[PowerPC] Do not emit record-form rotates when record-form andi/andis suffices
[llvm-core.git] / lib / Target / X86 / X86InstrInfo.h
blob85afcf8904a112f8940404e89d8927a354542cd3
1 //===-- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the X86 implementation of the TargetInstrInfo class.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_LIB_TARGET_X86_X86INSTRINFO_H
15 #define LLVM_LIB_TARGET_X86_X86INSTRINFO_H
17 #include "MCTargetDesc/X86BaseInfo.h"
18 #include "X86InstrFMA3Info.h"
19 #include "X86RegisterInfo.h"
20 #include "llvm/CodeGen/ISDOpcodes.h"
21 #include "llvm/CodeGen/TargetInstrInfo.h"
22 #include <vector>
24 #define GET_INSTRINFO_HEADER
25 #include "X86GenInstrInfo.inc"
27 namespace llvm {
28 class MachineInstrBuilder;
29 class X86RegisterInfo;
30 class X86Subtarget;
32 namespace X86 {
34 enum AsmComments {
35 // For instr that was compressed from EVEX to VEX.
36 AC_EVEX_2_VEX = MachineInstr::TAsmComments
39 // X86 specific condition code. These correspond to X86_*_COND in
40 // X86InstrInfo.td. They must be kept in synch.
41 enum CondCode {
42 COND_A = 0,
43 COND_AE = 1,
44 COND_B = 2,
45 COND_BE = 3,
46 COND_E = 4,
47 COND_G = 5,
48 COND_GE = 6,
49 COND_L = 7,
50 COND_LE = 8,
51 COND_NE = 9,
52 COND_NO = 10,
53 COND_NP = 11,
54 COND_NS = 12,
55 COND_O = 13,
56 COND_P = 14,
57 COND_S = 15,
58 LAST_VALID_COND = COND_S,
60 // Artificial condition codes. These are used by AnalyzeBranch
61 // to indicate a block terminated with two conditional branches that together
62 // form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE,
63 // which can't be represented on x86 with a single condition. These
64 // are never used in MachineInstrs and are inverses of one another.
65 COND_NE_OR_P,
66 COND_E_AND_NP,
68 COND_INVALID
71 // Turn condition code into conditional branch opcode.
72 unsigned GetCondBranchFromCond(CondCode CC);
74 /// Return a pair of condition code for the given predicate and whether
75 /// the instruction operands should be swaped to match the condition code.
76 std::pair<CondCode, bool> getX86ConditionCode(CmpInst::Predicate Predicate);
78 /// Return a set opcode for the given condition and whether it has
79 /// a memory operand.
80 unsigned getSETFromCond(CondCode CC, bool HasMemoryOperand = false);
82 /// Return a cmov opcode for the given condition, register size in
83 /// bytes, and operand type.
84 unsigned getCMovFromCond(CondCode CC, unsigned RegBytes,
85 bool HasMemoryOperand = false);
87 // Turn jCC opcode into condition code.
88 CondCode getCondFromBranchOpc(unsigned Opc);
90 // Turn setCC opcode into condition code.
91 CondCode getCondFromSETOpc(unsigned Opc);
93 // Turn CMov opcode into condition code.
94 CondCode getCondFromCMovOpc(unsigned Opc);
96 /// GetOppositeBranchCondition - Return the inverse of the specified cond,
97 /// e.g. turning COND_E to COND_NE.
98 CondCode GetOppositeBranchCondition(CondCode CC);
100 /// Get the VPCMP immediate for the given condition.
101 unsigned getVPCMPImmForCond(ISD::CondCode CC);
103 /// Get the VPCMP immediate if the opcodes are swapped.
104 unsigned getSwappedVPCMPImm(unsigned Imm);
106 /// Get the VPCOM immediate if the opcodes are swapped.
107 unsigned getSwappedVPCOMImm(unsigned Imm);
109 } // namespace X86
111 /// isGlobalStubReference - Return true if the specified TargetFlag operand is
112 /// a reference to a stub for a global, not the global itself.
113 inline static bool isGlobalStubReference(unsigned char TargetFlag) {
114 switch (TargetFlag) {
115 case X86II::MO_DLLIMPORT: // dllimport stub.
116 case X86II::MO_GOTPCREL: // rip-relative GOT reference.
117 case X86II::MO_GOT: // normal GOT reference.
118 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Normal $non_lazy_ptr ref.
119 case X86II::MO_DARWIN_NONLAZY: // Normal $non_lazy_ptr ref.
120 case X86II::MO_COFFSTUB: // COFF .refptr stub.
121 return true;
122 default:
123 return false;
127 /// isGlobalRelativeToPICBase - Return true if the specified global value
128 /// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg). If this
129 /// is true, the addressing mode has the PIC base register added in (e.g. EBX).
130 inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
131 switch (TargetFlag) {
132 case X86II::MO_GOTOFF: // isPICStyleGOT: local global.
133 case X86II::MO_GOT: // isPICStyleGOT: other global.
134 case X86II::MO_PIC_BASE_OFFSET: // Darwin local global.
135 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Darwin/32 external global.
136 case X86II::MO_TLVP: // ??? Pretty sure..
137 return true;
138 default:
139 return false;
143 inline static bool isScale(const MachineOperand &MO) {
144 return MO.isImm() && (MO.getImm() == 1 || MO.getImm() == 2 ||
145 MO.getImm() == 4 || MO.getImm() == 8);
148 inline static bool isLeaMem(const MachineInstr &MI, unsigned Op) {
149 if (MI.getOperand(Op).isFI())
150 return true;
151 return Op + X86::AddrSegmentReg <= MI.getNumOperands() &&
152 MI.getOperand(Op + X86::AddrBaseReg).isReg() &&
153 isScale(MI.getOperand(Op + X86::AddrScaleAmt)) &&
154 MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
155 (MI.getOperand(Op + X86::AddrDisp).isImm() ||
156 MI.getOperand(Op + X86::AddrDisp).isGlobal() ||
157 MI.getOperand(Op + X86::AddrDisp).isCPI() ||
158 MI.getOperand(Op + X86::AddrDisp).isJTI());
161 inline static bool isMem(const MachineInstr &MI, unsigned Op) {
162 if (MI.getOperand(Op).isFI())
163 return true;
164 return Op + X86::AddrNumOperands <= MI.getNumOperands() &&
165 MI.getOperand(Op + X86::AddrSegmentReg).isReg() && isLeaMem(MI, Op);
168 class X86InstrInfo final : public X86GenInstrInfo {
169 X86Subtarget &Subtarget;
170 const X86RegisterInfo RI;
172 virtual void anchor();
174 bool AnalyzeBranchImpl(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
175 MachineBasicBlock *&FBB,
176 SmallVectorImpl<MachineOperand> &Cond,
177 SmallVectorImpl<MachineInstr *> &CondBranches,
178 bool AllowModify) const;
180 public:
181 explicit X86InstrInfo(X86Subtarget &STI);
183 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
184 /// such, whenever a client has an instance of instruction info, it should
185 /// always be able to get register info as well (through this method).
187 const X86RegisterInfo &getRegisterInfo() const { return RI; }
189 /// Returns the stack pointer adjustment that happens inside the frame
190 /// setup..destroy sequence (e.g. by pushes, or inside the callee).
191 int64_t getFrameAdjustment(const MachineInstr &I) const {
192 assert(isFrameInstr(I));
193 if (isFrameSetup(I))
194 return I.getOperand(2).getImm();
195 return I.getOperand(1).getImm();
198 /// Sets the stack pointer adjustment made inside the frame made up by this
199 /// instruction.
200 void setFrameAdjustment(MachineInstr &I, int64_t V) const {
201 assert(isFrameInstr(I));
202 if (isFrameSetup(I))
203 I.getOperand(2).setImm(V);
204 else
205 I.getOperand(1).setImm(V);
208 /// getSPAdjust - This returns the stack pointer adjustment made by
209 /// this instruction. For x86, we need to handle more complex call
210 /// sequences involving PUSHes.
211 int getSPAdjust(const MachineInstr &MI) const override;
213 /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
214 /// extension instruction. That is, it's like a copy where it's legal for the
215 /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
216 /// true, then it's expected the pre-extension value is available as a subreg
217 /// of the result register. This also returns the sub-register index in
218 /// SubIdx.
219 bool isCoalescableExtInstr(const MachineInstr &MI, unsigned &SrcReg,
220 unsigned &DstReg, unsigned &SubIdx) const override;
222 unsigned isLoadFromStackSlot(const MachineInstr &MI,
223 int &FrameIndex) const override;
224 unsigned isLoadFromStackSlot(const MachineInstr &MI,
225 int &FrameIndex,
226 unsigned &MemBytes) const override;
227 /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
228 /// stack locations as well. This uses a heuristic so it isn't
229 /// reliable for correctness.
230 unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI,
231 int &FrameIndex) const override;
233 unsigned isStoreToStackSlot(const MachineInstr &MI,
234 int &FrameIndex) const override;
235 unsigned isStoreToStackSlot(const MachineInstr &MI,
236 int &FrameIndex,
237 unsigned &MemBytes) const override;
238 /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
239 /// stack locations as well. This uses a heuristic so it isn't
240 /// reliable for correctness.
241 unsigned isStoreToStackSlotPostFE(const MachineInstr &MI,
242 int &FrameIndex) const override;
244 bool isReallyTriviallyReMaterializable(const MachineInstr &MI,
245 AliasAnalysis *AA) const override;
246 void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
247 unsigned DestReg, unsigned SubIdx,
248 const MachineInstr &Orig,
249 const TargetRegisterInfo &TRI) const override;
251 /// Given an operand within a MachineInstr, insert preceding code to put it
252 /// into the right format for a particular kind of LEA instruction. This may
253 /// involve using an appropriate super-register instead (with an implicit use
254 /// of the original) or creating a new virtual register and inserting COPY
255 /// instructions to get the data into the right class.
257 /// Reference parameters are set to indicate how caller should add this
258 /// operand to the LEA instruction.
259 bool classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
260 unsigned LEAOpcode, bool AllowSP, unsigned &NewSrc,
261 bool &isKill, bool &isUndef, MachineOperand &ImplicitOp,
262 LiveVariables *LV) const;
264 /// convertToThreeAddress - This method must be implemented by targets that
265 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
266 /// may be able to convert a two-address instruction into a true
267 /// three-address instruction on demand. This allows the X86 target (for
268 /// example) to convert ADD and SHL instructions into LEA instructions if they
269 /// would require register copies due to two-addressness.
271 /// This method returns a null pointer if the transformation cannot be
272 /// performed, otherwise it returns the new instruction.
274 MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
275 MachineInstr &MI,
276 LiveVariables *LV) const override;
278 /// Returns true iff the routine could find two commutable operands in the
279 /// given machine instruction.
280 /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. Their
281 /// input values can be re-defined in this method only if the input values
282 /// are not pre-defined, which is designated by the special value
283 /// 'CommuteAnyOperandIndex' assigned to it.
284 /// If both of indices are pre-defined and refer to some operands, then the
285 /// method simply returns true if the corresponding operands are commutable
286 /// and returns false otherwise.
288 /// For example, calling this method this way:
289 /// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
290 /// findCommutedOpIndices(MI, Op1, Op2);
291 /// can be interpreted as a query asking to find an operand that would be
292 /// commutable with the operand#1.
293 bool findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
294 unsigned &SrcOpIdx2) const override;
296 /// Returns an adjusted FMA opcode that must be used in FMA instruction that
297 /// performs the same computations as the given \p MI but which has the
298 /// operands \p SrcOpIdx1 and \p SrcOpIdx2 commuted.
299 /// It may return 0 if it is unsafe to commute the operands.
300 /// Note that a machine instruction (instead of its opcode) is passed as the
301 /// first parameter to make it possible to analyze the instruction's uses and
302 /// commute the first operand of FMA even when it seems unsafe when you look
303 /// at the opcode. For example, it is Ok to commute the first operand of
304 /// VFMADD*SD_Int, if ONLY the lowest 64-bit element of the result is used.
306 /// The returned FMA opcode may differ from the opcode in the given \p MI.
307 /// For example, commuting the operands #1 and #3 in the following FMA
308 /// FMA213 #1, #2, #3
309 /// results into instruction with adjusted opcode:
310 /// FMA231 #3, #2, #1
311 unsigned
312 getFMA3OpcodeToCommuteOperands(const MachineInstr &MI, unsigned SrcOpIdx1,
313 unsigned SrcOpIdx2,
314 const X86InstrFMA3Group &FMA3Group) const;
316 // Branch analysis.
317 bool isUnpredicatedTerminator(const MachineInstr &MI) const override;
318 bool isUnconditionalTailCall(const MachineInstr &MI) const override;
319 bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond,
320 const MachineInstr &TailCall) const override;
321 void replaceBranchWithTailCall(MachineBasicBlock &MBB,
322 SmallVectorImpl<MachineOperand> &Cond,
323 const MachineInstr &TailCall) const override;
325 bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
326 MachineBasicBlock *&FBB,
327 SmallVectorImpl<MachineOperand> &Cond,
328 bool AllowModify) const override;
330 bool getMemOpBaseRegImmOfs(MachineInstr &LdSt, unsigned &BaseReg,
331 int64_t &Offset,
332 const TargetRegisterInfo *TRI) const override;
333 bool analyzeBranchPredicate(MachineBasicBlock &MBB,
334 TargetInstrInfo::MachineBranchPredicate &MBP,
335 bool AllowModify = false) const override;
337 unsigned removeBranch(MachineBasicBlock &MBB,
338 int *BytesRemoved = nullptr) const override;
339 unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
340 MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
341 const DebugLoc &DL,
342 int *BytesAdded = nullptr) const override;
343 bool canInsertSelect(const MachineBasicBlock &, ArrayRef<MachineOperand> Cond,
344 unsigned, unsigned, int &, int &, int &) const override;
345 void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
346 const DebugLoc &DL, unsigned DstReg,
347 ArrayRef<MachineOperand> Cond, unsigned TrueReg,
348 unsigned FalseReg) const override;
349 void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
350 const DebugLoc &DL, unsigned DestReg, unsigned SrcReg,
351 bool KillSrc) const override;
352 void storeRegToStackSlot(MachineBasicBlock &MBB,
353 MachineBasicBlock::iterator MI, unsigned SrcReg,
354 bool isKill, int FrameIndex,
355 const TargetRegisterClass *RC,
356 const TargetRegisterInfo *TRI) const override;
358 void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
359 SmallVectorImpl<MachineOperand> &Addr,
360 const TargetRegisterClass *RC,
361 ArrayRef<MachineMemOperand *> MMOs,
362 SmallVectorImpl<MachineInstr *> &NewMIs) const;
364 void loadRegFromStackSlot(MachineBasicBlock &MBB,
365 MachineBasicBlock::iterator MI, unsigned DestReg,
366 int FrameIndex, const TargetRegisterClass *RC,
367 const TargetRegisterInfo *TRI) const override;
369 void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
370 SmallVectorImpl<MachineOperand> &Addr,
371 const TargetRegisterClass *RC,
372 ArrayRef<MachineMemOperand *> MMOs,
373 SmallVectorImpl<MachineInstr *> &NewMIs) const;
375 bool expandPostRAPseudo(MachineInstr &MI) const override;
377 /// Check whether the target can fold a load that feeds a subreg operand
378 /// (or a subreg operand that feeds a store).
379 bool isSubregFoldable() const override { return true; }
381 /// foldMemoryOperand - If this target supports it, fold a load or store of
382 /// the specified stack slot into the specified machine instruction for the
383 /// specified operand(s). If this is possible, the target should perform the
384 /// folding and return true, otherwise it should return false. If it folds
385 /// the instruction, it is likely that the MachineInstruction the iterator
386 /// references has been changed.
387 MachineInstr *
388 foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
389 ArrayRef<unsigned> Ops,
390 MachineBasicBlock::iterator InsertPt, int FrameIndex,
391 LiveIntervals *LIS = nullptr) const override;
393 /// foldMemoryOperand - Same as the previous version except it allows folding
394 /// of any load and store from / to any address, not just from a specific
395 /// stack slot.
396 MachineInstr *foldMemoryOperandImpl(
397 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
398 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
399 LiveIntervals *LIS = nullptr) const override;
401 /// unfoldMemoryOperand - Separate a single instruction which folded a load or
402 /// a store or a load and a store into two or more instruction. If this is
403 /// possible, returns true as well as the new instructions by reference.
404 bool
405 unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg,
406 bool UnfoldLoad, bool UnfoldStore,
407 SmallVectorImpl<MachineInstr *> &NewMIs) const override;
409 bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
410 SmallVectorImpl<SDNode *> &NewNodes) const override;
412 /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
413 /// instruction after load / store are unfolded from an instruction of the
414 /// specified opcode. It returns zero if the specified unfolding is not
415 /// possible. If LoadRegIndex is non-null, it is filled in with the operand
416 /// index of the operand which will hold the register holding the loaded
417 /// value.
418 unsigned
419 getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
420 unsigned *LoadRegIndex = nullptr) const override;
422 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
423 /// to determine if two loads are loading from the same base address. It
424 /// should only return true if the base pointers are the same and the
425 /// only differences between the two addresses are the offset. It also returns
426 /// the offsets by reference.
427 bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1,
428 int64_t &Offset2) const override;
430 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
431 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads
432 /// should be scheduled togther. On some targets if two loads are loading from
433 /// addresses in the same cache line, it's better if they are scheduled
434 /// together. This function takes two integers that represent the load offsets
435 /// from the common base address. It returns true if it decides it's desirable
436 /// to schedule the two loads together. "NumLoads" is the number of loads that
437 /// have already been scheduled after Load1.
438 bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, int64_t Offset1,
439 int64_t Offset2,
440 unsigned NumLoads) const override;
442 void getNoop(MCInst &NopInst) const override;
444 bool
445 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
447 /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
448 /// instruction that defines the specified register class.
449 bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const override;
451 /// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction tha
452 /// would clobber the EFLAGS condition register. Note the result may be
453 /// conservative. If it cannot definitely determine the safety after visiting
454 /// a few instructions in each direction it assumes it's not safe.
455 bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
456 MachineBasicBlock::iterator I) const;
458 /// True if MI has a condition code def, e.g. EFLAGS, that is
459 /// not marked dead.
460 bool hasLiveCondCodeDef(MachineInstr &MI) const;
462 /// getGlobalBaseReg - Return a virtual register initialized with the
463 /// the global base register value. Output instructions required to
464 /// initialize the register in the function entry block, if necessary.
466 unsigned getGlobalBaseReg(MachineFunction *MF) const;
468 std::pair<uint16_t, uint16_t>
469 getExecutionDomain(const MachineInstr &MI) const override;
471 uint16_t getExecutionDomainCustom(const MachineInstr &MI) const;
473 void setExecutionDomain(MachineInstr &MI, unsigned Domain) const override;
475 bool setExecutionDomainCustom(MachineInstr &MI, unsigned Domain) const;
477 unsigned
478 getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum,
479 const TargetRegisterInfo *TRI) const override;
480 unsigned getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum,
481 const TargetRegisterInfo *TRI) const override;
482 void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
483 const TargetRegisterInfo *TRI) const override;
485 MachineInstr *foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
486 unsigned OpNum,
487 ArrayRef<MachineOperand> MOs,
488 MachineBasicBlock::iterator InsertPt,
489 unsigned Size, unsigned Alignment,
490 bool AllowCommute) const;
492 bool isHighLatencyDef(int opc) const override;
494 bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
495 const MachineRegisterInfo *MRI,
496 const MachineInstr &DefMI, unsigned DefIdx,
497 const MachineInstr &UseMI,
498 unsigned UseIdx) const override;
500 bool useMachineCombiner() const override { return true; }
502 bool isAssociativeAndCommutative(const MachineInstr &Inst) const override;
504 bool hasReassociableOperands(const MachineInstr &Inst,
505 const MachineBasicBlock *MBB) const override;
507 void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
508 MachineInstr &NewMI1,
509 MachineInstr &NewMI2) const override;
511 /// analyzeCompare - For a comparison instruction, return the source registers
512 /// in SrcReg and SrcReg2 if having two register operands, and the value it
513 /// compares against in CmpValue. Return true if the comparison instruction
514 /// can be analyzed.
515 bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
516 unsigned &SrcReg2, int &CmpMask,
517 int &CmpValue) const override;
519 /// optimizeCompareInstr - Check if there exists an earlier instruction that
520 /// operates on the same source operands and sets flags in the same way as
521 /// Compare; remove Compare if possible.
522 bool optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
523 unsigned SrcReg2, int CmpMask, int CmpValue,
524 const MachineRegisterInfo *MRI) const override;
526 /// optimizeLoadInstr - Try to remove the load by folding it to a register
527 /// operand at the use. We fold the load instructions if and only if the
528 /// def and use are in the same BB. We only look at one load and see
529 /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
530 /// defined by the load we are trying to fold. DefMI returns the machine
531 /// instruction that defines FoldAsLoadDefReg, and the function returns
532 /// the machine instruction generated due to folding.
533 MachineInstr *optimizeLoadInstr(MachineInstr &MI,
534 const MachineRegisterInfo *MRI,
535 unsigned &FoldAsLoadDefReg,
536 MachineInstr *&DefMI) const override;
538 std::pair<unsigned, unsigned>
539 decomposeMachineOperandsTargetFlags(unsigned TF) const override;
541 ArrayRef<std::pair<unsigned, const char *>>
542 getSerializableDirectMachineOperandTargetFlags() const override;
544 virtual outliner::OutlinedFunction getOutliningCandidateInfo(
545 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const override;
547 bool isFunctionSafeToOutlineFrom(MachineFunction &MF,
548 bool OutlineFromLinkOnceODRs) const override;
550 outliner::InstrType
551 getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const override;
553 void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF,
554 const outliner::OutlinedFunction &OF) const override;
556 MachineBasicBlock::iterator
557 insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
558 MachineBasicBlock::iterator &It, MachineFunction &MF,
559 const outliner::Candidate &C) const override;
561 protected:
562 /// Commutes the operands in the given instruction by changing the operands
563 /// order and/or changing the instruction's opcode and/or the immediate value
564 /// operand.
566 /// The arguments 'CommuteOpIdx1' and 'CommuteOpIdx2' specify the operands
567 /// to be commuted.
569 /// Do not call this method for a non-commutable instruction or
570 /// non-commutable operands.
571 /// Even though the instruction is commutable, the method may still
572 /// fail to commute the operands, null pointer is returned in such cases.
573 MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
574 unsigned CommuteOpIdx1,
575 unsigned CommuteOpIdx2) const override;
577 /// If the specific machine instruction is a instruction that moves/copies
578 /// value from one register to another register return true along with
579 /// @Source machine operand and @Destination machine operand.
580 bool isCopyInstrImpl(const MachineInstr &MI, const MachineOperand *&Source,
581 const MachineOperand *&Destination) const override;
583 private:
584 MachineInstr *convertToThreeAddressWithLEA(unsigned MIOpc,
585 MachineFunction::iterator &MFI,
586 MachineInstr &MI,
587 LiveVariables *LV) const;
589 /// Handles memory folding for special case instructions, for instance those
590 /// requiring custom manipulation of the address.
591 MachineInstr *foldMemoryOperandCustom(MachineFunction &MF, MachineInstr &MI,
592 unsigned OpNum,
593 ArrayRef<MachineOperand> MOs,
594 MachineBasicBlock::iterator InsertPt,
595 unsigned Size, unsigned Align) const;
597 /// isFrameOperand - Return true and the FrameIndex if the specified
598 /// operand and follow operands form a reference to the stack frame.
599 bool isFrameOperand(const MachineInstr &MI, unsigned int Op,
600 int &FrameIndex) const;
602 /// Returns true iff the routine could find two commutable operands in the
603 /// given machine instruction with 3 vector inputs.
604 /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. Their
605 /// input values can be re-defined in this method only if the input values
606 /// are not pre-defined, which is designated by the special value
607 /// 'CommuteAnyOperandIndex' assigned to it.
608 /// If both of indices are pre-defined and refer to some operands, then the
609 /// method simply returns true if the corresponding operands are commutable
610 /// and returns false otherwise.
612 /// For example, calling this method this way:
613 /// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
614 /// findThreeSrcCommutedOpIndices(MI, Op1, Op2);
615 /// can be interpreted as a query asking to find an operand that would be
616 /// commutable with the operand#1.
618 /// If IsIntrinsic is set, operand 1 will be ignored for commuting.
619 bool findThreeSrcCommutedOpIndices(const MachineInstr &MI,
620 unsigned &SrcOpIdx1,
621 unsigned &SrcOpIdx2,
622 bool IsIntrinsic = false) const;
625 } // namespace llvm
627 #endif