG
= DCI
.DAG
;
3328 ISD::CondCode CCOpcode
= cast
<CondCodeSDNode
>(Cond
.getOperand(2))->get();
3329 SDValue CmpLHS
= Cond
.getOperand(0);
3331 unsigned Opc
= isCttzOpc(RHS
.getOpcode()) ? AMDGPUISD::FFBL_B32
:
3332 AMDGPUISD::FFBH_U32
;
3334 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
3335 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
3336 if (CCOpcode
== ISD::SETEQ
&&
3337 (isCtlzOpc(RHS
.getOpcode()) || isCttzOpc(RHS
.getOpcode())) &&
3338 RHS
.getOperand(0) == CmpLHS
&&
3339 isNegativeOne(LHS
)) {
3340 return getFFBX_U32(DAG
, CmpLHS
, SL
, Opc
);
3343 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
3344 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
3345 if (CCOpcode
== ISD::SETNE
&&
3346 (isCtlzOpc(LHS
.getOpcode()) || isCttzOpc(RHS
.getOpcode())) &&
3347 LHS
.getOperand(0) == CmpLHS
&&
3348 isNegativeOne(RHS
)) {
3349 return getFFBX_U32(DAG
, CmpLHS
, SL
, Opc
);
3355 static SDValue
distributeOpThroughSelect(TargetLowering::DAGCombinerInfo
&DCI
,
3361 SelectionDAG
&DAG
= DCI
.DAG
;
3362 EVT VT
= N1
.getValueType();
3364 SDValue NewSelect
= DAG
.getNode(ISD::SELECT
, SL
, VT
, Cond
,
3365 N1
.getOperand(0), N2
.getOperand(0));
3366 DCI
.AddToWorklist(NewSelect
.getNode());
3367 return DAG
.getNode(Op
, SL
, VT
, NewSelect
);
3370 // Pull a free FP operation out of a select so it may fold into uses.
3372 // select c, (fneg x), (fneg y) -> fneg (select c, x, y)
3373 // select c, (fneg x), k -> fneg (select c, x, (fneg k))
3375 // select c, (fabs x), (fabs y) -> fabs (select c, x, y)
3376 // select c, (fabs x), +k -> fabs (select c, x, k)
3377 static SDValue
foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo
&DCI
,
3379 SelectionDAG
&DAG
= DCI
.DAG
;
3380 SDValue Cond
= N
.getOperand(0);
3381 SDValue LHS
= N
.getOperand(1);
3382 SDValue RHS
= N
.getOperand(2);
3384 EVT VT
= N
.getValueType();
3385 if ((LHS
.getOpcode() == ISD::FABS
&& RHS
.getOpcode() == ISD::FABS
) ||
3386 (LHS
.getOpcode() == ISD::FNEG
&& RHS
.getOpcode() == ISD::FNEG
)) {
3387 return distributeOpThroughSelect(DCI
, LHS
.getOpcode(),
3388 SDLoc(N
), Cond
, LHS
, RHS
);
3392 if (RHS
.getOpcode() == ISD::FABS
|| RHS
.getOpcode() == ISD::FNEG
) {
3393 std::swap(LHS
, RHS
);
3397 // TODO: Support vector constants.
3398 ConstantFPSDNode
*CRHS
= dyn_cast
<ConstantFPSDNode
>(RHS
);
3399 if ((LHS
.getOpcode() == ISD::FNEG
|| LHS
.getOpcode() == ISD::FABS
) && CRHS
) {
3401 // If one side is an fneg/fabs and the other is a constant, we can push the
3402 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
3403 SDValue NewLHS
= LHS
.getOperand(0);
3404 SDValue NewRHS
= RHS
;
3406 // Careful: if the neg can be folded up, don't try to pull it back down.
3407 bool ShouldFoldNeg
= true;
3409 if (NewLHS
.hasOneUse()) {
3410 unsigned Opc
= NewLHS
.getOpcode();
3411 if (LHS
.getOpcode() == ISD::FNEG
&& fnegFoldsIntoOp(Opc
))
3412 ShouldFoldNeg
= false;
3413 if (LHS
.getOpcode() == ISD::FABS
&& Opc
== ISD::FMUL
)
3414 ShouldFoldNeg
= false;
3417 if (ShouldFoldNeg
) {
3418 if (LHS
.getOpcode() == ISD::FNEG
)
3419 NewRHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, RHS
);
3420 else if (CRHS
->isNegative())
3424 std::swap(NewLHS
, NewRHS
);
3426 SDValue NewSelect
= DAG
.getNode(ISD::SELECT
, SL
, VT
,
3427 Cond
, NewLHS
, NewRHS
);
3428 DCI
.AddToWorklist(NewSelect
.getNode());
3429 return DAG
.getNode(LHS
.getOpcode(), SL
, VT
, NewSelect
);
3437 SDValue
AMDGPUTargetLowering::performSelectCombine(SDNode
*N
,
3438 DAGCombinerInfo
&DCI
) const {
3439 if (SDValue Folded
= foldFreeOpFromSelect(DCI
, SDValue(N
, 0)))
3442 SDValue Cond
= N
->getOperand(0);
3443 if (Cond
.getOpcode() != ISD::SETCC
)
3446 EVT VT
= N
->getValueType(0);
3447 SDValue LHS
= Cond
.getOperand(0);
3448 SDValue RHS
= Cond
.getOperand(1);
3449 SDValue CC
= Cond
.getOperand(2);
3451 SDValue True
= N
->getOperand(1);
3452 SDValue False
= N
->getOperand(2);
3454 if (Cond
.hasOneUse()) { // TODO: Look for multiple select uses.
3455 SelectionDAG
&DAG
= DCI
.DAG
;
3456 if ((DAG
.isConstantValueOfAnyType(True
) ||
3457 DAG
.isConstantValueOfAnyType(True
)) &&
3458 (!DAG
.isConstantValueOfAnyType(False
) &&
3459 !DAG
.isConstantValueOfAnyType(False
))) {
3460 // Swap cmp + select pair to move constant to false input.
3461 // This will allow using VOPC cndmasks more often.
3462 // select (setcc x, y), k, x -> select (setcc y, x) x, x
3465 ISD::CondCode NewCC
= getSetCCInverse(cast
<CondCodeSDNode
>(CC
)->get(),
3466 LHS
.getValueType().isInteger());
3468 SDValue NewCond
= DAG
.getSetCC(SL
, Cond
.getValueType(), LHS
, RHS
, NewCC
);
3469 return DAG
.getNode(ISD::SELECT
, SL
, VT
, NewCond
, False
, True
);
3472 if (VT
== MVT::f32
&& Subtarget
->hasFminFmaxLegacy()) {
3474 = combineFMinMaxLegacy(SDLoc(N
), VT
, LHS
, RHS
, True
, False
, CC
, DCI
);
3475 // Revisit this node so we can catch min3/max3/med3 patterns.
3476 //DCI.AddToWorklist(MinMax.getNode());
3481 // There's no reason to not do this if the condition has other uses.
3482 return performCtlz_CttzCombine(SDLoc(N
), Cond
, True
, False
, DCI
);
3485 static bool isInv2Pi(const APFloat
&APF
) {
3486 static const APFloat
KF16(APFloat::IEEEhalf(), APInt(16, 0x3118));
3487 static const APFloat
KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983));
3488 static const APFloat
KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882));
3490 return APF
.bitwiseIsEqual(KF16
) ||
3491 APF
.bitwiseIsEqual(KF32
) ||
3492 APF
.bitwiseIsEqual(KF64
);
3495 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an
3496 // additional cost to negate them.
3497 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N
) const {
3498 if (const ConstantFPSDNode
*C
= isConstOrConstSplatFP(N
)) {
3499 if (C
->isZero() && !C
->isNegative())
3502 if (Subtarget
->hasInv2PiInlineImm() && isInv2Pi(C
->getValueAPF()))
3509 static unsigned inverseMinMax(unsigned Opc
) {
3512 return ISD::FMINNUM
;
3514 return ISD::FMAXNUM
;
3515 case AMDGPUISD::FMAX_LEGACY
:
3516 return AMDGPUISD::FMIN_LEGACY
;
3517 case AMDGPUISD::FMIN_LEGACY
:
3518 return AMDGPUISD::FMAX_LEGACY
;
3520 llvm_unreachable("invalid min/max opcode");
3524 SDValue
AMDGPUTargetLowering::performFNegCombine(SDNode
*N
,
3525 DAGCombinerInfo
&DCI
) const {
3526 SelectionDAG
&DAG
= DCI
.DAG
;
3527 SDValue N0
= N
->getOperand(0);
3528 EVT VT
= N
->getValueType(0);
3530 unsigned Opc
= N0
.getOpcode();
3532 // If the input has multiple uses and we can either fold the negate down, or
3533 // the other uses cannot, give up. This both prevents unprofitable
3534 // transformations and infinite loops: we won't repeatedly try to fold around
3535 // a negate that has no 'good' form.
3536 if (N0
.hasOneUse()) {
3537 // This may be able to fold into the source, but at a code size cost. Don't
3538 // fold if the fold into the user is free.
3539 if (allUsesHaveSourceMods(N
, 0))
3542 if (fnegFoldsIntoOp(Opc
) &&
3543 (allUsesHaveSourceMods(N
) || !allUsesHaveSourceMods(N0
.getNode())))
3550 if (!mayIgnoreSignedZero(N0
))
3553 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
3554 SDValue LHS
= N0
.getOperand(0);
3555 SDValue RHS
= N0
.getOperand(1);
3557 if (LHS
.getOpcode() != ISD::FNEG
)
3558 LHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, LHS
);
3560 LHS
= LHS
.getOperand(0);
3562 if (RHS
.getOpcode() != ISD::FNEG
)
3563 RHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, RHS
);
3565 RHS
= RHS
.getOperand(0);
3567 SDValue Res
= DAG
.getNode(ISD::FADD
, SL
, VT
, LHS
, RHS
, N0
->getFlags());
3568 if (!N0
.hasOneUse())
3569 DAG
.ReplaceAllUsesWith(N0
, DAG
.getNode(ISD::FNEG
, SL
, VT
, Res
));
3573 case AMDGPUISD::FMUL_LEGACY
: {
3574 // (fneg (fmul x, y)) -> (fmul x, (fneg y))
3575 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
3576 SDValue LHS
= N0
.getOperand(0);
3577 SDValue RHS
= N0
.getOperand(1);
3579 if (LHS
.getOpcode() == ISD::FNEG
)
3580 LHS
= LHS
.getOperand(0);
3581 else if (RHS
.getOpcode() == ISD::FNEG
)
3582 RHS
= RHS
.getOperand(0);
3584 RHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, RHS
);
3586 SDValue Res
= DAG
.getNode(Opc
, SL
, VT
, LHS
, RHS
, N0
->getFlags());
3587 if (!N0
.hasOneUse())
3588 DAG
.ReplaceAllUsesWith(N0
, DAG
.getNode(ISD::FNEG
, SL
, VT
, Res
));
3593 if (!mayIgnoreSignedZero(N0
))
3596 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
3597 SDValue LHS
= N0
.getOperand(0);
3598 SDValue MHS
= N0
.getOperand(1);
3599 SDValue RHS
= N0
.getOperand(2);
3601 if (LHS
.getOpcode() == ISD::FNEG
)
3602 LHS
= LHS
.getOperand(0);
3603 else if (MHS
.getOpcode() == ISD::FNEG
)
3604 MHS
= MHS
.getOperand(0);
3606 MHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, MHS
);
3608 if (RHS
.getOpcode() != ISD::FNEG
)
3609 RHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, RHS
);
3611 RHS
= RHS
.getOperand(0);
3613 SDValue Res
= DAG
.getNode(Opc
, SL
, VT
, LHS
, MHS
, RHS
);
3614 if (!N0
.hasOneUse())
3615 DAG
.ReplaceAllUsesWith(N0
, DAG
.getNode(ISD::FNEG
, SL
, VT
, Res
));
3620 case AMDGPUISD::FMAX_LEGACY
:
3621 case AMDGPUISD::FMIN_LEGACY
: {
3622 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
3623 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
3624 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
3625 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
3627 SDValue LHS
= N0
.getOperand(0);
3628 SDValue RHS
= N0
.getOperand(1);
3630 // 0 doesn't have a negated inline immediate.
3631 // TODO: This constant check should be generalized to other operations.
3632 if (isConstantCostlierToNegate(RHS
))
3635 SDValue NegLHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, LHS
);
3636 SDValue NegRHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, RHS
);
3637 unsigned Opposite
= inverseMinMax(Opc
);
3639 SDValue Res
= DAG
.getNode(Opposite
, SL
, VT
, NegLHS
, NegRHS
, N0
->getFlags());
3640 if (!N0
.hasOneUse())
3641 DAG
.ReplaceAllUsesWith(N0
, DAG
.getNode(ISD::FNEG
, SL
, VT
, Res
));
3644 case AMDGPUISD::FMED3
: {
3646 for (unsigned I
= 0; I
< 3; ++I
)
3647 Ops
[I
] = DAG
.getNode(ISD::FNEG
, SL
, VT
, N0
->getOperand(I
), N0
->getFlags());
3649 SDValue Res
= DAG
.getNode(AMDGPUISD::FMED3
, SL
, VT
, Ops
, N0
->getFlags());
3650 if (!N0
.hasOneUse())
3651 DAG
.ReplaceAllUsesWith(N0
, DAG
.getNode(ISD::FNEG
, SL
, VT
, Res
));
3654 case ISD::FP_EXTEND
:
3657 case ISD::FNEARBYINT
: // XXX - Should fround be handled?
3659 case ISD::FCANONICALIZE
:
3660 case AMDGPUISD::RCP
:
3661 case AMDGPUISD::RCP_LEGACY
:
3662 case AMDGPUISD::RCP_IFLAG
:
3663 case AMDGPUISD::SIN_HW
: {
3664 SDValue CvtSrc
= N0
.getOperand(0);
3665 if (CvtSrc
.getOpcode() == ISD::FNEG
) {
3666 // (fneg (fp_extend (fneg x))) -> (fp_extend x)
3667 // (fneg (rcp (fneg x))) -> (rcp x)
3668 return DAG
.getNode(Opc
, SL
, VT
, CvtSrc
.getOperand(0));
3671 if (!N0
.hasOneUse())
3674 // (fneg (fp_extend x)) -> (fp_extend (fneg x))
3675 // (fneg (rcp x)) -> (rcp (fneg x))
3676 SDValue Neg
= DAG
.getNode(ISD::FNEG
, SL
, CvtSrc
.getValueType(), CvtSrc
);
3677 return DAG
.getNode(Opc
, SL
, VT
, Neg
, N0
->getFlags());
3679 case ISD::FP_ROUND
: {
3680 SDValue CvtSrc
= N0
.getOperand(0);
3682 if (CvtSrc
.getOpcode() == ISD::FNEG
) {
3683 // (fneg (fp_round (fneg x))) -> (fp_round x)
3684 return DAG
.getNode(ISD::FP_ROUND
, SL
, VT
,
3685 CvtSrc
.getOperand(0), N0
.getOperand(1));
3688 if (!N0
.hasOneUse())
3691 // (fneg (fp_round x)) -> (fp_round (fneg x))
3692 SDValue Neg
= DAG
.getNode(ISD::FNEG
, SL
, CvtSrc
.getValueType(), CvtSrc
);
3693 return DAG
.getNode(ISD::FP_ROUND
, SL
, VT
, Neg
, N0
.getOperand(1));
3695 case ISD::FP16_TO_FP
: {
3696 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
3697 // f16, but legalization of f16 fneg ends up pulling it out of the source.
3698 // Put the fneg back as a legal source operation that can be matched later.
3701 SDValue Src
= N0
.getOperand(0);
3702 EVT SrcVT
= Src
.getValueType();
3704 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
3705 SDValue IntFNeg
= DAG
.getNode(ISD::XOR
, SL
, SrcVT
, Src
,
3706 DAG
.getConstant(0x8000, SL
, SrcVT
));
3707 return DAG
.getNode(ISD::FP16_TO_FP
, SL
, N
->getValueType(0), IntFNeg
);
3714 SDValue
AMDGPUTargetLowering::performFAbsCombine(SDNode
*N
,
3715 DAGCombinerInfo
&DCI
) const {
3716 SelectionDAG
&DAG
= DCI
.DAG
;
3717 SDValue N0
= N
->getOperand(0);
3719 if (!N0
.hasOneUse())
3722 switch (N0
.getOpcode()) {
3723 case ISD::FP16_TO_FP
: {
3724 assert(!Subtarget
->has16BitInsts() && "should only see if f16 is illegal");
3726 SDValue Src
= N0
.getOperand(0);
3727 EVT SrcVT
= Src
.getValueType();
3729 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
3730 SDValue IntFAbs
= DAG
.getNode(ISD::AND
, SL
, SrcVT
, Src
,
3731 DAG
.getConstant(0x7fff, SL
, SrcVT
));
3732 return DAG
.getNode(ISD::FP16_TO_FP
, SL
, N
->getValueType(0), IntFAbs
);
3739 SDValue
AMDGPUTargetLowering::performRcpCombine(SDNode
*N
,
3740 DAGCombinerInfo
&DCI
) const {
3741 const auto *CFP
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(0));
3745 // XXX - Should this flush denormals?
3746 const APFloat
&Val
= CFP
->getValueAPF();
3747 APFloat
One(Val
.getSemantics(), "1.0");
3748 return DCI
.DAG
.getConstantFP(One
/ Val
, SDLoc(N
), N
->getValueType(0));
3751 SDValue
AMDGPUTargetLowering::PerformDAGCombine(SDNode
*N
,
3752 DAGCombinerInfo
&DCI
) const {
3753 SelectionDAG
&DAG
= DCI
.DAG
;
3756 switch(N
->getOpcode()) {
3759 case ISD::BITCAST
: {
3760 EVT DestVT
= N
->getValueType(0);
3762 // Push casts through vector builds. This helps avoid emitting a large
3763 // number of copies when materializing floating point vector constants.
3765 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
3766 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
3767 if (DestVT
.isVector()) {
3768 SDValue Src
= N
->getOperand(0);
3769 if (Src
.getOpcode() == ISD::BUILD_VECTOR
) {
3770 EVT SrcVT
= Src
.getValueType();
3771 unsigned NElts
= DestVT
.getVectorNumElements();
3773 if (SrcVT
.getVectorNumElements() == NElts
) {
3774 EVT DestEltVT
= DestVT
.getVectorElementType();
3776 SmallVector
<SDValue
, 8> CastedElts
;
3778 for (unsigned I
= 0, E
= SrcVT
.getVectorNumElements(); I
!= E
; ++I
) {
3779 SDValue Elt
= Src
.getOperand(I
);
3780 CastedElts
.push_back(DAG
.getNode(ISD::BITCAST
, DL
, DestEltVT
, Elt
));
3783 return DAG
.getBuildVector(DestVT
, SL
, CastedElts
);
3788 if (DestVT
.getSizeInBits() != 64 && !DestVT
.isVector())
3791 // Fold bitcasts of constants.
3793 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
3794 // TODO: Generalize and move to DAGCombiner
3795 SDValue Src
= N
->getOperand(0);
3796 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Src
)) {
3797 if (Src
.getValueType() == MVT::i64
) {
3799 uint64_t CVal
= C
->getZExtValue();
3800 return DAG
.getNode(ISD::BUILD_VECTOR
, SL
, DestVT
,
3801 DAG
.getConstant(Lo_32(CVal
), SL
, MVT::i32
),
3802 DAG
.getConstant(Hi_32(CVal
), SL
, MVT::i32
));
3806 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Src
)) {
3807 const APInt
&Val
= C
->getValueAPF().bitcastToAPInt();
3809 uint64_t CVal
= Val
.getZExtValue();
3810 SDValue Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, SL
, MVT::v2i32
,
3811 DAG
.getConstant(Lo_32(CVal
), SL
, MVT::i32
),
3812 DAG
.getConstant(Hi_32(CVal
), SL
, MVT::i32
));
3814 return DAG
.getNode(ISD::BITCAST
, SL
, DestVT
, Vec
);
3820 if (DCI
.getDAGCombineLevel() < AfterLegalizeDAG
)
3823 return performShlCombine(N
, DCI
);
3826 if (DCI
.getDAGCombineLevel() < AfterLegalizeDAG
)
3829 return performSrlCombine(N
, DCI
);
3832 if (DCI
.getDAGCombineLevel() < AfterLegalizeDAG
)
3835 return performSraCombine(N
, DCI
);
3838 return performTruncateCombine(N
, DCI
);
3840 return performMulCombine(N
, DCI
);
3842 return performMulhsCombine(N
, DCI
);
3844 return performMulhuCombine(N
, DCI
);
3845 case AMDGPUISD::MUL_I24
:
3846 case AMDGPUISD::MUL_U24
:
3847 case AMDGPUISD::MULHI_I24
:
3848 case AMDGPUISD::MULHI_U24
: {
3849 // If the first call to simplify is successfull, then N may end up being
3850 // deleted, so we shouldn't call simplifyI24 again.
3851 simplifyI24(N
, 0, DCI
) || simplifyI24(N
, 1, DCI
);
3854 case AMDGPUISD::MUL_LOHI_I24
:
3855 case AMDGPUISD::MUL_LOHI_U24
:
3856 return performMulLoHi24Combine(N
, DCI
);
3858 return performSelectCombine(N
, DCI
);
3860 return performFNegCombine(N
, DCI
);
3862 return performFAbsCombine(N
, DCI
);
3863 case AMDGPUISD::BFE_I32
:
3864 case AMDGPUISD::BFE_U32
: {
3865 assert(!N
->getValueType(0).isVector() &&
3866 "Vector handling of BFE not implemented");
3867 ConstantSDNode
*Width
= dyn_cast
<ConstantSDNode
>(N
->getOperand(2));
3871 uint32_t WidthVal
= Width
->getZExtValue() & 0x1f;
3873 return DAG
.getConstant(0, DL
, MVT::i32
);
3875 ConstantSDNode
*Offset
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
3879 SDValue BitsFrom
= N
->getOperand(0);
3880 uint32_t OffsetVal
= Offset
->getZExtValue() & 0x1f;
3882 bool Signed
= N
->getOpcode() == AMDGPUISD::BFE_I32
;
3884 if (OffsetVal
== 0) {
3885 // This is already sign / zero extended, so try to fold away extra BFEs.
3886 unsigned SignBits
= Signed
? (32 - WidthVal
+ 1) : (32 - WidthVal
);
3888 unsigned OpSignBits
= DAG
.ComputeNumSignBits(BitsFrom
);
3889 if (OpSignBits
>= SignBits
)
3892 EVT SmallVT
= EVT::getIntegerVT(*DAG
.getContext(), WidthVal
);
3894 // This is a sign_extend_inreg. Replace it to take advantage of existing
3895 // DAG Combines. If not eliminated, we will match back to BFE during
3898 // TODO: The sext_inreg of extended types ends, although we can could
3899 // handle them in a single BFE.
3900 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, MVT::i32
, BitsFrom
,
3901 DAG
.getValueType(SmallVT
));
3904 return DAG
.getZeroExtendInReg(BitsFrom
, DL
, SmallVT
);
3907 if (ConstantSDNode
*CVal
= dyn_cast
<ConstantSDNode
>(BitsFrom
)) {
3909 return constantFoldBFE
<int32_t>(DAG
,
3910 CVal
->getSExtValue(),
3916 return constantFoldBFE
<uint32_t>(DAG
,
3917 CVal
->getZExtValue(),
3923 if ((OffsetVal
+ WidthVal
) >= 32 &&
3924 !(Subtarget
->hasSDWA() && OffsetVal
== 16 && WidthVal
== 16)) {
3925 SDValue ShiftVal
= DAG
.getConstant(OffsetVal
, DL
, MVT::i32
);
3926 return DAG
.getNode(Signed
? ISD::SRA
: ISD::SRL
, DL
, MVT::i32
,
3927 BitsFrom
, ShiftVal
);
3930 if (BitsFrom
.hasOneUse()) {
3931 APInt Demanded
= APInt::getBitsSet(32,
3933 OffsetVal
+ WidthVal
);
3936 TargetLowering::TargetLoweringOpt
TLO(DAG
, !DCI
.isBeforeLegalize(),
3937 !DCI
.isBeforeLegalizeOps());
3938 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3939 if (TLI
.ShrinkDemandedConstant(BitsFrom
, Demanded
, TLO
) ||
3940 TLI
.SimplifyDemandedBits(BitsFrom
, Demanded
, Known
, TLO
)) {
3941 DCI
.CommitTargetLoweringOpt(TLO
);
3948 return performLoadCombine(N
, DCI
);
3950 return performStoreCombine(N
, DCI
);
3951 case AMDGPUISD::RCP
:
3952 case AMDGPUISD::RCP_IFLAG
:
3953 return performRcpCombine(N
, DCI
);
3954 case ISD::AssertZext
:
3955 case ISD::AssertSext
:
3956 return performAssertSZExtCombine(N
, DCI
);
3961 //===----------------------------------------------------------------------===//
3963 //===----------------------------------------------------------------------===//
3965 SDValue
AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG
&DAG
,
3966 const TargetRegisterClass
*RC
,
3967 unsigned Reg
, EVT VT
,
3969 bool RawReg
) const {
3970 MachineFunction
&MF
= DAG
.getMachineFunction();
3971 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
3974 if (!MRI
.isLiveIn(Reg
)) {
3975 VReg
= MRI
.createVirtualRegister(RC
);
3976 MRI
.addLiveIn(Reg
, VReg
);
3978 VReg
= MRI
.getLiveInVirtReg(Reg
);
3982 return DAG
.getRegister(VReg
, VT
);
3984 return DAG
.getCopyFromReg(DAG
.getEntryNode(), SL
, VReg
, VT
);
3987 SDValue
AMDGPUTargetLowering::loadStackInputValue(SelectionDAG
&DAG
,
3990 int64_t Offset
) const {
3991 MachineFunction
&MF
= DAG
.getMachineFunction();
3992 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3994 int FI
= MFI
.CreateFixedObject(VT
.getStoreSize(), Offset
, true);
3995 auto SrcPtrInfo
= MachinePointerInfo::getStack(MF
, Offset
);
3996 SDValue Ptr
= DAG
.getFrameIndex(FI
, MVT::i32
);
3998 return DAG
.getLoad(VT
, SL
, DAG
.getEntryNode(), Ptr
, SrcPtrInfo
, 4,
3999 MachineMemOperand::MODereferenceable
|
4000 MachineMemOperand::MOInvariant
);
4003 SDValue
AMDGPUTargetLowering::storeStackInputValue(SelectionDAG
&DAG
,
4007 int64_t Offset
) const {
4008 MachineFunction
&MF
= DAG
.getMachineFunction();
4009 MachinePointerInfo DstInfo
= MachinePointerInfo::getStack(MF
, Offset
);
4011 SDValue Ptr
= DAG
.getConstant(Offset
, SL
, MVT::i32
);
4012 SDValue Store
= DAG
.getStore(Chain
, SL
, ArgVal
, Ptr
, DstInfo
, 4,
4013 MachineMemOperand::MODereferenceable
);
4017 SDValue
AMDGPUTargetLowering::loadInputValue(SelectionDAG
&DAG
,
4018 const TargetRegisterClass
*RC
,
4019 EVT VT
, const SDLoc
&SL
,
4020 const ArgDescriptor
&Arg
) const {
4021 assert(Arg
&& "Attempting to load missing argument");
4023 if (Arg
.isRegister())
4024 return CreateLiveInRegister(DAG
, RC
, Arg
.getRegister(), VT
, SL
);
4025 return loadStackInputValue(DAG
, VT
, SL
, Arg
.getStackOffset());
4028 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
4029 const MachineFunction
&MF
, const ImplicitParameter Param
) const {
4030 const AMDGPUMachineFunction
*MFI
= MF
.getInfo
<AMDGPUMachineFunction
>();
4031 const AMDGPUSubtarget
&ST
=
4032 AMDGPUSubtarget::get(getTargetMachine(), MF
.getFunction());
4033 unsigned ExplicitArgOffset
= ST
.getExplicitKernelArgOffset(MF
.getFunction());
4034 unsigned Alignment
= ST
.getAlignmentForImplicitArgPtr();
4035 uint64_t ArgOffset
= alignTo(MFI
->getExplicitKernArgSize(), Alignment
) +
4041 return ArgOffset
+ 4;
4043 llvm_unreachable("unexpected implicit parameter type");
4046 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
4048 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode
) const {
4049 switch ((AMDGPUISD::NodeType
)Opcode
) {
4050 case AMDGPUISD::FIRST_NUMBER
: break;
4052 NODE_NAME_CASE(UMUL
);
4053 NODE_NAME_CASE(BRANCH_COND
);
4057 NODE_NAME_CASE(ELSE
)
4058 NODE_NAME_CASE(LOOP
)
4059 NODE_NAME_CASE(CALL
)
4060 NODE_NAME_CASE(TC_RETURN
)
4061 NODE_NAME_CASE(TRAP
)
4062 NODE_NAME_CASE(RET_FLAG
)
4063 NODE_NAME_CASE(RETURN_TO_EPILOG
)
4064 NODE_NAME_CASE(ENDPGM
)
4065 NODE_NAME_CASE(DWORDADDR
)
4066 NODE_NAME_CASE(FRACT
)
4067 NODE_NAME_CASE(SETCC
)
4068 NODE_NAME_CASE(SETREG
)
4069 NODE_NAME_CASE(FMA_W_CHAIN
)
4070 NODE_NAME_CASE(FMUL_W_CHAIN
)
4071 NODE_NAME_CASE(CLAMP
)
4072 NODE_NAME_CASE(COS_HW
)
4073 NODE_NAME_CASE(SIN_HW
)
4074 NODE_NAME_CASE(FMAX_LEGACY
)
4075 NODE_NAME_CASE(FMIN_LEGACY
)
4076 NODE_NAME_CASE(FMAX3
)
4077 NODE_NAME_CASE(SMAX3
)
4078 NODE_NAME_CASE(UMAX3
)
4079 NODE_NAME_CASE(FMIN3
)
4080 NODE_NAME_CASE(SMIN3
)
4081 NODE_NAME_CASE(UMIN3
)
4082 NODE_NAME_CASE(FMED3
)
4083 NODE_NAME_CASE(SMED3
)
4084 NODE_NAME_CASE(UMED3
)
4085 NODE_NAME_CASE(FDOT2
)
4086 NODE_NAME_CASE(URECIP
)
4087 NODE_NAME_CASE(DIV_SCALE
)
4088 NODE_NAME_CASE(DIV_FMAS
)
4089 NODE_NAME_CASE(DIV_FIXUP
)
4090 NODE_NAME_CASE(FMAD_FTZ
)
4091 NODE_NAME_CASE(TRIG_PREOP
)
4094 NODE_NAME_CASE(RCP_LEGACY
)
4095 NODE_NAME_CASE(RSQ_LEGACY
)
4096 NODE_NAME_CASE(RCP_IFLAG
)
4097 NODE_NAME_CASE(FMUL_LEGACY
)
4098 NODE_NAME_CASE(RSQ_CLAMP
)
4099 NODE_NAME_CASE(LDEXP
)
4100 NODE_NAME_CASE(FP_CLASS
)
4101 NODE_NAME_CASE(DOT4
)
4102 NODE_NAME_CASE(CARRY
)
4103 NODE_NAME_CASE(BORROW
)
4104 NODE_NAME_CASE(BFE_U32
)
4105 NODE_NAME_CASE(BFE_I32
)
4108 NODE_NAME_CASE(FFBH_U32
)
4109 NODE_NAME_CASE(FFBH_I32
)
4110 NODE_NAME_CASE(FFBL_B32
)
4111 NODE_NAME_CASE(MUL_U24
)
4112 NODE_NAME_CASE(MUL_I24
)
4113 NODE_NAME_CASE(MULHI_U24
)
4114 NODE_NAME_CASE(MULHI_I24
)
4115 NODE_NAME_CASE(MUL_LOHI_U24
)
4116 NODE_NAME_CASE(MUL_LOHI_I24
)
4117 NODE_NAME_CASE(MAD_U24
)
4118 NODE_NAME_CASE(MAD_I24
)
4119 NODE_NAME_CASE(MAD_I64_I32
)
4120 NODE_NAME_CASE(MAD_U64_U32
)
4121 NODE_NAME_CASE(PERM
)
4122 NODE_NAME_CASE(TEXTURE_FETCH
)
4123 NODE_NAME_CASE(EXPORT
)
4124 NODE_NAME_CASE(EXPORT_DONE
)
4125 NODE_NAME_CASE(R600_EXPORT
)
4126 NODE_NAME_CASE(CONST_ADDRESS
)
4127 NODE_NAME_CASE(REGISTER_LOAD
)
4128 NODE_NAME_CASE(REGISTER_STORE
)
4129 NODE_NAME_CASE(SAMPLE
)
4130 NODE_NAME_CASE(SAMPLEB
)
4131 NODE_NAME_CASE(SAMPLED
)
4132 NODE_NAME_CASE(SAMPLEL
)
4133 NODE_NAME_CASE(CVT_F32_UBYTE0
)
4134 NODE_NAME_CASE(CVT_F32_UBYTE1
)
4135 NODE_NAME_CASE(CVT_F32_UBYTE2
)
4136 NODE_NAME_CASE(CVT_F32_UBYTE3
)
4137 NODE_NAME_CASE(CVT_PKRTZ_F16_F32
)
4138 NODE_NAME_CASE(CVT_PKNORM_I16_F32
)
4139 NODE_NAME_CASE(CVT_PKNORM_U16_F32
)
4140 NODE_NAME_CASE(CVT_PK_I16_I32
)
4141 NODE_NAME_CASE(CVT_PK_U16_U32
)
4142 NODE_NAME_CASE(FP_TO_FP16
)
4143 NODE_NAME_CASE(FP16_ZEXT
)
4144 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR
)
4145 NODE_NAME_CASE(CONST_DATA_PTR
)
4146 NODE_NAME_CASE(PC_ADD_REL_OFFSET
)
4147 NODE_NAME_CASE(KILL
)
4148 NODE_NAME_CASE(DUMMY_CHAIN
)
4149 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER
: break;
4150 NODE_NAME_CASE(INIT_EXEC
)
4151 NODE_NAME_CASE(INIT_EXEC_FROM_INPUT
)
4152 NODE_NAME_CASE(SENDMSG
)
4153 NODE_NAME_CASE(SENDMSGHALT
)
4154 NODE_NAME_CASE(INTERP_MOV
)
4155 NODE_NAME_CASE(INTERP_P1
)
4156 NODE_NAME_CASE(INTERP_P2
)
4157 NODE_NAME_CASE(STORE_MSKOR
)
4158 NODE_NAME_CASE(LOAD_CONSTANT
)
4159 NODE_NAME_CASE(TBUFFER_STORE_FORMAT
)
4160 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_X3
)
4161 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16
)
4162 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT
)
4163 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16
)
4164 NODE_NAME_CASE(ATOMIC_CMP_SWAP
)
4165 NODE_NAME_CASE(ATOMIC_INC
)
4166 NODE_NAME_CASE(ATOMIC_DEC
)
4167 NODE_NAME_CASE(ATOMIC_LOAD_FADD
)
4168 NODE_NAME_CASE(ATOMIC_LOAD_FMIN
)
4169 NODE_NAME_CASE(ATOMIC_LOAD_FMAX
)
4170 NODE_NAME_CASE(BUFFER_LOAD
)
4171 NODE_NAME_CASE(BUFFER_LOAD_FORMAT
)
4172 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16
)
4173 NODE_NAME_CASE(SBUFFER_LOAD
)
4174 NODE_NAME_CASE(BUFFER_STORE
)
4175 NODE_NAME_CASE(BUFFER_STORE_FORMAT
)
4176 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16
)
4177 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP
)
4178 NODE_NAME_CASE(BUFFER_ATOMIC_ADD
)
4179 NODE_NAME_CASE(BUFFER_ATOMIC_SUB
)
4180 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN
)
4181 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN
)
4182 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX
)
4183 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX
)
4184 NODE_NAME_CASE(BUFFER_ATOMIC_AND
)
4185 NODE_NAME_CASE(BUFFER_ATOMIC_OR
)
4186 NODE_NAME_CASE(BUFFER_ATOMIC_XOR
)
4187 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP
)
4189 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER
: break;
4194 SDValue
AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand
,
4195 SelectionDAG
&DAG
, int Enabled
,
4196 int &RefinementSteps
,
4197 bool &UseOneConstNR
,
4198 bool Reciprocal
) const {
4199 EVT VT
= Operand
.getValueType();
4201 if (VT
== MVT::f32
) {
4202 RefinementSteps
= 0;
4203 return DAG
.getNode(AMDGPUISD::RSQ
, SDLoc(Operand
), VT
, Operand
);
4206 // TODO: There is also f64 rsq instruction, but the documentation is less
4207 // clear on its precision.
4212 SDValue
AMDGPUTargetLowering::getRecipEstimate(SDValue Operand
,
4213 SelectionDAG
&DAG
, int Enabled
,
4214 int &RefinementSteps
) const {
4215 EVT VT
= Operand
.getValueType();
4217 if (VT
== MVT::f32
) {
4218 // Reciprocal, < 1 ulp error.
4220 // This reciprocal approximation converges to < 0.5 ulp error with one
4221 // newton rhapson performed with two fused multiple adds (FMAs).
4223 RefinementSteps
= 0;
4224 return DAG
.getNode(AMDGPUISD::RCP
, SDLoc(Operand
), VT
, Operand
);
4227 // TODO: There is also f64 rcp instruction, but the documentation is less
4228 // clear on its precision.
4233 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
4234 const SDValue Op
, KnownBits
&Known
,
4235 const APInt
&DemandedElts
, const SelectionDAG
&DAG
, unsigned Depth
) const {
4237 Known
.resetAll(); // Don't know anything.
4239 unsigned Opc
= Op
.getOpcode();
4244 case AMDGPUISD::CARRY
:
4245 case AMDGPUISD::BORROW
: {
4246 Known
.Zero
= APInt::getHighBitsSet(32, 31);
4250 case AMDGPUISD::BFE_I32
:
4251 case AMDGPUISD::BFE_U32
: {
4252 ConstantSDNode
*CWidth
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
4256 uint32_t Width
= CWidth
->getZExtValue() & 0x1f;
4258 if (Opc
== AMDGPUISD::BFE_U32
)
4259 Known
.Zero
= APInt::getHighBitsSet(32, 32 - Width
);
4263 case AMDGPUISD::FP_TO_FP16
:
4264 case AMDGPUISD::FP16_ZEXT
: {
4265 unsigned BitWidth
= Known
.getBitWidth();
4267 // High bits are zero.
4268 Known
.Zero
= APInt::getHighBitsSet(BitWidth
, BitWidth
- 16);
4271 case AMDGPUISD::MUL_U24
:
4272 case AMDGPUISD::MUL_I24
: {
4273 KnownBits LHSKnown
, RHSKnown
;
4274 DAG
.computeKnownBits(Op
.getOperand(0), LHSKnown
, Depth
+ 1);
4275 DAG
.computeKnownBits(Op
.getOperand(1), RHSKnown
, Depth
+ 1);
4277 unsigned TrailZ
= LHSKnown
.countMinTrailingZeros() +
4278 RHSKnown
.countMinTrailingZeros();
4279 Known
.Zero
.setLowBits(std::min(TrailZ
, 32u));
4281 unsigned LHSValBits
= 32 - std::max(LHSKnown
.countMinSignBits(), 8u);
4282 unsigned RHSValBits
= 32 - std::max(RHSKnown
.countMinSignBits(), 8u);
4283 unsigned MaxValBits
= std::min(LHSValBits
+ RHSValBits
, 32u);
4284 if (MaxValBits
>= 32)
4286 bool Negative
= false;
4287 if (Opc
== AMDGPUISD::MUL_I24
) {
4288 bool LHSNegative
= !!(LHSKnown
.One
& (1 << 23));
4289 bool LHSPositive
= !!(LHSKnown
.Zero
& (1 << 23));
4290 bool RHSNegative
= !!(RHSKnown
.One
& (1 << 23));
4291 bool RHSPositive
= !!(RHSKnown
.Zero
& (1 << 23));
4292 if ((!LHSNegative
&& !LHSPositive
) || (!RHSNegative
&& !RHSPositive
))
4294 Negative
= (LHSNegative
&& RHSPositive
) || (LHSPositive
&& RHSNegative
);
4297 Known
.One
.setHighBits(32 - MaxValBits
);
4299 Known
.Zero
.setHighBits(32 - MaxValBits
);
4302 case AMDGPUISD::PERM
: {
4303 ConstantSDNode
*CMask
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
4307 KnownBits LHSKnown
, RHSKnown
;
4308 DAG
.computeKnownBits(Op
.getOperand(0), LHSKnown
, Depth
+ 1);
4309 DAG
.computeKnownBits(Op
.getOperand(1), RHSKnown
, Depth
+ 1);
4310 unsigned Sel
= CMask
->getZExtValue();
4312 for (unsigned I
= 0; I
< 32; I
+= 8) {
4313 unsigned SelBits
= Sel
& 0xff;
4316 Known
.One
|= ((RHSKnown
.One
.getZExtValue() >> SelBits
) & 0xff) << I
;
4317 Known
.Zero
|= ((RHSKnown
.Zero
.getZExtValue() >> SelBits
) & 0xff) << I
;
4318 } else if (SelBits
< 7) {
4319 SelBits
= (SelBits
& 3) * 8;
4320 Known
.One
|= ((LHSKnown
.One
.getZExtValue() >> SelBits
) & 0xff) << I
;
4321 Known
.Zero
|= ((LHSKnown
.Zero
.getZExtValue() >> SelBits
) & 0xff) << I
;
4322 } else if (SelBits
== 0x0c) {
4323 Known
.Zero
|= 0xff << I
;
4324 } else if (SelBits
> 0x0c) {
4325 Known
.One
|= 0xff << I
;
4331 case ISD::INTRINSIC_WO_CHAIN
: {
4332 unsigned IID
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
4334 case Intrinsic::amdgcn_mbcnt_lo
:
4335 case Intrinsic::amdgcn_mbcnt_hi
: {
4336 const GCNSubtarget
&ST
=
4337 DAG
.getMachineFunction().getSubtarget
<GCNSubtarget
>();
4338 // These return at most the wavefront size - 1.
4339 unsigned Size
= Op
.getValueType().getSizeInBits();
4340 Known
.Zero
.setHighBits(Size
- ST
.getWavefrontSizeLog2());
4350 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
4351 SDValue Op
, const APInt
&DemandedElts
, const SelectionDAG
&DAG
,
4352 unsigned Depth
) const {
4353 switch (Op
.getOpcode()) {
4354 case AMDGPUISD::BFE_I32
: {
4355 ConstantSDNode
*Width
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
4359 unsigned SignBits
= 32 - Width
->getZExtValue() + 1;
4360 if (!isNullConstant(Op
.getOperand(1)))
4363 // TODO: Could probably figure something out with non-0 offsets.
4364 unsigned Op0SignBits
= DAG
.ComputeNumSignBits(Op
.getOperand(0), Depth
+ 1);
4365 return std::max(SignBits
, Op0SignBits
);
4368 case AMDGPUISD::BFE_U32
: {
4369 ConstantSDNode
*Width
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
4370 return Width
? 32 - (Width
->getZExtValue() & 0x1f) : 1;
4373 case AMDGPUISD::CARRY
:
4374 case AMDGPUISD::BORROW
:
4376 case AMDGPUISD::FP_TO_FP16
:
4377 case AMDGPUISD::FP16_ZEXT
:
4384 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op
,
4385 const SelectionDAG
&DAG
,
4387 unsigned Depth
) const {
4388 unsigned Opcode
= Op
.getOpcode();
4390 case AMDGPUISD::FMIN_LEGACY
:
4391 case AMDGPUISD::FMAX_LEGACY
: {
4395 // TODO: Can check no nans on one of the operands for each one, but which
4399 case AMDGPUISD::FMUL_LEGACY
:
4400 case AMDGPUISD::CVT_PKRTZ_F16_F32
: {
4403 return DAG
.isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1) &&
4404 DAG
.isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1);
4406 case AMDGPUISD::FMED3
:
4407 case AMDGPUISD::FMIN3
:
4408 case AMDGPUISD::FMAX3
:
4409 case AMDGPUISD::FMAD_FTZ
: {
4412 return DAG
.isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1) &&
4413 DAG
.isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1) &&
4414 DAG
.isKnownNeverNaN(Op
.getOperand(2), SNaN
, Depth
+ 1);
4416 case AMDGPUISD::CVT_F32_UBYTE0
:
4417 case AMDGPUISD::CVT_F32_UBYTE1
:
4418 case AMDGPUISD::CVT_F32_UBYTE2
:
4419 case AMDGPUISD::CVT_F32_UBYTE3
:
4422 case AMDGPUISD::RCP
:
4423 case AMDGPUISD::RSQ
:
4424 case AMDGPUISD::RCP_LEGACY
:
4425 case AMDGPUISD::RSQ_LEGACY
:
4426 case AMDGPUISD::RSQ_CLAMP
: {
4430 // TODO: Need is known positive check.
4433 case AMDGPUISD::LDEXP
:
4434 case AMDGPUISD::FRACT
: {
4437 return DAG
.isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1);
4439 case AMDGPUISD::DIV_SCALE
:
4440 case AMDGPUISD::DIV_FMAS
:
4441 case AMDGPUISD::DIV_FIXUP
:
4442 case AMDGPUISD::TRIG_PREOP
:
4443 // TODO: Refine on operands.
4445 case AMDGPUISD::SIN_HW
:
4446 case AMDGPUISD::COS_HW
: {
4447 // TODO: Need check for infinity
4450 case ISD::INTRINSIC_WO_CHAIN
: {
4451 unsigned IntrinsicID
4452 = cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
4453 // TODO: Handle more intrinsics
4454 switch (IntrinsicID
) {
4455 case Intrinsic::amdgcn_cubeid
:
4458 case Intrinsic::amdgcn_frexp_mant
: {
4461 return DAG
.isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1);
4463 case Intrinsic::amdgcn_cvt_pkrtz
: {
4466 return DAG
.isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1) &&
4467 DAG
.isKnownNeverNaN(Op
.getOperand(2), SNaN
, Depth
+ 1);
4469 case Intrinsic::amdgcn_fdot2
:
4470 // TODO: Refine on operand