1 //===- MipsISelLowering.cpp - Mips DAG Lowering Implementation ------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the interfaces that Mips uses to lower LLVM code into a
13 //===----------------------------------------------------------------------===//
15 #include "MipsISelLowering.h"
16 #include "InstPrinter/MipsInstPrinter.h"
17 #include "MCTargetDesc/MipsBaseInfo.h"
18 #include "MCTargetDesc/MipsMCTargetDesc.h"
19 #include "MipsCCState.h"
20 #include "MipsInstrInfo.h"
21 #include "MipsMachineFunction.h"
22 #include "MipsRegisterInfo.h"
23 #include "MipsSubtarget.h"
24 #include "MipsTargetMachine.h"
25 #include "MipsTargetObjectFile.h"
26 #include "llvm/ADT/APFloat.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/ADT/StringSwitch.h"
32 #include "llvm/CodeGen/CallingConvLower.h"
33 #include "llvm/CodeGen/FunctionLoweringInfo.h"
34 #include "llvm/CodeGen/ISDOpcodes.h"
35 #include "llvm/CodeGen/MachineBasicBlock.h"
36 #include "llvm/CodeGen/MachineFrameInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineInstr.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineJumpTableInfo.h"
41 #include "llvm/CodeGen/MachineMemOperand.h"
42 #include "llvm/CodeGen/MachineOperand.h"
43 #include "llvm/CodeGen/MachineRegisterInfo.h"
44 #include "llvm/CodeGen/RuntimeLibcalls.h"
45 #include "llvm/CodeGen/SelectionDAG.h"
46 #include "llvm/CodeGen/SelectionDAGNodes.h"
47 #include "llvm/CodeGen/TargetFrameLowering.h"
48 #include "llvm/CodeGen/TargetInstrInfo.h"
49 #include "llvm/CodeGen/TargetRegisterInfo.h"
50 #include "llvm/CodeGen/ValueTypes.h"
51 #include "llvm/IR/CallingConv.h"
52 #include "llvm/IR/Constants.h"
53 #include "llvm/IR/DataLayout.h"
54 #include "llvm/IR/DebugLoc.h"
55 #include "llvm/IR/DerivedTypes.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/GlobalValue.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/MC/MCRegisterInfo.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CodeGen.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/MachineValueType.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include "llvm/Target/TargetOptions.h"
81 #define DEBUG_TYPE "mips-lower"
83 STATISTIC(NumTailCalls
, "Number of tail calls");
86 LargeGOT("mxgot", cl::Hidden
,
87 cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
90 NoZeroDivCheck("mno-check-zero-division", cl::Hidden
,
91 cl::desc("MIPS: Don't trap on integer division by zero."),
94 static const MCPhysReg Mips64DPRegs
[8] = {
95 Mips::D12_64
, Mips::D13_64
, Mips::D14_64
, Mips::D15_64
,
96 Mips::D16_64
, Mips::D17_64
, Mips::D18_64
, Mips::D19_64
99 // If I is a shifted mask, set the size (Size) and the first bit of the
100 // mask (Pos), and return true.
101 // For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
102 static bool isShiftedMask(uint64_t I
, uint64_t &Pos
, uint64_t &Size
) {
103 if (!isShiftedMask_64(I
))
106 Size
= countPopulation(I
);
107 Pos
= countTrailingZeros(I
);
111 // The MIPS MSA ABI passes vector arguments in the integer register set.
112 // The number of integer registers used is dependant on the ABI used.
113 MVT
MipsTargetLowering::getRegisterTypeForCallingConv(LLVMContext
&Context
,
117 if (Subtarget
.isABI_O32()) {
120 return (VT
.getSizeInBits() == 32) ? MVT::i32
: MVT::i64
;
123 return MipsTargetLowering::getRegisterType(Context
, VT
);
126 unsigned MipsTargetLowering::getNumRegistersForCallingConv(LLVMContext
&Context
,
130 return std::max((VT
.getSizeInBits() / (Subtarget
.isABI_O32() ? 32 : 64)),
132 return MipsTargetLowering::getNumRegisters(Context
, VT
);
135 unsigned MipsTargetLowering::getVectorTypeBreakdownForCallingConv(
136 LLVMContext
&Context
, CallingConv::ID CC
, EVT VT
, EVT
&IntermediateVT
,
137 unsigned &NumIntermediates
, MVT
&RegisterVT
) const {
138 // Break down vector types to either 2 i64s or 4 i32s.
139 RegisterVT
= getRegisterTypeForCallingConv(Context
, CC
, VT
);
140 IntermediateVT
= RegisterVT
;
141 NumIntermediates
= VT
.getSizeInBits() < RegisterVT
.getSizeInBits()
142 ? VT
.getVectorNumElements()
143 : VT
.getSizeInBits() / RegisterVT
.getSizeInBits();
145 return NumIntermediates
;
148 SDValue
MipsTargetLowering::getGlobalReg(SelectionDAG
&DAG
, EVT Ty
) const {
149 MipsFunctionInfo
*FI
= DAG
.getMachineFunction().getInfo
<MipsFunctionInfo
>();
150 return DAG
.getRegister(FI
->getGlobalBaseReg(), Ty
);
153 SDValue
MipsTargetLowering::getTargetNode(GlobalAddressSDNode
*N
, EVT Ty
,
155 unsigned Flag
) const {
156 return DAG
.getTargetGlobalAddress(N
->getGlobal(), SDLoc(N
), Ty
, 0, Flag
);
159 SDValue
MipsTargetLowering::getTargetNode(ExternalSymbolSDNode
*N
, EVT Ty
,
161 unsigned Flag
) const {
162 return DAG
.getTargetExternalSymbol(N
->getSymbol(), Ty
, Flag
);
165 SDValue
MipsTargetLowering::getTargetNode(BlockAddressSDNode
*N
, EVT Ty
,
167 unsigned Flag
) const {
168 return DAG
.getTargetBlockAddress(N
->getBlockAddress(), Ty
, 0, Flag
);
171 SDValue
MipsTargetLowering::getTargetNode(JumpTableSDNode
*N
, EVT Ty
,
173 unsigned Flag
) const {
174 return DAG
.getTargetJumpTable(N
->getIndex(), Ty
, Flag
);
177 SDValue
MipsTargetLowering::getTargetNode(ConstantPoolSDNode
*N
, EVT Ty
,
179 unsigned Flag
) const {
180 return DAG
.getTargetConstantPool(N
->getConstVal(), Ty
, N
->getAlignment(),
181 N
->getOffset(), Flag
);
184 const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode
) const {
185 switch ((MipsISD::NodeType
)Opcode
) {
186 case MipsISD::FIRST_NUMBER
: break;
187 case MipsISD::JmpLink
: return "MipsISD::JmpLink";
188 case MipsISD::TailCall
: return "MipsISD::TailCall";
189 case MipsISD::Highest
: return "MipsISD::Highest";
190 case MipsISD::Higher
: return "MipsISD::Higher";
191 case MipsISD::Hi
: return "MipsISD::Hi";
192 case MipsISD::Lo
: return "MipsISD::Lo";
193 case MipsISD::GotHi
: return "MipsISD::GotHi";
194 case MipsISD::TlsHi
: return "MipsISD::TlsHi";
195 case MipsISD::GPRel
: return "MipsISD::GPRel";
196 case MipsISD::ThreadPointer
: return "MipsISD::ThreadPointer";
197 case MipsISD::Ret
: return "MipsISD::Ret";
198 case MipsISD::ERet
: return "MipsISD::ERet";
199 case MipsISD::EH_RETURN
: return "MipsISD::EH_RETURN";
200 case MipsISD::FMS
: return "MipsISD::FMS";
201 case MipsISD::FPBrcond
: return "MipsISD::FPBrcond";
202 case MipsISD::FPCmp
: return "MipsISD::FPCmp";
203 case MipsISD::FSELECT
: return "MipsISD::FSELECT";
204 case MipsISD::MTC1_D64
: return "MipsISD::MTC1_D64";
205 case MipsISD::CMovFP_T
: return "MipsISD::CMovFP_T";
206 case MipsISD::CMovFP_F
: return "MipsISD::CMovFP_F";
207 case MipsISD::TruncIntFP
: return "MipsISD::TruncIntFP";
208 case MipsISD::MFHI
: return "MipsISD::MFHI";
209 case MipsISD::MFLO
: return "MipsISD::MFLO";
210 case MipsISD::MTLOHI
: return "MipsISD::MTLOHI";
211 case MipsISD::Mult
: return "MipsISD::Mult";
212 case MipsISD::Multu
: return "MipsISD::Multu";
213 case MipsISD::MAdd
: return "MipsISD::MAdd";
214 case MipsISD::MAddu
: return "MipsISD::MAddu";
215 case MipsISD::MSub
: return "MipsISD::MSub";
216 case MipsISD::MSubu
: return "MipsISD::MSubu";
217 case MipsISD::DivRem
: return "MipsISD::DivRem";
218 case MipsISD::DivRemU
: return "MipsISD::DivRemU";
219 case MipsISD::DivRem16
: return "MipsISD::DivRem16";
220 case MipsISD::DivRemU16
: return "MipsISD::DivRemU16";
221 case MipsISD::BuildPairF64
: return "MipsISD::BuildPairF64";
222 case MipsISD::ExtractElementF64
: return "MipsISD::ExtractElementF64";
223 case MipsISD::Wrapper
: return "MipsISD::Wrapper";
224 case MipsISD::DynAlloc
: return "MipsISD::DynAlloc";
225 case MipsISD::Sync
: return "MipsISD::Sync";
226 case MipsISD::Ext
: return "MipsISD::Ext";
227 case MipsISD::Ins
: return "MipsISD::Ins";
228 case MipsISD::CIns
: return "MipsISD::CIns";
229 case MipsISD::LWL
: return "MipsISD::LWL";
230 case MipsISD::LWR
: return "MipsISD::LWR";
231 case MipsISD::SWL
: return "MipsISD::SWL";
232 case MipsISD::SWR
: return "MipsISD::SWR";
233 case MipsISD::LDL
: return "MipsISD::LDL";
234 case MipsISD::LDR
: return "MipsISD::LDR";
235 case MipsISD::SDL
: return "MipsISD::SDL";
236 case MipsISD::SDR
: return "MipsISD::SDR";
237 case MipsISD::EXTP
: return "MipsISD::EXTP";
238 case MipsISD::EXTPDP
: return "MipsISD::EXTPDP";
239 case MipsISD::EXTR_S_H
: return "MipsISD::EXTR_S_H";
240 case MipsISD::EXTR_W
: return "MipsISD::EXTR_W";
241 case MipsISD::EXTR_R_W
: return "MipsISD::EXTR_R_W";
242 case MipsISD::EXTR_RS_W
: return "MipsISD::EXTR_RS_W";
243 case MipsISD::SHILO
: return "MipsISD::SHILO";
244 case MipsISD::MTHLIP
: return "MipsISD::MTHLIP";
245 case MipsISD::MULSAQ_S_W_PH
: return "MipsISD::MULSAQ_S_W_PH";
246 case MipsISD::MAQ_S_W_PHL
: return "MipsISD::MAQ_S_W_PHL";
247 case MipsISD::MAQ_S_W_PHR
: return "MipsISD::MAQ_S_W_PHR";
248 case MipsISD::MAQ_SA_W_PHL
: return "MipsISD::MAQ_SA_W_PHL";
249 case MipsISD::MAQ_SA_W_PHR
: return "MipsISD::MAQ_SA_W_PHR";
250 case MipsISD::DPAU_H_QBL
: return "MipsISD::DPAU_H_QBL";
251 case MipsISD::DPAU_H_QBR
: return "MipsISD::DPAU_H_QBR";
252 case MipsISD::DPSU_H_QBL
: return "MipsISD::DPSU_H_QBL";
253 case MipsISD::DPSU_H_QBR
: return "MipsISD::DPSU_H_QBR";
254 case MipsISD::DPAQ_S_W_PH
: return "MipsISD::DPAQ_S_W_PH";
255 case MipsISD::DPSQ_S_W_PH
: return "MipsISD::DPSQ_S_W_PH";
256 case MipsISD::DPAQ_SA_L_W
: return "MipsISD::DPAQ_SA_L_W";
257 case MipsISD::DPSQ_SA_L_W
: return "MipsISD::DPSQ_SA_L_W";
258 case MipsISD::DPA_W_PH
: return "MipsISD::DPA_W_PH";
259 case MipsISD::DPS_W_PH
: return "MipsISD::DPS_W_PH";
260 case MipsISD::DPAQX_S_W_PH
: return "MipsISD::DPAQX_S_W_PH";
261 case MipsISD::DPAQX_SA_W_PH
: return "MipsISD::DPAQX_SA_W_PH";
262 case MipsISD::DPAX_W_PH
: return "MipsISD::DPAX_W_PH";
263 case MipsISD::DPSX_W_PH
: return "MipsISD::DPSX_W_PH";
264 case MipsISD::DPSQX_S_W_PH
: return "MipsISD::DPSQX_S_W_PH";
265 case MipsISD::DPSQX_SA_W_PH
: return "MipsISD::DPSQX_SA_W_PH";
266 case MipsISD::MULSA_W_PH
: return "MipsISD::MULSA_W_PH";
267 case MipsISD::MULT
: return "MipsISD::MULT";
268 case MipsISD::MULTU
: return "MipsISD::MULTU";
269 case MipsISD::MADD_DSP
: return "MipsISD::MADD_DSP";
270 case MipsISD::MADDU_DSP
: return "MipsISD::MADDU_DSP";
271 case MipsISD::MSUB_DSP
: return "MipsISD::MSUB_DSP";
272 case MipsISD::MSUBU_DSP
: return "MipsISD::MSUBU_DSP";
273 case MipsISD::SHLL_DSP
: return "MipsISD::SHLL_DSP";
274 case MipsISD::SHRA_DSP
: return "MipsISD::SHRA_DSP";
275 case MipsISD::SHRL_DSP
: return "MipsISD::SHRL_DSP";
276 case MipsISD::SETCC_DSP
: return "MipsISD::SETCC_DSP";
277 case MipsISD::SELECT_CC_DSP
: return "MipsISD::SELECT_CC_DSP";
278 case MipsISD::VALL_ZERO
: return "MipsISD::VALL_ZERO";
279 case MipsISD::VANY_ZERO
: return "MipsISD::VANY_ZERO";
280 case MipsISD::VALL_NONZERO
: return "MipsISD::VALL_NONZERO";
281 case MipsISD::VANY_NONZERO
: return "MipsISD::VANY_NONZERO";
282 case MipsISD::VCEQ
: return "MipsISD::VCEQ";
283 case MipsISD::VCLE_S
: return "MipsISD::VCLE_S";
284 case MipsISD::VCLE_U
: return "MipsISD::VCLE_U";
285 case MipsISD::VCLT_S
: return "MipsISD::VCLT_S";
286 case MipsISD::VCLT_U
: return "MipsISD::VCLT_U";
287 case MipsISD::VEXTRACT_SEXT_ELT
: return "MipsISD::VEXTRACT_SEXT_ELT";
288 case MipsISD::VEXTRACT_ZEXT_ELT
: return "MipsISD::VEXTRACT_ZEXT_ELT";
289 case MipsISD::VNOR
: return "MipsISD::VNOR";
290 case MipsISD::VSHF
: return "MipsISD::VSHF";
291 case MipsISD::SHF
: return "MipsISD::SHF";
292 case MipsISD::ILVEV
: return "MipsISD::ILVEV";
293 case MipsISD::ILVOD
: return "MipsISD::ILVOD";
294 case MipsISD::ILVL
: return "MipsISD::ILVL";
295 case MipsISD::ILVR
: return "MipsISD::ILVR";
296 case MipsISD::PCKEV
: return "MipsISD::PCKEV";
297 case MipsISD::PCKOD
: return "MipsISD::PCKOD";
298 case MipsISD::INSVE
: return "MipsISD::INSVE";
303 MipsTargetLowering::MipsTargetLowering(const MipsTargetMachine
&TM
,
304 const MipsSubtarget
&STI
)
305 : TargetLowering(TM
), Subtarget(STI
), ABI(TM
.getABI()) {
306 // Mips does not have i1 type, so use i32 for
307 // setcc operations results (slt, sgt, ...).
308 setBooleanContents(ZeroOrOneBooleanContent
);
309 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent
);
310 // The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA
311 // does. Integer booleans still use 0 and 1.
312 if (Subtarget
.hasMips32r6())
313 setBooleanContents(ZeroOrOneBooleanContent
,
314 ZeroOrNegativeOneBooleanContent
);
316 // Load extented operations for i1 types must be promoted
317 for (MVT VT
: MVT::integer_valuetypes()) {
318 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i1
, Promote
);
319 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i1
, Promote
);
320 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Promote
);
323 // MIPS doesn't have extending float->double load/store. Set LoadExtAction
325 for (MVT VT
: MVT::fp_valuetypes()) {
326 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f32
, Expand
);
327 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f16
, Expand
);
330 // Set LoadExtAction for f16 vectors to Expand
331 for (MVT VT
: MVT::fp_vector_valuetypes()) {
332 MVT F16VT
= MVT::getVectorVT(MVT::f16
, VT
.getVectorNumElements());
334 setLoadExtAction(ISD::EXTLOAD
, VT
, F16VT
, Expand
);
337 setTruncStoreAction(MVT::f32
, MVT::f16
, Expand
);
338 setTruncStoreAction(MVT::f64
, MVT::f16
, Expand
);
340 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
342 // Used by legalize types to correctly generate the setcc result.
343 // Without this, every float setcc comes with a AND/OR with the result,
344 // we don't want this, since the fpcmp result goes to a flag register,
345 // which is used implicitly by brcond and select operations.
346 AddPromotedToType(ISD::SETCC
, MVT::i1
, MVT::i32
);
348 // Mips Custom Operations
349 setOperationAction(ISD::BR_JT
, MVT::Other
, Expand
);
350 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
351 setOperationAction(ISD::BlockAddress
, MVT::i32
, Custom
);
352 setOperationAction(ISD::GlobalTLSAddress
, MVT::i32
, Custom
);
353 setOperationAction(ISD::JumpTable
, MVT::i32
, Custom
);
354 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
355 setOperationAction(ISD::SELECT
, MVT::f32
, Custom
);
356 setOperationAction(ISD::SELECT
, MVT::f64
, Custom
);
357 setOperationAction(ISD::SELECT
, MVT::i32
, Custom
);
358 setOperationAction(ISD::SETCC
, MVT::f32
, Custom
);
359 setOperationAction(ISD::SETCC
, MVT::f64
, Custom
);
360 setOperationAction(ISD::BRCOND
, MVT::Other
, Custom
);
361 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
362 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Custom
);
363 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
365 if (Subtarget
.isGP64bit()) {
366 setOperationAction(ISD::GlobalAddress
, MVT::i64
, Custom
);
367 setOperationAction(ISD::BlockAddress
, MVT::i64
, Custom
);
368 setOperationAction(ISD::GlobalTLSAddress
, MVT::i64
, Custom
);
369 setOperationAction(ISD::JumpTable
, MVT::i64
, Custom
);
370 setOperationAction(ISD::ConstantPool
, MVT::i64
, Custom
);
371 setOperationAction(ISD::SELECT
, MVT::i64
, Custom
);
372 setOperationAction(ISD::LOAD
, MVT::i64
, Custom
);
373 setOperationAction(ISD::STORE
, MVT::i64
, Custom
);
374 setOperationAction(ISD::FP_TO_SINT
, MVT::i64
, Custom
);
375 setOperationAction(ISD::SHL_PARTS
, MVT::i64
, Custom
);
376 setOperationAction(ISD::SRA_PARTS
, MVT::i64
, Custom
);
377 setOperationAction(ISD::SRL_PARTS
, MVT::i64
, Custom
);
380 if (!Subtarget
.isGP64bit()) {
381 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Custom
);
382 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Custom
);
383 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Custom
);
386 setOperationAction(ISD::EH_DWARF_CFA
, MVT::i32
, Custom
);
387 if (Subtarget
.isGP64bit())
388 setOperationAction(ISD::EH_DWARF_CFA
, MVT::i64
, Custom
);
390 setOperationAction(ISD::SDIV
, MVT::i32
, Expand
);
391 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
392 setOperationAction(ISD::UDIV
, MVT::i32
, Expand
);
393 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
394 setOperationAction(ISD::SDIV
, MVT::i64
, Expand
);
395 setOperationAction(ISD::SREM
, MVT::i64
, Expand
);
396 setOperationAction(ISD::UDIV
, MVT::i64
, Expand
);
397 setOperationAction(ISD::UREM
, MVT::i64
, Expand
);
399 // Operations not directly supported by Mips.
400 setOperationAction(ISD::BR_CC
, MVT::f32
, Expand
);
401 setOperationAction(ISD::BR_CC
, MVT::f64
, Expand
);
402 setOperationAction(ISD::BR_CC
, MVT::i32
, Expand
);
403 setOperationAction(ISD::BR_CC
, MVT::i64
, Expand
);
404 setOperationAction(ISD::SELECT_CC
, MVT::i32
, Expand
);
405 setOperationAction(ISD::SELECT_CC
, MVT::i64
, Expand
);
406 setOperationAction(ISD::SELECT_CC
, MVT::f32
, Expand
);
407 setOperationAction(ISD::SELECT_CC
, MVT::f64
, Expand
);
408 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Expand
);
409 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Expand
);
410 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Expand
);
411 setOperationAction(ISD::FP_TO_UINT
, MVT::i64
, Expand
);
412 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
413 if (Subtarget
.hasCnMips()) {
414 setOperationAction(ISD::CTPOP
, MVT::i32
, Legal
);
415 setOperationAction(ISD::CTPOP
, MVT::i64
, Legal
);
417 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
418 setOperationAction(ISD::CTPOP
, MVT::i64
, Expand
);
420 setOperationAction(ISD::CTTZ
, MVT::i32
, Expand
);
421 setOperationAction(ISD::CTTZ
, MVT::i64
, Expand
);
422 setOperationAction(ISD::ROTL
, MVT::i32
, Expand
);
423 setOperationAction(ISD::ROTL
, MVT::i64
, Expand
);
424 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Expand
);
425 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i64
, Expand
);
427 if (!Subtarget
.hasMips32r2())
428 setOperationAction(ISD::ROTR
, MVT::i32
, Expand
);
430 if (!Subtarget
.hasMips64r2())
431 setOperationAction(ISD::ROTR
, MVT::i64
, Expand
);
433 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
434 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
435 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
436 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
437 setOperationAction(ISD::FSINCOS
, MVT::f32
, Expand
);
438 setOperationAction(ISD::FSINCOS
, MVT::f64
, Expand
);
439 setOperationAction(ISD::FPOW
, MVT::f32
, Expand
);
440 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
441 setOperationAction(ISD::FLOG
, MVT::f32
, Expand
);
442 setOperationAction(ISD::FLOG2
, MVT::f32
, Expand
);
443 setOperationAction(ISD::FLOG10
, MVT::f32
, Expand
);
444 setOperationAction(ISD::FEXP
, MVT::f32
, Expand
);
445 setOperationAction(ISD::FMA
, MVT::f32
, Expand
);
446 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
447 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
448 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
450 // Lower f16 conversion operations into library calls
451 setOperationAction(ISD::FP16_TO_FP
, MVT::f32
, Expand
);
452 setOperationAction(ISD::FP_TO_FP16
, MVT::f32
, Expand
);
453 setOperationAction(ISD::FP16_TO_FP
, MVT::f64
, Expand
);
454 setOperationAction(ISD::FP_TO_FP16
, MVT::f64
, Expand
);
456 setOperationAction(ISD::EH_RETURN
, MVT::Other
, Custom
);
458 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
459 setOperationAction(ISD::VAARG
, MVT::Other
, Custom
);
460 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
461 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
463 // Use the default for now
464 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
465 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
467 if (!Subtarget
.isGP64bit()) {
468 setOperationAction(ISD::ATOMIC_LOAD
, MVT::i64
, Expand
);
469 setOperationAction(ISD::ATOMIC_STORE
, MVT::i64
, Expand
);
472 if (!Subtarget
.hasMips32r2()) {
473 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i8
, Expand
);
474 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i16
, Expand
);
477 // MIPS16 lacks MIPS32's clz and clo instructions.
478 if (!Subtarget
.hasMips32() || Subtarget
.inMips16Mode())
479 setOperationAction(ISD::CTLZ
, MVT::i32
, Expand
);
480 if (!Subtarget
.hasMips64())
481 setOperationAction(ISD::CTLZ
, MVT::i64
, Expand
);
483 if (!Subtarget
.hasMips32r2())
484 setOperationAction(ISD::BSWAP
, MVT::i32
, Expand
);
485 if (!Subtarget
.hasMips64r2())
486 setOperationAction(ISD::BSWAP
, MVT::i64
, Expand
);
488 if (Subtarget
.isGP64bit()) {
489 setLoadExtAction(ISD::SEXTLOAD
, MVT::i64
, MVT::i32
, Custom
);
490 setLoadExtAction(ISD::ZEXTLOAD
, MVT::i64
, MVT::i32
, Custom
);
491 setLoadExtAction(ISD::EXTLOAD
, MVT::i64
, MVT::i32
, Custom
);
492 setTruncStoreAction(MVT::i64
, MVT::i32
, Custom
);
495 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
497 setTargetDAGCombine(ISD::SDIVREM
);
498 setTargetDAGCombine(ISD::UDIVREM
);
499 setTargetDAGCombine(ISD::SELECT
);
500 setTargetDAGCombine(ISD::AND
);
501 setTargetDAGCombine(ISD::OR
);
502 setTargetDAGCombine(ISD::ADD
);
503 setTargetDAGCombine(ISD::SUB
);
504 setTargetDAGCombine(ISD::AssertZext
);
505 setTargetDAGCombine(ISD::SHL
);
508 // These libcalls are not available in 32-bit.
509 setLibcallName(RTLIB::SHL_I128
, nullptr);
510 setLibcallName(RTLIB::SRL_I128
, nullptr);
511 setLibcallName(RTLIB::SRA_I128
, nullptr);
514 setMinFunctionAlignment(Subtarget
.isGP64bit() ? 3 : 2);
516 // The arguments on the stack are defined in terms of 4-byte slots on O32
517 // and 8-byte slots on N32/N64.
518 setMinStackArgumentAlignment((ABI
.IsN32() || ABI
.IsN64()) ? 8 : 4);
520 setStackPointerRegisterToSaveRestore(ABI
.IsN64() ? Mips::SP_64
: Mips::SP
);
522 MaxStoresPerMemcpy
= 16;
524 isMicroMips
= Subtarget
.inMicroMipsMode();
527 const MipsTargetLowering
*MipsTargetLowering::create(const MipsTargetMachine
&TM
,
528 const MipsSubtarget
&STI
) {
529 if (STI
.inMips16Mode())
530 return createMips16TargetLowering(TM
, STI
);
532 return createMipsSETargetLowering(TM
, STI
);
535 // Create a fast isel object.
537 MipsTargetLowering::createFastISel(FunctionLoweringInfo
&funcInfo
,
538 const TargetLibraryInfo
*libInfo
) const {
539 const MipsTargetMachine
&TM
=
540 static_cast<const MipsTargetMachine
&>(funcInfo
.MF
->getTarget());
542 // We support only the standard encoding [MIPS32,MIPS32R5] ISAs.
543 bool UseFastISel
= TM
.Options
.EnableFastISel
&& Subtarget
.hasMips32() &&
544 !Subtarget
.hasMips32r6() && !Subtarget
.inMips16Mode() &&
545 !Subtarget
.inMicroMipsMode();
547 // Disable if either of the following is true:
548 // We do not generate PIC, the ABI is not O32, LargeGOT is being used.
549 if (!TM
.isPositionIndependent() || !TM
.getABI().IsO32() || LargeGOT
)
552 return UseFastISel
? Mips::createFastISel(funcInfo
, libInfo
) : nullptr;
555 EVT
MipsTargetLowering::getSetCCResultType(const DataLayout
&, LLVMContext
&,
559 return VT
.changeVectorElementTypeToInteger();
562 static SDValue
performDivRemCombine(SDNode
*N
, SelectionDAG
&DAG
,
563 TargetLowering::DAGCombinerInfo
&DCI
,
564 const MipsSubtarget
&Subtarget
) {
565 if (DCI
.isBeforeLegalizeOps())
568 EVT Ty
= N
->getValueType(0);
569 unsigned LO
= (Ty
== MVT::i32
) ? Mips::LO0
: Mips::LO0_64
;
570 unsigned HI
= (Ty
== MVT::i32
) ? Mips::HI0
: Mips::HI0_64
;
571 unsigned Opc
= N
->getOpcode() == ISD::SDIVREM
? MipsISD::DivRem16
:
575 SDValue DivRem
= DAG
.getNode(Opc
, DL
, MVT::Glue
,
576 N
->getOperand(0), N
->getOperand(1));
577 SDValue InChain
= DAG
.getEntryNode();
578 SDValue InGlue
= DivRem
;
581 if (N
->hasAnyUseOfValue(0)) {
582 SDValue CopyFromLo
= DAG
.getCopyFromReg(InChain
, DL
, LO
, Ty
,
584 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), CopyFromLo
);
585 InChain
= CopyFromLo
.getValue(1);
586 InGlue
= CopyFromLo
.getValue(2);
590 if (N
->hasAnyUseOfValue(1)) {
591 SDValue CopyFromHi
= DAG
.getCopyFromReg(InChain
, DL
,
593 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), CopyFromHi
);
599 static Mips::CondCode
condCodeToFCC(ISD::CondCode CC
) {
601 default: llvm_unreachable("Unknown fp condition code!");
603 case ISD::SETOEQ
: return Mips::FCOND_OEQ
;
604 case ISD::SETUNE
: return Mips::FCOND_UNE
;
606 case ISD::SETOLT
: return Mips::FCOND_OLT
;
608 case ISD::SETOGT
: return Mips::FCOND_OGT
;
610 case ISD::SETOLE
: return Mips::FCOND_OLE
;
612 case ISD::SETOGE
: return Mips::FCOND_OGE
;
613 case ISD::SETULT
: return Mips::FCOND_ULT
;
614 case ISD::SETULE
: return Mips::FCOND_ULE
;
615 case ISD::SETUGT
: return Mips::FCOND_UGT
;
616 case ISD::SETUGE
: return Mips::FCOND_UGE
;
617 case ISD::SETUO
: return Mips::FCOND_UN
;
618 case ISD::SETO
: return Mips::FCOND_OR
;
620 case ISD::SETONE
: return Mips::FCOND_ONE
;
621 case ISD::SETUEQ
: return Mips::FCOND_UEQ
;
625 /// This function returns true if the floating point conditional branches and
626 /// conditional moves which use condition code CC should be inverted.
627 static bool invertFPCondCodeUser(Mips::CondCode CC
) {
628 if (CC
>= Mips::FCOND_F
&& CC
<= Mips::FCOND_NGT
)
631 assert((CC
>= Mips::FCOND_T
&& CC
<= Mips::FCOND_GT
) &&
632 "Illegal Condition Code");
637 // Creates and returns an FPCmp node from a setcc node.
638 // Returns Op if setcc is not a floating point comparison.
639 static SDValue
createFPCmp(SelectionDAG
&DAG
, const SDValue
&Op
) {
640 // must be a SETCC node
641 if (Op
.getOpcode() != ISD::SETCC
)
644 SDValue LHS
= Op
.getOperand(0);
646 if (!LHS
.getValueType().isFloatingPoint())
649 SDValue RHS
= Op
.getOperand(1);
652 // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
653 // node if necessary.
654 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
656 return DAG
.getNode(MipsISD::FPCmp
, DL
, MVT::Glue
, LHS
, RHS
,
657 DAG
.getConstant(condCodeToFCC(CC
), DL
, MVT::i32
));
660 // Creates and returns a CMovFPT/F node.
661 static SDValue
createCMovFP(SelectionDAG
&DAG
, SDValue Cond
, SDValue True
,
662 SDValue False
, const SDLoc
&DL
) {
663 ConstantSDNode
*CC
= cast
<ConstantSDNode
>(Cond
.getOperand(2));
664 bool invert
= invertFPCondCodeUser((Mips::CondCode
)CC
->getSExtValue());
665 SDValue FCC0
= DAG
.getRegister(Mips::FCC0
, MVT::i32
);
667 return DAG
.getNode((invert
? MipsISD::CMovFP_F
: MipsISD::CMovFP_T
), DL
,
668 True
.getValueType(), True
, FCC0
, False
, Cond
);
671 static SDValue
performSELECTCombine(SDNode
*N
, SelectionDAG
&DAG
,
672 TargetLowering::DAGCombinerInfo
&DCI
,
673 const MipsSubtarget
&Subtarget
) {
674 if (DCI
.isBeforeLegalizeOps())
677 SDValue SetCC
= N
->getOperand(0);
679 if ((SetCC
.getOpcode() != ISD::SETCC
) ||
680 !SetCC
.getOperand(0).getValueType().isInteger())
683 SDValue False
= N
->getOperand(2);
684 EVT FalseTy
= False
.getValueType();
686 if (!FalseTy
.isInteger())
689 ConstantSDNode
*FalseC
= dyn_cast
<ConstantSDNode
>(False
);
691 // If the RHS (False) is 0, we swap the order of the operands
692 // of ISD::SELECT (obviously also inverting the condition) so that we can
693 // take advantage of conditional moves using the $0 register.
695 // return (a != 0) ? x : 0;
703 if (!FalseC
->getZExtValue()) {
704 ISD::CondCode CC
= cast
<CondCodeSDNode
>(SetCC
.getOperand(2))->get();
705 SDValue True
= N
->getOperand(1);
707 SetCC
= DAG
.getSetCC(DL
, SetCC
.getValueType(), SetCC
.getOperand(0),
708 SetCC
.getOperand(1), ISD::getSetCCInverse(CC
, true));
710 return DAG
.getNode(ISD::SELECT
, DL
, FalseTy
, SetCC
, False
, True
);
713 // If both operands are integer constants there's a possibility that we
714 // can do some interesting optimizations.
715 SDValue True
= N
->getOperand(1);
716 ConstantSDNode
*TrueC
= dyn_cast
<ConstantSDNode
>(True
);
718 if (!TrueC
|| !True
.getValueType().isInteger())
721 // We'll also ignore MVT::i64 operands as this optimizations proves
722 // to be ineffective because of the required sign extensions as the result
723 // of a SETCC operator is always MVT::i32 for non-vector types.
724 if (True
.getValueType() == MVT::i64
)
727 int64_t Diff
= TrueC
->getSExtValue() - FalseC
->getSExtValue();
729 // 1) (a < x) ? y : y-1
731 // addiu $reg2, $reg1, y-1
733 return DAG
.getNode(ISD::ADD
, DL
, SetCC
.getValueType(), SetCC
, False
);
735 // 2) (a < x) ? y-1 : y
737 // xor $reg1, $reg1, 1
738 // addiu $reg2, $reg1, y-1
740 ISD::CondCode CC
= cast
<CondCodeSDNode
>(SetCC
.getOperand(2))->get();
741 SetCC
= DAG
.getSetCC(DL
, SetCC
.getValueType(), SetCC
.getOperand(0),
742 SetCC
.getOperand(1), ISD::getSetCCInverse(CC
, true));
743 return DAG
.getNode(ISD::ADD
, DL
, SetCC
.getValueType(), SetCC
, True
);
746 // Could not optimize.
750 static SDValue
performCMovFPCombine(SDNode
*N
, SelectionDAG
&DAG
,
751 TargetLowering::DAGCombinerInfo
&DCI
,
752 const MipsSubtarget
&Subtarget
) {
753 if (DCI
.isBeforeLegalizeOps())
756 SDValue ValueIfTrue
= N
->getOperand(0), ValueIfFalse
= N
->getOperand(2);
758 ConstantSDNode
*FalseC
= dyn_cast
<ConstantSDNode
>(ValueIfFalse
);
759 if (!FalseC
|| FalseC
->getZExtValue())
762 // Since RHS (False) is 0, we swap the order of the True/False operands
763 // (obviously also inverting the condition) so that we can
764 // take advantage of conditional moves using the $0 register.
766 // return (a != 0) ? x : 0;
769 unsigned Opc
= (N
->getOpcode() == MipsISD::CMovFP_T
) ? MipsISD::CMovFP_F
:
772 SDValue FCC
= N
->getOperand(1), Glue
= N
->getOperand(3);
773 return DAG
.getNode(Opc
, SDLoc(N
), ValueIfFalse
.getValueType(),
774 ValueIfFalse
, FCC
, ValueIfTrue
, Glue
);
777 static SDValue
performANDCombine(SDNode
*N
, SelectionDAG
&DAG
,
778 TargetLowering::DAGCombinerInfo
&DCI
,
779 const MipsSubtarget
&Subtarget
) {
780 if (DCI
.isBeforeLegalizeOps() || !Subtarget
.hasExtractInsert())
783 SDValue FirstOperand
= N
->getOperand(0);
784 unsigned FirstOperandOpc
= FirstOperand
.getOpcode();
785 SDValue Mask
= N
->getOperand(1);
786 EVT ValTy
= N
->getValueType(0);
789 uint64_t Pos
= 0, SMPos
, SMSize
;
794 // Op's second operand must be a shifted mask.
795 if (!(CN
= dyn_cast
<ConstantSDNode
>(Mask
)) ||
796 !isShiftedMask(CN
->getZExtValue(), SMPos
, SMSize
))
799 if (FirstOperandOpc
== ISD::SRA
|| FirstOperandOpc
== ISD::SRL
) {
800 // Pattern match EXT.
801 // $dst = and ((sra or srl) $src , pos), (2**size - 1)
802 // => ext $dst, $src, pos, size
804 // The second operand of the shift must be an immediate.
805 if (!(CN
= dyn_cast
<ConstantSDNode
>(FirstOperand
.getOperand(1))))
808 Pos
= CN
->getZExtValue();
810 // Return if the shifted mask does not start at bit 0 or the sum of its size
811 // and Pos exceeds the word's size.
812 if (SMPos
!= 0 || Pos
+ SMSize
> ValTy
.getSizeInBits())
816 NewOperand
= FirstOperand
.getOperand(0);
817 } else if (FirstOperandOpc
== ISD::SHL
&& Subtarget
.hasCnMips()) {
818 // Pattern match CINS.
819 // $dst = and (shl $src , pos), mask
820 // => cins $dst, $src, pos, size
821 // mask is a shifted mask with consecutive 1's, pos = shift amount,
822 // size = population count.
824 // The second operand of the shift must be an immediate.
825 if (!(CN
= dyn_cast
<ConstantSDNode
>(FirstOperand
.getOperand(1))))
828 Pos
= CN
->getZExtValue();
830 if (SMPos
!= Pos
|| Pos
>= ValTy
.getSizeInBits() || SMSize
>= 32 ||
831 Pos
+ SMSize
> ValTy
.getSizeInBits())
834 NewOperand
= FirstOperand
.getOperand(0);
835 // SMSize is 'location' (position) in this case, not size.
839 // Pattern match EXT.
840 // $dst = and $src, (2**size - 1) , if size > 16
841 // => ext $dst, $src, pos, size , pos = 0
843 // If the mask is <= 0xffff, andi can be used instead.
844 if (CN
->getZExtValue() <= 0xffff)
847 // Return if the mask doesn't start at position 0.
852 NewOperand
= FirstOperand
;
854 return DAG
.getNode(Opc
, DL
, ValTy
, NewOperand
,
855 DAG
.getConstant(Pos
, DL
, MVT::i32
),
856 DAG
.getConstant(SMSize
, DL
, MVT::i32
));
859 static SDValue
performORCombine(SDNode
*N
, SelectionDAG
&DAG
,
860 TargetLowering::DAGCombinerInfo
&DCI
,
861 const MipsSubtarget
&Subtarget
) {
862 // Pattern match INS.
863 // $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
864 // where mask1 = (2**size - 1) << pos, mask0 = ~mask1
865 // => ins $dst, $src, size, pos, $src1
866 if (DCI
.isBeforeLegalizeOps() || !Subtarget
.hasExtractInsert())
869 SDValue And0
= N
->getOperand(0), And1
= N
->getOperand(1);
870 uint64_t SMPos0
, SMSize0
, SMPos1
, SMSize1
;
871 ConstantSDNode
*CN
, *CN1
;
873 // See if Op's first operand matches (and $src1 , mask0).
874 if (And0
.getOpcode() != ISD::AND
)
877 if (!(CN
= dyn_cast
<ConstantSDNode
>(And0
.getOperand(1))) ||
878 !isShiftedMask(~CN
->getSExtValue(), SMPos0
, SMSize0
))
881 // See if Op's second operand matches (and (shl $src, pos), mask1).
882 if (And1
.getOpcode() == ISD::AND
&&
883 And1
.getOperand(0).getOpcode() == ISD::SHL
) {
885 if (!(CN
= dyn_cast
<ConstantSDNode
>(And1
.getOperand(1))) ||
886 !isShiftedMask(CN
->getZExtValue(), SMPos1
, SMSize1
))
889 // The shift masks must have the same position and size.
890 if (SMPos0
!= SMPos1
|| SMSize0
!= SMSize1
)
893 SDValue Shl
= And1
.getOperand(0);
895 if (!(CN
= dyn_cast
<ConstantSDNode
>(Shl
.getOperand(1))))
898 unsigned Shamt
= CN
->getZExtValue();
900 // Return if the shift amount and the first bit position of mask are not the
902 EVT ValTy
= N
->getValueType(0);
903 if ((Shamt
!= SMPos0
) || (SMPos0
+ SMSize0
> ValTy
.getSizeInBits()))
907 return DAG
.getNode(MipsISD::Ins
, DL
, ValTy
, Shl
.getOperand(0),
908 DAG
.getConstant(SMPos0
, DL
, MVT::i32
),
909 DAG
.getConstant(SMSize0
, DL
, MVT::i32
),
912 // Pattern match DINS.
913 // $dst = or (and $src, mask0), mask1
914 // where mask0 = ((1 << SMSize0) -1) << SMPos0
915 // => dins $dst, $src, pos, size
916 if (~CN
->getSExtValue() == ((((int64_t)1 << SMSize0
) - 1) << SMPos0
) &&
917 ((SMSize0
+ SMPos0
<= 64 && Subtarget
.hasMips64r2()) ||
918 (SMSize0
+ SMPos0
<= 32))) {
919 // Check if AND instruction has constant as argument
920 bool isConstCase
= And1
.getOpcode() != ISD::AND
;
921 if (And1
.getOpcode() == ISD::AND
) {
922 if (!(CN1
= dyn_cast
<ConstantSDNode
>(And1
->getOperand(1))))
925 if (!(CN1
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1))))
928 // Don't generate INS if constant OR operand doesn't fit into bits
929 // cleared by constant AND operand.
930 if (CN
->getSExtValue() & CN1
->getSExtValue())
934 EVT ValTy
= N
->getOperand(0)->getValueType(0);
938 Const1
= DAG
.getConstant(SMPos0
, DL
, MVT::i32
);
939 SrlX
= DAG
.getNode(ISD::SRL
, DL
, And1
->getValueType(0), And1
, Const1
);
942 MipsISD::Ins
, DL
, N
->getValueType(0),
944 ? DAG
.getConstant(CN1
->getSExtValue() >> SMPos0
, DL
, ValTy
)
946 DAG
.getConstant(SMPos0
, DL
, MVT::i32
),
947 DAG
.getConstant(ValTy
.getSizeInBits() / 8 < 8 ? SMSize0
& 31
950 And0
->getOperand(0));
957 static SDValue
performMADD_MSUBCombine(SDNode
*ROOTNode
, SelectionDAG
&CurDAG
,
958 const MipsSubtarget
&Subtarget
) {
959 // ROOTNode must have a multiplication as an operand for the match to be
961 if (ROOTNode
->getOperand(0).getOpcode() != ISD::MUL
&&
962 ROOTNode
->getOperand(1).getOpcode() != ISD::MUL
)
965 // We don't handle vector types here.
966 if (ROOTNode
->getValueType(0).isVector())
969 // For MIPS64, madd / msub instructions are inefficent to use with 64 bit
971 // (add (mul a b) c) =>
972 // let res = (madd (mthi (drotr c 32))x(mtlo c) a b) in
973 // MIPS64: (or (dsll (mfhi res) 32) (dsrl (dsll (mflo res) 32) 32)
975 // MIPS64R2: (dins (mflo res) (mfhi res) 32 32)
977 // The overhead of setting up the Hi/Lo registers and reassembling the
978 // result makes this a dubious optimzation for MIPS64. The core of the
979 // problem is that Hi/Lo contain the upper and lower 32 bits of the
980 // operand and result.
982 // It requires a chain of 4 add/mul for MIPS64R2 to get better code
983 // density than doing it naively, 5 for MIPS64. Additionally, using
984 // madd/msub on MIPS64 requires the operands actually be 32 bit sign
985 // extended operands, not true 64 bit values.
987 // FIXME: For the moment, disable this completely for MIPS64.
988 if (Subtarget
.hasMips64())
991 SDValue Mult
= ROOTNode
->getOperand(0).getOpcode() == ISD::MUL
992 ? ROOTNode
->getOperand(0)
993 : ROOTNode
->getOperand(1);
995 SDValue AddOperand
= ROOTNode
->getOperand(0).getOpcode() == ISD::MUL
996 ? ROOTNode
->getOperand(1)
997 : ROOTNode
->getOperand(0);
999 // Transform this to a MADD only if the user of this node is the add.
1000 // If there are other users of the mul, this function returns here.
1001 if (!Mult
.hasOneUse())
1004 // maddu and madd are unusual instructions in that on MIPS64 bits 63..31
1005 // must be in canonical form, i.e. sign extended. For MIPS32, the operands
1006 // of the multiply must have 32 or more sign bits, otherwise we cannot
1007 // perform this optimization. We have to check this here as we're performing
1008 // this optimization pre-legalization.
1009 SDValue MultLHS
= Mult
->getOperand(0);
1010 SDValue MultRHS
= Mult
->getOperand(1);
1012 bool IsSigned
= MultLHS
->getOpcode() == ISD::SIGN_EXTEND
&&
1013 MultRHS
->getOpcode() == ISD::SIGN_EXTEND
;
1014 bool IsUnsigned
= MultLHS
->getOpcode() == ISD::ZERO_EXTEND
&&
1015 MultRHS
->getOpcode() == ISD::ZERO_EXTEND
;
1017 if (!IsSigned
&& !IsUnsigned
)
1020 // Initialize accumulator.
1024 BottomHalf
= CurDAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, AddOperand
,
1025 CurDAG
.getIntPtrConstant(0, DL
));
1027 TopHalf
= CurDAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, AddOperand
,
1028 CurDAG
.getIntPtrConstant(1, DL
));
1029 SDValue ACCIn
= CurDAG
.getNode(MipsISD::MTLOHI
, DL
, MVT::Untyped
,
1033 // Create MipsMAdd(u) / MipsMSub(u) node.
1034 bool IsAdd
= ROOTNode
->getOpcode() == ISD::ADD
;
1035 unsigned Opcode
= IsAdd
? (IsUnsigned
? MipsISD::MAddu
: MipsISD::MAdd
)
1036 : (IsUnsigned
? MipsISD::MSubu
: MipsISD::MSub
);
1037 SDValue MAddOps
[3] = {
1038 CurDAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, Mult
->getOperand(0)),
1039 CurDAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, Mult
->getOperand(1)), ACCIn
};
1040 EVT VTs
[2] = {MVT::i32
, MVT::i32
};
1041 SDValue MAdd
= CurDAG
.getNode(Opcode
, DL
, VTs
, MAddOps
);
1043 SDValue ResLo
= CurDAG
.getNode(MipsISD::MFLO
, DL
, MVT::i32
, MAdd
);
1044 SDValue ResHi
= CurDAG
.getNode(MipsISD::MFHI
, DL
, MVT::i32
, MAdd
);
1046 CurDAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, ResLo
, ResHi
);
1050 static SDValue
performSUBCombine(SDNode
*N
, SelectionDAG
&DAG
,
1051 TargetLowering::DAGCombinerInfo
&DCI
,
1052 const MipsSubtarget
&Subtarget
) {
1053 // (sub v0 (mul v1, v2)) => (msub v1, v2, v0)
1054 if (DCI
.isBeforeLegalizeOps()) {
1055 if (Subtarget
.hasMips32() && !Subtarget
.hasMips32r6() &&
1056 !Subtarget
.inMips16Mode() && N
->getValueType(0) == MVT::i64
)
1057 return performMADD_MSUBCombine(N
, DAG
, Subtarget
);
1065 static SDValue
performADDCombine(SDNode
*N
, SelectionDAG
&DAG
,
1066 TargetLowering::DAGCombinerInfo
&DCI
,
1067 const MipsSubtarget
&Subtarget
) {
1068 // (add v0 (mul v1, v2)) => (madd v1, v2, v0)
1069 if (DCI
.isBeforeLegalizeOps()) {
1070 if (Subtarget
.hasMips32() && !Subtarget
.hasMips32r6() &&
1071 !Subtarget
.inMips16Mode() && N
->getValueType(0) == MVT::i64
)
1072 return performMADD_MSUBCombine(N
, DAG
, Subtarget
);
1077 // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
1078 SDValue Add
= N
->getOperand(1);
1080 if (Add
.getOpcode() != ISD::ADD
)
1083 SDValue Lo
= Add
.getOperand(1);
1085 if ((Lo
.getOpcode() != MipsISD::Lo
) ||
1086 (Lo
.getOperand(0).getOpcode() != ISD::TargetJumpTable
))
1089 EVT ValTy
= N
->getValueType(0);
1092 SDValue Add1
= DAG
.getNode(ISD::ADD
, DL
, ValTy
, N
->getOperand(0),
1094 return DAG
.getNode(ISD::ADD
, DL
, ValTy
, Add1
, Lo
);
1097 static SDValue
performSHLCombine(SDNode
*N
, SelectionDAG
&DAG
,
1098 TargetLowering::DAGCombinerInfo
&DCI
,
1099 const MipsSubtarget
&Subtarget
) {
1100 // Pattern match CINS.
1101 // $dst = shl (and $src , imm), pos
1102 // => cins $dst, $src, pos, size
1104 if (DCI
.isBeforeLegalizeOps() || !Subtarget
.hasCnMips())
1107 SDValue FirstOperand
= N
->getOperand(0);
1108 unsigned FirstOperandOpc
= FirstOperand
.getOpcode();
1109 SDValue SecondOperand
= N
->getOperand(1);
1110 EVT ValTy
= N
->getValueType(0);
1113 uint64_t Pos
= 0, SMPos
, SMSize
;
1117 // The second operand of the shift must be an immediate.
1118 if (!(CN
= dyn_cast
<ConstantSDNode
>(SecondOperand
)))
1121 Pos
= CN
->getZExtValue();
1123 if (Pos
>= ValTy
.getSizeInBits())
1126 if (FirstOperandOpc
!= ISD::AND
)
1129 // AND's second operand must be a shifted mask.
1130 if (!(CN
= dyn_cast
<ConstantSDNode
>(FirstOperand
.getOperand(1))) ||
1131 !isShiftedMask(CN
->getZExtValue(), SMPos
, SMSize
))
1134 // Return if the shifted mask does not start at bit 0 or the sum of its size
1135 // and Pos exceeds the word's size.
1136 if (SMPos
!= 0 || SMSize
> 32 || Pos
+ SMSize
> ValTy
.getSizeInBits())
1139 NewOperand
= FirstOperand
.getOperand(0);
1140 // SMSize is 'location' (position) in this case, not size.
1143 return DAG
.getNode(MipsISD::CIns
, DL
, ValTy
, NewOperand
,
1144 DAG
.getConstant(Pos
, DL
, MVT::i32
),
1145 DAG
.getConstant(SMSize
, DL
, MVT::i32
));
1148 SDValue
MipsTargetLowering::PerformDAGCombine(SDNode
*N
, DAGCombinerInfo
&DCI
)
1150 SelectionDAG
&DAG
= DCI
.DAG
;
1151 unsigned Opc
= N
->getOpcode();
1157 return performDivRemCombine(N
, DAG
, DCI
, Subtarget
);
1159 return performSELECTCombine(N
, DAG
, DCI
, Subtarget
);
1160 case MipsISD::CMovFP_F
:
1161 case MipsISD::CMovFP_T
:
1162 return performCMovFPCombine(N
, DAG
, DCI
, Subtarget
);
1164 return performANDCombine(N
, DAG
, DCI
, Subtarget
);
1166 return performORCombine(N
, DAG
, DCI
, Subtarget
);
1168 return performADDCombine(N
, DAG
, DCI
, Subtarget
);
1170 return performSHLCombine(N
, DAG
, DCI
, Subtarget
);
1172 return performSUBCombine(N
, DAG
, DCI
, Subtarget
);
1178 bool MipsTargetLowering::isCheapToSpeculateCttz() const {
1179 return Subtarget
.hasMips32();
1182 bool MipsTargetLowering::isCheapToSpeculateCtlz() const {
1183 return Subtarget
.hasMips32();
1187 MipsTargetLowering::LowerOperationWrapper(SDNode
*N
,
1188 SmallVectorImpl
<SDValue
> &Results
,
1189 SelectionDAG
&DAG
) const {
1190 SDValue Res
= LowerOperation(SDValue(N
, 0), DAG
);
1192 for (unsigned I
= 0, E
= Res
->getNumValues(); I
!= E
; ++I
)
1193 Results
.push_back(Res
.getValue(I
));
1197 MipsTargetLowering::ReplaceNodeResults(SDNode
*N
,
1198 SmallVectorImpl
<SDValue
> &Results
,
1199 SelectionDAG
&DAG
) const {
1200 return LowerOperationWrapper(N
, Results
, DAG
);
1203 SDValue
MipsTargetLowering::
1204 LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const
1206 switch (Op
.getOpcode())
1208 case ISD::BRCOND
: return lowerBRCOND(Op
, DAG
);
1209 case ISD::ConstantPool
: return lowerConstantPool(Op
, DAG
);
1210 case ISD::GlobalAddress
: return lowerGlobalAddress(Op
, DAG
);
1211 case ISD::BlockAddress
: return lowerBlockAddress(Op
, DAG
);
1212 case ISD::GlobalTLSAddress
: return lowerGlobalTLSAddress(Op
, DAG
);
1213 case ISD::JumpTable
: return lowerJumpTable(Op
, DAG
);
1214 case ISD::SELECT
: return lowerSELECT(Op
, DAG
);
1215 case ISD::SETCC
: return lowerSETCC(Op
, DAG
);
1216 case ISD::VASTART
: return lowerVASTART(Op
, DAG
);
1217 case ISD::VAARG
: return lowerVAARG(Op
, DAG
);
1218 case ISD::FCOPYSIGN
: return lowerFCOPYSIGN(Op
, DAG
);
1219 case ISD::FRAMEADDR
: return lowerFRAMEADDR(Op
, DAG
);
1220 case ISD::RETURNADDR
: return lowerRETURNADDR(Op
, DAG
);
1221 case ISD::EH_RETURN
: return lowerEH_RETURN(Op
, DAG
);
1222 case ISD::ATOMIC_FENCE
: return lowerATOMIC_FENCE(Op
, DAG
);
1223 case ISD::SHL_PARTS
: return lowerShiftLeftParts(Op
, DAG
);
1224 case ISD::SRA_PARTS
: return lowerShiftRightParts(Op
, DAG
, true);
1225 case ISD::SRL_PARTS
: return lowerShiftRightParts(Op
, DAG
, false);
1226 case ISD::LOAD
: return lowerLOAD(Op
, DAG
);
1227 case ISD::STORE
: return lowerSTORE(Op
, DAG
);
1228 case ISD::EH_DWARF_CFA
: return lowerEH_DWARF_CFA(Op
, DAG
);
1229 case ISD::FP_TO_SINT
: return lowerFP_TO_SINT(Op
, DAG
);
1234 //===----------------------------------------------------------------------===//
1235 // Lower helper functions
1236 //===----------------------------------------------------------------------===//
1238 // addLiveIn - This helper function adds the specified physical register to the
1239 // MachineFunction as a live in value. It also creates a corresponding
1240 // virtual register for it.
1242 addLiveIn(MachineFunction
&MF
, unsigned PReg
, const TargetRegisterClass
*RC
)
1244 unsigned VReg
= MF
.getRegInfo().createVirtualRegister(RC
);
1245 MF
.getRegInfo().addLiveIn(PReg
, VReg
);
1249 static MachineBasicBlock
*insertDivByZeroTrap(MachineInstr
&MI
,
1250 MachineBasicBlock
&MBB
,
1251 const TargetInstrInfo
&TII
,
1252 bool Is64Bit
, bool IsMicroMips
) {
1256 // Insert instruction "teq $divisor_reg, $zero, 7".
1257 MachineBasicBlock::iterator
I(MI
);
1258 MachineInstrBuilder MIB
;
1259 MachineOperand
&Divisor
= MI
.getOperand(2);
1260 MIB
= BuildMI(MBB
, std::next(I
), MI
.getDebugLoc(),
1261 TII
.get(IsMicroMips
? Mips::TEQ_MM
: Mips::TEQ
))
1262 .addReg(Divisor
.getReg(), getKillRegState(Divisor
.isKill()))
1266 // Use the 32-bit sub-register if this is a 64-bit division.
1268 MIB
->getOperand(0).setSubReg(Mips::sub_32
);
1270 // Clear Divisor's kill flag.
1271 Divisor
.setIsKill(false);
1273 // We would normally delete the original instruction here but in this case
1274 // we only needed to inject an additional instruction rather than replace it.
1280 MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr
&MI
,
1281 MachineBasicBlock
*BB
) const {
1282 switch (MI
.getOpcode()) {
1284 llvm_unreachable("Unexpected instr type to insert");
1285 case Mips::ATOMIC_LOAD_ADD_I8
:
1286 return emitAtomicBinaryPartword(MI
, BB
, 1);
1287 case Mips::ATOMIC_LOAD_ADD_I16
:
1288 return emitAtomicBinaryPartword(MI
, BB
, 2);
1289 case Mips::ATOMIC_LOAD_ADD_I32
:
1290 return emitAtomicBinary(MI
, BB
);
1291 case Mips::ATOMIC_LOAD_ADD_I64
:
1292 return emitAtomicBinary(MI
, BB
);
1294 case Mips::ATOMIC_LOAD_AND_I8
:
1295 return emitAtomicBinaryPartword(MI
, BB
, 1);
1296 case Mips::ATOMIC_LOAD_AND_I16
:
1297 return emitAtomicBinaryPartword(MI
, BB
, 2);
1298 case Mips::ATOMIC_LOAD_AND_I32
:
1299 return emitAtomicBinary(MI
, BB
);
1300 case Mips::ATOMIC_LOAD_AND_I64
:
1301 return emitAtomicBinary(MI
, BB
);
1303 case Mips::ATOMIC_LOAD_OR_I8
:
1304 return emitAtomicBinaryPartword(MI
, BB
, 1);
1305 case Mips::ATOMIC_LOAD_OR_I16
:
1306 return emitAtomicBinaryPartword(MI
, BB
, 2);
1307 case Mips::ATOMIC_LOAD_OR_I32
:
1308 return emitAtomicBinary(MI
, BB
);
1309 case Mips::ATOMIC_LOAD_OR_I64
:
1310 return emitAtomicBinary(MI
, BB
);
1312 case Mips::ATOMIC_LOAD_XOR_I8
:
1313 return emitAtomicBinaryPartword(MI
, BB
, 1);
1314 case Mips::ATOMIC_LOAD_XOR_I16
:
1315 return emitAtomicBinaryPartword(MI
, BB
, 2);
1316 case Mips::ATOMIC_LOAD_XOR_I32
:
1317 return emitAtomicBinary(MI
, BB
);
1318 case Mips::ATOMIC_LOAD_XOR_I64
:
1319 return emitAtomicBinary(MI
, BB
);
1321 case Mips::ATOMIC_LOAD_NAND_I8
:
1322 return emitAtomicBinaryPartword(MI
, BB
, 1);
1323 case Mips::ATOMIC_LOAD_NAND_I16
:
1324 return emitAtomicBinaryPartword(MI
, BB
, 2);
1325 case Mips::ATOMIC_LOAD_NAND_I32
:
1326 return emitAtomicBinary(MI
, BB
);
1327 case Mips::ATOMIC_LOAD_NAND_I64
:
1328 return emitAtomicBinary(MI
, BB
);
1330 case Mips::ATOMIC_LOAD_SUB_I8
:
1331 return emitAtomicBinaryPartword(MI
, BB
, 1);
1332 case Mips::ATOMIC_LOAD_SUB_I16
:
1333 return emitAtomicBinaryPartword(MI
, BB
, 2);
1334 case Mips::ATOMIC_LOAD_SUB_I32
:
1335 return emitAtomicBinary(MI
, BB
);
1336 case Mips::ATOMIC_LOAD_SUB_I64
:
1337 return emitAtomicBinary(MI
, BB
);
1339 case Mips::ATOMIC_SWAP_I8
:
1340 return emitAtomicBinaryPartword(MI
, BB
, 1);
1341 case Mips::ATOMIC_SWAP_I16
:
1342 return emitAtomicBinaryPartword(MI
, BB
, 2);
1343 case Mips::ATOMIC_SWAP_I32
:
1344 return emitAtomicBinary(MI
, BB
);
1345 case Mips::ATOMIC_SWAP_I64
:
1346 return emitAtomicBinary(MI
, BB
);
1348 case Mips::ATOMIC_CMP_SWAP_I8
:
1349 return emitAtomicCmpSwapPartword(MI
, BB
, 1);
1350 case Mips::ATOMIC_CMP_SWAP_I16
:
1351 return emitAtomicCmpSwapPartword(MI
, BB
, 2);
1352 case Mips::ATOMIC_CMP_SWAP_I32
:
1353 return emitAtomicCmpSwap(MI
, BB
);
1354 case Mips::ATOMIC_CMP_SWAP_I64
:
1355 return emitAtomicCmpSwap(MI
, BB
);
1356 case Mips::PseudoSDIV
:
1357 case Mips::PseudoUDIV
:
1362 return insertDivByZeroTrap(MI
, *BB
, *Subtarget
.getInstrInfo(), false,
1364 case Mips::SDIV_MM_Pseudo
:
1365 case Mips::UDIV_MM_Pseudo
:
1368 case Mips::DIV_MMR6
:
1369 case Mips::DIVU_MMR6
:
1370 case Mips::MOD_MMR6
:
1371 case Mips::MODU_MMR6
:
1372 return insertDivByZeroTrap(MI
, *BB
, *Subtarget
.getInstrInfo(), false, true);
1373 case Mips::PseudoDSDIV
:
1374 case Mips::PseudoDUDIV
:
1379 return insertDivByZeroTrap(MI
, *BB
, *Subtarget
.getInstrInfo(), true, false);
1381 case Mips::PseudoSELECT_I
:
1382 case Mips::PseudoSELECT_I64
:
1383 case Mips::PseudoSELECT_S
:
1384 case Mips::PseudoSELECT_D32
:
1385 case Mips::PseudoSELECT_D64
:
1386 return emitPseudoSELECT(MI
, BB
, false, Mips::BNE
);
1387 case Mips::PseudoSELECTFP_F_I
:
1388 case Mips::PseudoSELECTFP_F_I64
:
1389 case Mips::PseudoSELECTFP_F_S
:
1390 case Mips::PseudoSELECTFP_F_D32
:
1391 case Mips::PseudoSELECTFP_F_D64
:
1392 return emitPseudoSELECT(MI
, BB
, true, Mips::BC1F
);
1393 case Mips::PseudoSELECTFP_T_I
:
1394 case Mips::PseudoSELECTFP_T_I64
:
1395 case Mips::PseudoSELECTFP_T_S
:
1396 case Mips::PseudoSELECTFP_T_D32
:
1397 case Mips::PseudoSELECTFP_T_D64
:
1398 return emitPseudoSELECT(MI
, BB
, true, Mips::BC1T
);
1402 // This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
1403 // Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
1405 MipsTargetLowering::emitAtomicBinary(MachineInstr
&MI
,
1406 MachineBasicBlock
*BB
) const {
1408 MachineFunction
*MF
= BB
->getParent();
1409 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
1410 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1411 DebugLoc DL
= MI
.getDebugLoc();
1414 switch (MI
.getOpcode()) {
1415 case Mips::ATOMIC_LOAD_ADD_I32
:
1416 AtomicOp
= Mips::ATOMIC_LOAD_ADD_I32_POSTRA
;
1418 case Mips::ATOMIC_LOAD_SUB_I32
:
1419 AtomicOp
= Mips::ATOMIC_LOAD_SUB_I32_POSTRA
;
1421 case Mips::ATOMIC_LOAD_AND_I32
:
1422 AtomicOp
= Mips::ATOMIC_LOAD_AND_I32_POSTRA
;
1424 case Mips::ATOMIC_LOAD_OR_I32
:
1425 AtomicOp
= Mips::ATOMIC_LOAD_OR_I32_POSTRA
;
1427 case Mips::ATOMIC_LOAD_XOR_I32
:
1428 AtomicOp
= Mips::ATOMIC_LOAD_XOR_I32_POSTRA
;
1430 case Mips::ATOMIC_LOAD_NAND_I32
:
1431 AtomicOp
= Mips::ATOMIC_LOAD_NAND_I32_POSTRA
;
1433 case Mips::ATOMIC_SWAP_I32
:
1434 AtomicOp
= Mips::ATOMIC_SWAP_I32_POSTRA
;
1436 case Mips::ATOMIC_LOAD_ADD_I64
:
1437 AtomicOp
= Mips::ATOMIC_LOAD_ADD_I64_POSTRA
;
1439 case Mips::ATOMIC_LOAD_SUB_I64
:
1440 AtomicOp
= Mips::ATOMIC_LOAD_SUB_I64_POSTRA
;
1442 case Mips::ATOMIC_LOAD_AND_I64
:
1443 AtomicOp
= Mips::ATOMIC_LOAD_AND_I64_POSTRA
;
1445 case Mips::ATOMIC_LOAD_OR_I64
:
1446 AtomicOp
= Mips::ATOMIC_LOAD_OR_I64_POSTRA
;
1448 case Mips::ATOMIC_LOAD_XOR_I64
:
1449 AtomicOp
= Mips::ATOMIC_LOAD_XOR_I64_POSTRA
;
1451 case Mips::ATOMIC_LOAD_NAND_I64
:
1452 AtomicOp
= Mips::ATOMIC_LOAD_NAND_I64_POSTRA
;
1454 case Mips::ATOMIC_SWAP_I64
:
1455 AtomicOp
= Mips::ATOMIC_SWAP_I64_POSTRA
;
1458 llvm_unreachable("Unknown pseudo atomic for replacement!");
1461 unsigned OldVal
= MI
.getOperand(0).getReg();
1462 unsigned Ptr
= MI
.getOperand(1).getReg();
1463 unsigned Incr
= MI
.getOperand(2).getReg();
1464 unsigned Scratch
= RegInfo
.createVirtualRegister(RegInfo
.getRegClass(OldVal
));
1466 MachineBasicBlock::iterator
II(MI
);
1468 // The scratch registers here with the EarlyClobber | Define | Implicit
1469 // flags is used to persuade the register allocator and the machine
1470 // verifier to accept the usage of this register. This has to be a real
1471 // register which has an UNDEF value but is dead after the instruction which
1472 // is unique among the registers chosen for the instruction.
1474 // The EarlyClobber flag has the semantic properties that the operand it is
1475 // attached to is clobbered before the rest of the inputs are read. Hence it
1476 // must be unique among the operands to the instruction.
1477 // The Define flag is needed to coerce the machine verifier that an Undef
1478 // value isn't a problem.
1479 // The Dead flag is needed as the value in scratch isn't used by any other
1480 // instruction. Kill isn't used as Dead is more precise.
1481 // The implicit flag is here due to the interaction between the other flags
1482 // and the machine verifier.
1484 // For correctness purpose, a new pseudo is introduced here. We need this
1485 // new pseudo, so that FastRegisterAllocator does not see an ll/sc sequence
1486 // that is spread over >1 basic blocks. A register allocator which
1487 // introduces (or any codegen infact) a store, can violate the expectations
1490 // An atomic read-modify-write sequence starts with a linked load
1491 // instruction and ends with a store conditional instruction. The atomic
1492 // read-modify-write sequence fails if any of the following conditions
1493 // occur between the execution of ll and sc:
1494 // * A coherent store is completed by another process or coherent I/O
1495 // module into the block of synchronizable physical memory containing
1496 // the word. The size and alignment of the block is
1497 // implementation-dependent.
1498 // * A coherent store is executed between an LL and SC sequence on the
1499 // same processor to the block of synchornizable physical memory
1500 // containing the word.
1503 unsigned PtrCopy
= RegInfo
.createVirtualRegister(RegInfo
.getRegClass(Ptr
));
1504 unsigned IncrCopy
= RegInfo
.createVirtualRegister(RegInfo
.getRegClass(Incr
));
1506 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), IncrCopy
).addReg(Incr
);
1507 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), PtrCopy
).addReg(Ptr
);
1509 BuildMI(*BB
, II
, DL
, TII
->get(AtomicOp
))
1510 .addReg(OldVal
, RegState::Define
| RegState::EarlyClobber
)
1513 .addReg(Scratch
, RegState::Define
| RegState::EarlyClobber
|
1514 RegState::Implicit
| RegState::Dead
);
1516 MI
.eraseFromParent();
1521 MachineBasicBlock
*MipsTargetLowering::emitSignExtendToI32InReg(
1522 MachineInstr
&MI
, MachineBasicBlock
*BB
, unsigned Size
, unsigned DstReg
,
1523 unsigned SrcReg
) const {
1524 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1525 const DebugLoc
&DL
= MI
.getDebugLoc();
1527 if (Subtarget
.hasMips32r2() && Size
== 1) {
1528 BuildMI(BB
, DL
, TII
->get(Mips::SEB
), DstReg
).addReg(SrcReg
);
1532 if (Subtarget
.hasMips32r2() && Size
== 2) {
1533 BuildMI(BB
, DL
, TII
->get(Mips::SEH
), DstReg
).addReg(SrcReg
);
1537 MachineFunction
*MF
= BB
->getParent();
1538 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
1539 const TargetRegisterClass
*RC
= getRegClassFor(MVT::i32
);
1540 unsigned ScrReg
= RegInfo
.createVirtualRegister(RC
);
1543 int64_t ShiftImm
= 32 - (Size
* 8);
1545 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ScrReg
).addReg(SrcReg
).addImm(ShiftImm
);
1546 BuildMI(BB
, DL
, TII
->get(Mips::SRA
), DstReg
).addReg(ScrReg
).addImm(ShiftImm
);
1551 MachineBasicBlock
*MipsTargetLowering::emitAtomicBinaryPartword(
1552 MachineInstr
&MI
, MachineBasicBlock
*BB
, unsigned Size
) const {
1553 assert((Size
== 1 || Size
== 2) &&
1554 "Unsupported size for EmitAtomicBinaryPartial.");
1556 MachineFunction
*MF
= BB
->getParent();
1557 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
1558 const TargetRegisterClass
*RC
= getRegClassFor(MVT::i32
);
1559 const bool ArePtrs64bit
= ABI
.ArePtrs64bit();
1560 const TargetRegisterClass
*RCp
=
1561 getRegClassFor(ArePtrs64bit
? MVT::i64
: MVT::i32
);
1562 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1563 DebugLoc DL
= MI
.getDebugLoc();
1565 unsigned Dest
= MI
.getOperand(0).getReg();
1566 unsigned Ptr
= MI
.getOperand(1).getReg();
1567 unsigned Incr
= MI
.getOperand(2).getReg();
1569 unsigned AlignedAddr
= RegInfo
.createVirtualRegister(RCp
);
1570 unsigned ShiftAmt
= RegInfo
.createVirtualRegister(RC
);
1571 unsigned Mask
= RegInfo
.createVirtualRegister(RC
);
1572 unsigned Mask2
= RegInfo
.createVirtualRegister(RC
);
1573 unsigned Incr2
= RegInfo
.createVirtualRegister(RC
);
1574 unsigned MaskLSB2
= RegInfo
.createVirtualRegister(RCp
);
1575 unsigned PtrLSB2
= RegInfo
.createVirtualRegister(RC
);
1576 unsigned MaskUpper
= RegInfo
.createVirtualRegister(RC
);
1577 unsigned Scratch
= RegInfo
.createVirtualRegister(RC
);
1578 unsigned Scratch2
= RegInfo
.createVirtualRegister(RC
);
1579 unsigned Scratch3
= RegInfo
.createVirtualRegister(RC
);
1581 unsigned AtomicOp
= 0;
1582 switch (MI
.getOpcode()) {
1583 case Mips::ATOMIC_LOAD_NAND_I8
:
1584 AtomicOp
= Mips::ATOMIC_LOAD_NAND_I8_POSTRA
;
1586 case Mips::ATOMIC_LOAD_NAND_I16
:
1587 AtomicOp
= Mips::ATOMIC_LOAD_NAND_I16_POSTRA
;
1589 case Mips::ATOMIC_SWAP_I8
:
1590 AtomicOp
= Mips::ATOMIC_SWAP_I8_POSTRA
;
1592 case Mips::ATOMIC_SWAP_I16
:
1593 AtomicOp
= Mips::ATOMIC_SWAP_I16_POSTRA
;
1595 case Mips::ATOMIC_LOAD_ADD_I8
:
1596 AtomicOp
= Mips::ATOMIC_LOAD_ADD_I8_POSTRA
;
1598 case Mips::ATOMIC_LOAD_ADD_I16
:
1599 AtomicOp
= Mips::ATOMIC_LOAD_ADD_I16_POSTRA
;
1601 case Mips::ATOMIC_LOAD_SUB_I8
:
1602 AtomicOp
= Mips::ATOMIC_LOAD_SUB_I8_POSTRA
;
1604 case Mips::ATOMIC_LOAD_SUB_I16
:
1605 AtomicOp
= Mips::ATOMIC_LOAD_SUB_I16_POSTRA
;
1607 case Mips::ATOMIC_LOAD_AND_I8
:
1608 AtomicOp
= Mips::ATOMIC_LOAD_AND_I8_POSTRA
;
1610 case Mips::ATOMIC_LOAD_AND_I16
:
1611 AtomicOp
= Mips::ATOMIC_LOAD_AND_I16_POSTRA
;
1613 case Mips::ATOMIC_LOAD_OR_I8
:
1614 AtomicOp
= Mips::ATOMIC_LOAD_OR_I8_POSTRA
;
1616 case Mips::ATOMIC_LOAD_OR_I16
:
1617 AtomicOp
= Mips::ATOMIC_LOAD_OR_I16_POSTRA
;
1619 case Mips::ATOMIC_LOAD_XOR_I8
:
1620 AtomicOp
= Mips::ATOMIC_LOAD_XOR_I8_POSTRA
;
1622 case Mips::ATOMIC_LOAD_XOR_I16
:
1623 AtomicOp
= Mips::ATOMIC_LOAD_XOR_I16_POSTRA
;
1626 llvm_unreachable("Unknown subword atomic pseudo for expansion!");
1629 // insert new blocks after the current block
1630 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
1631 MachineBasicBlock
*exitMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
1632 MachineFunction::iterator It
= ++BB
->getIterator();
1633 MF
->insert(It
, exitMBB
);
1635 // Transfer the remainder of BB and its successor edges to exitMBB.
1636 exitMBB
->splice(exitMBB
->begin(), BB
,
1637 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
1638 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
1640 BB
->addSuccessor(exitMBB
, BranchProbability::getOne());
1643 // addiu masklsb2,$0,-4 # 0xfffffffc
1644 // and alignedaddr,ptr,masklsb2
1645 // andi ptrlsb2,ptr,3
1646 // sll shiftamt,ptrlsb2,3
1647 // ori maskupper,$0,255 # 0xff
1648 // sll mask,maskupper,shiftamt
1649 // nor mask2,$0,mask
1650 // sll incr2,incr,shiftamt
1652 int64_t MaskImm
= (Size
== 1) ? 255 : 65535;
1653 BuildMI(BB
, DL
, TII
->get(ABI
.GetPtrAddiuOp()), MaskLSB2
)
1654 .addReg(ABI
.GetNullPtr()).addImm(-4);
1655 BuildMI(BB
, DL
, TII
->get(ABI
.GetPtrAndOp()), AlignedAddr
)
1656 .addReg(Ptr
).addReg(MaskLSB2
);
1657 BuildMI(BB
, DL
, TII
->get(Mips::ANDi
), PtrLSB2
)
1658 .addReg(Ptr
, 0, ArePtrs64bit
? Mips::sub_32
: 0).addImm(3);
1659 if (Subtarget
.isLittle()) {
1660 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ShiftAmt
).addReg(PtrLSB2
).addImm(3);
1662 unsigned Off
= RegInfo
.createVirtualRegister(RC
);
1663 BuildMI(BB
, DL
, TII
->get(Mips::XORi
), Off
)
1664 .addReg(PtrLSB2
).addImm((Size
== 1) ? 3 : 2);
1665 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ShiftAmt
).addReg(Off
).addImm(3);
1667 BuildMI(BB
, DL
, TII
->get(Mips::ORi
), MaskUpper
)
1668 .addReg(Mips::ZERO
).addImm(MaskImm
);
1669 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), Mask
)
1670 .addReg(MaskUpper
).addReg(ShiftAmt
);
1671 BuildMI(BB
, DL
, TII
->get(Mips::NOR
), Mask2
).addReg(Mips::ZERO
).addReg(Mask
);
1672 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), Incr2
).addReg(Incr
).addReg(ShiftAmt
);
1675 // The purposes of the flags on the scratch registers is explained in
1676 // emitAtomicBinary. In summary, we need a scratch register which is going to
1677 // be undef, that is unique among registers chosen for the instruction.
1679 BuildMI(BB
, DL
, TII
->get(AtomicOp
))
1680 .addReg(Dest
, RegState::Define
| RegState::EarlyClobber
)
1681 .addReg(AlignedAddr
)
1686 .addReg(Scratch
, RegState::EarlyClobber
| RegState::Define
|
1687 RegState::Dead
| RegState::Implicit
)
1688 .addReg(Scratch2
, RegState::EarlyClobber
| RegState::Define
|
1689 RegState::Dead
| RegState::Implicit
)
1690 .addReg(Scratch3
, RegState::EarlyClobber
| RegState::Define
|
1691 RegState::Dead
| RegState::Implicit
);
1693 MI
.eraseFromParent(); // The instruction is gone now.
1698 // Lower atomic compare and swap to a pseudo instruction, taking care to
1699 // define a scratch register for the pseudo instruction's expansion. The
1700 // instruction is expanded after the register allocator as to prevent
1701 // the insertion of stores between the linked load and the store conditional.
1704 MipsTargetLowering::emitAtomicCmpSwap(MachineInstr
&MI
,
1705 MachineBasicBlock
*BB
) const {
1707 assert((MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32
||
1708 MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I64
) &&
1709 "Unsupported atomic psseudo for EmitAtomicCmpSwap.");
1711 const unsigned Size
= MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32
? 4 : 8;
1713 MachineFunction
*MF
= BB
->getParent();
1714 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
1715 const TargetRegisterClass
*RC
= getRegClassFor(MVT::getIntegerVT(Size
* 8));
1716 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1717 DebugLoc DL
= MI
.getDebugLoc();
1719 unsigned AtomicOp
= MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32
1720 ? Mips::ATOMIC_CMP_SWAP_I32_POSTRA
1721 : Mips::ATOMIC_CMP_SWAP_I64_POSTRA
;
1722 unsigned Dest
= MI
.getOperand(0).getReg();
1723 unsigned Ptr
= MI
.getOperand(1).getReg();
1724 unsigned OldVal
= MI
.getOperand(2).getReg();
1725 unsigned NewVal
= MI
.getOperand(3).getReg();
1727 unsigned Scratch
= MRI
.createVirtualRegister(RC
);
1728 MachineBasicBlock::iterator
II(MI
);
1730 // We need to create copies of the various registers and kill them at the
1731 // atomic pseudo. If the copies are not made, when the atomic is expanded
1732 // after fast register allocation, the spills will end up outside of the
1733 // blocks that their values are defined in, causing livein errors.
1735 unsigned DestCopy
= MRI
.createVirtualRegister(MRI
.getRegClass(Dest
));
1736 unsigned PtrCopy
= MRI
.createVirtualRegister(MRI
.getRegClass(Ptr
));
1737 unsigned OldValCopy
= MRI
.createVirtualRegister(MRI
.getRegClass(OldVal
));
1738 unsigned NewValCopy
= MRI
.createVirtualRegister(MRI
.getRegClass(NewVal
));
1740 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), DestCopy
).addReg(Dest
);
1741 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), PtrCopy
).addReg(Ptr
);
1742 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), OldValCopy
).addReg(OldVal
);
1743 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), NewValCopy
).addReg(NewVal
);
1745 // The purposes of the flags on the scratch registers is explained in
1746 // emitAtomicBinary. In summary, we need a scratch register which is going to
1747 // be undef, that is unique among registers chosen for the instruction.
1749 BuildMI(*BB
, II
, DL
, TII
->get(AtomicOp
))
1750 .addReg(Dest
, RegState::Define
| RegState::EarlyClobber
)
1751 .addReg(PtrCopy
, RegState::Kill
)
1752 .addReg(OldValCopy
, RegState::Kill
)
1753 .addReg(NewValCopy
, RegState::Kill
)
1754 .addReg(Scratch
, RegState::EarlyClobber
| RegState::Define
|
1755 RegState::Dead
| RegState::Implicit
);
1757 MI
.eraseFromParent(); // The instruction is gone now.
1762 MachineBasicBlock
*MipsTargetLowering::emitAtomicCmpSwapPartword(
1763 MachineInstr
&MI
, MachineBasicBlock
*BB
, unsigned Size
) const {
1764 assert((Size
== 1 || Size
== 2) &&
1765 "Unsupported size for EmitAtomicCmpSwapPartial.");
1767 MachineFunction
*MF
= BB
->getParent();
1768 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
1769 const TargetRegisterClass
*RC
= getRegClassFor(MVT::i32
);
1770 const bool ArePtrs64bit
= ABI
.ArePtrs64bit();
1771 const TargetRegisterClass
*RCp
=
1772 getRegClassFor(ArePtrs64bit
? MVT::i64
: MVT::i32
);
1773 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1774 DebugLoc DL
= MI
.getDebugLoc();
1776 unsigned Dest
= MI
.getOperand(0).getReg();
1777 unsigned Ptr
= MI
.getOperand(1).getReg();
1778 unsigned CmpVal
= MI
.getOperand(2).getReg();
1779 unsigned NewVal
= MI
.getOperand(3).getReg();
1781 unsigned AlignedAddr
= RegInfo
.createVirtualRegister(RCp
);
1782 unsigned ShiftAmt
= RegInfo
.createVirtualRegister(RC
);
1783 unsigned Mask
= RegInfo
.createVirtualRegister(RC
);
1784 unsigned Mask2
= RegInfo
.createVirtualRegister(RC
);
1785 unsigned ShiftedCmpVal
= RegInfo
.createVirtualRegister(RC
);
1786 unsigned ShiftedNewVal
= RegInfo
.createVirtualRegister(RC
);
1787 unsigned MaskLSB2
= RegInfo
.createVirtualRegister(RCp
);
1788 unsigned PtrLSB2
= RegInfo
.createVirtualRegister(RC
);
1789 unsigned MaskUpper
= RegInfo
.createVirtualRegister(RC
);
1790 unsigned MaskedCmpVal
= RegInfo
.createVirtualRegister(RC
);
1791 unsigned MaskedNewVal
= RegInfo
.createVirtualRegister(RC
);
1792 unsigned AtomicOp
= MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I8
1793 ? Mips::ATOMIC_CMP_SWAP_I8_POSTRA
1794 : Mips::ATOMIC_CMP_SWAP_I16_POSTRA
;
1796 // The scratch registers here with the EarlyClobber | Define | Dead | Implicit
1797 // flags are used to coerce the register allocator and the machine verifier to
1798 // accept the usage of these registers.
1799 // The EarlyClobber flag has the semantic properties that the operand it is
1800 // attached to is clobbered before the rest of the inputs are read. Hence it
1801 // must be unique among the operands to the instruction.
1802 // The Define flag is needed to coerce the machine verifier that an Undef
1803 // value isn't a problem.
1804 // The Dead flag is needed as the value in scratch isn't used by any other
1805 // instruction. Kill isn't used as Dead is more precise.
1806 unsigned Scratch
= RegInfo
.createVirtualRegister(RC
);
1807 unsigned Scratch2
= RegInfo
.createVirtualRegister(RC
);
1809 // insert new blocks after the current block
1810 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
1811 MachineBasicBlock
*exitMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
1812 MachineFunction::iterator It
= ++BB
->getIterator();
1813 MF
->insert(It
, exitMBB
);
1815 // Transfer the remainder of BB and its successor edges to exitMBB.
1816 exitMBB
->splice(exitMBB
->begin(), BB
,
1817 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
1818 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
1820 BB
->addSuccessor(exitMBB
, BranchProbability::getOne());
1823 // addiu masklsb2,$0,-4 # 0xfffffffc
1824 // and alignedaddr,ptr,masklsb2
1825 // andi ptrlsb2,ptr,3
1826 // xori ptrlsb2,ptrlsb2,3 # Only for BE
1827 // sll shiftamt,ptrlsb2,3
1828 // ori maskupper,$0,255 # 0xff
1829 // sll mask,maskupper,shiftamt
1830 // nor mask2,$0,mask
1831 // andi maskedcmpval,cmpval,255
1832 // sll shiftedcmpval,maskedcmpval,shiftamt
1833 // andi maskednewval,newval,255
1834 // sll shiftednewval,maskednewval,shiftamt
1835 int64_t MaskImm
= (Size
== 1) ? 255 : 65535;
1836 BuildMI(BB
, DL
, TII
->get(ArePtrs64bit
? Mips::DADDiu
: Mips::ADDiu
), MaskLSB2
)
1837 .addReg(ABI
.GetNullPtr()).addImm(-4);
1838 BuildMI(BB
, DL
, TII
->get(ArePtrs64bit
? Mips::AND64
: Mips::AND
), AlignedAddr
)
1839 .addReg(Ptr
).addReg(MaskLSB2
);
1840 BuildMI(BB
, DL
, TII
->get(Mips::ANDi
), PtrLSB2
)
1841 .addReg(Ptr
, 0, ArePtrs64bit
? Mips::sub_32
: 0).addImm(3);
1842 if (Subtarget
.isLittle()) {
1843 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ShiftAmt
).addReg(PtrLSB2
).addImm(3);
1845 unsigned Off
= RegInfo
.createVirtualRegister(RC
);
1846 BuildMI(BB
, DL
, TII
->get(Mips::XORi
), Off
)
1847 .addReg(PtrLSB2
).addImm((Size
== 1) ? 3 : 2);
1848 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ShiftAmt
).addReg(Off
).addImm(3);
1850 BuildMI(BB
, DL
, TII
->get(Mips::ORi
), MaskUpper
)
1851 .addReg(Mips::ZERO
).addImm(MaskImm
);
1852 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), Mask
)
1853 .addReg(MaskUpper
).addReg(ShiftAmt
);
1854 BuildMI(BB
, DL
, TII
->get(Mips::NOR
), Mask2
).addReg(Mips::ZERO
).addReg(Mask
);
1855 BuildMI(BB
, DL
, TII
->get(Mips::ANDi
), MaskedCmpVal
)
1856 .addReg(CmpVal
).addImm(MaskImm
);
1857 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), ShiftedCmpVal
)
1858 .addReg(MaskedCmpVal
).addReg(ShiftAmt
);
1859 BuildMI(BB
, DL
, TII
->get(Mips::ANDi
), MaskedNewVal
)
1860 .addReg(NewVal
).addImm(MaskImm
);
1861 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), ShiftedNewVal
)
1862 .addReg(MaskedNewVal
).addReg(ShiftAmt
);
1864 // The purposes of the flags on the scratch registers are explained in
1865 // emitAtomicBinary. In summary, we need a scratch register which is going to
1866 // be undef, that is unique among the register chosen for the instruction.
1868 BuildMI(BB
, DL
, TII
->get(AtomicOp
))
1869 .addReg(Dest
, RegState::Define
| RegState::EarlyClobber
)
1870 .addReg(AlignedAddr
)
1872 .addReg(ShiftedCmpVal
)
1874 .addReg(ShiftedNewVal
)
1876 .addReg(Scratch
, RegState::EarlyClobber
| RegState::Define
|
1877 RegState::Dead
| RegState::Implicit
)
1878 .addReg(Scratch2
, RegState::EarlyClobber
| RegState::Define
|
1879 RegState::Dead
| RegState::Implicit
);
1881 MI
.eraseFromParent(); // The instruction is gone now.
1886 SDValue
MipsTargetLowering::lowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) const {
1887 // The first operand is the chain, the second is the condition, the third is
1888 // the block to branch to if the condition is true.
1889 SDValue Chain
= Op
.getOperand(0);
1890 SDValue Dest
= Op
.getOperand(2);
1893 assert(!Subtarget
.hasMips32r6() && !Subtarget
.hasMips64r6());
1894 SDValue CondRes
= createFPCmp(DAG
, Op
.getOperand(1));
1896 // Return if flag is not set by a floating point comparison.
1897 if (CondRes
.getOpcode() != MipsISD::FPCmp
)
1900 SDValue CCNode
= CondRes
.getOperand(2);
1902 (Mips::CondCode
)cast
<ConstantSDNode
>(CCNode
)->getZExtValue();
1903 unsigned Opc
= invertFPCondCodeUser(CC
) ? Mips::BRANCH_F
: Mips::BRANCH_T
;
1904 SDValue BrCode
= DAG
.getConstant(Opc
, DL
, MVT::i32
);
1905 SDValue FCC0
= DAG
.getRegister(Mips::FCC0
, MVT::i32
);
1906 return DAG
.getNode(MipsISD::FPBrcond
, DL
, Op
.getValueType(), Chain
, BrCode
,
1907 FCC0
, Dest
, CondRes
);
1910 SDValue
MipsTargetLowering::
1911 lowerSELECT(SDValue Op
, SelectionDAG
&DAG
) const
1913 assert(!Subtarget
.hasMips32r6() && !Subtarget
.hasMips64r6());
1914 SDValue Cond
= createFPCmp(DAG
, Op
.getOperand(0));
1916 // Return if flag is not set by a floating point comparison.
1917 if (Cond
.getOpcode() != MipsISD::FPCmp
)
1920 return createCMovFP(DAG
, Cond
, Op
.getOperand(1), Op
.getOperand(2),
1924 SDValue
MipsTargetLowering::lowerSETCC(SDValue Op
, SelectionDAG
&DAG
) const {
1925 assert(!Subtarget
.hasMips32r6() && !Subtarget
.hasMips64r6());
1926 SDValue Cond
= createFPCmp(DAG
, Op
);
1928 assert(Cond
.getOpcode() == MipsISD::FPCmp
&&
1929 "Floating point operand expected.");
1932 SDValue True
= DAG
.getConstant(1, DL
, MVT::i32
);
1933 SDValue False
= DAG
.getConstant(0, DL
, MVT::i32
);
1935 return createCMovFP(DAG
, Cond
, True
, False
, DL
);
1938 SDValue
MipsTargetLowering::lowerGlobalAddress(SDValue Op
,
1939 SelectionDAG
&DAG
) const {
1940 EVT Ty
= Op
.getValueType();
1941 GlobalAddressSDNode
*N
= cast
<GlobalAddressSDNode
>(Op
);
1942 const GlobalValue
*GV
= N
->getGlobal();
1944 if (!isPositionIndependent()) {
1945 const MipsTargetObjectFile
*TLOF
=
1946 static_cast<const MipsTargetObjectFile
*>(
1947 getTargetMachine().getObjFileLowering());
1948 const GlobalObject
*GO
= GV
->getBaseObject();
1949 if (GO
&& TLOF
->IsGlobalInSmallSection(GO
, getTargetMachine()))
1950 // %gp_rel relocation
1951 return getAddrGPRel(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN64());
1953 // %hi/%lo relocation
1954 return Subtarget
.hasSym32() ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
1955 // %highest/%higher/%hi/%lo relocation
1956 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
1959 // Every other architecture would use shouldAssumeDSOLocal in here, but
1961 // * In PIC code mips requires got loads even for local statics!
1962 // * To save on got entries, for local statics the got entry contains the
1963 // page and an additional add instruction takes care of the low bits.
1964 // * It is legal to access a hidden symbol with a non hidden undefined,
1965 // so one cannot guarantee that all access to a hidden symbol will know
1967 // * Mips linkers don't support creating a page and a full got entry for
1969 // * Given all that, we have to use a full got entry for hidden symbols :-(
1970 if (GV
->hasLocalLinkage())
1971 return getAddrLocal(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
1974 return getAddrGlobalLargeGOT(
1975 N
, SDLoc(N
), Ty
, DAG
, MipsII::MO_GOT_HI16
, MipsII::MO_GOT_LO16
,
1977 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
1979 return getAddrGlobal(
1980 N
, SDLoc(N
), Ty
, DAG
,
1981 (ABI
.IsN32() || ABI
.IsN64()) ? MipsII::MO_GOT_DISP
: MipsII::MO_GOT
,
1982 DAG
.getEntryNode(), MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
1985 SDValue
MipsTargetLowering::lowerBlockAddress(SDValue Op
,
1986 SelectionDAG
&DAG
) const {
1987 BlockAddressSDNode
*N
= cast
<BlockAddressSDNode
>(Op
);
1988 EVT Ty
= Op
.getValueType();
1990 if (!isPositionIndependent())
1991 return Subtarget
.hasSym32() ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
1992 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
1994 return getAddrLocal(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
1997 SDValue
MipsTargetLowering::
1998 lowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) const
2000 // If the relocation model is PIC, use the General Dynamic TLS Model or
2001 // Local Dynamic TLS model, otherwise use the Initial Exec or
2002 // Local Exec TLS Model.
2004 GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
2005 if (DAG
.getTarget().useEmulatedTLS())
2006 return LowerToTLSEmulatedModel(GA
, DAG
);
2009 const GlobalValue
*GV
= GA
->getGlobal();
2010 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
2012 TLSModel::Model model
= getTargetMachine().getTLSModel(GV
);
2014 if (model
== TLSModel::GeneralDynamic
|| model
== TLSModel::LocalDynamic
) {
2015 // General Dynamic and Local Dynamic TLS Model.
2016 unsigned Flag
= (model
== TLSModel::LocalDynamic
) ? MipsII::MO_TLSLDM
2019 SDValue TGA
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0, Flag
);
2020 SDValue Argument
= DAG
.getNode(MipsISD::Wrapper
, DL
, PtrVT
,
2021 getGlobalReg(DAG
, PtrVT
), TGA
);
2022 unsigned PtrSize
= PtrVT
.getSizeInBits();
2023 IntegerType
*PtrTy
= Type::getIntNTy(*DAG
.getContext(), PtrSize
);
2025 SDValue TlsGetAddr
= DAG
.getExternalSymbol("__tls_get_addr", PtrVT
);
2029 Entry
.Node
= Argument
;
2031 Args
.push_back(Entry
);
2033 TargetLowering::CallLoweringInfo
CLI(DAG
);
2035 .setChain(DAG
.getEntryNode())
2036 .setLibCallee(CallingConv::C
, PtrTy
, TlsGetAddr
, std::move(Args
));
2037 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
2039 SDValue Ret
= CallResult
.first
;
2041 if (model
!= TLSModel::LocalDynamic
)
2044 SDValue TGAHi
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2045 MipsII::MO_DTPREL_HI
);
2046 SDValue Hi
= DAG
.getNode(MipsISD::TlsHi
, DL
, PtrVT
, TGAHi
);
2047 SDValue TGALo
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2048 MipsII::MO_DTPREL_LO
);
2049 SDValue Lo
= DAG
.getNode(MipsISD::Lo
, DL
, PtrVT
, TGALo
);
2050 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, Hi
, Ret
);
2051 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, Add
, Lo
);
2055 if (model
== TLSModel::InitialExec
) {
2056 // Initial Exec TLS Model
2057 SDValue TGA
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2058 MipsII::MO_GOTTPREL
);
2059 TGA
= DAG
.getNode(MipsISD::Wrapper
, DL
, PtrVT
, getGlobalReg(DAG
, PtrVT
),
2062 DAG
.getLoad(PtrVT
, DL
, DAG
.getEntryNode(), TGA
, MachinePointerInfo());
2064 // Local Exec TLS Model
2065 assert(model
== TLSModel::LocalExec
);
2066 SDValue TGAHi
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2067 MipsII::MO_TPREL_HI
);
2068 SDValue TGALo
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2069 MipsII::MO_TPREL_LO
);
2070 SDValue Hi
= DAG
.getNode(MipsISD::TlsHi
, DL
, PtrVT
, TGAHi
);
2071 SDValue Lo
= DAG
.getNode(MipsISD::Lo
, DL
, PtrVT
, TGALo
);
2072 Offset
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, Hi
, Lo
);
2075 SDValue ThreadPointer
= DAG
.getNode(MipsISD::ThreadPointer
, DL
, PtrVT
);
2076 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, ThreadPointer
, Offset
);
2079 SDValue
MipsTargetLowering::
2080 lowerJumpTable(SDValue Op
, SelectionDAG
&DAG
) const
2082 JumpTableSDNode
*N
= cast
<JumpTableSDNode
>(Op
);
2083 EVT Ty
= Op
.getValueType();
2085 if (!isPositionIndependent())
2086 return Subtarget
.hasSym32() ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
2087 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
2089 return getAddrLocal(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
2092 SDValue
MipsTargetLowering::
2093 lowerConstantPool(SDValue Op
, SelectionDAG
&DAG
) const
2095 ConstantPoolSDNode
*N
= cast
<ConstantPoolSDNode
>(Op
);
2096 EVT Ty
= Op
.getValueType();
2098 if (!isPositionIndependent()) {
2099 const MipsTargetObjectFile
*TLOF
=
2100 static_cast<const MipsTargetObjectFile
*>(
2101 getTargetMachine().getObjFileLowering());
2103 if (TLOF
->IsConstantInSmallSection(DAG
.getDataLayout(), N
->getConstVal(),
2104 getTargetMachine()))
2105 // %gp_rel relocation
2106 return getAddrGPRel(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN64());
2108 return Subtarget
.hasSym32() ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
2109 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
2112 return getAddrLocal(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
2115 SDValue
MipsTargetLowering::lowerVASTART(SDValue Op
, SelectionDAG
&DAG
) const {
2116 MachineFunction
&MF
= DAG
.getMachineFunction();
2117 MipsFunctionInfo
*FuncInfo
= MF
.getInfo
<MipsFunctionInfo
>();
2120 SDValue FI
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(),
2121 getPointerTy(MF
.getDataLayout()));
2123 // vastart just stores the address of the VarArgsFrameIndex slot into the
2124 // memory location argument.
2125 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
2126 return DAG
.getStore(Op
.getOperand(0), DL
, FI
, Op
.getOperand(1),
2127 MachinePointerInfo(SV
));
2130 SDValue
MipsTargetLowering::lowerVAARG(SDValue Op
, SelectionDAG
&DAG
) const {
2131 SDNode
*Node
= Op
.getNode();
2132 EVT VT
= Node
->getValueType(0);
2133 SDValue Chain
= Node
->getOperand(0);
2134 SDValue VAListPtr
= Node
->getOperand(1);
2135 unsigned Align
= Node
->getConstantOperandVal(3);
2136 const Value
*SV
= cast
<SrcValueSDNode
>(Node
->getOperand(2))->getValue();
2138 unsigned ArgSlotSizeInBytes
= (ABI
.IsN32() || ABI
.IsN64()) ? 8 : 4;
2140 SDValue VAListLoad
= DAG
.getLoad(getPointerTy(DAG
.getDataLayout()), DL
, Chain
,
2141 VAListPtr
, MachinePointerInfo(SV
));
2142 SDValue VAList
= VAListLoad
;
2144 // Re-align the pointer if necessary.
2145 // It should only ever be necessary for 64-bit types on O32 since the minimum
2146 // argument alignment is the same as the maximum type alignment for N32/N64.
2148 // FIXME: We currently align too often. The code generator doesn't notice
2149 // when the pointer is still aligned from the last va_arg (or pair of
2150 // va_args for the i64 on O32 case).
2151 if (Align
> getMinStackArgumentAlignment()) {
2152 assert(((Align
& (Align
-1)) == 0) && "Expected Align to be a power of 2");
2154 VAList
= DAG
.getNode(ISD::ADD
, DL
, VAList
.getValueType(), VAList
,
2155 DAG
.getConstant(Align
- 1, DL
, VAList
.getValueType()));
2157 VAList
= DAG
.getNode(ISD::AND
, DL
, VAList
.getValueType(), VAList
,
2158 DAG
.getConstant(-(int64_t)Align
, DL
,
2159 VAList
.getValueType()));
2162 // Increment the pointer, VAList, to the next vaarg.
2163 auto &TD
= DAG
.getDataLayout();
2164 unsigned ArgSizeInBytes
=
2165 TD
.getTypeAllocSize(VT
.getTypeForEVT(*DAG
.getContext()));
2167 DAG
.getNode(ISD::ADD
, DL
, VAList
.getValueType(), VAList
,
2168 DAG
.getConstant(alignTo(ArgSizeInBytes
, ArgSlotSizeInBytes
),
2169 DL
, VAList
.getValueType()));
2170 // Store the incremented VAList to the legalized pointer
2171 Chain
= DAG
.getStore(VAListLoad
.getValue(1), DL
, Tmp3
, VAListPtr
,
2172 MachinePointerInfo(SV
));
2174 // In big-endian mode we must adjust the pointer when the load size is smaller
2175 // than the argument slot size. We must also reduce the known alignment to
2176 // match. For example in the N64 ABI, we must add 4 bytes to the offset to get
2177 // the correct half of the slot, and reduce the alignment from 8 (slot
2178 // alignment) down to 4 (type alignment).
2179 if (!Subtarget
.isLittle() && ArgSizeInBytes
< ArgSlotSizeInBytes
) {
2180 unsigned Adjustment
= ArgSlotSizeInBytes
- ArgSizeInBytes
;
2181 VAList
= DAG
.getNode(ISD::ADD
, DL
, VAListPtr
.getValueType(), VAList
,
2182 DAG
.getIntPtrConstant(Adjustment
, DL
));
2184 // Load the actual argument out of the pointer VAList
2185 return DAG
.getLoad(VT
, DL
, Chain
, VAList
, MachinePointerInfo());
2188 static SDValue
lowerFCOPYSIGN32(SDValue Op
, SelectionDAG
&DAG
,
2189 bool HasExtractInsert
) {
2190 EVT TyX
= Op
.getOperand(0).getValueType();
2191 EVT TyY
= Op
.getOperand(1).getValueType();
2193 SDValue Const1
= DAG
.getConstant(1, DL
, MVT::i32
);
2194 SDValue Const31
= DAG
.getConstant(31, DL
, MVT::i32
);
2197 // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2199 SDValue X
= (TyX
== MVT::f32
) ?
2200 DAG
.getNode(ISD::BITCAST
, DL
, MVT::i32
, Op
.getOperand(0)) :
2201 DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
, Op
.getOperand(0),
2203 SDValue Y
= (TyY
== MVT::f32
) ?
2204 DAG
.getNode(ISD::BITCAST
, DL
, MVT::i32
, Op
.getOperand(1)) :
2205 DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
, Op
.getOperand(1),
2208 if (HasExtractInsert
) {
2209 // ext E, Y, 31, 1 ; extract bit31 of Y
2210 // ins X, E, 31, 1 ; insert extracted bit at bit31 of X
2211 SDValue E
= DAG
.getNode(MipsISD::Ext
, DL
, MVT::i32
, Y
, Const31
, Const1
);
2212 Res
= DAG
.getNode(MipsISD::Ins
, DL
, MVT::i32
, E
, Const31
, Const1
, X
);
2215 // srl SrlX, SllX, 1
2217 // sll SllY, SrlX, 31
2218 // or Or, SrlX, SllY
2219 SDValue SllX
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, X
, Const1
);
2220 SDValue SrlX
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SllX
, Const1
);
2221 SDValue SrlY
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, Y
, Const31
);
2222 SDValue SllY
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, SrlY
, Const31
);
2223 Res
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, SrlX
, SllY
);
2226 if (TyX
== MVT::f32
)
2227 return DAG
.getNode(ISD::BITCAST
, DL
, Op
.getOperand(0).getValueType(), Res
);
2229 SDValue LowX
= DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
,
2231 DAG
.getConstant(0, DL
, MVT::i32
));
2232 return DAG
.getNode(MipsISD::BuildPairF64
, DL
, MVT::f64
, LowX
, Res
);
2235 static SDValue
lowerFCOPYSIGN64(SDValue Op
, SelectionDAG
&DAG
,
2236 bool HasExtractInsert
) {
2237 unsigned WidthX
= Op
.getOperand(0).getValueSizeInBits();
2238 unsigned WidthY
= Op
.getOperand(1).getValueSizeInBits();
2239 EVT TyX
= MVT::getIntegerVT(WidthX
), TyY
= MVT::getIntegerVT(WidthY
);
2241 SDValue Const1
= DAG
.getConstant(1, DL
, MVT::i32
);
2243 // Bitcast to integer nodes.
2244 SDValue X
= DAG
.getNode(ISD::BITCAST
, DL
, TyX
, Op
.getOperand(0));
2245 SDValue Y
= DAG
.getNode(ISD::BITCAST
, DL
, TyY
, Op
.getOperand(1));
2247 if (HasExtractInsert
) {
2248 // ext E, Y, width(Y) - 1, 1 ; extract bit width(Y)-1 of Y
2249 // ins X, E, width(X) - 1, 1 ; insert extracted bit at bit width(X)-1 of X
2250 SDValue E
= DAG
.getNode(MipsISD::Ext
, DL
, TyY
, Y
,
2251 DAG
.getConstant(WidthY
- 1, DL
, MVT::i32
), Const1
);
2253 if (WidthX
> WidthY
)
2254 E
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, TyX
, E
);
2255 else if (WidthY
> WidthX
)
2256 E
= DAG
.getNode(ISD::TRUNCATE
, DL
, TyX
, E
);
2258 SDValue I
= DAG
.getNode(MipsISD::Ins
, DL
, TyX
, E
,
2259 DAG
.getConstant(WidthX
- 1, DL
, MVT::i32
), Const1
,
2261 return DAG
.getNode(ISD::BITCAST
, DL
, Op
.getOperand(0).getValueType(), I
);
2264 // (d)sll SllX, X, 1
2265 // (d)srl SrlX, SllX, 1
2266 // (d)srl SrlY, Y, width(Y)-1
2267 // (d)sll SllY, SrlX, width(Y)-1
2268 // or Or, SrlX, SllY
2269 SDValue SllX
= DAG
.getNode(ISD::SHL
, DL
, TyX
, X
, Const1
);
2270 SDValue SrlX
= DAG
.getNode(ISD::SRL
, DL
, TyX
, SllX
, Const1
);
2271 SDValue SrlY
= DAG
.getNode(ISD::SRL
, DL
, TyY
, Y
,
2272 DAG
.getConstant(WidthY
- 1, DL
, MVT::i32
));
2274 if (WidthX
> WidthY
)
2275 SrlY
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, TyX
, SrlY
);
2276 else if (WidthY
> WidthX
)
2277 SrlY
= DAG
.getNode(ISD::TRUNCATE
, DL
, TyX
, SrlY
);
2279 SDValue SllY
= DAG
.getNode(ISD::SHL
, DL
, TyX
, SrlY
,
2280 DAG
.getConstant(WidthX
- 1, DL
, MVT::i32
));
2281 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, TyX
, SrlX
, SllY
);
2282 return DAG
.getNode(ISD::BITCAST
, DL
, Op
.getOperand(0).getValueType(), Or
);
2286 MipsTargetLowering::lowerFCOPYSIGN(SDValue Op
, SelectionDAG
&DAG
) const {
2287 if (Subtarget
.isGP64bit())
2288 return lowerFCOPYSIGN64(Op
, DAG
, Subtarget
.hasExtractInsert());
2290 return lowerFCOPYSIGN32(Op
, DAG
, Subtarget
.hasExtractInsert());
2293 SDValue
MipsTargetLowering::
2294 lowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) const {
2296 assert((cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue() == 0) &&
2297 "Frame address can only be determined for current frame.");
2299 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
2300 MFI
.setFrameAddressIsTaken(true);
2301 EVT VT
= Op
.getValueType();
2303 SDValue FrameAddr
= DAG
.getCopyFromReg(
2304 DAG
.getEntryNode(), DL
, ABI
.IsN64() ? Mips::FP_64
: Mips::FP
, VT
);
2308 SDValue
MipsTargetLowering::lowerRETURNADDR(SDValue Op
,
2309 SelectionDAG
&DAG
) const {
2310 if (verifyReturnAddressArgumentIsConstant(Op
, DAG
))
2314 assert((cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue() == 0) &&
2315 "Return address can be determined only for current frame.");
2317 MachineFunction
&MF
= DAG
.getMachineFunction();
2318 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2319 MVT VT
= Op
.getSimpleValueType();
2320 unsigned RA
= ABI
.IsN64() ? Mips::RA_64
: Mips::RA
;
2321 MFI
.setReturnAddressIsTaken(true);
2323 // Return RA, which contains the return address. Mark it an implicit live-in.
2324 unsigned Reg
= MF
.addLiveIn(RA
, getRegClassFor(VT
));
2325 return DAG
.getCopyFromReg(DAG
.getEntryNode(), SDLoc(Op
), Reg
, VT
);
2328 // An EH_RETURN is the result of lowering llvm.eh.return which in turn is
2329 // generated from __builtin_eh_return (offset, handler)
2330 // The effect of this is to adjust the stack pointer by "offset"
2331 // and then branch to "handler".
2332 SDValue
MipsTargetLowering::lowerEH_RETURN(SDValue Op
, SelectionDAG
&DAG
)
2334 MachineFunction
&MF
= DAG
.getMachineFunction();
2335 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
2337 MipsFI
->setCallsEhReturn();
2338 SDValue Chain
= Op
.getOperand(0);
2339 SDValue Offset
= Op
.getOperand(1);
2340 SDValue Handler
= Op
.getOperand(2);
2342 EVT Ty
= ABI
.IsN64() ? MVT::i64
: MVT::i32
;
2344 // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
2345 // EH_RETURN nodes, so that instructions are emitted back-to-back.
2346 unsigned OffsetReg
= ABI
.IsN64() ? Mips::V1_64
: Mips::V1
;
2347 unsigned AddrReg
= ABI
.IsN64() ? Mips::V0_64
: Mips::V0
;
2348 Chain
= DAG
.getCopyToReg(Chain
, DL
, OffsetReg
, Offset
, SDValue());
2349 Chain
= DAG
.getCopyToReg(Chain
, DL
, AddrReg
, Handler
, Chain
.getValue(1));
2350 return DAG
.getNode(MipsISD::EH_RETURN
, DL
, MVT::Other
, Chain
,
2351 DAG
.getRegister(OffsetReg
, Ty
),
2352 DAG
.getRegister(AddrReg
, getPointerTy(MF
.getDataLayout())),
2356 SDValue
MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op
,
2357 SelectionDAG
&DAG
) const {
2358 // FIXME: Need pseudo-fence for 'singlethread' fences
2359 // FIXME: Set SType for weaker fences where supported/appropriate.
2362 return DAG
.getNode(MipsISD::Sync
, DL
, MVT::Other
, Op
.getOperand(0),
2363 DAG
.getConstant(SType
, DL
, MVT::i32
));
2366 SDValue
MipsTargetLowering::lowerShiftLeftParts(SDValue Op
,
2367 SelectionDAG
&DAG
) const {
2369 MVT VT
= Subtarget
.isGP64bit() ? MVT::i64
: MVT::i32
;
2371 SDValue Lo
= Op
.getOperand(0), Hi
= Op
.getOperand(1);
2372 SDValue Shamt
= Op
.getOperand(2);
2373 // if shamt < (VT.bits):
2374 // lo = (shl lo, shamt)
2375 // hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
2378 // hi = (shl lo, shamt[4:0])
2379 SDValue Not
= DAG
.getNode(ISD::XOR
, DL
, MVT::i32
, Shamt
,
2380 DAG
.getConstant(-1, DL
, MVT::i32
));
2381 SDValue ShiftRight1Lo
= DAG
.getNode(ISD::SRL
, DL
, VT
, Lo
,
2382 DAG
.getConstant(1, DL
, VT
));
2383 SDValue ShiftRightLo
= DAG
.getNode(ISD::SRL
, DL
, VT
, ShiftRight1Lo
, Not
);
2384 SDValue ShiftLeftHi
= DAG
.getNode(ISD::SHL
, DL
, VT
, Hi
, Shamt
);
2385 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, VT
, ShiftLeftHi
, ShiftRightLo
);
2386 SDValue ShiftLeftLo
= DAG
.getNode(ISD::SHL
, DL
, VT
, Lo
, Shamt
);
2387 SDValue Cond
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, Shamt
,
2388 DAG
.getConstant(VT
.getSizeInBits(), DL
, MVT::i32
));
2389 Lo
= DAG
.getNode(ISD::SELECT
, DL
, VT
, Cond
,
2390 DAG
.getConstant(0, DL
, VT
), ShiftLeftLo
);
2391 Hi
= DAG
.getNode(ISD::SELECT
, DL
, VT
, Cond
, ShiftLeftLo
, Or
);
2393 SDValue Ops
[2] = {Lo
, Hi
};
2394 return DAG
.getMergeValues(Ops
, DL
);
2397 SDValue
MipsTargetLowering::lowerShiftRightParts(SDValue Op
, SelectionDAG
&DAG
,
2400 SDValue Lo
= Op
.getOperand(0), Hi
= Op
.getOperand(1);
2401 SDValue Shamt
= Op
.getOperand(2);
2402 MVT VT
= Subtarget
.isGP64bit() ? MVT::i64
: MVT::i32
;
2404 // if shamt < (VT.bits):
2405 // lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
2407 // hi = (sra hi, shamt)
2409 // hi = (srl hi, shamt)
2412 // lo = (sra hi, shamt[4:0])
2413 // hi = (sra hi, 31)
2415 // lo = (srl hi, shamt[4:0])
2417 SDValue Not
= DAG
.getNode(ISD::XOR
, DL
, MVT::i32
, Shamt
,
2418 DAG
.getConstant(-1, DL
, MVT::i32
));
2419 SDValue ShiftLeft1Hi
= DAG
.getNode(ISD::SHL
, DL
, VT
, Hi
,
2420 DAG
.getConstant(1, DL
, VT
));
2421 SDValue ShiftLeftHi
= DAG
.getNode(ISD::SHL
, DL
, VT
, ShiftLeft1Hi
, Not
);
2422 SDValue ShiftRightLo
= DAG
.getNode(ISD::SRL
, DL
, VT
, Lo
, Shamt
);
2423 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, VT
, ShiftLeftHi
, ShiftRightLo
);
2424 SDValue ShiftRightHi
= DAG
.getNode(IsSRA
? ISD::SRA
: ISD::SRL
,
2426 SDValue Cond
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, Shamt
,
2427 DAG
.getConstant(VT
.getSizeInBits(), DL
, MVT::i32
));
2428 SDValue Ext
= DAG
.getNode(ISD::SRA
, DL
, VT
, Hi
,
2429 DAG
.getConstant(VT
.getSizeInBits() - 1, DL
, VT
));
2430 Lo
= DAG
.getNode(ISD::SELECT
, DL
, VT
, Cond
, ShiftRightHi
, Or
);
2431 Hi
= DAG
.getNode(ISD::SELECT
, DL
, VT
, Cond
,
2432 IsSRA
? Ext
: DAG
.getConstant(0, DL
, VT
), ShiftRightHi
);
2434 SDValue Ops
[2] = {Lo
, Hi
};
2435 return DAG
.getMergeValues(Ops
, DL
);
2438 static SDValue
createLoadLR(unsigned Opc
, SelectionDAG
&DAG
, LoadSDNode
*LD
,
2439 SDValue Chain
, SDValue Src
, unsigned Offset
) {
2440 SDValue Ptr
= LD
->getBasePtr();
2441 EVT VT
= LD
->getValueType(0), MemVT
= LD
->getMemoryVT();
2442 EVT BasePtrVT
= Ptr
.getValueType();
2444 SDVTList VTList
= DAG
.getVTList(VT
, MVT::Other
);
2447 Ptr
= DAG
.getNode(ISD::ADD
, DL
, BasePtrVT
, Ptr
,
2448 DAG
.getConstant(Offset
, DL
, BasePtrVT
));
2450 SDValue Ops
[] = { Chain
, Ptr
, Src
};
2451 return DAG
.getMemIntrinsicNode(Opc
, DL
, VTList
, Ops
, MemVT
,
2452 LD
->getMemOperand());
2455 // Expand an unaligned 32 or 64-bit integer load node.
2456 SDValue
MipsTargetLowering::lowerLOAD(SDValue Op
, SelectionDAG
&DAG
) const {
2457 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
2458 EVT MemVT
= LD
->getMemoryVT();
2460 if (Subtarget
.systemSupportsUnalignedAccess())
2463 // Return if load is aligned or if MemVT is neither i32 nor i64.
2464 if ((LD
->getAlignment() >= MemVT
.getSizeInBits() / 8) ||
2465 ((MemVT
!= MVT::i32
) && (MemVT
!= MVT::i64
)))
2468 bool IsLittle
= Subtarget
.isLittle();
2469 EVT VT
= Op
.getValueType();
2470 ISD::LoadExtType ExtType
= LD
->getExtensionType();
2471 SDValue Chain
= LD
->getChain(), Undef
= DAG
.getUNDEF(VT
);
2473 assert((VT
== MVT::i32
) || (VT
== MVT::i64
));
2476 // (set dst, (i64 (load baseptr)))
2478 // (set tmp, (ldl (add baseptr, 7), undef))
2479 // (set dst, (ldr baseptr, tmp))
2480 if ((VT
== MVT::i64
) && (ExtType
== ISD::NON_EXTLOAD
)) {
2481 SDValue LDL
= createLoadLR(MipsISD::LDL
, DAG
, LD
, Chain
, Undef
,
2483 return createLoadLR(MipsISD::LDR
, DAG
, LD
, LDL
.getValue(1), LDL
,
2487 SDValue LWL
= createLoadLR(MipsISD::LWL
, DAG
, LD
, Chain
, Undef
,
2489 SDValue LWR
= createLoadLR(MipsISD::LWR
, DAG
, LD
, LWL
.getValue(1), LWL
,
2493 // (set dst, (i32 (load baseptr))) or
2494 // (set dst, (i64 (sextload baseptr))) or
2495 // (set dst, (i64 (extload baseptr)))
2497 // (set tmp, (lwl (add baseptr, 3), undef))
2498 // (set dst, (lwr baseptr, tmp))
2499 if ((VT
== MVT::i32
) || (ExtType
== ISD::SEXTLOAD
) ||
2500 (ExtType
== ISD::EXTLOAD
))
2503 assert((VT
== MVT::i64
) && (ExtType
== ISD::ZEXTLOAD
));
2506 // (set dst, (i64 (zextload baseptr)))
2508 // (set tmp0, (lwl (add baseptr, 3), undef))
2509 // (set tmp1, (lwr baseptr, tmp0))
2510 // (set tmp2, (shl tmp1, 32))
2511 // (set dst, (srl tmp2, 32))
2513 SDValue Const32
= DAG
.getConstant(32, DL
, MVT::i32
);
2514 SDValue SLL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i64
, LWR
, Const32
);
2515 SDValue SRL
= DAG
.getNode(ISD::SRL
, DL
, MVT::i64
, SLL
, Const32
);
2516 SDValue Ops
[] = { SRL
, LWR
.getValue(1) };
2517 return DAG
.getMergeValues(Ops
, DL
);
2520 static SDValue
createStoreLR(unsigned Opc
, SelectionDAG
&DAG
, StoreSDNode
*SD
,
2521 SDValue Chain
, unsigned Offset
) {
2522 SDValue Ptr
= SD
->getBasePtr(), Value
= SD
->getValue();
2523 EVT MemVT
= SD
->getMemoryVT(), BasePtrVT
= Ptr
.getValueType();
2525 SDVTList VTList
= DAG
.getVTList(MVT::Other
);
2528 Ptr
= DAG
.getNode(ISD::ADD
, DL
, BasePtrVT
, Ptr
,
2529 DAG
.getConstant(Offset
, DL
, BasePtrVT
));
2531 SDValue Ops
[] = { Chain
, Value
, Ptr
};
2532 return DAG
.getMemIntrinsicNode(Opc
, DL
, VTList
, Ops
, MemVT
,
2533 SD
->getMemOperand());
2536 // Expand an unaligned 32 or 64-bit integer store node.
2537 static SDValue
lowerUnalignedIntStore(StoreSDNode
*SD
, SelectionDAG
&DAG
,
2539 SDValue Value
= SD
->getValue(), Chain
= SD
->getChain();
2540 EVT VT
= Value
.getValueType();
2543 // (store val, baseptr) or
2544 // (truncstore val, baseptr)
2546 // (swl val, (add baseptr, 3))
2547 // (swr val, baseptr)
2548 if ((VT
== MVT::i32
) || SD
->isTruncatingStore()) {
2549 SDValue SWL
= createStoreLR(MipsISD::SWL
, DAG
, SD
, Chain
,
2551 return createStoreLR(MipsISD::SWR
, DAG
, SD
, SWL
, IsLittle
? 0 : 3);
2554 assert(VT
== MVT::i64
);
2557 // (store val, baseptr)
2559 // (sdl val, (add baseptr, 7))
2560 // (sdr val, baseptr)
2561 SDValue SDL
= createStoreLR(MipsISD::SDL
, DAG
, SD
, Chain
, IsLittle
? 7 : 0);
2562 return createStoreLR(MipsISD::SDR
, DAG
, SD
, SDL
, IsLittle
? 0 : 7);
2565 // Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
2566 static SDValue
lowerFP_TO_SINT_STORE(StoreSDNode
*SD
, SelectionDAG
&DAG
,
2568 SDValue Val
= SD
->getValue();
2570 if (Val
.getOpcode() != ISD::FP_TO_SINT
||
2571 (Val
.getValueSizeInBits() > 32 && SingleFloat
))
2574 EVT FPTy
= EVT::getFloatingPointVT(Val
.getValueSizeInBits());
2575 SDValue Tr
= DAG
.getNode(MipsISD::TruncIntFP
, SDLoc(Val
), FPTy
,
2577 return DAG
.getStore(SD
->getChain(), SDLoc(SD
), Tr
, SD
->getBasePtr(),
2578 SD
->getPointerInfo(), SD
->getAlignment(),
2579 SD
->getMemOperand()->getFlags());
2582 SDValue
MipsTargetLowering::lowerSTORE(SDValue Op
, SelectionDAG
&DAG
) const {
2583 StoreSDNode
*SD
= cast
<StoreSDNode
>(Op
);
2584 EVT MemVT
= SD
->getMemoryVT();
2586 // Lower unaligned integer stores.
2587 if (!Subtarget
.systemSupportsUnalignedAccess() &&
2588 (SD
->getAlignment() < MemVT
.getSizeInBits() / 8) &&
2589 ((MemVT
== MVT::i32
) || (MemVT
== MVT::i64
)))
2590 return lowerUnalignedIntStore(SD
, DAG
, Subtarget
.isLittle());
2592 return lowerFP_TO_SINT_STORE(SD
, DAG
, Subtarget
.isSingleFloat());
2595 SDValue
MipsTargetLowering::lowerEH_DWARF_CFA(SDValue Op
,
2596 SelectionDAG
&DAG
) const {
2598 // Return a fixed StackObject with offset 0 which points to the old stack
2600 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
2601 EVT ValTy
= Op
->getValueType(0);
2602 int FI
= MFI
.CreateFixedObject(Op
.getValueSizeInBits() / 8, 0, false);
2603 return DAG
.getFrameIndex(FI
, ValTy
);
2606 SDValue
MipsTargetLowering::lowerFP_TO_SINT(SDValue Op
,
2607 SelectionDAG
&DAG
) const {
2608 if (Op
.getValueSizeInBits() > 32 && Subtarget
.isSingleFloat())
2611 EVT FPTy
= EVT::getFloatingPointVT(Op
.getValueSizeInBits());
2612 SDValue Trunc
= DAG
.getNode(MipsISD::TruncIntFP
, SDLoc(Op
), FPTy
,
2614 return DAG
.getNode(ISD::BITCAST
, SDLoc(Op
), Op
.getValueType(), Trunc
);
2617 //===----------------------------------------------------------------------===//
2618 // Calling Convention Implementation
2619 //===----------------------------------------------------------------------===//
2621 //===----------------------------------------------------------------------===//
2622 // TODO: Implement a generic logic using tblgen that can support this.
2623 // Mips O32 ABI rules:
2625 // i32 - Passed in A0, A1, A2, A3 and stack
2626 // f32 - Only passed in f32 registers if no int reg has been used yet to hold
2627 // an argument. Otherwise, passed in A1, A2, A3 and stack.
2628 // f64 - Only passed in two aliased f32 registers if no int reg has been used
2629 // yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2630 // not used, it must be shadowed. If only A3 is available, shadow it and
2632 // vXiX - Received as scalarized i32s, passed in A0 - A3 and the stack.
2633 // vXf32 - Passed in either a pair of registers {A0, A1}, {A2, A3} or {A0 - A3}
2634 // with the remainder spilled to the stack.
2635 // vXf64 - Passed in either {A0, A1, A2, A3} or {A2, A3} and in both cases
2636 // spilling the remainder to the stack.
2638 // For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2639 //===----------------------------------------------------------------------===//
2641 static bool CC_MipsO32(unsigned ValNo
, MVT ValVT
, MVT LocVT
,
2642 CCValAssign::LocInfo LocInfo
, ISD::ArgFlagsTy ArgFlags
,
2643 CCState
&State
, ArrayRef
<MCPhysReg
> F64Regs
) {
2644 const MipsSubtarget
&Subtarget
= static_cast<const MipsSubtarget
&>(
2645 State
.getMachineFunction().getSubtarget());
2647 static const MCPhysReg IntRegs
[] = { Mips::A0
, Mips::A1
, Mips::A2
, Mips::A3
};
2649 const MipsCCState
* MipsState
= static_cast<MipsCCState
*>(&State
);
2651 static const MCPhysReg F32Regs
[] = { Mips::F12
, Mips::F14
};
2653 static const MCPhysReg FloatVectorIntRegs
[] = { Mips::A0
, Mips::A2
};
2655 // Do not process byval args here.
2656 if (ArgFlags
.isByVal())
2659 // Promote i8 and i16
2660 if (ArgFlags
.isInReg() && !Subtarget
.isLittle()) {
2661 if (LocVT
== MVT::i8
|| LocVT
== MVT::i16
|| LocVT
== MVT::i32
) {
2663 if (ArgFlags
.isSExt())
2664 LocInfo
= CCValAssign::SExtUpper
;
2665 else if (ArgFlags
.isZExt())
2666 LocInfo
= CCValAssign::ZExtUpper
;
2668 LocInfo
= CCValAssign::AExtUpper
;
2672 // Promote i8 and i16
2673 if (LocVT
== MVT::i8
|| LocVT
== MVT::i16
) {
2675 if (ArgFlags
.isSExt())
2676 LocInfo
= CCValAssign::SExt
;
2677 else if (ArgFlags
.isZExt())
2678 LocInfo
= CCValAssign::ZExt
;
2680 LocInfo
= CCValAssign::AExt
;
2685 // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2686 // is true: function is vararg, argument is 3rd or higher, there is previous
2687 // argument which is not f32 or f64.
2688 bool AllocateFloatsInIntReg
= State
.isVarArg() || ValNo
> 1 ||
2689 State
.getFirstUnallocated(F32Regs
) != ValNo
;
2690 unsigned OrigAlign
= ArgFlags
.getOrigAlign();
2691 bool isI64
= (ValVT
== MVT::i32
&& OrigAlign
== 8);
2692 bool isVectorFloat
= MipsState
->WasOriginalArgVectorFloat(ValNo
);
2694 // The MIPS vector ABI for floats passes them in a pair of registers
2695 if (ValVT
== MVT::i32
&& isVectorFloat
) {
2696 // This is the start of an vector that was scalarized into an unknown number
2697 // of components. It doesn't matter how many there are. Allocate one of the
2698 // notional 8 byte aligned registers which map onto the argument stack, and
2699 // shadow the register lost to alignment requirements.
2700 if (ArgFlags
.isSplit()) {
2701 Reg
= State
.AllocateReg(FloatVectorIntRegs
);
2702 if (Reg
== Mips::A2
)
2703 State
.AllocateReg(Mips::A1
);
2705 State
.AllocateReg(Mips::A3
);
2707 // If we're an intermediate component of the split, we can just attempt to
2708 // allocate a register directly.
2709 Reg
= State
.AllocateReg(IntRegs
);
2711 } else if (ValVT
== MVT::i32
|| (ValVT
== MVT::f32
&& AllocateFloatsInIntReg
)) {
2712 Reg
= State
.AllocateReg(IntRegs
);
2713 // If this is the first part of an i64 arg,
2714 // the allocated register must be either A0 or A2.
2715 if (isI64
&& (Reg
== Mips::A1
|| Reg
== Mips::A3
))
2716 Reg
= State
.AllocateReg(IntRegs
);
2718 } else if (ValVT
== MVT::f64
&& AllocateFloatsInIntReg
) {
2719 // Allocate int register and shadow next int register. If first
2720 // available register is Mips::A1 or Mips::A3, shadow it too.
2721 Reg
= State
.AllocateReg(IntRegs
);
2722 if (Reg
== Mips::A1
|| Reg
== Mips::A3
)
2723 Reg
= State
.AllocateReg(IntRegs
);
2724 State
.AllocateReg(IntRegs
);
2726 } else if (ValVT
.isFloatingPoint() && !AllocateFloatsInIntReg
) {
2727 // we are guaranteed to find an available float register
2728 if (ValVT
== MVT::f32
) {
2729 Reg
= State
.AllocateReg(F32Regs
);
2730 // Shadow int register
2731 State
.AllocateReg(IntRegs
);
2733 Reg
= State
.AllocateReg(F64Regs
);
2734 // Shadow int registers
2735 unsigned Reg2
= State
.AllocateReg(IntRegs
);
2736 if (Reg2
== Mips::A1
|| Reg2
== Mips::A3
)
2737 State
.AllocateReg(IntRegs
);
2738 State
.AllocateReg(IntRegs
);
2741 llvm_unreachable("Cannot handle this ValVT.");
2744 unsigned Offset
= State
.AllocateStack(ValVT
.getStoreSize(), OrigAlign
);
2745 State
.addLoc(CCValAssign::getMem(ValNo
, ValVT
, Offset
, LocVT
, LocInfo
));
2747 State
.addLoc(CCValAssign::getReg(ValNo
, ValVT
, Reg
, LocVT
, LocInfo
));
2752 static bool CC_MipsO32_FP32(unsigned ValNo
, MVT ValVT
,
2753 MVT LocVT
, CCValAssign::LocInfo LocInfo
,
2754 ISD::ArgFlagsTy ArgFlags
, CCState
&State
) {
2755 static const MCPhysReg F64Regs
[] = { Mips::D6
, Mips::D7
};
2757 return CC_MipsO32(ValNo
, ValVT
, LocVT
, LocInfo
, ArgFlags
, State
, F64Regs
);
2760 static bool CC_MipsO32_FP64(unsigned ValNo
, MVT ValVT
,
2761 MVT LocVT
, CCValAssign::LocInfo LocInfo
,
2762 ISD::ArgFlagsTy ArgFlags
, CCState
&State
) {
2763 static const MCPhysReg F64Regs
[] = { Mips::D12_64
, Mips::D14_64
};
2765 return CC_MipsO32(ValNo
, ValVT
, LocVT
, LocInfo
, ArgFlags
, State
, F64Regs
);
2768 static bool CC_MipsO32(unsigned ValNo
, MVT ValVT
, MVT LocVT
,
2769 CCValAssign::LocInfo LocInfo
, ISD::ArgFlagsTy ArgFlags
,
2770 CCState
&State
) LLVM_ATTRIBUTE_UNUSED
;
2772 #include "MipsGenCallingConv.inc"
2774 CCAssignFn
*MipsTargetLowering::CCAssignFnForCall() const{
2778 CCAssignFn
*MipsTargetLowering::CCAssignFnForReturn() const{
2781 //===----------------------------------------------------------------------===//
2782 // Call Calling Convention Implementation
2783 //===----------------------------------------------------------------------===//
2785 // Return next O32 integer argument register.
2786 static unsigned getNextIntArgReg(unsigned Reg
) {
2787 assert((Reg
== Mips::A0
) || (Reg
== Mips::A2
));
2788 return (Reg
== Mips::A0
) ? Mips::A1
: Mips::A3
;
2791 SDValue
MipsTargetLowering::passArgOnStack(SDValue StackPtr
, unsigned Offset
,
2792 SDValue Chain
, SDValue Arg
,
2793 const SDLoc
&DL
, bool IsTailCall
,
2794 SelectionDAG
&DAG
) const {
2797 DAG
.getNode(ISD::ADD
, DL
, getPointerTy(DAG
.getDataLayout()), StackPtr
,
2798 DAG
.getIntPtrConstant(Offset
, DL
));
2799 return DAG
.getStore(Chain
, DL
, Arg
, PtrOff
, MachinePointerInfo());
2802 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
2803 int FI
= MFI
.CreateFixedObject(Arg
.getValueSizeInBits() / 8, Offset
, false);
2804 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
2805 return DAG
.getStore(Chain
, DL
, Arg
, FIN
, MachinePointerInfo(),
2806 /* Alignment = */ 0, MachineMemOperand::MOVolatile
);
2809 void MipsTargetLowering::
2810 getOpndList(SmallVectorImpl
<SDValue
> &Ops
,
2811 std::deque
<std::pair
<unsigned, SDValue
>> &RegsToPass
,
2812 bool IsPICCall
, bool GlobalOrExternal
, bool InternalLinkage
,
2813 bool IsCallReloc
, CallLoweringInfo
&CLI
, SDValue Callee
,
2814 SDValue Chain
) const {
2815 // Insert node "GP copy globalreg" before call to function.
2817 // R_MIPS_CALL* operators (emitted when non-internal functions are called
2818 // in PIC mode) allow symbols to be resolved via lazy binding.
2819 // The lazy binding stub requires GP to point to the GOT.
2820 // Note that we don't need GP to point to the GOT for indirect calls
2821 // (when R_MIPS_CALL* is not used for the call) because Mips linker generates
2822 // lazy binding stub for a function only when R_MIPS_CALL* are the only relocs
2823 // used for the function (that is, Mips linker doesn't generate lazy binding
2824 // stub for a function whose address is taken in the program).
2825 if (IsPICCall
&& !InternalLinkage
&& IsCallReloc
) {
2826 unsigned GPReg
= ABI
.IsN64() ? Mips::GP_64
: Mips::GP
;
2827 EVT Ty
= ABI
.IsN64() ? MVT::i64
: MVT::i32
;
2828 RegsToPass
.push_back(std::make_pair(GPReg
, getGlobalReg(CLI
.DAG
, Ty
)));
2831 // Build a sequence of copy-to-reg nodes chained together with token
2832 // chain and flag operands which copy the outgoing args into registers.
2833 // The InFlag in necessary since all emitted instructions must be
2837 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
2838 Chain
= CLI
.DAG
.getCopyToReg(Chain
, CLI
.DL
, RegsToPass
[i
].first
,
2839 RegsToPass
[i
].second
, InFlag
);
2840 InFlag
= Chain
.getValue(1);
2843 // Add argument registers to the end of the list so that they are
2844 // known live into the call.
2845 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
2846 Ops
.push_back(CLI
.DAG
.getRegister(RegsToPass
[i
].first
,
2847 RegsToPass
[i
].second
.getValueType()));
2849 // Add a register mask operand representing the call-preserved registers.
2850 const TargetRegisterInfo
*TRI
= Subtarget
.getRegisterInfo();
2851 const uint32_t *Mask
=
2852 TRI
->getCallPreservedMask(CLI
.DAG
.getMachineFunction(), CLI
.CallConv
);
2853 assert(Mask
&& "Missing call preserved mask for calling convention");
2854 if (Subtarget
.inMips16HardFloat()) {
2855 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(CLI
.Callee
)) {
2856 StringRef Sym
= G
->getGlobal()->getName();
2857 Function
*F
= G
->getGlobal()->getParent()->getFunction(Sym
);
2858 if (F
&& F
->hasFnAttribute("__Mips16RetHelper")) {
2859 Mask
= MipsRegisterInfo::getMips16RetHelperMask();
2863 Ops
.push_back(CLI
.DAG
.getRegisterMask(Mask
));
2865 if (InFlag
.getNode())
2866 Ops
.push_back(InFlag
);
2869 /// LowerCall - functions arguments are copied from virtual regs to
2870 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2872 MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo
&CLI
,
2873 SmallVectorImpl
<SDValue
> &InVals
) const {
2874 SelectionDAG
&DAG
= CLI
.DAG
;
2876 SmallVectorImpl
<ISD::OutputArg
> &Outs
= CLI
.Outs
;
2877 SmallVectorImpl
<SDValue
> &OutVals
= CLI
.OutVals
;
2878 SmallVectorImpl
<ISD::InputArg
> &Ins
= CLI
.Ins
;
2879 SDValue Chain
= CLI
.Chain
;
2880 SDValue Callee
= CLI
.Callee
;
2881 bool &IsTailCall
= CLI
.IsTailCall
;
2882 CallingConv::ID CallConv
= CLI
.CallConv
;
2883 bool IsVarArg
= CLI
.IsVarArg
;
2885 MachineFunction
&MF
= DAG
.getMachineFunction();
2886 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2887 const TargetFrameLowering
*TFL
= Subtarget
.getFrameLowering();
2888 MipsFunctionInfo
*FuncInfo
= MF
.getInfo
<MipsFunctionInfo
>();
2889 bool IsPIC
= isPositionIndependent();
2891 // Analyze operands of the call, assigning locations to each operand.
2892 SmallVector
<CCValAssign
, 16> ArgLocs
;
2894 CallConv
, IsVarArg
, DAG
.getMachineFunction(), ArgLocs
, *DAG
.getContext(),
2895 MipsCCState::getSpecialCallingConvForCallee(Callee
.getNode(), Subtarget
));
2897 const ExternalSymbolSDNode
*ES
=
2898 dyn_cast_or_null
<const ExternalSymbolSDNode
>(Callee
.getNode());
2900 // There is one case where CALLSEQ_START..CALLSEQ_END can be nested, which
2901 // is during the lowering of a call with a byval argument which produces
2902 // a call to memcpy. For the O32 case, this causes the caller to allocate
2903 // stack space for the reserved argument area for the callee, then recursively
2904 // again for the memcpy call. In the NEWABI case, this doesn't occur as those
2905 // ABIs mandate that the callee allocates the reserved argument area. We do
2906 // still produce nested CALLSEQ_START..CALLSEQ_END with zero space though.
2908 // If the callee has a byval argument and memcpy is used, we are mandated
2909 // to already have produced a reserved argument area for the callee for O32.
2910 // Therefore, the reserved argument area can be reused for both calls.
2912 // Other cases of calling memcpy cannot have a chain with a CALLSEQ_START
2913 // present, as we have yet to hook that node onto the chain.
2915 // Hence, the CALLSEQ_START and CALLSEQ_END nodes can be eliminated in this
2916 // case. GCC does a similar trick, in that wherever possible, it calculates
2917 // the maximum out going argument area (including the reserved area), and
2918 // preallocates the stack space on entrance to the caller.
2920 // FIXME: We should do the same for efficency and space.
2922 // Note: The check on the calling convention below must match
2923 // MipsABIInfo::GetCalleeAllocdArgSizeInBytes().
2924 bool MemcpyInByVal
= ES
&&
2925 StringRef(ES
->getSymbol()) == StringRef("memcpy") &&
2926 CallConv
!= CallingConv::Fast
&&
2927 Chain
.getOpcode() == ISD::CALLSEQ_START
;
2929 // Allocate the reserved argument area. It seems strange to do this from the
2930 // caller side but removing it breaks the frame size calculation.
2931 unsigned ReservedArgArea
=
2932 MemcpyInByVal
? 0 : ABI
.GetCalleeAllocdArgSizeInBytes(CallConv
);
2933 CCInfo
.AllocateStack(ReservedArgArea
, 1);
2935 CCInfo
.AnalyzeCallOperands(Outs
, CC_Mips
, CLI
.getArgs(),
2936 ES
? ES
->getSymbol() : nullptr);
2938 // Get a count of how many bytes are to be pushed on the stack.
2939 unsigned NextStackOffset
= CCInfo
.getNextStackOffset();
2941 // Check if it's really possible to do a tail call. Restrict it to functions
2942 // that are part of this compilation unit.
2943 bool InternalLinkage
= false;
2945 IsTailCall
= isEligibleForTailCallOptimization(
2946 CCInfo
, NextStackOffset
, *MF
.getInfo
<MipsFunctionInfo
>());
2947 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
2948 InternalLinkage
= G
->getGlobal()->hasInternalLinkage();
2949 IsTailCall
&= (InternalLinkage
|| G
->getGlobal()->hasLocalLinkage() ||
2950 G
->getGlobal()->hasPrivateLinkage() ||
2951 G
->getGlobal()->hasHiddenVisibility() ||
2952 G
->getGlobal()->hasProtectedVisibility());
2955 if (!IsTailCall
&& CLI
.CS
&& CLI
.CS
.isMustTailCall())
2956 report_fatal_error("failed to perform tail call elimination on a call "
2957 "site marked musttail");
2962 // Chain is the output chain of the last Load/Store or CopyToReg node.
2963 // ByValChain is the output chain of the last Memcpy node created for copying
2964 // byval arguments to the stack.
2965 unsigned StackAlignment
= TFL
->getStackAlignment();
2966 NextStackOffset
= alignTo(NextStackOffset
, StackAlignment
);
2967 SDValue NextStackOffsetVal
= DAG
.getIntPtrConstant(NextStackOffset
, DL
, true);
2969 if (!(IsTailCall
|| MemcpyInByVal
))
2970 Chain
= DAG
.getCALLSEQ_START(Chain
, NextStackOffset
, 0, DL
);
2973 DAG
.getCopyFromReg(Chain
, DL
, ABI
.IsN64() ? Mips::SP_64
: Mips::SP
,
2974 getPointerTy(DAG
.getDataLayout()));
2976 std::deque
<std::pair
<unsigned, SDValue
>> RegsToPass
;
2977 SmallVector
<SDValue
, 8> MemOpChains
;
2979 CCInfo
.rewindByValRegsInfo();
2981 // Walk the register/memloc assignments, inserting copies/loads.
2982 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
2983 SDValue Arg
= OutVals
[i
];
2984 CCValAssign
&VA
= ArgLocs
[i
];
2985 MVT ValVT
= VA
.getValVT(), LocVT
= VA
.getLocVT();
2986 ISD::ArgFlagsTy Flags
= Outs
[i
].Flags
;
2987 bool UseUpperBits
= false;
2990 if (Flags
.isByVal()) {
2991 unsigned FirstByValReg
, LastByValReg
;
2992 unsigned ByValIdx
= CCInfo
.getInRegsParamsProcessed();
2993 CCInfo
.getInRegsParamInfo(ByValIdx
, FirstByValReg
, LastByValReg
);
2995 assert(Flags
.getByValSize() &&
2996 "ByVal args of size 0 should have been ignored by front-end.");
2997 assert(ByValIdx
< CCInfo
.getInRegsParamsCount());
2998 assert(!IsTailCall
&&
2999 "Do not tail-call optimize if there is a byval argument.");
3000 passByValArg(Chain
, DL
, RegsToPass
, MemOpChains
, StackPtr
, MFI
, DAG
, Arg
,
3001 FirstByValReg
, LastByValReg
, Flags
, Subtarget
.isLittle(),
3003 CCInfo
.nextInRegsParam();
3007 // Promote the value if needed.
3008 switch (VA
.getLocInfo()) {
3010 llvm_unreachable("Unknown loc info!");
3011 case CCValAssign::Full
:
3012 if (VA
.isRegLoc()) {
3013 if ((ValVT
== MVT::f32
&& LocVT
== MVT::i32
) ||
3014 (ValVT
== MVT::f64
&& LocVT
== MVT::i64
) ||
3015 (ValVT
== MVT::i64
&& LocVT
== MVT::f64
))
3016 Arg
= DAG
.getNode(ISD::BITCAST
, DL
, LocVT
, Arg
);
3017 else if (ValVT
== MVT::f64
&& LocVT
== MVT::i32
) {
3018 SDValue Lo
= DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
,
3019 Arg
, DAG
.getConstant(0, DL
, MVT::i32
));
3020 SDValue Hi
= DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
,
3021 Arg
, DAG
.getConstant(1, DL
, MVT::i32
));
3022 if (!Subtarget
.isLittle())
3024 unsigned LocRegLo
= VA
.getLocReg();
3025 unsigned LocRegHigh
= getNextIntArgReg(LocRegLo
);
3026 RegsToPass
.push_back(std::make_pair(LocRegLo
, Lo
));
3027 RegsToPass
.push_back(std::make_pair(LocRegHigh
, Hi
));
3032 case CCValAssign::BCvt
:
3033 Arg
= DAG
.getNode(ISD::BITCAST
, DL
, LocVT
, Arg
);
3035 case CCValAssign::SExtUpper
:
3036 UseUpperBits
= true;
3038 case CCValAssign::SExt
:
3039 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, LocVT
, Arg
);
3041 case CCValAssign::ZExtUpper
:
3042 UseUpperBits
= true;
3044 case CCValAssign::ZExt
:
3045 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, LocVT
, Arg
);
3047 case CCValAssign::AExtUpper
:
3048 UseUpperBits
= true;
3050 case CCValAssign::AExt
:
3051 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, LocVT
, Arg
);
3056 unsigned ValSizeInBits
= Outs
[i
].ArgVT
.getSizeInBits();
3057 unsigned LocSizeInBits
= VA
.getLocVT().getSizeInBits();
3059 ISD::SHL
, DL
, VA
.getLocVT(), Arg
,
3060 DAG
.getConstant(LocSizeInBits
- ValSizeInBits
, DL
, VA
.getLocVT()));
3063 // Arguments that can be passed on register must be kept at
3064 // RegsToPass vector
3065 if (VA
.isRegLoc()) {
3066 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
3070 // Register can't get to this point...
3071 assert(VA
.isMemLoc());
3073 // emit ISD::STORE whichs stores the
3074 // parameter value to a stack Location
3075 MemOpChains
.push_back(passArgOnStack(StackPtr
, VA
.getLocMemOffset(),
3076 Chain
, Arg
, DL
, IsTailCall
, DAG
));
3079 // Transform all store nodes into one single node because all store
3080 // nodes are independent of each other.
3081 if (!MemOpChains
.empty())
3082 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, MemOpChains
);
3084 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3085 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3086 // node so that legalize doesn't hack it.
3088 EVT Ty
= Callee
.getValueType();
3089 bool GlobalOrExternal
= false, IsCallReloc
= false;
3091 // The long-calls feature is ignored in case of PIC.
3092 // While we do not support -mshared / -mno-shared properly,
3093 // ignore long-calls in case of -mabicalls too.
3094 if (!Subtarget
.isABICalls() && !IsPIC
) {
3095 // If the function should be called using "long call",
3096 // get its address into a register to prevent using
3097 // of the `jal` instruction for the direct call.
3098 if (auto *N
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
3099 if (Subtarget
.useLongCalls())
3100 Callee
= Subtarget
.hasSym32()
3101 ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
3102 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
3103 } else if (auto *N
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
3104 bool UseLongCalls
= Subtarget
.useLongCalls();
3105 // If the function has long-call/far/near attribute
3106 // it overrides command line switch pased to the backend.
3107 if (auto *F
= dyn_cast
<Function
>(N
->getGlobal())) {
3108 if (F
->hasFnAttribute("long-call"))
3109 UseLongCalls
= true;
3110 else if (F
->hasFnAttribute("short-call"))
3111 UseLongCalls
= false;
3114 Callee
= Subtarget
.hasSym32()
3115 ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
3116 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
3120 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
3122 const GlobalValue
*Val
= G
->getGlobal();
3123 InternalLinkage
= Val
->hasInternalLinkage();
3125 if (InternalLinkage
)
3126 Callee
= getAddrLocal(G
, DL
, Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
3127 else if (LargeGOT
) {
3128 Callee
= getAddrGlobalLargeGOT(G
, DL
, Ty
, DAG
, MipsII::MO_CALL_HI16
,
3129 MipsII::MO_CALL_LO16
, Chain
,
3130 FuncInfo
->callPtrInfo(Val
));
3133 Callee
= getAddrGlobal(G
, DL
, Ty
, DAG
, MipsII::MO_GOT_CALL
, Chain
,
3134 FuncInfo
->callPtrInfo(Val
));
3138 Callee
= DAG
.getTargetGlobalAddress(G
->getGlobal(), DL
,
3139 getPointerTy(DAG
.getDataLayout()), 0,
3140 MipsII::MO_NO_FLAG
);
3141 GlobalOrExternal
= true;
3143 else if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
3144 const char *Sym
= S
->getSymbol();
3146 if (!IsPIC
) // static
3147 Callee
= DAG
.getTargetExternalSymbol(
3148 Sym
, getPointerTy(DAG
.getDataLayout()), MipsII::MO_NO_FLAG
);
3149 else if (LargeGOT
) {
3150 Callee
= getAddrGlobalLargeGOT(S
, DL
, Ty
, DAG
, MipsII::MO_CALL_HI16
,
3151 MipsII::MO_CALL_LO16
, Chain
,
3152 FuncInfo
->callPtrInfo(Sym
));
3155 Callee
= getAddrGlobal(S
, DL
, Ty
, DAG
, MipsII::MO_GOT_CALL
, Chain
,
3156 FuncInfo
->callPtrInfo(Sym
));
3160 GlobalOrExternal
= true;
3163 SmallVector
<SDValue
, 8> Ops(1, Chain
);
3164 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
3166 getOpndList(Ops
, RegsToPass
, IsPIC
, GlobalOrExternal
, InternalLinkage
,
3167 IsCallReloc
, CLI
, Callee
, Chain
);
3170 MF
.getFrameInfo().setHasTailCall();
3171 return DAG
.getNode(MipsISD::TailCall
, DL
, MVT::Other
, Ops
);
3174 Chain
= DAG
.getNode(MipsISD::JmpLink
, DL
, NodeTys
, Ops
);
3175 SDValue InFlag
= Chain
.getValue(1);
3177 // Create the CALLSEQ_END node in the case of where it is not a call to
3179 if (!(MemcpyInByVal
)) {
3180 Chain
= DAG
.getCALLSEQ_END(Chain
, NextStackOffsetVal
,
3181 DAG
.getIntPtrConstant(0, DL
, true), InFlag
, DL
);
3182 InFlag
= Chain
.getValue(1);
3185 // Handle result values, copying them out of physregs into vregs that we
3187 return LowerCallResult(Chain
, InFlag
, CallConv
, IsVarArg
, Ins
, DL
, DAG
,
3191 /// LowerCallResult - Lower the result values of a call into the
3192 /// appropriate copies out of appropriate physical registers.
3193 SDValue
MipsTargetLowering::LowerCallResult(
3194 SDValue Chain
, SDValue InFlag
, CallingConv::ID CallConv
, bool IsVarArg
,
3195 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&DL
,
3196 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
,
3197 TargetLowering::CallLoweringInfo
&CLI
) const {
3198 // Assign locations to each value returned by this call.
3199 SmallVector
<CCValAssign
, 16> RVLocs
;
3200 MipsCCState
CCInfo(CallConv
, IsVarArg
, DAG
.getMachineFunction(), RVLocs
,
3203 const ExternalSymbolSDNode
*ES
=
3204 dyn_cast_or_null
<const ExternalSymbolSDNode
>(CLI
.Callee
.getNode());
3205 CCInfo
.AnalyzeCallResult(Ins
, RetCC_Mips
, CLI
.RetTy
,
3206 ES
? ES
->getSymbol() : nullptr);
3208 // Copy all of the result registers out of their specified physreg.
3209 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
3210 CCValAssign
&VA
= RVLocs
[i
];
3211 assert(VA
.isRegLoc() && "Can only return in registers!");
3213 SDValue Val
= DAG
.getCopyFromReg(Chain
, DL
, RVLocs
[i
].getLocReg(),
3214 RVLocs
[i
].getLocVT(), InFlag
);
3215 Chain
= Val
.getValue(1);
3216 InFlag
= Val
.getValue(2);
3218 if (VA
.isUpperBitsInLoc()) {
3219 unsigned ValSizeInBits
= Ins
[i
].ArgVT
.getSizeInBits();
3220 unsigned LocSizeInBits
= VA
.getLocVT().getSizeInBits();
3222 VA
.getLocInfo() == CCValAssign::ZExtUpper
? ISD::SRL
: ISD::SRA
;
3224 Shift
, DL
, VA
.getLocVT(), Val
,
3225 DAG
.getConstant(LocSizeInBits
- ValSizeInBits
, DL
, VA
.getLocVT()));
3228 switch (VA
.getLocInfo()) {
3230 llvm_unreachable("Unknown loc info!");
3231 case CCValAssign::Full
:
3233 case CCValAssign::BCvt
:
3234 Val
= DAG
.getNode(ISD::BITCAST
, DL
, VA
.getValVT(), Val
);
3236 case CCValAssign::AExt
:
3237 case CCValAssign::AExtUpper
:
3238 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, VA
.getValVT(), Val
);
3240 case CCValAssign::ZExt
:
3241 case CCValAssign::ZExtUpper
:
3242 Val
= DAG
.getNode(ISD::AssertZext
, DL
, VA
.getLocVT(), Val
,
3243 DAG
.getValueType(VA
.getValVT()));
3244 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, VA
.getValVT(), Val
);
3246 case CCValAssign::SExt
:
3247 case CCValAssign::SExtUpper
:
3248 Val
= DAG
.getNode(ISD::AssertSext
, DL
, VA
.getLocVT(), Val
,
3249 DAG
.getValueType(VA
.getValVT()));
3250 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, VA
.getValVT(), Val
);
3254 InVals
.push_back(Val
);
3260 static SDValue
UnpackFromArgumentSlot(SDValue Val
, const CCValAssign
&VA
,
3261 EVT ArgVT
, const SDLoc
&DL
,
3262 SelectionDAG
&DAG
) {
3263 MVT LocVT
= VA
.getLocVT();
3264 EVT ValVT
= VA
.getValVT();
3266 // Shift into the upper bits if necessary.
3267 switch (VA
.getLocInfo()) {
3270 case CCValAssign::AExtUpper
:
3271 case CCValAssign::SExtUpper
:
3272 case CCValAssign::ZExtUpper
: {
3273 unsigned ValSizeInBits
= ArgVT
.getSizeInBits();
3274 unsigned LocSizeInBits
= VA
.getLocVT().getSizeInBits();
3276 VA
.getLocInfo() == CCValAssign::ZExtUpper
? ISD::SRL
: ISD::SRA
;
3278 Opcode
, DL
, VA
.getLocVT(), Val
,
3279 DAG
.getConstant(LocSizeInBits
- ValSizeInBits
, DL
, VA
.getLocVT()));
3284 // If this is an value smaller than the argument slot size (32-bit for O32,
3285 // 64-bit for N32/N64), it has been promoted in some way to the argument slot
3286 // size. Extract the value and insert any appropriate assertions regarding
3287 // sign/zero extension.
3288 switch (VA
.getLocInfo()) {
3290 llvm_unreachable("Unknown loc info!");
3291 case CCValAssign::Full
:
3293 case CCValAssign::AExtUpper
:
3294 case CCValAssign::AExt
:
3295 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValVT
, Val
);
3297 case CCValAssign::SExtUpper
:
3298 case CCValAssign::SExt
:
3299 Val
= DAG
.getNode(ISD::AssertSext
, DL
, LocVT
, Val
, DAG
.getValueType(ValVT
));
3300 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValVT
, Val
);
3302 case CCValAssign::ZExtUpper
:
3303 case CCValAssign::ZExt
:
3304 Val
= DAG
.getNode(ISD::AssertZext
, DL
, LocVT
, Val
, DAG
.getValueType(ValVT
));
3305 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValVT
, Val
);
3307 case CCValAssign::BCvt
:
3308 Val
= DAG
.getNode(ISD::BITCAST
, DL
, ValVT
, Val
);
3315 //===----------------------------------------------------------------------===//
3316 // Formal Arguments Calling Convention Implementation
3317 //===----------------------------------------------------------------------===//
3318 /// LowerFormalArguments - transform physical registers into virtual registers
3319 /// and generate load operations for arguments places on the stack.
3320 SDValue
MipsTargetLowering::LowerFormalArguments(
3321 SDValue Chain
, CallingConv::ID CallConv
, bool IsVarArg
,
3322 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&DL
,
3323 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
3324 MachineFunction
&MF
= DAG
.getMachineFunction();
3325 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3326 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
3328 MipsFI
->setVarArgsFrameIndex(0);
3330 // Used with vargs to acumulate store chains.
3331 std::vector
<SDValue
> OutChains
;
3333 // Assign locations to all of the incoming arguments.
3334 SmallVector
<CCValAssign
, 16> ArgLocs
;
3335 MipsCCState
CCInfo(CallConv
, IsVarArg
, DAG
.getMachineFunction(), ArgLocs
,
3337 CCInfo
.AllocateStack(ABI
.GetCalleeAllocdArgSizeInBytes(CallConv
), 1);
3338 const Function
&Func
= DAG
.getMachineFunction().getFunction();
3339 Function::const_arg_iterator FuncArg
= Func
.arg_begin();
3341 if (Func
.hasFnAttribute("interrupt") && !Func
.arg_empty())
3343 "Functions with the interrupt attribute cannot have arguments!");
3345 CCInfo
.AnalyzeFormalArguments(Ins
, CC_Mips_FixedArg
);
3346 MipsFI
->setFormalArgInfo(CCInfo
.getNextStackOffset(),
3347 CCInfo
.getInRegsParamsCount() > 0);
3349 unsigned CurArgIdx
= 0;
3350 CCInfo
.rewindByValRegsInfo();
3352 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3353 CCValAssign
&VA
= ArgLocs
[i
];
3354 if (Ins
[i
].isOrigArg()) {
3355 std::advance(FuncArg
, Ins
[i
].getOrigArgIndex() - CurArgIdx
);
3356 CurArgIdx
= Ins
[i
].getOrigArgIndex();
3358 EVT ValVT
= VA
.getValVT();
3359 ISD::ArgFlagsTy Flags
= Ins
[i
].Flags
;
3360 bool IsRegLoc
= VA
.isRegLoc();
3362 if (Flags
.isByVal()) {
3363 assert(Ins
[i
].isOrigArg() && "Byval arguments cannot be implicit");
3364 unsigned FirstByValReg
, LastByValReg
;
3365 unsigned ByValIdx
= CCInfo
.getInRegsParamsProcessed();
3366 CCInfo
.getInRegsParamInfo(ByValIdx
, FirstByValReg
, LastByValReg
);
3368 assert(Flags
.getByValSize() &&
3369 "ByVal args of size 0 should have been ignored by front-end.");
3370 assert(ByValIdx
< CCInfo
.getInRegsParamsCount());
3371 copyByValRegs(Chain
, DL
, OutChains
, DAG
, Flags
, InVals
, &*FuncArg
,
3372 FirstByValReg
, LastByValReg
, VA
, CCInfo
);
3373 CCInfo
.nextInRegsParam();
3377 // Arguments stored on registers
3379 MVT RegVT
= VA
.getLocVT();
3380 unsigned ArgReg
= VA
.getLocReg();
3381 const TargetRegisterClass
*RC
= getRegClassFor(RegVT
);
3383 // Transform the arguments stored on
3384 // physical registers into virtual ones
3385 unsigned Reg
= addLiveIn(DAG
.getMachineFunction(), ArgReg
, RC
);
3386 SDValue ArgValue
= DAG
.getCopyFromReg(Chain
, DL
, Reg
, RegVT
);
3388 ArgValue
= UnpackFromArgumentSlot(ArgValue
, VA
, Ins
[i
].ArgVT
, DL
, DAG
);
3390 // Handle floating point arguments passed in integer registers and
3391 // long double arguments passed in floating point registers.
3392 if ((RegVT
== MVT::i32
&& ValVT
== MVT::f32
) ||
3393 (RegVT
== MVT::i64
&& ValVT
== MVT::f64
) ||
3394 (RegVT
== MVT::f64
&& ValVT
== MVT::i64
))
3395 ArgValue
= DAG
.getNode(ISD::BITCAST
, DL
, ValVT
, ArgValue
);
3396 else if (ABI
.IsO32() && RegVT
== MVT::i32
&&
3397 ValVT
== MVT::f64
) {
3398 unsigned Reg2
= addLiveIn(DAG
.getMachineFunction(),
3399 getNextIntArgReg(ArgReg
), RC
);
3400 SDValue ArgValue2
= DAG
.getCopyFromReg(Chain
, DL
, Reg2
, RegVT
);
3401 if (!Subtarget
.isLittle())
3402 std::swap(ArgValue
, ArgValue2
);
3403 ArgValue
= DAG
.getNode(MipsISD::BuildPairF64
, DL
, MVT::f64
,
3404 ArgValue
, ArgValue2
);
3407 InVals
.push_back(ArgValue
);
3408 } else { // VA.isRegLoc()
3409 MVT LocVT
= VA
.getLocVT();
3412 // We ought to be able to use LocVT directly but O32 sets it to i32
3413 // when allocating floating point values to integer registers.
3414 // This shouldn't influence how we load the value into registers unless
3415 // we are targeting softfloat.
3416 if (VA
.getValVT().isFloatingPoint() && !Subtarget
.useSoftFloat())
3417 LocVT
= VA
.getValVT();
3421 assert(VA
.isMemLoc());
3423 // The stack pointer offset is relative to the caller stack frame.
3424 int FI
= MFI
.CreateFixedObject(LocVT
.getSizeInBits() / 8,
3425 VA
.getLocMemOffset(), true);
3427 // Create load nodes to retrieve arguments from the stack
3428 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
3429 SDValue ArgValue
= DAG
.getLoad(
3430 LocVT
, DL
, Chain
, FIN
,
3431 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
));
3432 OutChains
.push_back(ArgValue
.getValue(1));
3434 ArgValue
= UnpackFromArgumentSlot(ArgValue
, VA
, Ins
[i
].ArgVT
, DL
, DAG
);
3436 InVals
.push_back(ArgValue
);
3440 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3441 // The mips ABIs for returning structs by value requires that we copy
3442 // the sret argument into $v0 for the return. Save the argument into
3443 // a virtual register so that we can access it from the return points.
3444 if (Ins
[i
].Flags
.isSRet()) {
3445 unsigned Reg
= MipsFI
->getSRetReturnReg();
3447 Reg
= MF
.getRegInfo().createVirtualRegister(
3448 getRegClassFor(ABI
.IsN64() ? MVT::i64
: MVT::i32
));
3449 MipsFI
->setSRetReturnReg(Reg
);
3451 SDValue Copy
= DAG
.getCopyToReg(DAG
.getEntryNode(), DL
, Reg
, InVals
[i
]);
3452 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Copy
, Chain
);
3458 writeVarArgRegs(OutChains
, Chain
, DL
, DAG
, CCInfo
);
3460 // All stores are grouped in one node to allow the matching between
3461 // the size of Ins and InVals. This only happens when on varg functions
3462 if (!OutChains
.empty()) {
3463 OutChains
.push_back(Chain
);
3464 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, OutChains
);
3470 //===----------------------------------------------------------------------===//
3471 // Return Value Calling Convention Implementation
3472 //===----------------------------------------------------------------------===//
3475 MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv
,
3476 MachineFunction
&MF
, bool IsVarArg
,
3477 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
3478 LLVMContext
&Context
) const {
3479 SmallVector
<CCValAssign
, 16> RVLocs
;
3480 MipsCCState
CCInfo(CallConv
, IsVarArg
, MF
, RVLocs
, Context
);
3481 return CCInfo
.CheckReturn(Outs
, RetCC_Mips
);
3485 MipsTargetLowering::shouldSignExtendTypeInLibCall(EVT Type
, bool IsSigned
) const {
3486 if ((ABI
.IsN32() || ABI
.IsN64()) && Type
== MVT::i32
)
3493 MipsTargetLowering::LowerInterruptReturn(SmallVectorImpl
<SDValue
> &RetOps
,
3495 SelectionDAG
&DAG
) const {
3496 MachineFunction
&MF
= DAG
.getMachineFunction();
3497 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
3501 return DAG
.getNode(MipsISD::ERet
, DL
, MVT::Other
, RetOps
);
3505 MipsTargetLowering::LowerReturn(SDValue Chain
, CallingConv::ID CallConv
,
3507 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
3508 const SmallVectorImpl
<SDValue
> &OutVals
,
3509 const SDLoc
&DL
, SelectionDAG
&DAG
) const {
3510 // CCValAssign - represent the assignment of
3511 // the return value to a location
3512 SmallVector
<CCValAssign
, 16> RVLocs
;
3513 MachineFunction
&MF
= DAG
.getMachineFunction();
3515 // CCState - Info about the registers and stack slot.
3516 MipsCCState
CCInfo(CallConv
, IsVarArg
, MF
, RVLocs
, *DAG
.getContext());
3518 // Analyze return values.
3519 CCInfo
.AnalyzeReturn(Outs
, RetCC_Mips
);
3522 SmallVector
<SDValue
, 4> RetOps(1, Chain
);
3524 // Copy the result values into the output registers.
3525 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
3526 SDValue Val
= OutVals
[i
];
3527 CCValAssign
&VA
= RVLocs
[i
];
3528 assert(VA
.isRegLoc() && "Can only return in registers!");
3529 bool UseUpperBits
= false;
3531 switch (VA
.getLocInfo()) {
3533 llvm_unreachable("Unknown loc info!");
3534 case CCValAssign::Full
:
3536 case CCValAssign::BCvt
:
3537 Val
= DAG
.getNode(ISD::BITCAST
, DL
, VA
.getLocVT(), Val
);
3539 case CCValAssign::AExtUpper
:
3540 UseUpperBits
= true;
3542 case CCValAssign::AExt
:
3543 Val
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, VA
.getLocVT(), Val
);
3545 case CCValAssign::ZExtUpper
:
3546 UseUpperBits
= true;
3548 case CCValAssign::ZExt
:
3549 Val
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VA
.getLocVT(), Val
);
3551 case CCValAssign::SExtUpper
:
3552 UseUpperBits
= true;
3554 case CCValAssign::SExt
:
3555 Val
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VA
.getLocVT(), Val
);
3560 unsigned ValSizeInBits
= Outs
[i
].ArgVT
.getSizeInBits();
3561 unsigned LocSizeInBits
= VA
.getLocVT().getSizeInBits();
3563 ISD::SHL
, DL
, VA
.getLocVT(), Val
,
3564 DAG
.getConstant(LocSizeInBits
- ValSizeInBits
, DL
, VA
.getLocVT()));
3567 Chain
= DAG
.getCopyToReg(Chain
, DL
, VA
.getLocReg(), Val
, Flag
);
3569 // Guarantee that all emitted copies are stuck together with flags.
3570 Flag
= Chain
.getValue(1);
3571 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
3574 // The mips ABIs for returning structs by value requires that we copy
3575 // the sret argument into $v0 for the return. We saved the argument into
3576 // a virtual register in the entry block, so now we copy the value out
3578 if (MF
.getFunction().hasStructRetAttr()) {
3579 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
3580 unsigned Reg
= MipsFI
->getSRetReturnReg();
3583 llvm_unreachable("sret virtual register not created in the entry block");
3585 DAG
.getCopyFromReg(Chain
, DL
, Reg
, getPointerTy(DAG
.getDataLayout()));
3586 unsigned V0
= ABI
.IsN64() ? Mips::V0_64
: Mips::V0
;
3588 Chain
= DAG
.getCopyToReg(Chain
, DL
, V0
, Val
, Flag
);
3589 Flag
= Chain
.getValue(1);
3590 RetOps
.push_back(DAG
.getRegister(V0
, getPointerTy(DAG
.getDataLayout())));
3593 RetOps
[0] = Chain
; // Update chain.
3595 // Add the flag if we have it.
3597 RetOps
.push_back(Flag
);
3599 // ISRs must use "eret".
3600 if (DAG
.getMachineFunction().getFunction().hasFnAttribute("interrupt"))
3601 return LowerInterruptReturn(RetOps
, DL
, DAG
);
3603 // Standard return on Mips is a "jr $ra"
3604 return DAG
.getNode(MipsISD::Ret
, DL
, MVT::Other
, RetOps
);
3607 //===----------------------------------------------------------------------===//
3608 // Mips Inline Assembly Support
3609 //===----------------------------------------------------------------------===//
3611 /// getConstraintType - Given a constraint letter, return the type of
3612 /// constraint it is for this target.
3613 MipsTargetLowering::ConstraintType
3614 MipsTargetLowering::getConstraintType(StringRef Constraint
) const {
3615 // Mips specific constraints
3616 // GCC config/mips/constraints.md
3618 // 'd' : An address register. Equivalent to r
3619 // unless generating MIPS16 code.
3620 // 'y' : Equivalent to r; retained for
3621 // backwards compatibility.
3622 // 'c' : A register suitable for use in an indirect
3623 // jump. This will always be $25 for -mabicalls.
3624 // 'l' : The lo register. 1 word storage.
3625 // 'x' : The hilo register pair. Double word storage.
3626 if (Constraint
.size() == 1) {
3627 switch (Constraint
[0]) {
3635 return C_RegisterClass
;
3641 if (Constraint
== "ZC")
3644 return TargetLowering::getConstraintType(Constraint
);
3647 /// Examine constraint type and operand type and determine a weight value.
3648 /// This object must already have been set up with the operand type
3649 /// and the current alternative constraint selected.
3650 TargetLowering::ConstraintWeight
3651 MipsTargetLowering::getSingleConstraintMatchWeight(
3652 AsmOperandInfo
&info
, const char *constraint
) const {
3653 ConstraintWeight weight
= CW_Invalid
;
3654 Value
*CallOperandVal
= info
.CallOperandVal
;
3655 // If we don't have a value, we can't do a match,
3656 // but allow it at the lowest weight.
3657 if (!CallOperandVal
)
3659 Type
*type
= CallOperandVal
->getType();
3660 // Look at the constraint type.
3661 switch (*constraint
) {
3663 weight
= TargetLowering::getSingleConstraintMatchWeight(info
, constraint
);
3667 if (type
->isIntegerTy())
3668 weight
= CW_Register
;
3670 case 'f': // FPU or MSA register
3671 if (Subtarget
.hasMSA() && type
->isVectorTy() &&
3672 cast
<VectorType
>(type
)->getBitWidth() == 128)
3673 weight
= CW_Register
;
3674 else if (type
->isFloatTy())
3675 weight
= CW_Register
;
3677 case 'c': // $25 for indirect jumps
3678 case 'l': // lo register
3679 case 'x': // hilo register pair
3680 if (type
->isIntegerTy())
3681 weight
= CW_SpecificReg
;
3683 case 'I': // signed 16 bit immediate
3684 case 'J': // integer zero
3685 case 'K': // unsigned 16 bit immediate
3686 case 'L': // signed 32 bit immediate where lower 16 bits are 0
3687 case 'N': // immediate in the range of -65535 to -1 (inclusive)
3688 case 'O': // signed 15 bit immediate (+- 16383)
3689 case 'P': // immediate in the range of 65535 to 1 (inclusive)
3690 if (isa
<ConstantInt
>(CallOperandVal
))
3691 weight
= CW_Constant
;
3700 /// This is a helper function to parse a physical register string and split it
3701 /// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
3702 /// that is returned indicates whether parsing was successful. The second flag
3703 /// is true if the numeric part exists.
3704 static std::pair
<bool, bool> parsePhysicalReg(StringRef C
, StringRef
&Prefix
,
3705 unsigned long long &Reg
) {
3706 if (C
.front() != '{' || C
.back() != '}')
3707 return std::make_pair(false, false);
3709 // Search for the first numeric character.
3710 StringRef::const_iterator I
, B
= C
.begin() + 1, E
= C
.end() - 1;
3711 I
= std::find_if(B
, E
, isdigit
);
3713 Prefix
= StringRef(B
, I
- B
);
3715 // The second flag is set to false if no numeric characters were found.
3717 return std::make_pair(true, false);
3719 // Parse the numeric characters.
3720 return std::make_pair(!getAsUnsignedInteger(StringRef(I
, E
- I
), 10, Reg
),
3724 EVT
MipsTargetLowering::getTypeForExtReturn(LLVMContext
&Context
, EVT VT
,
3725 ISD::NodeType
) const {
3726 bool Cond
= !Subtarget
.isABI_O32() && VT
.getSizeInBits() == 32;
3727 EVT MinVT
= getRegisterType(Context
, Cond
? MVT::i64
: MVT::i32
);
3728 return VT
.bitsLT(MinVT
) ? MinVT
: VT
;
3731 std::pair
<unsigned, const TargetRegisterClass
*> MipsTargetLowering::
3732 parseRegForInlineAsmConstraint(StringRef C
, MVT VT
) const {
3733 const TargetRegisterInfo
*TRI
=
3734 Subtarget
.getRegisterInfo();
3735 const TargetRegisterClass
*RC
;
3737 unsigned long long Reg
;
3739 std::pair
<bool, bool> R
= parsePhysicalReg(C
, Prefix
, Reg
);
3742 return std::make_pair(0U, nullptr);
3744 if ((Prefix
== "hi" || Prefix
== "lo")) { // Parse hi/lo.
3745 // No numeric characters follow "hi" or "lo".
3747 return std::make_pair(0U, nullptr);
3749 RC
= TRI
->getRegClass(Prefix
== "hi" ?
3750 Mips::HI32RegClassID
: Mips::LO32RegClassID
);
3751 return std::make_pair(*(RC
->begin()), RC
);
3752 } else if (Prefix
.startswith("$msa")) {
3753 // Parse $msa(ir|csr|access|save|modify|request|map|unmap)
3755 // No numeric characters follow the name.
3757 return std::make_pair(0U, nullptr);
3759 Reg
= StringSwitch
<unsigned long long>(Prefix
)
3760 .Case("$msair", Mips::MSAIR
)
3761 .Case("$msacsr", Mips::MSACSR
)
3762 .Case("$msaaccess", Mips::MSAAccess
)
3763 .Case("$msasave", Mips::MSASave
)
3764 .Case("$msamodify", Mips::MSAModify
)
3765 .Case("$msarequest", Mips::MSARequest
)
3766 .Case("$msamap", Mips::MSAMap
)
3767 .Case("$msaunmap", Mips::MSAUnmap
)
3771 return std::make_pair(0U, nullptr);
3773 RC
= TRI
->getRegClass(Mips::MSACtrlRegClassID
);
3774 return std::make_pair(Reg
, RC
);
3778 return std::make_pair(0U, nullptr);
3780 if (Prefix
== "$f") { // Parse $f0-$f31.
3781 // If the size of FP registers is 64-bit or Reg is an even number, select
3782 // the 64-bit register class. Otherwise, select the 32-bit register class.
3783 if (VT
== MVT::Other
)
3784 VT
= (Subtarget
.isFP64bit() || !(Reg
% 2)) ? MVT::f64
: MVT::f32
;
3786 RC
= getRegClassFor(VT
);
3788 if (RC
== &Mips::AFGR64RegClass
) {
3789 assert(Reg
% 2 == 0);
3792 } else if (Prefix
== "$fcc") // Parse $fcc0-$fcc7.
3793 RC
= TRI
->getRegClass(Mips::FCCRegClassID
);
3794 else if (Prefix
== "$w") { // Parse $w0-$w31.
3795 RC
= getRegClassFor((VT
== MVT::Other
) ? MVT::v16i8
: VT
);
3796 } else { // Parse $0-$31.
3797 assert(Prefix
== "$");
3798 RC
= getRegClassFor((VT
== MVT::Other
) ? MVT::i32
: VT
);
3801 assert(Reg
< RC
->getNumRegs());
3802 return std::make_pair(*(RC
->begin() + Reg
), RC
);
3805 /// Given a register class constraint, like 'r', if this corresponds directly
3806 /// to an LLVM register class, return a register of 0 and the register class
3808 std::pair
<unsigned, const TargetRegisterClass
*>
3809 MipsTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo
*TRI
,
3810 StringRef Constraint
,
3812 if (Constraint
.size() == 1) {
3813 switch (Constraint
[0]) {
3814 case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
3815 case 'y': // Same as 'r'. Exists for compatibility.
3817 if (VT
== MVT::i32
|| VT
== MVT::i16
|| VT
== MVT::i8
) {
3818 if (Subtarget
.inMips16Mode())
3819 return std::make_pair(0U, &Mips::CPU16RegsRegClass
);
3820 return std::make_pair(0U, &Mips::GPR32RegClass
);
3822 if (VT
== MVT::i64
&& !Subtarget
.isGP64bit())
3823 return std::make_pair(0U, &Mips::GPR32RegClass
);
3824 if (VT
== MVT::i64
&& Subtarget
.isGP64bit())
3825 return std::make_pair(0U, &Mips::GPR64RegClass
);
3826 // This will generate an error message
3827 return std::make_pair(0U, nullptr);
3828 case 'f': // FPU or MSA register
3829 if (VT
== MVT::v16i8
)
3830 return std::make_pair(0U, &Mips::MSA128BRegClass
);
3831 else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
)
3832 return std::make_pair(0U, &Mips::MSA128HRegClass
);
3833 else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
)
3834 return std::make_pair(0U, &Mips::MSA128WRegClass
);
3835 else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
)
3836 return std::make_pair(0U, &Mips::MSA128DRegClass
);
3837 else if (VT
== MVT::f32
)
3838 return std::make_pair(0U, &Mips::FGR32RegClass
);
3839 else if ((VT
== MVT::f64
) && (!Subtarget
.isSingleFloat())) {
3840 if (Subtarget
.isFP64bit())
3841 return std::make_pair(0U, &Mips::FGR64RegClass
);
3842 return std::make_pair(0U, &Mips::AFGR64RegClass
);
3845 case 'c': // register suitable for indirect jump
3847 return std::make_pair((unsigned)Mips::T9
, &Mips::GPR32RegClass
);
3849 return std::make_pair((unsigned)Mips::T9_64
, &Mips::GPR64RegClass
);
3850 // This will generate an error message
3851 return std::make_pair(0U, nullptr);
3852 case 'l': // use the `lo` register to store values
3853 // that are no bigger than a word
3854 if (VT
== MVT::i32
|| VT
== MVT::i16
|| VT
== MVT::i8
)
3855 return std::make_pair((unsigned)Mips::LO0
, &Mips::LO32RegClass
);
3856 return std::make_pair((unsigned)Mips::LO0_64
, &Mips::LO64RegClass
);
3857 case 'x': // use the concatenated `hi` and `lo` registers
3858 // to store doubleword values
3859 // Fixme: Not triggering the use of both hi and low
3860 // This will generate an error message
3861 return std::make_pair(0U, nullptr);
3865 std::pair
<unsigned, const TargetRegisterClass
*> R
;
3866 R
= parseRegForInlineAsmConstraint(Constraint
, VT
);
3871 return TargetLowering::getRegForInlineAsmConstraint(TRI
, Constraint
, VT
);
3874 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3875 /// vector. If it is invalid, don't add anything to Ops.
3876 void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
3877 std::string
&Constraint
,
3878 std::vector
<SDValue
>&Ops
,
3879 SelectionDAG
&DAG
) const {
3883 // Only support length 1 constraints for now.
3884 if (Constraint
.length() > 1) return;
3886 char ConstraintLetter
= Constraint
[0];
3887 switch (ConstraintLetter
) {
3888 default: break; // This will fall through to the generic implementation
3889 case 'I': // Signed 16 bit constant
3890 // If this fails, the parent routine will give an error
3891 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
3892 EVT Type
= Op
.getValueType();
3893 int64_t Val
= C
->getSExtValue();
3894 if (isInt
<16>(Val
)) {
3895 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
3900 case 'J': // integer zero
3901 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
3902 EVT Type
= Op
.getValueType();
3903 int64_t Val
= C
->getZExtValue();
3905 Result
= DAG
.getTargetConstant(0, DL
, Type
);
3910 case 'K': // unsigned 16 bit immediate
3911 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
3912 EVT Type
= Op
.getValueType();
3913 uint64_t Val
= (uint64_t)C
->getZExtValue();
3914 if (isUInt
<16>(Val
)) {
3915 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
3920 case 'L': // signed 32 bit immediate where lower 16 bits are 0
3921 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
3922 EVT Type
= Op
.getValueType();
3923 int64_t Val
= C
->getSExtValue();
3924 if ((isInt
<32>(Val
)) && ((Val
& 0xffff) == 0)){
3925 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
3930 case 'N': // immediate in the range of -65535 to -1 (inclusive)
3931 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
3932 EVT Type
= Op
.getValueType();
3933 int64_t Val
= C
->getSExtValue();
3934 if ((Val
>= -65535) && (Val
<= -1)) {
3935 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
3940 case 'O': // signed 15 bit immediate
3941 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
3942 EVT Type
= Op
.getValueType();
3943 int64_t Val
= C
->getSExtValue();
3944 if ((isInt
<15>(Val
))) {
3945 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
3950 case 'P': // immediate in the range of 1 to 65535 (inclusive)
3951 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
3952 EVT Type
= Op
.getValueType();
3953 int64_t Val
= C
->getSExtValue();
3954 if ((Val
<= 65535) && (Val
>= 1)) {
3955 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
3962 if (Result
.getNode()) {
3963 Ops
.push_back(Result
);
3967 TargetLowering::LowerAsmOperandForConstraint(Op
, Constraint
, Ops
, DAG
);
3970 bool MipsTargetLowering::isLegalAddressingMode(const DataLayout
&DL
,
3971 const AddrMode
&AM
, Type
*Ty
,
3972 unsigned AS
, Instruction
*I
) const {
3973 // No global is ever allowed as a base.
3978 case 0: // "r+i" or just "i", depending on HasBaseReg.
3981 if (!AM
.HasBaseReg
) // allow "r+i".
3983 return false; // disallow "r+r" or "r+r+i".
3992 MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const {
3993 // The Mips target isn't yet aware of offsets.
3997 EVT
MipsTargetLowering::getOptimalMemOpType(uint64_t Size
, unsigned DstAlign
,
3999 bool IsMemset
, bool ZeroMemset
,
4001 MachineFunction
&MF
) const {
4002 if (Subtarget
.hasMips64())
4008 bool MipsTargetLowering::isFPImmLegal(const APFloat
&Imm
, EVT VT
) const {
4009 if (VT
!= MVT::f32
&& VT
!= MVT::f64
)
4011 if (Imm
.isNegZero())
4013 return Imm
.isZero();
4016 unsigned MipsTargetLowering::getJumpTableEncoding() const {
4018 // FIXME: For space reasons this should be: EK_GPRel32BlockAddress.
4019 if (ABI
.IsN64() && isPositionIndependent())
4020 return MachineJumpTableInfo::EK_GPRel64BlockAddress
;
4022 return TargetLowering::getJumpTableEncoding();
4025 bool MipsTargetLowering::useSoftFloat() const {
4026 return Subtarget
.useSoftFloat();
4029 void MipsTargetLowering::copyByValRegs(
4030 SDValue Chain
, const SDLoc
&DL
, std::vector
<SDValue
> &OutChains
,
4031 SelectionDAG
&DAG
, const ISD::ArgFlagsTy
&Flags
,
4032 SmallVectorImpl
<SDValue
> &InVals
, const Argument
*FuncArg
,
4033 unsigned FirstReg
, unsigned LastReg
, const CCValAssign
&VA
,
4034 MipsCCState
&State
) const {
4035 MachineFunction
&MF
= DAG
.getMachineFunction();
4036 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
4037 unsigned GPRSizeInBytes
= Subtarget
.getGPRSizeInBytes();
4038 unsigned NumRegs
= LastReg
- FirstReg
;
4039 unsigned RegAreaSize
= NumRegs
* GPRSizeInBytes
;
4040 unsigned FrameObjSize
= std::max(Flags
.getByValSize(), RegAreaSize
);
4042 ArrayRef
<MCPhysReg
> ByValArgRegs
= ABI
.GetByValArgRegs();
4046 (int)ABI
.GetCalleeAllocdArgSizeInBytes(State
.getCallingConv()) -
4047 (int)((ByValArgRegs
.size() - FirstReg
) * GPRSizeInBytes
);
4049 FrameObjOffset
= VA
.getLocMemOffset();
4051 // Create frame object.
4052 EVT PtrTy
= getPointerTy(DAG
.getDataLayout());
4053 // Make the fixed object stored to mutable so that the load instructions
4054 // referencing it have their memory dependencies added.
4055 // Set the frame object as isAliased which clears the underlying objects
4056 // vector in ScheduleDAGInstrs::buildSchedGraph() resulting in addition of all
4057 // stores as dependencies for loads referencing this fixed object.
4058 int FI
= MFI
.CreateFixedObject(FrameObjSize
, FrameObjOffset
, false, true);
4059 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrTy
);
4060 InVals
.push_back(FIN
);
4065 // Copy arg registers.
4066 MVT RegTy
= MVT::getIntegerVT(GPRSizeInBytes
* 8);
4067 const TargetRegisterClass
*RC
= getRegClassFor(RegTy
);
4069 for (unsigned I
= 0; I
< NumRegs
; ++I
) {
4070 unsigned ArgReg
= ByValArgRegs
[FirstReg
+ I
];
4071 unsigned VReg
= addLiveIn(MF
, ArgReg
, RC
);
4072 unsigned Offset
= I
* GPRSizeInBytes
;
4073 SDValue StorePtr
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, FIN
,
4074 DAG
.getConstant(Offset
, DL
, PtrTy
));
4075 SDValue Store
= DAG
.getStore(Chain
, DL
, DAG
.getRegister(VReg
, RegTy
),
4076 StorePtr
, MachinePointerInfo(FuncArg
, Offset
));
4077 OutChains
.push_back(Store
);
4081 // Copy byVal arg to registers and stack.
4082 void MipsTargetLowering::passByValArg(
4083 SDValue Chain
, const SDLoc
&DL
,
4084 std::deque
<std::pair
<unsigned, SDValue
>> &RegsToPass
,
4085 SmallVectorImpl
<SDValue
> &MemOpChains
, SDValue StackPtr
,
4086 MachineFrameInfo
&MFI
, SelectionDAG
&DAG
, SDValue Arg
, unsigned FirstReg
,
4087 unsigned LastReg
, const ISD::ArgFlagsTy
&Flags
, bool isLittle
,
4088 const CCValAssign
&VA
) const {
4089 unsigned ByValSizeInBytes
= Flags
.getByValSize();
4090 unsigned OffsetInBytes
= 0; // From beginning of struct
4091 unsigned RegSizeInBytes
= Subtarget
.getGPRSizeInBytes();
4092 unsigned Alignment
= std::min(Flags
.getByValAlign(), RegSizeInBytes
);
4093 EVT PtrTy
= getPointerTy(DAG
.getDataLayout()),
4094 RegTy
= MVT::getIntegerVT(RegSizeInBytes
* 8);
4095 unsigned NumRegs
= LastReg
- FirstReg
;
4098 ArrayRef
<MCPhysReg
> ArgRegs
= ABI
.GetByValArgRegs();
4099 bool LeftoverBytes
= (NumRegs
* RegSizeInBytes
> ByValSizeInBytes
);
4102 // Copy words to registers.
4103 for (; I
< NumRegs
- LeftoverBytes
; ++I
, OffsetInBytes
+= RegSizeInBytes
) {
4104 SDValue LoadPtr
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, Arg
,
4105 DAG
.getConstant(OffsetInBytes
, DL
, PtrTy
));
4106 SDValue LoadVal
= DAG
.getLoad(RegTy
, DL
, Chain
, LoadPtr
,
4107 MachinePointerInfo(), Alignment
);
4108 MemOpChains
.push_back(LoadVal
.getValue(1));
4109 unsigned ArgReg
= ArgRegs
[FirstReg
+ I
];
4110 RegsToPass
.push_back(std::make_pair(ArgReg
, LoadVal
));
4113 // Return if the struct has been fully copied.
4114 if (ByValSizeInBytes
== OffsetInBytes
)
4117 // Copy the remainder of the byval argument with sub-word loads and shifts.
4118 if (LeftoverBytes
) {
4121 for (unsigned LoadSizeInBytes
= RegSizeInBytes
/ 2, TotalBytesLoaded
= 0;
4122 OffsetInBytes
< ByValSizeInBytes
; LoadSizeInBytes
/= 2) {
4123 unsigned RemainingSizeInBytes
= ByValSizeInBytes
- OffsetInBytes
;
4125 if (RemainingSizeInBytes
< LoadSizeInBytes
)
4129 SDValue LoadPtr
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, Arg
,
4130 DAG
.getConstant(OffsetInBytes
, DL
,
4132 SDValue LoadVal
= DAG
.getExtLoad(
4133 ISD::ZEXTLOAD
, DL
, RegTy
, Chain
, LoadPtr
, MachinePointerInfo(),
4134 MVT::getIntegerVT(LoadSizeInBytes
* 8), Alignment
);
4135 MemOpChains
.push_back(LoadVal
.getValue(1));
4137 // Shift the loaded value.
4141 Shamt
= TotalBytesLoaded
* 8;
4143 Shamt
= (RegSizeInBytes
- (TotalBytesLoaded
+ LoadSizeInBytes
)) * 8;
4145 SDValue Shift
= DAG
.getNode(ISD::SHL
, DL
, RegTy
, LoadVal
,
4146 DAG
.getConstant(Shamt
, DL
, MVT::i32
));
4149 Val
= DAG
.getNode(ISD::OR
, DL
, RegTy
, Val
, Shift
);
4153 OffsetInBytes
+= LoadSizeInBytes
;
4154 TotalBytesLoaded
+= LoadSizeInBytes
;
4155 Alignment
= std::min(Alignment
, LoadSizeInBytes
);
4158 unsigned ArgReg
= ArgRegs
[FirstReg
+ I
];
4159 RegsToPass
.push_back(std::make_pair(ArgReg
, Val
));
4164 // Copy remainder of byval arg to it with memcpy.
4165 unsigned MemCpySize
= ByValSizeInBytes
- OffsetInBytes
;
4166 SDValue Src
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, Arg
,
4167 DAG
.getConstant(OffsetInBytes
, DL
, PtrTy
));
4168 SDValue Dst
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, StackPtr
,
4169 DAG
.getIntPtrConstant(VA
.getLocMemOffset(), DL
));
4170 Chain
= DAG
.getMemcpy(Chain
, DL
, Dst
, Src
,
4171 DAG
.getConstant(MemCpySize
, DL
, PtrTy
),
4172 Alignment
, /*isVolatile=*/false, /*AlwaysInline=*/false,
4173 /*isTailCall=*/false,
4174 MachinePointerInfo(), MachinePointerInfo());
4175 MemOpChains
.push_back(Chain
);
4178 void MipsTargetLowering::writeVarArgRegs(std::vector
<SDValue
> &OutChains
,
4179 SDValue Chain
, const SDLoc
&DL
,
4181 CCState
&State
) const {
4182 ArrayRef
<MCPhysReg
> ArgRegs
= ABI
.GetVarArgRegs();
4183 unsigned Idx
= State
.getFirstUnallocated(ArgRegs
);
4184 unsigned RegSizeInBytes
= Subtarget
.getGPRSizeInBytes();
4185 MVT RegTy
= MVT::getIntegerVT(RegSizeInBytes
* 8);
4186 const TargetRegisterClass
*RC
= getRegClassFor(RegTy
);
4187 MachineFunction
&MF
= DAG
.getMachineFunction();
4188 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
4189 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
4191 // Offset of the first variable argument from stack pointer.
4194 if (ArgRegs
.size() == Idx
)
4195 VaArgOffset
= alignTo(State
.getNextStackOffset(), RegSizeInBytes
);
4198 (int)ABI
.GetCalleeAllocdArgSizeInBytes(State
.getCallingConv()) -
4199 (int)(RegSizeInBytes
* (ArgRegs
.size() - Idx
));
4202 // Record the frame index of the first variable argument
4203 // which is a value necessary to VASTART.
4204 int FI
= MFI
.CreateFixedObject(RegSizeInBytes
, VaArgOffset
, true);
4205 MipsFI
->setVarArgsFrameIndex(FI
);
4207 // Copy the integer registers that have not been used for argument passing
4208 // to the argument register save area. For O32, the save area is allocated
4209 // in the caller's stack frame, while for N32/64, it is allocated in the
4210 // callee's stack frame.
4211 for (unsigned I
= Idx
; I
< ArgRegs
.size();
4212 ++I
, VaArgOffset
+= RegSizeInBytes
) {
4213 unsigned Reg
= addLiveIn(MF
, ArgRegs
[I
], RC
);
4214 SDValue ArgValue
= DAG
.getCopyFromReg(Chain
, DL
, Reg
, RegTy
);
4215 FI
= MFI
.CreateFixedObject(RegSizeInBytes
, VaArgOffset
, true);
4216 SDValue PtrOff
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
4218 DAG
.getStore(Chain
, DL
, ArgValue
, PtrOff
, MachinePointerInfo());
4219 cast
<StoreSDNode
>(Store
.getNode())->getMemOperand()->setValue(
4221 OutChains
.push_back(Store
);
4225 void MipsTargetLowering::HandleByVal(CCState
*State
, unsigned &Size
,
4226 unsigned Align
) const {
4227 const TargetFrameLowering
*TFL
= Subtarget
.getFrameLowering();
4229 assert(Size
&& "Byval argument's size shouldn't be 0.");
4231 Align
= std::min(Align
, TFL
->getStackAlignment());
4233 unsigned FirstReg
= 0;
4234 unsigned NumRegs
= 0;
4236 if (State
->getCallingConv() != CallingConv::Fast
) {
4237 unsigned RegSizeInBytes
= Subtarget
.getGPRSizeInBytes();
4238 ArrayRef
<MCPhysReg
> IntArgRegs
= ABI
.GetByValArgRegs();
4239 // FIXME: The O32 case actually describes no shadow registers.
4240 const MCPhysReg
*ShadowRegs
=
4241 ABI
.IsO32() ? IntArgRegs
.data() : Mips64DPRegs
;
4243 // We used to check the size as well but we can't do that anymore since
4244 // CCState::HandleByVal() rounds up the size after calling this function.
4245 assert(!(Align
% RegSizeInBytes
) &&
4246 "Byval argument's alignment should be a multiple of"
4249 FirstReg
= State
->getFirstUnallocated(IntArgRegs
);
4251 // If Align > RegSizeInBytes, the first arg register must be even.
4252 // FIXME: This condition happens to do the right thing but it's not the
4253 // right way to test it. We want to check that the stack frame offset
4254 // of the register is aligned.
4255 if ((Align
> RegSizeInBytes
) && (FirstReg
% 2)) {
4256 State
->AllocateReg(IntArgRegs
[FirstReg
], ShadowRegs
[FirstReg
]);
4260 // Mark the registers allocated.
4261 Size
= alignTo(Size
, RegSizeInBytes
);
4262 for (unsigned I
= FirstReg
; Size
> 0 && (I
< IntArgRegs
.size());
4263 Size
-= RegSizeInBytes
, ++I
, ++NumRegs
)
4264 State
->AllocateReg(IntArgRegs
[I
], ShadowRegs
[I
]);
4267 State
->addInRegsParamInfo(FirstReg
, FirstReg
+ NumRegs
);
4270 MachineBasicBlock
*MipsTargetLowering::emitPseudoSELECT(MachineInstr
&MI
,
4271 MachineBasicBlock
*BB
,
4273 unsigned Opc
) const {
4274 assert(!(Subtarget
.hasMips4() || Subtarget
.hasMips32()) &&
4275 "Subtarget already supports SELECT nodes with the use of"
4276 "conditional-move instructions.");
4278 const TargetInstrInfo
*TII
=
4279 Subtarget
.getInstrInfo();
4280 DebugLoc DL
= MI
.getDebugLoc();
4282 // To "insert" a SELECT instruction, we actually have to insert the
4283 // diamond control-flow pattern. The incoming instruction knows the
4284 // destination vreg to set, the condition code register to branch on, the
4285 // true/false values to select between, and a branch opcode to use.
4286 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
4287 MachineFunction::iterator It
= ++BB
->getIterator();
4293 // bNE r1, r0, copy1MBB
4294 // fallthrough --> copy0MBB
4295 MachineBasicBlock
*thisMBB
= BB
;
4296 MachineFunction
*F
= BB
->getParent();
4297 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4298 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4299 F
->insert(It
, copy0MBB
);
4300 F
->insert(It
, sinkMBB
);
4302 // Transfer the remainder of BB and its successor edges to sinkMBB.
4303 sinkMBB
->splice(sinkMBB
->begin(), BB
,
4304 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
4305 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
4307 // Next, add the true and fallthrough blocks as its successors.
4308 BB
->addSuccessor(copy0MBB
);
4309 BB
->addSuccessor(sinkMBB
);
4312 // bc1[tf] cc, sinkMBB
4313 BuildMI(BB
, DL
, TII
->get(Opc
))
4314 .addReg(MI
.getOperand(1).getReg())
4317 // bne rs, $0, sinkMBB
4318 BuildMI(BB
, DL
, TII
->get(Opc
))
4319 .addReg(MI
.getOperand(1).getReg())
4325 // %FalseValue = ...
4326 // # fallthrough to sinkMBB
4329 // Update machine-CFG edges
4330 BB
->addSuccessor(sinkMBB
);
4333 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
4337 BuildMI(*BB
, BB
->begin(), DL
, TII
->get(Mips::PHI
), MI
.getOperand(0).getReg())
4338 .addReg(MI
.getOperand(2).getReg())
4340 .addReg(MI
.getOperand(3).getReg())
4343 MI
.eraseFromParent(); // The pseudo instruction is gone now.
4348 // FIXME? Maybe this could be a TableGen attribute on some registers and
4349 // this table could be generated automatically from RegInfo.
4350 unsigned MipsTargetLowering::getRegisterByName(const char* RegName
, EVT VT
,
4351 SelectionDAG
&DAG
) const {
4352 // Named registers is expected to be fairly rare. For now, just support $28
4353 // since the linux kernel uses it.
4354 if (Subtarget
.isGP64bit()) {
4355 unsigned Reg
= StringSwitch
<unsigned>(RegName
)
4356 .Case("$28", Mips::GP_64
)
4361 unsigned Reg
= StringSwitch
<unsigned>(RegName
)
4362 .Case("$28", Mips::GP
)
4367 report_fatal_error("Invalid register name global variable");