1 //===-- ThreadSanitizer.cpp - race detector -------------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file is a part of ThreadSanitizer, a race detector.
12 // The tool is under development, for the details about previous versions see
13 // http://code.google.com/p/data-race-test
15 // The instrumentation phase is quite simple:
16 // - Insert calls to run-time library before every memory access.
17 // - Optimizations may apply to avoid instrumenting some of the accesses.
18 // - Insert calls at function entry/exit.
19 // The rest is handled by the run-time library.
20 //===----------------------------------------------------------------------===//
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/ProfileData/InstrProf.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/Instrumentation.h"
46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
47 #include "llvm/Transforms/Utils/EscapeEnumerator.h"
48 #include "llvm/Transforms/Utils/ModuleUtils.h"
52 #define DEBUG_TYPE "tsan"
54 static cl::opt
<bool> ClInstrumentMemoryAccesses(
55 "tsan-instrument-memory-accesses", cl::init(true),
56 cl::desc("Instrument memory accesses"), cl::Hidden
);
57 static cl::opt
<bool> ClInstrumentFuncEntryExit(
58 "tsan-instrument-func-entry-exit", cl::init(true),
59 cl::desc("Instrument function entry and exit"), cl::Hidden
);
60 static cl::opt
<bool> ClHandleCxxExceptions(
61 "tsan-handle-cxx-exceptions", cl::init(true),
62 cl::desc("Handle C++ exceptions (insert cleanup blocks for unwinding)"),
64 static cl::opt
<bool> ClInstrumentAtomics(
65 "tsan-instrument-atomics", cl::init(true),
66 cl::desc("Instrument atomics"), cl::Hidden
);
67 static cl::opt
<bool> ClInstrumentMemIntrinsics(
68 "tsan-instrument-memintrinsics", cl::init(true),
69 cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden
);
71 STATISTIC(NumInstrumentedReads
, "Number of instrumented reads");
72 STATISTIC(NumInstrumentedWrites
, "Number of instrumented writes");
73 STATISTIC(NumOmittedReadsBeforeWrite
,
74 "Number of reads ignored due to following writes");
75 STATISTIC(NumAccessesWithBadSize
, "Number of accesses with bad size");
76 STATISTIC(NumInstrumentedVtableWrites
, "Number of vtable ptr writes");
77 STATISTIC(NumInstrumentedVtableReads
, "Number of vtable ptr reads");
78 STATISTIC(NumOmittedReadsFromConstantGlobals
,
79 "Number of reads from constant globals");
80 STATISTIC(NumOmittedReadsFromVtable
, "Number of vtable reads");
81 STATISTIC(NumOmittedNonCaptured
, "Number of accesses ignored due to capturing");
83 static const char *const kTsanModuleCtorName
= "tsan.module_ctor";
84 static const char *const kTsanInitName
= "__tsan_init";
88 /// ThreadSanitizer: instrument the code in module to find races.
89 struct ThreadSanitizer
: public FunctionPass
{
90 ThreadSanitizer() : FunctionPass(ID
) {}
91 StringRef
getPassName() const override
;
92 void getAnalysisUsage(AnalysisUsage
&AU
) const override
;
93 bool runOnFunction(Function
&F
) override
;
94 bool doInitialization(Module
&M
) override
;
95 static char ID
; // Pass identification, replacement for typeid.
98 void initializeCallbacks(Module
&M
);
99 bool instrumentLoadOrStore(Instruction
*I
, const DataLayout
&DL
);
100 bool instrumentAtomic(Instruction
*I
, const DataLayout
&DL
);
101 bool instrumentMemIntrinsic(Instruction
*I
);
102 void chooseInstructionsToInstrument(SmallVectorImpl
<Instruction
*> &Local
,
103 SmallVectorImpl
<Instruction
*> &All
,
104 const DataLayout
&DL
);
105 bool addrPointsToConstantData(Value
*Addr
);
106 int getMemoryAccessFuncIndex(Value
*Addr
, const DataLayout
&DL
);
107 void InsertRuntimeIgnores(Function
&F
);
111 // Callbacks to run-time library are computed in doInitialization.
112 Function
*TsanFuncEntry
;
113 Function
*TsanFuncExit
;
114 Function
*TsanIgnoreBegin
;
115 Function
*TsanIgnoreEnd
;
116 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
117 static const size_t kNumberOfAccessSizes
= 5;
118 Function
*TsanRead
[kNumberOfAccessSizes
];
119 Function
*TsanWrite
[kNumberOfAccessSizes
];
120 Function
*TsanUnalignedRead
[kNumberOfAccessSizes
];
121 Function
*TsanUnalignedWrite
[kNumberOfAccessSizes
];
122 Function
*TsanAtomicLoad
[kNumberOfAccessSizes
];
123 Function
*TsanAtomicStore
[kNumberOfAccessSizes
];
124 Function
*TsanAtomicRMW
[AtomicRMWInst::LAST_BINOP
+ 1][kNumberOfAccessSizes
];
125 Function
*TsanAtomicCAS
[kNumberOfAccessSizes
];
126 Function
*TsanAtomicThreadFence
;
127 Function
*TsanAtomicSignalFence
;
128 Function
*TsanVptrUpdate
;
129 Function
*TsanVptrLoad
;
130 Function
*MemmoveFn
, *MemcpyFn
, *MemsetFn
;
131 Function
*TsanCtorFunction
;
135 char ThreadSanitizer::ID
= 0;
136 INITIALIZE_PASS_BEGIN(
137 ThreadSanitizer
, "tsan",
138 "ThreadSanitizer: detects data races.",
140 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
142 ThreadSanitizer
, "tsan",
143 "ThreadSanitizer: detects data races.",
146 StringRef
ThreadSanitizer::getPassName() const { return "ThreadSanitizer"; }
148 void ThreadSanitizer::getAnalysisUsage(AnalysisUsage
&AU
) const {
149 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
152 FunctionPass
*llvm::createThreadSanitizerPass() {
153 return new ThreadSanitizer();
156 void ThreadSanitizer::initializeCallbacks(Module
&M
) {
157 IRBuilder
<> IRB(M
.getContext());
159 Attr
= Attr
.addAttribute(M
.getContext(), AttributeList::FunctionIndex
,
160 Attribute::NoUnwind
);
161 // Initialize the callbacks.
162 TsanFuncEntry
= checkSanitizerInterfaceFunction(M
.getOrInsertFunction(
163 "__tsan_func_entry", Attr
, IRB
.getVoidTy(), IRB
.getInt8PtrTy()));
164 TsanFuncExit
= checkSanitizerInterfaceFunction(
165 M
.getOrInsertFunction("__tsan_func_exit", Attr
, IRB
.getVoidTy()));
166 TsanIgnoreBegin
= checkSanitizerInterfaceFunction(M
.getOrInsertFunction(
167 "__tsan_ignore_thread_begin", Attr
, IRB
.getVoidTy()));
168 TsanIgnoreEnd
= checkSanitizerInterfaceFunction(M
.getOrInsertFunction(
169 "__tsan_ignore_thread_end", Attr
, IRB
.getVoidTy()));
170 OrdTy
= IRB
.getInt32Ty();
171 for (size_t i
= 0; i
< kNumberOfAccessSizes
; ++i
) {
172 const unsigned ByteSize
= 1U << i
;
173 const unsigned BitSize
= ByteSize
* 8;
174 std::string ByteSizeStr
= utostr(ByteSize
);
175 std::string BitSizeStr
= utostr(BitSize
);
176 SmallString
<32> ReadName("__tsan_read" + ByteSizeStr
);
177 TsanRead
[i
] = checkSanitizerInterfaceFunction(M
.getOrInsertFunction(
178 ReadName
, Attr
, IRB
.getVoidTy(), IRB
.getInt8PtrTy()));
180 SmallString
<32> WriteName("__tsan_write" + ByteSizeStr
);
181 TsanWrite
[i
] = checkSanitizerInterfaceFunction(M
.getOrInsertFunction(
182 WriteName
, Attr
, IRB
.getVoidTy(), IRB
.getInt8PtrTy()));
184 SmallString
<64> UnalignedReadName("__tsan_unaligned_read" + ByteSizeStr
);
185 TsanUnalignedRead
[i
] =
186 checkSanitizerInterfaceFunction(M
.getOrInsertFunction(
187 UnalignedReadName
, Attr
, IRB
.getVoidTy(), IRB
.getInt8PtrTy()));
189 SmallString
<64> UnalignedWriteName("__tsan_unaligned_write" + ByteSizeStr
);
190 TsanUnalignedWrite
[i
] =
191 checkSanitizerInterfaceFunction(M
.getOrInsertFunction(
192 UnalignedWriteName
, Attr
, IRB
.getVoidTy(), IRB
.getInt8PtrTy()));
194 Type
*Ty
= Type::getIntNTy(M
.getContext(), BitSize
);
195 Type
*PtrTy
= Ty
->getPointerTo();
196 SmallString
<32> AtomicLoadName("__tsan_atomic" + BitSizeStr
+ "_load");
197 TsanAtomicLoad
[i
] = checkSanitizerInterfaceFunction(
198 M
.getOrInsertFunction(AtomicLoadName
, Attr
, Ty
, PtrTy
, OrdTy
));
200 SmallString
<32> AtomicStoreName("__tsan_atomic" + BitSizeStr
+ "_store");
201 TsanAtomicStore
[i
] = checkSanitizerInterfaceFunction(M
.getOrInsertFunction(
202 AtomicStoreName
, Attr
, IRB
.getVoidTy(), PtrTy
, Ty
, OrdTy
));
204 for (int op
= AtomicRMWInst::FIRST_BINOP
;
205 op
<= AtomicRMWInst::LAST_BINOP
; ++op
) {
206 TsanAtomicRMW
[op
][i
] = nullptr;
207 const char *NamePart
= nullptr;
208 if (op
== AtomicRMWInst::Xchg
)
209 NamePart
= "_exchange";
210 else if (op
== AtomicRMWInst::Add
)
211 NamePart
= "_fetch_add";
212 else if (op
== AtomicRMWInst::Sub
)
213 NamePart
= "_fetch_sub";
214 else if (op
== AtomicRMWInst::And
)
215 NamePart
= "_fetch_and";
216 else if (op
== AtomicRMWInst::Or
)
217 NamePart
= "_fetch_or";
218 else if (op
== AtomicRMWInst::Xor
)
219 NamePart
= "_fetch_xor";
220 else if (op
== AtomicRMWInst::Nand
)
221 NamePart
= "_fetch_nand";
224 SmallString
<32> RMWName("__tsan_atomic" + itostr(BitSize
) + NamePart
);
225 TsanAtomicRMW
[op
][i
] = checkSanitizerInterfaceFunction(
226 M
.getOrInsertFunction(RMWName
, Attr
, Ty
, PtrTy
, Ty
, OrdTy
));
229 SmallString
<32> AtomicCASName("__tsan_atomic" + BitSizeStr
+
230 "_compare_exchange_val");
231 TsanAtomicCAS
[i
] = checkSanitizerInterfaceFunction(M
.getOrInsertFunction(
232 AtomicCASName
, Attr
, Ty
, PtrTy
, Ty
, Ty
, OrdTy
, OrdTy
));
234 TsanVptrUpdate
= checkSanitizerInterfaceFunction(
235 M
.getOrInsertFunction("__tsan_vptr_update", Attr
, IRB
.getVoidTy(),
236 IRB
.getInt8PtrTy(), IRB
.getInt8PtrTy()));
237 TsanVptrLoad
= checkSanitizerInterfaceFunction(M
.getOrInsertFunction(
238 "__tsan_vptr_read", Attr
, IRB
.getVoidTy(), IRB
.getInt8PtrTy()));
239 TsanAtomicThreadFence
= checkSanitizerInterfaceFunction(M
.getOrInsertFunction(
240 "__tsan_atomic_thread_fence", Attr
, IRB
.getVoidTy(), OrdTy
));
241 TsanAtomicSignalFence
= checkSanitizerInterfaceFunction(M
.getOrInsertFunction(
242 "__tsan_atomic_signal_fence", Attr
, IRB
.getVoidTy(), OrdTy
));
244 MemmoveFn
= checkSanitizerInterfaceFunction(
245 M
.getOrInsertFunction("memmove", Attr
, IRB
.getInt8PtrTy(), IRB
.getInt8PtrTy(),
246 IRB
.getInt8PtrTy(), IntptrTy
));
247 MemcpyFn
= checkSanitizerInterfaceFunction(
248 M
.getOrInsertFunction("memcpy", Attr
, IRB
.getInt8PtrTy(), IRB
.getInt8PtrTy(),
249 IRB
.getInt8PtrTy(), IntptrTy
));
250 MemsetFn
= checkSanitizerInterfaceFunction(
251 M
.getOrInsertFunction("memset", Attr
, IRB
.getInt8PtrTy(), IRB
.getInt8PtrTy(),
252 IRB
.getInt32Ty(), IntptrTy
));
255 bool ThreadSanitizer::doInitialization(Module
&M
) {
256 const DataLayout
&DL
= M
.getDataLayout();
257 IntptrTy
= DL
.getIntPtrType(M
.getContext());
258 std::tie(TsanCtorFunction
, std::ignore
) = createSanitizerCtorAndInitFunctions(
259 M
, kTsanModuleCtorName
, kTsanInitName
, /*InitArgTypes=*/{},
262 appendToGlobalCtors(M
, TsanCtorFunction
, 0);
267 static bool isVtableAccess(Instruction
*I
) {
268 if (MDNode
*Tag
= I
->getMetadata(LLVMContext::MD_tbaa
))
269 return Tag
->isTBAAVtableAccess();
273 // Do not instrument known races/"benign races" that come from compiler
274 // instrumentatin. The user has no way of suppressing them.
275 static bool shouldInstrumentReadWriteFromAddress(const Module
*M
, Value
*Addr
) {
276 // Peel off GEPs and BitCasts.
277 Addr
= Addr
->stripInBoundsOffsets();
279 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(Addr
)) {
280 if (GV
->hasSection()) {
281 StringRef SectionName
= GV
->getSection();
282 // Check if the global is in the PGO counters section.
283 auto OF
= Triple(M
->getTargetTriple()).getObjectFormat();
284 if (SectionName
.endswith(
285 getInstrProfSectionName(IPSK_cnts
, OF
, /*AddSegmentInfo=*/false)))
289 // Check if the global is private gcov data.
290 if (GV
->getName().startswith("__llvm_gcov") ||
291 GV
->getName().startswith("__llvm_gcda"))
295 // Do not instrument acesses from different address spaces; we cannot deal
298 Type
*PtrTy
= cast
<PointerType
>(Addr
->getType()->getScalarType());
299 if (PtrTy
->getPointerAddressSpace() != 0)
306 bool ThreadSanitizer::addrPointsToConstantData(Value
*Addr
) {
307 // If this is a GEP, just analyze its pointer operand.
308 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(Addr
))
309 Addr
= GEP
->getPointerOperand();
311 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(Addr
)) {
312 if (GV
->isConstant()) {
313 // Reads from constant globals can not race with any writes.
314 NumOmittedReadsFromConstantGlobals
++;
317 } else if (LoadInst
*L
= dyn_cast
<LoadInst
>(Addr
)) {
318 if (isVtableAccess(L
)) {
319 // Reads from a vtable pointer can not race with any writes.
320 NumOmittedReadsFromVtable
++;
327 // Instrumenting some of the accesses may be proven redundant.
328 // Currently handled:
329 // - read-before-write (within same BB, no calls between)
330 // - not captured variables
332 // We do not handle some of the patterns that should not survive
333 // after the classic compiler optimizations.
334 // E.g. two reads from the same temp should be eliminated by CSE,
335 // two writes should be eliminated by DSE, etc.
337 // 'Local' is a vector of insns within the same BB (no calls between).
338 // 'All' is a vector of insns that will be instrumented.
339 void ThreadSanitizer::chooseInstructionsToInstrument(
340 SmallVectorImpl
<Instruction
*> &Local
, SmallVectorImpl
<Instruction
*> &All
,
341 const DataLayout
&DL
) {
342 SmallPtrSet
<Value
*, 8> WriteTargets
;
343 // Iterate from the end.
344 for (Instruction
*I
: reverse(Local
)) {
345 if (StoreInst
*Store
= dyn_cast
<StoreInst
>(I
)) {
346 Value
*Addr
= Store
->getPointerOperand();
347 if (!shouldInstrumentReadWriteFromAddress(I
->getModule(), Addr
))
349 WriteTargets
.insert(Addr
);
351 LoadInst
*Load
= cast
<LoadInst
>(I
);
352 Value
*Addr
= Load
->getPointerOperand();
353 if (!shouldInstrumentReadWriteFromAddress(I
->getModule(), Addr
))
355 if (WriteTargets
.count(Addr
)) {
356 // We will write to this temp, so no reason to analyze the read.
357 NumOmittedReadsBeforeWrite
++;
360 if (addrPointsToConstantData(Addr
)) {
361 // Addr points to some constant data -- it can not race with any writes.
365 Value
*Addr
= isa
<StoreInst
>(*I
)
366 ? cast
<StoreInst
>(I
)->getPointerOperand()
367 : cast
<LoadInst
>(I
)->getPointerOperand();
368 if (isa
<AllocaInst
>(GetUnderlyingObject(Addr
, DL
)) &&
369 !PointerMayBeCaptured(Addr
, true, true)) {
370 // The variable is addressable but not captured, so it cannot be
371 // referenced from a different thread and participate in a data race
372 // (see llvm/Analysis/CaptureTracking.h for details).
373 NumOmittedNonCaptured
++;
381 static bool isAtomic(Instruction
*I
) {
382 // TODO: Ask TTI whether synchronization scope is between threads.
383 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
))
384 return LI
->isAtomic() && LI
->getSyncScopeID() != SyncScope::SingleThread
;
385 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
))
386 return SI
->isAtomic() && SI
->getSyncScopeID() != SyncScope::SingleThread
;
387 if (isa
<AtomicRMWInst
>(I
))
389 if (isa
<AtomicCmpXchgInst
>(I
))
391 if (isa
<FenceInst
>(I
))
396 void ThreadSanitizer::InsertRuntimeIgnores(Function
&F
) {
397 IRBuilder
<> IRB(F
.getEntryBlock().getFirstNonPHI());
398 IRB
.CreateCall(TsanIgnoreBegin
);
399 EscapeEnumerator
EE(F
, "tsan_ignore_cleanup", ClHandleCxxExceptions
);
400 while (IRBuilder
<> *AtExit
= EE
.Next()) {
401 AtExit
->CreateCall(TsanIgnoreEnd
);
405 bool ThreadSanitizer::runOnFunction(Function
&F
) {
406 // This is required to prevent instrumenting call to __tsan_init from within
407 // the module constructor.
408 if (&F
== TsanCtorFunction
)
410 initializeCallbacks(*F
.getParent());
411 SmallVector
<Instruction
*, 8> AllLoadsAndStores
;
412 SmallVector
<Instruction
*, 8> LocalLoadsAndStores
;
413 SmallVector
<Instruction
*, 8> AtomicAccesses
;
414 SmallVector
<Instruction
*, 8> MemIntrinCalls
;
416 bool HasCalls
= false;
417 bool SanitizeFunction
= F
.hasFnAttribute(Attribute::SanitizeThread
);
418 const DataLayout
&DL
= F
.getParent()->getDataLayout();
419 const TargetLibraryInfo
*TLI
=
420 &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI();
422 // Traverse all instructions, collect loads/stores/returns, check for calls.
424 for (auto &Inst
: BB
) {
426 AtomicAccesses
.push_back(&Inst
);
427 else if (isa
<LoadInst
>(Inst
) || isa
<StoreInst
>(Inst
))
428 LocalLoadsAndStores
.push_back(&Inst
);
429 else if (isa
<CallInst
>(Inst
) || isa
<InvokeInst
>(Inst
)) {
430 if (CallInst
*CI
= dyn_cast
<CallInst
>(&Inst
))
431 maybeMarkSanitizerLibraryCallNoBuiltin(CI
, TLI
);
432 if (isa
<MemIntrinsic
>(Inst
))
433 MemIntrinCalls
.push_back(&Inst
);
435 chooseInstructionsToInstrument(LocalLoadsAndStores
, AllLoadsAndStores
,
439 chooseInstructionsToInstrument(LocalLoadsAndStores
, AllLoadsAndStores
, DL
);
442 // We have collected all loads and stores.
443 // FIXME: many of these accesses do not need to be checked for races
444 // (e.g. variables that do not escape, etc).
446 // Instrument memory accesses only if we want to report bugs in the function.
447 if (ClInstrumentMemoryAccesses
&& SanitizeFunction
)
448 for (auto Inst
: AllLoadsAndStores
) {
449 Res
|= instrumentLoadOrStore(Inst
, DL
);
452 // Instrument atomic memory accesses in any case (they can be used to
453 // implement synchronization).
454 if (ClInstrumentAtomics
)
455 for (auto Inst
: AtomicAccesses
) {
456 Res
|= instrumentAtomic(Inst
, DL
);
459 if (ClInstrumentMemIntrinsics
&& SanitizeFunction
)
460 for (auto Inst
: MemIntrinCalls
) {
461 Res
|= instrumentMemIntrinsic(Inst
);
464 if (F
.hasFnAttribute("sanitize_thread_no_checking_at_run_time")) {
465 assert(!F
.hasFnAttribute(Attribute::SanitizeThread
));
467 InsertRuntimeIgnores(F
);
470 // Instrument function entry/exit points if there were instrumented accesses.
471 if ((Res
|| HasCalls
) && ClInstrumentFuncEntryExit
) {
472 IRBuilder
<> IRB(F
.getEntryBlock().getFirstNonPHI());
473 Value
*ReturnAddress
= IRB
.CreateCall(
474 Intrinsic::getDeclaration(F
.getParent(), Intrinsic::returnaddress
),
476 IRB
.CreateCall(TsanFuncEntry
, ReturnAddress
);
478 EscapeEnumerator
EE(F
, "tsan_cleanup", ClHandleCxxExceptions
);
479 while (IRBuilder
<> *AtExit
= EE
.Next()) {
480 AtExit
->CreateCall(TsanFuncExit
, {});
487 bool ThreadSanitizer::instrumentLoadOrStore(Instruction
*I
,
488 const DataLayout
&DL
) {
490 bool IsWrite
= isa
<StoreInst
>(*I
);
491 Value
*Addr
= IsWrite
492 ? cast
<StoreInst
>(I
)->getPointerOperand()
493 : cast
<LoadInst
>(I
)->getPointerOperand();
495 // swifterror memory addresses are mem2reg promoted by instruction selection.
496 // As such they cannot have regular uses like an instrumentation function and
497 // it makes no sense to track them as memory.
498 if (Addr
->isSwiftError())
501 int Idx
= getMemoryAccessFuncIndex(Addr
, DL
);
504 if (IsWrite
&& isVtableAccess(I
)) {
505 LLVM_DEBUG(dbgs() << " VPTR : " << *I
<< "\n");
506 Value
*StoredValue
= cast
<StoreInst
>(I
)->getValueOperand();
507 // StoredValue may be a vector type if we are storing several vptrs at once.
508 // In this case, just take the first element of the vector since this is
509 // enough to find vptr races.
510 if (isa
<VectorType
>(StoredValue
->getType()))
511 StoredValue
= IRB
.CreateExtractElement(
512 StoredValue
, ConstantInt::get(IRB
.getInt32Ty(), 0));
513 if (StoredValue
->getType()->isIntegerTy())
514 StoredValue
= IRB
.CreateIntToPtr(StoredValue
, IRB
.getInt8PtrTy());
515 // Call TsanVptrUpdate.
516 IRB
.CreateCall(TsanVptrUpdate
,
517 {IRB
.CreatePointerCast(Addr
, IRB
.getInt8PtrTy()),
518 IRB
.CreatePointerCast(StoredValue
, IRB
.getInt8PtrTy())});
519 NumInstrumentedVtableWrites
++;
522 if (!IsWrite
&& isVtableAccess(I
)) {
523 IRB
.CreateCall(TsanVptrLoad
,
524 IRB
.CreatePointerCast(Addr
, IRB
.getInt8PtrTy()));
525 NumInstrumentedVtableReads
++;
528 const unsigned Alignment
= IsWrite
529 ? cast
<StoreInst
>(I
)->getAlignment()
530 : cast
<LoadInst
>(I
)->getAlignment();
531 Type
*OrigTy
= cast
<PointerType
>(Addr
->getType())->getElementType();
532 const uint32_t TypeSize
= DL
.getTypeStoreSizeInBits(OrigTy
);
533 Value
*OnAccessFunc
= nullptr;
534 if (Alignment
== 0 || Alignment
>= 8 || (Alignment
% (TypeSize
/ 8)) == 0)
535 OnAccessFunc
= IsWrite
? TsanWrite
[Idx
] : TsanRead
[Idx
];
537 OnAccessFunc
= IsWrite
? TsanUnalignedWrite
[Idx
] : TsanUnalignedRead
[Idx
];
538 IRB
.CreateCall(OnAccessFunc
, IRB
.CreatePointerCast(Addr
, IRB
.getInt8PtrTy()));
539 if (IsWrite
) NumInstrumentedWrites
++;
540 else NumInstrumentedReads
++;
544 static ConstantInt
*createOrdering(IRBuilder
<> *IRB
, AtomicOrdering ord
) {
547 case AtomicOrdering::NotAtomic
:
548 llvm_unreachable("unexpected atomic ordering!");
549 case AtomicOrdering::Unordered
: LLVM_FALLTHROUGH
;
550 case AtomicOrdering::Monotonic
: v
= 0; break;
551 // Not specified yet:
552 // case AtomicOrdering::Consume: v = 1; break;
553 case AtomicOrdering::Acquire
: v
= 2; break;
554 case AtomicOrdering::Release
: v
= 3; break;
555 case AtomicOrdering::AcquireRelease
: v
= 4; break;
556 case AtomicOrdering::SequentiallyConsistent
: v
= 5; break;
558 return IRB
->getInt32(v
);
561 // If a memset intrinsic gets inlined by the code gen, we will miss races on it.
562 // So, we either need to ensure the intrinsic is not inlined, or instrument it.
563 // We do not instrument memset/memmove/memcpy intrinsics (too complicated),
564 // instead we simply replace them with regular function calls, which are then
565 // intercepted by the run-time.
566 // Since tsan is running after everyone else, the calls should not be
567 // replaced back with intrinsics. If that becomes wrong at some point,
568 // we will need to call e.g. __tsan_memset to avoid the intrinsics.
569 bool ThreadSanitizer::instrumentMemIntrinsic(Instruction
*I
) {
571 if (MemSetInst
*M
= dyn_cast
<MemSetInst
>(I
)) {
574 {IRB
.CreatePointerCast(M
->getArgOperand(0), IRB
.getInt8PtrTy()),
575 IRB
.CreateIntCast(M
->getArgOperand(1), IRB
.getInt32Ty(), false),
576 IRB
.CreateIntCast(M
->getArgOperand(2), IntptrTy
, false)});
577 I
->eraseFromParent();
578 } else if (MemTransferInst
*M
= dyn_cast
<MemTransferInst
>(I
)) {
580 isa
<MemCpyInst
>(M
) ? MemcpyFn
: MemmoveFn
,
581 {IRB
.CreatePointerCast(M
->getArgOperand(0), IRB
.getInt8PtrTy()),
582 IRB
.CreatePointerCast(M
->getArgOperand(1), IRB
.getInt8PtrTy()),
583 IRB
.CreateIntCast(M
->getArgOperand(2), IntptrTy
, false)});
584 I
->eraseFromParent();
589 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x
590 // standards. For background see C++11 standard. A slightly older, publicly
591 // available draft of the standard (not entirely up-to-date, but close enough
592 // for casual browsing) is available here:
593 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
594 // The following page contains more background information:
595 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
597 bool ThreadSanitizer::instrumentAtomic(Instruction
*I
, const DataLayout
&DL
) {
599 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
600 Value
*Addr
= LI
->getPointerOperand();
601 int Idx
= getMemoryAccessFuncIndex(Addr
, DL
);
604 const unsigned ByteSize
= 1U << Idx
;
605 const unsigned BitSize
= ByteSize
* 8;
606 Type
*Ty
= Type::getIntNTy(IRB
.getContext(), BitSize
);
607 Type
*PtrTy
= Ty
->getPointerTo();
608 Value
*Args
[] = {IRB
.CreatePointerCast(Addr
, PtrTy
),
609 createOrdering(&IRB
, LI
->getOrdering())};
610 Type
*OrigTy
= cast
<PointerType
>(Addr
->getType())->getElementType();
611 Value
*C
= IRB
.CreateCall(TsanAtomicLoad
[Idx
], Args
);
612 Value
*Cast
= IRB
.CreateBitOrPointerCast(C
, OrigTy
);
613 I
->replaceAllUsesWith(Cast
);
614 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
615 Value
*Addr
= SI
->getPointerOperand();
616 int Idx
= getMemoryAccessFuncIndex(Addr
, DL
);
619 const unsigned ByteSize
= 1U << Idx
;
620 const unsigned BitSize
= ByteSize
* 8;
621 Type
*Ty
= Type::getIntNTy(IRB
.getContext(), BitSize
);
622 Type
*PtrTy
= Ty
->getPointerTo();
623 Value
*Args
[] = {IRB
.CreatePointerCast(Addr
, PtrTy
),
624 IRB
.CreateBitOrPointerCast(SI
->getValueOperand(), Ty
),
625 createOrdering(&IRB
, SI
->getOrdering())};
626 CallInst
*C
= CallInst::Create(TsanAtomicStore
[Idx
], Args
);
627 ReplaceInstWithInst(I
, C
);
628 } else if (AtomicRMWInst
*RMWI
= dyn_cast
<AtomicRMWInst
>(I
)) {
629 Value
*Addr
= RMWI
->getPointerOperand();
630 int Idx
= getMemoryAccessFuncIndex(Addr
, DL
);
633 Function
*F
= TsanAtomicRMW
[RMWI
->getOperation()][Idx
];
636 const unsigned ByteSize
= 1U << Idx
;
637 const unsigned BitSize
= ByteSize
* 8;
638 Type
*Ty
= Type::getIntNTy(IRB
.getContext(), BitSize
);
639 Type
*PtrTy
= Ty
->getPointerTo();
640 Value
*Args
[] = {IRB
.CreatePointerCast(Addr
, PtrTy
),
641 IRB
.CreateIntCast(RMWI
->getValOperand(), Ty
, false),
642 createOrdering(&IRB
, RMWI
->getOrdering())};
643 CallInst
*C
= CallInst::Create(F
, Args
);
644 ReplaceInstWithInst(I
, C
);
645 } else if (AtomicCmpXchgInst
*CASI
= dyn_cast
<AtomicCmpXchgInst
>(I
)) {
646 Value
*Addr
= CASI
->getPointerOperand();
647 int Idx
= getMemoryAccessFuncIndex(Addr
, DL
);
650 const unsigned ByteSize
= 1U << Idx
;
651 const unsigned BitSize
= ByteSize
* 8;
652 Type
*Ty
= Type::getIntNTy(IRB
.getContext(), BitSize
);
653 Type
*PtrTy
= Ty
->getPointerTo();
655 IRB
.CreateBitOrPointerCast(CASI
->getCompareOperand(), Ty
);
657 IRB
.CreateBitOrPointerCast(CASI
->getNewValOperand(), Ty
);
658 Value
*Args
[] = {IRB
.CreatePointerCast(Addr
, PtrTy
),
661 createOrdering(&IRB
, CASI
->getSuccessOrdering()),
662 createOrdering(&IRB
, CASI
->getFailureOrdering())};
663 CallInst
*C
= IRB
.CreateCall(TsanAtomicCAS
[Idx
], Args
);
664 Value
*Success
= IRB
.CreateICmpEQ(C
, CmpOperand
);
666 Type
*OrigOldValTy
= CASI
->getNewValOperand()->getType();
667 if (Ty
!= OrigOldValTy
) {
668 // The value is a pointer, so we need to cast the return value.
669 OldVal
= IRB
.CreateIntToPtr(C
, OrigOldValTy
);
673 IRB
.CreateInsertValue(UndefValue::get(CASI
->getType()), OldVal
, 0);
674 Res
= IRB
.CreateInsertValue(Res
, Success
, 1);
676 I
->replaceAllUsesWith(Res
);
677 I
->eraseFromParent();
678 } else if (FenceInst
*FI
= dyn_cast
<FenceInst
>(I
)) {
679 Value
*Args
[] = {createOrdering(&IRB
, FI
->getOrdering())};
680 Function
*F
= FI
->getSyncScopeID() == SyncScope::SingleThread
?
681 TsanAtomicSignalFence
: TsanAtomicThreadFence
;
682 CallInst
*C
= CallInst::Create(F
, Args
);
683 ReplaceInstWithInst(I
, C
);
688 int ThreadSanitizer::getMemoryAccessFuncIndex(Value
*Addr
,
689 const DataLayout
&DL
) {
690 Type
*OrigPtrTy
= Addr
->getType();
691 Type
*OrigTy
= cast
<PointerType
>(OrigPtrTy
)->getElementType();
692 assert(OrigTy
->isSized());
693 uint32_t TypeSize
= DL
.getTypeStoreSizeInBits(OrigTy
);
694 if (TypeSize
!= 8 && TypeSize
!= 16 &&
695 TypeSize
!= 32 && TypeSize
!= 64 && TypeSize
!= 128) {
696 NumAccessesWithBadSize
++;
697 // Ignore all unusual sizes.
700 size_t Idx
= countTrailingZeros(TypeSize
/ 8);
701 assert(Idx
< kNumberOfAccessSizes
);