[PowerPC] Do not emit record-form rotates when record-form andi/andis suffices
[llvm-core.git] / lib / Target / Mips / MipsISelLowering.cpp
blob104fa4090ec07c587bd873c6e9ceabdac5a90722
1 //===- MipsISelLowering.cpp - Mips DAG Lowering Implementation ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that Mips uses to lower LLVM code into a
11 // selection DAG.
13 //===----------------------------------------------------------------------===//
15 #include "MipsISelLowering.h"
16 #include "InstPrinter/MipsInstPrinter.h"
17 #include "MCTargetDesc/MipsBaseInfo.h"
18 #include "MCTargetDesc/MipsMCTargetDesc.h"
19 #include "MipsCCState.h"
20 #include "MipsInstrInfo.h"
21 #include "MipsMachineFunction.h"
22 #include "MipsRegisterInfo.h"
23 #include "MipsSubtarget.h"
24 #include "MipsTargetMachine.h"
25 #include "MipsTargetObjectFile.h"
26 #include "llvm/ADT/APFloat.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/ADT/StringSwitch.h"
32 #include "llvm/CodeGen/CallingConvLower.h"
33 #include "llvm/CodeGen/FunctionLoweringInfo.h"
34 #include "llvm/CodeGen/ISDOpcodes.h"
35 #include "llvm/CodeGen/MachineBasicBlock.h"
36 #include "llvm/CodeGen/MachineFrameInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineInstr.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineJumpTableInfo.h"
41 #include "llvm/CodeGen/MachineMemOperand.h"
42 #include "llvm/CodeGen/MachineOperand.h"
43 #include "llvm/CodeGen/MachineRegisterInfo.h"
44 #include "llvm/CodeGen/RuntimeLibcalls.h"
45 #include "llvm/CodeGen/SelectionDAG.h"
46 #include "llvm/CodeGen/SelectionDAGNodes.h"
47 #include "llvm/CodeGen/TargetFrameLowering.h"
48 #include "llvm/CodeGen/TargetInstrInfo.h"
49 #include "llvm/CodeGen/TargetRegisterInfo.h"
50 #include "llvm/CodeGen/ValueTypes.h"
51 #include "llvm/IR/CallingConv.h"
52 #include "llvm/IR/Constants.h"
53 #include "llvm/IR/DataLayout.h"
54 #include "llvm/IR/DebugLoc.h"
55 #include "llvm/IR/DerivedTypes.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/GlobalValue.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/MC/MCRegisterInfo.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CodeGen.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/MachineValueType.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include "llvm/Target/TargetOptions.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cctype>
73 #include <cstdint>
74 #include <deque>
75 #include <iterator>
76 #include <utility>
77 #include <vector>
79 using namespace llvm;
81 #define DEBUG_TYPE "mips-lower"
83 STATISTIC(NumTailCalls, "Number of tail calls");
85 static cl::opt<bool>
86 LargeGOT("mxgot", cl::Hidden,
87 cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
89 static cl::opt<bool>
90 NoZeroDivCheck("mno-check-zero-division", cl::Hidden,
91 cl::desc("MIPS: Don't trap on integer division by zero."),
92 cl::init(false));
94 static const MCPhysReg Mips64DPRegs[8] = {
95 Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
96 Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
99 // If I is a shifted mask, set the size (Size) and the first bit of the
100 // mask (Pos), and return true.
101 // For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
102 static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
103 if (!isShiftedMask_64(I))
104 return false;
106 Size = countPopulation(I);
107 Pos = countTrailingZeros(I);
108 return true;
111 // The MIPS MSA ABI passes vector arguments in the integer register set.
112 // The number of integer registers used is dependant on the ABI used.
113 MVT MipsTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
114 CallingConv::ID CC,
115 EVT VT) const {
116 if (VT.isVector()) {
117 if (Subtarget.isABI_O32()) {
118 return MVT::i32;
119 } else {
120 return (VT.getSizeInBits() == 32) ? MVT::i32 : MVT::i64;
123 return MipsTargetLowering::getRegisterType(Context, VT);
126 unsigned MipsTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
127 CallingConv::ID CC,
128 EVT VT) const {
129 if (VT.isVector())
130 return std::max((VT.getSizeInBits() / (Subtarget.isABI_O32() ? 32 : 64)),
131 1U);
132 return MipsTargetLowering::getNumRegisters(Context, VT);
135 unsigned MipsTargetLowering::getVectorTypeBreakdownForCallingConv(
136 LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
137 unsigned &NumIntermediates, MVT &RegisterVT) const {
138 // Break down vector types to either 2 i64s or 4 i32s.
139 RegisterVT = getRegisterTypeForCallingConv(Context, CC, VT);
140 IntermediateVT = RegisterVT;
141 NumIntermediates = VT.getSizeInBits() < RegisterVT.getSizeInBits()
142 ? VT.getVectorNumElements()
143 : VT.getSizeInBits() / RegisterVT.getSizeInBits();
145 return NumIntermediates;
148 SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
149 MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
150 return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
153 SDValue MipsTargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
154 SelectionDAG &DAG,
155 unsigned Flag) const {
156 return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 0, Flag);
159 SDValue MipsTargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty,
160 SelectionDAG &DAG,
161 unsigned Flag) const {
162 return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
165 SDValue MipsTargetLowering::getTargetNode(BlockAddressSDNode *N, EVT Ty,
166 SelectionDAG &DAG,
167 unsigned Flag) const {
168 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
171 SDValue MipsTargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
172 SelectionDAG &DAG,
173 unsigned Flag) const {
174 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
177 SDValue MipsTargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
178 SelectionDAG &DAG,
179 unsigned Flag) const {
180 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
181 N->getOffset(), Flag);
184 const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
185 switch ((MipsISD::NodeType)Opcode) {
186 case MipsISD::FIRST_NUMBER: break;
187 case MipsISD::JmpLink: return "MipsISD::JmpLink";
188 case MipsISD::TailCall: return "MipsISD::TailCall";
189 case MipsISD::Highest: return "MipsISD::Highest";
190 case MipsISD::Higher: return "MipsISD::Higher";
191 case MipsISD::Hi: return "MipsISD::Hi";
192 case MipsISD::Lo: return "MipsISD::Lo";
193 case MipsISD::GotHi: return "MipsISD::GotHi";
194 case MipsISD::TlsHi: return "MipsISD::TlsHi";
195 case MipsISD::GPRel: return "MipsISD::GPRel";
196 case MipsISD::ThreadPointer: return "MipsISD::ThreadPointer";
197 case MipsISD::Ret: return "MipsISD::Ret";
198 case MipsISD::ERet: return "MipsISD::ERet";
199 case MipsISD::EH_RETURN: return "MipsISD::EH_RETURN";
200 case MipsISD::FMS: return "MipsISD::FMS";
201 case MipsISD::FPBrcond: return "MipsISD::FPBrcond";
202 case MipsISD::FPCmp: return "MipsISD::FPCmp";
203 case MipsISD::FSELECT: return "MipsISD::FSELECT";
204 case MipsISD::MTC1_D64: return "MipsISD::MTC1_D64";
205 case MipsISD::CMovFP_T: return "MipsISD::CMovFP_T";
206 case MipsISD::CMovFP_F: return "MipsISD::CMovFP_F";
207 case MipsISD::TruncIntFP: return "MipsISD::TruncIntFP";
208 case MipsISD::MFHI: return "MipsISD::MFHI";
209 case MipsISD::MFLO: return "MipsISD::MFLO";
210 case MipsISD::MTLOHI: return "MipsISD::MTLOHI";
211 case MipsISD::Mult: return "MipsISD::Mult";
212 case MipsISD::Multu: return "MipsISD::Multu";
213 case MipsISD::MAdd: return "MipsISD::MAdd";
214 case MipsISD::MAddu: return "MipsISD::MAddu";
215 case MipsISD::MSub: return "MipsISD::MSub";
216 case MipsISD::MSubu: return "MipsISD::MSubu";
217 case MipsISD::DivRem: return "MipsISD::DivRem";
218 case MipsISD::DivRemU: return "MipsISD::DivRemU";
219 case MipsISD::DivRem16: return "MipsISD::DivRem16";
220 case MipsISD::DivRemU16: return "MipsISD::DivRemU16";
221 case MipsISD::BuildPairF64: return "MipsISD::BuildPairF64";
222 case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
223 case MipsISD::Wrapper: return "MipsISD::Wrapper";
224 case MipsISD::DynAlloc: return "MipsISD::DynAlloc";
225 case MipsISD::Sync: return "MipsISD::Sync";
226 case MipsISD::Ext: return "MipsISD::Ext";
227 case MipsISD::Ins: return "MipsISD::Ins";
228 case MipsISD::CIns: return "MipsISD::CIns";
229 case MipsISD::LWL: return "MipsISD::LWL";
230 case MipsISD::LWR: return "MipsISD::LWR";
231 case MipsISD::SWL: return "MipsISD::SWL";
232 case MipsISD::SWR: return "MipsISD::SWR";
233 case MipsISD::LDL: return "MipsISD::LDL";
234 case MipsISD::LDR: return "MipsISD::LDR";
235 case MipsISD::SDL: return "MipsISD::SDL";
236 case MipsISD::SDR: return "MipsISD::SDR";
237 case MipsISD::EXTP: return "MipsISD::EXTP";
238 case MipsISD::EXTPDP: return "MipsISD::EXTPDP";
239 case MipsISD::EXTR_S_H: return "MipsISD::EXTR_S_H";
240 case MipsISD::EXTR_W: return "MipsISD::EXTR_W";
241 case MipsISD::EXTR_R_W: return "MipsISD::EXTR_R_W";
242 case MipsISD::EXTR_RS_W: return "MipsISD::EXTR_RS_W";
243 case MipsISD::SHILO: return "MipsISD::SHILO";
244 case MipsISD::MTHLIP: return "MipsISD::MTHLIP";
245 case MipsISD::MULSAQ_S_W_PH: return "MipsISD::MULSAQ_S_W_PH";
246 case MipsISD::MAQ_S_W_PHL: return "MipsISD::MAQ_S_W_PHL";
247 case MipsISD::MAQ_S_W_PHR: return "MipsISD::MAQ_S_W_PHR";
248 case MipsISD::MAQ_SA_W_PHL: return "MipsISD::MAQ_SA_W_PHL";
249 case MipsISD::MAQ_SA_W_PHR: return "MipsISD::MAQ_SA_W_PHR";
250 case MipsISD::DPAU_H_QBL: return "MipsISD::DPAU_H_QBL";
251 case MipsISD::DPAU_H_QBR: return "MipsISD::DPAU_H_QBR";
252 case MipsISD::DPSU_H_QBL: return "MipsISD::DPSU_H_QBL";
253 case MipsISD::DPSU_H_QBR: return "MipsISD::DPSU_H_QBR";
254 case MipsISD::DPAQ_S_W_PH: return "MipsISD::DPAQ_S_W_PH";
255 case MipsISD::DPSQ_S_W_PH: return "MipsISD::DPSQ_S_W_PH";
256 case MipsISD::DPAQ_SA_L_W: return "MipsISD::DPAQ_SA_L_W";
257 case MipsISD::DPSQ_SA_L_W: return "MipsISD::DPSQ_SA_L_W";
258 case MipsISD::DPA_W_PH: return "MipsISD::DPA_W_PH";
259 case MipsISD::DPS_W_PH: return "MipsISD::DPS_W_PH";
260 case MipsISD::DPAQX_S_W_PH: return "MipsISD::DPAQX_S_W_PH";
261 case MipsISD::DPAQX_SA_W_PH: return "MipsISD::DPAQX_SA_W_PH";
262 case MipsISD::DPAX_W_PH: return "MipsISD::DPAX_W_PH";
263 case MipsISD::DPSX_W_PH: return "MipsISD::DPSX_W_PH";
264 case MipsISD::DPSQX_S_W_PH: return "MipsISD::DPSQX_S_W_PH";
265 case MipsISD::DPSQX_SA_W_PH: return "MipsISD::DPSQX_SA_W_PH";
266 case MipsISD::MULSA_W_PH: return "MipsISD::MULSA_W_PH";
267 case MipsISD::MULT: return "MipsISD::MULT";
268 case MipsISD::MULTU: return "MipsISD::MULTU";
269 case MipsISD::MADD_DSP: return "MipsISD::MADD_DSP";
270 case MipsISD::MADDU_DSP: return "MipsISD::MADDU_DSP";
271 case MipsISD::MSUB_DSP: return "MipsISD::MSUB_DSP";
272 case MipsISD::MSUBU_DSP: return "MipsISD::MSUBU_DSP";
273 case MipsISD::SHLL_DSP: return "MipsISD::SHLL_DSP";
274 case MipsISD::SHRA_DSP: return "MipsISD::SHRA_DSP";
275 case MipsISD::SHRL_DSP: return "MipsISD::SHRL_DSP";
276 case MipsISD::SETCC_DSP: return "MipsISD::SETCC_DSP";
277 case MipsISD::SELECT_CC_DSP: return "MipsISD::SELECT_CC_DSP";
278 case MipsISD::VALL_ZERO: return "MipsISD::VALL_ZERO";
279 case MipsISD::VANY_ZERO: return "MipsISD::VANY_ZERO";
280 case MipsISD::VALL_NONZERO: return "MipsISD::VALL_NONZERO";
281 case MipsISD::VANY_NONZERO: return "MipsISD::VANY_NONZERO";
282 case MipsISD::VCEQ: return "MipsISD::VCEQ";
283 case MipsISD::VCLE_S: return "MipsISD::VCLE_S";
284 case MipsISD::VCLE_U: return "MipsISD::VCLE_U";
285 case MipsISD::VCLT_S: return "MipsISD::VCLT_S";
286 case MipsISD::VCLT_U: return "MipsISD::VCLT_U";
287 case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT";
288 case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT";
289 case MipsISD::VNOR: return "MipsISD::VNOR";
290 case MipsISD::VSHF: return "MipsISD::VSHF";
291 case MipsISD::SHF: return "MipsISD::SHF";
292 case MipsISD::ILVEV: return "MipsISD::ILVEV";
293 case MipsISD::ILVOD: return "MipsISD::ILVOD";
294 case MipsISD::ILVL: return "MipsISD::ILVL";
295 case MipsISD::ILVR: return "MipsISD::ILVR";
296 case MipsISD::PCKEV: return "MipsISD::PCKEV";
297 case MipsISD::PCKOD: return "MipsISD::PCKOD";
298 case MipsISD::INSVE: return "MipsISD::INSVE";
300 return nullptr;
303 MipsTargetLowering::MipsTargetLowering(const MipsTargetMachine &TM,
304 const MipsSubtarget &STI)
305 : TargetLowering(TM), Subtarget(STI), ABI(TM.getABI()) {
306 // Mips does not have i1 type, so use i32 for
307 // setcc operations results (slt, sgt, ...).
308 setBooleanContents(ZeroOrOneBooleanContent);
309 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
310 // The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA
311 // does. Integer booleans still use 0 and 1.
312 if (Subtarget.hasMips32r6())
313 setBooleanContents(ZeroOrOneBooleanContent,
314 ZeroOrNegativeOneBooleanContent);
316 // Load extented operations for i1 types must be promoted
317 for (MVT VT : MVT::integer_valuetypes()) {
318 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
319 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
320 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
323 // MIPS doesn't have extending float->double load/store. Set LoadExtAction
324 // for f32, f16
325 for (MVT VT : MVT::fp_valuetypes()) {
326 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
327 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
330 // Set LoadExtAction for f16 vectors to Expand
331 for (MVT VT : MVT::fp_vector_valuetypes()) {
332 MVT F16VT = MVT::getVectorVT(MVT::f16, VT.getVectorNumElements());
333 if (F16VT.isValid())
334 setLoadExtAction(ISD::EXTLOAD, VT, F16VT, Expand);
337 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
338 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
340 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
342 // Used by legalize types to correctly generate the setcc result.
343 // Without this, every float setcc comes with a AND/OR with the result,
344 // we don't want this, since the fpcmp result goes to a flag register,
345 // which is used implicitly by brcond and select operations.
346 AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
348 // Mips Custom Operations
349 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
350 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
351 setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
352 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
353 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
354 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
355 setOperationAction(ISD::SELECT, MVT::f32, Custom);
356 setOperationAction(ISD::SELECT, MVT::f64, Custom);
357 setOperationAction(ISD::SELECT, MVT::i32, Custom);
358 setOperationAction(ISD::SETCC, MVT::f32, Custom);
359 setOperationAction(ISD::SETCC, MVT::f64, Custom);
360 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
361 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
362 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
363 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
365 if (Subtarget.isGP64bit()) {
366 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
367 setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
368 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
369 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
370 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
371 setOperationAction(ISD::SELECT, MVT::i64, Custom);
372 setOperationAction(ISD::LOAD, MVT::i64, Custom);
373 setOperationAction(ISD::STORE, MVT::i64, Custom);
374 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
375 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
376 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
377 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
380 if (!Subtarget.isGP64bit()) {
381 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
382 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
383 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
386 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
387 if (Subtarget.isGP64bit())
388 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
390 setOperationAction(ISD::SDIV, MVT::i32, Expand);
391 setOperationAction(ISD::SREM, MVT::i32, Expand);
392 setOperationAction(ISD::UDIV, MVT::i32, Expand);
393 setOperationAction(ISD::UREM, MVT::i32, Expand);
394 setOperationAction(ISD::SDIV, MVT::i64, Expand);
395 setOperationAction(ISD::SREM, MVT::i64, Expand);
396 setOperationAction(ISD::UDIV, MVT::i64, Expand);
397 setOperationAction(ISD::UREM, MVT::i64, Expand);
399 // Operations not directly supported by Mips.
400 setOperationAction(ISD::BR_CC, MVT::f32, Expand);
401 setOperationAction(ISD::BR_CC, MVT::f64, Expand);
402 setOperationAction(ISD::BR_CC, MVT::i32, Expand);
403 setOperationAction(ISD::BR_CC, MVT::i64, Expand);
404 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
405 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
406 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
407 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
408 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
409 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
410 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
411 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
412 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
413 if (Subtarget.hasCnMips()) {
414 setOperationAction(ISD::CTPOP, MVT::i32, Legal);
415 setOperationAction(ISD::CTPOP, MVT::i64, Legal);
416 } else {
417 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
418 setOperationAction(ISD::CTPOP, MVT::i64, Expand);
420 setOperationAction(ISD::CTTZ, MVT::i32, Expand);
421 setOperationAction(ISD::CTTZ, MVT::i64, Expand);
422 setOperationAction(ISD::ROTL, MVT::i32, Expand);
423 setOperationAction(ISD::ROTL, MVT::i64, Expand);
424 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
425 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
427 if (!Subtarget.hasMips32r2())
428 setOperationAction(ISD::ROTR, MVT::i32, Expand);
430 if (!Subtarget.hasMips64r2())
431 setOperationAction(ISD::ROTR, MVT::i64, Expand);
433 setOperationAction(ISD::FSIN, MVT::f32, Expand);
434 setOperationAction(ISD::FSIN, MVT::f64, Expand);
435 setOperationAction(ISD::FCOS, MVT::f32, Expand);
436 setOperationAction(ISD::FCOS, MVT::f64, Expand);
437 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
438 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
439 setOperationAction(ISD::FPOW, MVT::f32, Expand);
440 setOperationAction(ISD::FPOW, MVT::f64, Expand);
441 setOperationAction(ISD::FLOG, MVT::f32, Expand);
442 setOperationAction(ISD::FLOG2, MVT::f32, Expand);
443 setOperationAction(ISD::FLOG10, MVT::f32, Expand);
444 setOperationAction(ISD::FEXP, MVT::f32, Expand);
445 setOperationAction(ISD::FMA, MVT::f32, Expand);
446 setOperationAction(ISD::FMA, MVT::f64, Expand);
447 setOperationAction(ISD::FREM, MVT::f32, Expand);
448 setOperationAction(ISD::FREM, MVT::f64, Expand);
450 // Lower f16 conversion operations into library calls
451 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
452 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
453 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
454 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
456 setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
458 setOperationAction(ISD::VASTART, MVT::Other, Custom);
459 setOperationAction(ISD::VAARG, MVT::Other, Custom);
460 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
461 setOperationAction(ISD::VAEND, MVT::Other, Expand);
463 // Use the default for now
464 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
465 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
467 if (!Subtarget.isGP64bit()) {
468 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand);
469 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
472 if (!Subtarget.hasMips32r2()) {
473 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
474 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
477 // MIPS16 lacks MIPS32's clz and clo instructions.
478 if (!Subtarget.hasMips32() || Subtarget.inMips16Mode())
479 setOperationAction(ISD::CTLZ, MVT::i32, Expand);
480 if (!Subtarget.hasMips64())
481 setOperationAction(ISD::CTLZ, MVT::i64, Expand);
483 if (!Subtarget.hasMips32r2())
484 setOperationAction(ISD::BSWAP, MVT::i32, Expand);
485 if (!Subtarget.hasMips64r2())
486 setOperationAction(ISD::BSWAP, MVT::i64, Expand);
488 if (Subtarget.isGP64bit()) {
489 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, MVT::i32, Custom);
490 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, MVT::i32, Custom);
491 setLoadExtAction(ISD::EXTLOAD, MVT::i64, MVT::i32, Custom);
492 setTruncStoreAction(MVT::i64, MVT::i32, Custom);
495 setOperationAction(ISD::TRAP, MVT::Other, Legal);
497 setTargetDAGCombine(ISD::SDIVREM);
498 setTargetDAGCombine(ISD::UDIVREM);
499 setTargetDAGCombine(ISD::SELECT);
500 setTargetDAGCombine(ISD::AND);
501 setTargetDAGCombine(ISD::OR);
502 setTargetDAGCombine(ISD::ADD);
503 setTargetDAGCombine(ISD::SUB);
504 setTargetDAGCombine(ISD::AssertZext);
505 setTargetDAGCombine(ISD::SHL);
507 if (ABI.IsO32()) {
508 // These libcalls are not available in 32-bit.
509 setLibcallName(RTLIB::SHL_I128, nullptr);
510 setLibcallName(RTLIB::SRL_I128, nullptr);
511 setLibcallName(RTLIB::SRA_I128, nullptr);
514 setMinFunctionAlignment(Subtarget.isGP64bit() ? 3 : 2);
516 // The arguments on the stack are defined in terms of 4-byte slots on O32
517 // and 8-byte slots on N32/N64.
518 setMinStackArgumentAlignment((ABI.IsN32() || ABI.IsN64()) ? 8 : 4);
520 setStackPointerRegisterToSaveRestore(ABI.IsN64() ? Mips::SP_64 : Mips::SP);
522 MaxStoresPerMemcpy = 16;
524 isMicroMips = Subtarget.inMicroMipsMode();
527 const MipsTargetLowering *MipsTargetLowering::create(const MipsTargetMachine &TM,
528 const MipsSubtarget &STI) {
529 if (STI.inMips16Mode())
530 return createMips16TargetLowering(TM, STI);
532 return createMipsSETargetLowering(TM, STI);
535 // Create a fast isel object.
536 FastISel *
537 MipsTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
538 const TargetLibraryInfo *libInfo) const {
539 const MipsTargetMachine &TM =
540 static_cast<const MipsTargetMachine &>(funcInfo.MF->getTarget());
542 // We support only the standard encoding [MIPS32,MIPS32R5] ISAs.
543 bool UseFastISel = TM.Options.EnableFastISel && Subtarget.hasMips32() &&
544 !Subtarget.hasMips32r6() && !Subtarget.inMips16Mode() &&
545 !Subtarget.inMicroMipsMode();
547 // Disable if either of the following is true:
548 // We do not generate PIC, the ABI is not O32, LargeGOT is being used.
549 if (!TM.isPositionIndependent() || !TM.getABI().IsO32() || LargeGOT)
550 UseFastISel = false;
552 return UseFastISel ? Mips::createFastISel(funcInfo, libInfo) : nullptr;
555 EVT MipsTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
556 EVT VT) const {
557 if (!VT.isVector())
558 return MVT::i32;
559 return VT.changeVectorElementTypeToInteger();
562 static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
563 TargetLowering::DAGCombinerInfo &DCI,
564 const MipsSubtarget &Subtarget) {
565 if (DCI.isBeforeLegalizeOps())
566 return SDValue();
568 EVT Ty = N->getValueType(0);
569 unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64;
570 unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64;
571 unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
572 MipsISD::DivRemU16;
573 SDLoc DL(N);
575 SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
576 N->getOperand(0), N->getOperand(1));
577 SDValue InChain = DAG.getEntryNode();
578 SDValue InGlue = DivRem;
580 // insert MFLO
581 if (N->hasAnyUseOfValue(0)) {
582 SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
583 InGlue);
584 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
585 InChain = CopyFromLo.getValue(1);
586 InGlue = CopyFromLo.getValue(2);
589 // insert MFHI
590 if (N->hasAnyUseOfValue(1)) {
591 SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
592 HI, Ty, InGlue);
593 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
596 return SDValue();
599 static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
600 switch (CC) {
601 default: llvm_unreachable("Unknown fp condition code!");
602 case ISD::SETEQ:
603 case ISD::SETOEQ: return Mips::FCOND_OEQ;
604 case ISD::SETUNE: return Mips::FCOND_UNE;
605 case ISD::SETLT:
606 case ISD::SETOLT: return Mips::FCOND_OLT;
607 case ISD::SETGT:
608 case ISD::SETOGT: return Mips::FCOND_OGT;
609 case ISD::SETLE:
610 case ISD::SETOLE: return Mips::FCOND_OLE;
611 case ISD::SETGE:
612 case ISD::SETOGE: return Mips::FCOND_OGE;
613 case ISD::SETULT: return Mips::FCOND_ULT;
614 case ISD::SETULE: return Mips::FCOND_ULE;
615 case ISD::SETUGT: return Mips::FCOND_UGT;
616 case ISD::SETUGE: return Mips::FCOND_UGE;
617 case ISD::SETUO: return Mips::FCOND_UN;
618 case ISD::SETO: return Mips::FCOND_OR;
619 case ISD::SETNE:
620 case ISD::SETONE: return Mips::FCOND_ONE;
621 case ISD::SETUEQ: return Mips::FCOND_UEQ;
625 /// This function returns true if the floating point conditional branches and
626 /// conditional moves which use condition code CC should be inverted.
627 static bool invertFPCondCodeUser(Mips::CondCode CC) {
628 if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
629 return false;
631 assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
632 "Illegal Condition Code");
634 return true;
637 // Creates and returns an FPCmp node from a setcc node.
638 // Returns Op if setcc is not a floating point comparison.
639 static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
640 // must be a SETCC node
641 if (Op.getOpcode() != ISD::SETCC)
642 return Op;
644 SDValue LHS = Op.getOperand(0);
646 if (!LHS.getValueType().isFloatingPoint())
647 return Op;
649 SDValue RHS = Op.getOperand(1);
650 SDLoc DL(Op);
652 // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
653 // node if necessary.
654 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
656 return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
657 DAG.getConstant(condCodeToFCC(CC), DL, MVT::i32));
660 // Creates and returns a CMovFPT/F node.
661 static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
662 SDValue False, const SDLoc &DL) {
663 ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
664 bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
665 SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
667 return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
668 True.getValueType(), True, FCC0, False, Cond);
671 static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
672 TargetLowering::DAGCombinerInfo &DCI,
673 const MipsSubtarget &Subtarget) {
674 if (DCI.isBeforeLegalizeOps())
675 return SDValue();
677 SDValue SetCC = N->getOperand(0);
679 if ((SetCC.getOpcode() != ISD::SETCC) ||
680 !SetCC.getOperand(0).getValueType().isInteger())
681 return SDValue();
683 SDValue False = N->getOperand(2);
684 EVT FalseTy = False.getValueType();
686 if (!FalseTy.isInteger())
687 return SDValue();
689 ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(False);
691 // If the RHS (False) is 0, we swap the order of the operands
692 // of ISD::SELECT (obviously also inverting the condition) so that we can
693 // take advantage of conditional moves using the $0 register.
694 // Example:
695 // return (a != 0) ? x : 0;
696 // load $reg, x
697 // movz $reg, $0, a
698 if (!FalseC)
699 return SDValue();
701 const SDLoc DL(N);
703 if (!FalseC->getZExtValue()) {
704 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
705 SDValue True = N->getOperand(1);
707 SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
708 SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
710 return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
713 // If both operands are integer constants there's a possibility that we
714 // can do some interesting optimizations.
715 SDValue True = N->getOperand(1);
716 ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(True);
718 if (!TrueC || !True.getValueType().isInteger())
719 return SDValue();
721 // We'll also ignore MVT::i64 operands as this optimizations proves
722 // to be ineffective because of the required sign extensions as the result
723 // of a SETCC operator is always MVT::i32 for non-vector types.
724 if (True.getValueType() == MVT::i64)
725 return SDValue();
727 int64_t Diff = TrueC->getSExtValue() - FalseC->getSExtValue();
729 // 1) (a < x) ? y : y-1
730 // slti $reg1, a, x
731 // addiu $reg2, $reg1, y-1
732 if (Diff == 1)
733 return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, False);
735 // 2) (a < x) ? y-1 : y
736 // slti $reg1, a, x
737 // xor $reg1, $reg1, 1
738 // addiu $reg2, $reg1, y-1
739 if (Diff == -1) {
740 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
741 SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
742 SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
743 return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, True);
746 // Could not optimize.
747 return SDValue();
750 static SDValue performCMovFPCombine(SDNode *N, SelectionDAG &DAG,
751 TargetLowering::DAGCombinerInfo &DCI,
752 const MipsSubtarget &Subtarget) {
753 if (DCI.isBeforeLegalizeOps())
754 return SDValue();
756 SDValue ValueIfTrue = N->getOperand(0), ValueIfFalse = N->getOperand(2);
758 ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(ValueIfFalse);
759 if (!FalseC || FalseC->getZExtValue())
760 return SDValue();
762 // Since RHS (False) is 0, we swap the order of the True/False operands
763 // (obviously also inverting the condition) so that we can
764 // take advantage of conditional moves using the $0 register.
765 // Example:
766 // return (a != 0) ? x : 0;
767 // load $reg, x
768 // movz $reg, $0, a
769 unsigned Opc = (N->getOpcode() == MipsISD::CMovFP_T) ? MipsISD::CMovFP_F :
770 MipsISD::CMovFP_T;
772 SDValue FCC = N->getOperand(1), Glue = N->getOperand(3);
773 return DAG.getNode(Opc, SDLoc(N), ValueIfFalse.getValueType(),
774 ValueIfFalse, FCC, ValueIfTrue, Glue);
777 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
778 TargetLowering::DAGCombinerInfo &DCI,
779 const MipsSubtarget &Subtarget) {
780 if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
781 return SDValue();
783 SDValue FirstOperand = N->getOperand(0);
784 unsigned FirstOperandOpc = FirstOperand.getOpcode();
785 SDValue Mask = N->getOperand(1);
786 EVT ValTy = N->getValueType(0);
787 SDLoc DL(N);
789 uint64_t Pos = 0, SMPos, SMSize;
790 ConstantSDNode *CN;
791 SDValue NewOperand;
792 unsigned Opc;
794 // Op's second operand must be a shifted mask.
795 if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
796 !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
797 return SDValue();
799 if (FirstOperandOpc == ISD::SRA || FirstOperandOpc == ISD::SRL) {
800 // Pattern match EXT.
801 // $dst = and ((sra or srl) $src , pos), (2**size - 1)
802 // => ext $dst, $src, pos, size
804 // The second operand of the shift must be an immediate.
805 if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))))
806 return SDValue();
808 Pos = CN->getZExtValue();
810 // Return if the shifted mask does not start at bit 0 or the sum of its size
811 // and Pos exceeds the word's size.
812 if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
813 return SDValue();
815 Opc = MipsISD::Ext;
816 NewOperand = FirstOperand.getOperand(0);
817 } else if (FirstOperandOpc == ISD::SHL && Subtarget.hasCnMips()) {
818 // Pattern match CINS.
819 // $dst = and (shl $src , pos), mask
820 // => cins $dst, $src, pos, size
821 // mask is a shifted mask with consecutive 1's, pos = shift amount,
822 // size = population count.
824 // The second operand of the shift must be an immediate.
825 if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))))
826 return SDValue();
828 Pos = CN->getZExtValue();
830 if (SMPos != Pos || Pos >= ValTy.getSizeInBits() || SMSize >= 32 ||
831 Pos + SMSize > ValTy.getSizeInBits())
832 return SDValue();
834 NewOperand = FirstOperand.getOperand(0);
835 // SMSize is 'location' (position) in this case, not size.
836 SMSize--;
837 Opc = MipsISD::CIns;
838 } else {
839 // Pattern match EXT.
840 // $dst = and $src, (2**size - 1) , if size > 16
841 // => ext $dst, $src, pos, size , pos = 0
843 // If the mask is <= 0xffff, andi can be used instead.
844 if (CN->getZExtValue() <= 0xffff)
845 return SDValue();
847 // Return if the mask doesn't start at position 0.
848 if (SMPos)
849 return SDValue();
851 Opc = MipsISD::Ext;
852 NewOperand = FirstOperand;
854 return DAG.getNode(Opc, DL, ValTy, NewOperand,
855 DAG.getConstant(Pos, DL, MVT::i32),
856 DAG.getConstant(SMSize, DL, MVT::i32));
859 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
860 TargetLowering::DAGCombinerInfo &DCI,
861 const MipsSubtarget &Subtarget) {
862 // Pattern match INS.
863 // $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
864 // where mask1 = (2**size - 1) << pos, mask0 = ~mask1
865 // => ins $dst, $src, size, pos, $src1
866 if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
867 return SDValue();
869 SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
870 uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
871 ConstantSDNode *CN, *CN1;
873 // See if Op's first operand matches (and $src1 , mask0).
874 if (And0.getOpcode() != ISD::AND)
875 return SDValue();
877 if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
878 !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
879 return SDValue();
881 // See if Op's second operand matches (and (shl $src, pos), mask1).
882 if (And1.getOpcode() == ISD::AND &&
883 And1.getOperand(0).getOpcode() == ISD::SHL) {
885 if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
886 !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
887 return SDValue();
889 // The shift masks must have the same position and size.
890 if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
891 return SDValue();
893 SDValue Shl = And1.getOperand(0);
895 if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
896 return SDValue();
898 unsigned Shamt = CN->getZExtValue();
900 // Return if the shift amount and the first bit position of mask are not the
901 // same.
902 EVT ValTy = N->getValueType(0);
903 if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
904 return SDValue();
906 SDLoc DL(N);
907 return DAG.getNode(MipsISD::Ins, DL, ValTy, Shl.getOperand(0),
908 DAG.getConstant(SMPos0, DL, MVT::i32),
909 DAG.getConstant(SMSize0, DL, MVT::i32),
910 And0.getOperand(0));
911 } else {
912 // Pattern match DINS.
913 // $dst = or (and $src, mask0), mask1
914 // where mask0 = ((1 << SMSize0) -1) << SMPos0
915 // => dins $dst, $src, pos, size
916 if (~CN->getSExtValue() == ((((int64_t)1 << SMSize0) - 1) << SMPos0) &&
917 ((SMSize0 + SMPos0 <= 64 && Subtarget.hasMips64r2()) ||
918 (SMSize0 + SMPos0 <= 32))) {
919 // Check if AND instruction has constant as argument
920 bool isConstCase = And1.getOpcode() != ISD::AND;
921 if (And1.getOpcode() == ISD::AND) {
922 if (!(CN1 = dyn_cast<ConstantSDNode>(And1->getOperand(1))))
923 return SDValue();
924 } else {
925 if (!(CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1))))
926 return SDValue();
928 // Don't generate INS if constant OR operand doesn't fit into bits
929 // cleared by constant AND operand.
930 if (CN->getSExtValue() & CN1->getSExtValue())
931 return SDValue();
933 SDLoc DL(N);
934 EVT ValTy = N->getOperand(0)->getValueType(0);
935 SDValue Const1;
936 SDValue SrlX;
937 if (!isConstCase) {
938 Const1 = DAG.getConstant(SMPos0, DL, MVT::i32);
939 SrlX = DAG.getNode(ISD::SRL, DL, And1->getValueType(0), And1, Const1);
941 return DAG.getNode(
942 MipsISD::Ins, DL, N->getValueType(0),
943 isConstCase
944 ? DAG.getConstant(CN1->getSExtValue() >> SMPos0, DL, ValTy)
945 : SrlX,
946 DAG.getConstant(SMPos0, DL, MVT::i32),
947 DAG.getConstant(ValTy.getSizeInBits() / 8 < 8 ? SMSize0 & 31
948 : SMSize0,
949 DL, MVT::i32),
950 And0->getOperand(0));
953 return SDValue();
957 static SDValue performMADD_MSUBCombine(SDNode *ROOTNode, SelectionDAG &CurDAG,
958 const MipsSubtarget &Subtarget) {
959 // ROOTNode must have a multiplication as an operand for the match to be
960 // successful.
961 if (ROOTNode->getOperand(0).getOpcode() != ISD::MUL &&
962 ROOTNode->getOperand(1).getOpcode() != ISD::MUL)
963 return SDValue();
965 // We don't handle vector types here.
966 if (ROOTNode->getValueType(0).isVector())
967 return SDValue();
969 // For MIPS64, madd / msub instructions are inefficent to use with 64 bit
970 // arithmetic. E.g.
971 // (add (mul a b) c) =>
972 // let res = (madd (mthi (drotr c 32))x(mtlo c) a b) in
973 // MIPS64: (or (dsll (mfhi res) 32) (dsrl (dsll (mflo res) 32) 32)
974 // or
975 // MIPS64R2: (dins (mflo res) (mfhi res) 32 32)
977 // The overhead of setting up the Hi/Lo registers and reassembling the
978 // result makes this a dubious optimzation for MIPS64. The core of the
979 // problem is that Hi/Lo contain the upper and lower 32 bits of the
980 // operand and result.
982 // It requires a chain of 4 add/mul for MIPS64R2 to get better code
983 // density than doing it naively, 5 for MIPS64. Additionally, using
984 // madd/msub on MIPS64 requires the operands actually be 32 bit sign
985 // extended operands, not true 64 bit values.
987 // FIXME: For the moment, disable this completely for MIPS64.
988 if (Subtarget.hasMips64())
989 return SDValue();
991 SDValue Mult = ROOTNode->getOperand(0).getOpcode() == ISD::MUL
992 ? ROOTNode->getOperand(0)
993 : ROOTNode->getOperand(1);
995 SDValue AddOperand = ROOTNode->getOperand(0).getOpcode() == ISD::MUL
996 ? ROOTNode->getOperand(1)
997 : ROOTNode->getOperand(0);
999 // Transform this to a MADD only if the user of this node is the add.
1000 // If there are other users of the mul, this function returns here.
1001 if (!Mult.hasOneUse())
1002 return SDValue();
1004 // maddu and madd are unusual instructions in that on MIPS64 bits 63..31
1005 // must be in canonical form, i.e. sign extended. For MIPS32, the operands
1006 // of the multiply must have 32 or more sign bits, otherwise we cannot
1007 // perform this optimization. We have to check this here as we're performing
1008 // this optimization pre-legalization.
1009 SDValue MultLHS = Mult->getOperand(0);
1010 SDValue MultRHS = Mult->getOperand(1);
1012 bool IsSigned = MultLHS->getOpcode() == ISD::SIGN_EXTEND &&
1013 MultRHS->getOpcode() == ISD::SIGN_EXTEND;
1014 bool IsUnsigned = MultLHS->getOpcode() == ISD::ZERO_EXTEND &&
1015 MultRHS->getOpcode() == ISD::ZERO_EXTEND;
1017 if (!IsSigned && !IsUnsigned)
1018 return SDValue();
1020 // Initialize accumulator.
1021 SDLoc DL(ROOTNode);
1022 SDValue TopHalf;
1023 SDValue BottomHalf;
1024 BottomHalf = CurDAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, AddOperand,
1025 CurDAG.getIntPtrConstant(0, DL));
1027 TopHalf = CurDAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, AddOperand,
1028 CurDAG.getIntPtrConstant(1, DL));
1029 SDValue ACCIn = CurDAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
1030 BottomHalf,
1031 TopHalf);
1033 // Create MipsMAdd(u) / MipsMSub(u) node.
1034 bool IsAdd = ROOTNode->getOpcode() == ISD::ADD;
1035 unsigned Opcode = IsAdd ? (IsUnsigned ? MipsISD::MAddu : MipsISD::MAdd)
1036 : (IsUnsigned ? MipsISD::MSubu : MipsISD::MSub);
1037 SDValue MAddOps[3] = {
1038 CurDAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mult->getOperand(0)),
1039 CurDAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mult->getOperand(1)), ACCIn};
1040 EVT VTs[2] = {MVT::i32, MVT::i32};
1041 SDValue MAdd = CurDAG.getNode(Opcode, DL, VTs, MAddOps);
1043 SDValue ResLo = CurDAG.getNode(MipsISD::MFLO, DL, MVT::i32, MAdd);
1044 SDValue ResHi = CurDAG.getNode(MipsISD::MFHI, DL, MVT::i32, MAdd);
1045 SDValue Combined =
1046 CurDAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, ResLo, ResHi);
1047 return Combined;
1050 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG,
1051 TargetLowering::DAGCombinerInfo &DCI,
1052 const MipsSubtarget &Subtarget) {
1053 // (sub v0 (mul v1, v2)) => (msub v1, v2, v0)
1054 if (DCI.isBeforeLegalizeOps()) {
1055 if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() &&
1056 !Subtarget.inMips16Mode() && N->getValueType(0) == MVT::i64)
1057 return performMADD_MSUBCombine(N, DAG, Subtarget);
1059 return SDValue();
1062 return SDValue();
1065 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
1066 TargetLowering::DAGCombinerInfo &DCI,
1067 const MipsSubtarget &Subtarget) {
1068 // (add v0 (mul v1, v2)) => (madd v1, v2, v0)
1069 if (DCI.isBeforeLegalizeOps()) {
1070 if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() &&
1071 !Subtarget.inMips16Mode() && N->getValueType(0) == MVT::i64)
1072 return performMADD_MSUBCombine(N, DAG, Subtarget);
1074 return SDValue();
1077 // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
1078 SDValue Add = N->getOperand(1);
1080 if (Add.getOpcode() != ISD::ADD)
1081 return SDValue();
1083 SDValue Lo = Add.getOperand(1);
1085 if ((Lo.getOpcode() != MipsISD::Lo) ||
1086 (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
1087 return SDValue();
1089 EVT ValTy = N->getValueType(0);
1090 SDLoc DL(N);
1092 SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
1093 Add.getOperand(0));
1094 return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
1097 static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG,
1098 TargetLowering::DAGCombinerInfo &DCI,
1099 const MipsSubtarget &Subtarget) {
1100 // Pattern match CINS.
1101 // $dst = shl (and $src , imm), pos
1102 // => cins $dst, $src, pos, size
1104 if (DCI.isBeforeLegalizeOps() || !Subtarget.hasCnMips())
1105 return SDValue();
1107 SDValue FirstOperand = N->getOperand(0);
1108 unsigned FirstOperandOpc = FirstOperand.getOpcode();
1109 SDValue SecondOperand = N->getOperand(1);
1110 EVT ValTy = N->getValueType(0);
1111 SDLoc DL(N);
1113 uint64_t Pos = 0, SMPos, SMSize;
1114 ConstantSDNode *CN;
1115 SDValue NewOperand;
1117 // The second operand of the shift must be an immediate.
1118 if (!(CN = dyn_cast<ConstantSDNode>(SecondOperand)))
1119 return SDValue();
1121 Pos = CN->getZExtValue();
1123 if (Pos >= ValTy.getSizeInBits())
1124 return SDValue();
1126 if (FirstOperandOpc != ISD::AND)
1127 return SDValue();
1129 // AND's second operand must be a shifted mask.
1130 if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))) ||
1131 !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
1132 return SDValue();
1134 // Return if the shifted mask does not start at bit 0 or the sum of its size
1135 // and Pos exceeds the word's size.
1136 if (SMPos != 0 || SMSize > 32 || Pos + SMSize > ValTy.getSizeInBits())
1137 return SDValue();
1139 NewOperand = FirstOperand.getOperand(0);
1140 // SMSize is 'location' (position) in this case, not size.
1141 SMSize--;
1143 return DAG.getNode(MipsISD::CIns, DL, ValTy, NewOperand,
1144 DAG.getConstant(Pos, DL, MVT::i32),
1145 DAG.getConstant(SMSize, DL, MVT::i32));
1148 SDValue MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
1149 const {
1150 SelectionDAG &DAG = DCI.DAG;
1151 unsigned Opc = N->getOpcode();
1153 switch (Opc) {
1154 default: break;
1155 case ISD::SDIVREM:
1156 case ISD::UDIVREM:
1157 return performDivRemCombine(N, DAG, DCI, Subtarget);
1158 case ISD::SELECT:
1159 return performSELECTCombine(N, DAG, DCI, Subtarget);
1160 case MipsISD::CMovFP_F:
1161 case MipsISD::CMovFP_T:
1162 return performCMovFPCombine(N, DAG, DCI, Subtarget);
1163 case ISD::AND:
1164 return performANDCombine(N, DAG, DCI, Subtarget);
1165 case ISD::OR:
1166 return performORCombine(N, DAG, DCI, Subtarget);
1167 case ISD::ADD:
1168 return performADDCombine(N, DAG, DCI, Subtarget);
1169 case ISD::SHL:
1170 return performSHLCombine(N, DAG, DCI, Subtarget);
1171 case ISD::SUB:
1172 return performSUBCombine(N, DAG, DCI, Subtarget);
1175 return SDValue();
1178 bool MipsTargetLowering::isCheapToSpeculateCttz() const {
1179 return Subtarget.hasMips32();
1182 bool MipsTargetLowering::isCheapToSpeculateCtlz() const {
1183 return Subtarget.hasMips32();
1186 void
1187 MipsTargetLowering::LowerOperationWrapper(SDNode *N,
1188 SmallVectorImpl<SDValue> &Results,
1189 SelectionDAG &DAG) const {
1190 SDValue Res = LowerOperation(SDValue(N, 0), DAG);
1192 for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
1193 Results.push_back(Res.getValue(I));
1196 void
1197 MipsTargetLowering::ReplaceNodeResults(SDNode *N,
1198 SmallVectorImpl<SDValue> &Results,
1199 SelectionDAG &DAG) const {
1200 return LowerOperationWrapper(N, Results, DAG);
1203 SDValue MipsTargetLowering::
1204 LowerOperation(SDValue Op, SelectionDAG &DAG) const
1206 switch (Op.getOpcode())
1208 case ISD::BRCOND: return lowerBRCOND(Op, DAG);
1209 case ISD::ConstantPool: return lowerConstantPool(Op, DAG);
1210 case ISD::GlobalAddress: return lowerGlobalAddress(Op, DAG);
1211 case ISD::BlockAddress: return lowerBlockAddress(Op, DAG);
1212 case ISD::GlobalTLSAddress: return lowerGlobalTLSAddress(Op, DAG);
1213 case ISD::JumpTable: return lowerJumpTable(Op, DAG);
1214 case ISD::SELECT: return lowerSELECT(Op, DAG);
1215 case ISD::SETCC: return lowerSETCC(Op, DAG);
1216 case ISD::VASTART: return lowerVASTART(Op, DAG);
1217 case ISD::VAARG: return lowerVAARG(Op, DAG);
1218 case ISD::FCOPYSIGN: return lowerFCOPYSIGN(Op, DAG);
1219 case ISD::FRAMEADDR: return lowerFRAMEADDR(Op, DAG);
1220 case ISD::RETURNADDR: return lowerRETURNADDR(Op, DAG);
1221 case ISD::EH_RETURN: return lowerEH_RETURN(Op, DAG);
1222 case ISD::ATOMIC_FENCE: return lowerATOMIC_FENCE(Op, DAG);
1223 case ISD::SHL_PARTS: return lowerShiftLeftParts(Op, DAG);
1224 case ISD::SRA_PARTS: return lowerShiftRightParts(Op, DAG, true);
1225 case ISD::SRL_PARTS: return lowerShiftRightParts(Op, DAG, false);
1226 case ISD::LOAD: return lowerLOAD(Op, DAG);
1227 case ISD::STORE: return lowerSTORE(Op, DAG);
1228 case ISD::EH_DWARF_CFA: return lowerEH_DWARF_CFA(Op, DAG);
1229 case ISD::FP_TO_SINT: return lowerFP_TO_SINT(Op, DAG);
1231 return SDValue();
1234 //===----------------------------------------------------------------------===//
1235 // Lower helper functions
1236 //===----------------------------------------------------------------------===//
1238 // addLiveIn - This helper function adds the specified physical register to the
1239 // MachineFunction as a live in value. It also creates a corresponding
1240 // virtual register for it.
1241 static unsigned
1242 addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
1244 unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
1245 MF.getRegInfo().addLiveIn(PReg, VReg);
1246 return VReg;
1249 static MachineBasicBlock *insertDivByZeroTrap(MachineInstr &MI,
1250 MachineBasicBlock &MBB,
1251 const TargetInstrInfo &TII,
1252 bool Is64Bit, bool IsMicroMips) {
1253 if (NoZeroDivCheck)
1254 return &MBB;
1256 // Insert instruction "teq $divisor_reg, $zero, 7".
1257 MachineBasicBlock::iterator I(MI);
1258 MachineInstrBuilder MIB;
1259 MachineOperand &Divisor = MI.getOperand(2);
1260 MIB = BuildMI(MBB, std::next(I), MI.getDebugLoc(),
1261 TII.get(IsMicroMips ? Mips::TEQ_MM : Mips::TEQ))
1262 .addReg(Divisor.getReg(), getKillRegState(Divisor.isKill()))
1263 .addReg(Mips::ZERO)
1264 .addImm(7);
1266 // Use the 32-bit sub-register if this is a 64-bit division.
1267 if (Is64Bit)
1268 MIB->getOperand(0).setSubReg(Mips::sub_32);
1270 // Clear Divisor's kill flag.
1271 Divisor.setIsKill(false);
1273 // We would normally delete the original instruction here but in this case
1274 // we only needed to inject an additional instruction rather than replace it.
1276 return &MBB;
1279 MachineBasicBlock *
1280 MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1281 MachineBasicBlock *BB) const {
1282 switch (MI.getOpcode()) {
1283 default:
1284 llvm_unreachable("Unexpected instr type to insert");
1285 case Mips::ATOMIC_LOAD_ADD_I8:
1286 return emitAtomicBinaryPartword(MI, BB, 1);
1287 case Mips::ATOMIC_LOAD_ADD_I16:
1288 return emitAtomicBinaryPartword(MI, BB, 2);
1289 case Mips::ATOMIC_LOAD_ADD_I32:
1290 return emitAtomicBinary(MI, BB);
1291 case Mips::ATOMIC_LOAD_ADD_I64:
1292 return emitAtomicBinary(MI, BB);
1294 case Mips::ATOMIC_LOAD_AND_I8:
1295 return emitAtomicBinaryPartword(MI, BB, 1);
1296 case Mips::ATOMIC_LOAD_AND_I16:
1297 return emitAtomicBinaryPartword(MI, BB, 2);
1298 case Mips::ATOMIC_LOAD_AND_I32:
1299 return emitAtomicBinary(MI, BB);
1300 case Mips::ATOMIC_LOAD_AND_I64:
1301 return emitAtomicBinary(MI, BB);
1303 case Mips::ATOMIC_LOAD_OR_I8:
1304 return emitAtomicBinaryPartword(MI, BB, 1);
1305 case Mips::ATOMIC_LOAD_OR_I16:
1306 return emitAtomicBinaryPartword(MI, BB, 2);
1307 case Mips::ATOMIC_LOAD_OR_I32:
1308 return emitAtomicBinary(MI, BB);
1309 case Mips::ATOMIC_LOAD_OR_I64:
1310 return emitAtomicBinary(MI, BB);
1312 case Mips::ATOMIC_LOAD_XOR_I8:
1313 return emitAtomicBinaryPartword(MI, BB, 1);
1314 case Mips::ATOMIC_LOAD_XOR_I16:
1315 return emitAtomicBinaryPartword(MI, BB, 2);
1316 case Mips::ATOMIC_LOAD_XOR_I32:
1317 return emitAtomicBinary(MI, BB);
1318 case Mips::ATOMIC_LOAD_XOR_I64:
1319 return emitAtomicBinary(MI, BB);
1321 case Mips::ATOMIC_LOAD_NAND_I8:
1322 return emitAtomicBinaryPartword(MI, BB, 1);
1323 case Mips::ATOMIC_LOAD_NAND_I16:
1324 return emitAtomicBinaryPartword(MI, BB, 2);
1325 case Mips::ATOMIC_LOAD_NAND_I32:
1326 return emitAtomicBinary(MI, BB);
1327 case Mips::ATOMIC_LOAD_NAND_I64:
1328 return emitAtomicBinary(MI, BB);
1330 case Mips::ATOMIC_LOAD_SUB_I8:
1331 return emitAtomicBinaryPartword(MI, BB, 1);
1332 case Mips::ATOMIC_LOAD_SUB_I16:
1333 return emitAtomicBinaryPartword(MI, BB, 2);
1334 case Mips::ATOMIC_LOAD_SUB_I32:
1335 return emitAtomicBinary(MI, BB);
1336 case Mips::ATOMIC_LOAD_SUB_I64:
1337 return emitAtomicBinary(MI, BB);
1339 case Mips::ATOMIC_SWAP_I8:
1340 return emitAtomicBinaryPartword(MI, BB, 1);
1341 case Mips::ATOMIC_SWAP_I16:
1342 return emitAtomicBinaryPartword(MI, BB, 2);
1343 case Mips::ATOMIC_SWAP_I32:
1344 return emitAtomicBinary(MI, BB);
1345 case Mips::ATOMIC_SWAP_I64:
1346 return emitAtomicBinary(MI, BB);
1348 case Mips::ATOMIC_CMP_SWAP_I8:
1349 return emitAtomicCmpSwapPartword(MI, BB, 1);
1350 case Mips::ATOMIC_CMP_SWAP_I16:
1351 return emitAtomicCmpSwapPartword(MI, BB, 2);
1352 case Mips::ATOMIC_CMP_SWAP_I32:
1353 return emitAtomicCmpSwap(MI, BB);
1354 case Mips::ATOMIC_CMP_SWAP_I64:
1355 return emitAtomicCmpSwap(MI, BB);
1356 case Mips::PseudoSDIV:
1357 case Mips::PseudoUDIV:
1358 case Mips::DIV:
1359 case Mips::DIVU:
1360 case Mips::MOD:
1361 case Mips::MODU:
1362 return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false,
1363 false);
1364 case Mips::SDIV_MM_Pseudo:
1365 case Mips::UDIV_MM_Pseudo:
1366 case Mips::SDIV_MM:
1367 case Mips::UDIV_MM:
1368 case Mips::DIV_MMR6:
1369 case Mips::DIVU_MMR6:
1370 case Mips::MOD_MMR6:
1371 case Mips::MODU_MMR6:
1372 return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false, true);
1373 case Mips::PseudoDSDIV:
1374 case Mips::PseudoDUDIV:
1375 case Mips::DDIV:
1376 case Mips::DDIVU:
1377 case Mips::DMOD:
1378 case Mips::DMODU:
1379 return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), true, false);
1381 case Mips::PseudoSELECT_I:
1382 case Mips::PseudoSELECT_I64:
1383 case Mips::PseudoSELECT_S:
1384 case Mips::PseudoSELECT_D32:
1385 case Mips::PseudoSELECT_D64:
1386 return emitPseudoSELECT(MI, BB, false, Mips::BNE);
1387 case Mips::PseudoSELECTFP_F_I:
1388 case Mips::PseudoSELECTFP_F_I64:
1389 case Mips::PseudoSELECTFP_F_S:
1390 case Mips::PseudoSELECTFP_F_D32:
1391 case Mips::PseudoSELECTFP_F_D64:
1392 return emitPseudoSELECT(MI, BB, true, Mips::BC1F);
1393 case Mips::PseudoSELECTFP_T_I:
1394 case Mips::PseudoSELECTFP_T_I64:
1395 case Mips::PseudoSELECTFP_T_S:
1396 case Mips::PseudoSELECTFP_T_D32:
1397 case Mips::PseudoSELECTFP_T_D64:
1398 return emitPseudoSELECT(MI, BB, true, Mips::BC1T);
1402 // This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
1403 // Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
1404 MachineBasicBlock *
1405 MipsTargetLowering::emitAtomicBinary(MachineInstr &MI,
1406 MachineBasicBlock *BB) const {
1408 MachineFunction *MF = BB->getParent();
1409 MachineRegisterInfo &RegInfo = MF->getRegInfo();
1410 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1411 DebugLoc DL = MI.getDebugLoc();
1413 unsigned AtomicOp;
1414 switch (MI.getOpcode()) {
1415 case Mips::ATOMIC_LOAD_ADD_I32:
1416 AtomicOp = Mips::ATOMIC_LOAD_ADD_I32_POSTRA;
1417 break;
1418 case Mips::ATOMIC_LOAD_SUB_I32:
1419 AtomicOp = Mips::ATOMIC_LOAD_SUB_I32_POSTRA;
1420 break;
1421 case Mips::ATOMIC_LOAD_AND_I32:
1422 AtomicOp = Mips::ATOMIC_LOAD_AND_I32_POSTRA;
1423 break;
1424 case Mips::ATOMIC_LOAD_OR_I32:
1425 AtomicOp = Mips::ATOMIC_LOAD_OR_I32_POSTRA;
1426 break;
1427 case Mips::ATOMIC_LOAD_XOR_I32:
1428 AtomicOp = Mips::ATOMIC_LOAD_XOR_I32_POSTRA;
1429 break;
1430 case Mips::ATOMIC_LOAD_NAND_I32:
1431 AtomicOp = Mips::ATOMIC_LOAD_NAND_I32_POSTRA;
1432 break;
1433 case Mips::ATOMIC_SWAP_I32:
1434 AtomicOp = Mips::ATOMIC_SWAP_I32_POSTRA;
1435 break;
1436 case Mips::ATOMIC_LOAD_ADD_I64:
1437 AtomicOp = Mips::ATOMIC_LOAD_ADD_I64_POSTRA;
1438 break;
1439 case Mips::ATOMIC_LOAD_SUB_I64:
1440 AtomicOp = Mips::ATOMIC_LOAD_SUB_I64_POSTRA;
1441 break;
1442 case Mips::ATOMIC_LOAD_AND_I64:
1443 AtomicOp = Mips::ATOMIC_LOAD_AND_I64_POSTRA;
1444 break;
1445 case Mips::ATOMIC_LOAD_OR_I64:
1446 AtomicOp = Mips::ATOMIC_LOAD_OR_I64_POSTRA;
1447 break;
1448 case Mips::ATOMIC_LOAD_XOR_I64:
1449 AtomicOp = Mips::ATOMIC_LOAD_XOR_I64_POSTRA;
1450 break;
1451 case Mips::ATOMIC_LOAD_NAND_I64:
1452 AtomicOp = Mips::ATOMIC_LOAD_NAND_I64_POSTRA;
1453 break;
1454 case Mips::ATOMIC_SWAP_I64:
1455 AtomicOp = Mips::ATOMIC_SWAP_I64_POSTRA;
1456 break;
1457 default:
1458 llvm_unreachable("Unknown pseudo atomic for replacement!");
1461 unsigned OldVal = MI.getOperand(0).getReg();
1462 unsigned Ptr = MI.getOperand(1).getReg();
1463 unsigned Incr = MI.getOperand(2).getReg();
1464 unsigned Scratch = RegInfo.createVirtualRegister(RegInfo.getRegClass(OldVal));
1466 MachineBasicBlock::iterator II(MI);
1468 // The scratch registers here with the EarlyClobber | Define | Implicit
1469 // flags is used to persuade the register allocator and the machine
1470 // verifier to accept the usage of this register. This has to be a real
1471 // register which has an UNDEF value but is dead after the instruction which
1472 // is unique among the registers chosen for the instruction.
1474 // The EarlyClobber flag has the semantic properties that the operand it is
1475 // attached to is clobbered before the rest of the inputs are read. Hence it
1476 // must be unique among the operands to the instruction.
1477 // The Define flag is needed to coerce the machine verifier that an Undef
1478 // value isn't a problem.
1479 // The Dead flag is needed as the value in scratch isn't used by any other
1480 // instruction. Kill isn't used as Dead is more precise.
1481 // The implicit flag is here due to the interaction between the other flags
1482 // and the machine verifier.
1484 // For correctness purpose, a new pseudo is introduced here. We need this
1485 // new pseudo, so that FastRegisterAllocator does not see an ll/sc sequence
1486 // that is spread over >1 basic blocks. A register allocator which
1487 // introduces (or any codegen infact) a store, can violate the expectations
1488 // of the hardware.
1490 // An atomic read-modify-write sequence starts with a linked load
1491 // instruction and ends with a store conditional instruction. The atomic
1492 // read-modify-write sequence fails if any of the following conditions
1493 // occur between the execution of ll and sc:
1494 // * A coherent store is completed by another process or coherent I/O
1495 // module into the block of synchronizable physical memory containing
1496 // the word. The size and alignment of the block is
1497 // implementation-dependent.
1498 // * A coherent store is executed between an LL and SC sequence on the
1499 // same processor to the block of synchornizable physical memory
1500 // containing the word.
1503 unsigned PtrCopy = RegInfo.createVirtualRegister(RegInfo.getRegClass(Ptr));
1504 unsigned IncrCopy = RegInfo.createVirtualRegister(RegInfo.getRegClass(Incr));
1506 BuildMI(*BB, II, DL, TII->get(Mips::COPY), IncrCopy).addReg(Incr);
1507 BuildMI(*BB, II, DL, TII->get(Mips::COPY), PtrCopy).addReg(Ptr);
1509 BuildMI(*BB, II, DL, TII->get(AtomicOp))
1510 .addReg(OldVal, RegState::Define | RegState::EarlyClobber)
1511 .addReg(PtrCopy)
1512 .addReg(IncrCopy)
1513 .addReg(Scratch, RegState::Define | RegState::EarlyClobber |
1514 RegState::Implicit | RegState::Dead);
1516 MI.eraseFromParent();
1518 return BB;
1521 MachineBasicBlock *MipsTargetLowering::emitSignExtendToI32InReg(
1522 MachineInstr &MI, MachineBasicBlock *BB, unsigned Size, unsigned DstReg,
1523 unsigned SrcReg) const {
1524 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1525 const DebugLoc &DL = MI.getDebugLoc();
1527 if (Subtarget.hasMips32r2() && Size == 1) {
1528 BuildMI(BB, DL, TII->get(Mips::SEB), DstReg).addReg(SrcReg);
1529 return BB;
1532 if (Subtarget.hasMips32r2() && Size == 2) {
1533 BuildMI(BB, DL, TII->get(Mips::SEH), DstReg).addReg(SrcReg);
1534 return BB;
1537 MachineFunction *MF = BB->getParent();
1538 MachineRegisterInfo &RegInfo = MF->getRegInfo();
1539 const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1540 unsigned ScrReg = RegInfo.createVirtualRegister(RC);
1542 assert(Size < 32);
1543 int64_t ShiftImm = 32 - (Size * 8);
1545 BuildMI(BB, DL, TII->get(Mips::SLL), ScrReg).addReg(SrcReg).addImm(ShiftImm);
1546 BuildMI(BB, DL, TII->get(Mips::SRA), DstReg).addReg(ScrReg).addImm(ShiftImm);
1548 return BB;
1551 MachineBasicBlock *MipsTargetLowering::emitAtomicBinaryPartword(
1552 MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const {
1553 assert((Size == 1 || Size == 2) &&
1554 "Unsupported size for EmitAtomicBinaryPartial.");
1556 MachineFunction *MF = BB->getParent();
1557 MachineRegisterInfo &RegInfo = MF->getRegInfo();
1558 const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1559 const bool ArePtrs64bit = ABI.ArePtrs64bit();
1560 const TargetRegisterClass *RCp =
1561 getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32);
1562 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1563 DebugLoc DL = MI.getDebugLoc();
1565 unsigned Dest = MI.getOperand(0).getReg();
1566 unsigned Ptr = MI.getOperand(1).getReg();
1567 unsigned Incr = MI.getOperand(2).getReg();
1569 unsigned AlignedAddr = RegInfo.createVirtualRegister(RCp);
1570 unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1571 unsigned Mask = RegInfo.createVirtualRegister(RC);
1572 unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1573 unsigned Incr2 = RegInfo.createVirtualRegister(RC);
1574 unsigned MaskLSB2 = RegInfo.createVirtualRegister(RCp);
1575 unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1576 unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1577 unsigned Scratch = RegInfo.createVirtualRegister(RC);
1578 unsigned Scratch2 = RegInfo.createVirtualRegister(RC);
1579 unsigned Scratch3 = RegInfo.createVirtualRegister(RC);
1581 unsigned AtomicOp = 0;
1582 switch (MI.getOpcode()) {
1583 case Mips::ATOMIC_LOAD_NAND_I8:
1584 AtomicOp = Mips::ATOMIC_LOAD_NAND_I8_POSTRA;
1585 break;
1586 case Mips::ATOMIC_LOAD_NAND_I16:
1587 AtomicOp = Mips::ATOMIC_LOAD_NAND_I16_POSTRA;
1588 break;
1589 case Mips::ATOMIC_SWAP_I8:
1590 AtomicOp = Mips::ATOMIC_SWAP_I8_POSTRA;
1591 break;
1592 case Mips::ATOMIC_SWAP_I16:
1593 AtomicOp = Mips::ATOMIC_SWAP_I16_POSTRA;
1594 break;
1595 case Mips::ATOMIC_LOAD_ADD_I8:
1596 AtomicOp = Mips::ATOMIC_LOAD_ADD_I8_POSTRA;
1597 break;
1598 case Mips::ATOMIC_LOAD_ADD_I16:
1599 AtomicOp = Mips::ATOMIC_LOAD_ADD_I16_POSTRA;
1600 break;
1601 case Mips::ATOMIC_LOAD_SUB_I8:
1602 AtomicOp = Mips::ATOMIC_LOAD_SUB_I8_POSTRA;
1603 break;
1604 case Mips::ATOMIC_LOAD_SUB_I16:
1605 AtomicOp = Mips::ATOMIC_LOAD_SUB_I16_POSTRA;
1606 break;
1607 case Mips::ATOMIC_LOAD_AND_I8:
1608 AtomicOp = Mips::ATOMIC_LOAD_AND_I8_POSTRA;
1609 break;
1610 case Mips::ATOMIC_LOAD_AND_I16:
1611 AtomicOp = Mips::ATOMIC_LOAD_AND_I16_POSTRA;
1612 break;
1613 case Mips::ATOMIC_LOAD_OR_I8:
1614 AtomicOp = Mips::ATOMIC_LOAD_OR_I8_POSTRA;
1615 break;
1616 case Mips::ATOMIC_LOAD_OR_I16:
1617 AtomicOp = Mips::ATOMIC_LOAD_OR_I16_POSTRA;
1618 break;
1619 case Mips::ATOMIC_LOAD_XOR_I8:
1620 AtomicOp = Mips::ATOMIC_LOAD_XOR_I8_POSTRA;
1621 break;
1622 case Mips::ATOMIC_LOAD_XOR_I16:
1623 AtomicOp = Mips::ATOMIC_LOAD_XOR_I16_POSTRA;
1624 break;
1625 default:
1626 llvm_unreachable("Unknown subword atomic pseudo for expansion!");
1629 // insert new blocks after the current block
1630 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1631 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1632 MachineFunction::iterator It = ++BB->getIterator();
1633 MF->insert(It, exitMBB);
1635 // Transfer the remainder of BB and its successor edges to exitMBB.
1636 exitMBB->splice(exitMBB->begin(), BB,
1637 std::next(MachineBasicBlock::iterator(MI)), BB->end());
1638 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1640 BB->addSuccessor(exitMBB, BranchProbability::getOne());
1642 // thisMBB:
1643 // addiu masklsb2,$0,-4 # 0xfffffffc
1644 // and alignedaddr,ptr,masklsb2
1645 // andi ptrlsb2,ptr,3
1646 // sll shiftamt,ptrlsb2,3
1647 // ori maskupper,$0,255 # 0xff
1648 // sll mask,maskupper,shiftamt
1649 // nor mask2,$0,mask
1650 // sll incr2,incr,shiftamt
1652 int64_t MaskImm = (Size == 1) ? 255 : 65535;
1653 BuildMI(BB, DL, TII->get(ABI.GetPtrAddiuOp()), MaskLSB2)
1654 .addReg(ABI.GetNullPtr()).addImm(-4);
1655 BuildMI(BB, DL, TII->get(ABI.GetPtrAndOp()), AlignedAddr)
1656 .addReg(Ptr).addReg(MaskLSB2);
1657 BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2)
1658 .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3);
1659 if (Subtarget.isLittle()) {
1660 BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1661 } else {
1662 unsigned Off = RegInfo.createVirtualRegister(RC);
1663 BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1664 .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1665 BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1667 BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1668 .addReg(Mips::ZERO).addImm(MaskImm);
1669 BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1670 .addReg(MaskUpper).addReg(ShiftAmt);
1671 BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1672 BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt);
1675 // The purposes of the flags on the scratch registers is explained in
1676 // emitAtomicBinary. In summary, we need a scratch register which is going to
1677 // be undef, that is unique among registers chosen for the instruction.
1679 BuildMI(BB, DL, TII->get(AtomicOp))
1680 .addReg(Dest, RegState::Define | RegState::EarlyClobber)
1681 .addReg(AlignedAddr)
1682 .addReg(Incr2)
1683 .addReg(Mask)
1684 .addReg(Mask2)
1685 .addReg(ShiftAmt)
1686 .addReg(Scratch, RegState::EarlyClobber | RegState::Define |
1687 RegState::Dead | RegState::Implicit)
1688 .addReg(Scratch2, RegState::EarlyClobber | RegState::Define |
1689 RegState::Dead | RegState::Implicit)
1690 .addReg(Scratch3, RegState::EarlyClobber | RegState::Define |
1691 RegState::Dead | RegState::Implicit);
1693 MI.eraseFromParent(); // The instruction is gone now.
1695 return exitMBB;
1698 // Lower atomic compare and swap to a pseudo instruction, taking care to
1699 // define a scratch register for the pseudo instruction's expansion. The
1700 // instruction is expanded after the register allocator as to prevent
1701 // the insertion of stores between the linked load and the store conditional.
1703 MachineBasicBlock *
1704 MipsTargetLowering::emitAtomicCmpSwap(MachineInstr &MI,
1705 MachineBasicBlock *BB) const {
1707 assert((MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 ||
1708 MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I64) &&
1709 "Unsupported atomic psseudo for EmitAtomicCmpSwap.");
1711 const unsigned Size = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 ? 4 : 8;
1713 MachineFunction *MF = BB->getParent();
1714 MachineRegisterInfo &MRI = MF->getRegInfo();
1715 const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1716 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1717 DebugLoc DL = MI.getDebugLoc();
1719 unsigned AtomicOp = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32
1720 ? Mips::ATOMIC_CMP_SWAP_I32_POSTRA
1721 : Mips::ATOMIC_CMP_SWAP_I64_POSTRA;
1722 unsigned Dest = MI.getOperand(0).getReg();
1723 unsigned Ptr = MI.getOperand(1).getReg();
1724 unsigned OldVal = MI.getOperand(2).getReg();
1725 unsigned NewVal = MI.getOperand(3).getReg();
1727 unsigned Scratch = MRI.createVirtualRegister(RC);
1728 MachineBasicBlock::iterator II(MI);
1730 // We need to create copies of the various registers and kill them at the
1731 // atomic pseudo. If the copies are not made, when the atomic is expanded
1732 // after fast register allocation, the spills will end up outside of the
1733 // blocks that their values are defined in, causing livein errors.
1735 unsigned DestCopy = MRI.createVirtualRegister(MRI.getRegClass(Dest));
1736 unsigned PtrCopy = MRI.createVirtualRegister(MRI.getRegClass(Ptr));
1737 unsigned OldValCopy = MRI.createVirtualRegister(MRI.getRegClass(OldVal));
1738 unsigned NewValCopy = MRI.createVirtualRegister(MRI.getRegClass(NewVal));
1740 BuildMI(*BB, II, DL, TII->get(Mips::COPY), DestCopy).addReg(Dest);
1741 BuildMI(*BB, II, DL, TII->get(Mips::COPY), PtrCopy).addReg(Ptr);
1742 BuildMI(*BB, II, DL, TII->get(Mips::COPY), OldValCopy).addReg(OldVal);
1743 BuildMI(*BB, II, DL, TII->get(Mips::COPY), NewValCopy).addReg(NewVal);
1745 // The purposes of the flags on the scratch registers is explained in
1746 // emitAtomicBinary. In summary, we need a scratch register which is going to
1747 // be undef, that is unique among registers chosen for the instruction.
1749 BuildMI(*BB, II, DL, TII->get(AtomicOp))
1750 .addReg(Dest, RegState::Define | RegState::EarlyClobber)
1751 .addReg(PtrCopy, RegState::Kill)
1752 .addReg(OldValCopy, RegState::Kill)
1753 .addReg(NewValCopy, RegState::Kill)
1754 .addReg(Scratch, RegState::EarlyClobber | RegState::Define |
1755 RegState::Dead | RegState::Implicit);
1757 MI.eraseFromParent(); // The instruction is gone now.
1759 return BB;
1762 MachineBasicBlock *MipsTargetLowering::emitAtomicCmpSwapPartword(
1763 MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const {
1764 assert((Size == 1 || Size == 2) &&
1765 "Unsupported size for EmitAtomicCmpSwapPartial.");
1767 MachineFunction *MF = BB->getParent();
1768 MachineRegisterInfo &RegInfo = MF->getRegInfo();
1769 const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1770 const bool ArePtrs64bit = ABI.ArePtrs64bit();
1771 const TargetRegisterClass *RCp =
1772 getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32);
1773 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1774 DebugLoc DL = MI.getDebugLoc();
1776 unsigned Dest = MI.getOperand(0).getReg();
1777 unsigned Ptr = MI.getOperand(1).getReg();
1778 unsigned CmpVal = MI.getOperand(2).getReg();
1779 unsigned NewVal = MI.getOperand(3).getReg();
1781 unsigned AlignedAddr = RegInfo.createVirtualRegister(RCp);
1782 unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1783 unsigned Mask = RegInfo.createVirtualRegister(RC);
1784 unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1785 unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1786 unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1787 unsigned MaskLSB2 = RegInfo.createVirtualRegister(RCp);
1788 unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1789 unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1790 unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1791 unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1792 unsigned AtomicOp = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I8
1793 ? Mips::ATOMIC_CMP_SWAP_I8_POSTRA
1794 : Mips::ATOMIC_CMP_SWAP_I16_POSTRA;
1796 // The scratch registers here with the EarlyClobber | Define | Dead | Implicit
1797 // flags are used to coerce the register allocator and the machine verifier to
1798 // accept the usage of these registers.
1799 // The EarlyClobber flag has the semantic properties that the operand it is
1800 // attached to is clobbered before the rest of the inputs are read. Hence it
1801 // must be unique among the operands to the instruction.
1802 // The Define flag is needed to coerce the machine verifier that an Undef
1803 // value isn't a problem.
1804 // The Dead flag is needed as the value in scratch isn't used by any other
1805 // instruction. Kill isn't used as Dead is more precise.
1806 unsigned Scratch = RegInfo.createVirtualRegister(RC);
1807 unsigned Scratch2 = RegInfo.createVirtualRegister(RC);
1809 // insert new blocks after the current block
1810 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1811 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1812 MachineFunction::iterator It = ++BB->getIterator();
1813 MF->insert(It, exitMBB);
1815 // Transfer the remainder of BB and its successor edges to exitMBB.
1816 exitMBB->splice(exitMBB->begin(), BB,
1817 std::next(MachineBasicBlock::iterator(MI)), BB->end());
1818 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1820 BB->addSuccessor(exitMBB, BranchProbability::getOne());
1822 // thisMBB:
1823 // addiu masklsb2,$0,-4 # 0xfffffffc
1824 // and alignedaddr,ptr,masklsb2
1825 // andi ptrlsb2,ptr,3
1826 // xori ptrlsb2,ptrlsb2,3 # Only for BE
1827 // sll shiftamt,ptrlsb2,3
1828 // ori maskupper,$0,255 # 0xff
1829 // sll mask,maskupper,shiftamt
1830 // nor mask2,$0,mask
1831 // andi maskedcmpval,cmpval,255
1832 // sll shiftedcmpval,maskedcmpval,shiftamt
1833 // andi maskednewval,newval,255
1834 // sll shiftednewval,maskednewval,shiftamt
1835 int64_t MaskImm = (Size == 1) ? 255 : 65535;
1836 BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::DADDiu : Mips::ADDiu), MaskLSB2)
1837 .addReg(ABI.GetNullPtr()).addImm(-4);
1838 BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::AND64 : Mips::AND), AlignedAddr)
1839 .addReg(Ptr).addReg(MaskLSB2);
1840 BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2)
1841 .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3);
1842 if (Subtarget.isLittle()) {
1843 BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1844 } else {
1845 unsigned Off = RegInfo.createVirtualRegister(RC);
1846 BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1847 .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1848 BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1850 BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1851 .addReg(Mips::ZERO).addImm(MaskImm);
1852 BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1853 .addReg(MaskUpper).addReg(ShiftAmt);
1854 BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1855 BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
1856 .addReg(CmpVal).addImm(MaskImm);
1857 BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
1858 .addReg(MaskedCmpVal).addReg(ShiftAmt);
1859 BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
1860 .addReg(NewVal).addImm(MaskImm);
1861 BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
1862 .addReg(MaskedNewVal).addReg(ShiftAmt);
1864 // The purposes of the flags on the scratch registers are explained in
1865 // emitAtomicBinary. In summary, we need a scratch register which is going to
1866 // be undef, that is unique among the register chosen for the instruction.
1868 BuildMI(BB, DL, TII->get(AtomicOp))
1869 .addReg(Dest, RegState::Define | RegState::EarlyClobber)
1870 .addReg(AlignedAddr)
1871 .addReg(Mask)
1872 .addReg(ShiftedCmpVal)
1873 .addReg(Mask2)
1874 .addReg(ShiftedNewVal)
1875 .addReg(ShiftAmt)
1876 .addReg(Scratch, RegState::EarlyClobber | RegState::Define |
1877 RegState::Dead | RegState::Implicit)
1878 .addReg(Scratch2, RegState::EarlyClobber | RegState::Define |
1879 RegState::Dead | RegState::Implicit);
1881 MI.eraseFromParent(); // The instruction is gone now.
1883 return exitMBB;
1886 SDValue MipsTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
1887 // The first operand is the chain, the second is the condition, the third is
1888 // the block to branch to if the condition is true.
1889 SDValue Chain = Op.getOperand(0);
1890 SDValue Dest = Op.getOperand(2);
1891 SDLoc DL(Op);
1893 assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
1894 SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
1896 // Return if flag is not set by a floating point comparison.
1897 if (CondRes.getOpcode() != MipsISD::FPCmp)
1898 return Op;
1900 SDValue CCNode = CondRes.getOperand(2);
1901 Mips::CondCode CC =
1902 (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1903 unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
1904 SDValue BrCode = DAG.getConstant(Opc, DL, MVT::i32);
1905 SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
1906 return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
1907 FCC0, Dest, CondRes);
1910 SDValue MipsTargetLowering::
1911 lowerSELECT(SDValue Op, SelectionDAG &DAG) const
1913 assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
1914 SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
1916 // Return if flag is not set by a floating point comparison.
1917 if (Cond.getOpcode() != MipsISD::FPCmp)
1918 return Op;
1920 return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1921 SDLoc(Op));
1924 SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1925 assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
1926 SDValue Cond = createFPCmp(DAG, Op);
1928 assert(Cond.getOpcode() == MipsISD::FPCmp &&
1929 "Floating point operand expected.");
1931 SDLoc DL(Op);
1932 SDValue True = DAG.getConstant(1, DL, MVT::i32);
1933 SDValue False = DAG.getConstant(0, DL, MVT::i32);
1935 return createCMovFP(DAG, Cond, True, False, DL);
1938 SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
1939 SelectionDAG &DAG) const {
1940 EVT Ty = Op.getValueType();
1941 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
1942 const GlobalValue *GV = N->getGlobal();
1944 if (!isPositionIndependent()) {
1945 const MipsTargetObjectFile *TLOF =
1946 static_cast<const MipsTargetObjectFile *>(
1947 getTargetMachine().getObjFileLowering());
1948 const GlobalObject *GO = GV->getBaseObject();
1949 if (GO && TLOF->IsGlobalInSmallSection(GO, getTargetMachine()))
1950 // %gp_rel relocation
1951 return getAddrGPRel(N, SDLoc(N), Ty, DAG, ABI.IsN64());
1953 // %hi/%lo relocation
1954 return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
1955 // %highest/%higher/%hi/%lo relocation
1956 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
1959 // Every other architecture would use shouldAssumeDSOLocal in here, but
1960 // mips is special.
1961 // * In PIC code mips requires got loads even for local statics!
1962 // * To save on got entries, for local statics the got entry contains the
1963 // page and an additional add instruction takes care of the low bits.
1964 // * It is legal to access a hidden symbol with a non hidden undefined,
1965 // so one cannot guarantee that all access to a hidden symbol will know
1966 // it is hidden.
1967 // * Mips linkers don't support creating a page and a full got entry for
1968 // the same symbol.
1969 // * Given all that, we have to use a full got entry for hidden symbols :-(
1970 if (GV->hasLocalLinkage())
1971 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
1973 if (LargeGOT)
1974 return getAddrGlobalLargeGOT(
1975 N, SDLoc(N), Ty, DAG, MipsII::MO_GOT_HI16, MipsII::MO_GOT_LO16,
1976 DAG.getEntryNode(),
1977 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
1979 return getAddrGlobal(
1980 N, SDLoc(N), Ty, DAG,
1981 (ABI.IsN32() || ABI.IsN64()) ? MipsII::MO_GOT_DISP : MipsII::MO_GOT,
1982 DAG.getEntryNode(), MachinePointerInfo::getGOT(DAG.getMachineFunction()));
1985 SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
1986 SelectionDAG &DAG) const {
1987 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
1988 EVT Ty = Op.getValueType();
1990 if (!isPositionIndependent())
1991 return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
1992 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
1994 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
1997 SDValue MipsTargetLowering::
1998 lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
2000 // If the relocation model is PIC, use the General Dynamic TLS Model or
2001 // Local Dynamic TLS model, otherwise use the Initial Exec or
2002 // Local Exec TLS Model.
2004 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2005 if (DAG.getTarget().useEmulatedTLS())
2006 return LowerToTLSEmulatedModel(GA, DAG);
2008 SDLoc DL(GA);
2009 const GlobalValue *GV = GA->getGlobal();
2010 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2012 TLSModel::Model model = getTargetMachine().getTLSModel(GV);
2014 if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
2015 // General Dynamic and Local Dynamic TLS Model.
2016 unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
2017 : MipsII::MO_TLSGD;
2019 SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
2020 SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
2021 getGlobalReg(DAG, PtrVT), TGA);
2022 unsigned PtrSize = PtrVT.getSizeInBits();
2023 IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
2025 SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
2027 ArgListTy Args;
2028 ArgListEntry Entry;
2029 Entry.Node = Argument;
2030 Entry.Ty = PtrTy;
2031 Args.push_back(Entry);
2033 TargetLowering::CallLoweringInfo CLI(DAG);
2034 CLI.setDebugLoc(DL)
2035 .setChain(DAG.getEntryNode())
2036 .setLibCallee(CallingConv::C, PtrTy, TlsGetAddr, std::move(Args));
2037 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2039 SDValue Ret = CallResult.first;
2041 if (model != TLSModel::LocalDynamic)
2042 return Ret;
2044 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2045 MipsII::MO_DTPREL_HI);
2046 SDValue Hi = DAG.getNode(MipsISD::TlsHi, DL, PtrVT, TGAHi);
2047 SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2048 MipsII::MO_DTPREL_LO);
2049 SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
2050 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
2051 return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
2054 SDValue Offset;
2055 if (model == TLSModel::InitialExec) {
2056 // Initial Exec TLS Model
2057 SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2058 MipsII::MO_GOTTPREL);
2059 TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
2060 TGA);
2061 Offset =
2062 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), TGA, MachinePointerInfo());
2063 } else {
2064 // Local Exec TLS Model
2065 assert(model == TLSModel::LocalExec);
2066 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2067 MipsII::MO_TPREL_HI);
2068 SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2069 MipsII::MO_TPREL_LO);
2070 SDValue Hi = DAG.getNode(MipsISD::TlsHi, DL, PtrVT, TGAHi);
2071 SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
2072 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2075 SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
2076 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
2079 SDValue MipsTargetLowering::
2080 lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
2082 JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
2083 EVT Ty = Op.getValueType();
2085 if (!isPositionIndependent())
2086 return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
2087 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
2089 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
2092 SDValue MipsTargetLowering::
2093 lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
2095 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
2096 EVT Ty = Op.getValueType();
2098 if (!isPositionIndependent()) {
2099 const MipsTargetObjectFile *TLOF =
2100 static_cast<const MipsTargetObjectFile *>(
2101 getTargetMachine().getObjFileLowering());
2103 if (TLOF->IsConstantInSmallSection(DAG.getDataLayout(), N->getConstVal(),
2104 getTargetMachine()))
2105 // %gp_rel relocation
2106 return getAddrGPRel(N, SDLoc(N), Ty, DAG, ABI.IsN64());
2108 return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
2109 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
2112 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
2115 SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2116 MachineFunction &MF = DAG.getMachineFunction();
2117 MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
2119 SDLoc DL(Op);
2120 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2121 getPointerTy(MF.getDataLayout()));
2123 // vastart just stores the address of the VarArgsFrameIndex slot into the
2124 // memory location argument.
2125 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2126 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
2127 MachinePointerInfo(SV));
2130 SDValue MipsTargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const {
2131 SDNode *Node = Op.getNode();
2132 EVT VT = Node->getValueType(0);
2133 SDValue Chain = Node->getOperand(0);
2134 SDValue VAListPtr = Node->getOperand(1);
2135 unsigned Align = Node->getConstantOperandVal(3);
2136 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2137 SDLoc DL(Node);
2138 unsigned ArgSlotSizeInBytes = (ABI.IsN32() || ABI.IsN64()) ? 8 : 4;
2140 SDValue VAListLoad = DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL, Chain,
2141 VAListPtr, MachinePointerInfo(SV));
2142 SDValue VAList = VAListLoad;
2144 // Re-align the pointer if necessary.
2145 // It should only ever be necessary for 64-bit types on O32 since the minimum
2146 // argument alignment is the same as the maximum type alignment for N32/N64.
2148 // FIXME: We currently align too often. The code generator doesn't notice
2149 // when the pointer is still aligned from the last va_arg (or pair of
2150 // va_args for the i64 on O32 case).
2151 if (Align > getMinStackArgumentAlignment()) {
2152 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
2154 VAList = DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList,
2155 DAG.getConstant(Align - 1, DL, VAList.getValueType()));
2157 VAList = DAG.getNode(ISD::AND, DL, VAList.getValueType(), VAList,
2158 DAG.getConstant(-(int64_t)Align, DL,
2159 VAList.getValueType()));
2162 // Increment the pointer, VAList, to the next vaarg.
2163 auto &TD = DAG.getDataLayout();
2164 unsigned ArgSizeInBytes =
2165 TD.getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext()));
2166 SDValue Tmp3 =
2167 DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList,
2168 DAG.getConstant(alignTo(ArgSizeInBytes, ArgSlotSizeInBytes),
2169 DL, VAList.getValueType()));
2170 // Store the incremented VAList to the legalized pointer
2171 Chain = DAG.getStore(VAListLoad.getValue(1), DL, Tmp3, VAListPtr,
2172 MachinePointerInfo(SV));
2174 // In big-endian mode we must adjust the pointer when the load size is smaller
2175 // than the argument slot size. We must also reduce the known alignment to
2176 // match. For example in the N64 ABI, we must add 4 bytes to the offset to get
2177 // the correct half of the slot, and reduce the alignment from 8 (slot
2178 // alignment) down to 4 (type alignment).
2179 if (!Subtarget.isLittle() && ArgSizeInBytes < ArgSlotSizeInBytes) {
2180 unsigned Adjustment = ArgSlotSizeInBytes - ArgSizeInBytes;
2181 VAList = DAG.getNode(ISD::ADD, DL, VAListPtr.getValueType(), VAList,
2182 DAG.getIntPtrConstant(Adjustment, DL));
2184 // Load the actual argument out of the pointer VAList
2185 return DAG.getLoad(VT, DL, Chain, VAList, MachinePointerInfo());
2188 static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG,
2189 bool HasExtractInsert) {
2190 EVT TyX = Op.getOperand(0).getValueType();
2191 EVT TyY = Op.getOperand(1).getValueType();
2192 SDLoc DL(Op);
2193 SDValue Const1 = DAG.getConstant(1, DL, MVT::i32);
2194 SDValue Const31 = DAG.getConstant(31, DL, MVT::i32);
2195 SDValue Res;
2197 // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2198 // to i32.
2199 SDValue X = (TyX == MVT::f32) ?
2200 DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
2201 DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
2202 Const1);
2203 SDValue Y = (TyY == MVT::f32) ?
2204 DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
2205 DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
2206 Const1);
2208 if (HasExtractInsert) {
2209 // ext E, Y, 31, 1 ; extract bit31 of Y
2210 // ins X, E, 31, 1 ; insert extracted bit at bit31 of X
2211 SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
2212 Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
2213 } else {
2214 // sll SllX, X, 1
2215 // srl SrlX, SllX, 1
2216 // srl SrlY, Y, 31
2217 // sll SllY, SrlX, 31
2218 // or Or, SrlX, SllY
2219 SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
2220 SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
2221 SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
2222 SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
2223 Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
2226 if (TyX == MVT::f32)
2227 return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
2229 SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2230 Op.getOperand(0),
2231 DAG.getConstant(0, DL, MVT::i32));
2232 return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
2235 static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG,
2236 bool HasExtractInsert) {
2237 unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
2238 unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
2239 EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
2240 SDLoc DL(Op);
2241 SDValue Const1 = DAG.getConstant(1, DL, MVT::i32);
2243 // Bitcast to integer nodes.
2244 SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
2245 SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
2247 if (HasExtractInsert) {
2248 // ext E, Y, width(Y) - 1, 1 ; extract bit width(Y)-1 of Y
2249 // ins X, E, width(X) - 1, 1 ; insert extracted bit at bit width(X)-1 of X
2250 SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
2251 DAG.getConstant(WidthY - 1, DL, MVT::i32), Const1);
2253 if (WidthX > WidthY)
2254 E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
2255 else if (WidthY > WidthX)
2256 E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
2258 SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
2259 DAG.getConstant(WidthX - 1, DL, MVT::i32), Const1,
2261 return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
2264 // (d)sll SllX, X, 1
2265 // (d)srl SrlX, SllX, 1
2266 // (d)srl SrlY, Y, width(Y)-1
2267 // (d)sll SllY, SrlX, width(Y)-1
2268 // or Or, SrlX, SllY
2269 SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
2270 SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
2271 SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
2272 DAG.getConstant(WidthY - 1, DL, MVT::i32));
2274 if (WidthX > WidthY)
2275 SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
2276 else if (WidthY > WidthX)
2277 SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
2279 SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
2280 DAG.getConstant(WidthX - 1, DL, MVT::i32));
2281 SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
2282 return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
2285 SDValue
2286 MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
2287 if (Subtarget.isGP64bit())
2288 return lowerFCOPYSIGN64(Op, DAG, Subtarget.hasExtractInsert());
2290 return lowerFCOPYSIGN32(Op, DAG, Subtarget.hasExtractInsert());
2293 SDValue MipsTargetLowering::
2294 lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
2295 // check the depth
2296 assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
2297 "Frame address can only be determined for current frame.");
2299 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2300 MFI.setFrameAddressIsTaken(true);
2301 EVT VT = Op.getValueType();
2302 SDLoc DL(Op);
2303 SDValue FrameAddr = DAG.getCopyFromReg(
2304 DAG.getEntryNode(), DL, ABI.IsN64() ? Mips::FP_64 : Mips::FP, VT);
2305 return FrameAddr;
2308 SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
2309 SelectionDAG &DAG) const {
2310 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
2311 return SDValue();
2313 // check the depth
2314 assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
2315 "Return address can be determined only for current frame.");
2317 MachineFunction &MF = DAG.getMachineFunction();
2318 MachineFrameInfo &MFI = MF.getFrameInfo();
2319 MVT VT = Op.getSimpleValueType();
2320 unsigned RA = ABI.IsN64() ? Mips::RA_64 : Mips::RA;
2321 MFI.setReturnAddressIsTaken(true);
2323 // Return RA, which contains the return address. Mark it an implicit live-in.
2324 unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
2325 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT);
2328 // An EH_RETURN is the result of lowering llvm.eh.return which in turn is
2329 // generated from __builtin_eh_return (offset, handler)
2330 // The effect of this is to adjust the stack pointer by "offset"
2331 // and then branch to "handler".
2332 SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
2333 const {
2334 MachineFunction &MF = DAG.getMachineFunction();
2335 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2337 MipsFI->setCallsEhReturn();
2338 SDValue Chain = Op.getOperand(0);
2339 SDValue Offset = Op.getOperand(1);
2340 SDValue Handler = Op.getOperand(2);
2341 SDLoc DL(Op);
2342 EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32;
2344 // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
2345 // EH_RETURN nodes, so that instructions are emitted back-to-back.
2346 unsigned OffsetReg = ABI.IsN64() ? Mips::V1_64 : Mips::V1;
2347 unsigned AddrReg = ABI.IsN64() ? Mips::V0_64 : Mips::V0;
2348 Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
2349 Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
2350 return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
2351 DAG.getRegister(OffsetReg, Ty),
2352 DAG.getRegister(AddrReg, getPointerTy(MF.getDataLayout())),
2353 Chain.getValue(1));
2356 SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
2357 SelectionDAG &DAG) const {
2358 // FIXME: Need pseudo-fence for 'singlethread' fences
2359 // FIXME: Set SType for weaker fences where supported/appropriate.
2360 unsigned SType = 0;
2361 SDLoc DL(Op);
2362 return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
2363 DAG.getConstant(SType, DL, MVT::i32));
2366 SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
2367 SelectionDAG &DAG) const {
2368 SDLoc DL(Op);
2369 MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32;
2371 SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2372 SDValue Shamt = Op.getOperand(2);
2373 // if shamt < (VT.bits):
2374 // lo = (shl lo, shamt)
2375 // hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
2376 // else:
2377 // lo = 0
2378 // hi = (shl lo, shamt[4:0])
2379 SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2380 DAG.getConstant(-1, DL, MVT::i32));
2381 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo,
2382 DAG.getConstant(1, DL, VT));
2383 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, Not);
2384 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
2385 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
2386 SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
2387 SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2388 DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32));
2389 Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2390 DAG.getConstant(0, DL, VT), ShiftLeftLo);
2391 Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftLeftLo, Or);
2393 SDValue Ops[2] = {Lo, Hi};
2394 return DAG.getMergeValues(Ops, DL);
2397 SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
2398 bool IsSRA) const {
2399 SDLoc DL(Op);
2400 SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2401 SDValue Shamt = Op.getOperand(2);
2402 MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32;
2404 // if shamt < (VT.bits):
2405 // lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
2406 // if isSRA:
2407 // hi = (sra hi, shamt)
2408 // else:
2409 // hi = (srl hi, shamt)
2410 // else:
2411 // if isSRA:
2412 // lo = (sra hi, shamt[4:0])
2413 // hi = (sra hi, 31)
2414 // else:
2415 // lo = (srl hi, shamt[4:0])
2416 // hi = 0
2417 SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2418 DAG.getConstant(-1, DL, MVT::i32));
2419 SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, VT, Hi,
2420 DAG.getConstant(1, DL, VT));
2421 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, ShiftLeft1Hi, Not);
2422 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
2423 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
2424 SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL,
2425 DL, VT, Hi, Shamt);
2426 SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2427 DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32));
2428 SDValue Ext = DAG.getNode(ISD::SRA, DL, VT, Hi,
2429 DAG.getConstant(VT.getSizeInBits() - 1, DL, VT));
2430 Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftRightHi, Or);
2431 Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2432 IsSRA ? Ext : DAG.getConstant(0, DL, VT), ShiftRightHi);
2434 SDValue Ops[2] = {Lo, Hi};
2435 return DAG.getMergeValues(Ops, DL);
2438 static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
2439 SDValue Chain, SDValue Src, unsigned Offset) {
2440 SDValue Ptr = LD->getBasePtr();
2441 EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
2442 EVT BasePtrVT = Ptr.getValueType();
2443 SDLoc DL(LD);
2444 SDVTList VTList = DAG.getVTList(VT, MVT::Other);
2446 if (Offset)
2447 Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2448 DAG.getConstant(Offset, DL, BasePtrVT));
2450 SDValue Ops[] = { Chain, Ptr, Src };
2451 return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
2452 LD->getMemOperand());
2455 // Expand an unaligned 32 or 64-bit integer load node.
2456 SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2457 LoadSDNode *LD = cast<LoadSDNode>(Op);
2458 EVT MemVT = LD->getMemoryVT();
2460 if (Subtarget.systemSupportsUnalignedAccess())
2461 return Op;
2463 // Return if load is aligned or if MemVT is neither i32 nor i64.
2464 if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2465 ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2466 return SDValue();
2468 bool IsLittle = Subtarget.isLittle();
2469 EVT VT = Op.getValueType();
2470 ISD::LoadExtType ExtType = LD->getExtensionType();
2471 SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
2473 assert((VT == MVT::i32) || (VT == MVT::i64));
2475 // Expand
2476 // (set dst, (i64 (load baseptr)))
2477 // to
2478 // (set tmp, (ldl (add baseptr, 7), undef))
2479 // (set dst, (ldr baseptr, tmp))
2480 if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
2481 SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
2482 IsLittle ? 7 : 0);
2483 return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
2484 IsLittle ? 0 : 7);
2487 SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
2488 IsLittle ? 3 : 0);
2489 SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
2490 IsLittle ? 0 : 3);
2492 // Expand
2493 // (set dst, (i32 (load baseptr))) or
2494 // (set dst, (i64 (sextload baseptr))) or
2495 // (set dst, (i64 (extload baseptr)))
2496 // to
2497 // (set tmp, (lwl (add baseptr, 3), undef))
2498 // (set dst, (lwr baseptr, tmp))
2499 if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
2500 (ExtType == ISD::EXTLOAD))
2501 return LWR;
2503 assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
2505 // Expand
2506 // (set dst, (i64 (zextload baseptr)))
2507 // to
2508 // (set tmp0, (lwl (add baseptr, 3), undef))
2509 // (set tmp1, (lwr baseptr, tmp0))
2510 // (set tmp2, (shl tmp1, 32))
2511 // (set dst, (srl tmp2, 32))
2512 SDLoc DL(LD);
2513 SDValue Const32 = DAG.getConstant(32, DL, MVT::i32);
2514 SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
2515 SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2516 SDValue Ops[] = { SRL, LWR.getValue(1) };
2517 return DAG.getMergeValues(Ops, DL);
2520 static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2521 SDValue Chain, unsigned Offset) {
2522 SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2523 EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2524 SDLoc DL(SD);
2525 SDVTList VTList = DAG.getVTList(MVT::Other);
2527 if (Offset)
2528 Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2529 DAG.getConstant(Offset, DL, BasePtrVT));
2531 SDValue Ops[] = { Chain, Value, Ptr };
2532 return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
2533 SD->getMemOperand());
2536 // Expand an unaligned 32 or 64-bit integer store node.
2537 static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG,
2538 bool IsLittle) {
2539 SDValue Value = SD->getValue(), Chain = SD->getChain();
2540 EVT VT = Value.getValueType();
2542 // Expand
2543 // (store val, baseptr) or
2544 // (truncstore val, baseptr)
2545 // to
2546 // (swl val, (add baseptr, 3))
2547 // (swr val, baseptr)
2548 if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2549 SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
2550 IsLittle ? 3 : 0);
2551 return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2554 assert(VT == MVT::i64);
2556 // Expand
2557 // (store val, baseptr)
2558 // to
2559 // (sdl val, (add baseptr, 7))
2560 // (sdr val, baseptr)
2561 SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2562 return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2565 // Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
2566 static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG,
2567 bool SingleFloat) {
2568 SDValue Val = SD->getValue();
2570 if (Val.getOpcode() != ISD::FP_TO_SINT ||
2571 (Val.getValueSizeInBits() > 32 && SingleFloat))
2572 return SDValue();
2574 EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits());
2575 SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy,
2576 Val.getOperand(0));
2577 return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(),
2578 SD->getPointerInfo(), SD->getAlignment(),
2579 SD->getMemOperand()->getFlags());
2582 SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2583 StoreSDNode *SD = cast<StoreSDNode>(Op);
2584 EVT MemVT = SD->getMemoryVT();
2586 // Lower unaligned integer stores.
2587 if (!Subtarget.systemSupportsUnalignedAccess() &&
2588 (SD->getAlignment() < MemVT.getSizeInBits() / 8) &&
2589 ((MemVT == MVT::i32) || (MemVT == MVT::i64)))
2590 return lowerUnalignedIntStore(SD, DAG, Subtarget.isLittle());
2592 return lowerFP_TO_SINT_STORE(SD, DAG, Subtarget.isSingleFloat());
2595 SDValue MipsTargetLowering::lowerEH_DWARF_CFA(SDValue Op,
2596 SelectionDAG &DAG) const {
2598 // Return a fixed StackObject with offset 0 which points to the old stack
2599 // pointer.
2600 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2601 EVT ValTy = Op->getValueType(0);
2602 int FI = MFI.CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
2603 return DAG.getFrameIndex(FI, ValTy);
2606 SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
2607 SelectionDAG &DAG) const {
2608 if (Op.getValueSizeInBits() > 32 && Subtarget.isSingleFloat())
2609 return SDValue();
2611 EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
2612 SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy,
2613 Op.getOperand(0));
2614 return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc);
2617 //===----------------------------------------------------------------------===//
2618 // Calling Convention Implementation
2619 //===----------------------------------------------------------------------===//
2621 //===----------------------------------------------------------------------===//
2622 // TODO: Implement a generic logic using tblgen that can support this.
2623 // Mips O32 ABI rules:
2624 // ---
2625 // i32 - Passed in A0, A1, A2, A3 and stack
2626 // f32 - Only passed in f32 registers if no int reg has been used yet to hold
2627 // an argument. Otherwise, passed in A1, A2, A3 and stack.
2628 // f64 - Only passed in two aliased f32 registers if no int reg has been used
2629 // yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2630 // not used, it must be shadowed. If only A3 is available, shadow it and
2631 // go to stack.
2632 // vXiX - Received as scalarized i32s, passed in A0 - A3 and the stack.
2633 // vXf32 - Passed in either a pair of registers {A0, A1}, {A2, A3} or {A0 - A3}
2634 // with the remainder spilled to the stack.
2635 // vXf64 - Passed in either {A0, A1, A2, A3} or {A2, A3} and in both cases
2636 // spilling the remainder to the stack.
2638 // For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2639 //===----------------------------------------------------------------------===//
2641 static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
2642 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
2643 CCState &State, ArrayRef<MCPhysReg> F64Regs) {
2644 const MipsSubtarget &Subtarget = static_cast<const MipsSubtarget &>(
2645 State.getMachineFunction().getSubtarget());
2647 static const MCPhysReg IntRegs[] = { Mips::A0, Mips::A1, Mips::A2, Mips::A3 };
2649 const MipsCCState * MipsState = static_cast<MipsCCState *>(&State);
2651 static const MCPhysReg F32Regs[] = { Mips::F12, Mips::F14 };
2653 static const MCPhysReg FloatVectorIntRegs[] = { Mips::A0, Mips::A2 };
2655 // Do not process byval args here.
2656 if (ArgFlags.isByVal())
2657 return true;
2659 // Promote i8 and i16
2660 if (ArgFlags.isInReg() && !Subtarget.isLittle()) {
2661 if (LocVT == MVT::i8 || LocVT == MVT::i16 || LocVT == MVT::i32) {
2662 LocVT = MVT::i32;
2663 if (ArgFlags.isSExt())
2664 LocInfo = CCValAssign::SExtUpper;
2665 else if (ArgFlags.isZExt())
2666 LocInfo = CCValAssign::ZExtUpper;
2667 else
2668 LocInfo = CCValAssign::AExtUpper;
2672 // Promote i8 and i16
2673 if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2674 LocVT = MVT::i32;
2675 if (ArgFlags.isSExt())
2676 LocInfo = CCValAssign::SExt;
2677 else if (ArgFlags.isZExt())
2678 LocInfo = CCValAssign::ZExt;
2679 else
2680 LocInfo = CCValAssign::AExt;
2683 unsigned Reg;
2685 // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2686 // is true: function is vararg, argument is 3rd or higher, there is previous
2687 // argument which is not f32 or f64.
2688 bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1 ||
2689 State.getFirstUnallocated(F32Regs) != ValNo;
2690 unsigned OrigAlign = ArgFlags.getOrigAlign();
2691 bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2692 bool isVectorFloat = MipsState->WasOriginalArgVectorFloat(ValNo);
2694 // The MIPS vector ABI for floats passes them in a pair of registers
2695 if (ValVT == MVT::i32 && isVectorFloat) {
2696 // This is the start of an vector that was scalarized into an unknown number
2697 // of components. It doesn't matter how many there are. Allocate one of the
2698 // notional 8 byte aligned registers which map onto the argument stack, and
2699 // shadow the register lost to alignment requirements.
2700 if (ArgFlags.isSplit()) {
2701 Reg = State.AllocateReg(FloatVectorIntRegs);
2702 if (Reg == Mips::A2)
2703 State.AllocateReg(Mips::A1);
2704 else if (Reg == 0)
2705 State.AllocateReg(Mips::A3);
2706 } else {
2707 // If we're an intermediate component of the split, we can just attempt to
2708 // allocate a register directly.
2709 Reg = State.AllocateReg(IntRegs);
2711 } else if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2712 Reg = State.AllocateReg(IntRegs);
2713 // If this is the first part of an i64 arg,
2714 // the allocated register must be either A0 or A2.
2715 if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2716 Reg = State.AllocateReg(IntRegs);
2717 LocVT = MVT::i32;
2718 } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2719 // Allocate int register and shadow next int register. If first
2720 // available register is Mips::A1 or Mips::A3, shadow it too.
2721 Reg = State.AllocateReg(IntRegs);
2722 if (Reg == Mips::A1 || Reg == Mips::A3)
2723 Reg = State.AllocateReg(IntRegs);
2724 State.AllocateReg(IntRegs);
2725 LocVT = MVT::i32;
2726 } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2727 // we are guaranteed to find an available float register
2728 if (ValVT == MVT::f32) {
2729 Reg = State.AllocateReg(F32Regs);
2730 // Shadow int register
2731 State.AllocateReg(IntRegs);
2732 } else {
2733 Reg = State.AllocateReg(F64Regs);
2734 // Shadow int registers
2735 unsigned Reg2 = State.AllocateReg(IntRegs);
2736 if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2737 State.AllocateReg(IntRegs);
2738 State.AllocateReg(IntRegs);
2740 } else
2741 llvm_unreachable("Cannot handle this ValVT.");
2743 if (!Reg) {
2744 unsigned Offset = State.AllocateStack(ValVT.getStoreSize(), OrigAlign);
2745 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2746 } else
2747 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2749 return false;
2752 static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT,
2753 MVT LocVT, CCValAssign::LocInfo LocInfo,
2754 ISD::ArgFlagsTy ArgFlags, CCState &State) {
2755 static const MCPhysReg F64Regs[] = { Mips::D6, Mips::D7 };
2757 return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2760 static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT,
2761 MVT LocVT, CCValAssign::LocInfo LocInfo,
2762 ISD::ArgFlagsTy ArgFlags, CCState &State) {
2763 static const MCPhysReg F64Regs[] = { Mips::D12_64, Mips::D14_64 };
2765 return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2768 static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
2769 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
2770 CCState &State) LLVM_ATTRIBUTE_UNUSED;
2772 #include "MipsGenCallingConv.inc"
2774 CCAssignFn *MipsTargetLowering::CCAssignFnForCall() const{
2775 return CC_Mips;
2778 CCAssignFn *MipsTargetLowering::CCAssignFnForReturn() const{
2779 return RetCC_Mips;
2781 //===----------------------------------------------------------------------===//
2782 // Call Calling Convention Implementation
2783 //===----------------------------------------------------------------------===//
2785 // Return next O32 integer argument register.
2786 static unsigned getNextIntArgReg(unsigned Reg) {
2787 assert((Reg == Mips::A0) || (Reg == Mips::A2));
2788 return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2791 SDValue MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
2792 SDValue Chain, SDValue Arg,
2793 const SDLoc &DL, bool IsTailCall,
2794 SelectionDAG &DAG) const {
2795 if (!IsTailCall) {
2796 SDValue PtrOff =
2797 DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr,
2798 DAG.getIntPtrConstant(Offset, DL));
2799 return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo());
2802 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2803 int FI = MFI.CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
2804 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
2805 return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
2806 /* Alignment = */ 0, MachineMemOperand::MOVolatile);
2809 void MipsTargetLowering::
2810 getOpndList(SmallVectorImpl<SDValue> &Ops,
2811 std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
2812 bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
2813 bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
2814 SDValue Chain) const {
2815 // Insert node "GP copy globalreg" before call to function.
2817 // R_MIPS_CALL* operators (emitted when non-internal functions are called
2818 // in PIC mode) allow symbols to be resolved via lazy binding.
2819 // The lazy binding stub requires GP to point to the GOT.
2820 // Note that we don't need GP to point to the GOT for indirect calls
2821 // (when R_MIPS_CALL* is not used for the call) because Mips linker generates
2822 // lazy binding stub for a function only when R_MIPS_CALL* are the only relocs
2823 // used for the function (that is, Mips linker doesn't generate lazy binding
2824 // stub for a function whose address is taken in the program).
2825 if (IsPICCall && !InternalLinkage && IsCallReloc) {
2826 unsigned GPReg = ABI.IsN64() ? Mips::GP_64 : Mips::GP;
2827 EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32;
2828 RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
2831 // Build a sequence of copy-to-reg nodes chained together with token
2832 // chain and flag operands which copy the outgoing args into registers.
2833 // The InFlag in necessary since all emitted instructions must be
2834 // stuck together.
2835 SDValue InFlag;
2837 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2838 Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
2839 RegsToPass[i].second, InFlag);
2840 InFlag = Chain.getValue(1);
2843 // Add argument registers to the end of the list so that they are
2844 // known live into the call.
2845 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2846 Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
2847 RegsToPass[i].second.getValueType()));
2849 // Add a register mask operand representing the call-preserved registers.
2850 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2851 const uint32_t *Mask =
2852 TRI->getCallPreservedMask(CLI.DAG.getMachineFunction(), CLI.CallConv);
2853 assert(Mask && "Missing call preserved mask for calling convention");
2854 if (Subtarget.inMips16HardFloat()) {
2855 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
2856 StringRef Sym = G->getGlobal()->getName();
2857 Function *F = G->getGlobal()->getParent()->getFunction(Sym);
2858 if (F && F->hasFnAttribute("__Mips16RetHelper")) {
2859 Mask = MipsRegisterInfo::getMips16RetHelperMask();
2863 Ops.push_back(CLI.DAG.getRegisterMask(Mask));
2865 if (InFlag.getNode())
2866 Ops.push_back(InFlag);
2869 /// LowerCall - functions arguments are copied from virtual regs to
2870 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2871 SDValue
2872 MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2873 SmallVectorImpl<SDValue> &InVals) const {
2874 SelectionDAG &DAG = CLI.DAG;
2875 SDLoc DL = CLI.DL;
2876 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2877 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
2878 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
2879 SDValue Chain = CLI.Chain;
2880 SDValue Callee = CLI.Callee;
2881 bool &IsTailCall = CLI.IsTailCall;
2882 CallingConv::ID CallConv = CLI.CallConv;
2883 bool IsVarArg = CLI.IsVarArg;
2885 MachineFunction &MF = DAG.getMachineFunction();
2886 MachineFrameInfo &MFI = MF.getFrameInfo();
2887 const TargetFrameLowering *TFL = Subtarget.getFrameLowering();
2888 MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
2889 bool IsPIC = isPositionIndependent();
2891 // Analyze operands of the call, assigning locations to each operand.
2892 SmallVector<CCValAssign, 16> ArgLocs;
2893 MipsCCState CCInfo(
2894 CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext(),
2895 MipsCCState::getSpecialCallingConvForCallee(Callee.getNode(), Subtarget));
2897 const ExternalSymbolSDNode *ES =
2898 dyn_cast_or_null<const ExternalSymbolSDNode>(Callee.getNode());
2900 // There is one case where CALLSEQ_START..CALLSEQ_END can be nested, which
2901 // is during the lowering of a call with a byval argument which produces
2902 // a call to memcpy. For the O32 case, this causes the caller to allocate
2903 // stack space for the reserved argument area for the callee, then recursively
2904 // again for the memcpy call. In the NEWABI case, this doesn't occur as those
2905 // ABIs mandate that the callee allocates the reserved argument area. We do
2906 // still produce nested CALLSEQ_START..CALLSEQ_END with zero space though.
2908 // If the callee has a byval argument and memcpy is used, we are mandated
2909 // to already have produced a reserved argument area for the callee for O32.
2910 // Therefore, the reserved argument area can be reused for both calls.
2912 // Other cases of calling memcpy cannot have a chain with a CALLSEQ_START
2913 // present, as we have yet to hook that node onto the chain.
2915 // Hence, the CALLSEQ_START and CALLSEQ_END nodes can be eliminated in this
2916 // case. GCC does a similar trick, in that wherever possible, it calculates
2917 // the maximum out going argument area (including the reserved area), and
2918 // preallocates the stack space on entrance to the caller.
2920 // FIXME: We should do the same for efficency and space.
2922 // Note: The check on the calling convention below must match
2923 // MipsABIInfo::GetCalleeAllocdArgSizeInBytes().
2924 bool MemcpyInByVal = ES &&
2925 StringRef(ES->getSymbol()) == StringRef("memcpy") &&
2926 CallConv != CallingConv::Fast &&
2927 Chain.getOpcode() == ISD::CALLSEQ_START;
2929 // Allocate the reserved argument area. It seems strange to do this from the
2930 // caller side but removing it breaks the frame size calculation.
2931 unsigned ReservedArgArea =
2932 MemcpyInByVal ? 0 : ABI.GetCalleeAllocdArgSizeInBytes(CallConv);
2933 CCInfo.AllocateStack(ReservedArgArea, 1);
2935 CCInfo.AnalyzeCallOperands(Outs, CC_Mips, CLI.getArgs(),
2936 ES ? ES->getSymbol() : nullptr);
2938 // Get a count of how many bytes are to be pushed on the stack.
2939 unsigned NextStackOffset = CCInfo.getNextStackOffset();
2941 // Check if it's really possible to do a tail call. Restrict it to functions
2942 // that are part of this compilation unit.
2943 bool InternalLinkage = false;
2944 if (IsTailCall) {
2945 IsTailCall = isEligibleForTailCallOptimization(
2946 CCInfo, NextStackOffset, *MF.getInfo<MipsFunctionInfo>());
2947 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2948 InternalLinkage = G->getGlobal()->hasInternalLinkage();
2949 IsTailCall &= (InternalLinkage || G->getGlobal()->hasLocalLinkage() ||
2950 G->getGlobal()->hasPrivateLinkage() ||
2951 G->getGlobal()->hasHiddenVisibility() ||
2952 G->getGlobal()->hasProtectedVisibility());
2955 if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall())
2956 report_fatal_error("failed to perform tail call elimination on a call "
2957 "site marked musttail");
2959 if (IsTailCall)
2960 ++NumTailCalls;
2962 // Chain is the output chain of the last Load/Store or CopyToReg node.
2963 // ByValChain is the output chain of the last Memcpy node created for copying
2964 // byval arguments to the stack.
2965 unsigned StackAlignment = TFL->getStackAlignment();
2966 NextStackOffset = alignTo(NextStackOffset, StackAlignment);
2967 SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, DL, true);
2969 if (!(IsTailCall || MemcpyInByVal))
2970 Chain = DAG.getCALLSEQ_START(Chain, NextStackOffset, 0, DL);
2972 SDValue StackPtr =
2973 DAG.getCopyFromReg(Chain, DL, ABI.IsN64() ? Mips::SP_64 : Mips::SP,
2974 getPointerTy(DAG.getDataLayout()));
2976 std::deque<std::pair<unsigned, SDValue>> RegsToPass;
2977 SmallVector<SDValue, 8> MemOpChains;
2979 CCInfo.rewindByValRegsInfo();
2981 // Walk the register/memloc assignments, inserting copies/loads.
2982 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2983 SDValue Arg = OutVals[i];
2984 CCValAssign &VA = ArgLocs[i];
2985 MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
2986 ISD::ArgFlagsTy Flags = Outs[i].Flags;
2987 bool UseUpperBits = false;
2989 // ByVal Arg.
2990 if (Flags.isByVal()) {
2991 unsigned FirstByValReg, LastByValReg;
2992 unsigned ByValIdx = CCInfo.getInRegsParamsProcessed();
2993 CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg);
2995 assert(Flags.getByValSize() &&
2996 "ByVal args of size 0 should have been ignored by front-end.");
2997 assert(ByValIdx < CCInfo.getInRegsParamsCount());
2998 assert(!IsTailCall &&
2999 "Do not tail-call optimize if there is a byval argument.");
3000 passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
3001 FirstByValReg, LastByValReg, Flags, Subtarget.isLittle(),
3002 VA);
3003 CCInfo.nextInRegsParam();
3004 continue;
3007 // Promote the value if needed.
3008 switch (VA.getLocInfo()) {
3009 default:
3010 llvm_unreachable("Unknown loc info!");
3011 case CCValAssign::Full:
3012 if (VA.isRegLoc()) {
3013 if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
3014 (ValVT == MVT::f64 && LocVT == MVT::i64) ||
3015 (ValVT == MVT::i64 && LocVT == MVT::f64))
3016 Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
3017 else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
3018 SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
3019 Arg, DAG.getConstant(0, DL, MVT::i32));
3020 SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
3021 Arg, DAG.getConstant(1, DL, MVT::i32));
3022 if (!Subtarget.isLittle())
3023 std::swap(Lo, Hi);
3024 unsigned LocRegLo = VA.getLocReg();
3025 unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
3026 RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
3027 RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
3028 continue;
3031 break;
3032 case CCValAssign::BCvt:
3033 Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
3034 break;
3035 case CCValAssign::SExtUpper:
3036 UseUpperBits = true;
3037 LLVM_FALLTHROUGH;
3038 case CCValAssign::SExt:
3039 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
3040 break;
3041 case CCValAssign::ZExtUpper:
3042 UseUpperBits = true;
3043 LLVM_FALLTHROUGH;
3044 case CCValAssign::ZExt:
3045 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
3046 break;
3047 case CCValAssign::AExtUpper:
3048 UseUpperBits = true;
3049 LLVM_FALLTHROUGH;
3050 case CCValAssign::AExt:
3051 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
3052 break;
3055 if (UseUpperBits) {
3056 unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits();
3057 unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3058 Arg = DAG.getNode(
3059 ISD::SHL, DL, VA.getLocVT(), Arg,
3060 DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
3063 // Arguments that can be passed on register must be kept at
3064 // RegsToPass vector
3065 if (VA.isRegLoc()) {
3066 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3067 continue;
3070 // Register can't get to this point...
3071 assert(VA.isMemLoc());
3073 // emit ISD::STORE whichs stores the
3074 // parameter value to a stack Location
3075 MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
3076 Chain, Arg, DL, IsTailCall, DAG));
3079 // Transform all store nodes into one single node because all store
3080 // nodes are independent of each other.
3081 if (!MemOpChains.empty())
3082 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3084 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3085 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3086 // node so that legalize doesn't hack it.
3088 EVT Ty = Callee.getValueType();
3089 bool GlobalOrExternal = false, IsCallReloc = false;
3091 // The long-calls feature is ignored in case of PIC.
3092 // While we do not support -mshared / -mno-shared properly,
3093 // ignore long-calls in case of -mabicalls too.
3094 if (!Subtarget.isABICalls() && !IsPIC) {
3095 // If the function should be called using "long call",
3096 // get its address into a register to prevent using
3097 // of the `jal` instruction for the direct call.
3098 if (auto *N = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3099 if (Subtarget.useLongCalls())
3100 Callee = Subtarget.hasSym32()
3101 ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
3102 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
3103 } else if (auto *N = dyn_cast<GlobalAddressSDNode>(Callee)) {
3104 bool UseLongCalls = Subtarget.useLongCalls();
3105 // If the function has long-call/far/near attribute
3106 // it overrides command line switch pased to the backend.
3107 if (auto *F = dyn_cast<Function>(N->getGlobal())) {
3108 if (F->hasFnAttribute("long-call"))
3109 UseLongCalls = true;
3110 else if (F->hasFnAttribute("short-call"))
3111 UseLongCalls = false;
3113 if (UseLongCalls)
3114 Callee = Subtarget.hasSym32()
3115 ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
3116 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
3120 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3121 if (IsPIC) {
3122 const GlobalValue *Val = G->getGlobal();
3123 InternalLinkage = Val->hasInternalLinkage();
3125 if (InternalLinkage)
3126 Callee = getAddrLocal(G, DL, Ty, DAG, ABI.IsN32() || ABI.IsN64());
3127 else if (LargeGOT) {
3128 Callee = getAddrGlobalLargeGOT(G, DL, Ty, DAG, MipsII::MO_CALL_HI16,
3129 MipsII::MO_CALL_LO16, Chain,
3130 FuncInfo->callPtrInfo(Val));
3131 IsCallReloc = true;
3132 } else {
3133 Callee = getAddrGlobal(G, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
3134 FuncInfo->callPtrInfo(Val));
3135 IsCallReloc = true;
3137 } else
3138 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL,
3139 getPointerTy(DAG.getDataLayout()), 0,
3140 MipsII::MO_NO_FLAG);
3141 GlobalOrExternal = true;
3143 else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3144 const char *Sym = S->getSymbol();
3146 if (!IsPIC) // static
3147 Callee = DAG.getTargetExternalSymbol(
3148 Sym, getPointerTy(DAG.getDataLayout()), MipsII::MO_NO_FLAG);
3149 else if (LargeGOT) {
3150 Callee = getAddrGlobalLargeGOT(S, DL, Ty, DAG, MipsII::MO_CALL_HI16,
3151 MipsII::MO_CALL_LO16, Chain,
3152 FuncInfo->callPtrInfo(Sym));
3153 IsCallReloc = true;
3154 } else { // PIC
3155 Callee = getAddrGlobal(S, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
3156 FuncInfo->callPtrInfo(Sym));
3157 IsCallReloc = true;
3160 GlobalOrExternal = true;
3163 SmallVector<SDValue, 8> Ops(1, Chain);
3164 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3166 getOpndList(Ops, RegsToPass, IsPIC, GlobalOrExternal, InternalLinkage,
3167 IsCallReloc, CLI, Callee, Chain);
3169 if (IsTailCall) {
3170 MF.getFrameInfo().setHasTailCall();
3171 return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, Ops);
3174 Chain = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, Ops);
3175 SDValue InFlag = Chain.getValue(1);
3177 // Create the CALLSEQ_END node in the case of where it is not a call to
3178 // memcpy.
3179 if (!(MemcpyInByVal)) {
3180 Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
3181 DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
3182 InFlag = Chain.getValue(1);
3185 // Handle result values, copying them out of physregs into vregs that we
3186 // return.
3187 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3188 InVals, CLI);
3191 /// LowerCallResult - Lower the result values of a call into the
3192 /// appropriate copies out of appropriate physical registers.
3193 SDValue MipsTargetLowering::LowerCallResult(
3194 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
3195 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
3196 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
3197 TargetLowering::CallLoweringInfo &CLI) const {
3198 // Assign locations to each value returned by this call.
3199 SmallVector<CCValAssign, 16> RVLocs;
3200 MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
3201 *DAG.getContext());
3203 const ExternalSymbolSDNode *ES =
3204 dyn_cast_or_null<const ExternalSymbolSDNode>(CLI.Callee.getNode());
3205 CCInfo.AnalyzeCallResult(Ins, RetCC_Mips, CLI.RetTy,
3206 ES ? ES->getSymbol() : nullptr);
3208 // Copy all of the result registers out of their specified physreg.
3209 for (unsigned i = 0; i != RVLocs.size(); ++i) {
3210 CCValAssign &VA = RVLocs[i];
3211 assert(VA.isRegLoc() && "Can only return in registers!");
3213 SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
3214 RVLocs[i].getLocVT(), InFlag);
3215 Chain = Val.getValue(1);
3216 InFlag = Val.getValue(2);
3218 if (VA.isUpperBitsInLoc()) {
3219 unsigned ValSizeInBits = Ins[i].ArgVT.getSizeInBits();
3220 unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3221 unsigned Shift =
3222 VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA;
3223 Val = DAG.getNode(
3224 Shift, DL, VA.getLocVT(), Val,
3225 DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
3228 switch (VA.getLocInfo()) {
3229 default:
3230 llvm_unreachable("Unknown loc info!");
3231 case CCValAssign::Full:
3232 break;
3233 case CCValAssign::BCvt:
3234 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
3235 break;
3236 case CCValAssign::AExt:
3237 case CCValAssign::AExtUpper:
3238 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
3239 break;
3240 case CCValAssign::ZExt:
3241 case CCValAssign::ZExtUpper:
3242 Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
3243 DAG.getValueType(VA.getValVT()));
3244 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
3245 break;
3246 case CCValAssign::SExt:
3247 case CCValAssign::SExtUpper:
3248 Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
3249 DAG.getValueType(VA.getValVT()));
3250 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
3251 break;
3254 InVals.push_back(Val);
3257 return Chain;
3260 static SDValue UnpackFromArgumentSlot(SDValue Val, const CCValAssign &VA,
3261 EVT ArgVT, const SDLoc &DL,
3262 SelectionDAG &DAG) {
3263 MVT LocVT = VA.getLocVT();
3264 EVT ValVT = VA.getValVT();
3266 // Shift into the upper bits if necessary.
3267 switch (VA.getLocInfo()) {
3268 default:
3269 break;
3270 case CCValAssign::AExtUpper:
3271 case CCValAssign::SExtUpper:
3272 case CCValAssign::ZExtUpper: {
3273 unsigned ValSizeInBits = ArgVT.getSizeInBits();
3274 unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3275 unsigned Opcode =
3276 VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA;
3277 Val = DAG.getNode(
3278 Opcode, DL, VA.getLocVT(), Val,
3279 DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
3280 break;
3284 // If this is an value smaller than the argument slot size (32-bit for O32,
3285 // 64-bit for N32/N64), it has been promoted in some way to the argument slot
3286 // size. Extract the value and insert any appropriate assertions regarding
3287 // sign/zero extension.
3288 switch (VA.getLocInfo()) {
3289 default:
3290 llvm_unreachable("Unknown loc info!");
3291 case CCValAssign::Full:
3292 break;
3293 case CCValAssign::AExtUpper:
3294 case CCValAssign::AExt:
3295 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
3296 break;
3297 case CCValAssign::SExtUpper:
3298 case CCValAssign::SExt:
3299 Val = DAG.getNode(ISD::AssertSext, DL, LocVT, Val, DAG.getValueType(ValVT));
3300 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
3301 break;
3302 case CCValAssign::ZExtUpper:
3303 case CCValAssign::ZExt:
3304 Val = DAG.getNode(ISD::AssertZext, DL, LocVT, Val, DAG.getValueType(ValVT));
3305 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
3306 break;
3307 case CCValAssign::BCvt:
3308 Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
3309 break;
3312 return Val;
3315 //===----------------------------------------------------------------------===//
3316 // Formal Arguments Calling Convention Implementation
3317 //===----------------------------------------------------------------------===//
3318 /// LowerFormalArguments - transform physical registers into virtual registers
3319 /// and generate load operations for arguments places on the stack.
3320 SDValue MipsTargetLowering::LowerFormalArguments(
3321 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
3322 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
3323 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3324 MachineFunction &MF = DAG.getMachineFunction();
3325 MachineFrameInfo &MFI = MF.getFrameInfo();
3326 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3328 MipsFI->setVarArgsFrameIndex(0);
3330 // Used with vargs to acumulate store chains.
3331 std::vector<SDValue> OutChains;
3333 // Assign locations to all of the incoming arguments.
3334 SmallVector<CCValAssign, 16> ArgLocs;
3335 MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
3336 *DAG.getContext());
3337 CCInfo.AllocateStack(ABI.GetCalleeAllocdArgSizeInBytes(CallConv), 1);
3338 const Function &Func = DAG.getMachineFunction().getFunction();
3339 Function::const_arg_iterator FuncArg = Func.arg_begin();
3341 if (Func.hasFnAttribute("interrupt") && !Func.arg_empty())
3342 report_fatal_error(
3343 "Functions with the interrupt attribute cannot have arguments!");
3345 CCInfo.AnalyzeFormalArguments(Ins, CC_Mips_FixedArg);
3346 MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
3347 CCInfo.getInRegsParamsCount() > 0);
3349 unsigned CurArgIdx = 0;
3350 CCInfo.rewindByValRegsInfo();
3352 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3353 CCValAssign &VA = ArgLocs[i];
3354 if (Ins[i].isOrigArg()) {
3355 std::advance(FuncArg, Ins[i].getOrigArgIndex() - CurArgIdx);
3356 CurArgIdx = Ins[i].getOrigArgIndex();
3358 EVT ValVT = VA.getValVT();
3359 ISD::ArgFlagsTy Flags = Ins[i].Flags;
3360 bool IsRegLoc = VA.isRegLoc();
3362 if (Flags.isByVal()) {
3363 assert(Ins[i].isOrigArg() && "Byval arguments cannot be implicit");
3364 unsigned FirstByValReg, LastByValReg;
3365 unsigned ByValIdx = CCInfo.getInRegsParamsProcessed();
3366 CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg);
3368 assert(Flags.getByValSize() &&
3369 "ByVal args of size 0 should have been ignored by front-end.");
3370 assert(ByValIdx < CCInfo.getInRegsParamsCount());
3371 copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
3372 FirstByValReg, LastByValReg, VA, CCInfo);
3373 CCInfo.nextInRegsParam();
3374 continue;
3377 // Arguments stored on registers
3378 if (IsRegLoc) {
3379 MVT RegVT = VA.getLocVT();
3380 unsigned ArgReg = VA.getLocReg();
3381 const TargetRegisterClass *RC = getRegClassFor(RegVT);
3383 // Transform the arguments stored on
3384 // physical registers into virtual ones
3385 unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
3386 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
3388 ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG);
3390 // Handle floating point arguments passed in integer registers and
3391 // long double arguments passed in floating point registers.
3392 if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
3393 (RegVT == MVT::i64 && ValVT == MVT::f64) ||
3394 (RegVT == MVT::f64 && ValVT == MVT::i64))
3395 ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
3396 else if (ABI.IsO32() && RegVT == MVT::i32 &&
3397 ValVT == MVT::f64) {
3398 unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
3399 getNextIntArgReg(ArgReg), RC);
3400 SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
3401 if (!Subtarget.isLittle())
3402 std::swap(ArgValue, ArgValue2);
3403 ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
3404 ArgValue, ArgValue2);
3407 InVals.push_back(ArgValue);
3408 } else { // VA.isRegLoc()
3409 MVT LocVT = VA.getLocVT();
3411 if (ABI.IsO32()) {
3412 // We ought to be able to use LocVT directly but O32 sets it to i32
3413 // when allocating floating point values to integer registers.
3414 // This shouldn't influence how we load the value into registers unless
3415 // we are targeting softfloat.
3416 if (VA.getValVT().isFloatingPoint() && !Subtarget.useSoftFloat())
3417 LocVT = VA.getValVT();
3420 // sanity check
3421 assert(VA.isMemLoc());
3423 // The stack pointer offset is relative to the caller stack frame.
3424 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
3425 VA.getLocMemOffset(), true);
3427 // Create load nodes to retrieve arguments from the stack
3428 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3429 SDValue ArgValue = DAG.getLoad(
3430 LocVT, DL, Chain, FIN,
3431 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
3432 OutChains.push_back(ArgValue.getValue(1));
3434 ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG);
3436 InVals.push_back(ArgValue);
3440 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3441 // The mips ABIs for returning structs by value requires that we copy
3442 // the sret argument into $v0 for the return. Save the argument into
3443 // a virtual register so that we can access it from the return points.
3444 if (Ins[i].Flags.isSRet()) {
3445 unsigned Reg = MipsFI->getSRetReturnReg();
3446 if (!Reg) {
3447 Reg = MF.getRegInfo().createVirtualRegister(
3448 getRegClassFor(ABI.IsN64() ? MVT::i64 : MVT::i32));
3449 MipsFI->setSRetReturnReg(Reg);
3451 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[i]);
3452 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
3453 break;
3457 if (IsVarArg)
3458 writeVarArgRegs(OutChains, Chain, DL, DAG, CCInfo);
3460 // All stores are grouped in one node to allow the matching between
3461 // the size of Ins and InVals. This only happens when on varg functions
3462 if (!OutChains.empty()) {
3463 OutChains.push_back(Chain);
3464 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
3467 return Chain;
3470 //===----------------------------------------------------------------------===//
3471 // Return Value Calling Convention Implementation
3472 //===----------------------------------------------------------------------===//
3474 bool
3475 MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
3476 MachineFunction &MF, bool IsVarArg,
3477 const SmallVectorImpl<ISD::OutputArg> &Outs,
3478 LLVMContext &Context) const {
3479 SmallVector<CCValAssign, 16> RVLocs;
3480 MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
3481 return CCInfo.CheckReturn(Outs, RetCC_Mips);
3484 bool
3485 MipsTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
3486 if ((ABI.IsN32() || ABI.IsN64()) && Type == MVT::i32)
3487 return true;
3489 return IsSigned;
3492 SDValue
3493 MipsTargetLowering::LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
3494 const SDLoc &DL,
3495 SelectionDAG &DAG) const {
3496 MachineFunction &MF = DAG.getMachineFunction();
3497 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3499 MipsFI->setISR();
3501 return DAG.getNode(MipsISD::ERet, DL, MVT::Other, RetOps);
3504 SDValue
3505 MipsTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
3506 bool IsVarArg,
3507 const SmallVectorImpl<ISD::OutputArg> &Outs,
3508 const SmallVectorImpl<SDValue> &OutVals,
3509 const SDLoc &DL, SelectionDAG &DAG) const {
3510 // CCValAssign - represent the assignment of
3511 // the return value to a location
3512 SmallVector<CCValAssign, 16> RVLocs;
3513 MachineFunction &MF = DAG.getMachineFunction();
3515 // CCState - Info about the registers and stack slot.
3516 MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
3518 // Analyze return values.
3519 CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
3521 SDValue Flag;
3522 SmallVector<SDValue, 4> RetOps(1, Chain);
3524 // Copy the result values into the output registers.
3525 for (unsigned i = 0; i != RVLocs.size(); ++i) {
3526 SDValue Val = OutVals[i];
3527 CCValAssign &VA = RVLocs[i];
3528 assert(VA.isRegLoc() && "Can only return in registers!");
3529 bool UseUpperBits = false;
3531 switch (VA.getLocInfo()) {
3532 default:
3533 llvm_unreachable("Unknown loc info!");
3534 case CCValAssign::Full:
3535 break;
3536 case CCValAssign::BCvt:
3537 Val = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Val);
3538 break;
3539 case CCValAssign::AExtUpper:
3540 UseUpperBits = true;
3541 LLVM_FALLTHROUGH;
3542 case CCValAssign::AExt:
3543 Val = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Val);
3544 break;
3545 case CCValAssign::ZExtUpper:
3546 UseUpperBits = true;
3547 LLVM_FALLTHROUGH;
3548 case CCValAssign::ZExt:
3549 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Val);
3550 break;
3551 case CCValAssign::SExtUpper:
3552 UseUpperBits = true;
3553 LLVM_FALLTHROUGH;
3554 case CCValAssign::SExt:
3555 Val = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Val);
3556 break;
3559 if (UseUpperBits) {
3560 unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits();
3561 unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3562 Val = DAG.getNode(
3563 ISD::SHL, DL, VA.getLocVT(), Val,
3564 DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
3567 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
3569 // Guarantee that all emitted copies are stuck together with flags.
3570 Flag = Chain.getValue(1);
3571 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3574 // The mips ABIs for returning structs by value requires that we copy
3575 // the sret argument into $v0 for the return. We saved the argument into
3576 // a virtual register in the entry block, so now we copy the value out
3577 // and into $v0.
3578 if (MF.getFunction().hasStructRetAttr()) {
3579 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3580 unsigned Reg = MipsFI->getSRetReturnReg();
3582 if (!Reg)
3583 llvm_unreachable("sret virtual register not created in the entry block");
3584 SDValue Val =
3585 DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout()));
3586 unsigned V0 = ABI.IsN64() ? Mips::V0_64 : Mips::V0;
3588 Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
3589 Flag = Chain.getValue(1);
3590 RetOps.push_back(DAG.getRegister(V0, getPointerTy(DAG.getDataLayout())));
3593 RetOps[0] = Chain; // Update chain.
3595 // Add the flag if we have it.
3596 if (Flag.getNode())
3597 RetOps.push_back(Flag);
3599 // ISRs must use "eret".
3600 if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt"))
3601 return LowerInterruptReturn(RetOps, DL, DAG);
3603 // Standard return on Mips is a "jr $ra"
3604 return DAG.getNode(MipsISD::Ret, DL, MVT::Other, RetOps);
3607 //===----------------------------------------------------------------------===//
3608 // Mips Inline Assembly Support
3609 //===----------------------------------------------------------------------===//
3611 /// getConstraintType - Given a constraint letter, return the type of
3612 /// constraint it is for this target.
3613 MipsTargetLowering::ConstraintType
3614 MipsTargetLowering::getConstraintType(StringRef Constraint) const {
3615 // Mips specific constraints
3616 // GCC config/mips/constraints.md
3618 // 'd' : An address register. Equivalent to r
3619 // unless generating MIPS16 code.
3620 // 'y' : Equivalent to r; retained for
3621 // backwards compatibility.
3622 // 'c' : A register suitable for use in an indirect
3623 // jump. This will always be $25 for -mabicalls.
3624 // 'l' : The lo register. 1 word storage.
3625 // 'x' : The hilo register pair. Double word storage.
3626 if (Constraint.size() == 1) {
3627 switch (Constraint[0]) {
3628 default : break;
3629 case 'd':
3630 case 'y':
3631 case 'f':
3632 case 'c':
3633 case 'l':
3634 case 'x':
3635 return C_RegisterClass;
3636 case 'R':
3637 return C_Memory;
3641 if (Constraint == "ZC")
3642 return C_Memory;
3644 return TargetLowering::getConstraintType(Constraint);
3647 /// Examine constraint type and operand type and determine a weight value.
3648 /// This object must already have been set up with the operand type
3649 /// and the current alternative constraint selected.
3650 TargetLowering::ConstraintWeight
3651 MipsTargetLowering::getSingleConstraintMatchWeight(
3652 AsmOperandInfo &info, const char *constraint) const {
3653 ConstraintWeight weight = CW_Invalid;
3654 Value *CallOperandVal = info.CallOperandVal;
3655 // If we don't have a value, we can't do a match,
3656 // but allow it at the lowest weight.
3657 if (!CallOperandVal)
3658 return CW_Default;
3659 Type *type = CallOperandVal->getType();
3660 // Look at the constraint type.
3661 switch (*constraint) {
3662 default:
3663 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3664 break;
3665 case 'd':
3666 case 'y':
3667 if (type->isIntegerTy())
3668 weight = CW_Register;
3669 break;
3670 case 'f': // FPU or MSA register
3671 if (Subtarget.hasMSA() && type->isVectorTy() &&
3672 cast<VectorType>(type)->getBitWidth() == 128)
3673 weight = CW_Register;
3674 else if (type->isFloatTy())
3675 weight = CW_Register;
3676 break;
3677 case 'c': // $25 for indirect jumps
3678 case 'l': // lo register
3679 case 'x': // hilo register pair
3680 if (type->isIntegerTy())
3681 weight = CW_SpecificReg;
3682 break;
3683 case 'I': // signed 16 bit immediate
3684 case 'J': // integer zero
3685 case 'K': // unsigned 16 bit immediate
3686 case 'L': // signed 32 bit immediate where lower 16 bits are 0
3687 case 'N': // immediate in the range of -65535 to -1 (inclusive)
3688 case 'O': // signed 15 bit immediate (+- 16383)
3689 case 'P': // immediate in the range of 65535 to 1 (inclusive)
3690 if (isa<ConstantInt>(CallOperandVal))
3691 weight = CW_Constant;
3692 break;
3693 case 'R':
3694 weight = CW_Memory;
3695 break;
3697 return weight;
3700 /// This is a helper function to parse a physical register string and split it
3701 /// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
3702 /// that is returned indicates whether parsing was successful. The second flag
3703 /// is true if the numeric part exists.
3704 static std::pair<bool, bool> parsePhysicalReg(StringRef C, StringRef &Prefix,
3705 unsigned long long &Reg) {
3706 if (C.front() != '{' || C.back() != '}')
3707 return std::make_pair(false, false);
3709 // Search for the first numeric character.
3710 StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1;
3711 I = std::find_if(B, E, isdigit);
3713 Prefix = StringRef(B, I - B);
3715 // The second flag is set to false if no numeric characters were found.
3716 if (I == E)
3717 return std::make_pair(true, false);
3719 // Parse the numeric characters.
3720 return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg),
3721 true);
3724 EVT MipsTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT,
3725 ISD::NodeType) const {
3726 bool Cond = !Subtarget.isABI_O32() && VT.getSizeInBits() == 32;
3727 EVT MinVT = getRegisterType(Context, Cond ? MVT::i64 : MVT::i32);
3728 return VT.bitsLT(MinVT) ? MinVT : VT;
3731 std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering::
3732 parseRegForInlineAsmConstraint(StringRef C, MVT VT) const {
3733 const TargetRegisterInfo *TRI =
3734 Subtarget.getRegisterInfo();
3735 const TargetRegisterClass *RC;
3736 StringRef Prefix;
3737 unsigned long long Reg;
3739 std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg);
3741 if (!R.first)
3742 return std::make_pair(0U, nullptr);
3744 if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo.
3745 // No numeric characters follow "hi" or "lo".
3746 if (R.second)
3747 return std::make_pair(0U, nullptr);
3749 RC = TRI->getRegClass(Prefix == "hi" ?
3750 Mips::HI32RegClassID : Mips::LO32RegClassID);
3751 return std::make_pair(*(RC->begin()), RC);
3752 } else if (Prefix.startswith("$msa")) {
3753 // Parse $msa(ir|csr|access|save|modify|request|map|unmap)
3755 // No numeric characters follow the name.
3756 if (R.second)
3757 return std::make_pair(0U, nullptr);
3759 Reg = StringSwitch<unsigned long long>(Prefix)
3760 .Case("$msair", Mips::MSAIR)
3761 .Case("$msacsr", Mips::MSACSR)
3762 .Case("$msaaccess", Mips::MSAAccess)
3763 .Case("$msasave", Mips::MSASave)
3764 .Case("$msamodify", Mips::MSAModify)
3765 .Case("$msarequest", Mips::MSARequest)
3766 .Case("$msamap", Mips::MSAMap)
3767 .Case("$msaunmap", Mips::MSAUnmap)
3768 .Default(0);
3770 if (!Reg)
3771 return std::make_pair(0U, nullptr);
3773 RC = TRI->getRegClass(Mips::MSACtrlRegClassID);
3774 return std::make_pair(Reg, RC);
3777 if (!R.second)
3778 return std::make_pair(0U, nullptr);
3780 if (Prefix == "$f") { // Parse $f0-$f31.
3781 // If the size of FP registers is 64-bit or Reg is an even number, select
3782 // the 64-bit register class. Otherwise, select the 32-bit register class.
3783 if (VT == MVT::Other)
3784 VT = (Subtarget.isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32;
3786 RC = getRegClassFor(VT);
3788 if (RC == &Mips::AFGR64RegClass) {
3789 assert(Reg % 2 == 0);
3790 Reg >>= 1;
3792 } else if (Prefix == "$fcc") // Parse $fcc0-$fcc7.
3793 RC = TRI->getRegClass(Mips::FCCRegClassID);
3794 else if (Prefix == "$w") { // Parse $w0-$w31.
3795 RC = getRegClassFor((VT == MVT::Other) ? MVT::v16i8 : VT);
3796 } else { // Parse $0-$31.
3797 assert(Prefix == "$");
3798 RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT);
3801 assert(Reg < RC->getNumRegs());
3802 return std::make_pair(*(RC->begin() + Reg), RC);
3805 /// Given a register class constraint, like 'r', if this corresponds directly
3806 /// to an LLVM register class, return a register of 0 and the register class
3807 /// pointer.
3808 std::pair<unsigned, const TargetRegisterClass *>
3809 MipsTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
3810 StringRef Constraint,
3811 MVT VT) const {
3812 if (Constraint.size() == 1) {
3813 switch (Constraint[0]) {
3814 case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
3815 case 'y': // Same as 'r'. Exists for compatibility.
3816 case 'r':
3817 if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
3818 if (Subtarget.inMips16Mode())
3819 return std::make_pair(0U, &Mips::CPU16RegsRegClass);
3820 return std::make_pair(0U, &Mips::GPR32RegClass);
3822 if (VT == MVT::i64 && !Subtarget.isGP64bit())
3823 return std::make_pair(0U, &Mips::GPR32RegClass);
3824 if (VT == MVT::i64 && Subtarget.isGP64bit())
3825 return std::make_pair(0U, &Mips::GPR64RegClass);
3826 // This will generate an error message
3827 return std::make_pair(0U, nullptr);
3828 case 'f': // FPU or MSA register
3829 if (VT == MVT::v16i8)
3830 return std::make_pair(0U, &Mips::MSA128BRegClass);
3831 else if (VT == MVT::v8i16 || VT == MVT::v8f16)
3832 return std::make_pair(0U, &Mips::MSA128HRegClass);
3833 else if (VT == MVT::v4i32 || VT == MVT::v4f32)
3834 return std::make_pair(0U, &Mips::MSA128WRegClass);
3835 else if (VT == MVT::v2i64 || VT == MVT::v2f64)
3836 return std::make_pair(0U, &Mips::MSA128DRegClass);
3837 else if (VT == MVT::f32)
3838 return std::make_pair(0U, &Mips::FGR32RegClass);
3839 else if ((VT == MVT::f64) && (!Subtarget.isSingleFloat())) {
3840 if (Subtarget.isFP64bit())
3841 return std::make_pair(0U, &Mips::FGR64RegClass);
3842 return std::make_pair(0U, &Mips::AFGR64RegClass);
3844 break;
3845 case 'c': // register suitable for indirect jump
3846 if (VT == MVT::i32)
3847 return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass);
3848 if (VT == MVT::i64)
3849 return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass);
3850 // This will generate an error message
3851 return std::make_pair(0U, nullptr);
3852 case 'l': // use the `lo` register to store values
3853 // that are no bigger than a word
3854 if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8)
3855 return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass);
3856 return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass);
3857 case 'x': // use the concatenated `hi` and `lo` registers
3858 // to store doubleword values
3859 // Fixme: Not triggering the use of both hi and low
3860 // This will generate an error message
3861 return std::make_pair(0U, nullptr);
3865 std::pair<unsigned, const TargetRegisterClass *> R;
3866 R = parseRegForInlineAsmConstraint(Constraint, VT);
3868 if (R.second)
3869 return R;
3871 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
3874 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3875 /// vector. If it is invalid, don't add anything to Ops.
3876 void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3877 std::string &Constraint,
3878 std::vector<SDValue>&Ops,
3879 SelectionDAG &DAG) const {
3880 SDLoc DL(Op);
3881 SDValue Result;
3883 // Only support length 1 constraints for now.
3884 if (Constraint.length() > 1) return;
3886 char ConstraintLetter = Constraint[0];
3887 switch (ConstraintLetter) {
3888 default: break; // This will fall through to the generic implementation
3889 case 'I': // Signed 16 bit constant
3890 // If this fails, the parent routine will give an error
3891 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3892 EVT Type = Op.getValueType();
3893 int64_t Val = C->getSExtValue();
3894 if (isInt<16>(Val)) {
3895 Result = DAG.getTargetConstant(Val, DL, Type);
3896 break;
3899 return;
3900 case 'J': // integer zero
3901 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3902 EVT Type = Op.getValueType();
3903 int64_t Val = C->getZExtValue();
3904 if (Val == 0) {
3905 Result = DAG.getTargetConstant(0, DL, Type);
3906 break;
3909 return;
3910 case 'K': // unsigned 16 bit immediate
3911 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3912 EVT Type = Op.getValueType();
3913 uint64_t Val = (uint64_t)C->getZExtValue();
3914 if (isUInt<16>(Val)) {
3915 Result = DAG.getTargetConstant(Val, DL, Type);
3916 break;
3919 return;
3920 case 'L': // signed 32 bit immediate where lower 16 bits are 0
3921 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3922 EVT Type = Op.getValueType();
3923 int64_t Val = C->getSExtValue();
3924 if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
3925 Result = DAG.getTargetConstant(Val, DL, Type);
3926 break;
3929 return;
3930 case 'N': // immediate in the range of -65535 to -1 (inclusive)
3931 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3932 EVT Type = Op.getValueType();
3933 int64_t Val = C->getSExtValue();
3934 if ((Val >= -65535) && (Val <= -1)) {
3935 Result = DAG.getTargetConstant(Val, DL, Type);
3936 break;
3939 return;
3940 case 'O': // signed 15 bit immediate
3941 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3942 EVT Type = Op.getValueType();
3943 int64_t Val = C->getSExtValue();
3944 if ((isInt<15>(Val))) {
3945 Result = DAG.getTargetConstant(Val, DL, Type);
3946 break;
3949 return;
3950 case 'P': // immediate in the range of 1 to 65535 (inclusive)
3951 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3952 EVT Type = Op.getValueType();
3953 int64_t Val = C->getSExtValue();
3954 if ((Val <= 65535) && (Val >= 1)) {
3955 Result = DAG.getTargetConstant(Val, DL, Type);
3956 break;
3959 return;
3962 if (Result.getNode()) {
3963 Ops.push_back(Result);
3964 return;
3967 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3970 bool MipsTargetLowering::isLegalAddressingMode(const DataLayout &DL,
3971 const AddrMode &AM, Type *Ty,
3972 unsigned AS, Instruction *I) const {
3973 // No global is ever allowed as a base.
3974 if (AM.BaseGV)
3975 return false;
3977 switch (AM.Scale) {
3978 case 0: // "r+i" or just "i", depending on HasBaseReg.
3979 break;
3980 case 1:
3981 if (!AM.HasBaseReg) // allow "r+i".
3982 break;
3983 return false; // disallow "r+r" or "r+r+i".
3984 default:
3985 return false;
3988 return true;
3991 bool
3992 MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3993 // The Mips target isn't yet aware of offsets.
3994 return false;
3997 EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
3998 unsigned SrcAlign,
3999 bool IsMemset, bool ZeroMemset,
4000 bool MemcpyStrSrc,
4001 MachineFunction &MF) const {
4002 if (Subtarget.hasMips64())
4003 return MVT::i64;
4005 return MVT::i32;
4008 bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
4009 if (VT != MVT::f32 && VT != MVT::f64)
4010 return false;
4011 if (Imm.isNegZero())
4012 return false;
4013 return Imm.isZero();
4016 unsigned MipsTargetLowering::getJumpTableEncoding() const {
4018 // FIXME: For space reasons this should be: EK_GPRel32BlockAddress.
4019 if (ABI.IsN64() && isPositionIndependent())
4020 return MachineJumpTableInfo::EK_GPRel64BlockAddress;
4022 return TargetLowering::getJumpTableEncoding();
4025 bool MipsTargetLowering::useSoftFloat() const {
4026 return Subtarget.useSoftFloat();
4029 void MipsTargetLowering::copyByValRegs(
4030 SDValue Chain, const SDLoc &DL, std::vector<SDValue> &OutChains,
4031 SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
4032 SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
4033 unsigned FirstReg, unsigned LastReg, const CCValAssign &VA,
4034 MipsCCState &State) const {
4035 MachineFunction &MF = DAG.getMachineFunction();
4036 MachineFrameInfo &MFI = MF.getFrameInfo();
4037 unsigned GPRSizeInBytes = Subtarget.getGPRSizeInBytes();
4038 unsigned NumRegs = LastReg - FirstReg;
4039 unsigned RegAreaSize = NumRegs * GPRSizeInBytes;
4040 unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
4041 int FrameObjOffset;
4042 ArrayRef<MCPhysReg> ByValArgRegs = ABI.GetByValArgRegs();
4044 if (RegAreaSize)
4045 FrameObjOffset =
4046 (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) -
4047 (int)((ByValArgRegs.size() - FirstReg) * GPRSizeInBytes);
4048 else
4049 FrameObjOffset = VA.getLocMemOffset();
4051 // Create frame object.
4052 EVT PtrTy = getPointerTy(DAG.getDataLayout());
4053 // Make the fixed object stored to mutable so that the load instructions
4054 // referencing it have their memory dependencies added.
4055 // Set the frame object as isAliased which clears the underlying objects
4056 // vector in ScheduleDAGInstrs::buildSchedGraph() resulting in addition of all
4057 // stores as dependencies for loads referencing this fixed object.
4058 int FI = MFI.CreateFixedObject(FrameObjSize, FrameObjOffset, false, true);
4059 SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4060 InVals.push_back(FIN);
4062 if (!NumRegs)
4063 return;
4065 // Copy arg registers.
4066 MVT RegTy = MVT::getIntegerVT(GPRSizeInBytes * 8);
4067 const TargetRegisterClass *RC = getRegClassFor(RegTy);
4069 for (unsigned I = 0; I < NumRegs; ++I) {
4070 unsigned ArgReg = ByValArgRegs[FirstReg + I];
4071 unsigned VReg = addLiveIn(MF, ArgReg, RC);
4072 unsigned Offset = I * GPRSizeInBytes;
4073 SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
4074 DAG.getConstant(Offset, DL, PtrTy));
4075 SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
4076 StorePtr, MachinePointerInfo(FuncArg, Offset));
4077 OutChains.push_back(Store);
4081 // Copy byVal arg to registers and stack.
4082 void MipsTargetLowering::passByValArg(
4083 SDValue Chain, const SDLoc &DL,
4084 std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
4085 SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
4086 MachineFrameInfo &MFI, SelectionDAG &DAG, SDValue Arg, unsigned FirstReg,
4087 unsigned LastReg, const ISD::ArgFlagsTy &Flags, bool isLittle,
4088 const CCValAssign &VA) const {
4089 unsigned ByValSizeInBytes = Flags.getByValSize();
4090 unsigned OffsetInBytes = 0; // From beginning of struct
4091 unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
4092 unsigned Alignment = std::min(Flags.getByValAlign(), RegSizeInBytes);
4093 EVT PtrTy = getPointerTy(DAG.getDataLayout()),
4094 RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
4095 unsigned NumRegs = LastReg - FirstReg;
4097 if (NumRegs) {
4098 ArrayRef<MCPhysReg> ArgRegs = ABI.GetByValArgRegs();
4099 bool LeftoverBytes = (NumRegs * RegSizeInBytes > ByValSizeInBytes);
4100 unsigned I = 0;
4102 // Copy words to registers.
4103 for (; I < NumRegs - LeftoverBytes; ++I, OffsetInBytes += RegSizeInBytes) {
4104 SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4105 DAG.getConstant(OffsetInBytes, DL, PtrTy));
4106 SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
4107 MachinePointerInfo(), Alignment);
4108 MemOpChains.push_back(LoadVal.getValue(1));
4109 unsigned ArgReg = ArgRegs[FirstReg + I];
4110 RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
4113 // Return if the struct has been fully copied.
4114 if (ByValSizeInBytes == OffsetInBytes)
4115 return;
4117 // Copy the remainder of the byval argument with sub-word loads and shifts.
4118 if (LeftoverBytes) {
4119 SDValue Val;
4121 for (unsigned LoadSizeInBytes = RegSizeInBytes / 2, TotalBytesLoaded = 0;
4122 OffsetInBytes < ByValSizeInBytes; LoadSizeInBytes /= 2) {
4123 unsigned RemainingSizeInBytes = ByValSizeInBytes - OffsetInBytes;
4125 if (RemainingSizeInBytes < LoadSizeInBytes)
4126 continue;
4128 // Load subword.
4129 SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4130 DAG.getConstant(OffsetInBytes, DL,
4131 PtrTy));
4132 SDValue LoadVal = DAG.getExtLoad(
4133 ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr, MachinePointerInfo(),
4134 MVT::getIntegerVT(LoadSizeInBytes * 8), Alignment);
4135 MemOpChains.push_back(LoadVal.getValue(1));
4137 // Shift the loaded value.
4138 unsigned Shamt;
4140 if (isLittle)
4141 Shamt = TotalBytesLoaded * 8;
4142 else
4143 Shamt = (RegSizeInBytes - (TotalBytesLoaded + LoadSizeInBytes)) * 8;
4145 SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
4146 DAG.getConstant(Shamt, DL, MVT::i32));
4148 if (Val.getNode())
4149 Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
4150 else
4151 Val = Shift;
4153 OffsetInBytes += LoadSizeInBytes;
4154 TotalBytesLoaded += LoadSizeInBytes;
4155 Alignment = std::min(Alignment, LoadSizeInBytes);
4158 unsigned ArgReg = ArgRegs[FirstReg + I];
4159 RegsToPass.push_back(std::make_pair(ArgReg, Val));
4160 return;
4164 // Copy remainder of byval arg to it with memcpy.
4165 unsigned MemCpySize = ByValSizeInBytes - OffsetInBytes;
4166 SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4167 DAG.getConstant(OffsetInBytes, DL, PtrTy));
4168 SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
4169 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
4170 Chain = DAG.getMemcpy(Chain, DL, Dst, Src,
4171 DAG.getConstant(MemCpySize, DL, PtrTy),
4172 Alignment, /*isVolatile=*/false, /*AlwaysInline=*/false,
4173 /*isTailCall=*/false,
4174 MachinePointerInfo(), MachinePointerInfo());
4175 MemOpChains.push_back(Chain);
4178 void MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
4179 SDValue Chain, const SDLoc &DL,
4180 SelectionDAG &DAG,
4181 CCState &State) const {
4182 ArrayRef<MCPhysReg> ArgRegs = ABI.GetVarArgRegs();
4183 unsigned Idx = State.getFirstUnallocated(ArgRegs);
4184 unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
4185 MVT RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
4186 const TargetRegisterClass *RC = getRegClassFor(RegTy);
4187 MachineFunction &MF = DAG.getMachineFunction();
4188 MachineFrameInfo &MFI = MF.getFrameInfo();
4189 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
4191 // Offset of the first variable argument from stack pointer.
4192 int VaArgOffset;
4194 if (ArgRegs.size() == Idx)
4195 VaArgOffset = alignTo(State.getNextStackOffset(), RegSizeInBytes);
4196 else {
4197 VaArgOffset =
4198 (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) -
4199 (int)(RegSizeInBytes * (ArgRegs.size() - Idx));
4202 // Record the frame index of the first variable argument
4203 // which is a value necessary to VASTART.
4204 int FI = MFI.CreateFixedObject(RegSizeInBytes, VaArgOffset, true);
4205 MipsFI->setVarArgsFrameIndex(FI);
4207 // Copy the integer registers that have not been used for argument passing
4208 // to the argument register save area. For O32, the save area is allocated
4209 // in the caller's stack frame, while for N32/64, it is allocated in the
4210 // callee's stack frame.
4211 for (unsigned I = Idx; I < ArgRegs.size();
4212 ++I, VaArgOffset += RegSizeInBytes) {
4213 unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
4214 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
4215 FI = MFI.CreateFixedObject(RegSizeInBytes, VaArgOffset, true);
4216 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
4217 SDValue Store =
4218 DAG.getStore(Chain, DL, ArgValue, PtrOff, MachinePointerInfo());
4219 cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(
4220 (Value *)nullptr);
4221 OutChains.push_back(Store);
4225 void MipsTargetLowering::HandleByVal(CCState *State, unsigned &Size,
4226 unsigned Align) const {
4227 const TargetFrameLowering *TFL = Subtarget.getFrameLowering();
4229 assert(Size && "Byval argument's size shouldn't be 0.");
4231 Align = std::min(Align, TFL->getStackAlignment());
4233 unsigned FirstReg = 0;
4234 unsigned NumRegs = 0;
4236 if (State->getCallingConv() != CallingConv::Fast) {
4237 unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
4238 ArrayRef<MCPhysReg> IntArgRegs = ABI.GetByValArgRegs();
4239 // FIXME: The O32 case actually describes no shadow registers.
4240 const MCPhysReg *ShadowRegs =
4241 ABI.IsO32() ? IntArgRegs.data() : Mips64DPRegs;
4243 // We used to check the size as well but we can't do that anymore since
4244 // CCState::HandleByVal() rounds up the size after calling this function.
4245 assert(!(Align % RegSizeInBytes) &&
4246 "Byval argument's alignment should be a multiple of"
4247 "RegSizeInBytes.");
4249 FirstReg = State->getFirstUnallocated(IntArgRegs);
4251 // If Align > RegSizeInBytes, the first arg register must be even.
4252 // FIXME: This condition happens to do the right thing but it's not the
4253 // right way to test it. We want to check that the stack frame offset
4254 // of the register is aligned.
4255 if ((Align > RegSizeInBytes) && (FirstReg % 2)) {
4256 State->AllocateReg(IntArgRegs[FirstReg], ShadowRegs[FirstReg]);
4257 ++FirstReg;
4260 // Mark the registers allocated.
4261 Size = alignTo(Size, RegSizeInBytes);
4262 for (unsigned I = FirstReg; Size > 0 && (I < IntArgRegs.size());
4263 Size -= RegSizeInBytes, ++I, ++NumRegs)
4264 State->AllocateReg(IntArgRegs[I], ShadowRegs[I]);
4267 State->addInRegsParamInfo(FirstReg, FirstReg + NumRegs);
4270 MachineBasicBlock *MipsTargetLowering::emitPseudoSELECT(MachineInstr &MI,
4271 MachineBasicBlock *BB,
4272 bool isFPCmp,
4273 unsigned Opc) const {
4274 assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) &&
4275 "Subtarget already supports SELECT nodes with the use of"
4276 "conditional-move instructions.");
4278 const TargetInstrInfo *TII =
4279 Subtarget.getInstrInfo();
4280 DebugLoc DL = MI.getDebugLoc();
4282 // To "insert" a SELECT instruction, we actually have to insert the
4283 // diamond control-flow pattern. The incoming instruction knows the
4284 // destination vreg to set, the condition code register to branch on, the
4285 // true/false values to select between, and a branch opcode to use.
4286 const BasicBlock *LLVM_BB = BB->getBasicBlock();
4287 MachineFunction::iterator It = ++BB->getIterator();
4289 // thisMBB:
4290 // ...
4291 // TrueVal = ...
4292 // setcc r1, r2, r3
4293 // bNE r1, r0, copy1MBB
4294 // fallthrough --> copy0MBB
4295 MachineBasicBlock *thisMBB = BB;
4296 MachineFunction *F = BB->getParent();
4297 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4298 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4299 F->insert(It, copy0MBB);
4300 F->insert(It, sinkMBB);
4302 // Transfer the remainder of BB and its successor edges to sinkMBB.
4303 sinkMBB->splice(sinkMBB->begin(), BB,
4304 std::next(MachineBasicBlock::iterator(MI)), BB->end());
4305 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4307 // Next, add the true and fallthrough blocks as its successors.
4308 BB->addSuccessor(copy0MBB);
4309 BB->addSuccessor(sinkMBB);
4311 if (isFPCmp) {
4312 // bc1[tf] cc, sinkMBB
4313 BuildMI(BB, DL, TII->get(Opc))
4314 .addReg(MI.getOperand(1).getReg())
4315 .addMBB(sinkMBB);
4316 } else {
4317 // bne rs, $0, sinkMBB
4318 BuildMI(BB, DL, TII->get(Opc))
4319 .addReg(MI.getOperand(1).getReg())
4320 .addReg(Mips::ZERO)
4321 .addMBB(sinkMBB);
4324 // copy0MBB:
4325 // %FalseValue = ...
4326 // # fallthrough to sinkMBB
4327 BB = copy0MBB;
4329 // Update machine-CFG edges
4330 BB->addSuccessor(sinkMBB);
4332 // sinkMBB:
4333 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
4334 // ...
4335 BB = sinkMBB;
4337 BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
4338 .addReg(MI.getOperand(2).getReg())
4339 .addMBB(thisMBB)
4340 .addReg(MI.getOperand(3).getReg())
4341 .addMBB(copy0MBB);
4343 MI.eraseFromParent(); // The pseudo instruction is gone now.
4345 return BB;
4348 // FIXME? Maybe this could be a TableGen attribute on some registers and
4349 // this table could be generated automatically from RegInfo.
4350 unsigned MipsTargetLowering::getRegisterByName(const char* RegName, EVT VT,
4351 SelectionDAG &DAG) const {
4352 // Named registers is expected to be fairly rare. For now, just support $28
4353 // since the linux kernel uses it.
4354 if (Subtarget.isGP64bit()) {
4355 unsigned Reg = StringSwitch<unsigned>(RegName)
4356 .Case("$28", Mips::GP_64)
4357 .Default(0);
4358 if (Reg)
4359 return Reg;
4360 } else {
4361 unsigned Reg = StringSwitch<unsigned>(RegName)
4362 .Case("$28", Mips::GP)
4363 .Default(0);
4364 if (Reg)
4365 return Reg;
4367 report_fatal_error("Invalid register name global variable");